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CHA.Pl'ER I 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

The usual techniques of analyzing data are based on such 

assumptions as additivity of effects, constancy of variance, normality 

of distribution, and independence of observations. If the collected 

data does riot match the assumptions of the conventional methods of 

analysis, Tukey (1957) suggested two choices: we may develop new methods 

of analysis with assumptions which fit the data in its "original" form, . 

or we may transform the data to fit the assumptions which we need. If 

we can find a satisfactor.y transformation, it will almost always be 

easier and ·simpler rather than developing new methods of analysis. 

We know that the distribution of ~ tends to normality as the 

number of degrees of freedom approaches infinity, but for a given number 

of degrees of freedom, we hope that we have a good normal approximation. 

For example, Fisher used the l/2th power and Wilson and Hilferty used 

the l/3rd power of x2 in seeking a transformation to approximate 

no:rmali ty. We are also familiar with two ap}8rently unrelated 

transformations, Z=VY and Z=log(Y + .>-.), which are usually applied to 

transform a Poisson distribution of average value A to approximate 

normal distribution •. 

Tukey (1957) suggested a family of transformations with an unknown 

power parameter of a rational number and Box and Cox (1964) Diodified it. 

This family of power transformations includs the usual ·ways of making 

1 
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transformations such as logarithm, square, square root, inverse, and so 

on. The first task is to estimate this power from the saaple info:r:wa

tion. Table I provides an example from Box and Cox (1964) Ulustrating 

how the power transformation works. 

Poison 

I 

II 

III 

TABLE I 

8URVIVAL TI~S OF ANIMALS IN A 3 x 4 
FACTORIAL BXPERIMENT 

Treatment 

A B c 

0.31 0.82 o.43 
0.45 1.10 0.45 
0.46 0.88 o.63 
o.43 0.72 0.76 

0.36 0.92 0.44 
0.29 0.61 0.35 
0.40 0.49 0.31 
0.23 1.24 0.40 

0.22 0.30 0.23 
0.21 0.37 0.25 
0.18 0.38 0.24 
0.23 0.29 0.22 

D 

0.45 
0.71 
o.66 
0.62 

0.56 
1.02 
0.71 
0.38 

0.30 
0.36 
o'.31 
0.33 

We want the model to be such: (1) no interaction terms are needed, 

(2) the error variance is constant, and (J) the observations are 

normally distributed. Here, we fit the model with both the original 

data and the transformed data and check their residuals ~st those 

assumptions. For the original data, the- test statistic of Shapiro and 

Wilk's (1965) normality test is 0.92325 with a corresponding observed 



I 
significance level of less than 0.01. When we apply the power transfor-

mation, the ma.ximWR likelihood esti.Jia.te of power is -o. 75. The norma

lity test statistic of the residuals of the transformed data (with 

power -0.75) is 0.98411 with a corresponding observed significance level 

near 0.9. These normality test results tell us tha.t if we want to 

analyze this example under the above assumptions, the data should be 

transformed. 

Since this family of power transformations has been proposed, aost 

studies have eaphasized the maximum likelihood estimate of power and 

investigated its properties. In addition, Box and Cox (1964) have used 

the .Bayesian approach. Because there is no closed fora for the aaximUil 

likelihood estillate, one needs a great dea.l of nuaerical. computations. 

Other methods of estimation for the univariate case will be considered. 

One must also consider the restrictions that the observations are 

positive and that the range of transforaed observations is not froa 

negative infinity to positive infinity, except when the power is equ&l 

to zero. Thus, it is invalid to use the full noraa.l. distribution as -the 

likelihood function of the transformed observations. Hence, one assumes 

an approximate normal distribution of the transformed observations for 

practical situations·. Another problea is the degree of appro.xiJaation. 

It is valid to use the truncated noma.l. distribution as the likelihood 

function of the transfoxmed observations, and fro• the estt.ate of the 

truncation error, one can tell the-degree of fit of the approxiaate 

noraa.l. d.istribution. 

In this paper, Chapter II gives a brief review of the literature on 

this subject. In Chapter III, we present three different aethods with 

which to esttaate the power transforaation for the univariate case and 
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their properties are investigated. A generalized. method of obtaining 

ma.ximWll likelihood estimates based on the tr~mcated noma.l distribution 

is explained in Chapter IV. A BUIIIJil&r.Y and a. brief study o'f robustness 

and possibUi ties for further research are described in Chapter V. 



CHAPI':ER II 

LITERAT~ REVI~w 

T;ukey (1957) dubbed the family of power transformation defined by 

J ?; 
( log Y, 

(2.1) 
/\= 0, 

as the "simple f&llily". He studied their topology and charted their 

structural features for I ;>...I L 1. 

.Box and· Cox (1964) altered the definition of ·the simple faaily to 

(Y/1. - 1)//\. , 1\ ~ o, 
(2.2) 

logY, /\ = 0, 

which has all the features of Tukey•s power transformation and in 

addition is continuous at ?\ = o. Both transformations, (2.1) and (2.2), 

assume that Y is positive to avoid the inadaissibility of~. 

The fundamental assumption made by Box and Cox was that for SOlie 

"' the transformed observations defined by (2.2) can be treated as 
2. . 

independent and noraa.ll;y distributed with constant variance ~ and . with 

expectations defined b,y the linear aodel 

(2.3) 

where~(~) is the column vector of transformed observations, A is a 

known constant matrix, and ~ is a vector of unknown parameters 

.5 
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associated with the transformed observations. They discussed estimation 

of the parameter A from a sampling theory and Bayesian point of view. 

The likelihood of the original observations ~ is obtained by 

multiplying the normal density with the Jacobian of the transformation, 

thus, 

I 

L(.\ • ~, u2 ) = (21tJ fn/2 exp{-<.r (A) -A~) 1 {~ (/1.) -Afl.)/2rl } J (/\.:~), 

where 
n dy ~i\) 

J (A: l) = n ~~1.;;;;..._.
I dy. 

1. 

-fr 
1 

.:\-1 y. 
1. 

(2.4) 

Finding the maximum likelihood estimate of A has two steps. First, for 

2 
a given A , the maximum likelihood estimates of the e 1 s and a" are 

-~(.A)= (A 1 A)-1A 1 ~(i\), (2.5) 

';(:A)= l.(i\)'[r- A(A 1 A)-lA 1 ) l_(A)/n - S(i\)/n, (2.6) 

if A is of full rank. If A is not of full rank, we may replace (A'A)-l 

by its generalized inverse (Rao, 1962). Except for a constant, the 

maximized log likelihood is 

-'2' 
log L (A)=-'inloga- (.A)+. logJ(7\_ :;l_). max (2.7) 

Second, plot the maximized log likelihood, log L (A ) , against A max 

for a trial series of·values. From this plot, we choose the value which 

maximizes the log Lmax (A.) to be the maximum likelihood estimate of /\. 

Or, let the first derivative of log L (.A) with respect to ~ equal · max ·. 

zero and solve this equation by some numerical aethods. Box and Cox 

(1964) a.iso pointed out that the 100(1- d.)· per cent confidence region of 

)\ can be obtained approxill&tely froa 
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(2.8) 

Draper and Cox (1975) derived expressions for the precision of the 

maximum likelihood estimate of r.. for a simple random sample, i.e., 

,!!;( y~A) ) =IJ for i= 1,2, ••• ,n. The approximate variance is 
~ 

where 

"' ; J '1 = ·ll(J) ~. 

4 
Y2 = ll(4/(j -3, 

o = A·d/(1+}-../l), 

(2.9) 

2 
and (J is the variance and #(i) is the ith central aoaent of the y•s. 

Hinkley (1975) gave an estimate of ~ for the power transformations 

such that the transformed observations have a symmetric distribution and 

he termed it a "quick estilla.te". Let observations y1 , y2, •••• Yn. have 

the common distribution function F(y) with quantiles ls defined by 

.F'( 1 )=s (0 (s (1). If there exists a').. such that the transformed s 

observations have a symmetric distribution, then the p and 1-p quantiles 

will be symmetrically placed about the median, i.e., 

(2.10) 

·If we denote the ordered values of the observations as x.. !.... ••• " x . .L.... ~ n 

and define the median x in the usual way, then the. sample analogue of 

(2.10) is (unless x = x + 1=X) r n-r · 

-i\ ~ ~ -1\ 
x - xr = x~-r+l- x, 

where r == (np]. 

