This dissertation has been microfilmed exactly as received

$$
68-17,593
$$

MAYYASI, Adil M., 1939-
THE EFFECTS OF NOISE, AIR IONS, AND ELECTRIC FIELDS ON LIVING SYSTEMS.

The University of Oklahoma, Ph.D., 1968
Engineering, biomedical

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE EFFECTS OF NOISE, AIR IONS, AND ELECTRIC FIELDS ON LIVING SYSTEMS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

BY
ADIL M. MAYYASI

Norman, Oklahoma
1968
tHe EfFECTS OF NOISE, AIR IONS AND ELECTRIC FIELDS ON LIVING SYSTEMS

Abstract

Experimental animals (400 King-Holtzman hybrid breed of rats, 200 males half young and half adult and 200 females half young and half adult) were subjected to three environmental conditions: Noise, negative air ions, and positive direct electric fields. This study consisted of two experiments, one of which involved exposing rats to two levels of noise and three levels of negative air ion concentrations. The other experiment involved exposing rats to two levels of noise and three levels of electric field intensity variations. The data collected consisted of the time and error scores (average value of 10 trials for each rat) of rats running a modified Lashley Left-Right Maze with an escape from water motive.

A randomized-complete-block design with repeated measures was selected for statistical treatment by analysis of variance. In the"cases where significant interaction terms appeared with significant main effects an additional statistic (Newman-Keuls) was used to facilitate interpretation of the main effects.

A new measure of learning based on the concept of negentropy as defined by information theory, and the concept of conservation of energy is exposed. A1so a randcm walk model for choice behavior which simulates the rat maze system is proposed.

ACKNOWLEDGEMENT

The author wishes to express his appreciation to the many people who helped make this work possibl $\overrightarrow{\mathrm{e}}$. " Without their patience, understanding and moral support, the task would have been difficult indeed.

Special thanks are extended to Dr. Richard A. Terry and Dr. Darrel G. Harden under whose astute guidance this work was done. Their comments and suggestions have materially enhanced this manuscript.

The author also wishes to acknowledge appreciation to the following: Dr. Charles W. Bert for his helpful comments in proofreading the manuscript.

Dr. Bob L. Foote for his enthusiasm and considerable contribution in both time and ideas.

Dr. Edward F. Blick for his encouragement and support. His selfless dedication to his profession and sincere interest in his students have made the author's association with him a most rewarding and memorable experience.

Mrs. Shirly El-Attrache for her careful typing of the reading copy.

Very special thanks to the most indispensible help of all in any experimental effort, the laboratory assistants, Messers. Nazih Faddoul, Munir Kharma, Salim Bitar, Fouad Al-Kotob, and Ray Lieber.

A special note of appreciation is extended to the Director, Dr. Tom J. Love, Jr., and the faculty and staff of the School of Aerospace and Mechanical Engineering.

table OF CONTENTS

Page
ABSTRACT. iii
ACKNOWLEDGEMENT iv
LIST OF TABLES. vi
LIST OF ILLUSTRATIONS vii
Chapter
I. INTRODUCTION. 1
II. METHOD. 15
III. RESULTS 37
IV. DISCUSSION. 62
V. SUMMARY 74
REFERENCES 76
Appendices
A. STATISTICAL DETERMINATION OF SAMPLE SIZE FOR INDIVIDUAL CELIS 83
B. INTEGRATED ANALYSIS OF VARIANCE COMPUTER PROGRAM DESCRIPTION AND LISTING. 86
C. ANOVA DATA. 138
D. INFORMATION AS A MEASURE OF LEARNING. 142

LIST OF TABLES

Table Page
1 Summary of ANOVA - Experiment I, Error Scores 41
2 Summary of ANOVA - Experiment I, Time Scores 42
3 Summary of ANOVA - Experiment II, Error Scores 43
4 Summary of ANOVA - Experiment II, Time Scores. 44
5 Means of Cellis, Experiment I, Error Scores 64
6 Means of Cells, Experiment I, Time Scores 65
7 Means of Cells, Experiment II, Error Scores. 66
8 Means of Cells, Experiment II, Time Scores 67

LIST OF ILLUSTRATIONS

Figure Page Number
1-1 Living Systems' Tolerances to Stresses. 3
2-1 Experiment I Design 16
2-2 Experiment II Design 17
2-3 Floor Plan of Maze 19
2-4 The Environmental Cage 21
2-5 The Outer Cage. 23
2-6 Ion Generator 24
2-7 Ion Concentration Measuring Equipment 25
2-8 Hot Wire Anemometer 26
2-9 Temperature Recorder. 28
2-10 Electric Field Generator 29
2-11 Electrostatic Field Meter and Timer 30
2-12 Frequency Analyzer 32
2-13 Data Sheet. 35
3-1 Reorganized Data Sheet 45
3-2 Average Errors for Young Males for Each of Three Levels of Ion Density Under Each Noise Condition. 46
3-3 Average Errors for Adult Males for Each of Three Levels of Ion Density Under Each Noise Condition. 47
3-4 Average Errors for Yound Females for Each of Three Levels of Ion Density Under Each Noise Condition 48
3-5 Average Errors for Adult Females for Each of Three Levels of Ion Density Under Each Noise Condition 49
3-6 Average Time for Young Males for Each of Three Levels of Ion Density Under Each Noise Condition. 50
3-7 Average Time for Adult Males for Each of Three Levels of Ion Density Under Each Noise Condition 51
3-8 Average Time for Young Females for Each of Three Levels of Ion Density Under Each Noise Condition 52
3-9 Average Time for Adult Females for Each of Three Levels of Ion Density Under Each Noise Condition 53
3-10 Average Errors for Young Males for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 54
3-11 Average Errors for Adult Males for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 55
3-12 Average Errors for Young Females for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 56
3-13 Average Errors for Adult Females for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 57
3-14 Average Time for Young Males for Each of Three Levels of Electric Field Intensity Under Each Noise Condition. 58
3-15 Average Time for Adult Males for Each of Three Levels of Electric Field Intensity Under Each Noise Condition. 59
3-16 Average Time for Young Females for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 60
3-17 Average Time for Adult Females for Each of Three Levels of Electric Field Intensity Under Each Noise Condition 61
D-1 Probability of Correct Response at Choice Point 1 (S_{1}). 147
D-2 Probability of Correct Response at Choice Point $2\left(\mathrm{~S}_{3}\right)$. 148
D-3 Probability of Correct Response at Choice Point $3\left(\mathrm{~S}_{5}\right)$. 149
D-4 Probability of Correct Response at Choice Point 4 (S_{7}). 150
D-5 Probability of Correct Response at All Four Choice Points 151
D-6 Negentropy of the Rat-Maze System 152
D-7 Negentropy of the Rat-Maze System 153
D-8 State Transition Diagram of a Random Walk Model for Choice Behavior 154

THE EFFECTS OF NOISE, AIR IONS, AND ELECTRIC FIELDS

ON LIVING SYSTEMS

CHAPTER I

INTRODUCTION

Living Systems and Combined Environmental Stresses

Information regarding the effects of combined environmental stresses on living systems is virtually non-existent. The very little that is known about combined stresses is the result of recent manned-space opera- . tions and therefore is not directly applicable to the earth environment of man-machine systems (transportation vehicles, farm equipment, industrial machniery, home and other appliances, etc.). Machines perform well only if the men operating them can perform their jobs satisfactorily. This fact, however, is often neglected due to the lack of data available to design engineers regarding the combined environmental effects and the optimal level of tolerances a particular system demands.

It is worth noting that better understanding of the combined environmental stresses on living systems will provide the required information to better define tolerance limits of man-machine systems consistent with the health and safety of the operator.

When the effects of environmental stresses on living systems are considered, the concept of "tolerances" should be made clear. Unlike
most material structures, living systems do not usually proceed undisturbed to the point of chaotic collapse as increasing stresses are applied to them. The more common reaction is a progressive decrement of function (Fig, 1-1). Rather than a single numerical value analogous to the compression strength of concrete, a living system's tolerances can be better stated as a curve which relates applied stresses to some measurable performance or function. Then tolerances, as points along this curve, signify phenomena ranging from an awareness that the stress is present to extreme discomfort, from transient or temporary injury to permanent injury or death. Unfortunately, present knowledge does not allow the construction of such curves for most physiological stresses.

In recent years there have appeared various articles and research findings regarding the single effects of negative air ions (Davis, 1963), electric field intensity variations (Cristofv, 1964; Barron and Dreher, 1964; Moos, 1964; Sommer and Gierke, 1964) and noise (Cole, Mohr, Guild and Gierke, 1964; Eldred, Gannon and Gierke, 1955) on the living system. There does not exist, however, any study that deals with the combined effects of these environmental variables, and therefore the manner in which they may interact when imposed in combinations is not known.

Noise is a part of man's environment. For long it has been recognized as a source of annoyance, discomfort and fatigue (mental and eventually physical) and thus is a detriment to the performance of most living systems. Modern technology (jet travel, buses, trucks, subways, railroad trains, etc.) is causing man's environment to be noisier and it is only appropriate, therefore, that modern technology should seek to either eliminate, or counteract the effects of this by-product of its

FIGURE 1-1. LIVING SYSTEMS' TOLERANCES TO STRESSES
advancement. The importance of the effects of noise on comfort and performance is now recognized in many ways; for example: the amount of research money currently devoted by the automobile industry to reduce the level of noise inside the car, the determination of airport facility locations in cities, the national television programs informing the public of the serious dangers caused by loud music usually encountered in night clubs, bars, etc., and the "quiet" criteria publicized in selling many of today's industrial and home appliances.

Like noise, air ions, and electric fields exist in man's environment. They form two of the most important components of the atmosphere and according to some investigators they are very essential for the development of life on earth. Both negative air ions and positive electric fields are believed to have beneficial effects on living systems, namely in ameliorating the effects of fatigue and stress. The important role that noise, air ion concentrations, and atmospheric electric fields play in the lives of living systems is evident. Therefore, a brief discussion of each of these environmental variables is now appropriate.

