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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

A digital filter in broad terms is any device which accepts a 

sequence of numbers as its input and operates on them to produce another 

sequence as its output. Because of the above generality, digital 

filters have been used, and shall continue to be in use, in a wide 

variety of disciplines. Historically, the digital filter theory was 

developed in the 1940s in connection with the sampled-data control 

systems. With the advent of digital computers digital filter theory 

gained added importance. In recent years the special purpose digital 

computers are used to do digital spectral shaping,wave form synthesis 

and to perform digital filtering operations. With the development of 

integrated circuit technology, the digital hardware can be designed in 

integrated form with low cost and high speed of operation. Recently, 

the digital filters are being used in many applications, where analog 

filters have been used traditionally. 

Some of the advantages of the digital filters over the analog 

filters are the following: 

1. The analog components cannot be easily made to a tolerance of 

less than about one percent. The inaccuracies of digital filters, which 

are due to rounding errors in the computer arithmetic, can be made small. 

2. A digital filter can be implemented by programming on a computer 



to meet the desired characteristics. The alteration of a digital filter 

design involves, at most, rewriting of a section of a program code or 

often merely the reading-in of a different set of filter coefficients as 

data. 

3. The characteristics of a digital computer program remain the 

same each time it is run, regardless of variations in main supply 

voltage, ambient temperature, and so on. Analog components suffer from 

aging. The effects of drift in analog components can appear as spurious 

signals. 

4. Digital filters can be time shared. 

Among the disadvantages of digital circuits are that they use 

finite-precision arithmetic, which in turn induces noise by quantization 

and computation round-off. 

Basically, there are two types of digital filters, recursive and 

nonrecursive. A nonrecursive filter has no feedback paths. The unit 

impulse response of a nonrecursive filter is of finite duration and is 

usually referred to as finite impulse response filter (FIR filter). On 

the other hand, a recursive filter has feedback structure and usually 

has infinite impulse response. 

2 

Tapped delay line filters are used extensively in radar, in digital 

radio communications, and in telephony. With the advancement of surface 

wave technology, transversal filters can be designed using low-dispersion 

acoustic delay lines (1). 

Recently, there has been a good deal of interest in FIR filters as 

they can always be realized and are always stable. In addition, they can 

be designed such that they have linear phase characteristics. The 

, problem of instability due to coefficient truncation cannot arise in FIR 
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filters. Also, the effect of spurious input such as switching transient 

disappears completely after a finite length of time. Long sequences are 

sometimes necessary to achieve sharp cutoff filters. With the advent of 

fast Fourier transform (FFT), such filters have become very attractive 

and computationally efficient, and.are even comparable to the design of 

infinite-duration impulse response (IIR) elliptic filters. The insight 

gained in the design of FIR filters can be applied to other related 

topics such as phased array antenna patterns, spectral estimation, etc. 

Basically, recursive filters are designed using classical analog 

filter approximations, such as Butterworth, Chebyshev, elliptic filter 

approximations. This thesis is mainly concerned with FIR filters and 

therefore the recursive filters are not discussed further. 

Comparatively, the FIR filter design is more indirect. However, 

research is being done at the present time to obtain simple and direct 

techniques for designing FIR filters. The FIR filters have a significant 

role in the area of deconvolution also. The deconvolution problem, in 

general, requires the solution of a set of Toeplitz normal equations of 

the form 

( 1. l) 

where AToe is a symmetric Toeplitz matrix. 

This thesis presents a direct approach to the FIR filter design 

problem along with the solution of Toeplitz normal equations using fast 

Fourier transforms. 

1.2 Review of the Literature 

There are various techniques available for solving a system of 

normal equations given in Equation (1.1). Levinson (2) presented an 
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elegant recursive algorithm to solve a system of normal equations. The 

same problem was reformulated by others {3). Another method which is 

twice as fast as that of Levinson's is that by Durbin (4). Recently, 

Trench (5) has presented some interesting results on the inversion of 

Toeplitz matrices. In some cases the formulas for the first row and 

column of the inverse of the Toeplitz matrices are given. There are 

other special cases where the inverse can be given explicitly (6) {7) (8). 

In addition to these, there are other works which include some detailed 

survey articles (9) through (12). A tutorial discussion on this subject 

can be found in Reference (13). Wang and Treitel (14) discussed the 

solution of a system of normal equations using gradient methods. More 

recently, Rino (15) proposed an inversion scheme for scalar covariance 

matrices, which in turn can be considered as a special case of Toeplitz 

forms. Ekstrom (16) used an iterative improvement method to find an 

approximate solution of vector Toeplitz systems. The above method uses 

the special structure of Toepl1tz matrices. 

The design of FIR filters involves the selection of h(kT), the fil-

ter weights, in the z-domain transfer function 

N-1 
H(z) = I h(kT)z-k 

k=O 
( l. 2) 

such that H(z)j ·wT = H(ejwT) satisfies the given magnitude and/or 
z = eJ 

phase specifications. Hereafter, T = 1 for simplicity. Noting the peri-

odicity of H(ejw), one method of design is to expand the given filter speci-

fications by Fourier series and truncate the series to a desired length 

(17) through (20). This method creates problems when approximating 

functions which have discontinuities. This problem is referred to in the 
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literature as the Gibbs phenomenon (21). A better way of obtaining FIR 

filters is to modify the Fourier coefficients by using a finite weighting 

sequence called a window. There are various types of windows available. 

These include Fejer window (22), Hamming window (22), Kaiser window (17), 

Dolph-Chebyshev window (18), etc. Each one has its own advantages and 

disadvantages. The window design is an analytical method and does not 

involve any iterative techniques. In the window function design, the 

tradeoff between ripple suppression and a transition bandwidth for a 

given N in Equation (1.2) is an important parameter. At the present 

time, Kaiser window and Dolph-Chebyshev window are perhaps the most 

popular windows. This is due to the fact that the designer can have 

control over both the transition width and the ripple amplitudes. One 

of the basic problems with window techniques is smearing (23). Other 

problems are that the closed form expression for h(kT) in Equation (1.2) 

may not be available. 

A second method of design of FIR filter is the frequency sampling 

technique (23 through 32). Gold and Jordan (26) first proposed this 

method and it was 1 ater developed by Rabiner et a l . ( 27). The frequency 

sampling method is based on the idea that a desired frequency response 

can be approximated by sampling it at N equally spaced points, and then 

'obtaining an interpolated frequency response that passes through the fre

quency sampled points. For filters with smooth frequency responses the 

interpolation error is small. The frequency samples which occur in 

passbands and stopbands are set to a specified value and those in the 

transition bands are unspecified and to be determined to satisfy the 

specifications. These unspecified values are usually chosen by an op

timization algorithm which minimizes the weighted approximation error 
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over the frequency range of interest. Mini-max approximation is normally 

desired. These methods, in general, are not efficient, when there are 

more than four transition samples. Recently; linear programming has been 

used and found that it overcomes some of these difficulties (33) (34). 

A third technique for designing FIR filters is first proposed by 

Herrmann (35). The filter response is assumed to be equiripple both in 

the passband and stopband. Also, the number of ripples in both passbands 

and stopbands are fixed apriori. The design is carried out by constrain-

ing the equiripple frequency characteristic by means of a set of non-

linear equations. The unknown quantities are the filter coefficients and 

the frequencies at which the extrema occur. When N is odd, for example, 

h k t . . h (N+l) f"lt ff. . d (N-3) f t e un nown quan 1t1es are t e ~- 1 er coe 1c1ents an --2-- set o 

frequencies at which extrema of the approximation error occur. By im-

posing constraints on the extrema and on the derivatives, a system of 

(N-1) nonlinear equations will result with (N-1) unknowns and these are 

solved using an iterative descent method. Owing to the numerical dif-

ficulties of solving nonlinear equations, the maximum length of the 

filter that has been solved is limited to 40. Even though this method 

gives the narrowest transition region for a given order of the filter, 

·the choice of cutoff frequency is still a problem. 

The above method is extended by Hofstetter et al. (36) (37). In 

this method an iterative technique is used to derive a trigonometric 

polynomial which has the extrema at the desired frequencies. The classi-

cal Lagrange interpolation method is used to derive the coefficients of 

the polynomial at each iteration. It has been shown that the method 

converges to an equiripple approximation (36). The main drawback of 

this method is that it is not possible to specify the location of the 
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passband, stopband and transition band edges apriori. It has been shown 

that the filters designed by the above approach are of extraripple type 

(24). 

In order to get a precise control over the locations of the edges of 

the passband and stopband for a given size of the filter, it is well known 

that the passband ripple and the stopband attenuation has to be a free 

design parameter. Parks and McClellan (38) have shown that the low-pass 

filter design can be formulated over disjoint sets as a Chebyshev approx-

imation problem. Also, they have shown that the necessary and sufficient 

conditions for the best Chebyshev approximations can be obtained from 

the alternation theorem. The filter coefficients are derived using the 

Remez exchange algorithm. This work has further been extended to design 

filters which have linear phase characteristics (39). 

Recently, linear programming techniques are used to obtain the best 

Chebyshev approximation (33) (34). Compared to Remez exchange algorithm, 

the computational time required to derive the optimal filter is slower. 

Thus, the length of the filter that could be designed by the above method 

is limited. The method is more flexible with regard to constraints. 

Both time domain and frequency domain constraints can be used in deriving 

FIR filters. The filters designed by the above two methods are optimal 

and the solution is unique. 

The transformed Chebyshev functions have also been used to design 

nonrecursive digital filters that have equiripple characteristics (40). 

The interesting aspect of this method is that it does not make use of 

any optimization methods, but makes use of a transformation to arrive 

at an analytical solution. The drawback of this method is that it leads 
i 

to higher order solutions when compared to o~her methods to meet the same 
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filter specificantions. 

The weighted least squares approach has also been used in designing 

an FIR filter (41). If the number of samples is small, then the filter 

could be designed easily using a matrix inversion routine. On the other 

hand, if the number of samples is large, then successive approximations 

using discrete equivalent of Neumann series is employed. This method is 

inferior to a mini-max filter as it requires 15 percent more normalized 

transition band width to obtain the same stopband specifications. Con

strained ripple design techniques have also been used in designing non

recursive filters (42). By this method filters are designed such that 

the magnitude response falls between specified upper and lower bounds. 

It uses the tangency condition to arrive at a desired filter. The 

algorithm converges to a cosine polynomial meeting the tangency condition. 

Some of these results are extended to FIR filters which have nonlinear 

phase (43). 

Other methods of design include the statistical approach in which 

the FIR filter is treated as an estimator structure (44) (45). The 

criteria used minimizes the mean square error of the estimate of the 

design signal imbedded in a random noise sequence. By treating the 

signal noise covariance as design parameters, FIR filters can be designed 

with spectral responses that approximate the power spectral density of 

the design signal. Efiicient methods for inverting ~oeplitz matrices are 

needed for this technique. For higher-order filters, the computer 

storage required to invert the matrix is exceedingly high. 

Several other design techniques in the area of FIR filter design 

can be found in Theory and Application of Digital Signal Processing (23). 



1.3 Organization of the Thesis 

Chapter II presents an approach to the solution of a system of 

Toeplitz normal equations. The solution is based on using iterative 

techniques, circulant matrices, and the fast Fourier transform. Also, 

a relationship between the filter design by frequency sampling and the 

discrete convolution is established. 

9 

Chapter III presents a direct approach to the frequency sampling 

filter design. The direct method is based on using the ideas of smooth

ing techniques and a direct solution. This new approach has been 

applied successfully to the design of low-pass, bandpass, and high-pass 

filters. The results are compared with other existing techniques and 

the computed transition values are tabulated. 

Chapter IV presents a summary and suggestions for further study. 

Appendices A and B, respectively, present the computer listings for 

determining the frequency responses of FIR filters and for computing the 

transition sample values. 



CHAPTER II 

THE APPLICATION OF FFT TO THE SOLUTION OF A 

SYSTEM OF TOEPLITZ NORMAL EQUATIONS 

2.1 Introduction 

In the deconvolution problem there is a need for solving a set of 

Toeplitz normal equations of the form, 

v = A X 
J_ Toe -

where AToe is a symmetric Toeplitz matrix of order£ and~ andy_ are£ 

dimensional vectors. A Toeplitz matrix AT = (ak .) has the property oe ,J 

that (13) 

ak . ,J a.k . -J ( 2 .l ) 

These matrices appear in the study of covariance matrices of weakly sto-

chastic time series. Also, the matrix representation of linear time in-

variant discrete time filters is of Toeplitz type (13). There are 

numerous applications of these matrices in mathematics (46), physics 

(47)·, signal processing and applied estimation theory (48). In the area 

of communication theory, usually an input vector is known which is the 

sum of a data vector x and a noise vector w. The object, for example, 

is to design a filter in such a way as to minimize the expected value of 
A 

the mean squar~ error between x and the estimate of~. ~· This is the 

classic problem of Wiener filtering (3). 

10 
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One of the most important equations in electrical engineering is 

the convolution. In discrete form this can be written as (49) 

Q, 

Yt I as xt-s 
s=O 

t = 0, l, 2, ... , m + £ (2.2) 

m 
Yt = I x. at . 

j=O J -J 
(2.3) 

where a , 0 < s < £corresponds to the filter weights, and x., 0 < j < m s-- . J--

corresponds to the data. In matrix form, Equations (2.2) and (2.3) can 

be written: 

Yo ao 0 0 0 0 0 xo 

yl al ao 0 0 0 0 xl 

al 

Yg_, a£ (2.4a) 
a£ a 

0 
0 al 
0 

0 

Lx.m Ym+£ 0 0 0 0 0 a£ 

Yo xo 0 0 0 0 0 ao 

yl xl xo 0 0 0 0 al 

x2 xl xo 0 0 0 

0 0 

Ym xm 0 
= (2.4b) 

X 
0 

0 xl 
0 0 

0 0 0 

Ym+£ 0 0 0 0 0 xm a 
Q, 
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In compact form, Equation (2.4a) and (2.4b) can be written as 

y_ = A X con- (2.5a) 

and 

v = X a (2. 5b) 
J._ con-

In section 2.3, Equation (2.5a) is used extensively. In the following 

the above equations are used in the deconvolution problem. 

In the deconvolution problem, the input vector and the desired out

put vector d = (d0 , •.• , dm+,Q,) are known apriori. It is required to 

determine the filter weights a;, i = 0, . . , 2.. such that when the 

known input is applied to the filter, the resulting output Yt' t = 0, 

(m + 9..) should be as close as possible to the desired output vee-

tor d = (d o' ... , d(m+£)) in the least squares sense. The above 

operation is expressed as 

d = X a (2.6) - con-

which is an overdetermined system. The error is expressed by 

~ = (y_ - Q_) ( 2. 7) 

The filter weights ak, k = 0, l, ... , n are obtained by using the 

method of least squares (50), i.e., minimize the mean square error with 

respect to each of these parameters. This results in a set of normal 

equations of the form (3) 

XT X a = xT d (2 8) con con - con - · 

where (X~on Xcon) is a symmetric Toeplitz matrix. From Equation (2.8) 

it is clear that the inverse of symmetric Toeplitz matr.ices is required 

to obtain the filter weights. 
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Thus, from the above discussion it can be observed that the stan-

dard formulation of the discrete single-channel Wiener filter problem 

will result in a system of Toeplitz normal equations, which can be 

written as 

A a = v Toe - .L. 
(2.9) 

where AToe is a symmetric positive definite matrix of the Toeplitz type, 

and can be explicitly written as 

a al 0 

al a 
0 

A = Toe 
a2 al 

a2 
al 
a 

0 

at-1 
a t-2 

af-3 

a 
0 

(2.10) 

In practice, the system in Equation (2.9) is solved by using Levinson•s 

algorithm (2), which uses the special structure of Toeplitz matrices. 

Levinson•s solution is exact except for round-off errors. However, it 

cannot be programmed efficiently for special purpose hardware. Some-

times an approximate solution to Equation (2.9) is good enough. In such 

cases, gradient methods are employed (14). Gradient methods have the ad

vantage that they can be implemented effectively on special purpose 

floating point hardware. Gradient methods are based on the principle 

that the successive approximations to solution vector a minimizes the 

magnitude of the specified error function. In seis~ic signal processing 

there is a need for solving a new set of normal equations of like order 

for successive traces of seismic record. A similar situation exists in 

time-adaptive Wiener filtering (51). In order to save computer time, 
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Levinson•s algorithm and the gradient method can be combined to arrive 

at a solution. For the first trace of data, the system of normal equa-

tions can be solved by using Levinson•s algorithm. It is assumed that 

for different traces, the solution for each will not vary drastically. 

The exact solution determined for the first trace can be used to arrive 

at a solution for the second set of normal equations using gradient 

methods. The successive solutions can be obtained by using gradient 

methods with the initial solution from the previous known solution (14). 

In a recent article Wang and Treitel discussed the solution of Equa

tion (2.9) using gradient methods (14). The computational requirements 

of these have been compared with the classical Levinson•s algorithm. 

Based on their comparison, it appears that gradient methods play an im-

portant role in the area of seismic signal processing. Furthermore, 

other avenues should be investigated to reduce the computational require

ments. The method presented here uses some of these ideas and the com-

putational requirements are reduced by making use of the classical fast 

Fourier transform (FFT) algorithm (52). For easy reference a brief sum

mary of conjugate gradient method '(53) is presented in the following. 

2.1.1 Conjugate Gradient Method 

The solution of Equation (2.9) can be obtained in £ steps where £ 

corresponds to the number of equations in Equation (2.9). The solution 

is obtained by using the following procedure: 

(1) First, assume an arbitrary solution for a, a . - -o 

(2) Compute ~ = -!:a = y_ - AToe ~-

(3) Compute successively at the kth step: 
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bk = ll.r:-1< II 
2 

(~, AToe .!+ rl 

4+1 = a + 
~ bk~ 

~+1 = ~- bk AToe ~ 

dk = 11~+ 1 11 2 II ~11- 2 

~+1 = ~+1 + dk pk 

The solution for Equation (2.9) is given by 

(2.10) 

The above algorithm requires 

2~2 + 8~- 3 (2.11) 

multiplications and additions (MADs) for each iteration step. Most of 

these ~~ADs (~ 2 ~1ADs) are required for the computation of 

~ = AToe .!+ (2.12) 

In the following an interesting procedure is presented which uses FFT 

algorithm to compute Equation (2.12). The approach is based upon relat-

ing the Toeplitz matrices to circulant matrices. In the following a 

brief summary on the circulant matrices is presented (54). 

2.1.2 Circulant Matrices 

A circulant matrix of order p has the same elements {cv} arranged 

in cyclic order in each row and column in the following way: 



c c, c2 c p-1 0 

c p-1 co cl c p-2 

A . 
Clr 

= 

with 

For convenience let A . be expressed by 
Clr . 

where 

A . = (B , B1, .•. , B 1) c1r -o - -p-

T B. 1 =(c. 1, c. 2, ... , c. ) 
J- J- J- J-p 

16 

(2.13) 

for k - j < 0 (2.14) 

(2.15) 

(2.16) 

Next, the relationship between the circulant matrices and the discrete 

Fourier transform is discussed. One of the most important properties· 

of circulant matrices is that (13) 

where ADFT is the discrete Fourier transform matrix in which 

. -i 2n (k-l)(j-1) 
a ( kj) = e P · 

The entries on the diagonal matrix A 

obtained from 

(2.17) 

(2.18) 

(2.19) 
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where [c , c1, ... , c 1] is the first row of A .• o p- c1r 

Interestingly, Acir can also be expressed by 

(2.20) 

with 

Note that Equations (2.17) and (2.20) are different. Equation (2.21) is 

"pointed out in Reference (16). However, Equation (2.21) is not given be

fore. In the following, two proofs are presented to show the equality 

in Equation (2.20). The first proof is direct and is different from 

what is given in Referenc~ (13). The second proof uses Equation (2.17) 

explicitly. Now the first proof is given below. 

Noting that (1//P)ADFT is a unitary matrix, it suffices to show that 

B = y .where 

Now, 

and 

8 = (Skj) = ADFT Acir 

y = {ykj) = D ADFT 

p -i 2; (k-1)(2-1) 
= I c." e J -.x., £=1 

(2.22) 

-i 21T (k-l)(j-1) 
ykj = dk e P (2.23) 

We need to show that Bkj = ykj or ak = dk, where 



i 
a.k = Bkj e 

_g~ (k-l)(j-1) p 

p -i 2n (k-1)(£-j) 
= " c e P /. j-£ 

£=1 

Defining (j-£) = 1-r, we have 

p+l-k -i 2rr (k-l)(r-1) 
\' e P a.k = L cl-r 

r=2-k 

i~(k-l) 
= c e P 

i 2n ( k -l) ( k- 2) p 
k-1 + ck-2 e 

+ .. 

-i 2rr (k-l) 
+ c 1 e P 

p-

+ c 2 e p-

-i ~ (k-1) 2 
p 

-i 
+ ... + ck e 

2n (k-l)(p-k) 
p 

where we have used the relation c . = c .. Noting that -J p-J 

i ~ (k-l)j 
e p 

; 

-i 
= e 

we have the desired relation 

2n (k-l)(p-j) p 

Since j is not restricted to any particular value, it follows that 

and Equation (2.20) follows. 

18 
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Equation (2.20) can also be shown by starting with the transpose of 

the original circulant matrix (which is also a circulant matrix). From 

Equation (2.17} 

AT. = E l A* A 
c1r = p OFT A OFT (2.24) 

* T * where we have used the fact that (AOFT) = ADFT" It is clear that Equa-

tion (2.24) is applicable to any circulant matrix E and the diagonal 

entries in A are obtained by taking the ADFT of the first column of E. 

Thus, applying Equation (2.24) to Acir' we have 

1 * 
Acir = p ADFT O ADFT 

where the entries in the diagonal matrices D are given by Equation 

(2.21), and the equality in Equation (2.20) is proven. 

The above decomposition of circulant matrices allow for the use of 

discrete Fourier transforms in solving a system of Toeplitz normal equa-

tions. This is discussed in the following section. 

2.2 Normal Equations Using Symmetric Circulants 

The coefficient matrix AToe in Equation (2.9) is, in general, not a 

circulant matrix. However, a symmetric circulant matrix is a symmetric 

Toeplitz matrix. This aspect can be used in our solution and is dis-

cussed in the following. 