(2.11) 
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From equation (2.11), one a&¥ estimate A associated with the value of p 

for l\ ~ o; and the estiaa.te of )\ is zero if and only if the following 

identity is satisfied 

X -X 
r 

(2.12) 

This estimate is consistent and has a limiting normal distribution 

as n approaches infinity. If the original distribution function F(y) 

has the density function f(y ), then the asymptotic variance of this 

estimate of l\ is 

?t ~· 2"'lt ! -2p(CJ. h + cj, h )hi +2p rJ.. Ol_ h h , p q q p 2 . p q p q 

where p + q = 1, ols= "t/ l t and h;1~ lsf(is). 

(2.13) 

· Andrews, GDanadesikan, and Warner · (1971) investigated the power 

transformations of multivariate data. They discussed the three 

approaches of marginal normality, joint normality, and directional 

normality for the bivariate situation. Although each approaches used 

the likelihood method, the three had. different objectives and properties. 

Schlesselman (1971) suggested some alternative power transformation 

families with the scale invariance property. Atkinson (1973) devised a 

test for the power trusforaation to nomali ty, and other aspects of 

. normal-theory estimation and inferences about A have been investigated 

by Fraser (1967), Andrews (1971), and Lindsey (1972, 1975). 



CHAPl'ER III 

METHODS OF ESTIMATION OF THE POWER 

TRANSFORMATION TO AN APPROXIMATE 

NORMAL DISTRIBUTION FOR 

THE UNIVARIATE CASE 

This chapter describes three methods to estimate the parameter 

~ of the power transformation to nor.mality from a sample with univariate 

data (if such transformation exists). Some properties of these 

estimates are investigated. The first method is called the "quantile 

estimate" and is based on the p and q quantiles for 0 < p, q < t. The 

second is termed the "plotting estimate" which utilizes. a norma.l 

plotting technique, and the last is the "maximum w-statistic estimate" 

and is based on maximizing the Sha.piro-Wilk (1965) w-statistic. 

~tile Estimate 

Procedure 

Suppose Y1 , Y2 , ... , Yn are continuous, nonnegative, independent, 

and identically distributed random variables. If there exists a A such 

that the Box and Co~ power transformed random variables Y~~).s are 

distributed approximately normally with mean p and variance ; , we .can 

write the transformed random variables as 

(3.1) 

9 



where x.-N(O, 1) for i=l,2, ••• ,n. 
1 

Therefore, we have 

(A~ 0), 

(A =0). 

10 

(3.2) 

Let Yl' Y2, ••• , Yn have the couon distribution function F(y) with 

qua.ntiles ;s defined by F( 1 s) = s for 0 < s < l. Then, 

I 1:=l+lt.p+"A<r1s 

log ~ s = f' + ff '7 s 

( >-~o), 

(.A= o), 

. where '1s is the s quantile of the standard normal. distribution and 

l'ls=- J(l-s" 

(3.3) 

Suppose p and q are chosen such that p~q a.nd 0 <. p,q ( t, then from 

(3 .) ) we have the following identities; 

J 

!~ = 1 + 7\fl + ::\o';, .p 

~ 

~-p = 1 + ?t}J - 'M!'/., , p 

l ~~ (3.4) 
- 1 + 'AJA +AO""'?q• 

--,l:q - 1 + '"A}J .... Ad'?q for .A~ 0, 

a.nd 

~ log 'f= I' +iT'l, p p 
. . 

loglJ.-p= p-<f'lp• (3.5) 



11og 'fq = 

llog ~l-q = for A.= 0. 

11 

The four equations of (3.4) and (3 • .5) have three unknown pa.ra.meters. 

After eliaina.ting the unknown pa.raaeters }I and d, we have two equations 

with only one unknown pa.raaeter ~. Thus, 

and 

[ ~-p )fq = f ~~-g j"'; 
(3.7) 

'f1-p 'fp = J'1-q 1q forA= 0. 

If we denote the ordered values of the observations b,y Y(l)••••r 

Y(n)' then the estimating equations can be found by substituting for fs 

the y (i) and for 'fl-s the y (n-i-+l) if s = p and q, where i is defined by 

i = [ns]. Therefore, the estimate ~ equals zero if the following 

identities are satisfied 

'?. 'l 
[ Y(n-i+l) Jq = [ 1 (n-j+l) J : 

Y(i) J Y(j) J 

· Y {n-i+l)Y (1) = Y (n-j+l)1 (j)• 

Otherwise, the estiute ~· 0 can be found from the following two 

equations, namely, 

(3.8) 
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(3.9) 

We can rewrite the equations (J.8) and (3.9) as 

(3.10) 
,... 

if )\= 0 

and if 1-. ~0 

~ " 
ab>. + (1-a.)cA 

,... ~ 

YJ (1-d)\ ) = '7.. (b)\ 
'lq p 

1, 
(3.11) 

~ 
- c ), 

where a= (~P+~)/2 Y?q• b = Y(n-j+1 lY(n-i+l)' c::: Y(jlY(n-i+1t 
and d = Y (i/Y (n-itl). 

A proof of the existence ot a nonzero solution to (J.ll) and two 

suggesting techniques are given in Appendix A. This nonzero solution is 

·positive if ba) c(a-1 ) and is negative if ba< c(a-l). Since there are 

two equations in (J.ll), it is easier to solve ~ from the first and 

check it against the second. If the checking fails, we ca.n assume there 

is no power transfor~~&tion to normality for that particular pair (p,q). 

Properties 

Definition. An estimator T=t(~,x2, ... ,xn) is defined to be scale 

free if and only if t(cx1,cx2, ••• ,cxn) = t(x1,x2, ••• ,xn) tor all values 

xl'x2, ••• ,xn and all q) o. 

1. The quantile estimate is scale free. 



1) 

) 
[ cyt~-i+l)]'lq = [ cy(n-j+l)] :P 

cy J.) cy (j) 

cy(n-i+l) cy(i) cy(n-j+l) cy(j) for">.=O, 

. '? ? 
[. Y(n-i+l)] q · [ Y(n-j+lJ] : 

Y(i) Y(j) J 

for~:O. 

For ~ ::\ O, from (J.9) 

~ . ~ ~ 
. 2 fq(cy(n-i+l~ . (ill'lq) (cy(n-j+l)} + ('?q-~) (cy(j)) ' 

~ /"' ~ A 

'lq{ (cy (n-i-tl)J- (cy(i)J}= ?p {[ cy (n-j+l)J - [cy (j)f} 

The estimating equations based on the (cy1 , cy2, ••• , cyn) are identicaJ. 

to the estiuting equations based on the (y1, y2, ••• , yn). 

2. The quantile estimate is consistent. 

Let us· rewrite (3.6) to_be, for >.~0, 

(3.12) 

Since the function g1 and g2 are differentiable for A~O, there exists 

continuous functions 11._ and b2 , for ,A:.\0, such that '!o.= ~ (1l-p'Tq•Tl-q) 

and.>\= hz(l'p•li-p•lq•1'1.q) are the solutions by letting the functions 



g1 a.nd g2 equal zero, respectively. Siailarly, from (J.9) we can get 

~= ~(Y(n-itl)'Y(j)'Y(n-j+l)) a.nd ~= ~(y(i)'Y(n-i+l)'Y:(j)'Y(n-j+l)). 

14 

We know that y (i), Y(n-i+l)' y (j)' y (n-j+l) converge in probability 

to \• Tl-p' ~· ~l-q' re~pectively. These convergences in probability 

imply tha.t ~ converges to'A in probability because of the continuity 

of the functions ~ a.nd ~ (Bao, 1973). 