The Ionized Environment

Ions are always present in the gaseous mixture of the atmosphere, with a concentration that varies considerably over a wide range. This variation is due to changes in the weather, particularly the wind direction and the movement of air masses. In nature the principal sources of these ions are the cosmic ray radiation in high altitudes, together with radiation from radio-active materials in the earth's soil. There are other ionization sources such as the wind itself, but these are of lesser importance. For example, ions formed by cosmic and ultraviolet rays in
high altitudes are sometimes brought all the way down to the earth's surface by strong air currents. Likewise, winds blowing over the surface of the earth will break up the space charge in that area, increasing the ions present that are formed by the radiation of the earth's soil. Ions have a relatively short life - a matter of minutes or a few hours. Most of the ions are lost by absorption when they hit the ground or a tree or some electrically grounded object. A few are lost by recombination with other ions of the opposite sign. Frequently, ions will change their character by attaching themselves to larger particles, such as moisture, dust, and spores. These are known as heavy ions and intermediate ions because of their size. Since their speed is inversely proportional to their size, they move at much slower speeds, and more ions can build up in an atmosphere that is contaminated.

There are many theories (Hicks, 1956) attesting to the therapeutic effects of ionized atmospheres on living systems. There does not exist, however, scientific knowledge that gives proof to the mechanism of negative or positive ions in relation to life and health. What is known is this: light negative ions are generally oxygen ions, and since it is oxygen in the air that the body absorbs, it is reasonable to suspect that negative ions may have an effect that is beneficial. Secondly, where air is pretty well confined, such as in closed rooms, positive ions will build up and decidedly predominate over negative ions, due principally to the difference in mobility of positive and negative ions. The negative ions, being smaller and faster, are lost to the walls of the enclosure more rapidly. As a high saturation of positive ions builds up, it neutralizes many of the negative ions, reducing their concentration, which some
scientists believe is the cause of "stuffy" air. Thirdly, the exhaled breath is many times more positive than negative, which suggests that the negative ions are absorbed and positive ions are exhaled as unwanted. A great deal of biological work is now being done to try to unravel the mystery of the negative ion and its influence on the biological responses of living systems (Beckett, 1954).

So far, positive ions are only objectionable to the extent that they absorb and depress the level of negative ions. By themselves they do not appear to be harmful except in the presence of certain types of particles. One of these is tobacco smoke which becomes highly positively ionized and as a result more irritating. The mechanism of how this takes place is not known, although it is easy to measure in the laboratory the high affinity of tobacco smoke for positive ions. This is generally true of most smoke particles and can easily be demonstrated.

It has been suggested that there is a need for research to determine the effects of ionized atmospheres on living systems (Frey, 1959; Schaeffer, 1959; Wofford, 1962). Previous research indicates that ionization of the air has some effect on the following aspects of the behavior and physiology of living systems: Sensation (Bisa, 1938; Biss-Grafschaft, 1954), activity (Nielsen and Harper, 1954; Winsor and Beckett, 1958; Krueger and Smith, 1958; Vytchikova and Minkh, 1959; Herrington and Smith, 1935; Stanley, 1952; Tchijevsky, 1940), learning (Bauer, 1953; Jordon and Sokoloff, 1959), comfort and well being (McGurk, 1959; Yaglou, Benjamine, and Brant, 1933; Kornbleuh, Piersol and Speicher, 1959; Vytchikova and Minkh, 1959; Buetner, 1957; Rheinstein, 1960; Slote, 1962; Wofford, 1962), systemic effects (Ashiba, Kimura and Matsushima, 1941, 1942 and 1943; Winsor and Beckett, 1958; Minkh, 1957; McGurk, 1959), nervous system (Edstrom, 1934;

Vasiliev, 1951; Silverman and Kornblueh, 1957; Vail and Ivanov, 1960), circulatory system (Edstrom, 1934; Dessauer, 1931; Erban, 1958), skin (Edstrom, 1934; Busighina and Minkh, 1956; Tchijevsky, 1934; Winsor and Beckett, 1958; Muller, 1955), respiratory system (Dussert, 1959; Cauer, 1955 and 1958; Engles and Liese, 1954; Faibushevich, 1957; Fuks, 1955; Dolgachev, 1952, 1953, and 1954; Rohrer, 1952; Strasburger and Lampert, 1933; Landsmann, 1935), blood (Kuster and Frieber, 1941, 1942 and 1943; Landsmann, 1935; Rohrer, 1952; Schorer, 1952), wounds (Kornblueh, 1959; Minehart, David, McGurk, and Kornblueh, 1961), performance of vigilance tasks (Chiles, Fox, Rush and Stilson, 1962; Holcomb and Kirk, 1965).

The Atmospheric Electric Fields

Modern technological advances have placed man in new environments. The conquest of space has opened up experimental laboratories both in space and on the earth, in order to study what happens when living systems - plants, lower animals, and man - are exposed to modified environments. Of particular interest is the effect of exposure to electric fields which can, by virtue of transfer of energy to a living organism, potentially alter that system's future course.

The electrical field found in nature (discovered in 1752) is of variable strength; it changes suddenly and in an unpredictable fashion. However, the average value of the potential is about $120-700 \mathrm{v} / \mathrm{m}$ positive (directed downward) (Chalmere, 1949).

It is claimed that in enclosed spaces such as aircraft, space capsules, automobiles, trucks, buses, factories, office buildings, classrooms and underground, there exists shielded environments which have the physical qualities of a "Faraday Cage", that is, a space which has a
field strength of zero, and thus is without the electric field found in nature. Therefore, if living systems have to perform certain tasks in such conditions, they become easily tired, exhausted, and drowsy, and shortly lose, either in part or altogether, their ability to perform properly. Professor G. Piccardi of the University of Paris and Director of the University Center for the Study of Fluctuating Phenomena in Florence, claims (Piccardi, 1967) that removing electrical charges from the air would render life painful, if not impossible. Addressing a group of scientists at Paris during the geophysical year, Dr. Piccardi said: "Some extremely significant experiments on this subject have been conducted in Switzerland; biological tests have been made in the Simplon Tunnel because is has 3,000 meters of high rock for protection from cosmic rays. Biological cultures have also been protected, either by iron armor or by lead armor, plus a layer of graphite, and only air devoid of electrical charges has been used. Life could not subsist in this medium. Everything dies there...". Professor Picardi continues: "...The statistics speak with impressive evidence if not with absolute certainty: the number of traffic accidents, of suicides, of pains from amputation, the time of biological reaction, the state of certain patients, the cases of sudden death, are related to this phenomena, (atmospheric electric field fluctuation)".

The history of atmospheric electricity was summarized in 1937 by Kahler. In his study Kahler states that when Alexander Von Humboldt gave his lectures on the atmosphere (later published in the book Kosmos, in the mid-nineteenth century) he recognized the importance of atmospheric electricity. He defined climate as "all modifications in the atmosphere
which affect our senses markedly, namely, temperature, humidity, changes of the barometric pressure, wind, the amount of electric tension, the purity of the atmosphere or its admixture with more or less noxious gaseous exhalations, finally the degree of habitual transparency and clarity of the sky, which is not only important for the increased radiation of heat by the soil, the organic development of plants and the maturation of fruits, but also for the feelings of man and his entire mood". Hufeland also suspected a biologic effect of atmospheric electricity during the first half of the nineteenth century, as did others before him, but scientific research in this field was initiated by Elster and Geitel at the turn of the century. Except for a few speculative essays by Langen, Heinze, and Dul1 (1935 and 1941), according to Kahler, it was not until 1948 that meaningtul research in this area was begun. :

Reiter (1960) gathered quantitive data from the literature up to 1960 to obtain statistic correlations between atmospheric electricity and the human responses.

The influence of electric fields is not as well represented in the literature. A Soviet popular science publication (Baikov, 1965) reports accelerated ripening of tomatoes in an electric field. Studies of behavioral patterns in mice in mild (8 to $12 \mathrm{v} / \mathrm{m}$) ac electric fields have been carried out (Moos, 1964). As far as one can ascertain from the literature available, there has been scant work done on the exposure of animals and man to strong electric fields (Knickerbocker, Kouwenhoven and Barnes, 1967).

Noise
Noise is defined as any undesirable sound, even though it might be
a meaningful one. The criterion of undesirability is based on the capacity of sound to disrupt communications, cause major injury to hearing (hearing loss), produce annoyance or discomfort, or reduce skilled performance.

Temporary hearing losses resulting from noise exposures are greater the higher the noise level, the longer the duration of exposure, and, within limits, the shorter the band-width within which the energy is concentrated. The effect is seen as a loss in auditory acuity, especially between 1000 and 6000 cps , and as a reduction in the loudness of the sound (Morgan, Cook, and Chapanis, 1963). Temporary hearing losses are produced rapidly and are maximum within about 7 minutes of exposure to pure tones $(\approx 100 \mathrm{db})$. Maximum loss from wide-band noise is longer and depends on whether or not it is steady-state noise. For steady-state noise in an industrial setting containing octave-band pressure levels of $90-100 \mathrm{db}$, an average loss in auditory acuity of 15 db for tones above 1000 cps can be expected following a 4-hour exposure period. Exposure to non-steady and intermittent noise of the same level has a lesser effect; a full working day of exposure to this kind of environment is required to produce an average temporary hearing loss of 5 db at frequencies above 1000 cps .

Recovery from temporary hearing loss depends on the duration of exposure, the nature of the sound, and the age of the person or animal so incapacitated. Recovery from non-impulsive sounds might require two to five times the duration of the exposure, depending on the nature of the sound. For example, normal workday exposure to octave-band levels of 95 db might require $2-5$ days for complete recovery of normal auditory acuity, particularly in the $1000-6000 \mathrm{cps}$ region, and a 30 -minute
exposure to a pure tone of 105 db might require 2 - 3 hours for complete recovery (Morgan et a1., 1963; Cove11, 1963).

Because noise is any undesirable sound, it may be thought of as related to a negative reaction or feeling of annoyance in the listener. The extent of his reaction will depend on the nature of his activity and the nature of the noise. Intermittent or other nonsteady noise and highfrequency components appear to be somewhat more annoying than other sounds. The annoyance value of the noise, however, does not seem to be a property of sound as such, but rather of the distracting power of the sound as a competitive stimulus. The habituation to a steady-state noise is more rapid than habituation to other sounds. Similarly, temporary hearing loss resulting from steady-state noise is more rapid than loss from intermittent noise because the intermittent periods of relative quiet permit some recovery.

The prediction of hearing damage risk is difficult because it depends on the individual person, on the spectral composition of the sound, and on the duration of exposure: - One experiment carried out by the U.S.A.F. (Cove11, 1963) subjected thirty-three cats to sound exposure. The animals were subsequently sacrificed and their inner ears examined for evidence of tissue injury. It was found that wide-band noise at 115 db for onehalf hour produced mild injuries; for two-hour exposures there were severe injuries. The report concludes: "While considerable variability is evident in different specimens subjected to the same exposure for the same length of time, there persists a general trend for consistency of degree of injury in each group." Other work on the effects of noise on performance, although very scant, is available (Broadbent, 1953, 1954,

1957, 1958; Jerison, 1955, 1956; Jerison and Smith, 1955; Jerison and Wing, 1957; Jerison and Wallis, 1957; Kryter, 1950; Lazarus, Deese and Osler, 1952; Mackworth, 1950).