First, a new set of equations is formed using Equation (2.9), and 

is 

(2.25) 
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where 

a al aQ,-1 aQ, 0 

a, a a£-2 a£- 1 0 

A . c1r = (2.26) 

aN-1 aN-2 

and 

N = 2v = 2(£-1) + l + S (2.27) 

where sis the smallest integer which satisfies Equation (2.27). The 

first principal submatrix of order £ is the given Toeplitz matrix in 

Equation (2.9). The other a; •s are selected such that 

k = 0' . . . ' 9,-l 

(2.28) 
Q, < k < N - £ 

Using the property of circulants, Equation (2. 12) is rewritten as 

(2.29) 

By using Equation (2.20) in Equation (2.29), we have 

(2.30) 

Since our approach is based on using FFT algorithm to compute Equa

tion (2.30), the number of computations required in the worst case will be 
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( 2. 31) 

MADs. Note that the computation of D is not included in Equation (2.30) 

as it is the same for all iterations. For comparing with the conjugate 

gradient method, let us compute an upper bound for N. From Equation 

(2.27) it follows that in the worst case 2(£-1) ;:= 2-v-l + 1. That is, B is 

bounded by 13 .:::._ 2 v- 1 - 1 or 8 < 2£, which imp 1 i es that 

N < 49, (2.32) 

Using Equation (2.32) in Equation (2.31), the upper limit for the 

number of computations is 

(2.33) 

To compare the computational requirements between the two methods (i.e., 

the solution of normal equations using the conjugate gradient method and 

the modified conjugate gradient method), let us define R as the ratio 

N1;N2 where N1 is the number of computations required to solve Equation 

(2.9) using FFT and the conjugate gradient method, and N2 is the number 

of computations required to solve Equation (2.9) using the conjugate 

gradient method and is given by 

(2.34) 

where the approximation is valid for£ large. For example, when£= 210 , 

R= .047, which indicates a considerable reduction in the number of com

putations. 

The estimate given in Equation (2.33) is rather conservative as 

there are many other simplifications which can be considered. First, the 

vector fk in Equation (2.29) is 



~= l~J 
and has zeros. Noting the decomposition (55) of ADFT' the number of 

computations in determining ADFT fk may be reduced. Furthermore, Qk 
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in Equation (2.30) need not be determined. Noting these, one can see 

that an approximate estimate is about half the number given in Equation 

(2.33). Since the number of computations given in Equation (2.33) 

corresponds to complex operations, it is clear that the number of real 

computations required will be the same as in Equation (2.33). The total 

number of.computations required will be K(8t log2 4£ + 4£), where K (~t) 

is the number of iterations required. The number of computations by the 

proposed approach can be considerably reduced if an approximate solution 

is already known or if the accuracy requirements are not tight. The 

Levinson's algorithm requires (3 t 2;2) fixed operations. In addition, 

there are other advantages over Levinson's algorithm. These have been 

discussed elsewhere (14). 

In addition to the reduction in the number of computations, accumu

lated rounding (55) is reduced. An approximate ratio of accumulated 

rounding error is the same as Equation (2.34). It is well known that 

the round-off noise problem is a big problem when computing the inverses 

of dense Toeplitz matrices. Using this method, precision requirements 

are therefore lower than other methods. The above method indicates a 

significant potential application in analyzing seismic, speech, and 

other systems. 

It was pointed out earlier that special matrices like circulants 

can play an important role in filter design applications. In the 
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following section the relationship between the digital filter design by 

discrete convolution and by the frequency sampling design is discussed. 

2.3 Digital Filter Design by Discrete Convolution 

and by the Frequency Sampling 

Technique--A Relationship 

In the introduction the discrete convolution was described by the 

equation 

v = A X 
L con - (2.35) 

In the following we will assume that the matrix Aeon and the vectors x 

andy are real. Using the properties of circulants, Equation (2.35) can 

be rewritten as 

v = A X 
L cir-1 (2.36) 

ltJhere 

and the Acir is constructed from Aeon Using Equation (2.20) in Equation 

(2.36), it follows that 

where (ADFT ~1 ) and (ADFT y) are the discrete Fourier transform coeffi

cients of the input and output, respectively. Now, 

i = 0, • , m + n (2.39) 

where the subscript i is introduced to denote the ith entry in the 
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column. Also, it will be assumed that di = 0 when (A0FT ~l)i = 0. Also 

note that in Equation (2.38) D is a diagonal matrix, D = dia (d0 , d1, 

... , dm+~) and the entries in D are given by 

(2.40a) 

0 

The above set of equations can be expressed in symbolic form as 

(2.40b) 

The entries in the vector ~l correspond to the filter weights, and note 

that there are m zeros on the vector. 

In order to have the vector ~l real, certain constraints need to be 

imposed on dis. When N = m + ~ + 1 is even, the conditions are that 

d. is real fori= 0, (N/2), 
1 

* di = dN+2-i fori = 1, ... , ((N/2) - 1) 

where (*) indicates the complex conjugate. 

When N is odd, the conditions are given by 

d. is real for i = 0 
1 

* di = dN+2-i for i = 1, . .. ,(((N-1)/2) - 1) 

(2.4la) 

(2.4lb) 
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In addition to the above, additional constraints on di 's need to 

be considered in order to satisfy the zeros in the vector ~1 . In the 

following, two proofs for the constraints in Equation (2.41) are given 

below. 

The first proof can be derived by using the classical result on the 

discrete Fourier transform of a real sequence (56), which implies that 

{Re(di)} has even symmetry and {Im(d.)} has odd symmetry. That is' 1 

Re (d.) = Re(dN .) i = 0, 1 ' . ' N - 1 
1 -1 (2.42) 

Im(di) = -Im(dN .) = 0' 1 ' . N - 1 
-1 

From these, Equation (2.41) follows. 

The second proof is based upon the idea that the matrix ADFT can be 

orthogonally transformed into a direct sum of a real matrix and an 

imaginary matrix (57). That is, 

where Q is an orthogonal matrix. Now, from Equation (2.40b), we have 

Noting that M1, M2, and (Q ~1 ) are real matrices, it can be seen that 

the entries in the vector (QT ~) are either purely real or purely imag-

inary. Furthermore, from the special structure of Q, the constraints on 

d i I S W i) 1 f 011 OW , 

It is clear that the constraints given in Equation (2.41) imply 

only that the vector ~l is real. Also, th~-vector A_1 contains zeros. 

This implies that the system of equations in Equation (2.40) is an over-

determined system. This system of equations can be solved for A_1 by 
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using the least squares approach (50), or by vJeighted least squares 

approach (58). Noting that (1//N) ADFT is a unitary matrix, it follows 

that the least squares approach will give the result that the nonzero 

entries a., i = 0, 1, ... , t, in A1 are the first (t+l) inverse dis-, -

crete Fourier trans forms of dk, k = 0, 1 , . . . , m + L 

A special case of the above design is when the input is a digital 

delta function. That is, x0 = 1 and xi = 0, i = 1, 

tion (2.4). For this case, Equation (2.4a) reduces to 

= a 

and the di 's in Equation (2.39) are given by 

, m, in Equa-

(2.45) 

i = 0, 1, ... 'Q, (2.46) 

This implies that the di's can be considered as the points obtained by 

sampling uniformly at N = (t+ 1) points the given filter characteristics. 

This is nothing but the filter design by frequency sampling technique 

(27). The next chapter deals with a direct approach to the frequency 

sampling filter design, where the unspecified di 's are used as design 

parameters to obtain an optimal or a suboptimal filter. 

2.4 Summary 

An iterative technique based on circulant matrices and the fast 

Fourier transforms is presented to solve a system of Toeplitz normal 

. equations. The pros and cons for solving these equations by this method 



is discussed. Also, a relationship is derived between the filter de

signs by direct convolution and by the frequency sampling method. 
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CHAPTER III 

A DIRECT APPROACH TO THE FREQUENCY 

SA~1PLING FILTER DESIGN 

3.1 Introduction 

Recently there has been a good deal of interest in the finite im

pulse response filters (FIR), as they can ah1ays be realized and are 

always stable. In addition, they can be designed such that they have 

linear phase characteristics. There are various techniques available 

in designing FIR filters. These include the classical Fourier series 

method (17) (18) (19) (20) (sometimes referred to as the window method), 

the frequency sampling method (23) through (32), the optimal (in the 

Chebyshev sense) filter design method (35) (59) through (63), and final

ly, the statistical methods (44) (45). 

Each of the above techniques has its own advantages and disadvan

tages. These have been discussed earlier in Chapter I. From the litera

ture one can see that there is no simple and direct method to design a 

FIR filter. In the following a direct approach to frequency sampling 

design is derived using some of the classical ideas. 

3.2 Basic FIR Design Problem 

The design of FIR filters involves the selection of h(kT), the fil

ter weights, in the z-domain transfer function, 

28 



N-1 
H(z) = I h(kT) 

k=O 
-k z 

29 

( 3. 1 ) 

such that H(z)j . = H(ejwT) satisfies the given magnitude and/or 
z = eJwT 

phase specifications. Hereafter, T = 1 for simplicity. 

One of the important aspects of FIR filters is that they can be de

signed to have linear phase characteristics. In the following the dis-

cussion is restricted to linear phase FIR filters. 

It is well known that the sufficient condition for linear phase is 

that the weight vector be symmetric about its center, i.e., 

h(k) = h(N- k + 1) for all ke: {1, ... , N} 

Using Equation (3.2) in Equation (3.1), we have 

. ((N-1)) -Jw 
e 2 [h(N-1) + 

2 

((N23)) . 

L 2h(k) cos[((N2l) - k)w] 
k=O 

for N odd 

for N even 

(3.2) 

(3.3a) 

(3.3a) 

It is clear from Equation (3.3) that Equation (3.2) implies a linear 

phase shift corresponding to a delay of (N2l) samples. It is important 

to note that for N odd, the phase shift corresponds to an integer number 

of samples delay, whereas for the case of N even, the phase shift corre

sponds to an integer plus one-half sample delay. 

Before we go into the details of the direct method of design, it is 

appropriate to review some of the basic equations associated with the 

frequency sampling method. These are used in the new method of design. 

It is well known that the interpolated continuous frequency response 

of a linear phase filter in Equation (3.1) can be expressed as (see 
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References (23) (24) (29)): 

-jw (N-1) 
= [e 2 ] H*(ejw) (3.4) 

where 

= IH(o)i sin(wN/2 + r' jH(k)i [sin(N((w/2)- (1Tk/N))) 
N sin w/2 k=l N sin((w/2)- (1Tk/N)) 

(3.5) 

with 

N-1 for N odd -2-
N' = (3.6) 

N for N even 2-

Hk ~ H(k) = DFT[h(n)] 

Also, jH(k)i denotes the sampled values of the magnitude response. For 

design purposes, Equation (3.5) will be used from now on. Note that the 

linear phase constraints (23) (24) are already incorporated in Equation 

(3.5). 

3.3 Method of Design 

A simple direct procedure is presented for the design of finite im-

pulse response filters. This will be done using the following three 

steps: 

l. Frequency sampling techniques. 

2. Smoothing techniques. 

3. Least squares or a direct solution. 
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3.3.1 Frequency Sampling Techniques 

Since the frequency sampling technique (23) (24) (26) (27) is one 

of the steps, we will assume that pass, stop, and transition bands can 

be identified in terms of frequency sample locations (wk = ~n k; k = 0, 

... , N-1). In the first part low-pass filters will be used as the 

design problem. Let the first (£- M) samples be located in the passband 

and 

jw 
H* ( e k) = I H k I = 1 , k = o, 1 , . . . , ( BvJ - 1 ) , (3. 7) 

where BW = (£- M) corresponds to the number of samples in the passband, 

M is the number of transition samples, and w£ corresponds to the start 

of the stopband. Let the transition samples be identified as 

H*( jw£-M-b)- IH I e - £-M+b , b = 0, . . . , ~1 - 1 , (3.8) 

v1hich are to be determined so as to satisfy the filter specifications. 

Let the next (N' - £ + 1) be assumed to be in the stopband, and 

jw 
H*(e k) = 0 k = £, ... , N' (3.9) 

where 

{'N/2) - 1 for N even 
N' 

= ((N-1)/2) 
(3.10) 

for N odd 
jw. 

The remaining H*(e K) IH(k)l' k = N' + 1 ' . , N-1, are fixed from 

the symmetry constraints. Figure 1 shows a typi ca 1 set of specifications 

for low-pass filters, where BW = 2' M = 3, and !1, = 5. In the above it is 

clear that the only unknowns are IH£-M-bl' b = 0, 
' M - 1 and are 

to be determined such that the maximum side lobe is minimum in some 
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N = 16 £. = 5 

BW = 2 • 
M = 3 -------------------

-------------. 
0.0 L-...L.-...J..._~-J.-.__....___.__.__..__...___...___L___!_.L._....L.,_I 

0 2 3 4 5 6 7 8 9 10 II 12 13 14 15 k 

Figure 1. Specifications for a Low-Pass Filter 



33 

sense. This is the only criterion to be used in the design and it will 

be discussed in a later section. 

3.3.2 Smoothing Technique 

In designing nonrecursive filters, window techniques (17) (18) (19) 

(20) have been effectively used to reduce the ripples. Some of these 

window techniques involve the addition of two or more shifted versions 

of frequency responses to cancel ripples. The same general idea will be 

used ih reducing the ripples. 

One of the most important cases of frequency, sampling filter design 

is the case corresponding to one transition sample; that is, M = 1 in 

Equation (3.8). Let us investigate this case first. It is clear that 

H*(ejw) is a function of H~_ 1 , the unknown transition sample, and can be 

expressed as 

(3.11) 

where the superscript i is introduced to denote the fact that Hi~? can 

take different values. A(w) represents the contribution to H*(ejw) by 

the fixed frequency samples and B(w) represents the contribution of the 

unconstrained frequency sample with magnitude Hi~i· In particular, we 

will be interested in H(i) for 0 < H(i) < 1. Figure 2 gives the plots 
~-1 - ~-1 -

of [H*(ejw)] for N = 15 and BW = 3 for various values of Hi~i· Looking 

at these plots closely, we see that in the stopband 

(3.12a) 

for 



0 
0 

N= 15, BW= 3, H1 _1 = I 
-2.00'1,-,-------'-------'------'------'-----.J 

I 60 2 00 2 40 2 80 360 3 20 

N=I5,8W=3,H1 _1 =0.7 

- 10 00~-----.....,_----.,-7-:::---~:::-:::-----::--::':-:::----:;--;! 
1.60 2.00 240 2.80 3 20 3 60 

w IN R:.DIANS 

Figure 2. Variation of Stopband Frequency Re
sponse as a Function of Transi
tion Sample H(i) (Enlarged Scale) 

R--1 

34 



35 
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Figure 2. (Continued) 
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H(i) > 0 5 H(k) < 0 3 
2-1 . ' £-1 . (3.12b) 

From this, by adding the two responses (H*(i)(ejw)) and (H*(k)(ejw)), we 

have ripple size reduction. Figure 3(a) illustrates this point, where 

H~~{ = 0.12 and H~~{ = 0.7. The plot of 

(o) jw H*(i) (ejw) + H*(k) (ejw, 
H* ( e ) = - 2 - L (3.13) 

is also shown in Figure 3(a), where we can see that the ripples have 

been reduced considerably. The corresponding transition sample is given 

by 

H(i) + H(k) 
H(o) = R.-1 £-1 = 

£-1 2 
0.7 + 0.12 

2 

From Figure 3(a) it is clear that 

< 0 WQ, < W < WQ,+l 

H*(o) (ejw)= < 0 w£+1 < w < w£+2 

> 0 w£+2 < w < w.Q.+3 

= 0. 41 (3.14) 

(3.15) 

However, the scale in Figure 3(a) is such that the detail in the stop

band response cannot be easily seen. Figure 3(b) shows the same to an 

enlarged scale. From this, Equation (3.15) can be modified to: 

< 0 w < w < w 
£ 9.,0 

H*(o)(ejw)= 
> 0 w£ 0 < w < w£+l 

(3.16) 
< 0 w£+1 < w < w£+2 

> 0 w£+2 < w < w£+3 

where w£ 0 corresponds to the frequency at which H*(o)(ejw) = 0 between 

w£ and w£+l" Also, it should be pointed out that in the region 
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w£0 < w < w£+l' the peak of the response is small when compared to the 

other peaks in the stopband. In the rest of the stopband H*(o) (ejw), in 

general, alternates. Equations (3.15) and (3.16) are applicable even 

when N is even and it could be seen from Figure 3(c). In the third 

step we will make use of Equation (3.16) explicitly. The discussion 

for more than one transition sample will be presented in a later section. 

3.3.3 Least Squares or a Direct Solution 

From Figure 3 we see that H*(o)(ejw) has an almost equi-ripple 

property in the stopband. It is known that when the transition sample 

is optimum, the stopband characteristic of such a filter will have mini

max characteristics (27). Using these two ideas, we can develop a 

direct solution to determine the transition sample close to an optimal 

solution. 

In finding the solution, it is important to know the frequencies at 

which the peaks of H*(o)(ejw) appear in the stopband. Earlier we have 

seen that the peak of H*(o)(ejw),in the range w£0 < w < w£+l' is small 

and therefore Equation (3.15) could be used instead of Equation (3.16). 

In addition, we will assume that the peaks occur approximately midway 

between the sampling frequencies in the stopband. These frequencies are 

0 = w£+k + w£+k+l k. = 
w £ +k 2 ' 0' 1 ' 2' . . . 

For simplicity we will consider only the first three values in Equation 

(3. 17). Using Equations (3.15) and (3.17) and assuming that the magni-

tudes of the peaks at wi+k are equal, we can write 

. 0 . 0 

H*(o)(eJw£) = H*(o)(eJw£+1) (3.18a) 



Now, 

. 0 

H*(o) (e Jwt+ 1) 
. 0 

= -H*(o)(eJwt+2) 

a + b H(o) 
0 0 t-1 

a1 + b1 H(o) 
.Q,-1 
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( 3. 18b) 

(3.19a) 

(3.19b) 

(3.19c) 

where ai' i = 0, 1, 2 represent the contribution to H*(o)(ejw) by the 

sampled values in the passband, and bi, i = 0, 1, 2 represent the con

tribution of the unconstrained frequency sample. Substituting Equation 

(3.19) into Equation (3.18), we have two equations inane unknown. Let 

this system of equations be written in the form 

Y H(o) = Y 
1 t-1 2 (3.20) 

- -

where v1 and v2 are two-dimensional column vectors. The system in Equa

tion (3.20) is an overdetermined system and can be solved by using the 

least squares solution (50). That is, 

H(o) = (YT v )-1 vT, v2 
t-1 _1 _, -- ( 3. 21 ) 

where (.Y_~ y_1) is a scalar. Using this approach, we have considered the 

design of a 125th-order and a 256th-order low-pass filter with various 

values of BW. These are tabulated in Table I, where H(Rl) represents the 
.Q,-

optimum values obtained by Rabiner and others (27), and Hi~i are the 

Values obtained by the procedure above. 
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N = 125 

2 

3 

4 

6 

8 

10 

N = 256 

1 

5 

7 

18 

66 

98 

TABLE I 

TRANSITION SAMPLE VALUES 

H(R) 
2-1 

H(o) 
2-1 

0.42899170 0.43529550 

0.40867310 0. 414664-30 

0.39868774 0.40454840 

0.39268189 0.39855650 

0.38579101 0.39181060 

0.38195801 0.38812720 

0.37954102 0.38583630 

0.42891235 0.43520000 

0.38829956 0.39440000 

0. 38311157 0.38946000 

0. 37368774 0.38102900 

0.36708985 0.37747100 

0.36352539 0.37878400 

45 

H(oc) 
2-1 

0.42608080 
0.40406560 

0.39353060 

0. 38736720 

0.38049300 

0. 37667780 

0.39447340 

0.42604190 

0.38314000 

0.37813000 

0.36967530 

0.36614250 

0.36743760 



Note that the results are remarkably close for this method, and 

better res u 1 ts may be obtai ned by considering the fo 11 owing: 
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1. Ripple maxima and minima may not appear midway between the stop

band sample frequencies, and therefore a procedure needs to be developed 

to find the frequencies at which the ripples in the stopband are maximum 

and minimum. 

2. It may be necessary to consider more (or maybe less number of) 

equations in Equation (3.20). That is, we need to consider mor~ (less) 

number of w~+k in the stopband. 

The second consideration does not require additional explanation. How

ever, the first one requires further study. 

Earlier it was expressed that when a function is approximated by 

Fourier series, there will be a considerable error in the vicinity of 

discontinuity, which is usually referred to as the Gibbs phenomenon (21). 

The lower bound on the overshoot after discontinuity is approximately 9%. 

Figure 4 shows a plot of S(t) = [} + ~ si(nt)], which corresponds to the 

approximation of a discontinuity at the origin. It is clear that the 

maxima and minima appear at nt = +kn. However, we are more interested 

in values of ~t for which 

s(t) = 1 (3.22) 

These can be estimated by making use of extensive tables (64) (65) avail

able for si(~t). Using these tables, we can estimate that the first 

peak overshoot appears not at the middle but to the left of the middle. 

To be exact, the peak separates the first ripple by 41.7% to the left 

and 58.3% to the right. This idea can be used in our estimation, and 

is discussed in the following. 
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Using the result above, we can modify Equation (3. 17) by 

w~~k = w!L + c(0.417) 2Nn + k 2;, k = 0, 1, 2 (3.23) 

in which a correction factor, c, is introduced. The reasons for this 

will be discussed in the following. 

In Figure 4 we see that s(o) = 0.5. In our case the transition 

sample, always less than 0.5, is around 0.4. The effect of this, of 

course, is that the maximum appears even further left of the middle. 

An estimate of the correction factor is 

0.4 0 8 c "' 0.5 = . (3.24) 

Using this in Equation (3.23), we have considered a low-pass filter 

of order 125 and 256 with various BWs .. The values for Hi~~ are obtained 

and are listed in Table I under the column Hi~~), where c denotes that a 

correction has been used. In comparison with the optimum values Hi~~, 
(oc) 

we see that in most cases the new values HJL-l appear to be close to the 

optimum. Using the above approach, we have designed several low-pass 

filters for various values of N and BW. The results are tabulated in 

Table II, where again Hi~i are the optimal values obtained by Rabiner 

et al. (27), and the values under the column Hi~~)and Hi~~) will be 

distussed later. 