3. The quantile estimate has an asymptotic normal distribution. 

We use the joint asymptotic normality of the order statistics '!{rl)••··• 

Y (r ) for r j = [ilP j1 , 0 < 11. < ••• (pill< 1. Specifically, if the original 
n . ~ 

distribution function F(y) has density f(y) and quantiles 1s = F (s), 

then_ the vector (Y(rl)' Y(r2)' ••• , Y(rn)) has a limiting multivariate 

normal distribution with mean vector ( 't. . , '1, , ••• , ~ ) and variance 
.l:j, P2 1!> n 

covariance dete:z:mined by (David, 1970) 

(3.13) 

From the consistency of ~, we can sa.y A=A+o (1), where o(x) is 

called little o notation ( Olmasted 1959). · Suppose )\ .lf 0 and with i. [np] , 

j =(nq] for 0 < p <. q < t. we define random variables wp, wl-p' wq. wl-q by 

(3.14) 

- ( -t Y (n-j+l) - ~1-q 1 + n wl-q). 

_By the joint asymptotic normality of Y (k) • s, we have the joint 
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asymptotic no:rmality of W(k) •s with means zeros and variance covariance 

matrix determined by 

The first equation of (3. 9) can be rewritten as 

. A ~ 

2'lq ['f1_P(1+ n-tw1_P)f -(?p+ 7q) [\-q(l+ n·iw1-q)J 

. 1 
-('7q- )(P) [ Tq (1 + n ·iwq)) = o. (3.16) 

Expand it about l• .1\ and a.fter siraplied. by using (3. 6), we get 

2~ (}1 ~n-iw1 -+ (~-A)r1 log 'l<!1 + o(n-t) ~o{A->.)) · 
q~ -p -p -p y -p ~ 

-()?P+ '?q)('T1-qxn·iw1-q + (~-.\)r1_qlog jl-q+o(n-1) +O(~-A)) 

•('J. -? >[t An-tW t(~->-)'tlog r. to(n-t) +o(~-~)]= 0. (3.17) qp q q- q q . 

To the first order, (3.17) becomes 

fii ('X-II) = 2 '~q!J._-p~l-p:"(7p:_~}1l-gwl~-~ ?q- fp)jqwq . • 

A ('lp'"'lq)\-qloglj_-q +(llq-~p)lqlog'fq·2'7qTJ.-plog'f1_P 
(JaB) 

By the joint asymptotic norma.lity of w1_f>' Wl-q' and wq, we have that 
,.. 

r=- .\-h . -
, n _ . A .. . is distributed asymptotically no:rmal with mean. zero and 

variance V, as n approaches infinity, where 



Example 

Table II includes a randoa sample of 50 observations of y•s 

-o .B+ ( .z generated by Y • ..-.If 0.5, 0.1) ) froa the IBM noraal generator 

subroutine. Table III gi vee the estill& tea of " for each pa.ir (p, q) 

if O<p < q < t by the iteration aethod (Appendix A). 

TABLE II 

RANDOM SAMPLE OF y-o•64 --.K(0.5, 0.152 ) 

1.)6 1.86 1.89 1.93 2.16 2.25 2.)5 2.4o 2.48 2.49 

2.65 2.71 . 2.77 2.8) 2.86 2.89 2.92 ).02 ).16 ).45 

).68 ).70 ).81 ).81 ).90 4.10 4.i) 4.31 4.)5 4 • .39 

4.49 4.;2 4.61 4.76 4.77 j.64 s.8J 5.94 6 • .37 7.00 

7.6? 7.88 8.48 10.62 12.0) 14.50 15.51 18.o4 41.71 42.42 

16 
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TABLE III 

ESTIMATES OF .\ FOR SELECTED PAIRS (p, q) 

p q ~ Check p q ~ Check 

0.05 0.10 -o.737 . -o.o66 0.15 0.)5 -1.055 -0.010 

0.05 0.15 -0.777 -o.oo2 0.15 0.40 -o.n6 -0.012 

0.05 0.20 -0.810 -o.ou 0.15 0.45 -0.8)4 o.ooo 

0.05 0.25 -0.881 o.oo3 0.20 0.25 -1.225 0.007. 

0.05. 0.30 -o. 7.51 -0.018 0.20 0.30 -o.610 0.007 

0.05 0.35 -0.848 -0.013 0.20 0.)5 -1.ll6 o.oo6 

0.05 0.40 -o. 7o6 -0.018 0.20 0.40 -o.638 -0.008 

0.05 0.45 . -0.797 -o.ooo 0.20 0.45 -o.681 0.001 

0.10 0.15 -o. 745 o.~3 0.25 0.30 0.394 0.~5 

0.10 0.20 -o.85o 0.029 0.25 0.35 o.ooo 3.364 # 

0.10 0.25 .oo.962 0.0)4 0.25 o.4o -0.401 -0.030 

0.10 0.30 -o.~9 0.007 0.25 0.45 -o.27J -0.004 

0.10 0.35 -o.922 o.oo6 0.30 0.35 -2.281 -o.oo4 

0.10 o.4o -0.697 o.oo4 0.30 o.4o -o.916 -o.015 

0.10 0.45 -0.802 0.005 0.30 0.45 -0.573 0.011 

0.15 0.20 -1.027 -o.ooB 0.35 0.40 3.129 11.702 # 

0.15 0.2.5 -1.135 0.002 0.35 '0.45 0.000 -2.196 # 

0.15' 0.30 -o. 793 -0.012 o.4o 0.45 ' 8.)40 4960.740 # 

The # denotes that the check equation failed to co~sP9nd 
(check >0.05 or check< -0.05) for that particular pa.ir (p,q). 
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Plotting Estimate 

Procedure· 

If there exists a power transformation such that the transformed 

observ'Ltions y Lx) • s are distributed independently, identically, and 

approxiutely no.mal. with aean 11 and variance J, we ca.n. write the 

transformed observations as 

for i = 1,2, ••• ,n, 

where xi's are distributed independently N(O, 1). 

Rewrite (3.19) as 

')\ 
{ :r1 = lt "P+Acrx1, 

log Yf= tJ +~xi, l\ = 0 (i= 1,2, ••• ,n). 

The equality of (3.20) holds for the order statistics, thus, 

")\ 
j y (i) = l+llp+/l<fX(i)' 

l1og y (i) = fl + <rx(i)' 

)\ ~ o, 

A= 0 (i=l,2,.~.,n). 

Taking expectations on both sides, we have 

{ 
E (:r(i)] -'- l+~p+ >W11i' 

E(log Y(i)J . jl+cfai' l\ = 0 (i=l,2, ••• ,n), 

(3.19) 

(3.20). 

(3.21) 

(J.22) 

where m1is the expected value of the ith ozder statistic of the standard 

normal distribution. 
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Let y (l), y (2), ••• , y (n) denote the Ol.'dered values of observations 

y 1 , y 2, ••• , y n. If we know the true 1\ and plot the n points (a1 , 1(1)) 

for /\~ 0 and (m1 , log y (i )) for )\= 0, they should lie on a straight line. 

From (J.20) replacing the expected values b,y observations, we have the 

estimating equations 

(J.2J) 
~ =0 (i=l,2, ••• ,n). 

~ ~ A 
If we find some value of l\ such that the n points (mi, y (i)) for )\ ~ 0 

and (mi' log y (i)) for ~ =0 fit a straight line, then this value is 

called tbe plotting estiaa.te of ~. 

We Imow that if l' = a+ bx is the true equation, then the plot of 

this equation is a straight line with the scale of vertical axis y~. 

However, if we change the scale of the vertical axis y)t. to y)t.0 , theii- the 

plot is not a straight line. Let us rewrite this as (y~) >yAo =a+bx; 

thus, we can see that its plot will be a aonotone concave curve if "'/}..0 >1 

and monotone convex curve if A/X < 1 with the restriction of y >0. Fmai 
. 0 

this fact, the suggested procedure for finding the plotting estiaate is 

given as followa 

Ao 
1. Guess a value, say A0 , and plot the n points (mi, y (i)) 

for A0 ~ 0 and (mi, log y (i)) for ';.0= 0 on regular plotting paper. If 

these points fit a straight line, then this va.l.ue )\0 will be the 

estimate of A. 

2. If the fitting line is concave or nearly concave, then we 

need to try another guess -\) >.0 for "o) 0 and A1 < )..0 for -\, < 0. 

J. If the fitting line is convex ornearly convex, then we 



need to try another guess X 1 < ~0 for Ao > 0 and :A1 ) A.0 for >.0 <. 0. 

