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PREFACE 

n 
Choosing an ordered basis for n dimensional euclidean space, E , is 

one of the more elementary concepts of "orientation." More precisely, 

choose an ordered set of basis vectors, e. = (e. 1 , ••• , e. ) , i = 1, 2, 
~ ~ ~n 

n • , n, for E . Then the determinant of the matrix (e .. ) is not zero . 
~J 

If the determinant is positive we say that this ordered basis defines 

the positive orientation of En, and in the other case, the negative ori-

. f n entat~on o E • ·Notice that the reflection of En caused by replacing 

e. with -e. causes the determinant to change sign, thus reversing the 
~ ~ 

orientation. 

n Suppose that V and W are complementary subspaces of E and that we 

have chosen bases {V,}p , {W.}q , and {e.}n for V, w, and En, respec-
~ i=l ~ i=l . ~ i=l 

tively, where p + q = n. Let A be the matrix of coefficients determined 

by writing the vectors V 1 , ••• , V p., w1 , • • • , Wq in terms of the vectors 

That is, we can write V. 
J 

n 
= l 

i=l 
aij ei. Coltimn j of A, trans­
n 

posed, is (a1 j , . • .,a.). 
nJ 

Also, W. = 
J 

L Bij ei' for some integers 
i=l 

s ... Column p+ j of A, transposed, is ( Blj ' •• . ' B . ) • We can define 
~J nJ 

v # w, of V and w according to the determinant of A. If IAI > 0 we set 

v # W= +1. If IAI < 0 then we set V # W = -1. This is one of the ele-

mentary concepts of an "intersection number." Thus, these two concepts, 

orientation and intersection number, are closely related and had their 

origins in linear algebra. 

In this thesis the concept of intersection number is defined in a 

more general setting. The complementary spaces V and W, and the 
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underlying space M are assumed to be topological spaces which admit 

Piecewise-Linear manifold structures. The concept of orientation is 

very closely related and, in fact, must precede the discussion of inter­

section numbers. Thus, we begin Chapter I with a discussion of orienta­

~tions on a manifold (if they exist). Also, combinatorial and homological 

definitions of the intersection number of a simplex and its dual cell are 

given under the assumption that the underlying space is an orientable PL 

manifold. 

In Chapter II, using the elementary intersection number theory of 

Chapter I, we prove the duality theorems in the PL category. 

In Chapter III, three definitions of the intersection number of sub­

manifolds of complementary dimension are given. An example is included 

to aid in the comprehension of these definitions. 

Finally, in Chapter IV, we give some additional applications of 

intersection number theory. 

The reader is assumed to have had a graduate course in algebraic 

topology. 
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CHAPTER I 

THE INTERSECTION NUMBER OF A SIMPLEX WITH ITS DUAL CELL 

The objective of this chapter is to give a combinatorial definition 

of the intersection number of a simplex with its dual cell. The. present­

ation follows that of Alexandrov [3] . In addition, a homological defini­

tion is given which is more in the spirit of contemporary :aigebra:be ·, 

topology. 

It is assumed that the reader is familiar with piecewise linear (PL) 

topology (see Hudson [11], Chapters I, II and III), simplicial; hbmolbigy 

(see Hocking and Young [10], Chapter VI) and singular homology (see Vick 

[25], Chapters I and II). 

Definition 1.1: A PL-n-ball (PL-ri-sphere) is a polyhedron which is 

PL homeomorphic to an n-simplex (boundary of an n+l simplex) • 

Definition 1.2: Given a simplex a in a simplicial complex K, we de­

fine the star of a in K by St (a, K) = { T £ K IT < y and a < y for some 

y £ K} (<means is a face of), and the link of a inK by LK (a, K) = 

{T £ st (a, K) IT~ a=$}. 

Figure 1. Simplicial Complex 
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The shaded area in Figure 1 is the star of the o-simplex o. The 

darkened polygonal circle is the link of o. 

Definition 1.3: A PL-n-manifold is an n.,.t:nanifold which has a tri-

angulation such that the link of each vertex is either a PL-(n-1)-ball 

or PL-(n-1)-sphere. Unless otherwise stated, the statement "Mn is a PL 

manifold with triangulation K" implies that K is a PL triangulation. 

If X is an n-dimensional manifold, we denote the interior of X by 

Int X and recall that Int X = {x e: X I x has a neighborhood homeomo:r:<phic 

n 
toR}. Denote the boundary of X by Bd X (Bd X= X- Int X). 

Assume Bd X = $ . 

Lemma 1.1: H (X, X - x) - Z for every x £ X. 
n 

Proof: x has a neighborhood, B, homeomorphic to the standard n-cell 

and such that x e: Int B. By excision, H (X, X - x) = H (B, B - x). It 
n n 

is a routine exercise using the sequence of the pair (B, B - x) to show 

that H (B, B - x) ,;;; z. II 
n 

Definition 1.4: A local orientation of X at x is a generator of 

H (X, X - x) .' 
n 

Lemma 1.2: Given an element a e: H (X, X - x), ] an open neighbor-
x n 

hood U of x and a e: H (X, X-U) such that a = i 0 (a), where 
n X X 

i 0 : H (X, X - U) + H (X, X - x) is the inclusion induced homomorphism. 
x n n 

Proof: Let a be a relative cycle representing a • Then the sup­
x 

port laal of aa is a compact subset of X contained in X- x. Hence 

U =X- laal is an open neighborhood of x. Thus we can take 

a e: H (X, X - U) to be the homology class of a relative to X - u. II 
n 

Call a a continuation of a in U. If y e: U, define a e: H (X, X - y) 
x y n 

by setting a = j 0 (a). 
y y 



Lemma 1.3: Every neighborhood W of x contains a neighborhood U of 

x such that for every y £ u, ju is an isomorphism. 
y 

3 

Proof: Let V be a neighborhood of x such that V C W and V is home-

omorphic to Rn. n 
Let U ~ V with U ::j: V and U homeomorphic to R • For any 

y £ U, the following diagram commutes (- denotes reduced homology). 

(X' 
cr 

H X .. U)~H n n 
(V, V - U) Lii 

n-1 
(V - U) 

-.1,. u J l Jy 
y) <:'1--- H 0 -H (X, X - (V, V - y) ~H n-1 

(V - y) n n 

Now cr and y are excision isomorphisms and S and o are connecting isomor-

phisms. The right vertical homomorphism is an isomorphism because the 

inclusion v - u~ v - y is a homotopy equivalence. 

morphism. II 

u Thus, j is an iso­
Y 

Def.ini tion 1. 5 : Let U ~ X. An element cr £ H (X, X - U) such that 
n 

j~ (cr) generates Hn (X, X - y) for every y £ u is called a local orien­

tation of ~ along ~-

U· If V ~ U, let jv : Hn (X, X - U) ~ Hn (X, X - V) denote the inclu-

sion induced homomorphism. If cr is a local orientation along U, then 

j~ (cr) is one along V since for any y £ v j; [j~ (cr)] = j~ (cr) • 

Definition 1.6: Suppose we have (1) a family of open subspaces 

{U.}. f which cover X; (2) for each i £ f, a local orientation 
~ ~ £ 

cr. £ H (X, X - u.) of X along u. and (3) if X £ X and X £ U . n U .~ 1 
~ n ~ ~ ~ ~ 

u. U! 

then 

jx 
~ (cr . ) jx 

~ (a!) . Then {U., ai}i£f is called an orientation system = 
~ ~ ~ 

for X. In this case a local orientation is unambiguously defined at 
u. . 
~ . 

each point x by a = j (a.) for x £ U .• 
X X ~ ~ 

Given another orientation system {Vk' Sk}k eA' we say, that it de­

fines the same orientation if crx = Sx for every x £ X. 
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Definition 1.7: A global orientation of~ is an equivalence class 

of orientation systems. If an orientation system exists, then we say 

~ 
that X is orientable. 

Definition 1.8: If X is a manifold with boundary, then X is orien-

table if and only if Int X is orientable. See Greenberg [9], pp. 115-

122 for the proofs of the following three lemmas. 

Lemma 1.4: (a) If Bd X = ~ and X is orientable, then any open 

submanifold of X is orientable. (b) X is orientable.if any only if all 

of its connected components are orientable. 

Lemma 1.5: If X is noncompact, Bd X = ~ and X is orientable, then 

H (X) = 0 (n is the dimension· of X) • 
n 

Lemma 1.6: Let X be a compact n-manifold with Bd X = ~- Then 

H (X) = Z if X is orientable and 0 if X is not orientable. 
n 

If Bd X + ~, the double DX of X is the space obtained by attaching 

two copies of X along Bd X via! the identity map. More precisely, if 

f: Bd X + Bd X is the identity map, then DX = (XU X)/R where xR f (x) 

for every x e Bd X. 

Lemma 1.7: If M is a compact orientable PL n-manifold with bound-

ary, then H (M, Bd M) + 0. 
n 

Proof: 
+ . . + . . 

