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PREFACE

. ' . . . n
Choosing an ordered basis for n dimensional euclidean space, E , is

one of the more elementary concepts of "orientation." More precisely,

choose an ordered set of basis vectors, e, = (e ceer e, ),1i=1, 2,

i1’ in
e+ .+, n, for E'. Then the determinant of the matrix (eij) is not zero.
If the determinant is positive we say that this ordered basis defines
the positive orientation of En, and in the other case, the negative ori-
entation of En. Notice that the reflection of En caused by replacing
Ez'with —E; causes the determinant to change sign, thus reversing the
orientation.

Suppose that V and W are complementary subspaces of En and that we

| = P q — .n n

have chosen bases {Vi} {W }* , and {ei} for V, W, and E , respec-

i=1 i=1 i=1
tively, where p+g=n. Let A be the matrix of coefficients determined

by writing the vectors G&, <o Vo ﬁi, .« e ey W. in terms of the vectors

q

{e.}™ . That is, we can write V, = X 0;: €;. Column j of A, trans-

i’, 3 ij ~i-

i=1 __1—1
posed, is (a jree e anj). Also, W] Z B e for some integers
i=1 '

. ® + 3 i sy e e e L) . i

Bij Column p+3j of A, transposed, is (BlJ ’ BnJ) We can define

‘V # W, of V and W according to the determinant of A. If IAI > 0 we set
v # W= +1. If IAI < 0 then we set V # W= -1. This is one of the ele-
mentary concepts of an "intersection number." Thus, these two concepts,
orientation and interseétion number, are closely related and had their
oriéins in linear algebra.

In this thesis the concept of intersection number is defined in a

more‘general setting.' The complementary spaces V and W, and the

iii



underlying space M are assumed to be topological spaces which admit
Piecewise-Linear manifold structurés. The concept of orientation is
very closely related and, in fact, must precede the discussion of inter-
section numbers. Thus, we begin Chapter I with a discussion of orienta-
tions on a manifold (ifvthey exist). Also, combinatorial and ﬁomological
definitions of the intersection number of a simplex and its dual cell are
given under the assumption that the underlying space is an orientable PL
manifold.

Ih Chapter II, using the elementary intersection number theory of
Chapter I, we prove the duality theorems in the PL category.

In Chapter III, ﬁhree definitions of the intersection numbér of sub-
manifolds of complementary dimension are given. An ekample is included
to aid.ih the comprehension of these definitions.

Fingllj, in Chapter IV, we give some additional appliéations of
intersection number theory. |

The reader is assumed to have had a graduaté course in algebraic
topology.
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CHAPTER I
THE INTERSECTION NUMBER OF A SIMPLEX WITH ITS DUAL CELL

The objective of this chapter is to give a combinatorial definition
of the intersection number of a simplex with its dﬁal cell. The present-
ation follows fhat of Alexandrov [3]. In addition, a homologicalAdefini—
tion is given which is more in the spirit of contemporary .algebraié *
topology.

It is assumed that the reader is familiar with piecewise linear (PL)
topology (see Hudson [11], Chapters I, II and III), simplicihlfhbmﬁlbgy 
(see Hocking and Ybung [10], Chapter VI) and singulér homology (see Vick:
[25], Chapters I and II).

Definition 1.l: A PL-n-ball (PL-n-sphere) is a polyhedron which is

PL homeomorphic to an n-simplex (boundary of an n+l simplex).

Definition 1.2: Given a simplex 0 in a simplicial complex K, we de-

fine the star of ¢ in K by St (0, K) = {1 ¢ K Lr < y and 0 < vy for some
v € K} (< means is a face of), and the link of ¢ in K by LK (0, K) =

{test (0, K)|TMo = ¢}.

Figure 1. Simplicial Complex



The shaded area in Figure 1 is the star of the o-simplex o. The

darkened polygonal circle is the link of o.

Definition 1.3: A PL-n-manifold is an n-manifold which has a tri-

angulation such that the link of each vertex is either a PL-(n-1)-ball
or PL-(n-l)-sphere. Unless otherwise stated, the statement Ul is a PL
manifold with triéngulation K“,impiies that K is a PL triangulation.

If X is an n-dimensional manifold, we denote the interior of X by
Int X and recall that Int X = {x & X ]x has a neighborhood homeomorphic
to Rn}. Denote the boundary of X by Bd X (Bd X = X - Int X).

Assume Bd X = ¢.

Lemma 1.1: H (X, X - x) = 7 for every x € X.

Proof: x has a neighborhood, B, homeomorphic to the standard n-cell
and such that x € Int B. By excision, Hn (X, X - x) = Hn (B, B -x). It

is a routine exercise using the sequence of the pair (B, B - x) to show

e

that Hn (B, B - x) Z. |l

Definition 1.4: A local orientation of X at x is a generator of

Hn (X, X - x).
| Lemma 1.2: Given an element ax € Hh (X, X - x), d an open neighbor-
hood U of x and o € Hn‘(X, X = U) such that o, = ig(a), where
iz: Hn (X, X - U) 4-}%1(X, X - x) is the inclusionlinduced homomorphism.
Proof: Let a be a relative cycle representing ax. Then the sup-
port Iaal of da is a compact subset of X contained in X - x. 'Hence
U=X - ]Bal is an open neighborhood of x. Thus we can take
o € Hn (X, X = U) to be the homology class of a relative to X - u. |
Call o a continuation of ax in U. If y € U, define ay}:Hn(X,X-y)

U
by setting a = j (o).
Y g v Jy



Lemma 1.3: Every neighborhood W of x contains a neighborhood U of
x such that for every y € U, jg is an isomorphism.

Proof: Let V be a neighborhood of x such that VC W and V is home-
omorphic to R". Let U CV with U # V and U homecmorphic tq Rn.' For any

y € U, the following diagram commutes (" denotes reduced homology) .

H (X, X-0)<H (V, V-U —->i _ (V-0
n n n-1
e .
iy J l
- y) <« vV, V - y) —§—>ﬁ v -y
Hn (X, X Y) Hn ( ’ y n-1 .

Now o and Y are excision isomorphisms and B and § are connecting isomor-
phisms. The right vertical homomorphism is an isomorphism because the

. . . . U, .
inclusion V - U-> V - y is a homotopy equivalence. Thus, ]y is an iso-

morphism. |l

Definition 1.5: Let UC X. An element a € H_ (X, X - U) such that

jg (o) generates Hn (X, X - y) for every y € U is called a local orien-

tation of X along U.
If VC U, let 33 :H (X, X-U)>H (X, X - V) denote the inclu-

sion induced homomorphism. If o is a local orientation along U, then

jg,(a) is one along V since for any y €V jz [jg ()] = js (a) .

Definition 1.6: Suppose we have (1) a family of open subspaces

{Ui}i€[~which cover X; (2) for each i eI', a local orientation

o,eH (X, X - U,) of X along U, and (3) if x € X and x € U,NU!, then
1 n 1 R 1 1 1

U, u!
i _Li , . , )
Iy (ai) Iy (ai). Then {Ui, ai}ieli is called an orientation system

for X. 1In this case a local orientation is unambiguously defined at
u. . .
. . i '
each point x by ux = Jx (ai) for x ¢ Ui'
Given another orientation system {Vk, Bk}kz;A' we say, that it de-

fines the same orientation if o = Bx for every x € X.



Definition 1.7: A global orientation of X is an equivalence class

of orientation systems. If an orientation system exists, then we say

. A
that X is orientable. -

Definition 1.8: If X is a manifold with boundary, then X is orien-

table if and only if Int X is orientable. See Greenbérg {91, pp. 1l15-
122 for the proofs of the following three lemmas .

Lemma 1.4: (a) .If Bd X = ¢ and X is orientable, then any open
submaﬁifold of X is orientable. (b) X is orientabie-if any only if all
of its connected components are orientable.

Lemma 1.5: If X is noncompact, Bd X = ¢ and X is Qrientable, then
H (X) = 0 (n.is the dimension of X). |

Lemma 1.6: Let X be a ;omp5ct n-manifold with Bd X = ¢. Then
Hn ix) =.Z if Xnis orientable and 0 if X is not orientable.

If Bd X # ¢, the double DX of X is the space obtained by attaching
two copies of X along ﬁd X via the identity map. More precisely, if
f: BAd X - Bd X is the identity map, then DX = (X U X)/R where xR f (x)
for every x € Bd X.

Lemma 1.7: if M is.a compact orientable PL n-manifold with bound-
ary, then Hn (M, BdA M) % O.

Proof: Let M = M{U(Bd M x [0, 1)). Now.M+ is homeomorphic . to
\Int M (this is a coroliary of the Topological Collaring Théorem). Thus
M+ is an orientable manifold without boundary. Let {Ui) ui}i.er be an
ofientation system for M+. Tfiangulate M so that if 01 and 02 are any
two n-simplices with a common n-1 face cn-l, then Icl{uldzl = A is con-
tained in some Ui' We can use Ui gnd ui to prescribe a ggnerator of
Hn (A, B4 Aj bylfonsidering the following sequence:. (x € Int A)

l » . .
H M, M-0) Fon M- &0 (A, A - x) —H_ (4, BdL).