When N is even, it can be observed from Table II that the devia

tion between H(R) and H(oc) is slightly higher when the number of fre-JL-1 JL-1 
quency samples in the passband is close to N/2. The reason for this is 

explained in the following. 

It is well known that when N is even, the interpolated frequency 

response will not be real if the initial set of frequency samples is 
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TABLE II 

OPTIMUM TRANSITION SAMPLE VALUES 

BW H(R) 
£-1 

H(oc) 
£-1 

H(Do) 
£-1 

For N-Odd 

N = 15 . 

1 0.43378296 0.42920700 0.43346862 

2 0.41793823 0.41009000 0.41653264 

3 0.41047363 0.40242000 0.40939952 

4 0.40405884 0.39880000 0.40405603 

5 0.39268189 0.39250000 0.37918409 

N = 33 

0.42994995 0.42674300 0.42995013 

2 0.41042481 0.40537800 0.41042692 

3 0.40141601 0.39549600 0.40122466 

4 0.39641724 0.39002100 0.39603561 

6 0.39161377 0.38470240 0.39097806 

8 0.39039917 0.38299130 0.38950116 

10 0.39192505 0.38351930 0.39037723 

12 0.39420166 0.38619210 0.39312706 

14 0.38552246 0.38542000 0.37217282 

N = 65 

1 0.42919312 0.42621640 0.42919106 

2 0. 40903320 0.40433500 0.40903274 

3 0.39920654 0.39393290 0.39920496 

4 0.39335937 0.38790240 0.39336220 

5 0.38950806 0.38400590 0.38950763 

6 0.38679809 0.38130680 0.38679813 

10 0.38129272 0.37592600 0.38129346 

14 0.37946167 0.37412750 0.37946531 

18 0.37955322 0.37399500 0.37945672 

22 0.38162842 0.37541910 0.38122190 
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TABLE II (Continued) 

BW H(R) 
t-1 

H(oc) 
t-1 

H(Do) 
t-1 

N = 65 (Cont.) 

26 0.38746948 0.37956000 0.38615039 

30 0.38417358 0.38408400 0.37087156 

N = 125 

0.42899170 0.42608080 0.42899550 

2 0.40867310 0.40406560 0.40867287 

3 0.39868774 0.39353060 0.39868668 

4 0.39268189 0.38736720 0.39268554 

6 0. 38579101 0.38049300 0. 38579451 

8 0.38195801 0. 37677840 0.38196192 

10 0.37954102 0.37447340 0.37954102 

18 0.37518311 0.37041350 0.37518569 

26 0.37384033 0.36917000 0.37384185 
34 0.37371826 0.36902000 0. 37372071 

42 0.37470093 0.36984000 0.37470245 

50 0. 37797851 0.37250870 0.37788435 

58 0.39086304 0.38307200 0.38983071 

59 0.39063110 0.38556700 0. 39062951 

60 0.38383713 0.38375300 0.37054450 

BW H(R) 
t-1 

H(oc) 
t-1 

H(De) 
£-1 

For N-Even 

N = 16 

1 0.42631836 0.42880000 0.42727875 

2 0.40397949 0.40940000 0.40216017 

3 0.39454346 0.40157000 0.39109158 

4 0.38916626 0.39810400 0.38693690 

5 0.38840330 0~39550000 0.40860000 
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TABLE II (Continued) 

BW H(R) 
9..-1 

H(oc) 
9..-1 

H(De) 
9..-1 

N = 32 

1 0.42856445 0.42678000 0.42830446 

2 0.40773926 0.40540000 0.40327667 

3 0.39662476 0.39562000 0.39178876 

4 0.38925171 0.39020000 0.38557173 

6 0.37897949 0.38500000 0.37946214 

8 0.36990356 0.38340000 0.37681379 

10 0.35928955 0.38400000 0.37563255 

12 0.34487915 0.38700000 0.37692103 

N = 64 

1 0.42882080 0.42622200 0.42850086 

2 0.40830689 0.40424000 0.40341969 

3 0.39807129 0.39394900 0.39177515 

4 0.39177246 0.38792560 0.38535508 

5 0.38742065 0.38403500 0.38139820 

6 0.38416748 0.38134260 0.37876661 

10 0.37609863 0.37599470 0.37378359 

14 0.37089233 0.37424370 0.37206568 

18 0.36605225 0.37420320 0.37155465 

22 0.35977783 0.37580000 0.37179844 

26 0.34813232 0.38000000 0.37268141 

N = 128 

0.42889404 0.42607840 0.42854521 

2 0.40847778 0.40406140 0.40344362 

3 0.39838257 0.39352350 0.39175112 
"4 0.39226685 0.38735920 0.38527050 

6 0.38812256 0.38332170 0.38124616 

7 0.38281250 0.37837620 0.37661885 

10 0.37826538 0.37445240 0.37322903 

18 0.37251587 0.37036780 0.36999435 
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TABLE II (Continued) 

BW 
(R) H(oc) H(De) 

H2-1 2-1 2-1 

N = 128 (Cont. ) 

26 0.36941528 0.36908680 0.36900837 

34 0. 36686401 0.36887300 0.36874944 

42 0.36394653 0.36953970 0.36897358 

50 0.35902100 0. 37171600 0.36985400 

58 0.34273681 0.37958000 0.37206699 

N = 256 

1 0.42891235 0.42604190 0.42853700 

2 0.40852051 0.40399000 0.40345060 

3 0.39646802 0.39341690 0.39174000 

4 0.39239502 0.38721000 0.38524750 

5 0.38829956 0.38314000 0. 38119940 

7 0.38311157 0.37813000 0.37654140 

10 0.37877197 0.37409000 0.37309460 

11 0. 37778931 0.37320840 0.37237480 

18 0.37368774 0.36967530 0.36967770 

34 0.37011490 0.36708280 0.36786230 

50 0.36840210 0.36630580 0.36736040 

58 0.36773071 0.36617150 0.36724360 

66 0.36708985 0.36614250 0.36723540 

83 0.36568604 0.36639920 0.36739600 

98 0.36352539 0.36743760 0. 36787210 

106 0.36150513 0.36864000 0.36839050 

114 0.35722650 0. 37116000 0.36954100 
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real and symmetric (27). If the impulse response is symmetrical, it can 

be seen from Figure 5 that the frequency response will not be symmetrical 

about the (N/2) frequency sample. On account of this, when BW~ (N/4), the 

interaction of si;x terms will be smaller and Equation (3.16) still holds 

good. 
sinx On the other hand,when (N/4) < BW<(N/2), the interaction of -x~ terms 

will be predominant and the stopband response_ will be as shown in Figure 

3(d). From this figure it is clear that H*(o)e(jw) will have the follow-

ing pattern, that is, 

< 0 < w 

> 0 < w < w.R-+3 

Using this, Equation (3. 18) can be modified, and is 

H*(o)(ejw~) = -H*(o)(ejw~+l) 

H*(o)(ejw~+l) = -H*(o)(ejw~+2) 

(3.25) 

(3.26) 

Using Equation (3.19) in Equation (3.26) results in an equation similar 

to Equation (3.20), which could be solved for Hi~i· Note that in Equa

tion (3.26) w~ and w~+l are given by Equation (3. 17). Several low-pass 

filters are designed for the special cases, (N/4)< B~J < (N/2), by the 

above approach and the results are tabulated in Table III. 
' 

From Tables II and III it can be observed that the results are very 

. close to the optimum, and are obtained without making use of search or 

programming techniques. In order to get an idea about the error in-

volved in our computation, the frequency response of a 32nd-order low-

pass filter is plotted for BW = 10. Two responses are plotted in 
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Figure 5. Two Cases of Linear Phase Filters 
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TABLE III 

ONE TRANSITION SAMPLE VALUES 

BW H(R) 
Q,-1 

H(o) 
Q,-1 

N = 256 

114 0.35726560 0.3505166 

122 0.34083862 0.3373798 

123 0.33485107 0.3287998 

124 0. 32495117 0.3125050 

N = 64 

22 0. 35977783 0.3482340 

26 0.34813232 0.3374392 

N = 128 

50 0.35902100 0.3505377 

58 0.34273681 0.3373839 
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Figure 6 on the same scale for both Hi~~ and Hi~~)· From this figure 

it can be seen that the deviation between the two responses is hardly 

noticeable. The above method has a considerable advantage over the 

existing techniques (27). 

In the following a direct solution to find the optimum transition 

value H(De) or H(Do) is discussed. This is based on using fewer number 
.Q,- 1 .Q,- 1 

(D) of equations in Equation (3.20). Since there is only one unknown H9--l, 

we need to consider only one equation. T~is equation may correspond to 

one of the following equations (see Equation (3.18)): 

. D 
wr(D) (eJwR-) = 

. D 
H* (D) ( e J w u 1 ) 

. D 
H* (D) ( e J w 9-) = 

. 0 
H*(D)(eJwR-+1) 

. D 
( ) Jw 

= -H* D (e U2) 

. D 
-H*(D)(eJwR-+2) 

(3.27a) 

(3.27b) 

(3.27c) 

where the superscript D is introduced to denote the direct solution, and 
D D 

the w.Q,+k' wR-+k-l < w.Q,+k < w.Q,+k' k = 0, 1, 2 correspond to the frequencies 

at which the response has a ripple maxima and minima in the stopband. 

These frequencies are given later. From the analysis of various optimal 

responses, it was found that Equation (3.27b) gave better results for 

N-even and Equation (3.27c) gave better results for N-odd. In the 

following, Equation (3.27b) is used for N-even and Equation (3.27c) for 

N-odd. Explicitly, 

. De . De 
H* ( De ) ( e J w u 1 ) = -H*(De) (eJwU2) (3.28a) 

. Do . Do 
H* ( Do ) ( e J w Q, ) = -H*(Do)(eJw.Q,+2) (3.28b) 
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where e and o are added to the superscript D to denote the even and odd 

cases, respectively.· 
De Do The frequencies w~+k and w~+k are determined empirically using 

oc wi+k as a guide, and these are 

w~~l = w~+l + 0.4375 (~TI) (3.29a) 

De = De 874 (2n) w£+2 wi+l + 0. 9 N (3.29b) 

for N-even and for N-odd, 

(3.30a) 

(3.30b) 

Expressing (see Equation (3.19)): 

. De 
H.* (De)(eJw1+k) __ H(De) 

ake + bke £-1 ' k = 1' 2 (3.31) 

k = 0, 2 (3.32) 
. De . Do 

H*(De)(eJwt+k)(H*(Do)~Jw!+k» where ake(ak0 ) represent the contribution to 

by the sampled values in the passband and bke(bk0 ) represent the contri

bution of the unconstrained frequency sample. Using Equations (3.29) and 

(3.31) in Equation (3.28a) results in one equation with unknown as Hi~~). 

Similar equations can be formed using Equations (3.30) and (3.32) in 

Equation (3.28) with Hi~~) as .unknown. Obviously, the solution will 

give the desired results. Several low-pass filters with various values 

of N and BW are designed and the results for Hi~~) and Hi~~) are tabu

lated in Table II. From this table it can be seen that the direct 

method gives transition sample values close to the optimum values given 
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in Reference (27). The computationa1 time required to design the low

pass FIR filter with one transition sample by the direct method is neg-

ligible when compared to the existing techniques. The results are 

accurate and they are vJithin the permissible tolerance limits. 

Before we consider two and three transition sample low-pass filter 

designs, we should point out that dd H*(ejw). can be used to compute a 
' w 

value for H£_ 1 by equating it to zero near w = w£+1 (see Figure 3(b) and 

3(c)). The computational time required by this method is more than the 

above method and therefore is not discussed any further. 

3.4 Direct Approach to the Frequency Sampling Filter 

Design ~Jith Two and Three Transition Samp 1 es 

3.4.1 Two Transition Sample Design 

In designing two transition frequency sampling filters, we will 

make use of some of the same general ideas as in the one-transition 

type. For this case M= 2 in Equation (3.8), and the transition samples 

are located at w£_ 2 and w£-l. As before, the stopband starts at w£. 

The ripple reduction in the two transition sample case can be illus

trated by considering two functions: 

(3.33) 

where the subscripts p and (p+l) denote the size of BW. Intuitively, we 

can see that [H*(i)(ejw)](p+l) can be approximately obtained by shifting 

[H*(i)(ejw)] by 2Nn' where N is the order of the filter. Also, from 
p ' 

Figure 2, we note that [H*(i)(ejw)](p+l) alternates in the stopband for 
( i ) 

H£-l < 0.3. From the above it follows that 
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(3.34a) 

for 

wt+k<w<wQ,+k+l' k=O,l, ... (3.34b) 

and for 

H(i) H(i)<03 
t-1' .Q,-2 . (3.35) 

Again, Equation (3.34) gives a clue for ripple reduction. Now, consider 

two responses [H*(i)(ejw)] and [H*(k)(ejw)] with H(i) H(k) < 0 3 p {p+l) 1-2' 1-1 .. 
By,adding the two, we have 

l [[H*(i)(ejw)] + [H*(k)(ejw)] ] = [H*(o)(ejw)] (3.36) 
2 p p+l p+l 

where [H*(o)(ejw)] will have two transition samples H~ 0_ 1) and H(o) . p+l ~ . 1-2' 
which .are given by 

1 + H(i) 
(o) _ £-2 

H£-2 - 2 

H(k) + 0 
H ( o ) = _1_-_;.,1 :----

£-1 2 
( 3. 37) 

Figure 7(a) illustrates such an idea for N = 33 and (p+l) = 6. Figure 

?(b) clearly gives the [H*(o)(ejw)](p+l) in the stopband to an enlarged 

scale. From this figure, it can be seen that 

< 0 w.Q, < w < .wJ/,0 

> 0 (JJ < (lj < (JJ 1 
S/,0 9,+ 

[H*(o)(ejw)] 
( p+ 1) < 0 WHl < w < wt+2 (3.38) 

> 0 wH2 < w < w(H2)o 

< 0 w(t+2)o < w < w1+3 
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which has a similar pattern as in Equation (3.14). The difference is 

that in the range w£0 < w < w£+l, the peak is not small. In fact, 

[H*(o)(ejw)] has three peaks in the range wn < w < wn+ 2' and the (p+l) X, X, 

magnitudes of these peaks are approximately equal. For simplicity, we 
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will consider only the first three peaks. Equation (3.38) is the opti

mal response one would get using the transition sample values H(o) and £-2 

Hi~{ .. In order to verify Equation (3.38) several responses were studied 

using the optimal values given in Reference (27) for various values of 

N and BW. From the results thus obtained, it is observed that Equation 

(3.38) is true in general for different values of N and BW. For illus

trative purposes, a typical stopband response is given in Figure 7(c) 

for N-even. From this and other simulations it follows that Equation 

(3.38) is true for any N and forms a basis for the two-transition sample 

filter design. 
(o) (o) 

Next, let us consider the computation of H(£-l) and H(£- 2). The 

procedure will be very similar to what was used in the one-transition 

case. That is, assume that the first three peak ripple magnitudes in 

the stopband of [H*(o)(ejw)] are equal. Again, the problem of select-p+l 

ing the location of the frequencies at which the ripple maxima and minima 

appear should be considered. Using the optimal responses in Figure ?(b) 

and ?(c) as a guide, the location of the frequencies at which the ripple 

maxima and minima appear are empirically determined. These are given 

below. 

The first three ripple peaks appear at wiD), w£ ~D), and w~~{, where 

the superscripts o and e after D are omitted here, as these estimates 

are valid for both N-odd and N-even. The estimates of these frequencies 

are given by 



w~D) = wt + (0.125)(~;r) 

wt~D) =wiD) + (0.5)(~n) 

(D) _ (D)+ ( l)(2n) wt+l - wt' 0.8 N 

Note that the bounds for these frequencies are given by 
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(3.39a) 

(3.39b) 

(3.39c) 

(3.40) 

Using Equations (3.38) and (3.39) and assuming that the magnitudes of 

the peaks are equal, we can write 

(3.4la) 

. (D) 
= -[H*(D)( Jwt+l)] 

e (p+l) (3.4lb) 

where Equation (3.41) is valid for both N-even and N-odd. Expressing 

c1 + dl H(D) + e H(D) 
t-2 1 t-1 (3.42a) 

(3.42b) 

(3.42c) 

where c. , i = 1 , 2, 
1 

3 represent, respectively, the contributions of 
(D) 

[H*(D)(ejwt )] 
( p+ l)' 

(D) . (D) (D) . (D) 
[H* (eJwt' )](p+l), and [H* (eJwt+l )](p+l) 

by the fixed frequency samples; the remaining constants d1, d2, d3, 

e1, e2, and e3 are the contributions of the unconstrained frequency sam-
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s~mples with magnitudes Hi~~ and Hi~?· Using Equation (3.40) in Equa

tion (3.39) and rewriting, we have 

= (3.43) 

which can be solved for Hi~~ and Hi~~- Several low-pass filters are de

signed and the transition sample values H(D) and H(D) are given in Table t-2 Jl.-1 
IV. 

The values listed under columns H~~~ 2 ) and H~~~l) are optimal values 

derived by Rabiner et al. (27). From this table one can see that the 

values are remarkably close. Note that search or minimization techniques 

were not used. It should also be noted that for small N-even and for BW 

close to N/2, the deviation in the transition sample values from the 

optimum values is due to aliasing effects and due to the nonsymmetrical 

characteristics of H*(ejw). Better transition sample values can be ob-
(0) (D) · (D) tained by using new estimates for wt , w2 1 , and w2+1. For these cases 

the new estimates are 

(D) = WQ, + 0.3125 (2TI) (3.42a) WQ, N 

(D) = w(D) + 0.375 (2;) (3.42b) W _Q, I Q, 

w(D) = w(D) 
Q, Jl,l + 0. 50004 ( 2;) (3.42c) 

With these estimates the new transition sample values are computed for 

N = 16 (BW = 3, 4) and N = 32 (BW = 9, 11). These are given in Table V. 
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TABLE IV 

TWO TRANSITION SAMPLE VALUES 

BW H(R) 
R--2 

H(R) 
£-1 

H(D) 
£-2 

H(D) 
t-1 

For N-Odd 

N = 15 

0.58995418 0.09500122 0.58995337 0.09500232 

2 0.59357118 0.10319824 0.59352681 0.10318392 

3 0.58594327 0.10083618 0.58395463 0.10084408 

4 0.55713120 0.08407593 0.56317058 0.08813473 

N = 33 

1 0.58985167 0.09497070 0.58985929 0.09497613 

2 0.59743846 0.10585937 0.59537561 0.1 0441781 

3 0.59911696 0.10937500 0.59453670 0.10619281 

5 0.59674101 0.10965576 0.59155094 0.10625999 

7 0.59417456 0.10902100 0.58929708 0.10568568 

9 0.58771575 0.10502930 0. 58711423 0.10481077 

11 0.58216391 0.10219727 0.58208476 0.10217219 

13 0.54712777 0.08137207 0.55326598 0.08536127 

N = 65 

0.58945943 0.09472656 0.58946148 0.09472834 

2 0.59476127 0.10404663 0.59458334 0.10396935 

3 0.59577449 0.10720215 0.59338077 0.10557326 

4 0.59415763 0.10726929 0.59149978 0.10565666 

5 0.59253047 0.10689087 0.58978958 0.10537314 

9 0.58845983 0.10548706 0.58550574 0.10412983 

13 0.58660485 0.10466309 0.58367202 0.10349931 

17 0.58862042 0.10649414 0.58304811 0.10329365 

21 0.58894575 0.10701904 0. 58311895 0.10336377 

25 0.58320831 0.10327148 0.58262735 0.10306064 

29 0.54500379 0.08069458 0. 55115460 0.08466417 
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TABLE IV (Continued) 

BW H(R) 
.Q,-2 

H(R) 
.Q, -1 

H{D) 
.Q,-2 

H(D) 
.Q, -1 

N = 125 

1 0.58933268 0.09464722 0.58934385 0.09465519 
2 0.59450024 0.10390015 0.59433964 0.10383172 

3 0.59508549 0.10682373 0.59300940 0.10537467 

5 0.59187505 0.10668945 0.58916139 0.10505660 

7 0.58921869 0.10587158 0.58631764 0.10424669 
9 0.58738706 0.10523682 0.58434199 0.10357237 

17 0.58358265 0.10372925 0.58051524 0.10211963 
25 0.58224835 0.10316772 0.57921683 0.10160304 

33 0.58198956 0.10303955 0.57893060 0.10150228 

41 0.58245499 0.10313721 0.57399665 0.10172967 

49 0.58629534 0.10561523 0.58082174 0.10238399 

57 0.57812192 0.10061646 0.57803192 0.10058625 

58 0.57121235 0.09663696 0.57126662 0. 09667163 

59 0.54451285 0.08054886 0.55061195 0.08448141 

For N-Even 

N = 32 

0.59045212 0.09610596 0.58988240 0.09499410 
2 0.60560235 0.11263428 0.59543000 0.10044850 

3 0. 61192546 0.11931763 0.59460925 0.10623170 

5 0.61824023 0.12541540 0.59163184 0.10629000 

7 0.62307031 0.12907715 0.58929679 0.10560000 

9 0.60685586 0.12068481 0.58670064 0.10457000 

11 0.62821502 0.13004150 0.57943200 0.10063924 

N = 64 

1 0.58789222 0. 09376831 0.58946641 0.09473140 

2 0.59421778 0.10411987 0.59459348 0.10397500 

3 0.59666158 0.10850220 0.59339614 0.10558140 

4 0.59730067 0.11038818 0.59152036 0.10566730 
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TABLE IV (Continued) 

BW H{R) 
~-2 

H(R) 
£.-1 

H(D) 
£.-2 

H(D) 
~-1 

N = 64 (Cont.) 