The Present Study

From the preceding information it is readily seen that the exact nature of biological activity when the organism is influenced by air negative or air positive ions or by positive or negative electric fields has not been clearly defined. It seems justifiable to say that critical or convincing evidence to substantiate the various therapeutic claims has so far not been adequately presented. There is a considerable quantity of conflicting experimental results, and no commonly accepted opinion has been established in medical circles to explain the various phenomena observed and described.

Most medical and biological research work with ionized air and electric fields has, up to the present, been concerned with looking for gross, preferably therapeutic effects. Tests have been "carried out on the intact human or animal body both healthy and diseased, by placing it in the desired experimental atmosphere and noting physiological or psychological changes. Relatively few attempts were made to eliminate the simultaneous action of countless other physical and chemical stimuli (masking effects) upon such very complex biological systems. Furthermore these experiments were carried out on insufficient numbers of subjects to permit statistical corrections for these possible masking effects, as well as for the normal large physiological variations from the mean which any individual is likely to undergo. It is therefore hardly surprising that there is now no agreement on any significant effect directly attributable
to ionized air or electric fields alone, nor has any attempt been made to determine its effects in conjunction with noise.

This study takes as its starting point the work and results of Sokoloff and Jordon (1959). In their study a multiple-T-maze with escape-from-water motive was used on 150 rats of an average age of 3 months and on 150 rats of an average age of 22 months to determine the effect of age differences on maze learning. The number of errors and the time scores on the group of old rats were about three times and two times greater respectively than those of the young rat group under normal atmospheric conditions; negative air ionization reduced considerably the number of errors and the time scores on the runs of the old rats. The present work has been expanded to include other environmental variables as well. These are electric field intensity variations and noise. In addition some organismic variables have been considered.

From the many organismic variables which one can choose to work with, age and sex were chosen. The choice was based upon practicality, ease of control, and significant relevance to performance as determined from the previous studies of Sokoloff and Jordon (1959) and Kornblueh, Piersol and Speicher (1958).

It has long been recognized that general principles of learning behavior are equally applicable to various species of animals, including man, when the circumstances in which they are placed are similar. According to Ernest R. Hilgard, "general principles of learning [are] applicable not only to the species studied but to the learning of other animals have been adapted in one way or another for use with human infants
or adults. ${ }^{1}$ Since we were interested to learn the effects of our experimental environments on man, we would have preferred to use man as the experimental subject. However, since it is difficult to find people who are able or willing to spend seven working hours in an experiment, since one can control the environment of animals but not of humans prior to experiment time, and since both the amount of laboratory space and the amount of funds would be prohibitive if humans were used, it was decided to use rats as the experimental subjects.

[^0]METHOD

Experimental animals (rats) were subjected to three environmental conditions: Noise, negative air ionization and electric fields. The study consisted of two experiments. Experiment one involved noise and negative air ionization, and experiment two involved noise and electric fields. The two designs for statistical treatment by analysis of variance are shown in Figures $2-1$ and $2-2$. A King-Holtzman hybrid breed of rats obtained from the Stanley-Gumbrech Colony of the University of Oklahoma Medical Center Physiology Department at Oklahoma City, Oklahoma, was used.

The Rats. A total of 400 rats, half males and half females, were tested during the course of this study. Both males and females were divided into two age groups. The young group were 21 to 30 days old and weighed an average of 47.5 grams (females: 45 grams, males: 50 grams). The adult group were 90 to 100 days old and weighed an average o£ 170 grams (females: 150 grams, males: 190 grams). All rats were kept on Purina Laboratory Chow. The rats were kept in the animal facility of the Microbiology Building of the University two blocks away from the Laboratory. Ten rats (the statistical reasoning for choosing 10 rats for each test is given in Appendix A) were tested daily Monday through Friday for a period of eight weeks. For each test ten rats were transported to the laboratory by car at 9:00 a.m. Upon arrival, the rats were numbered by coloring them with Magic Markers (different

FIGURE 2-1. EXPERIMENT I DESIGN

FIGURE 2-2. EXPERIMENT II DESIGN
colors were used for different color rats). After the marking, they were put into the experimental cage with all of the equipment turned off. At 1:00 p.m., the rats were given a swimming exercise by placing them individually in a water tank for five minutes. After the swimming exercise, each was returned to the experimental cage. At 2:00 p.m., the equipment was turned on consistent with the experimental condition of the day. If noise was one of the conditions imposed by the design, it was turned on at 6:00 p.m. At 7:00 p.m., all equipment was turned off; the rats were removed from their cage and put into a galvanized metal drum with a wire mesh bottom and open top, measuring 2 ft . in diameter and 3 ft . in height. Each rat was taken individually from the drum, placed in the water maze, and returned to the drum upon completion of the run (trial). This procedure was continued until all ten rats had completed ten runs (trials) each. At that time, the rats were sacrificed by the application of ether. Each group of ten rats was chosen at random and marked at random. Furthermore, the experimental condition was also randomly selected in order to eliminate experimenter bias.

The Water Maze. A modified Lashley Left-Right Maze was built for these trials from galvanized metal. The runways were four inches wide and two feet deep. The motive was escape-from-water which was approximately ten inches deep and 72 to 77 F (room temperature). The maze had four actual choice points 1, 2, 3, and 4. The ends of the blind alleys, a, b, c, and d, are regarded as four pseudo choice points to provide a full definition of the maze problem. Three metal non-retrace doors were located in positions shown in the maze floor plan in Figure 2-3. At the goal box, the rat climbed a built-in ramp and thus escaped.

FIGURE 2-3. FLOOR PLAN OF MAZE

The Environmental Cage (Inner Cage). The inner cage was a $3 \times 2 \times$ 2 ft . enclosure placed on legs two feet high. The cage enclosure measured $3 \times 2 \times 2 \mathrm{ft}$. but the frame extended an additional two feet to accomodate the refuse tray and raise it to a convenient height. Most of the framework was constructed of Dexion steel angle frames. The floor and the top were constructed of a quarter inch wire mesh. The walls of the enclosure were constructed of Plexiglas and wood. (The wood was used at the corners as supporting frames.) The Plexiglas and the wood furnished the proper insulation between floor and roof. Four circular windows were cut (5 $\frac{1}{2}$ in. from floor to center of hole), two on each side, to facilitate the installation of the ion generators. A sliding door, $12^{\prime \prime} \times 7^{\prime \prime}$, was placed in the front wall. A quarter inch hole was drilled in the back wall to receive the spout of the water bottle. This arrangement is shown in Figure $2-4$. The roof of the cage was attached to the negative pole of the power supply while the floor and the supporting structure were attached to the positive pole of the power supply and ground.

The Outer Cage. The outer cage was $5 \times 3 \times 6 \mathrm{ft}$. enclosure constructed of Dexion steel angle frames and quarter-inch wire mesh. The front wall, broken in the middle and hinged on both sides, provided swinging doors opening out. This cage provided the proper shielding from foreign electric fields present in the laboratory room and also shielded the experimenter from the strong electric fields imposed on the inner cage at different times of the experiment. This cage was also properly grounded. The door of this cage was connected to an onmoff switch controlling the power supply so that when the door was opened, the power automatically cut off and the condenser discharged, thus providing personnel safety consistent with the regulations of the College of Engineering of the University.

FIGURE 2-4. THE ENVIRONMENTAL CAGE

This design is shown in Figure 2-5.

INSTRUMENTATION
A. Negative Air Ionization. The negative air ionization was produced by negative ion generators. Four Dynamic Ion Air Mark VII negative ion generators manufactured by the Wesix Electric Heater Company of Burlingame, California were used. Low energy beta emission within the unit (generator) creates both positize"and negative ions by collision with air molecules. Positive ions are, absorbed within the element's head. Negative ions are forced out following lines" of electro-static force, with distribution aided by means of a small fan. The standard generator unit can be plugged into any 110 volts AC outlet. Each unit has an ion output of over one billion negative ions per second. One of these units is shown in Figure 2-6.
B. Ion Concentration Measuring Equipment. A micro-micro-ammeter model 410, in conjunction with an ion probe, Model 403, both manufactured by Royco Instruments, Inc. were used to monitor negative ion concentration. A Honeywell Recorder Model No. Y153X12-V-II-III-6-A8 (B) (B5) was used to keep constant record of the current generated due to the particular experimental ion concentration used. This equipment is shownin- Figure 2-7. An Alnor hot wire anemometer, Type 8500, No. 1131 was used to measure the velocity of the ions leaving the generators (Figure 2-8). These instruments furnished the required data for the computation of the negative air ion concentration inside the environmental cage by the use of the following equation:

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{I}}{\mathrm{qAV}} \tag{1}
\end{equation*}
$$

where

FIGURE 2-5. THE OUTER CAGE "SHIELD"

FIGURE 2-6. NEGATIVE ION GENERATOR

FIGURE 2-7. ION CONCENTRATION MEASURING EQUIPMENT

FIGURE 2-8. HOT WIRE ANEMOMETER

$$
\begin{aligned}
& \mathrm{I}=\text { current produced by ions } \\
& \mathrm{A}=\text { area of the probe surface. } \\
& \mathrm{q}=1.6 \times 10^{-19} \text { coulombs } \\
& \mathrm{V}=\text { velocity of the ions. }
\end{aligned}
$$

Since the humidity of the atmosphere affects negative ion density, there was some fluctuation of about $\pm 5 \times 10^{5}$ negative ions per c.c. in the cage. In the laboratory, the humidity was thermostatically controlled by an air conditioning unit operating in conjunction with a steam heater. A permanent record of room temperature was kept by the use of a thermocouple placed inside the cage and connected to an L \& N Speedomax W recorder (Figure 2-9).
C. Electric Field Generation. The electric field used in this study (Experiment two) was generated by a Biddle Transmitter and D.C. Proof Tester, Model 4, Serial 3308. The unit operates on 110 volts AC and it has a variable direct voltage output capacity of 15 Kilovolts (Figure 2-10).
D. Electric Field Measuring Instrumentation. The electric field intensity was measured by the use of (1) a standard voltmeter connected between the floor and the roof of the cage and (2) by a static voltmeter unit with Rustrak recorder forming an integral part of the unit (manufactured bẏ RAWCO Instruments) and a probe made of standard circular plates, one of which is fixed and one of which rotates at a pre-calibrated speed (Figure 2-11). This particular unit was donated to us by L.T.V. Research Center of Dallas, Texas.
E. Time Measurement. The run time of each rat was recorded within $1 / 10$ of a second accuracy by the use of a Lab-Chron 1400 electric timer which has a digital readout. This timer is shown in Figure 2-11.