4. Continue the S&Jle procedure untU the fitting line is 

alaost a str.aight iine and use the last guess as the plotting estimate 

of A• 

20 

-1,2i-l) Note 1. We can use the quantiles <I> 2il for i = 1,2, ••• ,n froa 

the standard normal distribution instead of the m1 •s. 

Note 2. If we use the full nomal plotting paper, the abscissas 

(2i-l). . will be 2n"' for 1. = 1,2, ••• ,n. 

Note ). If we can not deter.aine whether the fitted curve is convex 

or concave, it is suggested that one use two gU.esses, say ~ >>-0 and 

~<~·and see which direction produces the most improvement. 

Note 4. After we ha.ve an estilla.te of >-,, say?\, then the estimate 

of !J will be (b-1 )/5.. where b is the vertical a.xis intercept of the 

fitted line and the estimate of ~ will be the slope of the fitted line 

divided by ~. 
. A ~ 

Note 5. The plotting estilll&te of A is scale free. If Y' = l + >-.p 
/':- A 

+ ~~x is a straight line on the axes of x and y'ii., then ( cy/' = 1 + 1.. f 
. A 

+ ~ crx will also be a. straight line on the axes of x and ( cy f . 
Note 6. This method can quickly detect outliers. 

Example 

Here we a.re using the same data as presented in Table II. There 

are eight figures, Figure 1 through Figure 8, for our various guesses of 
~ . 

A, naaely -1.5, -1.0, -0,75, -0.65, -o.5, -o.25, o.o, 0.5, respectively. 

Each figure ha.s two plots of the n points (a1 , y~i)) and (q,;..1 (2i:l), 
Y~i)) separately, whe1re .Y (i) is the ith ordered observation. of the data. 

. -1 21.-l 
Suppose our first guess '}.. is 0 • .5 and we use the <I>. ( - 2 ) , o n 
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i=l,2, ••• ,n, to be the abscissa. From Figure 8, we see that the 

plotting is convex, so we need to guess again. Because >.0 is positive, 

hence, our next guess should be less than Ao• say~= -1.0. From 

Figure 2, the plotting is convex too, but this Al is negative. 

Consequently, the third guess should be greater tha.n )\l and in addition 

be less than '/'10 • Let >-.2= -0.5 and the plotting is shown on Figure 5. 

The plot is closer to a straight line but is slighty concave. SuppOse 

we try ·one aore guess which is less than '/'12 because the plot is concave 

with a negative va.lue of A2• Therefore, choose >.3= -o.65 and the 

corresponding plot which fits a straight line quite closely is in 

Figure 4. Finally, we can say that the plotting estiu.te of )\ is -o.65 
I· 

for the data in Table II. 

0 
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Maxi.Jaum Ill-Statistic Estimate 

. . 

If there exists a A such that the power transformed observations 

2.5 

are distributed independently and are approximately normally distributed 
z . 

with mean }J a.nd variance (f , the a&Jti.Jlum w-sta.tistic estiaate is that 

value which maximizes the Shapiro and Wilk (196.5) W'-test statistic, i.e., 

maximizes the observed significance level, of the transfomed. obser

vations. The W•statistic of the transformed observations for given ~ is 
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n 
~ )2 (~ai 1 (1) 

n ~ l n }1. 2 • 
l (yi- ii l ;yi) 
l l 

>-.~ o, . 

= (3.2J.I.) 
n 2 

( ~ ai log Y(i)) ------------ , n 1 n . 2 
l ,(log ;r1- - l log Y1 ) 
l n 1 

)\ =0, 

where a1 ' s a.re the coefficients of the W-test for no:z:mali ty (Shapiro and 
. n 

Wilk, 196.5) and ~ ai= o. 

· There are two proposals for finding an estiaate froa the gi. ven 

observations. The first is to plot the W(A) from (3.24) against A for a 

trial series of values. From this plot, the value which aaxisizes W(~) 

is the esti~~&te of A. The second is to solve the nonlinear equation b;y 

letting the first derivative of W(A) with respect to A equal zero. 

Thus, for J\~ 0 

(3.2.5) 

and the estiaa.te is zero if the following identity is satisfied 

(3.26) 



Because there is no closed fora for the solution, we need to use· 

numerical iteration method to find the estirlate ~-

Properties 

1. This estiute is scale free. 

Because 

the value which maximizes W (l\. 1 ey 1, c,y 2, ••• , cy n) will also aaxiaize 

W(A jyl'y2, ••••Yn) • 

27 

2. The 100(1- r/.) ·per ceu.t confidence interva.J. (A1 , A2) for >. can 

be obtained from 

·where W ()'.. is tbe rf. percentage point of th' Sbapiro and Wilk (196.5) 

w-test for normality. 

J. We can find the ~bserved significance level for testing 

nor.aality of the txanstoraed observations by the corresponding 

perce~tage of the Shapiro and Wilk (196.5) W-test statistics. 

(.3.27) 
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Example 

We again use the same data as presented in Table II. Table IV 

shows W(A) calculated over the interestint ranges of A and the results 

are plotted in Figure 9. The optimal value for the power transforaation 

parameter is ~=-o.65. The critical point of 0.05 percentage of Shapiro 

and Wi1k's (1965) normality test .is 0.~7. ·Using (J.26), the curve of 

W(A) gives a 95% confidence interval of A extending from about -1.15 to 

-0.22. 

-4.0 

-J.O 

-2.5 

-2.0 

-1.5 

-1.) 

-1.15 

-1.1 

-1.0 

-0.9 

TABLE IV 

CALCULATIONS OF W(A) .BASED ON THE NORMALITY 
OF TRANSFORMED OBSERVATIONS 

W(A) W(A) )\ 

0.4)85 -o.8 0.9821 -o.J 

0.5967 -o.75 0.9840 -o.22 

0.6944 -0.7 0.9852 -0.1 

0.7978 -o.65 0.9856 o.o 

0.89.54 -o.6 0.9850 0.25 

0.9287 -0.55 0.9836 0.5 

0.9.500 -0.5 0.9812 1.0 

0.956) -0.45 0.9779 1.5 

0.9672 -o.4 0.9735 2.0 

0.9759 -0.)5 0.9680 J.O 

W(~) 

0.9600 

0.9486 

0.9241 

0.8988 

0.8185 

0.7218 

0.5297 

0.)917 

0~)113 

o.243J 
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Figure 9. Function W(..\) Against )... of Ba.ndo11 Sample 

Comparison of Maximum W-Statistic Estimate 

With Maximum Likelihood Estimate 

l. The maximum w-statistic method requires 6n +l operations while 

the II&Xi.llUil likelihood aethod requires 6n + 7 ope:z:a.tions in the 

calculations for each given ~ Both have fo:r:aulas to f_ind the 100 (l- rJ. ) 

per ent confidence. region of >-.. 

2. It is easier to find the observed significance level of the 

transformation to normality for the maximum w-statistic method. 

J. A set of 1,000 randoa saaples were gener~ted for five different 

values of A and two sample sizes (25, 50). The procedure waa to 



generate the observations y1 •s such that (.yt- 1)/J\~N(o, 0.12) 

independently for i= 1,2, ••• ,n with n = 2.5, .50 in each saap1e. . We 

estimated the transfox.ation pazaaeter X using both methods, and the 

results a.re shown in Table V. 

TABLE V 

SUMMARY OF COMPARISON BETWEEN MA.UMUM w-sTATISTIC 
ESTIMATE AND MAXIMUM LIKELIHOOD ~STIMATE 

Sample· Method ~=).0 )\:1.0 )\:.0.0 )\::-1.0 A=-).0 Size 

" 
M.W.E. 2.813 0.994 0.014 -o.970 -2.789 

M.L.E. 2.732 0.97.3 0.042 -o.960 -2.707 

M.W .• E. -o.187 -o.oo6 0.014 0.0)0 o.zu 
.50 BU.S 

M.L.E. -o.268 -o.027 0.042 o.o4o 0.29) 

s2('A) 
M.W .E. 1 • .3,58 1.614 1.6ol 1.687 1 • .3.50 

M.L.E. 1.14.5 1.45) 1.475 1 • .546 1.116 

~ 
M.W.E. 2.779 o.89'+ -o.144 -o.927 -2.825 

M.L.E. 2.541 o.842 -o.17.3 -o.984 -2.594 

M.W .E. -o.22l -o.1o6 -o.144 0.079 0.175 
25 Bias 

M.L.E. -o.459 -0.1.58 -0.173 0.016 0.406 

sz(~) 
M.W .E. ). 7r:i4 4.143 3.948 4.629 ).8.59 

M.L.E. 2.793 3.481 3.255 3.666 2.996 

)0 
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From the above results, we find the maximum w-statistic estimate 

has smaller bias but larger variance and that the bias increases and the 

sample variance of both estimates decreases a&' the absolute value of~ 

increases. 