5 0.59698469 0.11113281 0.58981536 0.10538610 
9 0.59088884 0.10936890 0.58555322 0.10415263 

13 0.58738641 0.10828857 0.58374478 0.10352740 

17 0.58968142 0.11031494 0.58314984 0.10334070 
21 0.59249461 0.11254273 0.58322245 0.10340800 
25 0.60564501 0.11994629 0.58222502 0.10283880 

N = 128 

1 0.58900996 0.09445190 0.58934177 0.09465390 
2 0.59379058 0.10349731 0.59433531 0.10382928 
3 0.59506081 0.10701294 0.59300277 0.10537113 
4 0.59298926 0.10685425 0.59099137 0.10539417 
6 0.58953845 0.10596924 0.58759487 0.10463720 
9 0.58593906 0.10471191 0. 58432116 0.10356242 

17 0.58097354 0.10288086 0. 58047248 0.10209992 
25 0.57812308 0.10182495 0.57914333 0.10156955 
33 0.57576437 0.10096436 0.57880629 0.10144500 
41 0.57451694 0.10094604 0.57917334 0.10162944 
49 0.56922742 0.09865112 0. 58043051 0.10220660 

57 0.56604486 0.09845581 0.58113628 0.10237700 

N = 256 

1 0.58923281 0.09458618 0.58930945 0.09463381 

2 0.59425391 0.10375977 0.59426790 0.10374125 

3 0.59466635 0.10638569 0.59289944 0.10531596 

4 0.59322120 0.10690918 0.59085178 0.10532224 

6 0.58998313 0.10612793 0.58738212 0.10453226 

9 0.58671387 0.10502319 0.58399667 0.10340100 

10 0. 58371956 0.10457764 0.58319479 0.10311341 

17 0.58217779 0.10323486 0.57982439 0.10180166 
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TABLE IV (Continued) 

BW H(R) 
9--2 

H(R) 
Q,-1 

H(D) 
9--2 

H(D) 
Jl,-1 

N = 256 (Cont.) 

33 0.57708094 0.10212250 0.57719087 0.10071614 
49 0.57769495 0.10168457 0. 57637271 0.10037250 
57 0.57690264 0.1 0133057 0.57621581 0.10030700 
65 0.57627586 0.10109253 0.57617069 0.10029070 
81 0.57389784 0.09982910 0.57640019 0.10039707 
97 0.56999568 0.09773560 0.57725989 0.10078435 

105 0. 56641188 0.09583130 0.57818400 0.10120000 
113 0.56186695 0.09375000 0.57983000 0.10194000 
121 0.54300842 0.08519897 0.58085830 0.10220000 
122 0.54292957 0.08584595 0.57934000 0.10737000 

123 0. 54538271 0.08768921 0.57327400 0.09903600 
124 0. 56272902 0.09545975 0.56380568 0.09233555 
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TABLE V 

MODIFIED "TRANSITION SAMPLE VALUES" 

(R) (R) (D) (D) 
mJ H{Ji,-2) H ( £-1 ) H(£-2) H ( Ji,- 1 ) 

N = 16 

3 0.62855407 0.12827148 0.60605460 0.11495370 

4 0.61952704 0.12130127 0.59233985 0.10758616 

N = 32 

9 0.60685586 0.12068481 0.60589392 0.11760846 
11 0.62821502 0.13004150 0.59691813 0.11259700 

From this table we can see that the new transition sample values are 

slightly closer to the optimal values. In addition, it should be 

pointed out that these cases are seldom used and are considered here 

only for completeness. 

3.4.2 Three Transition Sample Design 

The three transition sample filter design is a simple extension of 

the two transition sample design. Consider the three functions 

[H*(i)(ejw)]p, [H*(k)(ejw)]p+l' [H*(n)(ejw)]p+2 (3.44) 

(i) (k) (n) 
with transition samples H{Ji,- 3), H(Ji,- 2), and H(Ji,-l) and with 

w£+l < w < wHk+l (3.45) 

k = 0, 1, ... 
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wQ,+k<w<wQ,+k+l (3.46) 

k = 0, 1' 

As before, by adding three of.these responses, we will have ripple 

reduction. Figure 8(a) illustrates such an idea for N = 32 and p = 2. 

Note that other possibilities can also be considered. In Figure 8(a), 

[H*(o)(ejw)] is obtained from (p+2) 

[H*(o)(ejw)] = l [3[H*(i)(ejw)] + [H*(k)(ejw)] 
(p+2) 5 p p+l 

+ [H*(n)(ejw)] J 
(p+2) ( 3. 47) 

Note the scale factors in each case. Figure 8(b) illustrates the en-

larged version of [H*(o)(ejw)] in the stopband. From this figure, (p+2) 

< 0 wR. < w < w£0 (3.48a) 

> 0 w£0 < w < wt+l (3.48b) 

< 0 wt+l < w < w(t+l)o (3.48c) 
[H*(o) (ejw)] = p+2 

> 0 w(£+l)o < w < w£+2 (3.48d) 

< 0 w£+2 < w < w£+3 (3.48e) 

> 0 w£+3 < w < w£+4 (3.48f) 

Note again the sign pattern. From Figure 8(b) it is clear that the two 

peaks in the range w£+l < w < w£+2 are small compared to the other peaks. 

In our computation we will not use these two peaks. We will use the 

first, second, fifth, and sixth peaks in the stopband for computing 

H~ 0 ~, i = 1, 2, 3. As before, we can locate the frequencies at which 
JV-1 

the ripple maxima and minima appear. Equation (3.48) is the optimal 
( 0) response one would obtain by using the transition sample values H(.£-3), 
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(o) (o) 
H(~- 2 ), and H(~-l)" In order to verify Equation (3.48), several low-

pass filters with three transition samples have been simulated using the 

transition sample values given in Reference (27) and found that, in 

general, Equation (3.48) is true for N-even. In the following, Equation 

(3.48) will form a basis for determining the opti~um transition values 

for N-even. The odd case is discussed later. 
(o) (o) 

Next, let us consider the computation of H(~-l)' H(~- 2 ), and 

H~~~ 3 ). The procedure will be similar to the two transition case. The 

first step is to determine the frequencies at which the ripple maxima 

and minima will appear. Using optimal response in Figure 8(b) as a 

guide, these frequencies are determined empirically. 

Earlier it was pointed out that the first, second, fifth, and sixth 

peaks in the stopband will be used to determine H~ 0 ~, i = 1, 2, 3. Let 
x,-l 

the frequencies at which these peaks appear be denoted by wiDe), wi~e), 

wi~~), and wi~~), where the superscript De refers to the direct method 

of design for the even case. It is clear that the bounds for these fre-

quencies are given by 

(3.49) 

' 

The estimates of these frequencies are: 

(De) 
w~ = w~ + 0. 125 ( 2;) (3.50a) 

(De) = 
(De) + 0.4375 (h) (3.50b) w~, w~ N 

(De) 
= 

(De) + 2.0002 (2TI) (3.50c) w(H2) w~, N 

(De) 
w(H3) = (De) 

w(H2) + 0. 937 4 ( ~'TT) (3.50d) 
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Using Equations (3.48) and (3.49) and assuming that the magnitude of the 

peaks are equal, we can write 

. (De) . (De) 
[H*(De)(eJwt )] = -[H*(De)(eJwt• )] 

(p+2) (p+2) (3.5la) 

j (De) . (De) 
[H*(De)(e wt• )] = -[H*(De)(eJw(t+2))] 

(p+2) (p+2) (3.5lb) 

j (De) . 'De) 
[H*(De)(e w(t+3))] = -[H*(De)(eJw(t+3))] 

(p+2) (p+2) (3.5lc) 

Expressing 

j (De) 
[H*(De)(e wt )] = fl + gl H(De) + h H(De) + i H(De) 

(p+2) (t-3) 1 (t-2) 1 (t-1) 

(3.52a) 

j (De) 
(De) w t • _ (De) (De) (De) 

[H* (e )](p+2)- f2 + g2 H(t-3) + h2 H(t-2) + i2 H(£-1) 

(3.52b) 

. (De) 

[H*(De)(eJw(t+2))](p+2) = f3 + 93 H~~=~) + h3 H~~=~) + i3 H~~=i) 
(3.52c) 

j (De) 
[H*(De)(e w(t+3))](p+2) = f4 + g4 H~~=~) + h4 H~~=f) + i4 H~~=i) 

(3.52d) 

where fj, j = 1, 2, 3, 4 represent, respectively, the contribution of 
j (De) · . (De) . (De) 

[H*(De)(e w1 )] . [H*(De)(eJw1. )] [H*(De)(eJw£+2 )] and 
(p+2)' (p+2)' (p+2)' 

. (De) 
[H*(De)(eJw£+3 )](p+Z) by the fixed frequency samples; the remaining con-

stants gj, hj, ij, j = 1, 2, 3, 4 are the contributions of the 
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unconstrained frequency samples. Using Equation (3.52) in Equation 

(3.51) and rewriting, we have 

(gl + g2) (hl + h2) (il + i2) H(De) 
(£-3) -fl - f2 

(g2 + g3) (h2 + h3) (i2 + i3) H(De) 
(R--2) = -f2 f3 

(g3 + g4) (h3 + h4) ( i 3 + i 4) H(De) 
(t-1) -f3 - f4 

(3.53) 

(De) and H(R--l)" Several low-pass 

filters are designed and the transition (De) (De) 
sample values H(R-- 3)' H(£- 2)' 

(De) and H(R--l) are given in Table VI. The values are close to the optimal 

values. 

For comparison purposes, the frequency response of a 256th-order 

low-pass filter is plotted in Figure 9 using the three transition sam-

ples derived above and using the optimal values obtained in Reference 

(27). From the figure it can be seen that the two responses are remark

ably close. The peak ripple in the stopband is approximately the same 

by both methods and is -87.89 dB. Next, let us consider the odd case. 

The procedure for N-odd is very similar to the even case. For 

N = 65, a typical optimal stopband response is plotted in Figure 8(c). 

This response satisfies the following: 

< 0 WR, < w < w 
R,Q 

(3.54a) 

> 0 WR,O < W < WR,+l (3.54b) 

[H*(o) (ejw)] 
> 0 WQ,+l < w < w£+2 (3.54c) 

= ( p+2) 
< 0 WR,+ 2 < W < WR,+3 (3.54d) 

> 0 WR,+3 < w 
< w(R-+3) (3.54e) 

0 
< 0 w(R-+3) < w < w(R-+4) (3.54f) 

0 
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For computational purposes we will use the first four peaks for comput

ing Hi~~' i = 1, 2, 3. Let the frequencies at which these peaks appear 
(Do) (Do) (Do) (Do) . be denoted by w2 , w2 • , w2+ 1 , and w2+2 , where the superscn pt Do 

refers to the direct method of design for the odd case. It is clear 

that the bounds for these frequencies are given by 

w < w(Do) < w(Do) < w < w(Do) < w < (Do) < 
£ £ £ 1 £+1 £+1 £+2 w£+2 w£+3 

(3.55) 

The estimates of these frequencies are 

(Do) 
w£ = w£ + 0 . 1 2 5 ( 2N7f ) (3.56a) 

(Do) 
w£. = 

(Do) 
w£ + 0. 5 (~~'IT) (3.56b) 

(Do) = (Do) + 0.875 (27f) (3.56c) w(£+1) w£. N 

(Do) = (Do) + (27f) (3.56d) w(£+2) w(£+1) N 

Using Equation (3.54) as a guide and equating the ripple magnitude 

at the frequencies given in Equation (3.56), and following a procedure 

(Do) . similar to the even case, the transiti.on sample values Hn • , 1 = 1, 2, 3 
-v-1 

can be obtained. Using this procedure, several low-pass filter~ are 

designed and the transition sample values are compared with the optimal 

values given in Reference (27). These are listed in Table VI. From 

this table it is clear that the results are remarkably close. Note 

again that the computational time by the direct method is insignificant 

when compared to a three-dimensional search used in Reference (27). 

In the following some of the limitations of the direct method are 

discussed. The direct method is based on solving a system of equations. 



TABLE VI 

THREE TRANSITION SAMPLE VALUES 

£W (R) (R) (R) H(Do) H(Do) H(Do) 
H(~-3) H(g_-2) H (~-1) <~-3) (~-2) (~-1 ) 

N = 15 

0.66897613 0.18457882 0.01455078 0.66882155 0.18440000 0. 01454600 

2 0.65951526 0.17360713 0.01000977 0.68181400 0.20060000 0.01597000 

N = 33 

0.67025933 0.18448586 0.01372910 0.67258560 0.18896000 0.01547060 

2 0.68914992 0.20723432 0.01668701 0.69820600 0. 21982770 0.01995000 
4 0.70374222 0.22577646 0.01990967 0.70860100 0.23376600 0.02243000 

6 0.70954533 0.23353566 0.02140503 0.70921070 0.23551300 0.02282000 

8 0.70362590 0.22815933 0.02062988 0. 70637250 0.23297600 0.02335000 

10 0.68306885 0.20567451 0.01605835 0.69637200 0.22233600 0.02022000 

N = 65 

0.67492051 0.19101259 0.01552124 0.67184290 0.18811000 0.01531151 

2 0.70260139 0.22329262 0.01989136 0.69710391 0.21860700 0.01971924 

3 0.71288030 0.23609223 0.02214966 0.70457718 0.22842020 0.02141220 

4 0. 71154775 0.23418217 0.02115479 0.70724179 0.23234500 0.02216000 

8 0.72436684 0.25203440 0.02576904 0.70823137 0.23521200 0.02285000 

12 0.72372888 0.25178881 0.02576904 0.70737982 0.23491870 0.02287000 

16 0.71742143 0.24385557 0.02368774 0.70678900 0.23456190 0.02283600 
co ...... 



BW (R) 
H(.Q,-3) 

(R) 
H(.Q,-2) 

N = 65 (Cont. ) 

20 0.69678377 0.22072406 
24 0.71008776 0.23899360 

N = 125 

1 0.67475127 0.19093541 

2 0. 70177618 0.22232235 

4 0.71788831 0.24380589 

6 0. 71966323 0.24543860 

8 0.71406829 0.23940384 

16 0.72206742 0.24955546 

24 0.71761565 0.24472233 

32 0.72208238 0.24994760 

40 0.71850440 0.24590832 

48 0.71649557 0.24453094 

56 0.68652023 0.21212543 
57 0.65248157 0.17459164 

TABLE VI (Continued) 

(R) H(Do) 
H (.Q, -1 ) (.Q,-3) 

0.01913452 0.70611000 

0.02396240 0.70240000 

0.01556396 0.67159870 

0.01968994 0.69669770 

0.02420654 0.70654175 

0.02402344 0.70746866 

0.02286987 0.70698169 

0.02507324 0.70454809 

0.02415771 0.70340232 

0.02522583 0.70310808 

0.02439575 0.70345460 

0.02440186 0.70418956 

0.01801758 0. 69201857 

0.01030884 0.67843700 

H(Do) 
(.Q,-2) 

0. 2339.6000 

0.23004600 

0.18783840 

0.21815840 

0.23160440 

0.23381200 

0.23394900 

0.23238500 

0.23148400 
0.23128080 

0.23164700 

0.23234100 

0.21900700 

0.20430000 

H(Do) 
(Q,- 1 ) 

0.02273000 

0.02195310 

0.01525950 

0. 01963250 

0.02202500 

0.02252000 

0.02261920 

0.02244570 

0.22315800 
0.02229200 

0.02236290 

0.02248340 

0.01976040 

0. 01681000 

00 
N 



TABLE VI (Continued) 

BW (R) (R) (R) H(De) H(De) H(De) 
H(£-3) H(£-2) H (£-1 ) (£-3) (£ -2) (£-1) 

N = 16 

1 0.67931499 0.19530278 0.01597290 0.67359061 0.18911630 0.01498357 
2 0.70432347 0.22385191 0.01951294 0.70791970 0.23032800 0.02163665 

N = 32 

0.68302930 0.20052231 0.01735230 0.68169514 0.19867830 . 0.01686141 
2 0.71593525 0.23959557 0.02354126 0.70967033 0.23188635 0.02173876 
4 0.73360248 0.26135787 0. 02770996 0. 72133503 0.24669888 0.02435768 
6 0.73796855 0.26670884 0.02871034 0.72104145 0.24173538 0.02440393 
8 0.73367810 0.26084303 0.02705688 0.71423699 0.24012310 0.23060395 

N = 64 

1 0.67535861 0.19125221 0. 01544800 0.68185400 0.19886410 0.01689730 
2 0.70507613 0.22634942 0.02057495 0.70991489 0.23209100 0.02179700 
3 0.72204262 0.24519492 0.02438354 0.71884417 0.24322318 0. 23728355 

4 0.72570913 0.25236063 0.02581177 0.72241097 0.24792318 0.02461008 

8 0.74181077 0.27213724 0. 03010864 0.72496458 0.25203082 0.02549194 
12 0.74040381 0.27101526 0.02996826 0.72442204 0.25189000 0.02531811 

16 0.74434815 0.27556998 0.03095703 0.72339658 0.25100093 0.02537319 

20 0.74029023 0.27059980 0.02975464 0. 72106017 0.24865750 0.02992062 

co 
w 



TABLE VI (Continued) 

BW (R) (R) (R) H(De) H(De) H(R) 
H(£-3) H(£-2) H (£-1 ) (£-3) (£ -2) (£- 1 ) 

N = 128 

0.67492092 0. 19122512 0.01566772 0.68181580 0.19882005 0.01688900 
2 0. 70122715 0.22183722 0. 01967163 0.70978891 0.23195000 0.02176900 

3 0.71450669 0.23824591 0.02271729 0.71863063 0.24298783 0.02367740 

5 0.71859482 0.24430176 0.02398071 0.72359944 0.24974480 0.02498128 

8 0.72166583 0.24892636 0.02510986 0.72442039 0.25146630 0.02538546 

16 0.72460093 0.25347440 0.02633057 0.72316385 0.25080750 0.02524617 
24 0.72843530 0.25816799 0.02739258 0.72232893 0.25012100 0.02524380 

32 0.72886454 0.25894149 0.02763062 0.72195530 0.24980600 0.02519548 

40 0.73824701 0.26996954 0. 03014526 0.72180669 0.24968033 0.02517598 

48 0.73584086 0.26652967 0.02913208 0.72122605 0.24907448 0.02585913 

N = 256 

1 0.67664281 0.19387524 0.01064795 0. 68180181 0.19880390 0.01685990 

2 0.70144920 0.22197911 0.01963501 0.70974718 0.23190324 0.02176060 

3 0.69990539 0.220859.60 0.01908569 0.71855956 0.24929095 0.02366216 

5 0.71635813 0. 24117076 0.02305298 0. 72346905 0.24960550 0.02495445 

8 0.72164702 0.24843111 0.02479248 0.72420199 0.25123943 0.02534200 

9 0.71679420 0.24253562 0.02329712 0.72407159 0.25125770 0.02536440 

16 0.71900030 0.24629538 0.02444458 0. 72271370 0.25035485 0.02526285 

32 0.72307099 0.25163493 0.02577896 0.72099558 0.24886423 0.02505400 
00 
+:> 



BW (R) 
H(£-3) 

(R) 
H(£-2) 

N = 256 (Cont.) 

48 0.71550480 0.24359358 

56 0. 71177494 0.23957232 
64 0. 71380179 0.24199281 
80 0. 71103085 0.23926844 
96 0.71293931 0.24219392 

104 0.71524908 0.24590992 
112 0.71857490 0.24926456 

120 0.73130690 0.25909273 

121 0.72916388 0.25523207 
122 0.72456966 0. 24778644 

TABLE VI (Continued) 

(R) H(De) 
H (.Q,-1) (£-3) 

0.02421875 0.72036330 

0.02345581 0.72022679 
0.02396851 0.72016995 

0.02351685 0. 72026410 
0.02435913 0.72065320 
0.02552490 0.72091441 
0.02607422 0. 72064460 
0.02683105 0.70925127 

0.02561035 0.70122340 
0.02344360 0.71057237 

H(De) 
(t-2) 

0.24828605 

0.24816250 
0.24811341 
0.24821258 

0.24859501 
0.24884570 
0.24852397 

0.23621000 

0.22745720 
0.23806080 

H(De) 
(_Q.-1) 

0.02492895 

0.02490849 
0.02490680 
0.02499804 
0.02498000 
0.02509770 
0.02496501 
0.02250350 

0.02644320 
0.02349960 

00 
01 
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In some extreme cases it may not be possible to form the required number 

of equations. For example, when BW is very near N/2, there may not be 

enough ripple maxima and minima available to form the required number of 

equations. The magnitude response is symmetrical about N/2 ((N-1)/2 for 

N-odd) frequency samples (see figure 5). Equating ripple maxima and 

minima beyond n radians will result only in redundant equations. To use 

the direct method the bounds for BW are given below for N-even and N-odd. 

From these bounds it is clear that the method is applicable to almost 

all cases which are used in practice. 

_ {((N+l)/2- 2M) 
Bound on BW < 

- ( (N/2) - 2M) 

for N-odd 

for N-even 

Before proceeding further, we should point out that the designs are 

given for Type 1 low-pass filter (23) designs. However, these are appli

cable for Type 2 also. The only difference between Type-1 and Type-2 

designs is in the location of the initial frequency sample (23). 

Some of the above ideas in designing low-pass filters are extended 

to bandpass filters and are discussed below. 

3.5 Bandpass Filter Design 

The bandpass filter, like the low-pass filter case, is specified 

in terms of frequency sample locations (wk = 2Nn k; k = 0, . , N- 1). 

A typical set of specifications is shown in Figure 10, where ~1 1 denotes 

the number of zero-valued samples prior to first transition sample; 2M 

and BW correspond, respectively, to the number of transition and pass-

band frequency samples; and the lth frequency sample ~orresponds to the 

edge of the stopband after the passband and transition band. The speci-

fications in Figure 10 correspond to the symmetrical case; that is, the 



1sw1 
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Figure 10. 

.Q N/2 N-1 

Typical Specifications of a Digital 
Bandpass Filter 
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corresponding transition samples on both sides of the passband are taken 

as the same. Explicitly, 

H1_1 = H1_2_BW' for M = 1 (3.50a) 

H1-2 = H1-3-BW' H1-l = H1-4~BW' for M = 2 (3.50b) 

H1-3 = H1-4-BW' H1-2 = H1-5-BW' H£-1 = H1-6-BW' forM= 3 

(3.50c) 

Even though the nonsymmetrical specification may give a better stop

band response, it is not used in practice as it involves twice the number 

of unknowns, which obviously implies more computational time than the 

symmetrical case (27). In addition, the additional stopband attenuation 

is not significant enough to consider the nonsymmetrical case. There-

fore, in the following only the symmetrical bandpass filter design is 

considered. 