Let M = MU (Bd M x [0, 11) • Now M is homeomorph~c to 

Int M (this is a corollary of the Topological Collaring Theorem) • Thus 

M+ is an orientable manifold without boundary. Let {U. , ]l.}. f be an 
~ ~ ~ E 

+ orientation system for M . Triangulate M so that if cr1 and cr 2 are any 

two n-simplices with a common n-1 face crn-l, then lcr1 !ulcr2 ! =~is con-

tained in some U. • We can use U. and 11. to prescribe a generator of 
~ ~ ~ 

H (~, Bd ~) by considering the following sequence: (x E Int n) 
n 

.ui 
J excision 

H (M, M - u.) ~H (M, M - x) H (~, ~ - x) -+ H (A, Bd M. n ~ :n n n 
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We can induce genera tors o. of H ( I o. I , Bd I o. I ) in the same manner. If 
~ n ~ ~ 

we view Hn (~, Bd~) simplicially, then o1 + o 2 is a generator and we see 

that 01 and o 2 must be oriented so that when the a-map is applied to 

01 + 
n-1. 

must occur twice with opposite signs in the resulting 02' 0 sum. 

Now M is a strong deformation retract of M+. Let y e: c (M) be the sum 
n 

of all n-simplices of M with each n-simplex receiving an induced orienta­

tion as above. If crn-l is an n-1 simplex not in Bd M, then when we com­

pute o(y) we find on-l occurring twice with opposite signs. Hence 

la<r> I~ Bd M. Thus, y is a non-trivial cycle in c (M) and this implies 
n 

H (M, Bd M) 'I 0. II 
n 

Lemma 1. 8: If M is a compact or ientable n-manifold with boundary, 

then DM is orientable. 

Proof: Assume DM is not orientable. Since DM is a compact n-m~ni-

fold without boundary, we have by Lemma 1.6 that H (DM) ~ 0. Consider 
n 

the following exact sequences: 

+H 
n 

a. 
(DM) + Hn-l (Bd M) ---+ Hn-l (M) (!) Hn-l (M) + ... 

+ H (M) + H 
n n 

a.' 
(M, Bd M) + Hn-l (Bd M) ~ Hn-l (M) + ... 

H (DM) = 0 implies a. is 1-1. Hence a.' is 1-1. But H (M) 
n n 

0 and a.' 

being 1-l implies that H (M, Bd M) = 0. This contradicts Lemma 1.7. II 
n 

Corollary 1: If M is a compact orientable n-manifold with boundary, 

then Bd M is a compact orientable (n-1) manifold without boundary. 

Proof: We know that Bd M is a compact (n-1) manifold without bound-

-ary. By Lemma 1.6, Hn-l (Bd M) 0 or z. Consider the following portion 

of the Mayer-Vi~toris sequence: 



H (M) (i) H 
n· n 

(M) +H 
n (DM) + Hn-l (Bd M) + Hn-l (M) (i) Hn-l (M) • 

6 

Since H (M) 0 and (DM) - have 0 + z (Bd M) (M) = H = Z, we +H +H 
n-1 n-1 n n 

(i) H 
n-1 

(M) is exact. IfH n-1 
(Bd M) were 0, we would then have 0 + z + 0 

which is impossible. Thus, (Bd M) - Z and Bd M is orientable. II H = n-1 

Corollary 2: If M is a compact orientable n-rnanifold with boundary, 

then H (M, Bd M) ; Z. 
n 

Proof: By Corollary 1 the sequence H {M) + H {M, Bd M) + 
n n 

H (Bd M) becomes 0 + H {M, Bd M) + z. We know that H {M, Bd M) =I 0. 
n-1 n n 

Thus, it must be isomorphic to a non-trivial subgroup of z. That is, 

H {M, Bd M) ; z. II 
n 

Given a simplicial complex K, a simplex in the first barycentric 

subdivision K' is of the form {A0 , A1 , . . . , ~) where the Ai's are sim-

plices of K and A0 < A1 < ..• < Ak. A simple example will illustrate 

this. Let A0 be the o-simplex, A1 the 1-sirnplex and A2 the 2-simplex, 

as indicated in Figure 2. 

A~ 
0 A 

1 

Figure 2. 2-Sirnplex 

A A A 

Then in the first barycentric subdivision, a is <A , A , A > (see 
0 1 2 

Figure 3). 



A. 
0 

Figure 3 •· Simplex in K' 

Now assume that IKI is an n-manifold. Given· a k-simplex Ak in K, 
. . 

the (n-k)-cell dual to Ak consists of all simplices inK' of the form 

(1\, ... ). 
For example, let A' be' the !-simplex as shown in Figure 4. 

Figure 4. i-Simplex 

The dual cell is the 1-cell B shown in Figure 5. 

7 
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Figure 5. Dual Cell 

. k k+l 
Since A must be a face of some A , which in turn must be a face 

of some Ak+2 , etc., ~ntil Ak+i is ann-simplex, we know that the dual 

"k cell is of dimension n,.;.k (it is the union of cells of the form < A 1 • 

An >). Alternatively, Bn-k could be defined as n{st (v, K') jv is a 

vertex of Ak} (see Hudson [11], p. 29). 

V I • 
0 

• • • I 

Let Ap = < v v >be a p-simplex (or a PL cell with vertices O I • • • I p 

• • I 

v • 
p 

v ) and choose some arbitrary ordering of the vertices v , v1 , 
p 0 

The equivalence class of even permutations of this fixed 

ordering is the positively oriented simplex +AP, and the equivalence 

class of odd permutations of the fixed ordering is the negatively ori­

ented simplex -AP. 

For example, choose < v0 , v1 , v 2 > to represent +A2 (see Figure 

6). Then (v1v2v 0 ) = (;v0v1 l o (:Ve:,V2 l (0' represents the usual product Eif 

permutations) is an even permutation of (v 0 v 1 v 2) and hence < v 1 , v 2 , v 0 > 

2 
represents +A. ·similarly, (v2v0 v1 ) = (v2v0 )o(v0 v1 ). Hence, 

2 
< v2 , v0 , v1 > represents +A . On the other hand, (v0 v 2v1) = (v1v 2). 

2 Thus, < v0 , v 2 , v1 > represents -A • Pictorially, < v0 , v1 , v 2 > gives 
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A2 a clockwise orientation, while < v0 , v 2 , v 1> gives a counterclock-

wise orientation. 

Figure 6. 2-Simplex 

The connection between the orientation of an n-manifold M and the ori-

entation of a simplex An = < v , v1 , ••• , v > can be seen as follows. 
o n 

Let x =An. There is a U. in the orientation system of M such that 
~ 

x £ U.. Consider the following sequence: 
~ 

H (M, M- U.) 
n ~ 

H (M, M- x) excision H <!Anj, I Ani- x) 
n n 

The local orientation at x prescribes a generator of H (jAnj, Bd!Anl>. 
n 

Simplicially, the homology class of <v, v1 , ••• , v >sC <IAnj,BdjAnl> 
o n n 

is one of the generators of H (jAnj, BdjAnj) = Z; the other generator 
n 

being the class of - < v 0 , v 1 , • • • , v n > • Hence, the local orientation 

a:t x prescribes one or the o,ther of the equivalence classes of the per-

mutations on the vertices of An. 
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We also need the notion of induced orientation. Suppose Ak and Bk 

are k-simplices such that IBki~IAkl. Pick an orientation< v 0 , ••• , vk > 

k k . k k 
of A . Subdivide A so that B is a subcomplex of A Let a 1 , a 2 , ... , 

a 1 , a = Bk be the k-simplices in this subdivision of Ak. Then the 
n- n 

n 
equation l: k k 

e:. a a. = C1A can be solved, giving values of 2:._ 1 for each 
~ ~ 

i=l 
e:,, hence inducing an orientation of each a., and in particular, Bk. 
~ ~ 

For example, take A2 and B2 as in Figure 7. 

vO v47v5 v 
£---------------~--------------~ 2 

Figure 7. B2 C A2 

2 
Assign the orientation < v 0 , v 1 , v 2 > to A . Subdivide to obtain 

Figure 8. 

Figure 8. Subdivision 
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We must have 

a < v o' vl, v2 > = Cl[e:l<vo' v3, v4 > + E:2 < v 
o' vl, v4 > 

+ E:3 < vl, v4, v > + E:4 < v , v2, v5 > 
5 1 

+ e:5 < v , v3, v > + E:6 < v , v2, v3 > 
2 5 0 

+ E:7 < v3, v4, v > 1 
5 

That is, 

< v o' vl >- < v , v > + < vl, v2 > = 
0 2 

E:l (< v , v3 > - < v , v > + < v3, v >} 
0 0 4 4 

+ E:2 (< v , vl > - < v 
o' v4 > + < vl, v4 >} 

0 

+ E:3 (< vl, v4 > - < vl, v5 > + < v4, v5 >} 

+ E:4 (< vl, v2 > - < vl, v5 > + < v2, v5 >} 

+ e:5 (< v2, v3 > - < v2, v5 > + < v3' v5 >} 

+ E:6 (< v o' v2 > - < v , v3 > + < v2, v3 >} 
0 

+ E:7 (< v3, v4 > - < v3, v > + < v , v5 >). 5 4 

Thus, e: 2 = 1, e: 2 + e:3 = 0 and e: 3 + e: 7 = 0. Hence, e: 3 = -1 and e: 7 = 1. 

2 
Therefore, < v3 , v 4 , v 5 > is the induced orientation on B • If we had 

found e: 7 = -1, then -<v3 , v4 , v 5 > or< v4 , v 3 , v 5 >would be the 

2 
induced orientation on B • 

One could also induce orientations algebraically by excision. Let 

2 d 2 . . 17 A an B be as 1n F1gure • . 2 2 ~ ( 2 2 By excision H2 (A , Bd A ) = H2 B , Bd B ) • 

This isomorphism takes the element < v0 , v1 ; v 2 > to < v 3 , v 4 , v 5 >. 