FIGURE 2-9. TEMPERATURE RECORDER

FIGURE 2-10. ELECTRIC FIELD GENERATOR -

FIGURE 2-11. ELECTROSTATIC FIELD METER AND TIMER
F. Noise Generation. A closed-loop tape on which white noise had been recorded was played for a period of one hour when the experimental condition demanded it. A Sony Stereotape Recorder was used.
G. Noise Measuring Instrumentation.: A frequency analyzer, Type 2107 manufactured by Bruel and Kjaer, shown in Figure 2-12, was used to calibrate the volume control on the tape recorder. A microphone attached to the analyzer was placed inside the environmental cage to measure the loudness and analyze the frequencies present, the noise level was kept at $90 \mathrm{db}^{2}$, and the frequencies present varied from 600 cps to $16,000 \mathrm{cps}$.

EXPERIMENTAL PROCEDURE

At 7:00 p.m. the investigator and the laboratory assistant went into the laboratory; the electric lights were turned on, and the equipment that was on for the particular experimental task was turned off. The rats were removed to the drum and allowed to stay there (for approximately 5 minutes) until the maze was filled with water to the proper level. Readings of the room temperature and relative humidity were taken and recorded on the data sheet. Then the testing procedure started.

The rats in sequence, one at a time, were placed in the starting box and allowed to proceed through the maze. The rats were scored according to the following method. If the rat turned to the right at choice point number one, it was given a W for wrong choice. If it turned to the left, it was given R for right choice. At choice point two, the rat was able to either turn to the right and go through the door to choice point three for which move it would be given R for right choice, or it could go
${ }^{2}$ Ref. 0.0002μ bar

FIGURE 2-12. FREQUENCY ANALYZER
straight, for which move it would get W for wrong choice. Once at choice point three, the rat would have scored R by turning to the right, or W by turning to the left. At choice point four, the rat could turn to the left and get on the ramp, R, or it could go straight ahead for which it would get W. The doors were located as shown in Figure 2-3.

The first door was between the starting box and choice point one so that the rat could not return to the starting box once it had left it. The second door was located between choice point two and choice point three. Once the rat had crossed from choice point two to choice point three, it was not allowed to retrace its path. However, while at choice point two, the rat could loop between any of the true (actual) choice points one and two and the pseudo choice points a and b or any combination thereof. The rat was scored according to its initial move. For example, if the rat went from choice point one to choice point two, it was given R for right choice. At that point, if it retraced its path to choice point one or a without committing itself to either proceed to choice point three or b it was not penalized in scoring. This move was considered part of the rat's exploratory behavior prior to making a new decision. The same thing applied to the second half of the maze, namely choice points three and four, c and d. The third door was located between choice point four and the goal box in such a way that once the rat was in the goal box it could not leave.

Therefore a rat would score R, R, R, R for a perfect run (trial) and $\mathrm{W}, \mathrm{W}, \mathrm{W}, \mathrm{W}$ for committing a mistake - based on initial decision as explained above - at each choice point, or it would score any RW combination. It is obvious that based on the above criteria there are $2^{4}=16$ possible
paths or events. For this discussion, an event is defined as the swim from the starting box to the goal box. (This point will be elaborated in later discussion.) The timer was started when the rat was put into the water at the starting box and it was stopped when the rat climbed the ramp at the goal box; the elapsed time thus measured constituted the time score of the rat. A separate data sheet (Figure 2-13) was kept for each rat.

While in the Laboratory the investigator and assistant did not converse except for the words "Ready?" prior to placing the rat in the water, "Go" when the rat was placed in the water at the starting box ${ }_{3}$ and "Stop" when the rat climbed on the ramp in the goal box.

At the end of each run (trial), each rat was returned to the metal drum to await his next trail which did not occur until the other nine rats had completed theirs. After the fifth trial of all ten rats had been completed, the experiment was halted for a 10 -minute break, then resumed until all ten rats had completed ten trials each. Each test lasted for a period of 3 to 4 hours depending upon the experimental condition and the group being tested. At the conclusion of each test, the maze was emptied by a pump and the laboratory was cleaned preparatory to the next day's test.

As mentioned earlier, the study was conducted in two experiments.

EXPERIMENT I

This experiment consisted of subjecting 240 rats to three different levels of negative ion concentrations under two different noise conditions. Noise Condition N_{0} was the normal background noise of the laboratory and the surrounding neighborhood. N_{1} was the condition under which

FIGURE 2-13. DATA SHEET
the taped white noise mentioned earlier was played. The three different levels of negative air ion concentrations were $1_{0}=$ the normal atmospheric environment of the laboratory (no measurable concentration of negative ions), condition $I_{1}=7 \times 10^{6}$ ions per c.c., and condition $I_{2}=7 \times 10^{7}$ ions per c.c. (see Figure 2-1).

EXPERIMENT II

Experiment II was identical to Experiment I except that the ion conditions were replaced by the electric field conditions (direct positive, i.e. directed downward, field). E_{o} was the condition of the laboratory environment with no field applied to the experimental cage. Condition $E_{1}=1,600$ volts per meter and condition $E_{2}=16,000$ volts per meter. It is obvious that conditions $N_{0} E_{0}$ and $N_{1} E_{0}$ were identical to conditions $N_{0} I_{0}$ and $N_{1} I_{0}$ respectively and, therefore, the scores for these 80 rats were used in both experiments. In other words, experiment II required only 160 rats. (Figure 2-2)

RESULTS

The objectives of this study as stated in Chapter II were to investigate the environmental effects of noise, negative air ion concentrations, and direct electric field intensity variations on the performance of rats in maze learning. Also included are two organismic variables: sex and age. Accordingly, the two experiments (Figures 2-1 and 2-2) discussed earlier were designed for statistical treatment by analysis of variance. This statistical procedure was programed for the IBM 360 computer. A listing and detailed description of the program and its routines is given in Appendix B.

The hypotheses we wish to examine stated in terms of the null hypotheses are:
A. Experiment I

1. $H_{0}: \mu_{N_{0}} j k \ell=\mu_{N_{1}} j k l$
i.e., Regardless of the ion density conditions (j), differences in sex (k) and differences in age (ℓ), there are no significant differences in the performance of the rats in the maze because of the noise (i) condition imposed.
2. $H_{o}: \mu_{I_{o} i k l}=\mu_{I_{1} i k l}=\mu_{I_{2}}$ ikl
i.e., Regardless of the noise condition, differences in sex, and differences in age, there are no significant differences in the perfor-
mance of the rats in the maze because of the ion condition imposed.
3. $H_{o}: \mu_{S_{1} i j \ell}=\mu_{S_{2} i j \ell}$
i.e., Regardless of the noise condition, differences in ion density, and differences in age, there are no significant differences in the performance of the rats in the maze because of the differences in sex.
4. $\quad H_{0}: \quad \mu_{A_{1} i j k}=\mu_{A_{2}} i j k$
i.e., Regardless of the noise condition, differences in ion density, and differences in sex, there are no significant differences in the performance of the rats in the maze because of the differences in age. B. Experiment II
5. $H_{0}: \mu_{N_{0} j * k l}=\mu_{N_{1} j * k l}$
i.e., Regardless of the electric field conditions (j)*, differences in sex (k) and differences in age (ℓ), there are no significant differences in the performance of the rats in the maze because of the noise (i) condition imposed.
6. $H_{o}: \mu_{E_{0} i k l}=\mu_{E_{1}}$ ikl $=\mu_{E_{2}}$ ikl
i.e., Regardless of the noise condition, differences in sex, and differences in age, there are no significant differences in the performance of the rats in the maze because of the electric field condition imposed.
7. $H_{0}: \mu_{S_{1} i j * \ell}=\mu_{S_{2} i j k \ell}$
i.e., Regardless of the noise condition, differences in electric field intensity, and differences in age, there are no significant differences in the performance of the rats in the maze because of the differences in sex.
8. $H_{0}: \quad \mu_{A_{1} i j * k}=\mu_{A_{2}} i j * k$
i.e., Regardless of the noise condition, differences in electric field intensity, and differences in sex, there are no significant differences in the performance of the rats in the maze because of the differences in age.

Although it is anticipated that certain interactions between the variables (both environmental and organismic) will occur, a formal statement of null hypotheses will not be given. This is due mainly to the uncertainty of the possible interpretation of these interaction terms, as well as the lack of a a priori knowledge of their distributions. However, the results of the analysis of variance treatments will be subject to detailed discussion.

For each experiment two ANOVA's were run, one analysis based on the correct response scores and one analysis based on the time scores. These scores were obtained from the last row of the data sheets (Figure 2-13) and are the average correct response and time scores over ten trials. A listing of these data are given in Appendix C. Tables 1 and 2 give the summary of the analysis for Experiment I, and Tables 3 and 4 give the summary of the analysis for Experiment II.

In order to simplify the statistical interpretation of the results (main effects as well as interaction terms) given in the analysis of variance summary Tables $1,2,3$, and 4 , the data were reorganized as shown in Figure 3-1. This was accomplished by making one data sheet for each trial, on which the performance of all ten rats was recorded in terms of their response (R or W) at each choice point and in terms of their run (trial) time. The time scores and the number of wrong choices per trial averaged for the 10 rats are then obtained from the last row of the new
data sheets (Figure 3-1) and plotted vs. trial number as shown in Figures 3-2 through 3-17. Scoring the rats in terms of either the number of correct responses or the number of wrong responses at each choice point is arbitrary. Both scoring techniques would lead to the same results. If, for example, the number of incorrect responses ($W^{\prime} s$) is chosen, as in this case, the performance curve will be a decreasing function of W (wrong, or incorrect response), and if the number of correct responses (R) is chosen, then the performance curve will be an increasing function of R (right, or correct response).

It must be noted that each of the graphs presented here represents one level of the sex-age condition and the two levels of the noise condition with ion density variation (Experiment I) or electric field intensity variation (Experiment II) as a parameter. Therefore each set of four graph sheets (for each experiment there are eight graph sheets - four for the average error scores and four for the average time scores) provides adequate information to allow comparison of main effects as well as the interaction effects.