The design problem is to determine the optimum transition sample 

values H~~~- As in the low-pass case, we will consider three cases 

separately forM= 1, 2, 3. There are two methods to design bandpass 

filters. The first method is based upon rotating the appropriate low

pass frequency samples to the desired center frequency location of the 

bandpa~s filter (27). Unfortunately, this approach will result in sub

optimum filters. 

The second method of design is based on the direct approach. As 

before, the method of design is to identify the stopband peaks after 

the passband and equate their magnitudes at desired locations. Here

after, the stopband after the passband is referred to as the second stop

band. For optimum transition values, the second stopband response has 

the same general form as in the low~pass case. This is true forM= 1, 
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2, 3. It is clear from Equation (3.50) that H*(ejw) is a function of 

only r~ variables. By considering (rHl) peaks in the second stopband and 

equating the magnitudes, we can solve for H£-i' where i varies from 1 to 

r~. The next problem is obviously the estimation of frequencies at which 

these peaks appear in the second stopband. This is discussed in the 

following. 

In the initial stages the estimates of these frequencies are taken 

as the frequency estimates in the low-pass case. The procedure for com-

puting H0 • is exactly the same as in the low-pass case. Using this 
.N-1 

procedure, several bandpass filters are designed. The transition sample 

values are listed in Tables VII, VIII, and IX under the column(s) H~~~) 
where the superscipt 02 indicates that the direct method had been used 

with low-pass frequency estimates. From this table it can be seen that 

the results are close. The results can be improved by slightly modify

ing the frequency estimates. For example~ for N-even and M = 1, these 

frequency estimates are 

(Dem) = 
w(£+1) 

(Dem) 
w(£.+2) = (Dem) + 0.908 (2N~) w(£+1) 

(3.5la) 

(3.5lb) 

where the superscript m is added to De to denote the modification. Using 

this, new transition sample values are determined and are listed in Table 

VII under the column(s) H(D~). Note that these are closer to t.he optimal 
2-1 

values in most cases. 

For M = 2, the modified frequency estimates are 

(3.52a) 



TABLE VII 

BAND PASS FILTER DESIGN--ONE TRANSITION SAMPLE VALUES 

BW M1 (R) H(D£) H(Dm) 
H(£-1) £-1 £-1 

Y. = 32 

5 2 0.40270386 0.40667276 0.39465273 

5 3 0.39149780 0.40577748 0.39318246 

5 4 0.39191895 0.40521567 0.39188286 

5 5 0.39454346 0.40512936 0.39077300 

6* 2 0.33091473 0.32610090 

6 3 0.33173234 0.32625118 

6 4 0.33205910 0.32546587 

6 5 0.33246836 0.32377809 

7 2 0.40203247 0.40060789 0.38693788 

7 3 0.38943481 0.40037655 0.38569950 

7 4 0.38916626 0.40211352 0.38626347 

Y. = 128 

18 20 0.34979248 0.35666284 0.35080178 

19 20 0. 37623901 0.37888641 0.36897930 

20 20 0.35097046 0.35-74142 0.35171492 

30 8 0.35111694 0.35998904 0.35368615 

13 10 0.38093262 0.38310250 0.37315707 

35 2 0.35415039 0.37639695 0.36673980 

35 8 0.36517944 0.37624874 0.36645867 

35 16 0.36619873 0.37713949 0.36671597 

35 20 0.36517944 0.37822934 0.36682640 

*The values reported in reference (27) were found to be 
incorrect through personal discussion with the authors. 
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TABLE VIII 

BAND PASS FILTER DESIGN--TWO TRAf~SITION SAMPLE VALUES 

BW M1 H(R) 
t-2 

H(R) 
£-1 

H (D£) 
£-2 

H(D£) 
£-1 

H(Dm) 
£-2 

H(Dm) 
£-1 

N = 32 

3 2 0.61574359 0.11821340 0.60043700 0.10687922 0.61562291 0.11811914 

3 3 0.61224050 0.11731567 0.60024400 0.10672362 0.61514781 0.11775416 

3 4 0.61825728 0.12105713 0.59981760 0.10643152 0.61427323 0.11714487 

3 5 0.62291631 0.12384644 0.59876520 0.10572686 0.61246674 0.11591245 

4* 2 0. 48773800 0.06962500 0.52149558 0.08542922 

4 3 0.48862130 0.06995900 0.51908831 0.08438990 

4 4 0.48886600 0.07001174 0.51535416 0.08427197 

4 5 0.48723720 0.06929670 0.50843755 0.07954104 

5 2 0.62173523 0.12357788 0.59995400 0.10853550 0.61527529 0.11965490 

5 3 0.62286495 0.12523804 0.59861696 0.10766031 0.61313562 0.11822056 

5 4 0.62855407 0.12827148 0.59527276 0.10547520 0.60831037 0.11499025 

5 5 0.62286495 0.12523804 0.58566614 0.09909300 0.59560601 0.10635950 

N = 128 

11 10 0.59676391 0.11203003 0.59293173 0.10698099 0.61413955 0.12083917 
I.D __, 



TABLE VIII (Continued) 

BW Ml H(R) 
£-2 

H(R) 
£-1 

H(D£) 
£-2 

H(D£) 
£-1 

H(Dm) 
£-2 

H(Dm) 
9"-1 

N = 1 28 (Cont. ) 

16 20 0.55215414 0.09031982 0.55436133 0.09130533 0.58522657 0.10828950 

17 20 0.59054608 0.10917969 0.59032336 0.10621975 0.61231700 0.12030180 

18 20 0.55425376 0.09111938 0.55693104 0.09231496 0.58736074 0.10918500 

28 8 0.55326966 o:o9022827 0.56255247 0.09453508 0.59241705 0.11134694 

33 2 0.58803040 0.10723877 0.58758180 0.10519906 0.61017280 0.11945610 

33 8 0.60405885 0.11864624 0. 58776022 0.10530080 0.61024300 0.11949710 

33 16 0.59243833 0.11191406 0. 58872725 0.10575400 0.61034200 0.11953300 

33 20 0.60405885 0.11864624 0.58904313 0.10585391 0.60932847 0.11894700 

*The values reported in Reference (27) were found to be incorrect through personal discussion with 
the authors. 



TABLE IX 

BAND PASS FILTER DESIGN--THREE TRANSITION SAt~PLE VALUES 

BW M1 (R) (R) (R) H(D£) H (D£) H(D£) 
H(£-3) H(£-2) H(£-1) (£-3) (t-2) (£-1) 

N = 32 

2 0.68572443 0.20360144 0.01790771 0.68098440 0.19782598 0.01668400 

1 3 0.68240900 0.19934001 0.01699829 0.67995701 0.19658837 0.01643867 

4 0.68649875 0.20508501 0.01849976 0.67816095 0.19442841 0.01600690 

1 5 0.67931499 0.19530278 0.01597290 0.67450612 0.19003530 0.01527490 

2* 2 0.51347724 0.12001553 0.00851332 

2 3 0.51017843 0.11770460 0.00818110 

2 4 0.50459280 0.11375022 0.00760600 

3 2 0.71117572 0.23341023 0.02207642 0.70503567 0.22620200 0.02054300 

3 3 0. 72135515 0.24743934 0.02587891 0.69990855 0.22006320 0.01925800 

3 4 0.70428223 0.22380012 0.01950073 0.70888400 0.23126751 0.02179214 

N = 128 

9 10 0.73460394 0.26306832 0.02807617 0.72518960 0.25133060 0.02526000 

14 20 0.67233389 0.20640635 0.01867676 0.69253789 0.22374000 0.02093500 

1.0 
w 



TABLE IX (Continued) 

BW Ml (R) (R) (R) H(D£) H(D£) H(D2) 
H ( £-3) H(£-2) H(£-1) (_e,-3) (£-2) (2-1 ) 

N = 128 (Cont.) 

15 20 0.74047619 0.27145008 0.03029785 0.72665649 0.25366280 0.02577300 

16· 20 0.67549529 0.20830605 0.01875610 0.69646820 0.22698400 0.02143004 

26 8 0.68240265 0.21150551 0.01835937 0.70572685 0.23484990 0.02266000 

31 2 0.74186481 0.27190412 0.02974243 0.72614637 0.25367596 0.02851741 

31 8 0.73722876 0.26787226 0.02946167 0.72609062 0.25361398 0.02583910 

31 16 0.74060358 0.27143276 0.03010254 0.72502869 0.25245104 0.02560545 

31 20 0. 73722876 0.26787226 0.02946167 0.72125372 0.24827766 0.02475732 

*The values reported in Reference (27) were found to be incorrect through personal discussion with 
the authors. 
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(Oem) 
w£,, = wiOem) + 0.5 (~n) 

= wi?em) + 1.25 (~TI) 

(3.52b) 

(Oem) 
w(Hl) (3.52c) 

Using these, the new transition sample values are computed and are listed 

in Table VIII under the column H~O~), i = 1, 2. Again, the results are 
x,-l 

closer to the optimum. Table IX gives the transition sample values for 

three transition sample cases using the low-pass frequency estimates. 

The values are close enough that the modification is considered unneces-

sary. 

For comparison purposes, a bandpass filter of order 128 is designed 

using the following specifications: Ml = 20, BW = 16, and M = 3. The 

transition values used are obtained by direct approach and are given by 

(09.) - (09.) ' (09.) 
H(£-l) - 0.02143004, H(£- 2) = 0.226984, and H(£-3) = 0.6964682. The 

corresponding bandpass filter characteristics are plotted in Figure 11. 

Using the optimal values obtained in Reference (27), the same filter 

characteristics are plotted in Figure 11. The responses are essentially 

the same with the maximum peak being -90.8 dB. 

From the above discussion it is clear that the direct method of de-

sign is simple and accurate. Also, the computation time required by the 

direct method is negligibly small when compared to the existing technique. 

3.6 Ripple Reduction in the Passband 

The direct method presented earlier can be considered as an approxi

mation after the discontinuity. However, the same type of idea can be 

used to get an approximation before the discontinuity; that is, instead 

of considering the minimum ripple magnitude for the stopband, we can con-

sider the minimum ripple size in the passband. It is clear that the 
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design procedure discussed earlier has no control over the ripple size 

in the passband. In the following a design technique to reduce the 

ripple size in the passband only is presented for digital low-pass fil

ters. This problem has not been discussed in the literature. 

Consider the passband response as a function of the transition sam

ples. Figure 12 shows the passband behavior of H*(ejw) for one transi

tion sample, Hi-l, for N = 33 and BW = 8. It is clear from this figure 

that the passband has minimum ripple when Hi~~) = 0.66. The second 

ripple before the discontinuity is small when compared to the first 

ripple before the discontinuity. Also, the first and third ripples be-

fore the discontinuity have approximately the same ripple size. It 

should be noted that the same type of behavior appeared in the stopband 

case. This gives a clue for determining the optimal transition sample 

value H1 (o) and is discussed below. t-1 ' 
As in the stopband case, the transition sample values can be ob-

tained by equating the ripple sizes. The next step obviously is to 

find the frequency location at which the ripple peaks appear. For one 

transition sample case, the first and third peak ripple peaks appear at 

approximately 

I = 0.125 (2n) (3.53a) wt-2 wt-2 - N 

I I - 1.499 (2n) (3.53b) wt-3 = w£-2 N 

with 

wt-4 < wl 3 £- < w 3 < t-
I 

< w 2 (3.54) w£-2 t-

The estimates in Equation (3.53) are valid for both N-even and N-odd. 
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Several low-pass filters are designed for different values of N and 

BW and the results for Hi~~) are tabulated in Table X. Note that these 

are applicable for minimum ripple in the passband only. 

For the transition samples given in Table X, the responses are 

plotted and the passband response has the same general form as in Figure 

12. It is clear that the same type of approach can be used to determine 

the transition samples forM = 2, 3. However, this is not discussed any 

further here, as too much ripple reduction in the passband introduces 

large ripples in the stopband. This is not suitable for most filter 

designs. 

3.7 High-Pass Filter Design 

It is clear from Equation (3.2) that H*(ejw) = 0 at w = n. Note 

that Equation (3.2) is valid for symmetrical impulse responses. Unfor

tunately, H*(ejw) ; 0 for high-pass filters (see Figure 13). Therefore, 

the digital high-pass filter cannot be designed in the strict sense by 

the frequency sampling method (23). However, ignoring this problem at 

w = n, we can design high-pass filters. This is discussed below. 

The approach will be similar to the stopband designs discussed 

earlier. Figure 14 gives the stopband response of a high-pass filter 

for N = 32 and Ml = 5 for different transition sample values, H~~i. 
w£_ 2 represents the frequency sample location at which the stopband 

ends. When H~il) is optimum, i.e., when H(il) = H(ol), it can be seen that 
N- 9_,- 9_,-

H*(ejW) have the following pattern: 

ro for w£-2 < w < w 
Q.,Q 

H*(ejw) = > 0 for w < w < w 3 £0 Q.,-

> 0 for w 3 < w < w 4 Q.,- Q.,-

(3.55a) 

(3.55b) 

(3.55c) 
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TABLE X 

TRANSITION SAMPLE VALUES (PASS BAND) 

BW Ht(o) 
~-1 

BW H, (o) 
£-1 

N = 15 y = 125 

3 0.71486779 3 0.70226677 
4 0.70023225 4 0.67731154 
5 0.70751371 .6 0.65921598 
6 0.74719605 8 0.65181617 

N = 33 10 0.64781659 
18 0.64163484 

3 0. 70417177 26 0.63992416 
4 0. 68016281 34 0. 63971341 
6 0.66429036 42 0.64076580 
8 0.66005581 50 0.64447898 

10 0.66122499 58 0.66512434 
12 0.66893186 59 0.67516678 
14 0.69591709 60 0.69406127 
15 0.74196609 61 0.74097346 
y = 65 N = 16 
3 0.70263388 3 0.71288805 
4 0.67784333 4 0.69599624 
5 0.66655820 5 0.69793453 
6 0.66008166 6 0.71926600 

10 0.64947212 

14 0.64643522 N = 32 

18 0.64616754 3 0.70431012 

22 0.64836296 4 0.68037863 
26 0.65580988 6 0.66471886 

30 0.69441361 8 0.66086783 
31 0. 74116663 10 0.66287346 

12 0.67300467 
14 0. 71278932 
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TABLE X (Continued) 

BW H• (o) 
.Q,-1 BW W (o) 

.Q,-1 

N = 64 N = 256 

3 0.70264993 3 0.70216474 

4 0.67786677 4 0.67716527 

5 0.66658918 5 0.66567335 

6 0.66012065 7 0.65459750 

10 0.64955172 10 0.64740808 

14 0.64658215 11 0.64598953 

18 0.64644738 18 0.64081390 

22 0.64897279 34 0.63743199 

26 0.65765446 50 0.63648256 

30 0.71154972 58 0.63631395 

N = 128 66 0.63627973 

80 0.63653672 
3 0.70226054 106 0.63934134 
4 0.67730259 114 0.64276615 
5 0.66585079 122 0.65643695 
7 0.65485542 123 0.66150116 

10 0.64779106 124 0.66931056 
18 0.64158067 125 0.68280665 
26 0.63982412 126 0. 71118831 
34 0. 63952551 

42 0.64036774 

50 0.64334560 

58 0.65666773 

62 0. 71125964 
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Looking closely at the optimal stopband responses of high-pass and low

pass filters (see Figures 2 and 14), the following observations can be 

made. Viewing the stopband responses from right to left in the low-pass 

case and from left to right in the high-pass case, it can be seen that 

the responses are similar. Equation (3.55) gives a clue for determining 

H~~i· 
The comput~tion of H~~i is based on equating the magnitude of the 

ripple peaks immediately before the passband--counting from right to 

left, we will use first and third peaks in the stopband. Again, the 

problem of selecting the location of the frequencies (say, w~0 and w~_ 4 ) 

at which these peaks appear should be considered. Using the optimal re-

sponse in Figure 14 as a guide, the location of the frequencie~ at which 

the ripple maxima and minima appear are empirically determined. The 

estimates of these frequencies are given by 

I = wt_ 2 - 0.375 (2TI) wto N (3.56a) 

I = I - 1.3125 (2n) 
wt-4 wto N (3.56b) 

Note that the bounds for these frequencies are given by 

(3.57) 

Using Eq~ation (3.56) in Equation (3.55) and assuming that the magni

tudes of the peaks are equal, an equation with Hi~i as unknown can be 

obtained. Using this approach, few high-pass filters are designed by 

the direct approach and the results are tabulated in Table XI. Using 
(o) the values of Ht-l' stopband responses were plotted and they exhibit the 

same pattern as in Figure 14. 
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TABLE XI 

HIGH-PASS FILTER DESIGN (ONE TRANSITION SAMPLE VALUES) 

Ml 
H(o) 

£-1 

y_ = 32 

3 0.30444908 

4 0.32713361 

5 0.32957560 

y_ = 128 

6 0.34318804 

10 0.35350332 

14 0.35738251 

18 0.35935215 

The same ideas can be extended to design high-pass filters with M = 2 

and M = 3. These are not considered any further as the filters designed 

by the above approach are not strictly high-pass. 

3.8 Summary 

This chapter is concerned with the frequency sampling filter design. 

In designing these filters, the ideas of smoothing techniques and least-

squares are used. The direct method of solution is also discussed. The 

approach presented above is simple and direct, and will not use any 

search or linear programming techniques. Furthermore, it appears that 

the proposed method is faster than any other existing technique and the 

convergence problems need not be considered. Several low-pass bandpass 
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filters are designed by the direct method and the transition values de

rived .are compared with the optimal values given in the literature. In 

addition, ripple reduction in the passband along with high-pass filter 

approximation is discussed. 



CHAPTER IV 

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY 

4.1 Summary 

This study deals with the application of the fast Fourier transform 

(FFT) to the solution of a system of Toeplitz normal equations of the 

form y = AT0~, where AToe is a symmetric Toeplitz matrix of order£ and 

~andy are£ dimensional vectors. In addition, a direct approach to the 

frequency sampling digital filter design is presented. Interestingly, a 

relationship is derived between the filter designs by direct convolution 

and the frequency sampling method. 

The approach to the solution of a system of Toeplitz normal equa

tions is based on using iterative techniques, circulant matrices, and the 

fast Fourier transform algorithm. The given Toeplitz matrix is converted 

into a symmetric circulant. An interesting property of a circulant 

matrix is that the modal matrix of a circulant matrix is the discrete 

Fourier transform matrix. The iterative technique used in the solution 

is the conjugate gradient method. The computational requirements are 

reduced by using the classical fast Fourier transform algorithm. 

The computational requirements in the worst case is shown to be 

K(8£log24£ + 4£), where K_::£ and£ is the number of equations. There 

will be a considerable amount of saving in computational time, especially 

when solving a large number of equations by this method. In addition to 

the reduction in the number of computations, accumulated rounding is also 

l 09 



reduced. If the approximate solution is known, this method requires 

fewer number of iterations. 
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The FIR filters can be effectively designed using frequency sampling 

techniques. Using the special matrices like the circulants, an interest

ing relationship is derived between the filter designs by discrete con

volution and the frequency sampling method. 

The direct approach bf FIR filter design involves the use of smooth

ing techniques and a direct solution. The criteria used is to find the 

magnitude of the transition samples such that the maximum stopband side 

lobe is minimum. It is well known that the stopband response will have 

mini-max characteristics when the transition sample is optimum. The con

clusions regarding the behavior of the stopband response are obtained for 

different values of the transition sample. 

Using these ideas a direct solution to determine the transition 

value is derived. The method is based upon equating the magnitudes of 

the ripple peaks. The number of peaks considered will depend upon the 

number of unknown transition sample values. In general, if M denotes 

the number of transition sample values, (M + 1) ripple peaks in the stop

band is normally considered. The frequencies at which the ripple peaks 

appear are determined empirically using the optimal responses as a guide. 

Using these frequencies and assuming that the magnitudes of the ripple 

peaks are the same, the optimum transition sample values are determined. 

Using these ideas several low-pass filters are·designed and the 

transition values derived are compared with the optimal values given by 

Rabiner et al. The transition sample values are near enough to the 

optimum that these can be used for design purposes. The method does not 

make use of any search or linear programming techniques. Thus the method 
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of design is simple and direct. It appears that the direct method of 

design is faster than any other existing technique and the convergence 

problems need not be considered. 

The direct approach has been extended to design bandpass filters. 

Again, the transition sample values in the bandpass case are close to the 

optimal values determined by Rabiner et al. The extension of the direct 

method of design to the high-pass filters is straightforward. The 

digital filters designed by the direct method is not strictly high-pass. 

The design using the stopband responses to have minimum ripple size 

as a basis can be viewed as an approximation after the discontinuity. 

However, the same type of idea is used to get an approximation before the 

discontinuity. Instead of considering the minimum ripple magnitude in 

the stopband, the minimum ripple size in the passband is considered. The 

stopband design has no control over the passband. Several low-pass fil

ters are designed and the transition values are tabulated to have minimum 

ripple size in the passband. Again, the passband design has no control 

over the stopband. From the knowledge of the passband and stopband re

sponses, a method for the general filter design could be derived. Fur

ther work is necessary in this regard. 

The only limitation of this technique is that there should be a min

imum number of ripple peaks to form the desired equations, which is not 

a serious limitation. 

4.2 Suggestions for Further Study 

Some extensions to the present study are proposed below. 

The matrix method presented in Chapter II needs to be studied fur

ther. It appears that the matrix approach has significant applications 
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in the general filter design. The results in Chapter II need to be ex

tended to nonsymmetric Toeplitz matrices. 

From Chapter III one can see that the accuracy of the direct method 

depends on the location of the frequencies at which the ripple maxima and 

minima appear in the stopband. The empirical formulas developed earlier 

should further be justified, and the estimates can further be improved by 

including more terms. 

Most of our results were confined to type 1 designs. The same ideas 

can be extended for type 2 designs. The only difference between the type 

1 and type 2 is in the location of the initial frequency sample and the 

procedure is rather straightforward. The direct approach can perhaps be 

extended to design digital differentiators. 

The direct approach presented in this thesis is for uniform samples. 

These results need to be extended for nonuniform samples. 