Thus, the clockwise orientation on A2 induces the clockwise orientation 

2 
on B . 
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we now give a combinatorial definition of the inteJ::section number 

of a simplex with its dual cell. Suppose Mn is an oriented PL (orient-

able) n-manifold with triangulation K. 
k Let A be a k-simplex in K and 

n-k n-k 
B the dual cell. Pick an orientation for B Choose a k-simplex 

cr inK' such that lcri~IAkl and write cr = < v0 , v1 , ... , vk >where the 

v. are barycenters of faces of increasing dimension. That is, v. is the 
1 1 

barycenter of T. which is a face of T. 1 , of which v. 1 is the barycen-
1 1+ 1+ 

ter. Similarly, pick an n-k simplex T such that I•I~IBn-kl and T = 

< vk, wk+l' ... , wn >with the wi being barycenters of simplices of in-

. d k . d . . creas1ng or er. Now A 1n uces an or1entat1on on cr. Let E = +1 if the 

induced orientation is the same as < v 0 , v 1 , ..• , vk >, and E = -1 

n-k otherwise. Similarly, B induces an orientation on T. Let o = +1 if 

the induced orientation is the same as < vk' wk+l' . , w >, and 
n 

o = -1 otherwise. Now the oriented n-simplex < v0 , v 1 , ... , vk, wk+l' 

., w >receives an induced orientation from the chosen orientation 
n 

of the manifold M. (Choose a point x in the interior of the n-simplex. 

There is a local orientation of Mat x, i.e., a generator a of 
X 

H (M, M - x) . Now use excision) . Let y = +1 if the two orientations 
n 

agree and y = -1 otherwise. 

is Ak # Bn-k = E•o•y = ~1. 

k n-k Then the intersection number of A and B 

In order to avoid a lengthy combinatorial 

argument the reader is referred to Alexandrov [3], p. 12, for a proof 

k n-k k n-k 
that A # B is well defined. That is, A # B depends only on the 

k d n-k d h . . chosen orientations of A an B an t e or1entat1on system op M. 

For example, suppose A' = I< v0 , v 2 >I, B' = I< v4 , v6 >lul~v6 , v 5 >I 

and the 2-simplices of Figure 9 are oriented clockwise. 
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I v -- ...-4--- ..._ - ....... - ....... - ....... - v6 
vo v2 

-- -- ----- v-
5 -I 

Figure 9. A' # B' 

One might choose a < v , v >and T = < v , v4 >, in which case 
b 6 . 6 

s = +1, o = -1 andy = -1; hence s•o•y = +1. Another choice is a = 

< v0 , v6 > and T = < v6 , v 5 >. Then s = +1, o = +1 andy = +1; hence, 

s•o•y = +1. Another choice is a= <v2 , v6 >and T = <v6 , v4 >. Then 

. s = -1, o = -1 and y +l; hence, s•o•y = +1. The final choice is a = 

< v2 , v6 > and T = < v6 , v 5 >. Then s = -1, o = +1 and y = -1; hence, 

s•o•y = +1. Thus, A' # B' = +1 and depends only on the chosen orienta-

tions forM, A' and B'. 

One might askwhether it is necessary to require that Mn be orient-

able. The following example provides an affirmative answer. 

Let M be the Moebius band. That is, M is the product I x I 

(I= [0, 1]) with the points (o, t) and (1, 1-t) identified. It is well 

known that M is non-orientable. One can see this by starting at the 

point x in Figure 10 and trying to construct an orientation system . 

. Start at u1 and give each Ui the clockwise orientation, proceeding in 
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order. Because of the "twist" in the Moebius band, upon assigning an 

orientation to u8, it appears to be counterclockwise in relation to the 

orientation on u1 • Thus condition (3) of Definition 1.6 is violated. 

The reader may find it helpful to construct a physical model. 

Figure 10. Moebius Band 

Triangulate M as in Figure 11. 

Figure 11. Triangulation of Moebius Band 

The !-cell dual to < v0 , v1 > is < v6 , v7 > + < v7 , v8 > (assume the 
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indicated orientations). Assume the 2-simplices are oriented clockwise. 

If, in the definition of the intersection number, we choose cr < v , v > 
l 7 

and T = < v , v >, then € = -1, o 
} 6 

-1 andy= -1; hence €•o•y =-1. 

However, if we choose cr = < v1 , v7 > and T = < v7 , v 8 >, then € = -1, 

o =+land y =~l; hence €•o•y,;, +l. One might try re-orienting one or 

more of the 2-simplices counterclockwise, but there will always be a 

1-simplex whose intersection number with its dual cell is not well de-

fined. 

The final task in this chapter is to give a homological definition 

of intersection number. 

Recall that the suspension of a topological space X, denoted LX, 

is the quotient space X x [ -1, l] /R, .where R is the relation generated 

by (x, l) R (y, l) and (x, -1) R (y, -1). Also, the cone of a space X, 

denoted ex, is the quotient space X x [o, 1]/R', where R' is the rela-

tion generated by (x, l) R' (y, l). 

-Lemma 1.9: Let A be an n-cell. Then Hk (A, Bd A) Hk+l (LA,L Bd A). 

Proof: We may think of LA 
+ 

as A UA , where A 
+ 

= (A X [0, 1])/(x, l) 

and A = (A X [ -1, 0))/(x, -1). Similarly, think of LBd A as Bd A 
+ 

U BdA 

where Bd A 
+ 

(Bd A x [0, 1])/(x, l) and Bd A = (Bd A X [ -1, 0])/(x, -1) • 

Considering the following portion of the relative Mayer-Vietoris sequence. 

+ + - - +- + -
Hk+ l (A , Bd A ) (!) Hk+ l (A , Bd A ) + Hk+ l (A U A , Bd A U Bd A ) + 

- +- + -- + +-- -
+ Hk (A n A , Bd A n Bd A ) + Hk (A , Bd A ) (!) Hk (A , Bd A ) 

i.e., + + -
Hk+l (A , Bd A ) f.!) Hk-f-l (A , Bd A''") + Hk+l (LA, LBd A) + 

- + + - - -
+ Hk (A , Bd A) + Hk (A , Bd A ) ffi Hk (A , Bd A ) 

Since the cone on a space has trivial reduced homology, the sequence re­

duces to 
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o + Hk+l (ZA, rBd Al + iik (A, Bd Al + o. 11 

Let * denote the join operation (see Hudson [11], p. 6). 

Again let Mn be an orientable PL n-manifold without boundary and 

with triangulation K. 
k n-k 

Let A be a k-simplex with dual cell B . Then 

the regular neighborhood N(A, K1 ) =A* Lk(A, K 1 ) =A* A * Lk(Ak, K1 ) 

= Ak * Lk(Ak, K1 ) (A is the subcomplex of Ak consisting of proper faces). 

Recall that Lk(Ak, K 1 ) is an n-k-1 sphere (see Hudson [11], p. 24). 

h . ( 1 ) f . f k T us, one may cons~der N A; K as the n-k old suspens~on o A because 

. . . . o . o * Jl- _ Hl 
JO~n~ng w~th S ~s equivalent to suspension and S S = S Also 

" • n-k 
N (A' K I ) = A * Lk (A' K I ) A * A * Lk(A\ K I ) A * B So one may 

n-k • 
consider N(A, K1 ) as the k fold suspension of B because A is the 

boundary of a k-simplex (i.e., a k-1 sphere). 

Let a. be the local orientation of M at A. By excision, 
X 

" " H (N(A; K 1 ), N(A; K') -A). 
n 

" " 

" " " Now H (N(A; K 1 ), N(A; K1 ) -A) 
n 

H (M, M- A) 
n 

H (N(A; K1 ), BdN(A; K1 )). 
n 

Thus, given that M is orientable, one can 

" " use the local orientation at A to induce an orientation a. E: H (N (A; K 1 ), 
n 

" Bd N(A; K1 )) of N(A; K 1 ). 

Now for the homological definition of intersection number. Choose 

k k k n-k n-k 
orientations a E: Hk(A , Bd A ) of A and b E: Hn-k(B , Bd B ) . We 

have the following isomorphisms: 

n-k ~k 
k k l:* [.,* 

Hk(A , BdA ) --+ Hn (N(A; K 1 ), Bd N(A; K 1 )) 4----

n-k n-k 
Hn-k(B , Bd B ) 

n-k k 
where E* and l:* are the suspension induced isomorphisms. Without 'loss 

of generality, assume E~-k(a) = a (if Z~-k(a) = -a, replace L:~-k with 

-L:~-k). 
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Define the intersection number, 

k n-k el if (l:~) -1 (a.) = b 
A # B =. · 

(l:~) -1 (a.} -1 if -b 

n-k 
It is obvious that one can choose the orientation on B so that 

Ak ·# n-k B = +1. This will be important in proving the duality theorems 

of the next chapter. 



CHAPTER II 

DUALITY IN THE PL CATEGORY 

The objective of this chapter is to prove the basic duality theorems 

of algebraic topology in the PL category. 