CHAPI'ER IV 

POWER TRANSFORMATION TO A TRUNCATED 

NORMAL DISTRIBUTION 

To avoid the inadmissibility of J\ of the power transfo:r:aa.tion, we 

must assume that the observations are positive.· This assumption will 

cause the range of the transformed observations y ~J\) • s to be ( -cc , - ~ ) 
. 1 . 

1 . 
for >-.< 0 and (- 1\• oo) for ~ > o. It is clear that there is no >-., 

except -"' = o, such that the transformed observations have a no:rmaJ. 

distribution. That is, for 'A~ o, we only can transform the positive 

random variable to a truncated normal distribution, if one exists. But 

in practice, we would like to find a transformation for observations 

from an unknown distribution such that the transformed observations are 

distributed approximately normally. If the truncati~n error is small 

enough, then the truncated normal distribution u.y be considered as a 

good approximate normal distribution. 

In the ma.x:iaum likelihood method of finding the estimate of A of 

Box and Cox (1964), the incorrect likelihoOd function of a full normal 

distribution was used. Nevertheless, this method is adequate sometimes 

for practica.l purposes. In other words, if there e_xists a 

transformation to a truncated normal distribution with a truncation 

error near zero, the ma.ximUIIl likelihood estimate of Box and Cox is very 

nea.rly correct. But if the truncation error is not close to zero yet is 

small, for example 0.05, it will produce aisleading estiaates of the 

J2 
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mean, variance, and A • 

This chapter considers a more general and accurate method based on 

maximi2oing the exact likelihood function of a truncated norul distri-

bution with a varying truncation error. Hence, we can find a aaximua 

likelihood estimate aaong all truncated normal distributions and full 

normal distributions. If the estimate of the truncation error is 

approxilla.tely zero, both methods produce the same estimate of >-.. And if 

the estimate of the truncation error is not small enough, then we will 

ol&im that there is no power transfol.1l&tion such that the transfo:raed 

observations are approximately noraally distributed. 

The Truncated Normal Distribution 

Definition. The random variable X is said to have a truncated 

2 noraal distribution with pa.raaeters p and (j if and only if its density 

function is given by 

1 
--------..,~ e bll::Jd:. 

. \127r0"1. .J:._ e- 2a2 dt 

a ViiitJ 
0 

2 

-~ 
for a< x < b,. 

(4.1) 

otherwise. 

Note 1. We use the &yJI.bol X "v lf* (JJ, r/) £or & < x <. b to denote that 

X has a truncated normal distribution. 

Note 2. For convenien.ce, we let 



. 1 
g(t) = e 

v21T (f 
• 

r). r g(t) dt, 
-00 

where ~and~ are called left and right truncation errors, respectively. 

From this definition, we have the following leJDD&S (the proofs are 

shown in Appendix B). 

Lemma 1. If X "VN* f.p, J-) for a< x < b and Z = (X-)1)/fJ , then 
. . * . ' . 

the random variable Z rv N (0, 1) for (a-p.)/ff <. z < (b-~/r:J. 
* LeiiUil8. 2. Suppose X IV N (0, 1) for a< x <oo , then F(x) = ( c1> (x)- ~ ) 

/(1-ol); and if F(x) =k, then the k quantile xk= F-1 (k)=t~>-1 (k-k()(+ ~). 

where ct> ( t) is the distribution function of standard norma.l 

distribution. 

* . 
Lemma J. Suppose X IV N (0, 1) for - oo(x < b, then F(x) = ct>(x)/ (1 

- ~)~ and for. F(x) = k the k quantile xk=F-1(k)=<Jr1 (k-k~ ). 
' ' * 2 

Lemma. 4. Suppose random variable X IV N ~ u- ) for a < x < b, then 

E(X) =U- g(b) - g (a) (l· • 
. I 1- ~ • ~ 

(4.2) 

Leua. 5. Let ~, Xz, ••• , Jlh be a rand~ll sample froa N* (p, r/-) for 
-a.< xi<b, where i = 1,2, ••• ,n. The maxiaWI'l likelihood estiaate of~ and 

2 . ' 
U are the solutions of the following two equations 

(4.J) 



where 
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(4.4) 

1-

/' ,, 1 
g(t) = A e 

{;. 7l (/' • 

c; =Ja. glt) dt, 
-oo 

;8~Jboo ~t) dt. 
~ 

Note ). There is no closed form for the solutions of fi and ; , but 

it is quite siaple to obtain thea by a. nuaerioal iteration aethod with 

the initi&l. guesses as 

,0(1) = x, 
2 n "' 2 o- (l)= l (xi -,U(l)) /n. 

. l 

Existe.nce of Power Trans:f'oru.tion to a. Truncated 

Normal Distribution 

Since the range of the transformed va.ri.able Y (") is bounded by one 

side for A~O, we only consider tr,ansforaations to one-side truncated 

normal distributions. Suppose there exists a power transformation with 
. (>.) * 2 .l\:4;0 auch that the transforaed variable Y is distributed N (f. o-). 

with a. truncation error ~. then the probability density function of the 

.original variable Y is 

for y 40 

(4.5) 



)6 

z? for y > 0, 

where 

for .). ) o, 

for ~< 0. 

Theorem. There is ob.ly one distribution with y > 0 tha.t ca.n be 

transformed to a normal distribution by the power tr.aastoraation, naaelj 

the log normal distribution with transfoxaation parameter ~=0. 

Proof. For y > o, there is only one power transfo:DI&tion with the 

range (-ao, ao). That is y(")=log Y for ~=0. If y(~} is distributed 

norma.lly, then the ra.ndoa variable Y ha.s a log noruJ. distribution. 

Theorea, The family of gamma distribution with the parameter ( -f, Y ) 

. ca.n be transformed to a truncated noraa.l distrl bution with truncation 

error 0.5 by the power transfozmation with~=t. 

Proof. Let random variable Y-Ga (-f, Y ), i.e., the density 

function of Y is 

1 
for y > o, 

fo;r: Y 4 o. 

We can rewrite it as 



for Y> o, 

for y!: o. 

Now compare this to (4.5), where we see that the tr,ansformed variable 

y{A) has a truncated nomal distribution with p=-2, a--iiV, and 

truncation error 0.5. 

There are a.n infinite nuaber of distributions with positive 
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support which can be transformed to a truncated normal distribution with 

parameters ll• r/, and truncation error d. Some of them are shown in 

Figure 10 through Figure 21 with truncation errors (0.01~ 0.05, 0.1) and 

standard deviations (0.5, 1.0, 1.5, 2.0). Each figure has several 

plots of the density function which can be transformed to a truncated 

normal distribution from the power transformation with the value of A 

indicated. The parameter p can be determined correspondingly by 

1 -1, d 

{ 

J..L = - X - ucp . ) 

ll = ~ .~ - rr¢-1 ( 1 - d.) 

for A> o, 
(4.6) 

for A.< 0, 

where cp is the distribution of stand.axd normal and d is the truncation 

error. 
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Maxiaum Likelihood Estimation 

Suppose we observe an n x l vector of observations l.=(y1 , y2, ••• , 

YJ arid the appropriate linear aodel for the problem is specified b,y 

z = Ae + e, - - - (4. 7) 

where !. is the n x l vector of transformed observations, A is an n x p 

known ma.trix, fi. is a. p x l vector of unknown pa.raaeters associated 

with the transformed observations, and !. is a.n n x l vector of random 

error. Since, for positive observations yi •s, the transfo:raed 

observations zi' s a.re bounded by one side, we only ca.n assUile tba.t for 

eoae unknown )\the ra.ndoa eZTOrs ei (i= 1,2, ••• ,n) are independently 

distributed •* (o, o-2 ) associated with an unknown truncation error tl.. 