We can induce generators 5; of Hn (loil, Bdlcil) in the same manner. If

we view Hh (A, Bd A) simplidially, then Ei + Eé is a generator and we see

that ol and 02 must be oriented so that when the dJ-map is applied to

n . ' a . . . - . S . .
, 0 T must occur twice with opposite signs in the resulting sum.

. +o0
o2

1
Now M is a strong deformation retract of M+. Let v € Cn (M) be the sum
of all n-simplices of M with each n-simplex receiVing an induced orienta-
tion as above. If ¢ ° is an n-1 simplex not in Bd M, then when we com-
pute é(y) we find Gn—l occurring twice with opposite signs. Hence
la(y)l C Bd M. Thus, Y is a non-trivial cycle in Cn (M) and this implies
H (M, B4 M) # 0. |

Lemma 1.8: If M is a compact orientable n-manifold with boundary,
then DM is orientable.

Proof: Assume DM is not orientable. Since DM is a compact n-mani-

0. Consider

1K

fold without boundary, we have by Lemma 1.6 that H (DM)

the following exact sequences:

(M)G)Hn M) - ...

o
>
ce.>H (DM) >H . (BAM) —H -1

-1

M) - ...

’ ]
...>H (M +~H (M, BAM) >H _ (BAM ——H
n n n n-1

-1

Hn(DM) =0 implies.a is 1-1. Hence o' is 1-1. But Hh (M) = 0 and o'

It e

being 1-1 implies that Hn (M, B4 M) 0. This contradicts Lemma 1.7. |l

Corollary 1l: If M is a compact orientable n-manifold with boundary,
then Bd M is a compact orientable (n-1) manifold without boundary.
Proof: We know that Bd M is a compact (n-1l) manifold without bound-

(Bd M) ;>Q or Z. Consider the following po:tion

ary. By Lemm; 1.6, Hn_l

of the Mayer-Vietoris sequence:



(Bd M) Hn M o Hn M) .

-1 -1 -1

H M) @& H (M) -H_ (DM) - H
n: n .n n

Since H (M) = 0 and H (bM) = Z, we have 0 +~ 2 > H (B4 M) > H (M)

-1 -1

@ Hn—l (M) is exact. If Hn—l (Bd M) were 0, we would then have O - 2Z =+ O
which is impossible. Thus, H _, (Bd M) = 2 and B4 M is orientable. |l

‘Corollary 2: If M is a compact orientable n-manifold with boundary,
then H_ (M, B4 M) = Z.
Proof: By Corollary 1 the sequence Hn (M) 4-Hn (M, BA M) -

Hn—l (B4 M) becomes 0 +-Hn (M, Bd M) - Z. We know that Hn (M, Bd M) # O.

Thus, it must be isomorphic to a non-trivial subgroup of Z. That is,

H (M, BA M) = 2. |
n

Given a simplicial.complex K, a simplex in the first barycentric

subdivision K' is of the form (Ao, Al' . ﬁk) where the Ai's are sim-

plices of K and Ao < Al < ... < Ak. A simple example will illustrate

this. Let Ao be the o—simpléx, A, the l-simplex and A_, the 2-simplex,

1 2

as indicated in Figure 2.

Figure 2. 2-Simplex

Then in the first barycentric subdivision, o is'<ﬁo,§1,ﬁ > (see

2
Figure 3).



Figure 3. Simplex in K'

; . . . k |
Now assume that IK] is an n-manifold. Given a k-simplex A in K,

the (n-k)-cell dual Eg_Ak consists of all simplices in K' of the form

(Ak, e

For example, let A' be the l-simplex as shown in Figure 4.

Figure 4. i-Simplex

The dual cell is the l-cell B shown in Figure 5.



Figure 5. Dual Cell

o k + . :
Since A must be a face of some Ak l, which in turn must be a face

+ s +io . :
of some Ak 2, etc., until Ak * is an n-simplex, we know that the dual

cell is of dimension n—-k (it is the union of cells of the form < ﬁk}. . .

A~

An >). - Alternatively, Bn"k could be defined as N{st (v, K')lv is a
vertex of Ak} (see Hudson [11], p. 29).
Let Ap-= < Vo’ . . ey Vp2>be a p-simplex (or a PL cell with vertices

voro- ..; vp) and choose some arbitrary ordering of the vertices Vo Vl,
R vp."The equivalence class of even pe;mutations of this fixed
ordering is the positively oriented simplex +Ap, and the equivalence
class of odd permutations of the fixed ordering is the negatively ori-
ented simplex —Ap.

2 .
For example, choose < vy vl, v, > to represent +A  (see Figure

2

6). Then (vlvzv ) (vovl)‘o(yovz) (¢ represents the usual produc# of

permutatlons) is an even permutation of (v vlvz) and hence < Vl,V2,VO>

represents +A2 ‘Similarl (v.v v.) = (V.V o (v V) H
P : Yo Wo¥oV) = Wo¥glelVVy ). hence,

2
> represents +A”. On the other hand, (VOV Vl) = (V1V2)-

<
VarVerVy 2

2 . . Lo
Thus, < Vo, v_, V. > represents -A . Pictorially, < Vo’ Vir v > gives

2 1 2



2 . . . . . :
A" a clockwise orientation, while < Vo' v2, Vl> gives a counterclock-

wise orientation.

Figure 6. 2-Simplex

The connection between the orientation of an n-manifold M and the ori-

. . n
entation of a simplex A" = < vo, vl, . e ey vn > can be seen as follows.

n L . . . ’
Let x = A& . There is a Ui in the orientation system of M such that
X € Ui' Consider the following sequence:
U,
i

3 . ‘
Hn (Mr M_Ul) _X—')' Hn (MI M"X) w Hn (IAnI’ IAnl-x)

- u_([a"], Bd|a"|).

The local orientation at x prescribes a generator of Hn (lAnI, Bd[Anl).
Simplicially, the homology class of <V Vo ooy v, eCy dAnl,Bd[Anb
is one of the generators of Hn(IAnI, BdlAnl) = 7; the other generator

being the class of -‘<Vo, v . oy vn:>. Hence, the local orientation

1’

at x prescribes one or the other of the equivalence classes of the per-

v . - n
mutations onthe vertices of A .



. . . . k
We also need the notion of induced orientation. Suppose Ak and B

. . k k . . .
are k-simplices such that IB lng |. Pick an orientation< Vgr - .,vk>

of Ak. Subdivide Ak so that Bk is a subcomplex of Ak. Let ©

t O 1 ¢ o oy

1 2

Gn-l' On =ABk be the k-simplices in this subdivision of Ak. Then the
k

n

. k -

equation Z eia Gi = 3A" can be solved, giving values of +1 for each
' i=1 '

si, hence inducing an orientation of each ci, and in particular, Bk.

2 2 . .
For example, take A~ and B as in Figure 7.

2

2
Figure 7. B C A

. . . 2 - .
Assign the orientation <:vo, vl, v2> to A°. Subdivide to obtain

Figure 8.

Figure 8. Subdivision



We must have

9 < Vyr Vir Y, > = a[el‘<vo, Vi v4> +‘e2 1 4
+ e3 < Vl' v4, v5>-+ 84 <v_, v2, v5
+ €5 < v2, v3, v_ >+ 86 <v , Vv, v3
* e, < VoV, v5>]
That is,
< v Vl> - < v vé’> + < vy v2> =
el (<v, v3 > - <,Vo, v4 > + < v3, v
+'82 (< Vo' V1 > o< Vo' Va > *= vy
+ 53 (< Vl' v4 > = < Vl' v5 > + < v4,
Ty SV Uy Y m SV Vg 2 <y
+ 25 (< v2, V3 > =< v2, V5 > + < V3,
+ 86 (< Vo' v2 > =< Vo’ v3 > 4+ < v2,
+ 87 (< v3, v4 > - < v3, v5 > 4+ < v4,
Thus, €2 =1, €2 + €3 = 0 and €3 + 67 = 0. Hence, 83 = -1 and 67
Thereforg, S Vg Vg Vg > is the induced orientation on.BZ. If we
found 57 ; -1, then -<:v3, v4, v5> or < v4, V3, v5 > would be the

" .induced orientation on B .

One could also induce orientations algebraically by excision.

(Az

2 2 . . .. 2, -
A and B be as in Figure 1l.7. By excision H , BAA") =

2 2

11

>)

>)
>)
>)
>)
>)

>).

had

Let

2
=H, (B ,Bde).