Let K be a simplicial complex and assign orientations to each sim-

plex in K. 
k k-1 

Given a k-simplex A and a (k-1)-simplex A , define the 

k-1 k 
0 if A is not a face of A , and 

[Ak; Ak-l] = +1 if Ak-l is a face of Ak. In the latter case one chooses 

between +1 and -1 as follows: Ak >. Then A 
k-1 

= + < v ' 
0 

• • • I v.' 
l 

.. ' vk >. 

define 

k-1 
If A 

k 
[A ; 

[A 
k 

; 

~r k-1 
A ] 

-1 

.... 
• • • I v.' 

l 

k-1 
A ] ~t: 

("means v. is deleted). 
l 

if 

if 

if 

if 

suppose = < 

If 
k-1 

A = + 

Ak < V' I v I 
l 0 

Ak = -< v.' v 
l 0 

Ak < v.' v 
' l 0 

Ak < V, 1 v I 
l 0 

v ' . 'vk 0 

< v ' . . . ' V, 1 . . . ' vk 0 l 

.... . . . ' vi' . . . ' vk > 

A 

' . . . ' v.' . . . ' vk > 
l 

. . . ' v.' 
l 

. . . ' vk > 

.... . . . ' V, 1 . . . ' vk > 
l 

If K is a cell complex, a similar combinatorial argument could be 

k k-1 k k-1 
given to define the incidence number [B ; B ] , where B ·and B are 

cells of indicated dimension. However, for the two-fold purpose of 

avoiding a lengthy combinatorial argument and to provide variety, a 

18 

>, 



19 

homological definition will be given. 
k k-1 k-1 

Of course, [B ; B ] = 0 if B 

is not a face of Bk 
k k-1 

Denote the boundary of B by S Consider the 

following sequence of isomorphisms: 

k k-1 ~ 
Hk (B , S ) ~ 

k-1 1jJ 
H (S ) ~ 
k-1 

k-1 k-1 ~ 
Hk-l (S , A ) 

k-1 k-2 
Hk-l (B , S ) 

where ~ and 1jJ are from sequences of pairs, 8 is an excision map and 

k-1 k-1 k-1 
A = S - B (see Figure 12 ) . (Note: 

k-1 
A is a PL-cell by the 

Alexander-Newman theorem.) 

k-1 
B 

Figure 12. k-Cell 

k k-1 
Thus, given a generator of Hk (B , s ) = z one can prescribe a 

k-1 k-2 
generator of Hk-l (B , S ) . Simplicially, < v0 , v 1 , v 2 > represents 

2 l 
a generator of H2 (B , S ) , < v 0 , v 1 > - < v , 

0 

1 
sents a generator of H1 (S ) , < v , v > represents a generator of 

0 l 
l l 

Hl (S , A ) , and < v ' 0 

l 0 
v 1 > represents a generator of H1 (B , S ) (see 
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13) . s . f ( k sk-1) Figure . Thus, J.f a and are the g1.ven generators o Hk B , 

and 

and 

Hk-l (Bk-l, Sk-2 ), respectively, set [Bk; Bk-1 ] = +1 if (8o~oljJ) (a) = S 

k k-1 
[B ; B ] = -1 if (8ol)Jo~) (a) = -8. 

Figure 13. Inducing an Orientation 

Now assume Mn is a PL-orientable closed n-manifold with triangu1a-

tion K. 
k 

Let A. denote an oriented k-simplex with 0 < k < n and i = l, 
·]. 

2 , • • • ' pk, where pk is the number of k-simplices .. Denote the dual 

n-k k n-k 
cells by B. and assume they are oriented so that A. #B. = +1. Let 

l l l 

k d h . . . k k-1 k a. . enote t e J.ncJ.dence number of A. with A. and S .. the incidence 
l] l J l] 

k k+l 
number of the dual cells B. and B. 

l J 

Lemma 2.1: If Ak-l < Ak, then Ak#Bn-k = aS·(-I)k (Ak-l#Bn-k+l), 

k .k-1 n-k+l n-k 
where a = [A ; A ] and S = [B ; B ] . (Assume the underlying 

space is an orientable and oriented PL n-rnanifold.) 

Proof: A sketch of the proof is·given. The details are in 

A1exandrov [3], p. 14. 

k I kl I kl Choose a s K' such that a C A · • First assume that a = S = 1. 

k A A A A sn-k+l A A A 

Let (} = < A o' Al, . . . , Ak-1' Ak >. Pick = < Ak-1' Ak, . . ., A 

with lsn-k+ll C n-k+1 k-1 A 

B • Let (} = E: < A ' Al, . . . , Ak-1 > with s 
0 

n 
> 
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k k-1 k k-1 
chosen so that [cr ; a ] = (-1) . The orientation of a is coherent 

· h . . f k-1 n-k w1th t e or1entat1on o A . Similarly, let B · = n < Ak, . • • , A > 
n 

with n chosen so that [Bn-k+l; Bn-k] = 1. The orientation of Bn-k . 
1S 

n-k ~ A 

coherent with that of B . Let N = y < A , ... , A > with A. chosen so 
o n 

that the orientation of N is coherent with the orientation induced by 

the orientation system of the manifold. The following example may be 

helpful. 

A < v 
o' v2 >, B < v4, v >+<v ,v > 

5 5 6 

a' < v o' v5 > 

B2 = < v o' v5, v4 > 
vo v2 

0 
a +1 < v > 

0 

.B I -1 < v5, v4 > 

v3 
.N -1 < v , v5, v4 > 

0 

k n-k 
Then A # B k-1 n-k+l (-l)k r:: • n • y and A # B = r:: • n • y • Since we are 

assuming that a = B = 1, the conclusion for this special case follows. 

k k-1 2 
For the general case, note that the incidence number [ aA ; A ] = a = 1 

and [SBn-k+l; Bn-k] = S2 = 1. 

But Ak # Bn-k = a2 (Ak # Bn-k) = 

Thus, aAk # Bn-k = (-l)k (Ak-1 # BBn-k+l). 

k n-k 
Thus,· A # B 

= aS (-1) k (Ak-l # Bn-k+l). II 

k n-k k-1 n-k+l 
a (aA # B ) and A # SB = 

In the present setting, all intersection numbers of cells with their 

dual cell are +1. 

k k. 
(-1) a ... 

1] 

k n-k · k n-k 
Thus , by the lemma 1 = a . . • B , . ( -1) , or B .. 

1] 1] 1] 

Although the Poincare Duality theorem will be a corollary to a later 
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theorem, this is an appropriate place to prove this important theorem 

for its proof is almost immediate. 

Poincar~ Duality Theorem: Let Mn be a closed (i.e., compact without 

boundary) orientable PL n-manifold. 
n - n-k n 

Then Hk(M) H (M ) fork= 0, 1, 

. , n. 

Proof: 
n 

Let K be a triangulation of M . Denote the free abelian 

group on the oriented k-simplices of 
n 

K by Ck(M ) and the free abelian 

group on the oriented dual n-k cells 

- n-k n 

n-k n n-k · n 
by C (M ) • Note: Hom (C (M ); Z) 

= C (M ) . 

n n-k n . . . k n-k 
Define a homomorphism ¢: Ck (M ) + c (l\1 ) by settJ..ng ¢(A ) == B 

and extending linearly. Since there is a one.-one correspondence between 

k-simplices and n-k dual cells, ¢ is an isomorphism. 

Consider the following diagram. 

a 
ck (Mn) 

a . n 
---l-- ---l-- ck-1 (M ) 

l<P l<P 
6 n-k n 

---l-- C (M ) 
o n-k+l n 

---l-- C (M ) 

k 
. c1> a (A. > 

J.. 

pk-1 

c~> < I 
j=l 

k 
a .. 

J..] 
k-1 

A. ) 
J 

pk-1 

I 
j=l 

k n-k n-k+l 
(-1) S .. B 

]J.. 

a 
---l--

0 
~ 

a .. 
J..] 

n-k+l 
B. 

J 

k n-k k k 
(-1) o(B. )=(-cl) 6<j>(A,) , J.. J.. 

Thus the diagram commutes to within sign. Hence, the homologies of the 

two chain complexes are isomorphic. That is, Hk (Mn) = Hn-k (Mn) . II 

Definition: A subcomplex L of a complex K is said to be full in K 

if no simplex of K-L has all its vertices·in L. 
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For example, let K be a two-simplex with L consisting of two sides 

and the appropriate vertices. Then the third side is a simplex of K-L 

with each vertex in L. Thus, L is not full in K. See Figure 14. 

Figure 14. L Not Full in K 

On the other hand, if L consists of only the one-simplex a and vertices 

v 0 and v 1 , then L is full inK. 

General Duality Theorem: Let M be a PL orientable n-manifold with-

out boundary and (P, Q) a compact PL pair in M. Then fork= 0, 1, 

- n-k 
., n, Hk(M- Q, M- P) = H (P, Q). 