The probability density for the untransfo:raed observations is obtained 

by multiplying the truncated nor.mal density by the Jacobian of the 

tranaforaa.tion. 

We find the ma.ximum likelihood estira&te in two steps. First,. for 

given >., find the ma.ximua likelihood estillates of f-4 I, a.nd ~. Then, we 

plot the ma.ximUJI likelihood function against ')\ for a. trial series of 

values a.nd inspect the value of ).. which ma.ximizes the II&Xiawa likelihood 

function to be the estillate of ).. • We now discuss the three oases A) 0, 

)\,= o, and .\( o. 
·l. 1\)0 

Since y i) 0 (i = 1,2, ••• ,n), the transforaed obaervations zi •s 

(i= 1,2, ••• ,n) are greater than -l/"A and the random eZTOr e1 (i= 1,2, •• , 

n) will greater th&n -l/'A - llinillum of {).11} , where }li is the ith element 

of A ~. The likelihood function ot the origiu.l o'baervationa l. is 
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[~(£ -1:)-A~]'[~(f -J:)-A~] 
2 a2 

• (4.8) 

where 1 is an n x l vector with elements of 1, - . 

and 

n I dzi I . n .\-1 
J(/\:;t) = Tr dy - 1T yi • 

l i l 

B,y letting tbe first partial derivative ot log L(~) with respect to 

0. and (l be zero, the JII&Xilau.m likelihood estiu.tes of fi. and J for given 

)\ )0 are the solutions of the following equations (Appendix C), 

(4.9) 

where fit is the estilla.te of llinimum of f?J , !k is the p x l vector of · 

the kth row of A, 

• 

&Dd 
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1 
--,.. e 
y2 TT 1/" 

Then the maximized log likelihood fUnction is 

( n ri ""2 ( ":;\ log Lux ?\) =- 2 log 211 - 2 log o- - n log l•tJ.J 

(4.10) 

The likelihood function of the original observations ~ is 

[~-A§]'[~- A~] 
2 ~,2 . 

• (4.11) 

. 2 
The aaxiau.a likelihood estilla.tes of ~ and (f are 

'§: (A'A)-lA, ~' -
"" A ·? (~-A~)'(~- A§) 

. = n • 

(4.12) 

Then, the ma.xiaized log likelihood function is 

(4.13) 

) •. )\( 0 

For yi) 0 (i= 1,2, ••• ,n), the transforaed obaervations a.re less 

·than -1/?o. aDd the ra.n4oa errors ei (i= 1,2, ••• ,n) are less than -1/'A 
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- maximum of {,tJi~ • The likelihood function of tbe original observations 

l. is 

[~<f -!)- A§ '[~<l-1)-A~] 
2 

• (4.14) 

where 

1 CXl -
1 r:J.= e . i2" (f 

-* -max. of {p1l 

The maximum likelihood estiaa.tes of§ and f are the solutions of 

the following equations (Appendix C) 

[ l ~ "']' [ l ~ ~] ~"2_ A{z: - !) • Afl A"(l. - !) • A!;! 
~ - . l ' 

I ~(- ~) 1 .A. ] 

D l - l - ~ (- X - }'k) . 

(4.15) 

where ~ is the estba.te of u.xiaum of {P1• !s: is. the p x 1 vector of 

the kth row of A, 

• 

and 
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dt. 

Then, the aa.ximized log likelihood fWlction · is 

n n .....Z ,... 
log Lmax (A)= - 2 log 2rr- 2 log 0' - n log(l- t:J.) 

(4.16) 

If we are considering the univariate case, i.e., A is an n x 1 

A " . . vector of elements l, then the ~ will be p. Taere is no closed fol.'ll of 

..... .....2 
~ and (]' for J\) 0 and ), ( O, but they can be determined numerical.ly. If 

the ~(- ~) is close to zero for a given ~. then i and i' wUl be the 

least squares estimates. 

Exaaple 

Table VI shows data taken from page JJ9 of Steel and Torrie (1960) 

which will be used for illustrative purposes. 

We assUile that the power transfomed observations have a aiaple 

regression model 

(4.17) 

If the transformed observations have a truncated noxmal distribution, 

. . * 2 then the random errors ei • s a.re independently diatributed I (0, (J ) ·and 

have a truncation error ol. 



y: 

x: 

y: 

XI 

ys 

Xi 

TABLE VI 

ALASKA PEAS GROWN AT MADISON, WISCONSIN, 19.53 

24.0 22.0 26 • .5 22.0 
76.2 76.8 77.) 79.2 

26 • .5 .5.5 • .5 49 • .5 .56.0 
96.8 97.5 99.5 104.2 

7J.O 76.5 78.5 '74.0 
119.8 12).5 141.0 142.) 

y - yield in pounds per plot 

x - tenderometer reading 

2,5.0 37 • .5 )6.0 )9 • .5 
8o.o 87.8 9).2 9J • .5 

.5.5 • .5 ,58.0 61 • .5 69.0 
1o6.J 106.7 119.0 119.7 

71.5 77.0 85.5 
145.5 149.0 1.50.0 

)2.0 

~.J 

71 • .5 
119.8 

After applying the proposed method, the maximum likelihood 

estillates are 

~ = 1.29, 

b = -1.50.40, 
0 

/.' 
bl = 2.59. 

,. = .5,52.)8, 

~ 
'rJ.. = 0.021. 

The regression line will be 

which can be rewritten as 
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y1 •29 =- -195.17+ ).)5 x. (4.18) 

Since the estimate of truncation error is 0.021, we can say that this 

truncated noraal distribution is an approxia&te noraal distribution. 

But, if we apPly the maximum likelihood method of Box and Cox 

(1964) with the full no:naal distribution for the ei' s, the u.ximWR 

likelihood estimates are 

$. - 1 • .58, 

"b ~ -538.44, 
0 

i)l = 8.29, 

...-2 
~ = 4674.76, 

and the regression line is 

yl.,58_l 
1.58 = -538.44+ 8.29 x, 

which can be rewritten as 

(4.19) 

Therefore, we have two estimates of ).. and want to compare their 

goodness of fit to the assumed distributions by residuals. We computed 

the maximum distance between the emperica.l distribution of residuals and 

the estimated theoretical distribution of random errors. The emperical 

distribution, S(x), is a step function of x for -oo<x<oo, where each 

step is of height 1/n and occurs only at the sample values. If we let 

xi denote the ith ordered value of residuals, then the emperical 

distribution iss S(x)• 0 for x < x1 , S(x)-= i/25 for xi 4 x <xi-l and 
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i• 1, 2~ •••• 25, and s(x)= 1 for .x ~ x25. The estimated theoretical 

distribution of the random error is N*(o, 575.899) with left truncation 

error 0.021 for l•l.29r and the esti.ila.ted theoretical distribution of 

/the random error is lf(O, 487). 77) for >.=1.,58. The estilaate of g2 are 

calculated as. n~l 'f- for both estimates of f.., where 42 is the maximum 

likelihood estimate of q2• 

For the power transformation of ~ = 1. 29, the maximum distance 

· between the emperical distribution of residuals and N*(o, 575.899) with 

left truncation error 0.021 is 0.07134, while the ma.xilll.um distance is 

0.09195 for the power transformation of A= 1.58. Thus, we can see that 

the author's proposed method, based on the truncated normal distribution,. 

gives a closer fit to the observed data than the maximum likelihood 

method of Box and Cox (1964). 



cHA.PrER v 

ROBUSTNESS STUDY AND SUMMARY 

Robustness study 

The simple regression line is used here as a.n exaaple to investi

gate the robustness of the transfo:ru.tion to noru.lity. Two ca.ses a.re 

discussed in this chapter. 

case 1. Suppose tba.t we ha.ve the true regression model of 

for i= 1,2, ••• ,n, (5.1) 

where y i is the dependent variable, xi is the independent variable, and 

the random errors ei (i•l,2, ••• ,n) are independently distributed N(O, 
2 

(f ) • If we apply the power transfo:mation to the dependent variable y 1 

with the norsality assumption of random errors, what will happen? The 

tranSfo:rmed model is 

for i = 1,2, ••• ,n. 