This isomorphism takes the element < Vo’ v., v. >to<v,, Vv, V

1 2 3 4 5

\ . . 2, . .
Thus, the clockwise orientation on A induces the clockwise orient

2

on B

>.

ation
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We now give a combinatorial definition of the intersection number
of a simplex with its dual cell. Suppose M" is an oriented PL (orient-
able) n-manifold with triangulation K. Let 2* be a k-simplex in K and

n-k . . . n-k .
B the dual cell. Pick an orientation for B . Choose a k-simplex

0 in K' such that Iolngkl and write g = < Vor Vyr e er Vo > where the

v, are barycenters of faces of increasing dimension. That is, v, is the

barycenter of Ti which is a face of Ti+" of which vi is the barycen-

1 +1

ter. Similarly, pick an n-k simplex T such that ]T]ngn-kl and T =

< ... > wi ‘ i ; i mes of ine
Vk’ wk+1’ e wn with the wi being barycenters of simplices of in

. k. . s ‘g
creasing order. Now A induces an orientation on ¢. Let € = +1 if the

induced orientation is the same as < Vo, v

. ._.,‘vk >, and € = -1

ll
. - n-k , . . .
otherwise. Similarly, B .~ induces an orientation on T. Let § = +1 if

the induced orientation is the same as < v

w e e ey W >, and
kl k+l' ’ n ’
§ = -1 otherwise. Now the oriented n-simplex < v v e e oy V W
p i Ol ll 14 kl k+ll
« e ey wn > receives an induced orientation from the chosen orientation

of the manifold M. (Choose a point x in the interior of the n-simplex.
There is a local orientation of M at x, ife., a generator ax of

Hn (M, M - x). Now use excision). Let y = +1 if the two orientations

agree and y = -1 otherwise. Then the intersection number of‘Ak and Bn'-k

k n-
is a° # B ko €*§*y = +1. In order to avoid a lengthy combinatorial

argument the reader is referred to Alekandrov {31, p. 12, for a proof>

-k

that AB 4 8" is well defined. That is, Ak # Bn_-k depends only on the

_n-k

chosen orientations of Ak and B and the orientation system op M.

For example, suppose A' = |< v _, V >|, B' = l< Vo, V6>4L12V6TV5 >

0] 2

and the 2-simplices of Figure 9 are oriented clockwise.

4
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Figure 9. A" # B'

il
A

One might choose o vor Vv >and T = < v_, v, >, in which case

6 6

€ =+1, § = Fl and vy ~1; hence €¢§*y = +1. Another choice is ¢ =

< Vo' v6 >and T = < V6, v5 >. Then ¢ +1, § = +1 and Y = +1; hence,

g*8*y = +1. Another choice is 0 = <v2, v6>and‘ T = <v6, v4>. Then

.e==1,8= -1 and Y = +1; hence, €+8*y = +1. The final choice is ¢ =

< v2, v6 >and T = < V6’ v5 >. Then e = -1, § = +1 énd Y = -1; hence,
€*8*y = +1. Thus, A' # B' = +1 and depends only on the chosen orienta-
“tions for M, A' and B'.

One might ésk whether it is necessary to require that v be orient-
able. The following example provides an affirmative answer.

Let M be the Moebius band. That is, M is the product I x I
(I = [0, 1]) with the points (o, t) and (1, 1-t) identified. It is well
known that M is non-orientable. One can see this by starting at the

point x in Figuré 10 and trying to construct an orientation system.

_Start at Ul and give each Ui the clockwise orientation, proceeding in
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order. Because of the "twist" in the Moebius band, upon assigning an
orientation to U8, it appears to be counterclockwise in relation to the
orientation on Ul. Thus condition (3) of Definition 1.6 is violated.

The reéder may f£ind it helpful to construct a physical model.

Figure 10. Moebius Band

Triangulate M as in Figure 11l.

Vl' Vz . V4 VO
////’V6 v
V7 7
Vg
VO V3 V5 Vl

Figure 11. Triangulation of Moebius Band

The 1l-cell dual to < Vo’ vl > is < V6’ v7 > + < v7, v8 > (assume the
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indicated orientations). Assume the 2-simplices are oriented clockwise.

If, in the definition of the intersection number, we choose ¢ = < Vl,Vﬁ >

and T = < v7, v6 >, then e = -1, § = -1 and vy = ~1; hence e*§+*y =—1.
However, if we choose ¢ = < vl, v7 >and T = < v7, v8 >, then ¢ = -1,
§ = +1 and Yy =—1; hence e*8+y = +1. One might try re—orienting'one or

more of the 2—simpliceé counterclockwise, but there will always be a
l-simplex whose intersection number with its dual cell is not well de-

fined.

The finélitask in this chapter is to give a homolbgical definition
of intersection number.

Recall that the suspension of a topological space X, denoted EX,
is the quotient space X x [-1, 1]/R, where R is the relation generated
by (x, 1) R (y, 1) and (x, -1) R (y, -1). Also, the cone of a space X,
denoted CX, is the quotient space X x [o, 11/R', whefe R! ié the rela-
tion generated by (x, 1) R' (v, 1).

Lemma 1.9: Let A be an n;cell. Then'ﬁ (A, B4 A) =g

k k+
Proof: We may think of XA as A |UA , where A+ = (A x [0, 1])/(x, 1)

1 (ZA,Z BAA).

- . . + -
and A = (A x [-1, 0])/(x, -1). sSimilarly, think of IBd A as Bd A uBdA

where Bd A" = (BA A x [0, 11)/(x, 1) and BA A~ = (B4 A x [-1, 01)/(x, -1).

Considering the following portion of the relative Mayer-Vietoris sequence.

- - +> - + -
(A ,BdA )+Hk+l(A \JA ,BAdA (J BAA ) -

+ +
+1(A ’,BdA ) ® Hk+l _

Hk
~ + - + - ~ + ~ - -
+Hk(A Na ,BdA NBAA )+Hk(A+,BdA ) O Hk(A , BAA )

(ZA, IBAA) >

k+1 k+

: + +
i.e., H (A ,BdA ) ® H el

l(A_, BAA) > H
~ ~ + + “ - -
+H_(A,BAR) ~H (A", BdA) @H (a7, Ban")

Since the cone on a sFace has trivial reduced homology, the sequence re-

duces to
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0 > kal(ZA' IBd A) + B (3, B4 A) > 0. I

Let * denote the join operation (see Hudson [11l], p. 6).

Again let Mn be an orientable PL n-manifold without boundary and

with triangulation K. Let Ak be a k-simplex with dual cell,Bn_k. Then

N .

~ A A . k
the regular neighborhood N(A, K') = A * Lk(A, K'") = A * A f k(A , K")
k k k
= A * Lk(A , K') (A is the subcomplex of A" consisting of proper faces).
Recall that Lk(Ak, K') is an n-k-1 sphere (see Hudson [11], p. 24).

' ~ ; k
Thus, one may consider N(A; K') as the n-k fold suspension of A because

e . o . . o] L. At

joining with S is equivalent to suspension and S * § = S . Also
- ot A ~ , ~ . k \ - n~k

N(A, K') = A * Lk(A, K') =A *A * Lk(A, K') =A * B . So one may

consider N(A, K‘) as the k fold suspension of Bn—k because A iskthe
boundary of a k-simplex (i.e., a k-1 sphere).
Let ax be the local orientation of M at A. By excision, Hn(M,M-ﬁ)

A

‘Hn(N(A: K')';N(£7 K') - ﬁ). Now Hn(N(i; K');:N(ﬁ; K') - A)

e

= Hn(N(A; K"), Bd'N(ﬁf K')). Thus, given that M is orientable, one can
use the local orientation at A to induce an orientation ae:Hn(N(A; K"y,
Bd N(A; K')) of N(A; K'). ;

Now for the homological definition of intersection number. Choose

. . - _k
orientations a ¢ Hk(Ak, B4 Ak) of A# and b € Hn_k(Bn k, Bd Bn Y. We
have the following isomorphisms:

Kk e .
Hk(A , BAA )—-——+Hn(N(A;K'),Bd N(A; K'")) <—
g ™%, pa 5"

“n-k

n-k k . . . . . .
where Z_ and X, are the suspension induced isomorphisms. Without loss

of generality, assume Zi_k(a) = o (if Ezuk(a) = -a, replace 22—3 with

_En—k).

*
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Define the intersection number,

e (09 @

-1 if 25 7Ha) = b

b

ak g g =

. , : i . . n-k
It is obvious that one can choose the orientation on B so that

k n-k

A #B = +1. This will be important in proving the duality theorems

of the next chapter.