TABLE 1
Summary of Integrated Analysis of Variance
(Experiment I - Error Scores)

Source of Variation	df	MS	F
Noise (N)	1	0.280	1.22
Ions (I)	2	1.410	6.50**
Sex (S)	1	2.50	11.17**
Age (A)	1	2.18	9.27**
NxIxSxAxR	216	0.229	
NxI	2	0.68	2.970
NxS	1	0.0026	0.0113
NxA	1	0.0135	0.0588
IxS	2	0.253	1.103
IxA	2	0.02615	0.1140
SxA	1	1.41	$6.15 * *$
IxSxN	2	0.088	0.386
IXAXN	2	0.496	2.164
SxAxN	1	1.21	5.628**
SxAxI	2	0.655	2.85
SxAxIxN	2	0.43	1.903

** significant at the 0.01 level

TABLE 2

Summary of Integrated Analysis of Variance
(Experiment I - Time Scores)

Source of Variation	df	MS	F
Noise (N)	1	13.00	0.0278
Ions (I)	2	1826.4	3.909*
Sex (S)	1	1294.5	2.77
Age (A)	1	4.31	0.0092
NXIXSXAxR	216	467.18	
NxI	2	537.81	1.151
NxS	1	1866.2	3.994*
NxA	1	1762.56	3.77
IxS	2	2916.15	6.24 ${ }^{\text {\% }}$
IxA	2	4269.05	$9.137 * *$
SxA	1	76.31	0.163
IxSxN	2	668.62	1.43
IxAxN	2	1271.06	2.72
SxAxN	1	245.69	0.525
SXAxI	2	686.6	1.469
SxAxIxN	2	956.86	2.048

** significant at the 0.01 level

* significant at the 0.05 leve 1

TABLE 3

Summary of Integrated Analysis of Variance

 (Experiment II - Error Scores)| Source of Variation | df | MS | F |
| :--- | :---: | :--- | :--- |
| Noise (N) | 1 | 0.002 | 0.009 |
| Electric Field (E) | 2 | 2.08 | $9.06 * *$ |
| Sex (S) | 1 | 0.06 | 0.27 |
| Age (A) | 1 | 2.34 | $10.19 * *$ |
| NxExSxAxR | 216 | 0.229 | 0.66 |
| NxE | 2 | 0.152 | 0.0013 |
| NxS | 1 | 0.0003 | 0.471 |
| NXA | 1 | 0.108 | 2.01 |
| ExS | 2 | 0.462 | 1.12 |
| ExA | 2 | 0.258 | 0.132 |
| SXA | 1 | 0.0304 | 0.178 |
| ExSxN | 2 | 0.0409 | 0.688 |
| ExAxN | 2 | 0.157 | 2.07 |
| SXAxN | 1 | 0.477 | 1.23 |
| SXAxE | 2 | 0.282 | 0.433 |
| SxAxExN | 2 | 0.099 | |

** significant at the 0.01 level

TABLE 4

Summary of Integrated Analysis of Variance
(Experiment II - Time Scores)

Source of Variation	df	MS	F
Noise (N)	1	344.07	1.267
Electric Field (E)	2	345.36	1.272
Sex (S)	1	4018.51	14.8**
Age (A)	1	0.190	0.000699
NxExSxAxR	216	271.55	
NxE	2	217.55	0.80
NxS	1	541.30	1.99
NxA	1	7.600	0.0279
ExS	2	266.5	0.98
ExA	2	24.60	0.0906
SxA	1	1103.0	4.063*
ExSxN	2	3005.90	11.072**
ExAxN	2	1467.35	5.405**
SxAxN	1	1311.80	4.832*
SxAxE	2	28.85	0.106
SxAxExN	2	534.95	1.97

[^1]| Trial No.: | | | Expt. No. | | | Expt1. Cond. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rat No. | C.P. 1 | C.P. 2 | C.P. 3 | C.P. 4 | Time | Number of Wrong Choices |
| 1 | | | | | | |
| 2 | | | | | | |
| 3 | | | | | | |
| 4 | | | | | | |
| 5 | | | | | | |
| 6 | | | | | | |
| 7 | | | | | | |
| 8 | | | | | | |
| 9 | | | | | | |
| 10 | | | | | | |
| | | | | Σ | | |
| | | | | average | | |

FIGURE 3-2. AVERAGE ERRORS FOR YOUNG MALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-3. AVERAGE ERRORS FOR ADULT MALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-4. AVERAGE ERRORS FOR YOUNG FEMALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-5. AVERAGE ERRORS FOR ADULT FEMALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-6. AVERAGE TIME FOR YOUNG MALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-7. AVERAGE TIME FOR ADULT MALES FOR EACH OF THREE LEVELS - OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-8. AVERAGE TIME FOR YOUNG FEMALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-9. AVERAGE TIME FOR ADULT FEMALES FOR EACH OF THREE LEVELS OF ION DENSITY UNDER EACH NOISE CONDITION

FIGURE 3-10. AVERAGE ERRORS FOR YOUNG MALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-11. AVERAGE ERRORS FOR ADULT MALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-12. AVERAGE ERRORS FOR YOUNG FEMALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-13. AVERAGE ERRORS FOR ADULT FEMALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-14. AVERAGE TIME FOR YOUNG MALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-15. AVERAGE TIME FOR ADULT MALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-16. AVERAGE TIME FOR YOUNG FEMALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

FIGURE 3-17. AVERAGE TIME FOR ADULT FEMALES FOR EACH OF THREE LEVELS OF ELECTRIC FIELD INTENSITY UNDER EACH NOISE CONDITION

CHAPTER IV

DISCUSSION

One of the criteria of a well designed experiment is that maximum information be obtained for the least expenditure of resources. Based on this criterion, this study was planned and a randomized-complete-block design with repeated measures was selected. The advantages of this design, for testing our stated hypotheses (Chapter III) as well as revealing all possible interaction terms that are significant, are obvious (Winer, 1962; Eisenhart, 1947; Cochran, 1947). In cases where significant main effects and significant interaction terms are present, however, the linear additive assumptions of the analysis of variance model do not hold, and a supplementary statistic is required to clarify the significance of the main effects. There are many such supplementary tests available (Duncan, 1955; Tukey, 1949; Dunnett, 1955; Newman, 1939), that would lead to the same conclusion. The test chosen in this study to supplement the ANOVA. in cases where significant interaction terms appear along.with significant main effects is the Newman-Keuls Method (Newman, 1939). This choice was based mainly on convenience, since the method utilizes the score totals of the treatment (T) cells, which is part of our ANOVA computer program output. It also involves fewer computational steps than any of the other methods. In order to facilitate the choice of cells to be used in the Newman-Keuls' test, tables of cell means are presented (Tables 5, 6, 7, and 8). The cell's total value is then obtained by
multiplying the mean value in the table by ten (since ten replicates were used in each cell). Interpretation of the summary Tables 1, 2, 3, and 4 is now given.

Experiment I - Error Scores

The ANOVA summary table (Table 1) shows three significant main effects, ions (I), sex (S), and Age (A), and two significant interaction terms SxA and SxAxN. Two Newman-Keuls tests were run to test the following hypotheses:

1. Treatments are independent of sex (S), ($\tau_{\cdots}{ }_{S_{1}}=\tau_{\cdots S_{2}}$).
2. Treatments are independent of age (A), ($\tau \cdots{ }_{A_{1}}=\tau \cdots{ }_{A_{2}}$)。 One test was run on the following four cells in Table 5: $N_{o} I_{o} S_{1} A_{1}$. $N_{0} I_{0} S_{1} A_{2}, N_{0} I_{0} S_{2} A_{1}$, and $N_{0} I_{0} S_{2} A_{2}$; and one test was run on the following eight cells: $N_{0} I_{0} S_{1} A_{1}, N_{0} I_{0} S_{1} A_{2}, N_{0} I_{0} S_{2} A_{1}, N_{0} I_{0} S_{2} A_{2}, N_{1} I_{0} S_{1} A_{1}, N_{1} I_{0} S_{1} A_{2}$, $\mathrm{N}_{1} \mathrm{I}_{\mathrm{o}} \mathrm{S}_{2} \mathrm{~A}_{1}$, and $\mathrm{N}_{1} \mathrm{I}_{0} \mathrm{~S}_{2} \mathrm{~A}_{2}$. As a result of these tests the hypothesis $\tau \ldots{ }_{A_{1}}=\tau \cdots{ }_{A_{2}}$ could not be rejected at either the 0.99 or the 0.95 confidence levels. Therefore it is concluded that age is not a significant factor affecting the error scores of the rats running the maze. The sex hypothesis on the other hand was rejected and therefore sex is a significant main effect along with the ion density variation. The confounded effect of age in this case is due to the multiplicative properties of the interaction terms. In conclusion the following statement is made:

When error scores are used, male rats subjected to negative air ionization, regardless of age or noise, performed significantly better than the female rats subjected to the same conditions.

Experiment I - Time Scores

The ANOVA summary table (Table 2) shows one significant main effect,

TABLE 5. MEANS OF CELLS EXPERIMENT I (ERROR SCORES)

TABLE 6. MEANS OF CELLS EXPERIMENT I (TIME SCORES)

TABLE 7. MEANS OF CELLS EXPERIMENT II (ERROR SCORES)

		No			N_{1}		
		E_{0}	E_{1}	E_{2}	E_{0}	E_{1}	E_{2}
S_{1}	A_{1}	2.91	3.04	2.84	2.85	2.99	2.80
	A_{2}	2.97	3.15	3.19	2.93	3.14	3.37
	A_{1}	2.50	3.04	2.96	2.65	3.10	3.12
	A_{2}	3.07	3.12	3.23	2.62	3.16	3.22

table 8. MEANS OF CELLS EXPERIMENT II (TIME SCORES)

		N_{0}			\mathbf{N}_{1}		
		E_{0}	E_{1}	E2	Eo	E_{1}	E_{2}
S_{1}	A_{1}	46.34	39.18	52.66	47.99	63.39	40.69
	A_{2}	64.14	47.41	54.84	42.86	58.91	48.22
	A_{1}	55.47	70.08	55.69	74.19	50.11	60.16
	A_{2}	60.19	50.99	44.40	60.87	60.95	62.91

ions and three significant interaction terms $N x S, I x S$ and IxA. To eliminate confounding of experimental error and better interpret the results, a Newman-Keuls test was run to test the following hypotheses:

1. Treatments are independent of the ion condition (I), $\tau \cdots I_{0}=$ $\tau \therefore I_{1}=\tau \cdots I_{2}$
2. Treatments are independent of age (A), ($\left.\tau \ldots{ }_{A_{1}}=\tau \ldots{ }_{A_{2}}\right)$, the test was run on the following six cells in Table 6: $N_{0} I_{0} S_{1} A_{1}, N_{0} I_{1} S_{1} A_{1}$, $N_{o} I_{2} S_{1} A_{1}, N_{o} I_{o} S_{1} A_{2}, N_{o} I_{1} S_{1} A_{2}$, and $N_{o} I_{2} S_{1} A_{2}$. As a result of this test the following hypotheses: $\tau \cdots I_{0}=\tau \cdots I_{1}=\tau \cdots{ }_{I_{2}}$ and $\tau \cdots A_{1}=\tau \cdots A_{2}$ could not be rejected at either the 0.99 or the 0.95 confidence levels. This then clearly states that neigher age nor the ion condition is a significant main effect as given by the ANOVA summary table. Therefore, the significant interaction term is due mainly to differences in sex. In conclusion the following statement is made:

When time scores are used female rats regardless of age, noise, or the ion density condition, performed significantly better than the male rats under the same conditions.