Case 2. Suppose for some value of ~. the true regression model is 

for i = 1,2, ••• ,n, (5.)) 

' 2 
where the ei (i=l,2, ••• ,n) are independently distributed N(O, <T ). 
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. But, suppose we analyze the data and assume that the regression modal is 

fori= 1,2, ••• ,n, (5.4) 

where ei' s are independently distributed N(O, cr~, what then will happen? 

A set with 1,000 samples of 25 observations was generated for each 

of five values· (2, 1, o, -1, -2) of )\. Suppose that the range of 

dependent variable y is from 10 to 100, the range of independent 

variable x is from 1 to 10, and y increases as x increases. It is 

reasonable that we allow a maximum deviation of nine on y which is 101' 

of the range of y. The values of x. 's are chosen uniformly between 1 · 
1 . 

and 10. The standard deviations of the ra.ndom errors were calculated 

from that a maximum deviation of y with a value of ~ine was caused by 

three standard deviations. 

The generating formulas werea 

1. For)..= 2, 

where e1 i.i.d. N(O, 16._?). 

2. For A= 1, 

where ei i.i.d. N(O, 32). 

3. For A• O, 

8 log 10 
log yi = 9log lO+ 9 xi+ ei' 

2 
where ei i.i.d. N(O, 0.03 ). 

(5.5) 

(5.6) 



4. For "= -1, 

2 
where e1 i.i.d. N(O, O.OOOJ ) • 

.5. For 'A = -2, 

2 
where ei i.i.d. N(O, 0.000003 ). 

(.5.8) 

(.5.9) 

In comparisons between the untransfo:rmed vs. transformed model, we 

deal with two considerations: 

1. The average of 1,000 values of mean squares of residuals, 

2. In how many cases is the value of the mean square of 

residuals of the transformed model less than the 

corresponding value for the untransformed model? 

The results are shown in Table VII. For the case where >.== 1, 722 

of the 1,000 samples have a mean square of residuals of the transformed 

model which was less than that of the unt:ransformed model. Also, the 

average of the mean squares of the residuals of the transformed model 

of 1,000 samples was less than the average of the mean squares of the 
, , 

untransformed model. For the other cases- the transformed model was 

alWaJS better than the untr.ansformed model. 



TABLE VII 

SUMMARY OF ROBUSTNESS STUDY 

A -2 -l 0 ~ 2 

a -2.001 -1~000 0.032 0.982 1.982 

b 0.003 o.olo o.o23 0.089 o.ol4 

c o.o28 0.413 2.?49 8.683 2.829 

d .5?.4?9 9).89? .50.??9 8.9.57 l?.6J.l 

e 1,000 1,000 1,000 ?22 1,000 

a. The average of ~ of 1, 000 sa.mples for the transformed model. 
b. The sample standard deviation of ~ of 1,000 samples for the 

transformed model. 

c. The average of the mean squares of residuals of 1,000 samples 
for the transformed model. 

d. The average of the mean squares of residuals of 1,000 samples 
for the untransformed model. 

.5.5 

e. In how many samples (of 1,000) is the mean squares of residuals 
of the transformed model less than that of the untransformed 
model'l 

Summary 

Since the time that Box and Cox (1964) proposed the power 

transformation to approximate normality, it has been evident that the 

maximum likelihood method involves a large number of calculations. We 

presented the quantile estimate method in Chapter III in which a close 

estimate is possible to obtain even using a desk calculator. The 

asymptotic distribution of this estimate was shown to be nonnall.y 



distributed. From the example illustrated, when the value of p and q 

are near 0.5, either the check procedure fails or the estimate deviates 

too much from the true value for small sample size. We would suggest 

that the value of p and q should be chosen as far aw~ as possible from 

o.s. 
The plotting method in Chapter III also simplifies the calculations 

and it is most convenient for small sample size. Because the estimate 

is obtained graphically, one can not develop the statistical properties 

of' the estimate. 

The last method presented in Chapter III of the power tra.nsforma• 

tion to approximate normality is the maximum w-statistic technique. 

Although it does not substantially reduce the calculations, it is useful 

with the observed significance level of normality test of the trans

formed observations. We tried to develop the approximate variance for 

this estimate, but did not succeed in doing so. 

In Chapter I.V we generalize the transformation to truncated 

normality. In practical cases, we are interested in finding a 

transformation to normality. As we mentioned before, there is no exact 

power transformation to normality except where >-=0. Instead, a 

transformation to approximate normality can be used. If the truncation 

error is small, this truncated normal distribution can be treated as an 

approximate normal distribution. The maximum likelihood method of 

transformation to a trun-cated normal distribution is a generalization of 

the Box. and Cox (1964) maximum likelihood method. As proved by the 

example in Chapter IV, the residuals from fitting the linear model of 

transformed observations (with the truncated normal distribution) are 

less than those from applying the Box and Cox maximum likelihood'method. 
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We can not evade the fact that this method requires more 

calculati~ns to find the aaxiaum likelihood estiaates of~ and d2; but 

with the aid of a computer, the increase should not be a major problem. 

The precision of this estimate is too complicated to determine at 

present, but with a small truncation error, the precision of the Box and 
' ' 

Cox (1964) maximwa likelihood estilla.te could be used. A Jla1esi&D. 

approach toward the power tzansfozmation to a truncated normal 

distribution might be considered. 
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APPENDIX A 

NUMERICAL METHOD FOR FINDING QUAHTILE ESTIMATE 

Recall the equation (3.11) in Chapter III 

for~~o. 

where a -=(?p + ?q)/2fq• b = Y (n-j+lfY (n-Hl)' c = Y(jfY (n-i+l)• 

and d ::y(ifY(n-i+l)• 

(A.l) 

Since 0 (p(q< t, i -=~P] and j •[nq], we have Y(i),Y(j) <Y(n-j+l) 

4 Y (n-i+l) and ?p <. Vq <. o. Therefore, 1 ~ b > c ~ d > 0 and a> 1. 

Let function g(~) be 

~ 1; g(A) =-a 1J + (1-a.) c - 1. (A.2) 

Then the limits of the function g(A) are 

lill g(~) = a lim ~ + (1-a.) lilltf-1 .. -1, (A.J) 
~-+OD . ~ ... 00 )\ ....... 00 

A ~ . ~ ~· 
lim g(A) =a limb + (l•a). lim c -1 = (1-a) lim c = •oo. (A.4) 
'l;-+•oo ~-.-oo 1i--+•<l0 ~-.-oo 

The liaits of g(~) tell us that the equation g~) = 0 haS an even nuaber 

of roots or none, but we know that it also has a trivial root zero. 

Therefore, we can sa.y that this. equation g()') = 0 bas a.t least one 

nonzero root or multi-ple zero roots. 

60 
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Let us sept-rate , g(~} = 0 into two equations with a. ~eter k. 

Thus, 

~ 

{
a. b = k, 

")\ 
(1 - a)c = 1-k. 

(A.5) 

It can be rewritten to 

{ 
/' k 

· A = lo~ '&' , 

/:- 1- k A = log0 y:-a , 
(A.6) 

and these two logarithmic equations have at most ·two intersections of 

which the value of 1\ is the root of g(~) == 0 including the intersection 

at ~= 0 and k = a. Hence, it simplifies the number of roots to two 

possible cases; a. nonzero root and a. zero root or d.Qu'ble zero roots •. 

If the latter is true, then the solution of g' (~)= 0 should be located 

at zero. Thus 

~ 1: g•('S\):ab log b+(l-a)c log c=O. (A.7) 

~ ...,. 

ab log b = (a.-l)cx log c. 

a.-1 
~ =lo log c • 

~log ba. 
c 

a.-1 a. ' 
Because of c • b • the equation, ~· (~) = o, does not have a. root at 

zero. Hence, the equation g(A)= 0 for ~ .. 0 has only one nonzero root • 

. Two methods are suggested to find the nonzero solution of g(~) =0. 