CHAPTER IT
DUALITY IN THE PL CATEGORY

The objective of this chapter is to prove the basic duality theorems
of algebraic topology in the PL category.
Let K be 'a simplicial complex and assign orientations to each sim~

plex in K. Given a k-simplex Ak and a (k-1)-simplex Ak—l, define the

. k k-1 . k-1 k
incidence number [A ; A ] =0 1if A is not a face of A, and
k k-1 , k-1 . k
[A; A ] =+1 if A 1 is a face of A''. 1In the latter case one chooses
: k k-1
between +1 and -1 as follows: suppose A = < Voro- o .,vk >, Then A
=+ <vy v v. »>. 1A o4 <y v v, >
T o,---, i,-..,k- O,--., i,...,k[
define
. k ~
+1 1f A =< V.,V , .., V. e, V. >
k-1 i o i k
[A; A ] =
-1 ifA =-<v.,,V, ... 3_, e ey V.2
1 o i k
k-1 A .
If A = --<VO, .« e oy vi, . ey vk> define
1 ifaN =<y, v v v, >
k - . - P 4 r e s ey v e e e
ak, Ak l] - i o) i k
. k ~
4+l Af A =< V.,V , i e V. e, VvV, >
1 o i k

(" means vi is deleted).
If X is a cell complex, a similar combinatorial argument could be
. . . k k- k k=
given to define the incidence number [B ; B l], where B and B 1 are

cells of indicated dimension. However, for the two-fold purpose of

avoiding a lengthy combinatorial argument and to provide variety, a

18
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. e . . k k-1 . k-1
homological definition will be given. Of course, [B ; B 1] =0 if B

) : k k-1 .
- is not a face of Bk. Denote the boundary of B by S . Consider the

following sequence of isomorphisms:

k _k-1 k-1 k-1 k-1 8
H (B, s 7) 2, H_, 87 _ H , (80 A ) —
) k-1 _k-2
— H_, (B7 7, s

where ¢ and Y are from sequences of pairs, 6 is an excision map and

k-1 k-1 - k-
S - B 1

. .
A 1 (see Figure 12). (Note: A is a PL-cell by the

Alexahder-Newman theorem;)

Bk—l

Figure 12. k-Cell "

Thus, given a generator of H (Bk, Skfl) = 7 one can prescribe a

k
Bk—l k-2

, S ). Simplicially, < voe v > represents

(

generator of H , vV

1 2

k-1

2 1 )
a generator of H2 (B7, s7), < v vy > - <'Vo’ v, >+ <v_, vV, > repre-

2 1 2

sents a generator of Hl (Sl), < vo,ﬁvl > represents a generator of
1 .1 v - 1 o, ,
Hl (s, A7), and < vor vy > represents a generator of Hl (B, s) (see



Figure 13). Thus, if a and B are the given generators of Hk

and H (Bk~l, Sk‘z),respectively, set [Bk; Bk—l] = +1 if (Bo¢oy) (a) =B

k-1
and [Bk; Bk—l] = -1 if (Boyo¢) (a) = -B.

- ¢ \2
d) é ) A 0
———————- —————-
V1 Yo 1 Yo Vi Vop——V"1

Figure 13. 1Inducing an Orientation

n ., . . . .
Now assume M 1is a PL-orientable closed n-manifold with triangula-

. i k . . . .
tion K. Let Ai denote an oriented k-simplex with O < k < nand i =1,

2, vv ., D:

! where P, is the number of k-simplices. Denote the dual

- . n-k
cells by B? k and assume they are oriented so that A?##Bi = +1. Let

a?. denote the incidence number of A? with Ag_l

number of the dual cells Bt and B?fl.

-1 - S - -k+
Lemma 2.1: 1f A1 < A%, then a¥#8"7* = ag(-1)" @*Hae" ),

and B?j the incidence

Xk k-1 -k+ n-
‘where a = [A; Ak l] and B = [Bn K l; Bn k]. (Assume the underlying

space is an orientable and oriented PL n-manifold.)
Proof: A sketch of the proof is-given. The details are in

Alexandrov [3]1, p. 14.

k k| _i.k -
Choose ¢ € K' such that lc Ing . First assume that a =8 = 1.

~ ~ n-k+1 ~
. . A >. i = <
’ Ak—l' X Pick B A

"k N ~ N N
Let 0 = < Ao, Al, Ak, . . .,An>

_+ -—
n-k ll Q;Bn k+1

k-1’

. k- ~ A .
with |8 . Leto T=e<A, A, ... A _, > withe
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k k- k k-1 .
chosen so that [0 ; © l] = (-1) . The orientation of ¢ 1 is coherent

k-1

. . . - . .. ) n-k A ~
with the orientation of A . Similarly, let B =n < Ak" i ey An>

-k+ - . . -k
with n chosen so that [Bn k l; Bn k] = 1. The orientation of Bn is

. ‘n- A - )
coherent with that of B k. Let N = vy < Ao,. . oy An> with A chosen so

that the orientation of N is coherent with the orientation induced by

the orientationvsystem of the manifold. ' The following example may be

helpful.

A=<v v, >, B=<1vw v_>+<v_,v_>
o' ! 4' 5 5" 76

o' =<v_, Ve >
32 = < v v >
v - VO' 5" "4
0
Oo =+4+1 < v >
B' = -] < V5, V4 >
N=-1<v, v5, v4 >

k -k k- -k+1
Then A #Bn_ = g°n°*y and A l##Bn (—1)k €*n*y. Since we are

I

assuming that a = 8 = 1, the conclusion for this special case follows.

k- 2
ak-1

' o .. k
For the general case, note that the incidence number [aA ; ]=a =1

n-k+l _n-k k k n-k+1

~and [BB 7% = 6% = 1. Thus, aat 48" F = (-1)F " l4es ).

- 2k, n-k, . - - —k+
But A #877 = o® @"#8"F) = a(a®#5") ana AF7l 4 es” YT -

_ lxp :
B (A" l#Bn 1y thus, a¥# B

k
)

n-k 1 n~-k+1

= o (ea¥# ™% = o1 @ Lups )

= af (-1 F @k e gtk

In the present setting, all intersection numbers of cells with their

k -k - : -
dual cell are +1. Thus, by the lemma 1 = a,, * B?.k (—l)k, or B?.k =
. , ij ij ij
k k-’ '
(-1) aij'

I
Although the Poincare Duality theorem will be a corollary to a later
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theorem, this is an appropriate place to prove this important theorem
for its proof is almost immediate.
. - . n . , .
Poincare Duality Theorem: Let M be a closed (i.e., compact without

~ -k
boundary) orientable PL n-manifold. Then Hk(Mn) Zu (Mn) for Xk =0, 1,

« . ./ D
. ' . n .
Proof: Let K be a triangulation of M . Denote the free abelian

group on the oriented k-simplices of K by Ck(Mn) and the free abelian

. - ‘ ~k
group on the oriented dual n-k cells by Cn k(Mn). Note: Hom(Cn (Mnn 7)

Cn—k(Mn);

e

. ) . _
Define a homomorphism ¢: Ck(Mn) + ct k(Mn) by setting ¢ (A ) = B" k

and extending lihearly. Since there is a one-one correspondence’between
" k-simplices and n~k dual cells, ¢ is an isomorphism.

Consider the following diagram.

-o,on K
k-1 M T

. 'l¢ , i¢

RN Ck(Mn) B

. I Cn—k(Mn)' 8 cn—k+1(Mn) §
P p _
k-1 k-1
o x kK k-1, —k+1
2@ =9( ) ol Al )= ] o B
. j=1 I J j=1 J
Pk-1 kK n-k _n-k+1 k . nk. ..k K
= Y (-1)" .. B = (-1)" 8(B, )= (-1)" 84(n.)
521 ji P i

Thus the diagram commutes to within sign. Hence, the homologies of the

. ) . . . n-k, . n
two chain complexes are isomorphic. That is, Hk(Mn) = H o).

Definition: A subcomplex L of a complex K is said to be full in K

if no simplex of K-L has all its vertices in L.
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For example, let K be a two-simplex with L consisting of two sides
and the appropriate vertices. Then the third side is a simplex of K-L

with each vertex in L. Thus, L is not full in K. See Figure 14.

Q
™

L= {0"1 B, VO, Vll V2}

Figure 14. L Not Full in K

On the bther_hand, if L consists of only the one-simplex o and vertices
~Vo and vl, then L is full in K.

General Duality Theorem: Let M be a PL orientable n-manifold with-

out boundary and (P, Q) a coﬁpact PL pair in M. Then for k = 0, 1,
ceerm, B (M-Q, M- P) %@, 0.

Proof: Let K be a PL triangulation of M so that P is-a full sub-
complex. Let Np be the derived neighborhood of P (i.e., the simplicial
neighborhood of P in K'). Let P* =»C1(M ; NP). Similarly, let NQ be

the derived neighborhood of Q and Q* =Cl (M - N ). See Figure'15.

Q
. k .
- Let At, ..., A be the k-simplices of K in P - Q. Denote the dual»cell
k n-k pk .
of A, by B, . ’
i i
. k . . n-k . . .
Claim: A € P - Q if and only if B € Q* - P*¥, To justify this
. . : k ~
claim, first suppose that A' € P - Q. Then A ¢ [P —VQI. Let T =

~ A . . k .
< A, Al, ... > be a simplex in K' (A < Al < A2 < ..4.). Q cannot
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contain A nor any A, . Since Q is full in K', |T| g;IQI.and since no

R n-k ., .
vertex of T is in Q, T C Q*. Now B is the union of all such T so

n- . . n-k - 2 .
B k must be contained in Q*. Also, B d P* because A€ |P|. Thus,

B"7K g% - px.