Proof: Let K be a PL triangulation of H so that P is a full sub-

complex. Let N be the derived neighborhood of P (i.e., the simplicial 
p 

neighborhood of PinK'). Let P* = Cl (M- Np). Similarly, let NQ be 

the derived neighborhood of Q and Q* = Cl (M - NQ). See Figure 15. 

k k 
Let A1 , ... , A be the k-simplices of K in P - Q. Denote the dual cell 

pk 
k n-k 

of A. by B. · 
l l 

Claim: 
k 

if and only if A E p - Q 
n-k 

P*. justify this B E Q* - To 

claim, first that A 
k 

suppose E p - Q. Then A E jP Qj. Let T = 

A A k 
< A, Al' . . . > be a simplex in K' (A < Al < A < . . . ) . Q cannot 

2 



contain A nor any A .. Since Q is full inK', IT!~ JgJ and since no 
l 

vertex ofT is in Q, T ~ Q*. 
n-k 

Now B is the union of all such T so 

Bn-k must be contained in Q*. Also, Bn-k Q; P* because A E I PJ. Thus, 

Bn-k ~ Q* - P*. 

f( 

I 
I 
IL 

1<" __ _ 

~ ~ - ~ ------------~ 

-~-
' 

::: -.L. -· 

Figure 15. Compact PL Pair 

k k k 

,7j 

I 

-) 
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Now suppose A rt p - Q. Then either A E Q or A rf. P. If Ak E Q, 

A A n-k n-k ' 
then A E Q and A is a vertex of B Hence, B rt Q* and thus certain-

ly not an element of Q* - P*. If 
k 

A rt P, then because P is full there 

must be 
k n-k I I at least one vertex v of A such that v rt P. Now B ~ S t ( v, K ' ) . 

But for a vertex not in P, Jst(v, K') J intersects N only in the boundary 
p . . 

n-k 
of N . Hence B cannot be in Q* - P*. The claim is now justified. 

p 

Now let Ck(Q*, P*) be the free abelian group generated by the dual 

n-k 
k-cells of Q*- P*, and C (P, Q) the free abelian group generated by 

the n-k simplices of P - Q. 
n-k 

Define~: C (P, Q) ~ Ck(Q*, P*) by 

k . 
B and extend linearly. By the same argument given in the 
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proof of the Poincare Duality theorem, the following diagram commutes to 

within sign. 

n-k · 6 n-k+l 
+C (P,Q)--+C (P,Q)+ 

J~ d 1~ 
+ Ck(Q*, P*) --+ Ck-l (Q*, P*) + 

n-k 
Therefore, H (P, Q) = Hk(Q*, P*). 

The inclusion maps i: Q* ~ M- Q and j: P* ~ M- Pare homotopy 

equivalences. Thus, we have the following diagram. 

Hk(P*) + Hk (Q*) + Hk (Q*, P*) + Hk-l (P*) + 

;~ ;~ ~ ~; 
Hk(M-P)+ Hk (M- Q) + Hk (M- Q, M- P) + Hk-l (M- P) + 

Hk-1 (Q*) 

~; 
Hk-1 (M- Q) 

The diagram commutes because all the maps are inclusion induced except 

for the two connecting homomorphisms and they are "Cl-induced". The rows 

are exact. Thus, by the five-lemma, the middle vertical map is an iso-

morphism. So it has been shown that Hn-k(P, Q) - H (Q*, P*) = 
k 

Hk (M - Q, M - p) • II 

Corollary 1:. Poincare Duality. If M is a closed orientable PL 

- n-k 
n-manifold, then Hk(M) = H (M). 

Proof: Let P = M and Q = ·~ in the General Duality Theorem. II 

Corollary 2: Alexander Duality. n-k-1 - - n 
H (P) Hk ( R - P) where P is 

a compact PL subset of Rn. 

f Wl'th Q ~ · h . n-k-1( ) Proo : = 't' ln t e General Duallty theorem we have H P 

n .n n n n 
Hk+l (S , S - P). Let X E: S - P. By excision Hk+l (S , S P) ~ 

( n n . (n n 
Hk+l S - x, (S - P) ~ x). That lS, Hk+l S , S - P) 

n n 
Hk+l ( R , R - P) . 

Consider the long exact sequence: 

n n n - n - n 
+ Hk+l ( R ) + Hk+l ( R , R - P) + Hk ( R - P) + Hk ( R ) + 



- - n 
Hk ( R - P) . II 

Corollary 3: Lefschetz Duality. If M is a PL orientable compact 

- n-k 
n~manifold with Bd M ~ ~' then Hk(M) H (M, Bd M). 

Proof: Let DM be the double of M. That is, two copies of M 

attached by the identity map on Bd M. See Figure 16. 

* M=M 

Figure 16. The Double of a M~nifold 

Let P = DM and Q = M*. Then Hk(M) Hk (Int M) = Hk (DM- Q, DM- P) 

n-k · - n-k 
H (DM, M*) = H (M, Bd M). The last isomorphism is by excision. II 

Corollary 4: Smale Duality. If M is a compact orientable PL 

- n...,.k 
n~manifold with Bd M = AUB, then Hk(M, A) = H (M, B). 

Proof: Let DM and M* be as in the Lefschetz Duality theorem, R a 
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regular neighborhood of A in DM, P = Cl(DM- R) and Q = Cl(M*- R) (see 

Figure 17)~ 

n-k - n-k . ·· n-k -
Now H (P, Q) = H (Int M, B) by excision, and H (Int M, B) 

n-k 
H (M, B). Also, Hk(DM- Q, DM- P) Hk(Int M, R) by excision and 

Hk ( Int M, R) = Hk (M, A) . II 



Bd M x (-1,1) ----
* l\1 

Figure 17. Double of M 

For the reader who is familiar with Cech Cohomology Theory, the 

following comment will be of interest. 

The General Duality Theoremis true for any orientable manifold M 

and compact pair (P, Q) in M if Cech cohomology is used. That is, 

vk -H (P, Q) = H k(M- Q, M- P) (see Spanier [24], p. 296). 
n-

27 



CHAPTER III 

THE INTERSECTION NUMBER OF MANIFOLDS 

In this chapter three equivalent definitions of intersection number, 

which are much more general than the definition in Chapter I, are given. 

The reader is now further assumed to be familiar with additional topics 

in algebraic topology, particularly cup and cap products (see Vick [25], 

Chapters 3 and 4, Greenberg [9], Chapter 24, and Hudson [11], Chapter 4). 

Let Mn be a closed orientable PL n-manifold with MP and Mq closed 

orientable PL sub-manifolds of indicated dimension and p + q = n. 

Definition 3.1: The intersection number of Mp and Mq, denoted by 

Mp # Mq, can be defined by the following diagram. 

H (Mp) 
i* 

(Mn) 
llnn 

Hq (Mn) --4- H 
p p 

Hn(Mn) 
ll n 

H U-in) ® ®~ 
n 

j* 
0 

(Mq) (Mn) 
ll n 

n Hp(Mn) H --4- H 
q q 

That is, pick orientations ll , llp and ll for Mn, Mp and Mq, respectively 
n q 

. . n . p q 
(i.e. , generators of H (M ) , H (M ) and H (M ) ) • Recall that 

n p q 

ll n: Hk (Mn) ~ H k (Mn) is the Poincare Duality isomorphism (see Vick 
.n n-

[25], p. 149). Pick llq and llp in Hq(Mn) and HP(Mn), respectively, such 

that lln " llq = i* (ll ) and ll n llp 'j*(ll ). Then Mp # Mq is defined to 
p n q 

be 
q 

llp) . n 
ll n (Jl v Because H (M ) 

n 0 

-= Z, we may consider Mp # Mq to be an 

integer. We may also define an intersection number Mp # Mq as follows. 

28 



Definition 3.2: 

n 
H (M ) 

q 

Jl n 
n 

n 
H (M ) 

p 
n n 

® _____, H (M ) 
0 

29 

That is, let ]1 ]1 , Jlp and Jl be as in Definition 3.1. Then Mp # Mq 
p' q n 

is defined to be i* (Jl ) n Jlp. As before, Mp # Mq can be considered an 
p 

n -integer because H (M ) = Z. 
0 

Because of the equation (see Vick [25], p. 122) Jl n (flq v Jlp) 
n 

( Jl · " Jl q) n Jlp and the equation ]1 " 
n n 

i*(Jl )fiJlP. Thus, the two definitions are equivalent. 
p 

One may observe that Mp # Mq = (-l)pq Mq # Mp by using the well­

known equation Jlp u Jlq = (-l)pq (Jlq u Jlp). 

Example 3.1: The following is the computation of the intersec~ion 

number of the two simple closed curves a and bon the torus T2 • See 

Figure. 18. 

Figure 18. Torus 
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2 
Let g 1 and g 2 be the generators of H1 (T ). See Figure 19. 

Figure 19. Generators of H1(T2 ) 

- l 2 
Let a. and f3 be elements of H (T ) such that a. (T.) = l for i =.1- 6 

l 

where 'l <3, 6>, , 2 = <4, 6>, , 3 = <4, 7>, , 4 = <5, 7>, 's = <5, 8>, 

·and , 6 = <3, 8>. a.(T) = 0 for every other 1-simplex (see Figure 20.) 

Also, f3 (y 1. ) = l for i = l - 6 where y1 = <l, 2>, y = <4, 2>, y = <4, 5>, 
' 2 3 

y4 = <7, 5>, y 5 = <7, 8>, and y6 = <1, 8>. B(y) = 0 for every other 

1-siinplex y (see Figure 20). 