The results of experiment I (both error and time scores) are summarized by the following statements.

1. Female rats swam significantly faster than male rats regardless of age, noise, or ion density conditions.
2. When subjected to negative air ions male rats showed a significant reduction in error scores regardless of age or the noise condition. Female rats did not.

In other words the negative air ion concentration (which is of main interest here) proved beneficial only in reducing the error scores of the male rats.

Experiment II - Error Scores

The ANOVA summary table (Table 3) shows only two significant main effects, electric fields (E) and age (A), with no significant interaction terms. In this case the interpretation is straightforward and no supplementary tests are necessary. The conclusion here is that: When error scores are used, adult rats subjected to electric fields, regardless of sex or noise, performed significantly better than the young rats subjected to the same conditions.

Experiment II - Time Scores
The ANOVA summary table (Table 4) shows only one significant main effect, electric fields (E) and four significant interaction terms SxA, ExSxN, ExAxN, and SxAxN. Three Newman-Keuls tests were run to test the following hypotheses:

1. Treatments are independent of the electric fields (E), (T... $E_{E_{0}}=$ $\left.\tau \cdots{ }_{E_{1}}=\tau \cdots{ }_{E_{2}}\right)$
2. Treatments are independent of age (A), ($\left.\tau \ldots A_{1}=\tau \cdots A_{2}\right)$
3. Treatments are independent of noise (N), ($\tau_{\cdots} N_{0}=\tau \cdots N_{1}$) One test was run of the following four cells in Table 8: $N_{0} E_{0} S_{1} A_{1}$. $N_{0} E_{0} S_{1} A_{2}, N_{0} E_{0} S_{2} A_{1}$, and $N_{0} E_{0} S_{2} A_{2}$; one test was run on the following six cells: $N_{0} E_{0} S_{1} A_{1}, N_{0} E_{1} S_{1} A_{1}, N_{0} E_{2} S_{1} A_{1}, N_{1} E_{0} S_{1} A_{1}, N_{1} E_{1} S_{1} A_{1}$, and $N_{1} E_{2} S_{1} A_{1}$; and one test was run on the following three cells: $N_{0} E_{0} S_{1} A_{1}, N_{0} E_{1} S_{1} A_{1}$, and $N_{o} E_{2} S_{1} A_{1}$. As a result of these tests the hypotheses: ($T \ldots{ }_{E_{0}}=$ $\tau \cdots E_{1}=\tau \cdots E_{2}$ and $\tau \cdots N_{0}=\tau \cdots N_{1}$ were rejected at both the 0.99 and the 0.95 confidence levels. The hypothesis $\tau \cdots A_{1}=\tau \cdots A_{2}$ could not be rejected at neither the 0.99 or the 0.95 confidence levels. This indicates that the significant main effects are E, N, and S. In conclusion the following statements are made:

When time scores are used rats (males and females, young and adult) subjected to electric fields regardless of noise performed significantly better than rats not subjected to electric fields.

When time scores are used male rats regardless of age performed better than female rats under the noise condition.

When time scores are used male rats subjected to the combined effects of electric fields and nois' 'é, regardless of age, performed significantly better than the female rats under the same conditions.

The results of Experiment II (both error and time scores) are summarized by the following statements:

1. Electric fields significantly reduced the error scores of the adult rats regardless of sex or noise.
2. Electric fields significantly reduced the time scores of all rats, males and females, young and adult.
3. Noise significantly increased the time scores of the female rats regardless of age.
4. Male rats subjected to the combined effects of electric fields and noise performed better than female rats under the same conditions, regardless of age.

The main results of this experimental study are challenging in so far as they relate two organismic variables (sex and age) to a standardized learning situation. In the case of our study where the rat is required to swim from the start box of the maze to the goal box, the learning situation involves both physiological and mental processes. These processes are subject to a large variety of external stimuli, mainly chemical and physical.

Chemical stimuli are the result of mass transfer between the organism and its environment. Humans and animals may be thought of as "combustion engines" having a certain intake of chemicals (inspired gases, foods, and drugs), the combustion or chemical reactions of which produce energy in various forms as determined by the metabolic process of each individual organism. The physical stimuli consist largely of radiations, which may be electromagnetic, corpuscular, or acoustic in their nature. In addition to these there are also physical stimuli in the form of mechanical forces such as gravity, mechanical shocks and vibrations. These various chemical and physical stimuli can be a cause of strain and stress to a living system. A living system (organism) depends for its proper functioning (the ability to obtain energy externally to control its expenditure internally) upon a great number of very finely adjusted equilibrium conditions. It possesses countless mechanisms which serve to protect it from excessive and injurious stimuli and which keep the required equilibria in constant proper adjustment. In engineering language, we may think of the living system as an extremely complex circuit involving feedback networks (positive and negative), servomechanisms, amplifiers, delay switches, and storage devices. The functions of all these are continuously variable and under the control of one or more complex com. puters deriving their information simultaneously from a multitude of physical and chemical analog transducers.

Changes in the external environment (chemical and physical), however, can prove too extreme for the regulatory mechanisms. In such cases, these mechanisms are unable to maintain a constant internal enviromment, and there results a deterioration in the performance of the sense organs, the central nervous system, and/or the muscles and glands.

It is evident that performance of living systems is dependent to a large extent on the environmental variables; and since performance has been shown to be related to the organismic variables of sex and age, then it is logical to assume that the environmental variables play a definite role, depending on sex and age, on living organisms. Our results clearly show that sex is an important factor when the organism is subjected to a modified environment. Age is similarly important. The implications here are more than mere findings, for environments of the indoors are usually void of negative ions and positive electric fields, and therefore may cause the living organism to lose its ability to perform efficiently, with a probable detrimental effect on alertness and coordination of reflexes (Cristofv, 1967). A number of negative air ionizers, aerosols, and anti-fatigue devices (electrostatic field generators) are already on the market. Although the applications of these commercial devices is not widespread yet, it is within the realm of possibility that the schools of the future, for example, may be equipped with such devices to aid instruction and improve mental performance as well as delay physical fatigue.

Unfortunately there does not exist in the literature any studies similar to ours, where comparisons and verifications could be made. The beneficial effects of negative air ions and positive electric fields have therefore not yet been firmly established, although work in this area is gaining some interest.

It should be noted here that our experiment was a complex one. Too many interactions appeared to be significant, which complicated the interpretation of the statistics. Therefore it is suggested that if similar
studies are to be conducted in the future, the number of variables should be reduced to a smaller number so that interaction terms could be avoided and thus permitting accurate interpretation of significant main effects, without the confounding probabilities of experimental error.

Two of our analyses of variance were based on the error scores of the rats (number of wrong or incorrect choices averaged for 10 trials) and two were based on the time scores of the rats (average time scores of 10 trials). From these scoring techniques we were inferring learning or performance. These statistical inferences however, could possibly prove invalid if the data used in the analyses were transformed say to a logarithmic form (Winer, 1962) or multiplied by constant exponential, etc. The choice of an experimental unit or a treatment measure although is arbitrarily chosen has to be a meaningful one and preferably independent of the experimenter judgements, values and biases. It is well realized that this is a rather difficult task and almost impossible to accomplish. During the course of this study however, the feasibility of a new measure was investigated. This measure is based on the negentropy concept as defined in information theory (an exposition of this new measure is given in Appendix D), coupled with a concept of minimum energy expenditure.

CHAPTER V

SUMMARY

In this study experimental animals (rats) were subjected to three environmental conditions: noise, negative air ions and electric fields. Two experiments were conducted; one experiment involving noise and negative air ions and one experiment involving noise and electric fields. Two organismic variables sex and age were considered. The findings of this study are sumarized in the following statements:

1. Female rats, regardless of age, noise or ion density, swam significantly faster than male rats.
2. When subjected to negative air ions, male rats showed significantly lower error scores than females, regardless of age, or the noise condition.
3. When subjected to electric fields, adult rats showed significantly lower error scores than young rats, regardless of sex or the noise condition.
4. When subjected to electric fields all rats (males and females, young and adult) showed significantly lower time scores.
5. When subjected to noise, female rats showed significantly higher time scores than male rats, regardless of age.
6. When subjected to the combined effect of electric fields and noise, male rats showed significantly lower time scores than female rats under the same conditions, regardless of age.

In conclusion it may be said that certain important trends have been established which clearly show that negative air ions and electric fields have a significant effect on living organisms depending on sex and age. However, since scientific knowledge based on one experimental study is not enough to establish a natural or physical law or laws, it is hoped that future studies will be conducted where our experiments are replicated so that these findings can be further supported.

REFERENCES

Atkinson, R. C., Bower, G. H., and Crothers, E. J., An Introduction to Mathematical Learning Theory, John Wiley and Sons, Inc., New York (1965).

Atkinson, R. C., "The Use of Models in Experimental Psychology," Synthese, 12:162 (1960).

Audley, R. J., "A Stochastic Model for Individual Choice Behavior," Psychol. Rev., 67:1 (1960).

Baikov, F., Ya, "Tomatoes in an Electric Field," Priroda, 1:39 (1965).
Barron, C. I., and Dreher, J. J., "Effects of Electric Fields and Negative Ion Concentrations on Test Pilots," Aerospace Medicine, 35:20 (1964).