~

v o_ L TDee T

Figure 15. Compact PL Pair

‘ k k
Now suppose Ak ¢ P - Q. Then either A € Q or Ak ¢ P, If A € 9Q,

A o, n-k n-k .
then A € Q and A is a vertex of B . Hence, B ¢ O* and thus certain-

. : k .
ly not an element of Q* - P*, If A" ¢ P, then because P is full there
k ’ n-k ’ ,
must be at least one vertex v of A" such that v¢P. Now B c ]St(v, K )l.
'But for a vertex not in P; ISt(v, K')I intersects Np only in the boundary

of NP. Hence Bn cannot be in Q* - P*. The claim is now justified.

» Now‘let Ck(Q*, P*) be the free abelian group generated by the dual
k-cells of Q% ; P*, and Cn—k(P, Q) the free abelian group generated by
the n-k simplices‘of P - Q. Dgfine ¢: Cn_k(P, Q) > C#(Q*, P*) by

¢(An_k) = Bk‘and extend linearly. By the same érgument given in the
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proof of the Poincare Duality theorem, the following diagram commutes to
within sign.
-k 9 ~k+
> e, o) 2 e, ) »
% bo

+Ck(Q*r P*) —§+'Ck_l(Q*: P*) -
Therefore{ Hn—k(P;’Q) = Hk(Q*, P*) .,
The inclusion maps i: Q* + M - Q and j: P* M - P are homotopy
equivalences. Thus, we have the following diagram.

) * ] *) * * * *
Hki) - Hk@) - Hk@ ;, P*) = %&l@) > th@i
H (M-P)> H M-Q)+ H M-Q,M-P)>H  (M-P)> H ,M-0)
The diagram commutes because all the maps are inclusion indﬁced except
for the two connecting homomorphisms and they are "B—induced". The rows

are exact. Thus, by the five-~lemma, the middle vertiéal map is an iso-

I

morphism. So it has been shown that Hn—k(P, 0) H (Q%, P*) =
. ) : k

_Hk(M —Q, M=-P). |l

'

Corollary 1: Poincare Duality. If M is a closed orientable PL

n-manifold, then Hk(M) = Hn_k(M).

Proof: Let P =M and Q = ¢ in the General Duality Theorem.. |l

Corollary 2:  Alexander Duality. Hn-k—l(P) = ﬁk(Rp-P)where P is

a compact PL subset of Rn.

Proof: With Q = ¢ in the General Duality theorem we have Hn_k_l(P)

~ n .n : v o
= Hk+l(S » S - P). Let x€eS - P. By excision H

n _n ~
k+l(S P & =P =
n _n

Hkﬂ(R , R -P).

I

", " - p)
k+1 !

H o (s" - s" - p hat i
k41 Ky | ) - x). That is, H

Consider the long exact sequence:

, ‘n ' n n ~ n ~ n, -
~H  (R)+H (R, R -P)>{ (R -P)>H (R)~>
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(rR", rR" - p)

e

~ n ~ n
Ne N R = - - -
Because H_(R") =0, we have Hk+1 Hk(R P) Il

Corollary 3: Lefschetz Duality. If M is a PL orientable compact

n-manifold with Bd M # ¢, then H (M) = 1 M, Ba Wy,
Proof: Let DM be the double of M. That is, two copies of M

attached by the identity map on Bd M. See Figure 16.

DM

M' Bd M : M

Figure 16. The Double of a Manifold

Let P = DM and Q = M*. Then Hk(M) = H, (Int M) = Hk(DM-Q,DM-P);

n-k oo~ - . ' ) . ..
Hn (DM, M*) = Hn k(M, Bd M). The last isomorphism is by excision. Il

Corollary 4: Smale Duality. If M is a compact orientable PL

n-manifold with BA M = AUB, then H_(M, A) 25" %, B).

Proof: Let DM and M* be as in the Lefscﬁetz Duality theorgm, R a
regular neighbofhood-of A in DM, P = C1(DM - R) and Q‘= Cl (M* - R) (see
Figure 171, :

Now Hg_k(P, Q) = Hn_k(Int M, B)tby excision, and Hn—k(lnt M, B) =

~

Hn—k(M, B). Also, Hk(DM— 0, DM~ .P) = Hk(Int M, R) by excision and

Hk(Int M, R) = Hk(M, A). |l



|
I

*
| M
|
|

Figure 17. Double of M

For the reader who is familiar with Cech Cohomology Théory, the
-following comment will be of interest.
. The General Duality Theorem is true for any orientable manifold M
and cgmpact pair (P, @) in M if Cech cohomology is used. That is,

ﬁk(P, Q) = H M - 0, M - P) (see Spanier [24], p. 296).

27



CHAPTER TIIT
THE INTERSECTION NUMBER OF MANIFOLDS

In fhis chapter three equivalent definitions of intersection number,
which are much more general than the definition in Chapter.I, are given.
The reader is now further aséumed to be familiar with additional topics
in algebraic topology, particularly cup and cap products (see Vick [25],

Chapters 3 and 4, Greenberg [2], Chapter 24, and Hudson [l11l], Chapter 4).

p q

n
Let M be a closed orientable PL n-manifold with M~ and M~ closed

orientable PL sub-manifolds of indicated dimension and p + g = n.

Definition 3.1: The intersection number of Mp and Mq, denoted by

uP # Mq, can be defined by the following diagram.

p, - T n. "n" g.n
H M) — H M) ——— H (M) :
p ' p : J n, n Hp ™ n
® S @~ H @) —— H )
q I n Unf\ p,n
Hq(M )y — Hq(M ) #——— H (M)

That is, pick orientations un, Up and uq for Mn, Mp and Mq, respectively
. ' n. - P q
(i.e., generators of Hn(M ), Hp(M ) and Hq(M )). Recall that

k, n_ n_ . , , , . .
unf\: H (M) > Hh-k(M ) is the Poincare Duality isomorphism (see Vick

[25], p. 149). Pick u%

P

and ¥ in 58¥") and &°

n .
(M), respectively, such

thét unf“ uq = i*(up) and HoO up tj*(pq). Then Mp,# Mq is defined to

q

e

. o _ .
be unfﬂ(uq\d up). Because HO(M ) Z, we may consider Mp # M™ to be an

integer. We may also define an intersection number MF #‘Mq as follows.

28
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Definiﬁion 3.2:

P 1y n
H (M) H (M)
p D
A n
® ® —— u_oM
aq " n unm n
R0 —— 1 o) —Po 1 ™)

That is, let up, uq, up and H be as in Definition 3.1. Then ME # Mm%

is defined to be i*(up)r\up. As before, Mp # Mq can be considered an

I

. ' n
integer because HO(M ) Z.

Because of the equation (see Vick [25]1, p. 122) unf“(uq\J up) =

(u - uq)f\up and the equation u uq = i*(u ), we have u f'\(uqU up)=
n n o) n
1*(up)f\up. Thus, the two definitions are equivalent.
One may observe that Mp # Mq = (-—l)pq Mq # MP by using the well-
known equation UP\J uq = (—l)pq(uq\J up).

Example 3.1: The following is the computationvof the intersection.
| IR 2 l
-number of the two simple closed curves a and b on the torus T . See.

Figure. 18.

Figure 18. Torus



30

- - L2 .
Let 9, and 92 be the generators of Hl (T ). See Figure 19.

Figure 19. Generators of Hl(,Tz)

- 2 .
Let o and B be elements of H:L (T ) such that d.(’!.'i) =1 for i=1-6

where T = <5, 8>,

1

ol

<3, 6>, T, = <4, 6>,,T3 = <4, 7>, T, = <5, 7>,_rs

“and T6 = <3, 8>. oa(1) = 0 for every other l-simplex (see Figure 20.)
Also, B(yi) = 1 for i=1~6 where Yl = <1, 2>, »Yz = <4, 2>, y3 = <4, 5>,
y4 = <7, 5>, Yo = <7, 8>, and Yo = <1, 8>. B(y) = 0 for every other

l-simplex vy (see Figure 20).