Further work is necessary to arrive at a general filter design. The 

computation of the order of the filter from the given set of specifica

tions is still an open problem. The optimum transition values for stop

band and passband should give a clue to determine N, the order of the 

filter. In addition, these clues could perhaps be used to obtain a ge~

eral approach. 
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APPENDIX A 

COMPUTATION OF FREQUENCY 

RESPONSE OF FIR FILTERS 

This program determines the values of the frequency response of 

Type l linear phase filters at different frequency locations using 

Equation (3.5) given in Chapter III. Input data includes, the order 

of the filter y, the number of passband frequency sample values IZ, 

and the transition sample values T1, T2, and r3. The scaling factors 

are evaluated in sub-routine scale, and the frequency response is 

plotted using the plot routine PLT20A. 
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XY=!l ... Pl~DFLOATI!Z+311/Y 
GO TO 50 

!NCREME~T THE FREQUENCY. 

X= X t(2. >PI l/ !Y~DFLQATIK41l 

COMPUTE THE MAGNITUDE BY THE FIRST fRE~UE~CY SAMPLE. 



c··. 
21 } 5 c 
22 
23 
24 
25 
2c 

c 
c 
c 

27 
28 
29 
30 1 c 
31 20 
32 
33 
34 
35 
36 
37 
38 
39 
40 
H 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
51 

c 
c 
c 

58 
c 
c 
c 

5'1 
60 

c 
c 
c 

61 
cz 
63 
64 
65 
66 105 
67 

".76=051 ~~x~vtz .1 
R77=DSIIJ IXI2.1 
RS= P76 
I F ( CA aS ( K. 7 S J • l :::: • = iJ S • :.. ~: :..: • LJ ..\::) S ( ;~, 7 7 ) • L := • t: .~ ) l ;. 7 'j = { Y I 2 • I ::o J C J S ' .( *'f I 2 • l 
I F I ~~ d S I ;:. S l • L E • f P <; • ~ ~: j • u AS S I ~ 77 I • L:: • c ? S I U 7 = ! J • 5 ·) C I ~):: J S ( X I 2 • l 
~ 7 8 =I l. I Y I •! R 7 bl '7 7 I 

.<R= 1 
i'72=0.)0 
:.;.= 10 ~0 
,(<l=KR+1 
X3= (P I«OFL•:'ATI Ke, I 1/Y 
X4=1XI2.1-X3 
X5= (X/2. I+X3 

X7=~*X'> 

R79=0SIN(X61 
RBO=OSINIX41 
RR=P79 
IF( DAB:ilf<-7'ii.LE.EP5.ANO.DABSIRBOI .LE.EPSI R79=IY/2.l*DCOSIX61 
It' I CABS I RR I • L E • EP S. AI'IO .DABS I R 80 I. LE • E PS I R8 0= I 0. 500 I *DCO S I X 41 
R81=11./YI>I<IR791~801 

IFIKR.Eu.:~ll Rd1=0.81*T1 
IF(KR.~O.M21 K8I=P~l*T2 

I F I KR • .' J • ~ 5 I -~,; 1 = ~ J 1 * T l 
R72=R81+R72 
RdZ =DSI.'<IX71 
R83=DSINIX51 
RY=RBZ 
IF ( OAtlS ( Rd21 .LE.EPS .A.'lD.DAbS 1Rd3 I .L E. E?S I '32=( Yl 2. I *DC OSI X71 
IF( OAtlS(RYI .LE .EPS. AID.DABS( k83 I. LE .EPS I Rd3=(J .500 )«OCOSI X 51 
Rd4=11./YI$(R821R331 
IF ( KR.EC •. 'HI Rd4=R84*Tl 
[ F I KR. ~ u •. '1 2) I< 8 4= R d 4$ T 2 
IFIKR.EO.~JI ~S4=RB4•T3 

R 72=R 72+R84 
IFIKR.LE.I IZ+lll GO TO 10 
R7L=R72•R7o 

STOO.E THE FREUUE'<CIES FF<OM ZERO T~ PI ~~l)[A"'<S. 

XU II =X 

STORE THE CCRRESPG;<D I.'<G ."'AGN !TUDES. 

Y li II =R 72 
I= I +1 

TERMINATE THE PROGRAM WHEN THE FREQUE~CY IS PI RA~IAS. 

IF( ~.LE .XX I GO TO 49 
IL~ I-1 
l [ =0 
DO ZOO J=l,I L 
WRITE I IOUT.l051 XliJI,YliJI 
FO>li'AT IS X, E20.lO, 5X,E20.10l 
IFIXliJI.GE.XYI GO TO 209 

N 
0 



6d 
69 
70 
71 
72 

73 

2 Cct 

2 c ~ 
c 
c 

~: TO 200 
u~u•t 

QILil=XliJl 
Y21Lll=Yl!Jl 
C JN Tl 'WE 

CALL S~Ul.'>IXl,IL,vM!",V"'AA,X'H'I,X'lX,lJJ 

14 CALL SC:.XISlYl,[L,·J.~I.''i,'J._,AX.,Y"1l~l,Y:-1!X,lJJ 

75 CALL ?L T2JA(Xl,Yl,!L,X"'4X,XM['~, Y'IAX,Y:~pl) 
76 L".~Ll 

71 r;::; E9 JJ=l.L"-
7<l w<lTEilOUT,lJ5l -<21JJ),Y21JJl 
79 3<; CO'JTI ~~E 

c 

80 
81 
82 
83 
84 

dS 

86 
d7 

a a 
89 
90 
91 
92 

C USE THE PLOT ~OUTINE TO PLOT THE STOP SANU Q.ESPJNSE. 
c 

CALL SCAXIS(X2,LR,VM!N,V'1AX,XM!N,X.'1AX,l0l 
CALL SC.\XISlY2,LR,VM!N,VMAX,Y~[N,Y'IAX,lOl 
CALL PLT20AIX2,Y2oLR,XMAX,XM!N,Y~AX,YHINI 
STOP 
END 

SUB~QUTINE SCAX!S IV,NV,VH!N,VHAX,SHIN,S~AX,NG l sox 
sc~x c 

c 
c 
c 
c 
c 
c 
c 

••• •• ••" "" • ••• •••• • ••• •• • •• • • •• • • •• • • •• •• •• • • ., • • •• • •• •••••••••••• SCAX 

THIS IS A ROUTINE "HICH niLL s::LECT A SCALE fCJR OAIA TO BE 
PLOTTED. THE USER HAY EITHER SUPPLY THE JATA Tu BE SCALED 
OR THE HI Nl.'1U.'1 A/\10 MAX !MUM OAT A VALUES. I'~ AOD IT IJN, THE 

THE VeCTOR OF OATA TO .3:0 SC.H::D. v 

• SC.\ X 
.sox 
.SCAX 
.SCAX 
.S CAX 
.SCAX 

C NV THE NUHoER 'JF POINTS IN V T'J BE SCALED. IF 'lV IS .SCAX 
C ZERO, THEN THE RCUTIN~ ASS~HES THAT V'IIN A.'JO V.'1AX .SCAX 
C NOT TO BE SeARCHED. .SCAX 
C COI'.TAIN TH!: M!r<IHUM AO.Ll MAXI . ..,UM OF THE DATA A~O V IS .SC~X 

C V:-I!N THE ~ll'HHUM DATA VALUE .SUX 
C V.'-IAX THE MAXIMUM DATA VALUE .SCAX 
C S:-IIN THE SCALED .~INIHUH VALUE. Sf-1!N .LE. VMI~ .SCAX 
C SHAX THE SCALED MAX I MUM VALUe. S:~AX .~E. VM<\X .SCAX 
C NG THE NUMBER CF INCREMENTS TO Af'PEAi>. J" THE S:ALEJ AXIS .SCAX 
C .S CAX 

. C IN ACOIT ION, AN INTEGER ARRAY CALLEL> "ALLOW" CONTAINS THE .SCAX 
C ALLOWABLE SCALirlG VALUES. THESE .'lAY 8E CHMlGEO TO GivE A .SCAX 
C DIFFERENT SET OF VALUES BY SPECIFING NE~ VALUES MW PLACING .SCAX 
C THEM IN A CO~I'ION ARRAY CALLeD IALLJ'.;BI I MAXI>4V"1 JF 20 .SCAX 
C VALUES l. .SCAX 
C .S ClX 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• SCA X 
C SCAX 

DIHENS IGN v ( 11 SCAX 
INTEGER ALLOWI91 I L' z, 3, 't, 5, "' 7. a' 'l I, NA I 'l I SCA X 

c .... 5 CAX 
c•• .. SEA PCH FOt< VMlN AND VM o~X IF NEfDEJ sox 
C*'*'>"' SCA X 

IF NV • E 0. 0 ) GO TO 20 S CA X 
VMIN ~ v' 11 SCAX 
VI' AX = -v 1-1 1 SCA X 

DO 10 I = 2. NV SCAX 
VMIN = AMINI ( VM IN, v ( l) ) SCA X 

1 
2 
3 
4 
5 
6 
7 

ll 
l 0 
!2 
[ 3 
l 5 
14 
to 
1 7 
lB 
19 
20 
21 
n 
23 
24 
25 
26 
27 
28 
29 
JO 
J l 
32 
33 
34 
35 
}b 

31 N ...... 
38 
39 



93 
9'+ 

9S 

96 
"o7 
9.3 
9S 

100 
10 1 

102 
10 3 
104 
1C5 
1C6 
107 
1CU 

lC9 
110 
~ll 

112 
113 
114 
115 

116 
11 7 
118 
119 

lJ 
V ~.I.. A X 

cc·~r u.uc 
!~~X1 ('/~!X, V(l) ) 

C*V:o: SC::. l'= { v.·.l..t..X - V"1[•i ) I •.t~ T.'J rl.\Vt" f'i~ S!.-.4t_ 'tJ'-10=-t;. ~F 

ce** Ol ([T5 A~ TrlE c·~r:: 1E5 !'. ~LLO" 

(*'*:¢. 

.'it> ~ I F ; X I l • 0 l + ~ l c.' ; l J F L •- ~ ~I ;, L l ·~ h ( ll ) ) ) 
v InC -= ( \1.\if.IX - V~ [~ .. I I ·.:_; 
A = ALC~l; t II''( 
I = A 
IF I -' .LT. J .J ) = I ~ l 
SCAL~ = lJ.J •• I ~D ~ l - I 
/ I~iC ~ VL',C • SCAL= 

C*'"" FI'IC A'< cL=~:<:::H [•, ALL:;~ THAT IS Gi'. 0 !Tci'C T-;!··, .cR ~~IJAL TJ Vl'IC 

30 
;a 

c ·~* 
C*** 
C**" 
('O:>e:l): 

C*** 
50 

C**" 

DJ 3 0 I = 1, 'I.\ 
A = A LLOwt I) 

IF I A .GE. Vl'i( ) GO TO 5J 
CL''IT I\IUE 

I = I 
A = 4LLC>"t 1) 
SCALE : SCALE I lu.O 

THE S'1ALLEST ALLJw~BL'C PICRE"<E'iT IS ,~J" 4 I SC!LE. 
NOlo PICK S~!r~ Ai'<::J 51-'~X SUCH THAT lER:J •ILL ilE J,'IE 
ClF THe I'KKE'1o'IT VALUES 

IF ( 

VINC = ~ I SC"L~ 
4 = V ~ [ . ._. I VI NC 
J = & 
l • LT. o.o ) J = 
SMIN J * v 1 ·~c 

J 

5 "'AX $.'1 IN + VI'>C 
IF ( S~AX • GE ' VMAX 

- l 

* NG 
I GO TD 6J 

C*** VUIC IS TOe S.'1ALL TO FIT THE ADJUSTED ,>,A'lGE. l'iCREA~E IT. 

IF ( .E-.. NA I Gu TO 40 
I + 1 

A ALLQW(ll 
GO TO 50 

C*** 

sc A 

_j.c.. ~ 

~c X 
sc 
SL:.;.. 
sc~, 

i ·: .'..( 
S :_"._X 

:. .::. ~~ ' 
~·-.:..A 

';[_:.A 

S C ~ X 
SC!( 
SC-' X 
SC -~X 
sc~x 

sox 
5 C•\X 
S C-1 X 
sc.~ x 
sc~x 
S C .\X 
S ~A X 
SCAX 
SC\X 
sc~ x 
S CAX 
SC.\X 
SCA X 

S (AX 

SC.\ X 
SC.\ X 

scu 
sox 
sox 
s c .\X 

SC·\ X 
SCAX 
SC.\X 
SCA X 
S CAX 
SCAX 
SC.\ X 

120 60 RETLRN SCAX 
121 E~O SCAX 

SE\ITRY 
122· SUBROUTL'IE PLT20A I X, Y, Kl, XMAX, XI'IN, Y"'AX, YMIN I PL>lT 

C PLJT 
C •••••••••••••• ••• ••••••••••• ••• ................................... PLJT 
C .P lu T 
C SUBROUTINE TLl PRODUCE A PRINTER PLOT OF X VR S. Y .PLOT 
C X ANDY ARE POUNO'CJ ( \lOT TRUCICAT~I) I TJ THE 'oEA:{f.)T .PLJT 
C (NTEGERS fiEHlRc PLDTTI'IG. GRID SIZE IS lJ X 10. .PLOT 
C .PLOT 
C X ARRAY OF X CDJRDI NATES .PL.JT 
C Y ARRAY uF Y COORDINATES .PLJT 
C Kl NUI'II:IER tJF PCINTS IN X MID Y .PLJT 
C XMAX MAXIMUM X VALUE .PLOT 
C XM!N M!NIMU,~ X VALUE .PL.JT 

c.O 
"1 ,z 
't j 

' = .. ~ 

~ l 
~~ J 

't ~ 

:: ~ 
-; L 
);:_ 
-. -~ 

5~ 

55 
56 
57 
·j d 
59 
',() 

b l 
62 
D3 
t,'.;. 

65 
t:6 
67 
6d 
:;9 
10 
7 1 
72 
13 
7'+ 
75 
T6 
77 
7d 
79 
20 
3 l 
d2 
d3 
~4 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 N 
13 N 



123 
124 
125 
!26 
12 7 
128 
tzq 
130 
131 
D2 
133 
134 
135 
136 
137 
138 
139 
140 
HI 
142 
143 
144 
145 
146 
147 
148 
14'> 
150 
15 l 
152 
153 
154 
155 
l5b 
157 
!58 
159 
160 
161 
16 z 
163 
164 
loS 
!6h 
167 
161:! 

169 
170 
171 
112 
173 

c 
c 
c 
c 
c 
c 
c 
c 

!F x:~t...x ~ X···H N, .< :,jiLL ?,E s=~R.L.i--E\1 T:: FI.';Q frE ~I-".i"'J"" 
lNO :~~XI~U~ VlLU~S. 

Y~!X : "AX! "''UH Y J iLUE 
Y •IN : Ml 'H MU~1 Y VALU!: 

IF Y""~X.::: V~t~:, Y ..illl ~C SE!::'C,::J f' FI.·~D i'1E "'l'.I.,J.~ 

!.'IJ ~Axr "-1J.I..4 vAL·Jc·s. 

.PL,1T 
.PLJT 
• ? L J r 
.t'LJT 
• PLOT 
.?L ~ r 

........................................................................... P L J T 

14 
1 5 
16 
l 1 
l :l 
19 
2J 

= 1 

0!'1E'15lC'; ,q U, Yl ll 
CU~U~ /POINTS/ lFXI1Ull, LXI111 
DATA I~L\~. ISTA~ I lrl , lH* 
OATt ['(tAAX I 50 /, Jl I 1 I 

LIN~ ; 5 
XL X"A X 
YL YMAX 
XS XM! :-< 
YS YM!'l 

IF I X.'\AX .clE. Xl-11:< I GO TO 20 
XL XI 1 I 
XS XI ll 

DDlON Z,KI 
XL AMAXI XUH, XL 
XS A.'-\ I'll XPll, XS 

10 CC'.r !NUE 
2J IF I y,~AX .NE. YMI r.. I GU TO 40 

30 
40 

50 
60 

70 

80 

90 

YL Ylll 
Y S Y Ill 

[) J 3 c .'4 

YL 
YS 

C JtH !NUE 

2, Kl 
~.~AX l 
-'MI Nl 

Yl.'Jl, YL 
Y I'll, YS 

X SCALE XL - XS * 0 .J 1 
YSCALc YL - YS FLCJAT I !YHAX I 

PSI~! 200 
PR [.~ T 21 0 

LL IYMAX 
GO TC &0 

LL ~ lL - 1 
DO 7 C I ~ 1, 10 1 

IFXIII = IBL'jK 
C 0~1 T I NUE 
DO 90 I ~ J1, Kl 
IF I Xlll .GT. XL .OR. XIII .LT. XS l :;u TO 90 
IF I Ylll .GT. YL .OR. Ylll .LT. YS J GO TO 90 

IY (Y(II-YSl/YSOL:0+0.5 
IF I Y - LL I 90, 80, 90 

IX I XIII- XS l I XSCALE + 0.5 
I I 1 X + 1 
1 FX I 1 I I = IS TAR 

CO)< T INUE 
LY = FLOAT I LL l * YSCALE + YS 

IF LINE .EO. 5 I PRINT 220, LY, I IFXI ll, I; 1, 101 
IF LINE .NE. 5 I PR!.'lT 240, I !FXIIJ, l; I, 101 I 

LINE ~ L Ul E • 1 
IF LINE .GT. 5 LINE ; 
IF L L • N E • 0 I G · l TO 50 

PRJ H 210 
DO 1 CO K ; 1, U 

ZX!Kl ~ 10. *FLOAT I K- 1 I • XSCALE + XS 

. 22 
?LJT 23 
?LJT 24 
PLJT 25 
PLoJT Zo 
~L)T 2 7 
PLJT 2:1 
PLJT 2 9 
PLJT 30 
PLC'T 3 1 
PLOT 32 
PLOT 33 
PLOT 34 
PLOT 3 5 
PLOT 36 
PLOT 37 
PLOT 3 8 
PLOT 39 
PL:JT ~J 

PLJT 41 
f> L \] r 
PLJT 
PLJT 
?LJT 
PL:JT 
DLJT 
PLOT 
PLOT 
PLJ r 
PLOT 
PLOT 
PLOT 
PLOT 
PLOT 
PLOT 
PL'H 
PLJ T 
PLC!T 
PLOT 
PLJT 
PLOT 
~LOT 

PLJT 
PL:JT 
PlOT 
PLOT 
f'L·J T 
PLJ T 
PLOT 
PLOT 
PLD T 
PLOT 

42 
'd 
44 
45 
46 
41 
4d 
'+9 
50 
~ l 
52 
53 
54 
55 
56 
57 
5d 
59 
60 
61 
&2 
63 
64 
65 
6~ 

67 
6il 
69 
70 
7l 
72 
73 

N 
w 
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APPENDIX B 

COMPUTATION OF TRANSITION SAMPLE VALUES 

The program computes the transition sample values using the 

direct approach discussed in Chapter III. Input data includes, the 

order of the filter y, and the number of passband frequency sample 

values IZ, and the total number of transition sample values N2. In 

addition to the above, for the bandpass and high-pass cases an addition

al parameter Ml (i.e., the zero valued frequency samples just before 

the first transition sample) is also required. The output of the 

program includes the transition sample values along with R72, R73, 

which represents contributions to the frequency response by the fixed 

and unknown transition sample values, respectively. 

125 



2 

3 
4 
5 
6 
7 
3 
9 

10 
ll 
12 
13 

14 
I 'i 
I ·, 

1: 
18 
19 
20 
21 

22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
33 
39 
40 

SJ:-:?3 rr~ =l;J,~.>.t..;::s:to .. i.~l u~c~~r<..L.IgLrsr 
C 3A C ~lSS FILTER J S!G~. 
C T·HS ~:"""J';.<.!t~ uSE5 Tri C)(-t;::CT ~?P~d_-A::; fC F~t:"'J ~~cy ~~:~rlLI ... G ;:ILTE=i 
C JCS[;!I-J r>rt::sE:-(TEU ['~ ;:.,~pf::~. 'rY.)E:= TC -:=:~~>JT~ TH T~ANSITt.J~i S4~tll::: 

c 
c 
c 
c 

-

c 
c 

c 
62 

c 
c 
c 

10 
zc 

c 
c 
c 

'oi~LJE,;. Jt-:: FCLLC.,I"~G P.\~!''":Tt:;<S A~.t: JSE:J .\5 [ DUT. 

Y-Jt<JE~ =:= T,...E FILTE.q. 
ll-'" .. J"'"J.~~ _,.: PAS$ :j,\1',.0 F:<;:: .. : .. L:~.tCY S...\'H'L=Sc .. 
._.1_;: TVTil '-L:""0::'< UF l~~C: 'f',\LU=J F:)= .. JEr-.;.:y SA".t;.>L~S a~r:;....~ frl::; F- r;~i 

T~~\~lT!C~ SlMPLE VALJE 
I~PLICIT <E~l*81l-~,C-ll 

J I ~~ ·-~S. I ~~~ !{. l ( 4 l , R 2 ( 41 • T l ( '*) • T 2 { 4 J • tl 3 ( 3 J • i>{ 3 • 3) r P l { 3 , 3) , P 2.. ( J, 3l , 
li !3 , J I, I U 31, !.'113 I, P 7 ( 31 , ? " ( 3 I 

Y=123 
'12= ~ 
OG .D3 M1=l6,2J,4 
ll= ~1 
"Z= I' l+l 
'i3= "2 +1 
~-14=:-tj+~ lt-l 
'15= ~4H 
\A6: !"5 Tl 
M7=1'3H 
Pl=!.l'>l5'12654 

LISE THe FIR:>T FREQUENCY ESTIMATE. 
X= I 2.DG.,PI ~:JFLOATUHII /Y+I2.tJ0"'PI/YI*O. 12 5 
KL=C 
1=0 

KR= 1'1 
R72=0.JO 
R73=0.00 
~74 =J.OO 
R 75=0.00 

CO'IFUTe THE COI-<TR!tlUT ION BY THE FIX ED FRE'JUENCY SAMPLES. 