Figure 20. Triangulation of T2 
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2 
Let lJ be the top class of H2 (T ). That is, lJ = <0, 1, 3>-

<1, 3, 4> + <1, 2, 4>- <2, 4, 5>- <0, 2, 5>·+ <0, 3, 5> + <3, 4, 6> 

- <4, 6, 7> + <4, 5, 7> - <5, 7, 8> - <3, 5, 8> + <3, 6, 8> + <0, 6, 7> 

- <0, 1, 7> + <1, 7, 8> - <1, 2, 8> - <2, 6, 8> + <0, 2, 6>. To calcu-

late a # b we first find ll n a and Jl " B. ll n a reduces to ]1 ("', a = 

<3, 4, 6> n a - <4, 6, 7> (1 a + <4, 5, 7> !Ia - <5, 7, 8> n a -

<3, 5, 8> n a + <3, 6, 8> n a a.(<3, 4>) • <4, 6> - a(<4, 6>) • <6, 7> 

+ a.(<4, 5>)•<5, 7> - a( 5, 7 )•<7, 8> - a(<3, 5>) •<5, 8> + a.(<3, 6>) 

•<6, 8> = 0 • <4, 6> - 1•<6, 7> + 0•<5, 7> - 1•<7, 8> - 0 • <5, 8> 

+ 1•<6, 8> = <6, 8> + <8, 7> + <7, 6>. llll B reduces to ll n B = 

<1, 2, 4> n B - <2, 4, 5> n B + <4, 5, 7> n B - <5, 7, 8> n B + 

<1, 7, 8> n B- <1, 2, 8> n B B(<l, 2>)·<2, 4> ~ B(<2, 4>)·<4, 5> 

+ 6(<4, 5>)·<5, 7>- 8(<5, 7>)•<7, 8> + 8(<1, 7>)•<7, 8> 

- B(<l, 2>)•<2, 8> = 1•<2, 4>- (-1)•<4, 5> + 1•<5, 7>- (-1)•<7, 8> 

+ 0•<7, 8> - 1•<2, 8> = <2,4> + <4, 5> + <5, 7> + <7, 8> + <8, 2>. 

Thus, Jl n a is homologous to-g and ]J n B is homo1ogous to g 1 . Using 
2 . . . 

- - -
Definition 3.2 we find that i*(a) = gl + 3g2 and j* (b) = gl + 2g2. 

-1 - -
the previous calculations, we see that (].10) (gl + 2g2) .,.2a + 8. 

Finally, we mw;;t compute (g1 + 3g ) n (-2a. + 8) = [<2, 5> + <5, 8> + 
2 

<8, 2> + 3(<3, .4> + <4,. 5> + <5, 3>)] n (-2a +B) 

= -2a.(<5, 8>) + 3B(<4, 5>) -2a.(<5, 8>)•<8> + 36(<4, 5>)•<5> 

By 

= -2•<8> + 3•<5>. Now -2•<8> + 3•<5> = l <8> because <8> and <5> are 

homologous. Summarizing the calculations in the following diagram, we 

have: 
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- -
a gl + 3g2 

i* 
Hl (T2) H1 (a) 

2 

® ® 
H (T ) 

+ 0 

j* 
Hl (T2) 

]H1 
l 2 1•<8> 

Hl (b) -+ -+ H (T ) 

- - - -
b gl + 2g2 -2a + s 

Passing to the integers, we conclude that a# b = +1. Note: If wegive 

T2 its other orientation (i.e., orient the 2-simplices clockwise) we 

would find that a # b -1. 

To calculate a # b using Definition 3.1, we first observe that 

-1 - -1 - - - - -1 -
(Jln) (i* (a)) = (Jln) (g1 + 3g2 ) = S - 3a and (Jll') (j* (b)) 

-
2a. Now if a is a 2-simplex 

-1 if a <1, 2, 4> 

-1 if a <2, 4, 5> 

(13 - 3a) u (S - 2a) (a) -3 if a <4, 5, 7> 

-4 if a <5, 7, 8> 

0 elsewhere 

Let £ 
2 

(13 - 3a) u (S - 2a) and y E: Hom (C 2 (T ) i Z) be defined by 

if a = <5, 7, 8> 
Y (a) 

otherwise 

and extend linearly. Now y and £ are co-homologous. In order to see 

. 2 
this, we must find a$ E: Hom(C (T )iZ) such that 6 ($) = y- £. Note 

1 
2 2 

that 6(~(a )) = $(3(o )). Hence we want 
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l if 
2 

a <11 2 1 4> 

l if 
2 

a <21 41 5> 

1/J('d(a2)) 3 if a 
2 

<41 51 7> 

5 if 
2 

a <51 7 1 8> 

0 otherwise 

Let 1ji(<v11 v 2>) = a Next write the system of equations which are 
vlv2 

to be satisfied if we are to find the desired 1/J. 

1/J(a<o, 11 3>) aOl - a03 + al3 0 

1/i(d<ll 31 4>) al3 - al4 + a34 0 

1/i ( {)<l 1 21 4>) al2 - al4 + a24 l 

1ji(d<21 41 5>) = a24 - a25 + a45 l 

1/i ('d<O I 21 5>) a02 - a05 + a25 0 

1/i (d<O I 31 5>) a03 - a + 
05 a35 0 

1ji(d<31 41 6>) a34 - a36 + a46 ::::; 0 

1ji{()<4, 61 7>) a46 - a47 + a67 0 

1ji(()<41 51 7>) a45 a47 + a57 3 

1/J('d<SI 71 8>) a 57 - ass + a78 5 

1ji{()<3, 51 8>) a35 a38 + a58 0 

1)i(d<31 61 8>) a36 a38 + a68 0 

1ji(()<OI 61 7>) a06 a07 + a67 0 

1ji(()<0 1 11 7>) aOl a07 + al7 0 

1/i <a <1 I 71 8>) al7 al8 + a78 0 

1/i(d<ll 21 8>) a12 alB + a28 0 

1ji(d<21 61 8>) a26 - a28 + a68 0 

1ji(()<0 1 21 6>). a02 a06 + a26 0 

The coefficient matrix has dimens:lons 27 x 18 and can be shown to have 
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rank 18. Thus, the desired ~ exists. All that remains is to find ].lny. 
18 

Let a. , i = 1, . . . , 18 be the 2-simplices. 
l 

Then llnY I (o.ny) 
l 

i=l 
y(<S, 7, 8>)•<8> = <8>. Passing to the integers, we again find that 

a # b = +1. The calculations are summarized in the following diagram. 

- -
a gl + 3g2 s - 3a. 

H1 (a) 
2 1 2 

~ Hl (T ) -<~-- H (T ) 
2 2 (T2) X X ----- H (T ) ~ H 

Hl (T2) -+----- Hl(T2) 
0 

H1 (b) ~ 
y <8> - s - 2a b gl + 2 g2 

A third definition·of the intersection number of Mp and Mq can be 

givenby first defining the intersection number of a p-cell X with a 

q-cell Y, both of which are properly contained in ann-cell B where 

p + q = n and Bd X n Bd Y = ~- If p = 0, then X is a point and Y = B. 

Hence, we will assume that p and q are both at least one. Consider the 

following exact sequences. 

~- H (X)-~ H (X, Bd X) 
p p . H 'l(Bd X) p- H 1 (X) p-

and H (B- Bd Y) ~ H (B- Bd Y, B-Y) ~ H l. (B-Y) ~ 
p p p-

~ H . (B- Bd Y) ~ 
p-1 

Because H*(X) and H*(B- Bd Y) are trivial, a and a are isomorphisms. 

Now Bd X~ B - Y. Thus, we have the inclusion induced map i*:Hp-l (BdX) 

~ H 1 (B - Y). 
p-

+ + 
Let B = BU(Bd B x [0, 1)). Then B is an orientable 

+ 
manifold without boundary and (Y, Bd Y) is a compact pair in B. By the 

+ + q 
General Duality Theorem, H (B - Bd Y 1 B - Y) : H (Y 1 Bd Y). By exci­

p 

. ( + + SlOn 1 H· B - Bd Y 1 B 
p 

Y) H (B - Bd Y 1 B - Y) . Thus 1 H (B - Bd Y, B-Y) 
p p 

;;; Hq(Y 1 .Bd Y). Denote the last isomorphism by l)J. Consider the following 

diagram: 
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d- i- d tliq 
H (X,BdX).,.....-+- H l(BdX)--=-4 H (B-Y)+- H (B'-BdY,B-Y)+L-H (Y,BdY) 

p p- p-1 p 

Identity H (Y I Bd Y) -------------~.___ _________ _ H (Y,BdY) 
q q 

~ 
---+ H (Y) 

0 

Now let ]1 and ]1 
p q 

be generators of H (X, Bd X) and H (Y, Bd Y), respec-
P q 

tively, and ]lq be the unique element of Hq(Y, Bd Y) for which a ~(]lq) = 

i*(d]l ). 
p 

Definition 3. 3: Define the intersection number X # Y 

cause· H (Y) = Z, we may consider X # Y to be an integer. 
0 

q 
Jl n Jl • Be­

q 

Definition 3.4: Let X and Y be p and q cells, respectively, which 

meet in a single point and are properly contained in an n-cell B with 

p + q = n. X and Y are said to be transverse if and only if there is a 

p-1 . q-1 p-1 q-1 
homeomorphism of triples h: (v* s * s , V* S , V* s ) -+ (B, X, Y) . 

p q n 
More generally, if M and M are submanifolds of M , then a point 

X E Mp n Mq is a point of transverse intersection if and only if there is 

an embedding h: v* sp-l * sq-l -+ Mn such that h (v) = x, h -l (MP) = v* sp-l 

and h-1 (Mq) = v* sq-l. 