0 3 6 0
G G 6
1 Gy ¢ 7 S‘_l
2! s G 5 S S 8 S 2
° ¢ | S—7¢ | ¢ <,
3 N3

! A . 2
Figure 20. Triangulation of T
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Let u be the top class of H2(T ). That is, u = <0,

31

1, 3> -

<1, 3, 4> + <1, 2, 4> - <2, 4, 5> - <0, 2, 5>+ <0, 3, 5> + <3, 4, 6>

- <4, 6, 7>+ <4, 5, 7> - <5, 7, 8 - <3, 5, 8 + <3, 6,
- <0, 1, 7> + <1, 7, 8 - <1, 2, 8> - <2, 6, 8> + <0, 2,

late a # b we first find uy~ o and u~ B. u M o reduces

8> + <0, 6, 7>
6>. To calcu-

to un a =

<3, 4, 6>MN o - <4, 6, 75N o + <4, 5, 7> g - <5, 7, 8N o -

<3, 5, 8 Na + <3, 6, 8>Na=a(<3, 4>) « <4, 6> - (<4
+ 0(<4, 5>)+<5, 7> = o( 5, 7 )+<7, 8> - a(<3, 5>)-<5, 8>

+<6, 8> = 0+ <4, 6> - 1+<6, 7> + 0+<5, 7> - 1+<7, 8> - 0

, 6>)+<6, 7>

+ o (<3, 6>)

.« <5, 8>

+ 1+<6, 8> = <6, 8> + <8, 7> + <7, 6>. uNnB reduces to unNnB =

<1, 2, >N B - <2, 4, 5>NB+<4,5, 7>NnB-x<x5,7,8>NB+

<1, 7, 8 NB - <1, 2, 8 MNB = B(<L, 2>)+<2, 4> - B(<2,
+ B (<4, 5>)+<5, 7> - B(<5; 7>)*<7, 8> + B(<1, 7>)+<7, 8>
- B(<1l, 2>)-<2, 8>'= 1-#2, 4> - (=1)+<4, 5> % 1-<5, 7> -
+ 0<7, 8> = 1¢<2, 8> = <2,4> + <4, 5> + <5, 7> + <7, 8>
Thus, pNo is homologous to—g2 and unpB is homologou; to

Definition 3.2 we find that i*(g) = a + 3&2 and j*(g) =

1

the previous calculations, we see that (uro_l (gl + 2g2)

Finally, we must compute (gl + 3g2)f\(—2a + B) = [<2, 5>

<8, 2> + 3(<3, 4> + <4, 5> + <5, 3>)] A (=20 + B)

-20.(<5, 8>) + 3B(<4, 5>)

il

4>) <4, 5>

(=1)-<7, 8>

~2a (<5, 8>)+<8> + 3B (<4, 5>)+<5>

-2<8> + 3+<5>. Now -2<8> + 3+<5> = 1 <8> because <8> and <5> are

homologous. Summarizing the calculations in the following diagram, we

have:
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_—
a . 91+ 39,
. l* 2
H, (a) -~  H_ (T)
1 1 5
® ® - o)
3 HO 2 1-<8>

H, (b) = H (T7) — 't (r?)

b §l-+2§2 -20+ B

Passing to the integers, we conclude that a # b = +1. Note: If we give
T2 its other orientation (i.e., orient the 2-simplices clockwise) we
“would find that a # b = -1.

To calculate a # b using Definition 3.1, we first observe that

-1 . - -1 - = = - -1 . =
(b — (1, (a)) = (um) (gl + 392) =B - 3a and (UM (3, (b))

= (Ufﬂ_l (gl + 2g2) =B - 20. Now if 0 is a 2-simplex

(-1 if o = <1, 2, 4>
-1 if o =<2, 4, 5>

‘(B - 30)u(B - 20)(c) =(-3 if ¢ = <4, 5, 7>
-4 if 0.= <5, 7, 8>
\ 0 elsewhere

Let £ = (B ~ 30)u (B - 20) and v ¢ Hom(Cz(Tz);Z) be defined by

1 if o = <5,.7, 8>
Y(o) =
S {0 otherwise

and extend linearly. ©Now Y and & are co-homologous. In order to see
. R ‘
this, we must find a ¢ ¢ Hom(Cl(T Yy;Z) such that §(y) =y - 2. Note

that G(w(cz)) ='w(8(qz)). Hence we want
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=(3

L0

Let Y(<v,, v_.>) = a

1 2
to be satisfied if
¥ (o<0, 1,
Y (o<1, 3,
¥ (a<l, 2,
Y (9<2, 4,
P (9<0, 2;
Y (9<0, 3,
Y (<3, 4,
y(9<4, 6,
Y (9<4,. 5,
P (9<5, 7,
P (3<3, 5,
Y (9<3, 6,
Y (9<0, .6,
Y (9<0, 1,
Y (o<1, 7,
Y (9<1, 2,
P (9<2, 6,

¥ (9<0, 2,

vlvz'

we are
3>) =
4>) =
4>) =
5>) =
5>) =
5>) =
6>) =
7>) =
7>) =
8>) =
8>) =
8>) =
7>) =
7>) =
8>) =

8>) =

g8>) =

6>) =

2

if o <1, 2, 4>
X 2

if o <2, 4, 5>
. o, ;

if o <4, 5, 7>
if 02 <5, 7, 8>
otherwise
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Next write the system of equations which are

to find the

401

813

a

12

24

02

03

34

46

45

57

35

36

06

0l

17

12

%26

202

%03

%14

a

14

25

05

05

36

47

47

58

38

38

07

07

18

18

%8

%06

+

The coefficient matrix has dimensions

desired V.

a13 =.0
a34 =0
a24 = 1
a45 =1
a25 =0
a35 =0
a46 =0
a67 =0
ac, = 3
a78 =5
a58 =0
a68 =0
a67 =0
al7 =0
a78 =0
a28 =0
a68 =0
a26 =0

27 x 18 .and can be shown to have
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rank 18. Thus, the desired ¥ exists. All that remains is to find unvy.
: 18

Let oi, i =1, ..., 18 be the 2-simplices. Then pyny = Z (oirwy)

v i=1

= y(<5, 7, 8>)+<8> = <8>. Passing to the integers, we again find that

a # b =+1l. The calculations are summarized in the following diagram.

a g, * 39, B - 30
H (@) — B (1)) «—— # (1) - ;
x X —> H (T) — H (T)
2 12 ©
H (o) = H) (17) —— Rt g =
b ‘ g14i2g2 B - 2a

A third definition'of the intersection number of mP and Mq can be

given by first défining the intersection number of a b—cell X with a
g-cell Y, both of which are pfoperly contained in an n-cell B where

p + g =n and Bd-X MBAd Y=¢. If p= 0, then X is a point and Y = B.
Hence, we will assume that p and g are both at leaét one. Consider the
following exact sequences.

. L o
—~ H (X)) — H (X, Bd X) — H Bd X) & H (X) —
— H () e ) o1 (B4 X) G

.0 ~

and —+ H (B-BJdY) — H (B-B4dY,B-Y) — (B-Y) —
: p p p-1

— Hp_’l (.B -BdY) —

Because ﬁ*(x) and ﬁ*(B - B4 Y) are trivial, 9 and 9 are isomorphisms.
Now Bd X C B - Y. Thus, we have the inclusion induced map i*:ﬁp_l(BdX)
- : ’ + + .
— Hp-l(B - Y). Let B =BU(BIBZXxX [0, 1)). Then B is an orientable
N
manifold without boundary and (Y, Bd Y) is a compact pair in B . By the
. 3 ‘ + + ~ g .
General Duality Theorem, Hp(B - BdY,B -Y)=H(Y, Bd Y). By exci-

+ + - ‘
sion, HP(B -B4d Y, B -Y) = HP(B - B4 Y, B-Y). Thus,H?(B-—BdT{,B-Y)
= Hq(Y,'Bd Y). Denote the last isomorphism by P. Consider the following

diagram:
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- i -~ K
H (X,BdX) > & _(BAX) % & _(B-Y)<> H (B-BdY, B-v) <~ 5%(y, B4 Y)
p p-1 p-1 P
® ®
Hq(Y,BdY) Identity Hq(Y,BdY)

AN v
H, (Y)

Now let up and uq be generators of HP(X' Bd X) and Hq(Y, Bd Y), respec-

tively, and uq be the unique element of Hq(Y, B4 Y) for which ) w(uq) =
i*(aup).

Definition 3.3: Define the intersection number X #Y = uqrmuq. Be-
cause‘HO(Y) = Z, we may consider X #Y to be an integer.