1. Use the numerical iteration method ca.lled the "Modified Newton-

Raphson MethoQ." which is . 
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(A.8) 

where 

U(~i) : g('i.i)/ g' (~i)' 

u• (~i) = 1 - g(~)g"(J.-i)/[g•($-i))'· 

The initial guess will be 

). = log log o ± o [ 
a-lj 

1 ~ log ba 
(A.9) 

where the sign will associate with the sign of the loga.ritJ:mdo tera and 

o is a reasonably saa.U positive real nWI.ber •. 

2. Plot the functions of (A.6) against a trial values of k, the 

nonzero value of ~ at the two intersections will be the answer. 



APFElfDIX B 

PROOFS OF LEMMAS OF TRUNCATED .NORMAL 

DISTRIBtfi'ION 

Lemma 1 The truncated noraal density of random variable X is 

for a -<:.x ( b, 
(:a:l) 

otherwise. 

For the transformation Z ~(X •?)/~, the Jacobian ia 

(B.2) 

Hence, the density function of the random variable Z is 

for a ·IJ <z < b ·J.J 
(}" (J • 

(B.J) 
otherwise. 

* Lellll& 2 For random variable X""N (o, 1) with the doll&in a< x <co, 

the distribution will be 

6J 



= 1 ~ ~ (<fo(x) - ¢(x)) = 1 ~ rJ. (¢(x) - (j.) 

and Fx(x) = 0 tor x ~a. 

If F X(x) = k, then 

(1 - rj.)k = ¢(x) -fl.. 

~ ¢(x) = (1- o()k + ()( 

=9 X = ¢-l ((1• ()( )k + o() • 
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for a (x<oo, (B.4) 

(B.S) 

* Lemma J For random variable X-N (0, 1) with the domain -oo< x < b, 

the distribution function will be 

. X 1 . - t 2/2 
Fx(x) = j · · e dt 

_ 00 /iii(l-~) . 

¢(x) 
= 1 -p 

and FX(x) = 1 for b~x. 

If Fx(x) = k, then 

(1 - 13 )k = 9>(x) 

~ . X = ~ -l (Cl - f3 )k]. 

for -CID< x < b, (B.6) 

(B.?) 

Le1111a 4 For randoa variable x-N*(,v. /) with the domain a<. x < b, 

then the expected value of X is 

b X ( )2/ 2 
E(X) = j . . e- x-}J. 2 6 dx 

a ,/2irr(l-d-f>} 

b 2 2/ 2 J - (f. -(x-,u) 2a . [ (x-p)2] = e d- - +jJ. 
a ,/2ittr(l-ri.-/3) · 2/ 



(B.8) 

where 

Lemma 5 Let ~· ~····· xn be independently distrib\lted x*(JJ. 1-) 
·for a < x. ( b, then the likelihood function is 

1 

2 1 
L(p,o- I ~,:xz, .. ,xn) = D/2 n . . n e 

(2Jt) (J (1-f/.-p) 

n 2 
2: (xi-/J) 

- :,.1 __ _ 

2iZ 
• (B.9) 

Hence, 

n n 2 ~ 2/2 log L • - 2 log 2Jt- 2 log (]'- n log(l-ot-p) - L..(x1 -)I) 20' • (B.lO) 
1 

Therefore, 

n ~2 L (xi -).1) b · 1 -
olog L 1 n o f --- e dt 

0 }J =: (}"2 - (1-d-p) ?;jl a J2i q-

E(xi-p) b - (t-N)2 

- -1-~- - n J 1 e 2rf 
t12 l-f/-fJ a ,/2ir: ~ 

t-)..1 dt 
~ 
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(B.ll) 

and 

n 2 
L_.(x. •)J) 

olog L n l 1 n o 
ail = - 2i + 2(P - 1-d.-13 a7 

b - (t-JJ)2 

f l 2a2 dt 
,J2Jfrr e 

a 

2 2 
( t-)J) - . ( t•,U) 

b - 2 b 2 } + l J l e 2CT dt - ...LJ ~ e 2u dt 
2l ·a P~ 2if- a pu 

n 2 
L:(x -}J) 

_ n + 1 i + (b-H)g(b) - (a-N)g(a) 
----,- 4 n 02. .• 

2o- 2ff . 2 
(B.l2) 

Let a;ot L = 0 and ol;;2L = O, then the aaxiauia likelihood. esti.llates of 
. z 

~L and a- are the solutions of the following 

(B.lJ) 
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(B.l4) 

where 

... :fa _ (t;}2 
d.= 1 ,.,. e 2a 

-00 J21C ~ dt u· ' 

- (t-&12 
e 2~ dt, 

and 



APFENDIX C 

DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATES 

' OF POWER TBANSFORMATION TO A TRUNCATED 

NORMAL DISTRIB'lfl'ION 

1. ")0 

Take the loga.ritha of (4.9), then 

n . n 2 n · 
log L()\) = - 21og zn- 21og cr - n log(l-ot)+(~-l)L: log y1 

.. 1 

• 

For convenience, let )Jj ~ ainillua of t.ui}, then 

- ain. of {,uJ 

{
l/'A 1 -( t-JJ..l ;zl-

= · e J dt. 
i2tt ~ 

00 

The first partial derivative of log L(A) with respect to fl. is 

~log L(~) __ A'A.§- A•~(l_>.-!) 
~~ - - n 

(f 
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0~ iog(l-GL) , 

. 
• • 

0~ iog(l-ol) 
n 

(C.l) 

(c.2) 
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where 

for i = 1,2, ••• ,p. 

p 
Since )i.· = E aj1s1, where a .1is the ji th eleaent of a&trlx A, then 

J i=-1 J -

(C.J) 

Therefore, 

00 2/ 2 2 
0 _ a.1 1 -(t-,v..) 2a (t-p.) 

log L(A) ....1! - e J d · ·1 
0~ =l-ot ~ J23t0" 2rl 

2 2 00 

aji 1 -(t-~.) /2cr 
-- -e J 
- 1-d. J2i (j -1/).. 

(C.4) 

Hence, 

(c.s) 

where 

!.j = 



The first partial derivative of log L(A) with respect to ~2 is 

1 _}. ' 1 A. a n ~l.. -!)- Aj ~(i. -!)- Aj · 
:-'?' log L(A.) = - ~ + 
a~ 2~ 2~ 

The pa.rtiaJ. derivative in the last term of (c.6) will be 

Therefore, 

D. ( 1 ( l '< - -;:: - pJ.) gj - ·;:). 
2a l-~) 

Let (C.j) and (c.8) equal zero, then the lla.Ximum likelihood 

estiaates of f and ot are the solutions of the following 
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(c.6) 

(C.?) 

(C.8) 

(C.9) 



71 

(C.10) 

where k, the estimate of j, is the number of the row associating with 

the minimum value of e1eaents of A~, ~ is the p x 1 vector of the kth 

row of A, 

• 

and 

2. A <O 

Take the logarithm of (4.14) 

n 
log L(A) ...;. - ~ log2Jt - ~ log a2 - n log(l-ot) - (.h-l)L log 1 i 

1 

(.1 • rl rxei -lJ- A~ ~<i -!>- A~ 
• (C.1l) 

For the same reason of convenience, let ,uj • u.xi.mum. of IJ.i}. The first 
. 2 . 

derivatives of log L(A) with respect to §. and (!' are just the S&llle a.s 

those of A > 0 excepting the term of log(l-()(). Thus 

. 2 2 ~ a ~ 1 -(t-~.) /2a - 7:: -a... 1 
-:;-- log(l-ct) =- 1 1 - e J ~ 1_ j1gj(~), 
u8i -r:J. ) 21t a' -oo V' 

(C.12) 



and 

~ . -1 1 . ·. . l 
- 2 log(l-<i-) = 2 (- ~- ~.) g.(- )\')• 
~()" 2cr- J J 

Therefore, 

a.nd 

~ . 1 ) -n 
~.log Lv'' = 2,/- + 

+ 2n (-~-~)g.(-~). 
2 <S (1-(X) J J 

Let (C.l4) and (C.l5) equal. zero, then the u.xiaWD. likelihood 

2 estimates of § and (j a.re the solutions of the following 

(C.l3) 

(C.l4) 

(C.l5) 

(C.l6) 

(C.l7) 

where k, the estimate of j, is the nuaber of the row associating with 

the maxillum value of eleaents of AI., ~ is the p x 1 vector of the kth 

. row of A, 
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and 
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