GO TO 20 
KR= ~R+l 
XJ=IPI*DFLOATIKRII/Y 
X4= IX/l.OOJ-X3 
X5= IX/2 .OOI+X3 
X6= ~* X4 
X7=Y*X5 
IF(KR.EO.Ml.OR.KR.EO.M61 GO TO 60 
IF! KR.:'J.M2.0R.KR.EO.M51 GO TO 63 
IFI KR .EQ.M3.CR.KR.EQ.M41 GO TO 64 
RT<J =DSI NIX61 
R80=0SI Nl X41 
Rdl=(1.00/YI*IR79/RBOI 
R 72 =R 7l+R3l 
R.82=DSI~IX71 

RS 3 =DS I NIX 5 I 
q tl4 =I l. 0 C I~ I * I R 8l/ R 83 I 
R7 2=R 72+Rtl4 
GO TO ol 

CONTRiaUTION BY THE Fl~ST AND THE LAST TRANSITION SAMPLES. 



q 
42 
43 
44 
45 
46 
47 
4.0 

49 
'50 

s l 
52 
53 
54 
55 
56 
57 
58 
59 

6C 

c 
1.. 

c 
63 

c 

R9J=DSI.~Di:l 
n1=~SI'\II~41 

"-92 =( i.J G/ t I* ( '9J/R~ ll 
~ 7 3=i<73+K J2 
R93=CS!Jio(X71 
q94=J5:'\1(.(5) 
~.:...: ~-} 3 
~9~=!1.:JtYI*I~~3/•94l 

"73 ••. 13+ il95 
GO TO 6 1 

R.96=DSIN (X6l 
R97•DSI N{X4l 
'<9~=1 1.00/Yl*{ ".96/.<971 
R74=R74+~9d 

R99=05INIX7l 
RlOC=DSlt-.1 X5l 
R10 1•{1./Y l*{R.J9/R100 l 
R 74=R 74+R 1 C1 
GO TO 61 

C. CONTR!dUTI~N oY THi: THI.~D .'.'<0 THE LAST oUT TWO TRAfi:SlTION 5A~f'LES 

c 
60 64 S96=05INIX61 
61 59 7=05! fJ( X4l 
AZ 598={ l.OO/Yl *I S9D/S97l 
t3 R75=R75+59i! 
64 599=051 N{ X7) 
bS S100=05 1M X5l 
66 510 1=1 1. DJ/YI *I 599/ S1001 
67 ol.75=R 75 .. 5101 
b8 b1 IF(KR.:O'l.'il.l c;o TO 600 
69 GO TO 1 0 
70 600 1=1+1 
7l Rliii=R73 
72 R211J=:U4 
73 Tll!l='(75 
74 TZ{ ll=K72 
75 ;.jR( TE(6,88l R/Z,R73,R74,R75 
76 88 FORI'AT(1H ,5X,4HR7Z=,D20.10,5X,4HR73=,DZD.10,SX,SX,4HR74=,DZD.10, 

12X,4HR75=,020.101 
11 KL=KL .. 1 
71> 

79 

80 

81 
82 
83 
84 

c 
c 
c 

c 
c 
c 

c 

WR ITE!6,89lX 

USE THE SECOND FREOUE'ICY ESTIM.HE. 

IFIKL.E0.1l X=X+!2.DO*PI/YI*0.4375 

USE THE THIRD FRE~UENCY ESTIMATE. 
USE THE THIRD FREQUENCY E5TIHATE. 
IFI ~L.EC.21 X=X .. !Z.DO*PI/YI*2.0002 

C USE THE FOURTH FREQUENCY ESTIMATE. 
c 

89 
IFI KL.UJ.ll X= X+1.2. DO*PIIYI *0.9374 
FOR~AT(/////,5X,2HX=,D20.10 I 
!FIKL.LT.41 GO TO b2 
I= 1 



d5 

~7 

8-3 
d9 
90 
9 l 
gz 
93 
gl., 

95 
9c 

c 
6 c 1 

1J3 

6-11 
c 
c 
c 

P J (I l =- T 2 -, I i- r 2 { I t- L l 
J = 1 
;:l(I ,J)=~l( [Jr .... ,~~l+-.i.i 

?II ,J•L•=·<..Cill•?Zll•ll 
PI I , J • 21 = T d l l • rt I l • 1 J 
[ F ( I. <0 ~ • ( .0:. L- l J ) G..; T _} 1 ) 3 
[ = [ •t 
~C) 1'1 ~0 1 
r'l~= :<L-i. 
.. --<1 r::t6,t:.ll (P3( IJ ,I=l,~J".l 
,·K l T c { 6, C:.:. i ~ ( t ? ( [ , J J • J = 1 • ."'C ~ ) , I -= l , ,·,~ l 
FCR•ATII~ .~OZJ.1Ql 

97 CALL T~A~5(P,P1,NN,NZI 
'Jcl W>UTE!o,t5ll 
99 651 FOR."AT(I/,5X,•Ti<A.'<SPOS~'I 

1 0 C WR l T E I 6 , t ~ l I I I P 1 I l , J I , J = 1 , N N I , I = 1 , .'; L I 
101 CALL ,'IJLTI?1.P,P2,,\i2,'<'>,N21 
122 wR!lEI&,6;ll 
103 totl FCJR~~TI///,SX,'PROI)UCT OF P A.'iC Ti<.O.NSPC:SE'I 
l 0 4 ft~ l T E I ~ , t 4 ll I I P 21 l , J l , J = 1 , 'I 2 I , l = 1 , .'< Zl 
~C5 ~l'=f\l_>e.:'-12 

lOA CALL PAC~( l,N2 0 Ml,L,PZl 
lJ; CALL 'I! NVI ~.NZ,OET, !L, !.'II 
1~cl CALL PACKI2,N2,11;R,l,P2l 
1J'i W'<l TEl "• 6711 
110 6/l FUR."AT!//,5X,"<IATR!X INIIERSE'l 
111 ~Rl TE [6,t't1l (I P2( I, Jl, J=l ,N2J, 1=1,:>2 l 
112 CALL 'ILJLTI?1,~3.P7,N2,N.\i,11 

113 wRITE!o,641l !P71ll,l=!,N21 
114 CALL MULTIPZ,P7,P8,N2,1'.2oll 
115 ~Rl!E(6,6'111 

116 6<J1 FCR~AT!lt- ,SX,'UNKNCI;" TRM,S!Tl:JN SA.'IPLE' 
117 WRITEI6,6~11 IPBIII,I=l,N21 
118 wRITE(o,6o91 [l,M1 
11 9 6 8 'l F 0 R M A Tl 1 H , 5 X , 3 HI l =, I 5, 5 X, 3 HM 1 = ,[ 5 I 
I20 333 CONTINUE 
121 STOP 
122 END 

123 
124 
125 
12o 
127 
128 
I29 
130 
131 
132 
133 
134 
135 
1Jb 

10 

20 

SUBROUTIT\E MULT(A,B,[,w,L,NI 
IMPLICIT ~EAL•BIA-H,O-Zl 

DIMENSICI'. ~(,.,LJ,tl(L,Nl,C(.'I,NI 

DO 20 l = 1, .~ 
00 20 J= 1,1\ 
SUM=O.DO 
DO 10 "= 1, L 
P RLI C= A I I , K I • B I K, J l 
SU"<< =SUM~ pq[D 
CONTINUE 
CII,JI=SU·'I 
CLJNT!NUE 
RET LRN 
END 

N 
00 



137 
133 
1 3 J 

14 J 
141 
1~2 

143 1(: 
144 
145 

c 
c 
s 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

141> 
147 
148 
149 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

'?.!JBROUT1 1~E fR~~.S(A,B, .... , .. ;) 
~'IPL1CIT ~cAL:o(A-rl,C-LI 

0 D[l1E\SiC1\ !("'!.f'..).d{~."") 
~0 16 I~ 1, .~ 
DO 16 J = 1, ., 
5(J,ll~A(!,Jl 

cec•, TI,.uE 
R~T u"-'' 
E"liJ 

~ l'•V 1 D 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 'I!'<V ZJ 

FURPOSE 
INVERT A MATRIX 

LSA:;E 
CALL MlNV(A,N,D,L,'II 

CESCR!PT!C'< OF PAPA~ETERS 

A - INPUT MATRIX, DESTROYED IN CUMPUf!TlnN AND REPLACED bY 
RESULTANT !.'JVERSE. 

N - CRDER OF MATK!X A 
D -RESULTANT DETE~"!IN~NT 

- ~DRK VECTOR JF LE~~TH N · 
M - ~OR~ VECTOR CF L~~GTH '1 

F<EMARKS 
.~ATRIX A MUST BE A GeNERAL >lt.TR!X 

SUBROUTINES A:'-lD FUNCTIO!'i SUBPRDGRAI-IS i>.E'-"UIRED 
"JNE 

~ETHCO 

THE STA,'lDARD GAUSS-JtJRDAN METHOD IS USED. TrlE DHE~"'INAI\f 
IS ALSO CALCJLATED. A JETERMPIANT OF lERJ l'ID!CATES THAT 
THE ~ATRIX IS Sit-GULAR. 

~I •; V 3 Cl 
'1 I"lV .;.o 
·"'~ ("liV ::; J 
~l>V !>0 
.~ l'•V 70 
~ l'<V 6 0 
'11\IV 90 
'I!NV 100 

'11 ''" 110 
'1!'1 v 12 Q 

'1I'JV lJJ 
"'l'IV 140 
"! !'JV 150 
'I ['IV 160 
~['IV 170 
.... !'I v 180 
'1 !.'iV 19 J 
H UJY 200 
.'I I 'IV 210 
M!.'JV 220 
•'1l'IV 230 
M!NV 240 
!'IINV 250 
M!NV 260 
>~I.w no 
'IL'IV 2tl0 
"!'lV 290 
MINV 300 

••• •••••••••••~•••·••••••••• ••••••••••••••••••••••••••••••••• •• ••• 'll'IV 310 

SUBROUTI~E MINVIA,N,D,L,Ml 
DIMENSION A( ll,l(l),M( ll 
DOUBLE PRECISIGN A,D,B!GA,HOLD 
DOUaE PRECISION DAB~ 

'I 1 ·;v 320 

Ml'IV 330 
M!NV 340 

~I I NV 3SO 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••. ~ (.\j v 360 

IF A DOUBLE PRECISILlN VERSION OF THIS ROUTINE IS DESIRED, THE 
C 1'1 COLUMN l S-fOULD BE REMOVED FRGM THE DDJBLE PRECISIJN 
STATEMENT wHICH FOLLOwS. 

OOU2LE PRECISION A,D,BIGA,HOLD 

THE C ,'lUST ALSO BE RE.MOVED FROM DlJUiJLE PRECISION STA.TEMENTS 
APPEARII'<G IN OTHER ROUTINES USEO IN CONJU~KTION wiTH THIS 
ROUT I~ E. 

lHE DGUBLE PRECISIOr-.. VERSION OF THIS SUlRDUTINE MUST ALSO 

M!NV 
MI"V 
MI'IV 
MINV 
.'11NV 
.~!NV 

~I NV 
.'-II NV 
'l('lV 
M!NV 
'1l~V 

.'1 !NV 

370 
380 
390 
4JO 
410 
420 
430 
440 
450 
41>0 
470 
4d0 

N 
<.0 



150 
151 
152 
153 
154 
155 
156 
1'57 
153 
159 
1b') 

16 1 
162 
1e3 
164 
16'i 
166 

1c
lb'i 
II~ 

171 
172 
17 3 
174 
175 

176 
177 
178 
179 
1a o 
181 
1t!2 
18 3 
lll4 

c 
c 
c 

(CNi.il,\ JuUPLC ?PECl.:llC:'J F~""-TR:..·-. ,:_;·,·.:.r [_ .,:,. !..riS. t', ;T!ft·-':-:,T ..... [.,'./ 4-?J 

c / 

lJ ~:.;JT ?I~ C.f-1~·- •. ~EJ f,_ J~bS. ··· ~-~ J 'J..::J 
-....! i ~, ·.; 51) 

....................................................................... ""'[',\J ')20 
c 
c 
c 

c 

'J= 1 .J 
"tK:::: -·\,i 

00 3J K=1.~• 
"'~.;;:: ,\K. +- ·~ 

L[ K )= ~ 

" ( K I=~ 
r\K.= 1\K +~ 

51G!=~(~!\l 

DU 20 J=K,I\ 
IZ=~~(J-ll 

00 20 l=K, o, 
IJ=Il+! 

10 !FlC~B>lnlC·\l-CAtlSlt.( !Jill 15,ZO,ZJ 
15 BIG!=A( !Jl 

Ll K l =I 
M ( K l= J 

20 CON Tl,L!c 

C INTERCHANGE qC)I<IS 

c 

c 

J=L ( K I 
[F(J-Kl 35,35,25 

2 5 K I=~- N 
DO 30 I = 1, '< 
K!=r<[Hl 
t-iOLC=-A! Kll 
Jl=K!-«.~J 

A(K!)=A(Jll 
30 A(Jlt =HCLD 

C INTERChANGE COLUMNS 
c 

c 

35 I=M(Kl 
IFI !-KI 45,45, 3d 

38 JP=MI!-11 
DO 40 J = 1,1< 

J!=JP~J 

HflL C= -A I JK I 
AI·JKI=AlJ!I 

40 A( J II =HCLLl 

C CI'JluE CCLUMN tlY MINUS PIVOT !VALUE OF P !'JOT ELEMENT IS 
C CONTAINED I.~ il!GAI 

~I'iV 5'~;J 

·) [ ·. v >):.,. j 

"":, • 'I c;.:=, ·J 
.... I·~'/ SbQ 

.·: ·~ v 57') 
~I·, V 5c ') 
... [ '~ v 5"9 J 
'-'.! ', V oGV 

•r·•v 61J 
"'! ·• ·.; 62 J 
·"' l'l v t.3 t) 

~ ['' v 64 0 
'I !~V 650 
'II .~y 66 :J 
"I~V 670 

185 <t5 IF!EIG~l '•bo46,48 

'II 'lV &go 
'<I\ v 70J 
"l '<V 71 J 
'I!~V 720 
.'ll'lV 730 
\A P~v 740 
~ r·n 15} 
M L'<V 76J 
'1l'•V 77J 
~l~V7dJ 

'II \IV 79 J 
'IINV aoo 
~!'iV 810 
MI.~v azo 
.'1! 'JV d3 Q 

'II~V <340 
'I! 'i v 85!) 
.'lli;V d&O 
'II 'IV d 70 
.'1!NV 3d0 
'IINV B90 
>1 [.~v 9oo 
'1{.\V 910 
MINV 920 
"'!'IV 930 
MlNV 940 
M [NV 95 0 
,"1 I 'IV 960 
,'1 I NV 970 
Ml'IV 9d0 
'1!.\i'J 9~0 

MIN'JlOJO 
Ml'lV10lO 
'I!NV1020 
.'1INV 10JJ 
"'!NV 10'•0 
'I!'IV10~0 

M!N'J106J 
'4!'1'.'1010 
11 I 'IV 108 0 

1d6 46 0=0.0 
187 ~ETLi<N 

t B 8 4 8 0 0 55 l = 1 , 1\ 
189 
190 
191 
192 

IF( 1-KI 50,55. 5C 
50 IK=~Kt! 

1\{ I~~ =AI !Kl/1-BICAI 
55 CON Tl NUE 

w 
0 



c -~ [ "v l 0~ J 
c R:O )•JC ~ "1A r;. I X ·~r•,;two 

c ,_[~;V[llJ 

[93 Yl 65 l = l. •r•:vtUJ 
[<;4 I.'<.::: I\!".+ I ~ '''" [[3t) 
[95 :1.JLC=Af I~J ~r·.vt hJ 
1 so I J= 1- '' ·~['id[50 

1; 7 lU t5 J .= l_. j '1[';V1l6J 
l 'IH [ J = [ j ... , ~[',Vll7J 

199 IF ( [-~J nJ,vS,oO ~ ['iV! 130 
200 wJ l F( J-)<.J t2,o5,62 "I'Nll90 
201 o2 '<J= IJ-l +~ "I'<V12JO 
202 A l I J J =H C Lt.J • A ( K J J • ~ l l J J '1l,Vl2l0 
2J3 c;5 CD~TINUE '11-'l v 122 J 

c .~ P.iVl230 
c Cl Vl J E ::<Gw dY ~lvur ~ ['il/1240 
c .~1-'NlZ50 

204 KJ=~-~ ·"l"Vl260 
205 DO J5 J:; t. ·, ·q~y 1270 
2'16 KJ=KJ+'< '1lNV12BO 
207 l F l J-KJ ru./5,70 M!NV1290 
208 70 AIKJl =Al KJJ /BlGA 'I I~ v 1300 
209 75 CO~ T!NUE .'11NVl3l0 

c '1 !.'>: v 132 f) 
c PRLIJ LJC T JF PI vo r s 'II~V1330 

c "1!..,Vl340 
210 U=0~91GA '1!'1Vl350 

c '1l'lVl360 
c REPLACE PIVOT tlY REC!Pil.:JCAL ~1Nvu7o 
c ·" [,';y l3d0 

211 ~( KKl =1. C/tJ!GA M !_NV 1390 
212 ao CON T l NU E Ml NV 1400 

c 'll'lVl4lO 
c -Fl NAL RO~ AND CDLU-~i'. l NTE RCH A'IGE ~[~lll420 

c '1lNVl430 
213 K=~ ~l'IV!440 

214 [00 K=( K- lJ ~l'1Vl450 

215 IF I K J [50. 150. [05 Ml~Vl460 

216 1 C5 I =l (Kl '!I.'IV1470 
217 I Fl 1-K I 12D.l2C.l0d .'11NVl480 
2[8 [08 JU= ~·"(1\-ll )1!NVL490 
219 JR = ~* ( l-l I '11NVl500 
220 DO II 0 J=l.N '1lNVl5lO 
221 J K= JO+J MI~Vl520 

222 HJL C=AI JKl Ml'<Vl530 
223 J l= JR+J .'-HNVl5'TO 
224 4 ( J ~) =-A ( J I l MINV1550 
225 110 AI J I J =HGLD ,'1lNVl560 
226 liD J=M !K l ~l"lV157Q 

227 IF! J-Kl tOOolJO.l25 MINV15cl0 
228 125 K I= ~-N >11:\JV 1590 
229 00 130 I= 1.N MlNVl600 
230 K I=~!.,,. MINI/!610 
231 HI)L 0= A( K I l MINVL620 
232 J l = ~ (-1\ +J HlNVl630 
233 A(KI)=-A(Jll MI'IVI640 
234 [30 AI J I J =HOLD MI'1Vl650 
235 GO TO [0 0 MIN V l bbO w 
236 150 RET LR N -HNV1670 --' 

237 END Ml'll/16~0 



238 
23'l 
240 
241 

c 
242 
243 
244 
245 
246 
247 
248 
249 
250 l 0 
251 

c 
252 20 
253 
254 
255 
256 
257 25 
258 30 
259 

sc~aqcJT r ~ ..\ C r<. [ I '- 20:; , '\i, ;' ~2 , ..\, 3 ) 
I>~PL!CI r E~L*-31.".-·, ,C-Ll 
or ~=~•s rc ..1 { '".i2 l • B ( .·J, ·~ l 
IF llCOE. E.:.l I CJ rc 2~ 
C<. EA E ,YATR!X 8 F ... r)~. 4R ~ .\ y A 
1; l 
J= l 
JQ 10 K,::: l.,"J2 
ill l.Jl=~(Kl 
l = ~~ l 
IF II.LE .. '<l Gc] TO lJ 

J =J •l 
1 = l 
CO~T l~UE 

GO TO 30 
CREATE A.Z-<AY .'. FRL>.""! ~ATR1X a 
r<.= l 
DO 25 J = l ,N 
DO 25 l = l ,N 
Al~l=d(1,Jl 

K=Hl 
CO~Tl~UE 
RE TUR~ 
ENC 

w 
N 



1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
lZ 
13 
14 
15 
16 
17 
18 
19 

22 
23 

24 
25 
26 
27 

28 
29 
30 
31 
32 
J3 
34 
35 
36 
37 
38 
39 

SJOd T! ~E •10, PAGES•! Q,~,osu~-:1-K, l I ol IS T 
c 
c 
c 
c 
c 
c 
c 
c 

THIS ?~OG,&."! uSCS TH~ 01 ~ECT ~?P:.:.JAC..-1 TG F=<.E~~ '-tCY s:.. . ...t;JL[ ~j-=. F tl T::: ~ 
JESIC.N PRCSC.'tTED [N CrlAPT::~ THKEE TJ C:"'oJr:: Tt-1 TPt.~~.)Iff_i'~ 'S~!-Pl~ 

VALUE:). THE FULlt w[ '~0 P,'\;.·.~.,.:; T~;· S !~~ JS=J .:. ~ [ ?!Jf. 

L.gv':'!~~~ .~ z~..,-;-~ :L T~~~I G.,i - 0 tv~ T~4-IV & I TI oW C j'.+t {' €,..,..1)) 
lZ-~U~f<ER _:F ?~S5 :-<,t.'\JJ FK::...:ut:·.~r s:..·,t,?LES. 
."1-T'.:T!l \0.,.uf.o, (_:;;::: _1 {f-FC~::·~r o,\SSSA .• ) F=<tJJ::·.cy S~··PL=~· 

!Mi'L!C! f R:O~L•alA-c<,O-.Cl 

JI~E.'ISL:>'l ~1121,1<\21 21,~31 l),..(4l li,Xll21,! L!STl4JI 
~=1 

Y=2~6. 

LL = 2 
qE:.C(5,6JJI l!LIST!II,l=t,~ 

6CJ FO"-~Al(!6!51 

DO 300 JJ= [, ~ 
ll=IL!ST(JJI 
ll= I l 

PI=3.l4l592654 
I=« 3~ l 
Yl=!IZ.*PI'"II/Yl 
KL= 0 
<~"! TE(6,hl I II 

641 FOR.~Af( 1H ,SX, 3H!I=,! 51 
YZ= ((Z.•PI•l 1~111/YI 
Y4='r2-Yt 

c 
c 
c 

l'l 
c 
c 
c 

c 
c 
c 
10 
20 

c 
c 
c 

I I= Il-l 
Yl=l2.*PI*JFLOAT(Il II/¥ 

USE TrlE Fl~ST FREJUE~CY ~ST!~ATE, 

X=Y1-!G.l251*( 12.*PII/YI 
Kl=KL+1 

C0'1FUTE THE COI'.TR!bUT!CN GF THE Fl"'ST FRt:QJE'ICY SA.'Ii'LE. 