Definition 3.4: Let X and Y be p and g cells, respectively, which

meet in a single point and are properly contdined in an n-cell B with

P+ g =n. X and Y are said to be transverse if and only if there is a

homeomorphism of triples h: (vx Sp-l*-Sq_l, Vk Sp_l, Vi Sq_l)-—*(B,>(,Y).

q

More generally, if v and M~ are submanifolds of Mn, then a point

xe:Mpfj M is a point of transverse intersection if and only if there is

an embedding h: v= Sp_l* Sq—l —+-Mn such that h(v) = x, h_l(Mp)==v* Sp_l

and h-l(Mq) = Vx Sq—l.
'Lemma 3.1: If X and Y are as in Definitioﬁ 3.3 and meet transverse-

ly in a single point, then X #Y = +1.

a-1 p-1

-1
P ; VX S '

* S

Prbof: There is a homeomorphism h: (v S
g-1 n : n
vk S ) — (B, X, Y). Thus, Bd X and B - Y have the same homotopy

type. Therefore, i

e ﬁp_l(Bd X) —a?ﬁp;lan ~ Y) is an isomorphism and

uq is 'a generator of Hq(Y, B4 Y). Thus,‘uqr\ is an isomorphism and

uqr\uq is a generator of HO(Y). Il

| ‘ .
Again let M be a closed connected orientable n-manifold with

closed connected orientable submanifolds Mp and Mq, where p-+ g = n.
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Assume that Mp is in general position with respect to Mq. Then dim
b q : _ P q } . c s
(M"NM*) <p+g=-n=0 so that M meets M~ transversely in a finite
. C o s n n
number of points xl, .- ..y xt. Choose disjoint n-cells Bl, . ey Bt'

. s e . n
according to the definition of transversality, such that x € Int Bi'

Xi = 8"NM is a p—éell and Yi = B?f\Mq is a>q—dell. For each X, there

. . . n n . . .
is a local orientation ax € Hn(Bi, Bi - xi) induced by the orientation

‘ i .
n n ~ n n
system of M . Now H (B., B? - x.,) =H (B.,, Bd B.). Thus, the orienta-
' n i i i n i i

. n . . . n .. .
tion system of M  induces an orientation of Bi' Similarly, the orienta-

b

tion systems of M a

and M~ induce orientations of Xi and Yi’ respectively.

g

Definition 3.5: With Mp, M, Xi' and Yi as above, we define

t
wEnd = ) x #v.).
. 1 1
Toi=1
D

Suppose we have a homotopy Ht : M P

n . .
> M with Ho the identity on M™.
b _ p
Let M, = H, (1).
- Lemma 3.2: The intersection number given by Definition 3.2 is in-

variant under homotopy.

Proof: Consider the following diagram:

HP(ME)
|
o i, .
HM) ——————— Hp(M )
n
® ® — H_(M)

H MY —u o« 1o
q a

Let up be the chosen orientation class of Mp.‘ Since.Ht is a homo-

. n - o
topy between i :Mp > M and jH :Mp

1 -> Mn, we have that j_ _H* (u )==i*(up).

* ] P
Hence, in Definition 3.2, we may assume that MF is in general posi-

.o ‘ . . . s . n .
tion with respect to Mq. That is, if K is a triangulation of M with
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b

subcomplex L, where |L| = Mq, then M° misses the g-1 skeleton of L and

MPIW MY consists of a finite number of points Xyr Xogr ooy X Suppose

a g~simplex A of L contains more than one X, - For each X in A let Ai
be a g-simplex with x, € Int A, C Int A and [Ai!rW[Aj1 = ¢ for i # j.
If we do this for each g-simplex which contains more than one xi, then

we can subdivide K to obtain a complex Kl and each g~simplex of Ll will

contain no more than one X, in its interior. We may also assume that

X, is the barycenter of the g-simplex in which it is contained. Let H

q

be the polyhedron consisting of the dual p-cells in M'. 1f 2% is a q-

simplex of Kl and Bp is the dual p-cell, then N(éq; Ki) = (Bd Aq)*-Bp.

a-1

Hence, because Mp misses M , we may homotop MP into H.

1%

- . Let up and uq be the chosen orientation classes of M- and Mq, re-

p

spectively, with u~ the Poincare dual of uq as in Definition 3.2. Then

i*(up) is homologous to a cycle 0, which is carried on H. Since up is

the Poincare dual of uq, up can be represented by Z Ei éi where ei and
‘ i T '

Bi are as follows. ﬁi is a cocycle which, when evaluated on the dual

p-cell Bi' gives +1, and on all other dual p-cells gives 0. The sum is

taken over all dual p-cells and

1 iEB N M # ¢

o if B, N M = ¢

Also, 0 can be written as ¢ = E B, * Z Bi where Bi is a dual p-cell

[ A %
which intersects Mq and Bi is a dual p-cell which misses Mq. ‘Hence,

. j R .
Mt =i w)n =0~ Qe. B)=((B, +]B )~(e, B)=
e y 17i i R R S §

i ) 2 3 3 i
LBy n ey B+ B ) e B) =08 nle B =B ~e; B
L T i : j 3 L i A & L TR

= Z e, (B, A~ éi ) = Z e, - Thus, each point of intersection of mF N u?
2 L 2
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contributes +1 or -1 in the same manner as in Definition 3.5. Therefore,

Definitions 3.1, 3.2, and 3.5 are equivalent.



CHAPTER IV
APPLICATIONS OF INTERSECTION NUMBER THEORY

The duality theory of Chapter II is an important application of
intersection number theory. 1In this chapter we give additional applica-
tions.

In 1943, Whitney proved in [31] that a clbsed n-manifold can be em-
bedded in 2n dimensional euclidean séace, E2n. More general embedding
theorems are known. .Historically, however, Whitney's Embedding<Theorem 
is important, and we will gi&en an outline of the proof.

Let £:E" +.E2n be a continuous function defined as follows. Given

: . .n ' 2 2 2 _
.(xl, ey xn) in E, let u= (1 + xl)(l + x2). .. (1 + xn)"yl-xl 2xl/u,

yi = x; for i = 2, . - .y Y41 = 1/u, and yn+i = xlxi/u for i=2,...,n.

Let f(xl, .. .,xn) = (yl,. B y2n)' It is easy tq show that for

1 1
(xl,. .oy xn) # (xl,. . .y xn
1

1

), f(xl, .. .,x#) = f(xi, .. {;xi) if and
only if xl'= 1, x = -1, and xi =0 for i = 2,; . ., n.  Thus, the only
point of self-intersection induced by f is £(1, 0, ..., 0) =
f(-1, 0, ...,0). Notice that for elements of En of large magnitude, yi
is almost equal to xi for i=1,...,n, and yi is aimost zero for
i=n+ 1[ .+ .;, 2n. Hence, we may alter f slightly so that it is the
inéluéion on the boundary of a standard n-ball, Bn, of sufficiently large
radius. Then f = f Bn is a map of B" into a 2n-ball an and f |Bd B" is

the inclusion map.

: . 2 s Cs
Let M be a PL n-manifold and g : M>E % apL map in general position.

39
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-1
Suppose g =~ g(x) = Xx. We may take deriveds if necessary so that
2 .
g(M)F)D'n = g(Dn) and g(Dn)F\Bd D2n = Bd g(Dn), where D' is the simpli-

. . 2 .. . ’
cial neighborhood of x and D n is the simplicial neighborhood of g(x).

2 2 .
Let F : D“7»p*" be a homeomorphism which takes Bd g(Dn) to Bd Bn. Define

2 . - — — —
g:M=>E n by g(x) = g(x) for x ¢ M - Int Dn and g(x) = F 1 f Fg(x) for

n — — — N
x € D. If x € BA D", then Fg(x) e BA B'. Thus, F ' E Fg(x) = F " F g (x)

g(x). Therefore, § is éontinuous and induces one more point of self-
intersection than g.

Let Yy and v, be the two distinct points of D" for which &(yl) =
§(y2). Let € = +1 be the intersection number at z = a(yl). Define
2 2

n n
T:E =+E. by T(xl,. e (X., « « o1 X

n-1’ Xn) = 1 - xn). T is an

n-1'
vorientation reversing homeomorphism. Thus, by composing with T, we can
change the sign of the intersection number €. Hence, in addition to be-
ing abie to introduce one more point of self-intersection, we can do it
in such a way that the intersection ﬁumber at that point is +1 or -1 as
we desire.

Theorem 4.1: (The Whitney Embedding‘Theorem). If M is a closed PL
n—manifold, then M can be embedded in E2n.

Proof: The theorem is obvious for n = 1. For n = 2, embed the 2-
sphere,_projective plane, or Klein bottle in E4 and add the necessary
number of handles to obtéin M. For n 3_3,.we let £ be a map of M into .
Ezn. By general position, we may assume that ﬁhére are a finite nﬁmber
of self-intersections. That is, there are finitely many points, q, suéh
that f_l(q) cohsisté of more than one point. Furtherassumevthat K and L
are trianéulations of E2n and M,krespectively, such that £ is PL. Let gq
and ql be points of self—intersecﬁion in £(M). Pick i p2, pi, and p;
in M such that g = f(pl) = f(p2) and ql=f(pi') = f(p;). Let C

1 and C2 be
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non-intersecting paths from Py to pi and P, to p;, respectively, which
do no£ pass through any other point where f has a self-intersection.
- Now f(Ci) = Bi is a path from g to ql, and B = BlUB2 is a simple closed
curve in £(M). 7

Case I: Suppose M is orientable and n is even. Since n is even,
taking intersection numbers is a commutative operation so that an inter-
section number is unambiguously defined at g (and at ql). Suppose that
one of the intersection numbers is +1 and the other is -1. Let D be a
2-cell in E2n such that DNf(M) = BA D = B. We may assume that D is non-

singular by general position. Now N(D, K(z)

2
f(N(Cl, L( )) and Y = f(N(CZ' L(z)) are n-cells which are properly con-

(2)

) is a 2n-cell. Also, X =
tained in‘N(D, K'"7). 1In this case we have X#Y = 0. We éan now deform
X to eliminate these two points of intersection without introducing any
new pbints of selffintersection. The details can be found in Whitney
[31]. We continue in this manner until we have théﬁ all points of self-
intersecfion ére of the type +1 or all of the type -l1l. We can eliminate
these by introducing a point of self-intersection of the required type
and pfoceed,as above.