Lemma 3.1: If X and Y are as in Definition 3.3 and meet transverse-

ly in a single point, then X# Y = +1. 

Proof: There is a homeomorphism h: (V* sp-l * sq-l I V* sp-l I 

V* 
q-1 n · s ) -+ (B I X, Y). 

n 
Thus, Bd X and B - Y have the same homotopy 

- n type. Therefore, i*: :Hp-l (Bd X) -+ H . (B - Y) is an isomorphism and 
p-1 

Jlq is a generator of Hq(Y, Bd Y). Thus, Jlqn is an isomorphism and 

)lqn Jl is a generator of H {Y). II 
q 0 

Again let Mn be 1a closed connected orientable n-manifold with 

closed connected orientable submanifolds Mp and Mq, where p + q = n. 



Assume that Mp is in general position with respect to Mq. Then dim 

(MPn Mq) ~· p + q - n = 0 so that Mp meets Mq transversely in a finite 

number of points x 1 , ... , xt. 
n 

Choose disjoint n-cells B1 , .. 

according to the definition of transversality, such that x E: Int B~, 
1. 

36 

X. Bnn MP is a p-cell and Y. = B~n Mq is a q-cell. For each x. there 
1. 1. 1. 1. 

is a local orientation a 
. X. 

n n 
X.) induced the orientation E: H. (B. , B. - by 

n 1. 1 1. 
1. 

n . n 
system of M Now H (B., 

n 1. 

n - n n 
Thus, the orienta-B. - X.) = H (B. ' Bd B. ) . 

1. 1 n 1 1. 

tion system of Mn induces an orientation of B~. Similarly, the orienta­
l. 

tion systems of MP and Mq induce orientations of X. andY,, respectively. 
1. 1 

Definition 3.5: 
t 

With MP, Mq, X., andY. as above, we define 
1. 1. 

Mp # Mq = L (X . # y. ) • 
i=l 1. 1. 

Suppose we have a homotopy Ht 

p p 
Let M* = Hl (M ) . 

Mp ~ Mn with H the identity on MP. 
0 

Lemma 3.2: The intersection number given by Definition 3.2 is in-

variant under homotopy. 

Proof: Consider the following diagram: 

Let ~p be the chosen orientation class of MP. Since Ht is a. homo~ 

topy between i: Mp ~ Mn and jH1 : Mp ~ Mn, we have that j*Hi (~p) = i* (~p). 

Hence, in Definition 3.2, ~e may assume that Mp is in general posi-

tion with respect to Mq. That is, if K is a triangulation of Mn with 
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subcomplex L, where I L I = Mq, then Mp misses the q- 1 skeleton of L and 

Mp n Mq consists of a finite number of points x 1 , x 2 , •.. , xt. Suppose 

a q-simplex A of L contains more than one x .. For each x, in A let A. 
~ ~ ~ 

be a q-simplex with x. £ Int A. C Int A and IA.IniA.I =¢fori :1 j. 
~ ~ - ~ J 

If we do this for each q-simplex which contains more than one x., then 
~ 

we can subdivide K to obtain a complex K1 and each q-simplex of L1 will 

contain no more than one x. in its interior. We may also assume that 
~ 

x. is the barycenter of the q-simplex in which it is contained. Let H 
~ 

be the polyhedron consisting of the dual p-cells in Mn. If Aq is a q-

simplex of K1 and BP is the dual p-cell, then N (Aq; Ki) (Bd A q) * BP. 

p q-1 p 
Hence, because M misses M , we may homotop M into H. 

Let~ and ~ be the chosen orientation classes of Mp and Mq, re-
P q 

spectively, with ~p the Poincare dual of ~ as in Definition 3.2. Then 
q 

i*(~ ) is homologous to a cycle o, which is carried on H. Since ~Pis 
p 

the Poincare dual of ~ ~P can be represented by q' L £. B. where £. and . ~ . ~ ~ 
~ 

"" B. are as follows. 
l 

B. is a cocycle which, 
l 

when evaluated on the dual 

p-cell B., gives +1, and on all other dual p-cells gives 0. The sum is 
l 

taken over all dual p-cells and 

+1 if B. n Mq 
~ 

'I ¢ 
£. 

l 
0 if r1 Mq ¢ B. = 

l 

Also, o can be written as o = L B. + 
9, l9, 

which intersects Mq and B. is a dual 
l, 

Mp # Mq ~p 
J 

= i* (~P) n 0 n (L £. B.) 
i 

l l 

B.) + (L B. n L. £. 
l . l. l l 

:B.) 
~ 

J J 

L B. where B. is a dual p-cell 
j lj l9, 

p-cell which misses Mq. Hence, 

(LB. +LB. )n(L £.B.) 
9, l9, j lj i ~ l 

L B. n I s. B. = I (B. n £. :B. ) 
9, l i .l l 9, l 9., l9., l 9., 

I t:. (B. n B. 
9., lQ, lQ, l 

Thus, each point of intersection of MPn Mq 
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contributes +1 or -1 in the same manner as in Definition 3.5. Therefore, 

Definitions 3.1, 3.2, and 3.5 are equivalent. 



CHAPTER IV 

APPLICATIONS OF INTERSECTION NUMBER THEORY 

The duality theory of Chapter II is an important application of 

intersection number theory. In this chapter we give additional applica-

tions. 

In 1943, Whitney proved in [31] that a closed n-manifold can be em­

bedded in 2n dimensional euclidean space, E2n. More general embedding 

theorems are known. Historically, however, Whitney's Embedding Theorem 

is important, and we will given an outline of the proof. 

Let f : En -+ E2n be a continuous function defined as follows. Given 

y. = x. for i = 2, 
l. l. 

. , n, y 1 = 1/u, and y . = x1x. /u for i = 2 , 
n+ n+1. 1. 

Let f(x1 , •.. , xn) = (y1 , ... , y 2n). It is easy to show that for 

1 1 
(x1 , ... , xn) 'I (x1 , .•. , xn) , f (x1 , ) f ( 1 . 1) . f d .. , xn = x1 , ... , xn 1. an 

. , n . 

1 
only if x1 = 1, x1 = -1, and xi = 0 for i = 2, ... , n. Thus, the only 

point of self-intersection induced by f is f (1, 0, .•• , 0) 

f(-1, 0, ... , 0). 
n 

Notice that for elements of E of large magnitude, y. 
l. 

is almost equal to x. for i = 1, . . . , n, and y. is almost zero for 
l. l. 

i = n + 1, ... , 2n. Hence, we may alter f slightly so that it is the 

inclusion on the boundary of a standard n-ball, Bn, of sufficiently large 

radius. Then f = fiBn is a map of Bn into a 2n-ball B2n and f!Bd Bn is 

the inclusion map. 

2n 
Let M be a PL n-manifold and g : M-+ E a PL map in general posi tioh. 

39 
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-1 
Suppose g g(x) ~ x. We may take deriveds if necessary so that 

2n n n 2n n n 
g(M)nD = g(D) and g(D >nBd D = Bd g(D ), where D is the simpli-

cial neighborhood of x and D2n is the simplicial neighborhood of g(x). 

2n 2n n n 
Let F : D -+ B be a homeomorphism which takes Bd g (D ) to Bd B . Define 

- 2n · n - -1 
g : M-+ E by g (x) = g (x) for x E: M - Int D and g (x) = F f Fg (x) for 

n n n -1 - -1 · 
X E: D . If x E: Bd D , then Fg (x) E: Bd B . Thus, F f Fg (x) = F F g (x) 

= g(x). Therefore, g is continuous and induces one more point of self-

intersection than g. 

Let y1 and y 2 be the two distinct points of Dn for which g(y1 ) = 

g (y 2 ) . Let E: = + 1 be the intersection number at z g (y 1 ) . Define 

2n 2n 
T: E -+E by T(x1 , ... , xn-l' xn) = (x1 , ... , xn-l'- xn). Tis an 

orientation reversing homeomorphism. Thus, by composing with T, we can 

change the sign of the intersection number E:. Hence, in addition to be-

ing able to introduce one more point of self-intersection, we can do it 

in such a way that the intersection number at that point is +1 or -1 as 

we desire. 

Theorem 4.1: (The Whitney Embedding Theorem). If M is a closed PL 

n-manifold, then M can be embedded in E2n 

Proof: The theorem is obvious for n 1. For n = 2, embed the 2-

sphere, projective plane, or Klein bottle in E4 and add the necessary 

number of handles to obtain M. For n ~ 3, we let f be a map of M into 

E2n By general position, we may assume that there are a finite number 

of self-intersections. That is, there are finitely many points, q, such 

-1 . 
that f (q) consists of more than one point. Furtherassurne that K and L 

· 1 · f 2n d · 1 h h f · are tr1angu at1ons o E an M, respect1ve y, sue t at 1s PL. Let q 

1 
and q be points of self-intersection in f(M). 

1 1 
p2, pl, and p2 

Let c1 and c2 be 
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1 l 
non--intersecting paths from p1 to p1 and p 2 to p 2 , respectively, which 

do not pass through any other point where f has a self-intersection. 