Bauer, F., "Tests for Effects of Ionized Air and Electroconvulsive Shock on Learning and Innate Behavior in Rats," Behavior and Atmospheric Ions, General Electric Corporation, 4 (1959).

Beckett, J. C., "Air Ionization as an Environment Factor," Elec. Eng., 73 (1954). Presented at AIEE Summer and Pacific General Meeting, Los Angeles, California, June 21-25, 1954, Paper No. 54-225, 1.

Bisa, K., Unpublished Summary, 1938. Behavior and Atmospheric Ions, General Electric Corporation, 2 (1959).

Biss-Grafshaft, K., "The Strain Upon the Organism by Electroaerosols and an Increase in Atmospheric Ionization," presented at the Schwebestofftechnischen Arbeitstagung, Mainz, Germany, (Dec. 1954).

Brillouin, Leon, Science and Information Theory, Academic Press, Inc., New York (1962).

Broadbent, D. E., "Noise, Paced Performance and Vigilance Tasks, " Brit. J. Psycho1. (Gen. Sec.), 44: 295 (1953).

Broadbent, D.E., "Some Effects of Noise on Visual Performance," Quart. J. Exp. Psycho1., 6:1 (1954).

Broadbent, D. E., "Effects of Noise of High and Low Frequency on Behavior," Ergonomics, 1:21 (1957).

Broadbent, D. E., "Effects of Noise on an 'Intellectual' Task," J. Acoust. Soc. Amer., 30:824 (1958).

Buettner, K. J. K., "Present Knowledge of Correlation Between Weather Changes, Sferics, and Air Electric Space Charges, and Human Health and Behavior," Federal Proceedings, 16:631 (1957).

Busighina, M. V. and Minkh, A. A., "Vliianiie otritsatelno ionizirovannogo vozduhka no Kholodovuiu retseptsiiu Kozhi," Gigiena Sanit., 21:12 (1956) .

Cauer, H., Uber den chemismus der Atemluft wahrend der Inhalation, insbensondere der Elektroinhalation," Zschr. Aerosol-Forsch., 4:310 (1955) .

Chalmers, J. A., Atmospheric Electricity, Oxford University Press, England (1949).

Chiles, D. W., Fox, R. E., Rush, J. H., and Stilson, D. W., "Effects of Ionized Air on Decision Making and Vigilance Performance," TDR No. MRL-TDR-62-51 (1962).

Chochran, W. G., "Some Consequences When the Assumptions for the Analysis of Variance Are Not Satisfied, " Biometrics, 3: 22 (1947).

Cole, J. N., Mohr, G. C., Guild, E., and Gierke, H. E. Von, "The Effects of Low Frequency Noise on Man as Related to the Apollo Space Program," AMRL Memorandum B-66 (March 1964).

Covell, W. P., "Cumulative Auditory Effects Resulting from Multiple Exposure to Intense Acoustic Stimulation," TDR No. AMRL-TDR-62-99 (II) (1963).

Cristofv, C., "The Cristofv Anti-Fatigue Device," Enertronics, Inc. press release (1967).

Dahlke, A. E., "Integrated Approach to Analysis of Variance," Mimeographed Paper, University of Oklahoma (1965).

Davis, Joseph B., "Review of Scientific Information on the Effects of Ionized Air on Human Beings and Animals," Aerospace Medicine, 34:35 (January 1963).

Dessauer, F., Zehn Jahre Forschung auf dem physikalisch-medizinischen Grenzgebiet. Leipzig (1931).

Dolgachev, I. P. and Preobrazhenskaia, Electrischeskie potentsiali slizistoi obolochki nosa u chelovieka v norme pathologii, Fiziol. Zhurn。, 40:43 (1954)。

Dolgachev, I. P., Reaktsiia stizistoi obolochki nosovoi polosti na okhlazhdenie organizma, Fiziol. Zhurn., 38:459 (1952).

Dolgachev, I. P., 0 reaktsii slizistoi obolochki nosa na lokalnoe okhlazhdenie pri povrezhdeniiakh tsentralnoi nervnoi sistemy, Fiziol. Zhurn., 39: 334 (1953).

Duffy, Elizabeth, Activation and Behavior, John Wiley and Sons, Inc., New York (1962).

Dull, B., Wetter und Gesundheit, Dresden, (1941).
Dull, B. and Dull, T., Zusammenhange zwischen Storungen des Erdmagnetismus und Haufungen von Todesallen, Deutsch. Med. Wschr, 61:95 (1935).

Duncan, D. B., "Multiple Range and Multiple F Tests," Biometrics, 11:1 (1955).

Dunnett, C. W., "A Multiple Comparison Procedure for Comparing Several Treatments with a Control," J. Amer. Statist. Assoc., 50: 1906 (1955).

Dussert, A., "Contribution a la recherche du mecanisme de echanges respiratoires pulmenaires," Presse. Therm Clim., 96:118 (1959).

Edstrom, G., "Investigations into the Effects of Unipolarly Charged Air on the Surface Temperature," Acta. Med. Scand., 83:523 (1934).

Eisenhart, C., "The Assumptions Underlying the Analysis of Variance," Biometrics, 3:1 (1947).

Eldred, K. M., Gannon, W. J., and Gierke, H. E., von, "Criteria for Short... Time Exposure of Personnel to High Intensity Jet Aircraft Noise," WADC TN 55-355 (Sept. 1955).

Engels, A. and Liese, E., Rauminhalationsuntersuchungen mit P^{32} etikettiertem Wiesbadener Kochbrunnen beim Menschen, Arch. physik, Ther., 6:345 (1954).

Erban, L., Sledovani biochemickych a hematologickych zmen pri aplikaci ionisovaneho vzduchu, Czech. Hyg., 3:255 (1958).

Estes, W. K., "A Random Walk Model for Choice Behavior," in K. J. Arrow, S. Karlin, and P. Suppes (eds.), Mathematical Methods in the Social Sciences, Stanford University Press, 265 (1960).

Faibushevich, V. M., Gidroaeroionizatsiia-novyi faktor fizicheskoi terapii i profilaktiki, Voprosy Kurort., 22:55 (1957).

Frey, A. H., Behavior and Atmospheric Ions, General Electric Corporation (1959).

Fuks, N. A., Mekhanika Aerozolei, Moscow (1955).
Goldman, Stanford, Information Theory, Prentice-Hall, Inc., New York (1953).
Herrington, L. P., and Smith, L. L., "The Effects of High Concentrations of Light Negative Atmospheric Ions on the Growth and Activity of the Albino Rat," Journal of Industrial Hygiene, 17:283 (1935).

Hicks，W．Wesley，＂Air Ion Generation，Separation，Metering and Physio－ logical Effects，＂J．Franklin Inst．，261：209（1956）．

Jerison，H．J．，＂Combined Effects of Noise and Fatigue on a Complex Count－ ing Task，＂USAF WADC TR55－360，AD 95232 （1955）．

Jerison，H．J．，＂Differential Effects of Noise and Fatigue on Complex Counting Task，＂USAF WADC TR55－359 AD 110506 （1956）．

Jerison，H．J．and Smith，A．K．，＂Effect of Acoustic Noise on Time Judgment，＂USAF WADC TR55－358 AD 99641 （1955）．

Jerison，H．J．，and Wing S．，＂Effects of Noise on a Complex Vigilance Task，＂USAF WADC TR57－14 AD 110700 （1957）．

Jerison，H．J．and Wallis，R．A．，＂Experiments on Vigilance II：One－ Clock and Three－Clock Monitoring，＂USAF WADC TR57－206 AD 118171 （1957）．

Jordon，J．and Sokoloff，B．，＂Air Ionization，Age，and Maze Learning of Rats，＂Journal of Gerontology，14：344（1959）．

Kahler，K．，Biologische Wirkungen der Luftelektrizilat und der Kunstli－ chen Ionisierung，Naturwiss．，25：92， 110 （1937）．

Kornblueh，I．H．，＂First Congress of I．S．B．B．，＂Amer．J．Phys．Med．，38：1 （1959）．

Knickerbocker，G．G．，Kouwenhoven，W．B．，and Barnes，H．C．，＂Exposure of Mice to Strong AC Electric Field－An Experimental Study，＂IEEE Trans．，86：26（1967）．

Kornblueh，I．H．，Pierson，B．M．，and Speicher，F．P．，＂Relief from Polli－ nosis in Negatively Ionized Rooms，＂American Jour．of Phys．Med．，37： 18 （1958）．

Krueger，A．P．，and Smith，R．F．，＂Parameters of Gaseous Ion Effects on the Mammalian Trachea，＂Jour．of General Physiology，42：959（1959）．

Kryter，K．D．，＂The Effects of Noise on Man．I．Effects of Noise on Behavior，＂Jo Speech Dis。（Monogr．Supp1。1）（1950）．

Kuster，E．and Frieber，W．，Die neueren Ergebnisse von Untersuchungen uber Einwirkung kunstlich ionisierter Luft auf den Organismus hoherer Lebewesen，Bioklim．Beiblatt．，$\underline{8}: 95$（1941），9：11， 129 （1942），10：54， 133 （1943）．

La Berge，D．L．，＂A Recruitment Theory of Simple Behavior，＂Psychometrika， 27：375（1962）．

Landsmann．E．，Uber die Behandlung von Bronchialasthma mit Aeroionisation， Wien．Klin．Wschr．，48：1384（1935）。

Lazarus, R. S., Deese, J., and Osler, S. F., "The Effects of Psychological Stress Upon Performance," Psychol. Bull., 49:293 (1952).

Mackworth, N. H., "Researches on the Measurement of Human Performance," (Medical Res. Council Rep. No. 268), London: H. M. Stationery Office, (1950).

McGuirk, F. C. J., "Psychological Effects of Artificially Produced Air Ions," Amer. Jour. of Physical Med., 38: 136 (1959).

Milsum, J. H., Biological Control Systems Analysis, McGraw-Hill Book Co., New York (1966).

Minehart, J. R., David, T. A., McGurk, F. J., and Kornblueh, I. H., "The Effect of Artificially Ionized Air on Post-Operative Discomfort," Amer. J. Phys. Med., 40:56 (1961).

Minkh, A. A., "The Present Day Concept of the Physiologic and Hygienic Significance of Air Ionization," Excerpta Medica, 3: 522 (1957).

Moos, Walter S., "A Preliminary Report on the Effects of Electric Fields on Mice," Aerospace Medicine, 35:374 (April 1964).