Case II: Suppose M is orientable and n is odd. Then X#Y = 0 or
+2. If X#Y =AO, we cén remove the self-intersection as before. If

be a path from p, to p; which coincides with C. near

X#Y = +2, let ct 1

1
1 1 1 . L
near p,- Let C2 be a path from P, to Py which coincides

near pi. Replace X by Xl = f(N(Ci;L(z)

pl and w1th C2

with C2 near p, and with C

1
1 , 1 _(2) 1 1 ‘ . .
Yby ¥ = f(N(Cz,L ). Then X  #Y = 0 because the intersection number

) and

. . . 1 .
at g remains the same, but the intersection number at q changes sign.

See Figure 21.
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Figure 21. Adjusting the Intersection Number

Hence, we can remove these two points of self-intersection. Proceeding
in this manner, we can remove any even number of self-intersections. If
there were an odd number of self-intersections to start with, we intro-
duce another so that we have an even number of seif—intersections.
©

' Case III: Suppose that M is not orientable. As in Case II, we know
that X#Y = 0 or +2. If X#Y = 0, we can remove the two points of self-
intersection. If X#Y = +2, let C; be an orientation.reveréing path from
pzlto p;.‘ This is possible because M is not oriéntable; fhen fhe inter-
section number af q remains the same while at ql it changes sign. Thus,
X#ff(N(C;,L(z))) = 0 and we can eliminate these two points of sélf-
intersection. As in Case II, we can introduce one point of self-

intersection, if necessary, to insure that there is an even number of

these points. |l

The technique of eliminating pairs of intersection points of oppo-
site types can be used to prove the Whitney Lemma. We will need the
following two lemmas.

Lemma 4.2: Let X and Y be p and é cells, réspectively, which are
properly contained in an n-cell B where p + ¢ = n. Then X#Y = 0 if and

only if Bd X bounds in B - Y.
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Proof: Let up and uq be generators of Hp(X, Bd X) and Hq(Y, Bd Y),

q

respectively. Choose p~ in Hq(Y, Bd Y) so that 9 w(uq) = i*(aup), where

J, ¢, and i, are the maps in definition 3.3. Now uqrwu = X#Y = 0, and
capping with Uq is the Lefschetz Duality isomorphism of Hq(Y, Bd Y) onto

q

HO(Y). Thus, p~'= 0 and 1*(3up) = 9y (0) = 0. Hence, a(up), which

‘generates ﬁp_l(Bd X), is trivial in H

p_l(B -'Y¥). So Bd X bounds in B - Y.

If B4 X bounds in B - Y, then i, S(up) =-0. Hence; X#Y =
-1

¥ g—l(O)rmuq =<Orﬁuq = 0. |

Lemma 4.3: Let X, Y, and B be as in Lemma 4.1 with Y unknotted in
B"” and q 3_3. If X#Y = 0, then X is ambient isotopic, keeping Bd B
fixed, to a ball X' which is properly contained inkB and X'MY = ¢.

Proof: Y unknotted means that (B, Y) = P Aq, Aq) where A? is fhé
standard g-simplex. Thus, B - Y = Zp Aq - Aq. Now Bd(Zp Aq) - Bd Aq is

a strong deformation retract of 2P A9 - A% ana Bd(Zp Aq) - Bd A geform-

D

B-v) =g .t

ation retracts to a p-1 sphere. Thus, To-1 p-1

)

p-1
null homologous in B = Y. Thus, B4 X is null homoﬁopic in B =Y. 'Let

H (Sp_l) where H is the Hurewicz isomorphism. By Lemma 4.1, B4 X is

£ :Ap,+ B - Y be a continuous function which takes Bd Ap PL hémeomor—
phically onto Bd X. Now p=n-gq <n - 3. Let d=2é—n=p—qip - 3.
Then Ap is d=-connected and B - Y is (d + 1) connected. Thus, by Irwin'é
‘Embedding (see Zeeman [32] theorem 23)'f|Bd AP extends £o a proper PL
embeddinq g :Ap »+ B - Y such that f and g are homotopic rel Bd Ap. Let
X' = g(Ap). The codimension is n - p = g > 3. Thus, X and X' are un-
knotted and Bd X = Bd X' = XMB4d B = X'MNBd B. Hence, X and X' are

ambient isotopic keeping Bd B fixed. |l



44

Theorem 4.4: (The Whitney Lemma). Let M be a closed oriented PL
.n—manifold with closed oriented submanifolds N and Q of dimension p and
q, respectively, with p + g = n. Suppose ﬂl(M - Q) = 0 and N#Q = k.

If p>2andq>3, then N is ambient isotopic to a manifold N which
‘intersects Q transversely in exactly lk| points.

Proof: By general position we may assume that N intersects Q trans-
versely in finitely many points. If each point contributed +1 to N#Q,
bor if each contributes -1, then N intersects Q in exactly k points. Sup-
pose we can find two points bf intersection, x and y, such that x contri-
‘butes +1 and chontributes -1. ’Let o be a path in N from x to y and B;a-

path in Q from x to y such that aNQ = {x, y} and BMNN = {x, y}. Since

1+g-n 1 - p < -1, any loop in M can be pushed off Q. Hence,

. ’ 2 .
ﬂl(M - Q) 0 implies ﬁl(M) = 0. Thus, there is a singular 2-cell B in
' . 2,
M bounded by alUB. By general position we may assume that B~ is non-

singular; Assume that p > 3. Then by general position we may assume that

BZFWQ = B and B2F\N = a. Let K denote a triangulation of M such that Lp

and Lq are subcomplexes, where le] = N and |Lq] = 0. Let Bn =
ne%, k2, ® = N(a, L;Z)), and vT = N(B, Léz)). Then B", x*, and y<
are balls such that BnrﬁN = %P and Bnr]Q = Yq. Also, xF and v2 are prop-

g

4= ¢. Since 3 < p=n-gq, Y is

efly contained in B" and Bd x*NB4 v

unknotted in Bn. Hence, by Lemma 4.3, Xp is ambient isotopic, keeping

p

Bd B fixed, to a ball x>

which is properly contained in B and Xﬁ(WYq =
$. We cah §xtend the ambient isotopy to all of M by the identity. The
. resulting isotopy moves N to ﬁ, where N #0 = k but ﬁ(\Q contains two less
points.
‘- . 2 . .
If p = 2, general position does not give us B NQ = B. It is possi-

2 \ .
ble, however to replace B? with a new 2-cell B_., which has the desired

1
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properties. The details, which do not involve intersection numbers, are
in Lickorish [17] on pages 39-41. |l

A related concept is the "index of a manifold." This numerical in-
variant provides, in some cases, an obstruction for an n-manifold M to
be the boundary of an n+ 1 manifold.

 Suppose F:V x V > R is a symmetric bilinear pairing where V is a

vector space over R, the field of real numbers. One can construct a

basi . e . e e . .. fv her
asis xl' 'Xr' Xr+l' 'Xr+s' Xr+s+l' rf g+t © » Where
1 if 1<ic<r
ir+s

F(X,,X,)=(-1 if r < i
: i’ 71 .

0 if r + s < i <r+s+t

Definition 4.1: The signature of F, denoted by sgn(F), is r - s.

Let M be a closed orientable 4k-manifold for some positive integer

k. Consider the following diagram:

H. (M; R) «—— 525 m; R)
2k 7
® ® — R,z

P
sz(M;R)+———-H2k(M;R)

where P is the Poincare duality isomorphism and ZR is the fundamental
class of H4k(M;IU (compare with Definition 3.1).. Define

: ) -1 =1
F: sz(_M; R) @ sz(M; R)>RbY F(x®y)=<P (x) VP ~(v) ZR>"

F is a nonsingular symmetric bilinear form which is called the intersec-
tion pairing. Let x be an element of sz(M;IQ. For k=1, one can repre-
sent x by an embedding f : N > M where N is a 2-manifold. If we let

Nl = f£(N) and shift Nl into general position with respect to itself, then

F(x @ x) is simply the interSection number of N with itself.
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Definition 4.2: The index, T(M), of a closed orientable 4k-manifold

M is defined by T(M) = sgn(F).

Theorem 4.5: If W is a compact orientable (4k + 1)-manifold with
boundary, then t(Bd W) = O.b

The proof of this theorem and details concerning the intersection

pairing may be found in Vick [25], pp. 162-170.
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