Now f(Ci) = Bi is a path from q to q1 , and B = B1UB2 is a simple closed 

curve in f (M) • 

Case I: Suppose M is orientable and n is even. Since n is even, 

taking intersection numbers is a commutative operation so that an inter­
. 1 

section number is unambiguously defined at q (and at q ). Suppose that 

one of the intersection numbers is +1 and the other is -1. Let D be a 

2-cell in E2n such that nn f (M) = Bd D = B. We may assume that D is non­

singular by general position. Now N(D, K( 2)) is a 2n-cell. Also, X= 

f(N(C1 , L( 2)) andY f(N(C2 , L( 2)) are n-cells which are properly con­

tained in N (D, K(2.) ) • In this case we have X # Y = 0. We can now deform 

X to eliminate these two points of intersection without introducing any 

new points of self-intersection. The details can be found in Whitney 

[ 31]. We continue in this manner until we have that all points of self-

intersection are of the type +1 or all of the type -1. We can eliminate 

these by introducing a point of self-intersection of the required type 

and proceed as above. 

Case II: Suppose M is orientable and n is odd. Then X# Y = 0 or 

+ 2. If X # Y = 0, we can remove the self-intersection as before. If 

X#Y 2:_2, let 
l 

cl be a path from p1 
l 

to p 2 which coincides with c1 near 

p1 and with c 2 
1 l 

path from p2 
1 which coincides near p2. Let c 2 be a to p1 

with c2 near p 2 and with l c1 near p1 . Replace X by X 
l f(N(C~,L( 2 )) and 

y .by yl = f(N(C~,L( 2 )). 1 l 
Then X # Y = 0 because the intersection number 

at q remains the same, but the intersection number at q1 changes sign. 

See Figure 21. 
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p1 p2 

B B2 

1 1 
p1 Pz 

Figure 21. Adjusting the Intersection Number 

Hence, we can remove these two points of self-intersection. Proceeding 

in this manner, we can remove any even number of self-intersections. If 

there were an odd number of self-intersections to start with, we intra-

duce another so that we have an even number of self-intersections. 

Case III: Suppose that M is not orientable. As in Case II, we know 

that X # Y = 0 or + 2. If X # Y = 0, we can remove the two points of self-

intersection. 
l 

If X # Y = .:!:_ 2 '· let c2 be an orientation reversing path from 

l 
p 2 to p 2 . This is possible because M is not orientable. Then the inter-

section number at q remains the same while at q 1 it changes sign. Thus, 

X# f (N (C~ ,L (2 ) j) = 0 and we can eliminate these two points of self-

intersection. As in Case II, we can introduce one point of self-

intersection, if necessary, to insure that there is an even number of 

these points. II 

The technique of eliminating pairs of intersection points of oppo-

site types can be used to prove the Whitney Lemma. We will need the 

following two lemmas. 

Lemma 4.2: Let X and Y be p and q cells, respectively, which are 

properly contained in an n-cell B where p + q = n. Then X # Y = 0 if and 

only if Bd X bounds in B-Y. 
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Proof: Let f.! and f.! be generators of H (X, Bd X) and H (Y, Bd Y), 
p q p q 

respectively. Choose llq in Hq(Y, Bd Y) so that a \jJ(pq) = i*(af.i ) , where 
p 

u, \jJ, and i* are the maps in definition 3.3. Now f.! q n f.! = X # Y = 0 , and 
q 

capping with f.lq is the Lefschetz Duality isomorphism of Hq(Y, Bd Y) onto 

H (Y). Thus, f.lq'= 0 and i*(Clf.l) = Cltp (0) = 0. Hence, a(f.l ), which 
0 p p 

generates H 1 (Bd X), is trivial in H 1 (B- Y). So Bd X bounds in B-Y. 
p- p-

If Bd X bounds in B - Y, then i* a (ll ) 
p 

0. Hence, X # Y = 

-1 --1 
\jJ 3 · (O)n.f.l. =· Or!f.l = o. II 

q q 

Lemma 4.3: Let X, Y, and B be as in Lemma 4.1 withY unknotted in 

Bn and q .:::_ 3. If X # Y = 0, then X is ambient isotopic, keeping Bd B 

fixed, to a ball X I which is properly contained in B and X In y = <P. 

Proof: Y unknotted means that (B, Y) ; (L:p ~q, ~q) where ~q is the 

standard q-simplex. Thus, B - Y = zP ~ q - ~ q. Now Bd o:P ~ q,) - Bd ~ q is 

a strong deformation retract of zP ~q- ~q arid Bd(L:p 

ation retracts to a p-1 sphere. Thus, rr 1 (B- Y) ; 
p-

~q) - Bd ~q deform­
H 

rr l(Sp-1) ; 
p-

H 1 (sp-l) where His the Hurewicz isomorphism. By Lemma 4.1, Bd X is 
p-

null homologous in B-Y. Thus, Bd X is null homotopic in B-Y. Let 

f : ~p + B - Y be a continuous function which takes Bd ~p PL homeomor-

phically onto Bd X. Now p n - q .:::_ n - 3. Let d = 2p- n = p- q .:::_p - 3. 

Then ~P is d-connected and B - Y is (d + 1) connected. Thus, by Irwin's 

Embedding (see Zeeman [32] theorem 23) flEd ~p extends to a proper PL 

embedding g ~p + B - Y such that f and g are homotopic rel Bd ~P. Let 

X'= g(~P). The codimension is n- p = q > 3. Thus, X and X' are un-

knotted and Bd X = Bd X I = X nBd B = X' n Bd B. Hence, X and X I are 

ambient isotopic keeping Bd B fixed. II 
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Theorem 4.4: (The Whitney Lemma). Let M be a closed oriented PL 

n-manifold with closed oriented submanifolds N and Q of dimension p and 

q, respectively, with p + q = n. Suppose '\ (M - Q) = 0 and N # Q = k. 

If p ~ 2 and q ~ 3, then N is ambient isotopic to a manifold N which 

intersects Q transversely in exactlylklpoints. 

Proof: By general position we may assume that N intersects Q trans-

versely in finitely many points. If each point contributed +l to N#Q, 

or if each contributes -1, then N intersects Q in exactly k points. Sup-

pose we can find two points of intersection, x and y, such that x contri-

butes +l and y contributes -1. Let a be a path in N from x to y and S a 

path in Q from x to y such that anQ = {x, y} and S(!N = {x, y}. Since 

l + q- n = l- p .::_ -1, any loop in M can be pushed off Q .. Hence, 

0 implies n 1 (M) = 0. 
2 

Thus, there is a singular 2-cell B in 

M bounded by a U B • 2 
By general position we may assume that B is non-

singular. Assume that p > 3. Then by general position we may assume that 

Let K denote a triangulation of M such that L 
p 

and L are subcomplexes, where IL I = N and IL I = Q. Let Bn = 
q p q 

N(B2 , K( 2 )), Xp = N(a, L( 2 )), and Yq = N(S, L( 2 )). Then Bn, XP, and Yq 
p q 

are balls such that Bn(! N = xP and Bnn Q = Yq. Also, xP and Yq are prop-

erly contained in Bn and Bd Xp n Bd Yq = ¢. q 
Since 3 < p = n - q, Y is 

unknotted in Bn. Hence, by Lemma 4.3, XP is ambient isotopic, keeping 

Bd Bn fixed, to a ball xi which is properly contained in Bn and xinYq 

¢. We can·~xtend the ambient isotopy to all of M by the identity. The 

- -
resulting isotopy moves N to N, where N #Q = k but NnQ contains two less 

points. 

If p = 2, general position does not give us B2 nQ = B. It is possi-

2 2 
ble, however to replace B with a new 2-cell B1 , which has the desired 



45 

properties. The details, which do not involve intersection numbers, are 

in Lickerish [17] on pages 39-41. II 

A related concept is the "index of a manifold." This numerical in-

variant provides, in some cases, an obstruction for an n-manifold M to 

be the boundary of an n + 1 manifold. 

Suppose F : V x V + R is a symmetric bilinear pairing where V is a 

vector space over R, the field of real numbers. One can construct a 

basis xl, ... , X , X 1 , . . . , X , X 1 , . . . , X t of V, where 
r r+ r+s r+s+ r+s+ 

1 if 1 < i < r 

F (X. , X.) 
]_ ]_ 

-1 if r < i < r + s 

0 if r + s < i < r + s + t 

Definition 4.1: The signature of F, denoted by sgn(F), is r - s. 

Let M be a closed orientable 4k-manifold for some positive integer 

k. Consider the following diagram: 

p 2k 
H2k(M; R) +-- H (M; R) 

R 

p 2k 
H2k (M; R) +-- H (M; R) 

where P is the Poincare duality isomorphism and ZR is the fundamental 

class of H4 k (M; R) (compare with Definition 3 .1). Define 

F 
-l -1 

H2k (M; R) @ H2k (M; R) + R by F (x ® y) = < P (x) u P (y), ZR >. 

F is a nonsingular symmetric bilinear form which is called the intersec-

tion pairing. Let x be an element of H2k (M; R) . For k = l, one can repre-

sent x by an embedding f : N + M where N is a 2-manifold. If we let 

N1 = f(N) and shift N1 into general position with respect to itself, then 

F(x 0 x) is simply the intersection number of N with itself. 
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Definition 4.2: The index, T(M), of a closed orientable 4k-manifold 

M is defined by T(M) = sgn(F). 

Theorem 4.5: If W is a compact orientable (4k+l)-manifold with 

boundary, then T(Bd W) = 0. 

The proof of this theorem and details concerning the intersection 

pairing may be found in Vick [25], pp. 162-170. 
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