R77 =( [,/YI *I IOSI•'liX*Y/ 2.11/( DS!Nl X/2.111 
R72=G,O 
KR= l 
GO TO 20 

COMPUTE THe CL.NTR!£lUT!ON tlY THE RE.'~AINING FIXED FRE~UE~CY SAMPLES. 

KR=~R +l 
X3= (PI *DFLLIA TIKRI 1/Y 
X'<= IX/2, 1-XJ 
X5= IX/2. I +X3 
X6= ~*X4 
X7=Y*X5 
IFI~R.GT.IIl-lll GO TO 39 
R70=( 1,/YI*I05PHX6l/DSirHX'<II 
R72=Rr.J+R72 
R70=11./Y l*IU51NIX71/051NIX5ll 
R72=R72~R70 

IF!(KR~li.LE.Ill GO fO 10 

COMPUTE THE CONTRIBUTION tlY THE FIRST TR.NSITION SAMPLE. w 
w 



40 3S 
41 
.:,z 
43 
4'+ 
45 33 
46 
47 
4d 

c 
c 
c 

49 
50 
51 
52 302 
53 

c 
c 
c 

54 6C 
55 
56 
57 6 

c 
c 

sa 
'q 

6'1 
61 
62 1 
63 300 
64 
65 

R 73 =I 1. I Y I " ( [J SIN I X6 I IJ S l "' (X'< I l 
R 7 5 = ( 1. I Y l " ( 0 S I ~d X 7 I IDS [ ~ ( X 5 l J 
~7.:.:;:R75•R73 

< 7 2 =~ 7l + R 7 2 
"?ITEto,3J) K72,r<.7.:.. 
FO? ."":.. f{ lri .,SX .4.-:P. 72=, _;2J.t.), 5X, ~r~~l4= ,J2J .lJ) 
'<lC,Ll="-72 
<2 ( < L l = -~ 7 4 
Xll•Ll=X 

JSE T~E SECC~O FRE~UENCY ESTI~ATE. 

[F( n.;:i,J,lJ X=X-l.4979>7205*(2."~[1Yl 
[F(KL.LT.Lll GG TO -19. 
WRITEI6.302l IXliJll,JL=l,KL) 
FOR~AT(/11,5X,2HX=,DZO.L0,5X,2~X=,JZO.LOJ 

I= l 

EQUATE ThE RIPPLE VALUES. 

R3! ll=Rl(l+ll-Rllll 
R 4( I l =q 2 (I l-R 2 ( I+[) 
•RITE!o,bl R3!1),R41ll 
FOR~A Till ,5X, 3HR3=, 020.10,5 X, 3HR4=, D2 0.10 l 

CO~PUTE THE TRANSITION SAMPLE VALUE 
R8=P3lll/R'tlll 
li'l. I IE { 6, t9 l 
FOR."AT( lr ,SX, 'UNKNOWN TRANSITIO.'I SA.'I?LE' I 
WR I TE ( 6 , 71 R8 
FORI'A f( I II .sx, 3HR3=,D20.l0l 
CONTINUE 
STOP 
END 



2 

4 
5 
6 
7 
8 
9 

10 
ll 
12 
13 
14 
15 
16 
17 
18 
l q 

2l 
22 

23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 
34 
35 
]6 
17 
38 
39 
40 
41 
42 

SJCB fl"'f=l·J,?~CES=lO,~;OSUBCf'K,L l8L !ST 
C T!-iiS P~JG'='~I-! USES THt Ul ~E:.T APP:.,,J~C-1 TC 1->{E ... JE.-...CY S-4"'\PLI~t._; FIL 1:::~ 
C LIESIG,'J P~ES:;',Ti:D l'l CHAPTEO. ~H.<cE TG ~C,..?JE TrlE TR~'JS!Tf:•; S~".?L= 

C VALiJES. ThE ccLLu~{~G P~~~4ETE:s A~~ uS~0 ~S [\?UT. 
C l.oi.J i"A~S F::iL..TI:~ .l>€SXC,N- TIJO-rJ:.IltvS~rXotl .SA/'l]>L~':. 
C Y-C~OE;.; •JF Trlt Fll!"E~. 

C Il-~;J"'~~;:,. :.F ?ASS t:,~~._l F:..C ... u~·.~.,.,y s..:.·;PL:::S. 
C "".-TUT.~L ·.uvr)E~ CF ~:IFc::.-..;:·,r ~~SS:)t.·.~ F:Zi:~·J~·.cy SAPt>L::s. 

[ '1P LIC[ T _.;,f:.4L*d{!.-c1.l:-.U 

6CO 

6C.l 

c 
c 
c 

19 
c 
c 
c 

c 
c 
c 
10 
20 

J I ,"\ t: \ S l C '• o 1 l 3 l , ? L l 3 l , S I 3 I , R _; I 2 I , oc, 12 , 2_ I , '< 5 I 2 , 2 I , R 6 I 2, L I , 1. 7 12 I 
1,1.dl21 ,L(Z,ZJ,~E~AT[Z,ZI,ILUl,[1(2 ),Al(,.),IllSTi4JI 

LL= 3 
'12 = 2 
'I= 1 
Y=3 2. 
REAC!5 •. 6JJl !ILISTIII,[=1,·~ 

FDil·~A T! l6I 51 
OfJ 300 JJ= [,M 

ll=IllSTIJJl 
I l =II 
K3=II+2 
PI= 3.1415'!2654 
I=t< 3 
Y1= 1!2.•PI•IIIYI 
KL=C 
WR! !E(6,t41 l II 
F'Jf{u~TilH ,5X,3HI[=,!51 
Y2 =I I 2. • PI* I 1+1 I l IY I 
Y4= YZ-Y l 

USE TH~ FI~ST FReQUENCY ESTIMATE. 

X= Y 1+ I 2. CJ I 16. JO I *Y 4 
KL=~L+l 

COMPUTE ThE CuNTKI"'UTIJN OF THE Fl'.ST FRhlUENCY SAMPLe. 

R 77 ;( L I Y I ~I I lJ S I:< ( X *Y I L. l I I ( DS I NIX/ L. ll I 
R72;Q.J 
KR= l 
GO TO l 0 

CUMFUTE Trlc CUNTR!BUT!JN BY THE RE"'A!NING FIXED FREQUE~CY SA'IPLES. 

KR=KR +l 
X3= !PI*DFLOAT!KR))IY 
X4; IX12. I-X3 
X5; IXI2.l+X3 
X6=~*X4 

X7=Y*X5 
53= (PI*DFLOATIKR+lll/Y 
54= IX/2. l-53 
S'i;(XI2.1+S3 
56= Y*S4 
s 7; ... 55 
IFI KR.GT .I IZ-lll GO TO 39 
R 7J =I 1. I Y l • I lJS IN I X6) IDS l N ( X 4l l 
R 72 =R 7J + R 72 
R70=( 1.1Y l*IJSINI X7l IDS IN( X5ll 
R72;R72+R70 

w 
(.J1 



43 
c 
c 
c 

44 ]; 
45 
.;6 
47 

c 
c 
c 

48 
49 
50 
51 
~2 33 
53 
54 
55 
56 

c 
c 
c 

57 
c 
c 
c 

Scl 
'>', 
6: 
6 l 302 
62 

c 
c 
c 

63 60 
64 
65 
66 
67 
1>8 
6q 
70 103 
71 
72 
73 64 

c 
c 

14 
75 
76 65 
17 
76 
79 
80 66 
61 
82 
83 
84 
85 

!FIIKK<i!.LE.l~l G_; TO 10 

~ 7 3 = ( 1 • I Y l "' iJ S P; l X~. l /J q ';( X 4 l l 
'<7'>=tl.IY l•!O'> I'H>cl l/J>l'd ')I l 
~14=~75•".73 
K 12 =;(. 7 t +,.. 7 .-, 

S 76= t I ./Y l * ( ,J S !'; l 56 ll ~S p; l S 4 l l 
S 77 = l l. I Y l *CD~!.', l 57 l /J J I'' l S 5 l l 
s 7d=') 76 +57? 
'riQ.llt:(~,J3l ~T2,'r-74,S73 

FIJRt~AT( lH ,5X ,4ric\ 72=,J2J.lO,SX,4-H . .:;,T~= ,J2J.i.J.,5X,4HS70=,02J •. lJ J 
Rl1Kll=i<.72 
R2l~li=R74 

$(Kll=S7d 
XllKLl;,X 

USE THE SECO~D FR~OUE~CY ESflMATE. 

USE THE THIRD FREW~E~CY ~STIMATE. 

!FlKL.O:C.Zl X=XHZ.OO*~l!Yl*O.o1~5 

!Flr<L.LT.LL) GO TCJ 19 
wR l TEl 6, 3J 2 l I X l( J L l, J L= 1, K L l 
FOR I' AT ( I I I , 5 X, 2H X= , D 2 0. 1 Q, 5 X , 2Y X= , J 2 0 • 1 0, 5 X , Z HX = , D2 J. 1 J I 
I= 1 

EQUATE THE K!PPLE VALUES. 

R3( ll=-RlllJ-ql(I+1l 
J=l 
R 4 ( I, J l = R 2 ( I l +R Z I I + l l 
R41 !,J+ll=Sill+Sll+ll 
IFII.EJ. !KL-lll GO TO 103 
I= I +I 
GO TO 60 
NN=KL-l 
WR I T E I b , 6 4 l liU ( I I , I= 1 , N N l 
WR I TE I 6 , 64 l ( ( Q, 4 I I , J l , J = l , NZ l , I= 1 , N'< l 
FORMATILH ,4020.101 

COMPUTE THE TRANSITION SAMPLE VALUES. 
CAll TRANS!R4,R5,NN,N2l 
WR I T E I o , 6 5 l 
FOR I' AT I Ill , 5 X , ' T RAN 5 P 0 S E' I 
W~ITE(6,64l ((R5lloJ!,J=L,NNI,!=1,N2l 
CALL MULT(R5,~4.~6,N2,NN,NZJ 
WR! 1E (6 ,66 l 
FORI'ATI/1//,~X.'PRUDUCT OF R4 AND TRANSPOSE' I 
WRITE(6,64l ((R6( !,J),J=l,N2l,!=1oN2l 
NR= ~2*N2 
CALL PACK( 1,N2,NR,l,R6l 
CALL M!N'J!l,NZ,DET,IL, !Ml 
CALL PACK(2,N2,NR,l,R6l 



d6 
87 67 
d8 
8'1 
90 
91 
"92 
93 69 
94 
95 3CO 
'16 301 
97 303 
98 
99 

•~ITE!6,671 
FGR~.l. f( I II ,sx, '."'ATt<.IX I"lVE;\SE') 
1<~ I T c ( o, t 4 I ( I ~ 6 ( I , J I , J= l , ~ 2 I , I = l , '12 I 
C!ll "4'JLT(;::I.5,;:{3,~7,.'J2,'~~.l) 

"~I Te!~.t:.l IR 71 11.!=1 ,.'121 
CAL l ."-!;J l T ( ? b, ri. 7, r. 3, ..._ 2, '~ 2, l. l 
~~~ TC!~.6n 

F c R '~ t.. T( l H t 5 X ' I J!,; K 't J il .... T ~/ 4 ~is [ T I ~ ~. s ·' .~ ? L ~ • 
;,;;.[TE!~.o-.J l~d!II.I=l,'IZ 

CC."i T I ~;UE 
W{!fE(&,3.)3) X 

F!JR•AT! l" ,oX,2HX=,iJ2J.1JI 
srrH 
E';Q 



1 
2 

4 
5 
6 
7 
8 
<J 

10 
11 
12 
13 
14 
15 
16 
1 7 
1 3 
19 
20 
n 

22 
23 

24 
25 
26 
2 7 

28 
29 
30 
31 
32 
33 
34 
35 
36 
3 7 
38 
39 
40 
41 

SJ 1Jb Ti .'..4:.:: =t:J,P.1";F.S.::::l·),~L.;SUu·.:r'<, LI 8L r:::,T 
c 
~ 

c 
': 
c 
c 
r: 
c 

608 

641 

c 
c 
c 

19 
c 
c 
c 

c 
c 
c 
10 
20 

TniS P-<C.:;..:..:.'-' US~S r~.-: l_'[:~:::cr !.PP.~0'\C·1 ;._: F-.C.JtJE~.iCY' :;:.·J.PL! ·,.:;;: lLT::::> 
.JE~IC\ ::>q::;s;:'>iTtD r·~ L~!P!::~ r~~C:E TJ ._lJ' .. ,PJf: fHE fQ_:.·-.;s II r~·· s: .. •:..L~ 
J!.LJ~S .. rr::: F~;Llc~'i·lr'-~C. r-.\..,-.'1.'-•::i::;:KS ..\k_E :J.:;:::J \S l~i? 1.JT. 

L.o o.J PIIS.S. Fr. L Tf'Jt ).€!._r G.,.. - -rH~t:.E-E "f"k~, .s.x f";J:,t{ JtrV L t; ~ 

I.:-\•Y"'~;:::.:., := o:::;:; -').:.· J ;::_~_c:. .... 'J:::··lC.Y s.·.·-~PL::S. 

-1-TL-~L .\.: 1 :3C~ -:F- ._:ifr:_:->::·.:- f'l!S:)·_~.\~.J F?::~-,_,::_·,cy S-~'1~L::S. 

I'-1:-tLICI T . .:.:::.'.L*81!!.--',C'-1.J 
J r .. _, :: 'l.) I C ·~ .. l ( !t ) , ~ 2.l 4) , :! ( 4 l ., f-! 4) , K 3 ( J J , .:; ~ ( .3, J) , r. 5 { 3 , 3 i , ,,_ h ( 3 , 3 J 

l ~ l ( J ) , :• ;j ( 3 J , l ( 3 , 3 l • ::: F '-' -~ T ( 3 • 3 l , t l l 3 J , It-' ( 3 ) , X. 1 ( S ) • l L i S T ( 4 :- ) 
Ll = 4 

';2= ' 
( =2_ :6. 
;-1::J.. 

I '<P =5 
C(f4({l\P.6J.)) (!LIST{ ),I:::=l,.v) 
f~F..'-~I-(~ol5) 

DO ?JO JJ= l,~ 
I I~ Ill5T IJJ I 
r Z= r r 
K3= tf+j 
P!=3.141592654 
l=K.3 
Yl=!IZ.*PI~li/Yl 

KL = J 
!I 

FUP~AT{ih ,5X,3Hli=,t5l 
Y 2 = !! 2. ~ P l ~ l l +l l l /Y I 
Y4=12-Yl 

.X=Y 1+!2.0.::/ lb.00l"'Y4 
KL= KL+1 

CC'·1PUTE TH!: CO~TRJaUT!C'< ,_;F TH!: FHST F~EJUENCY SAMPLE. 

R 7 7 = !1 ./Y I * l !OS lN (X *Y I 2. l l I lOS IN (X/ 2. l l l 
R72=0.0 
KR= l 
G 0 TO 2 J 

COIHUTc THE CONTRIHUT IJN tlY THE REi~AIN!~G FIXED FREOUE~L.Y SA~PLES. 

KiJ.=K,{ +l 
X3= (i>i"'DFLUAT! KIO 1/Y 
X4= (X/2. l-X3 

.XS= IX/2.l+X3 
X6= Y*X4 
X7=1*X5 
S3= IP I •DFLOATI KR+ lli/Y 
S4=(X/2.l-53 
S5=1X/2.1+S3 
Sb=Y*S4 
S7=Y*SS 
03;,IPI*DFLl4T(KR+.!Il/Y 
04=IX/2.DOJ-03 
05= IX/Z.CO I +03 

w 
co 



42 
43 
44 
45 
46 
47 
4.'! 
4": 

c 
c 
c 

5C 39 
51 
:02 
~3 

c 
c 
c 

54 
55 
56 

c 
c 
c 

57 
58 
~9 

60 
61 33 

62 
63 
64 
65 
66 

c 
c 
c 

67 
c 
c 
c 

68 
c 
c 
c 

69 
70 
71 
72 302 

73 
c 
c 
c 

74 60 
15 
76 
77 
78 

Oh= '1~~4 
~7= yr:-~5 

!F(K?.-.f.([l-l)) ::-.~ T.J 39 
R 7 C ={ l. I Y) •'! D S I ';[ X~ ) I~ _, [ ~' ( X 4) l 
~rz~.-'..r:J+-;:172. 

R78=1 l.IY )* IJ'>I'' (,;7 l /~S l'.( X'5) l 
~ 7 2 =.J rz .. . .J, r:::: 
~ F ( ( ~ ~ +- 1 ) • L E-. l l ) G:~ ":" J 1 'J 

"- 73 • { 1. I Y l ~ { J S I ~d X6 ) I;) o! ~ { \4 l ) 
P ! 5 = ( 1 .. I Y l tc ( 0 S [ "i ( X 7 J I :J S t ~-j { X 5 ) } 
~74=--<.7').+-r;7_) 

R72=.77H.72 

S7c=( l.IYl*[JSl'US6liJ5l'l{ 54)) 
577=(1./Yl*(DS ["<(57 l/CJS!rHS5ll 
S7d=S76 +577 

CGNT~['WflC:"< dY TH;: THIRD FRf'Q0E~JCY S~'1PL~. 

.!73=[ 1.CJC1Yl,.( JS("<[ C6 I /'JS!N( HI) 
075=Il.DO/Yl*!DSI~i(07l/DSI"(Q5) l 
074='"75+·~73 
'n-~tTF(6,3Jl P..7L,.:{7~,S7-J,J74 

FO ~ ~1 T ( l ~ , 5X , -+ HP 72 =, J <-'0. 1-J, SX, 'tH'U 4~ , J 20 .l·J, 5X, 4HS 7e=, D 20. 10 ,5 X, 
14Hi.) 14 = , ;J L 0 • l 0 ) 

!l.ll ~Ll='>.72 
RZ! ~Ll=q74 
5(Kl)=S7d 
T!«Ll=074 
Xl!t<Ll=X 

0SE fH~ S2CONO FREi.lUE~CY ESTIMATE. 

!F(KL.E<J.1l X=XH2.DO*P11Yl"0.~375JOD35DO 

USE THE THIRD FREQUENCY ESTI~ATE. 

IF ( KL. c ,J • Z l X= X+ ( 2 , 0 0* f' I I Y l * 2. 0 00 00 DO ZD 0 

USE THE FlJURTH FREQUENCY ESTIMATE. 

1FIKL.E0.3l X=XHZ.DO*PI/Yl*O.q374'i99g7ZJJ 
l F I KL·.L T. lll G 0 T 0 19 
'.1~ l TE I <'>, 3 0 2) ( X 11 J l) , J l ~ 1, K ll 
FOR ~AT (I I I, 5X, 2HX=, DZJ. 1 0, 5 X, 2H X= ,O 20. 10, 5X , 2HX = ,D 2 0. 10, 5X, ZH X=, 

lDZO.l:Jl 
l: l 

E~UITE Th~ R[PPLE JALUES. 

0.3( ll=-R [( l 1-~ l( l~ll 
J=1 
~4([,Jl='<21l l+R2(I+1l 
R4(!,J>li=S! !1+51 l+ll 
R4( !,J~Zl=TIIl ~TII+ll 



79 
a_c 
dl 
oZ lJ3 
85 
0'+ 

d5 6-1-
c 
c 
c 

c6 
d7 
38 65· 
d<J 
'lO 
91 
92 6t 
<;) 

"14 
S5 
96 
97 
~8 
qg 67 

lJO 
101 
lJ2 
1. rJ 3 
104 
10 5 6~ 

106 
107 308 
IC8 301 
IC9 JG3 
liD 
lll 

lFI!.EJ.(.,L-lll G:: TC lJ3 
1 =I • l 
-_;.:::. T ~ -~ 0 
".j_'~= "'L-l 
"':. f T ~ [ o , 6..,. ) { =': 3 ( I ) , l ,;;;; l , :, "' J 

,, -{ ~ T :-= ( ... ~ , c ,t- 1 ' < "" -1 { r , -~ 1 , J ~ t , ·, 2 1 , r ;:: 1 , •. ·; l 
-_~ .. ~Ttlr ,!oULJ.l.Jl 

C ::.." L l i :-~:. ,\ S ( R -'t , ~ 5 , '; , , ~;2 J 

ioi~ I T ::= ( o, t S ) 
F ': -..... ..\ T ( I I I I 5 X ' I T ~ A:'~ s? 1 :) ~ I ) 

.,.:... i r:: t c, 64 J <' .,s' 1, J 1, J-= l ,·.: ·~), r =l, ·121 
C-lL l '-t;_JL f( K5.,:(.4,=tb,~2, \'~ •. ·~z l 
~~-IT::(o,o~) 

F-C~'-~AT(////,')X,•P~'-JDUCT ·JF P4 !'.~,,·.o TR:.:-..SP)5t:'J 
W~!i::(c,64} ({:~c(.l,J),J=L,:,2),l=l,'~2l 

'\K=r-.~*-•2 

c.\ L L p .:\ c K { l., ,"J 2 • ~p I l 'R 6 ) 
~A L L .'-1 [ ·'IV I l , :-. 2 , DE f , I L , I ·q 
::::...l.Ll P~CK(2,/\2,~R,Z,P.6J 

.-.~K I r::: < o , ~ 1 l 
FJ'\~AT(///,5X, •.~,\TRIX L'IV~RSE'I 
~t·:{ I r:=_ { ~ , 64 J ( ( R6 {I , J), J= l , \JZ), I= t, ~i2.} 
CALL .'-1ULT(~5.~3,K7,N2,NN,l) 
>IR[TCh,1:4) (;<7{ [ ),!=[,.'i2J 
C..:.. L_ L .'-'U L f ( ? ~ , R 7 , ~. d , ~~2 , .\2 , 1 ) 
o'<!TE(o,b'Jl 
FSQ.~AT{lh ,SX, 'U~~r\.'\iJh"l T~.:..~;SITIC~~ S.A.'1PLE' 
~<I E I 6, 64 I ( R B ( I l , I= 1 , .\iZ I 
CUN TI.'<LJE 
~~1Tc(b,3031 X 
FlJR."A T( lH ,5X ,ZHX=,Q2.J.lQJ 
SLiP 
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