Morgan, C. T., Cook, J. S., Chapanis, A., and Lund, M. W., Human Engineering Guide to Equipment Design, McGraw-Hill Book Co., Inc. (1963).

Muller, G., Uber einen luftelektrischen Faktor der Zivilisationspathogenese, Zahnarztliche Welt, 10:241 (1955).

Newman, D., "The Distribution of Range in Samples From a Normal Population, Expressed in Terms of an Independent Estimate of Standard Deviation," Biometrika, 31:20 (1939).

Nielsen, C_{0}, and Harper, H., "Effects of Air Ions on Succinoxidase Activity of the Rat Adrenal Gland," Society of Experimental Biology and Medicine, 86:753 (1954)。

Piccardi, Go, "Astrophysical Phenomena and Terrestrial Events," Translation by I. Fraser, University of Illinois, and by Louise L. Wilson, Foundation for the Study of Cycles (1966).

Raisbeck, Gordon, Information Theory, An Introduction for Scientists and Engineers, MIT Press, Cambridge, Massachusetts (1964).

Reiter, R., "Relationships Between Atmospheric Electric Phenomena and Simultaneous Meteorological Conditions," Final Report, I and II, AF, 052-55 (1960).

Rheinstein, Jo, "The Influence of Artificially Generated Atmospheric Ions on the Simple Reaction Time and on the Optical Moment," Institute for Technical Electronics, Munich, Germany (Sept. 1960).

Rohrer, E., Einige Ergebnisse einein halbjahriger Luftelektrischbioklimatischer Untersuchungen, Arch. physik. Ther., 3:216 (1951).

Schaeffer, K., "Airborne Condensation Droplets, Ions May Be Mahor Health Factors," Heating, Piping, and Air Conditioning, 31:101 (1959).

Schorer, G., Uber biologische Wirkungen ionisierter Luft, Schweiz. Med. Wschr., 82:350 (1952).

Silverman, D. and Kornblueh, I. H., "Effect of Artificial Ionization of the Air on the Electroencephalogram," Amer. J. Phys. Med., 36:352 (1957).

Slote, L., "Atmospheric Ionization and Human Performance," Unpublished Summary (1962).

Sommer, H. C. and Gierke, H. E., von, "Hearing Sensations in Electric Fields," Aerospace Medicine, 35:834 (Sept. 1964).

Spence, K. W., "Conceptual Models of Spatial and Non-Spatial Selective Learning," in K. W. Spence (ed.), Behavior Theory and Learning, Prentice-Hali, Englewood Cliffs, New Jersey (1960).

Stanley, L., Unpublished Report, 1952, cited in Behavior and Atmospheric Ions, General Electric Corporation, 12 (1959).

Steel, R. G. D. and Torrie, J. H., Principles and Procedures of Statistics, McGraw-Hill Book Company, Inc., New York (1960).

Stein, C., "A Two-Sample Test for a Hypothesis Whose Power Is Independent of the Variance," Ann. Math. Stat., 16:243 (1945).

Strasburger, J. and Lampert, H., Weitere Klinisch-therapeutische Erfahrungen bei der Einatmung negativ ionisierter Luft, Deutsch. Med. Wschr., 59:1316 (1933).

Tchijevsky, A. L., Recherche sur le facteur electrique de l'air atmospherique, maintenant le vie des animaux, Academia Colombiana de ciencias exactas fisicas y naturales Bogota, 4, N. 13-16, 182-194 (1940).

Tchijevsky, A. L., Die Wege des Eindringens von Luftionen in den Organismus und die physiologische Wirkung von Luftionen, Acta. Med. Scand., 83:219 (1934).

Tolman, E. C., 'Prediction of Vicarious Trial-and -Error by Means of the Schematic Sow-Bug," Psychol. Rev., 46:318 (1939).

Tukey, J. W., "One Degree of Freedom for Nonadditivity," Biometrics, 51: 232 (1949).

Vail, I. S., and Ivanov, V. V., O vliianii unipoliarno i bipolarno ionizirovannogo vozdukha na zdorovykh liudei, Voprosy Kurort., 25: 230 (1960).

Vasiliev, L. L.。 Teoriia i Praktika Lecheniia Ionizirovannym Vozdukhom, Leningrad (1951).

Vytchikova, M. A., and Minkh, A. A., "On the Use of Aeroionization in the Practice of Athletic Medicine," Physic. Culture and Sport (USSR), 1959, 22:1 (Manuscript), cited in Behavior and Atmospheric Ions, General Electric Corporation, 3 (1959).

Washburn, M. F., The Animal Mind, The Macmillan Company, New York, 3rd edition (1926).

Winer, B. J., Statistical Principles in Experimental Design, McGraw-Hill Book Company (1962).

Winsor, T., and Beckett, J., "Biological Effects of Ionized Air in Man," Amer. J. of Phys. Med., 37:83 (1958).

Wofford, J. C., "Effects of Negative Ionization of the Atmosphere on Discriminative Reaction Time, Manipulative Dexterity and Attitudes," Unpublished doctoral dissertation, Baylor University (1962).

Yaglou, C. J., Benjamin, \bar{L}. C., and Brandt, A., "The Influence of Respiration and Transpiration on Ionic Content of Air of Occupied Rooms," J. of Industrial Hygiene, 15:8 (1933).

APPENDIX 4

STATISTICAL DETERMINATION OF SAMPLE SIZE FOR INDIVIDUAL CELLS

$$
\begin{array}{ll}
H_{0}: & \mu=\mu_{0} \\
H_{1}: & \mu \neq \mu_{0}
\end{array}
$$

$\mu_{0}-\sigma: \mu_{0} \quad \mu_{0}{ }^{+\sigma}$
In determining a sample size the experimenter is faced with the following three questions:

1. How large a shift in a parameter does one wish to detect?
2. How much variability is present in the population? and
3. What size risks is one willing to take?

Furthermore, it should be realized that the objective of a well designed experiment is to obtain more information for less cost than can be obtained by traditional experimentation. Based on the above criteria the size used in this study was obtained as follows:

The probability statement we wish to make is the following: We would like the absolute value of the difference between the sample mean and the population mean to be less than one standard deviation (standard deviation of experimental error) ninety nine percent of the time. In mathematical notation the above statement is written as

$$
\begin{equation*}
\operatorname{Pr}_{r}\left\{\left|\left(\bar{x}-\mu_{0}\right)\right|<\sigma\right\}=0.99 \tag{2}
\end{equation*}
$$

or removing the absolute value sign

$$
\begin{equation*}
\operatorname{Pa}_{r}\left\{-\sigma<\left(\bar{x}-\mu_{o}\right)<\sigma\right\}=0.99 \tag{3}
\end{equation*}
$$

dividing by σ / \sqrt{n} for normalizing the distribution we obtain:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}\left\{-\sqrt{\mathrm{n}}<\frac{\overline{\mathrm{x}}-\mu_{\mathrm{o}}}{\sigma / \sqrt{\mathrm{n}}}<\sqrt{\mathrm{n}}\right\}=0.99 \tag{4}
\end{equation*}
$$

by the central limit theorem

$$
\begin{equation*}
\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \approx z(0,1) \tag{5}
\end{equation*}
$$

and from equation (3) the implication is that

$$
\begin{gather*}
\sqrt{n}=z_{0.995}=2.58 \tag{6}\\
n=7 \tag{7}
\end{gather*}
$$

It is obvious then, that the use of 10 rats per cell (Figures $2-1$ and 2-2) as our sample size is conservative. The sample size obtained by equation (7) could also be verified by various other techniques (Stein, 1945; Steel and Torrie, 1960).

Power of the Test. If \bar{x} is such that $\left(\mu_{0}-\sigma\right)<\bar{x}<\left(\mu_{0}+\sigma\right)$ (Where μ_{0} is the true mean behavior for that particular group of rats under that particular combination of effects and a sample of size 7 guarantees that 99% of the time $\overline{\mathbf{x}}$ will not differ from μ_{0} by more than σ) then, we accept the hypothesis that $\mu=\mu_{0}$ at the 99% confidence leve1. Now to check the power of these rejection numbers for our sample of size 10 , suppose that $\mathrm{H}_{1}: \mu=\mu_{0}+\sigma$ is true. Then the probability that $\overline{\mathrm{x}}$ will be less than ($\mu_{o}+\sigma$) given H_{1} is true is calculated as follows:

$$
\begin{align*}
& \operatorname{Pr}_{r}\left\{\bar{x}<\left(\mu_{0}+\sigma\right) / \mu=\left(\mu_{0}+\sigma\right)\right\}= \\
& \operatorname{P}_{r}\left\{\bar{x}-\left(\mu_{0}+\sigma\right)<0\right\}= \\
& P_{r}\left\{\frac{\bar{x}-\left(\mu_{0}+\sigma\right)}{\sigma / \sqrt{10}}<0\right\}=0.5 \tag{8}
\end{align*}
$$

Where we assume no change in the standard deviation. The power is low in this case. If, however, μ changes from μ_{0} to ($\mu_{0}+2 \sigma$) the power computed as in equation (8) is nearly 100% 。

It should be stated here that the limitations imposed by both factors of funds and time have rendered the use of a larger sample prohibitive. (If one wishes to guarantee that $\left|\left(\bar{x}-\mu_{0}\right)\right|<\frac{\sigma}{10}$ ninety nine percent of the time for example, a sample of size 260 rats is required for each cell, or a total of 10,400 rats for the complete study.)

APPENDIX B

INTEGRATED ANALYSIS OF VARIANCE

Introduction

A disk-stored system of 30 independent routines accomplishes a fullmodel analysis of variance. A summary table identifies the source of each interaction, sums of square, $d f$, mean squares, error term index and F ratios. Intermediate output includes an EMS matrix, sums and means of combination of cells, and term values.

The system requires all zero order interactions, (factors must be listed as fixed or random with nesting orders established), a card identifying factors as fixed or random, and score cards with factor indices. The routine types a message and halts at the conclusion of each analysis allowing operator action in seeking another job.

The system follows the "Integrated Approach to Analysis of Variance", Arnold E. Dah1ke, University of Oklahoma (1966).

Treating replications as a factor in the analysis, up to a sevenway analysis of variance can be executed with any arrangement of nesting factors and fixed/random factors. If an eighth factor is nested in all other factors, the user may process an eight-way analysis of variance.

A11 routines require disk-storage with appropriate dimension and equivalence table entries. The system uses 974 sectors for permanent storage with main links in core images and subprograms in system output
format. The Diskss link requires the maximum incore storage of 19,995 cores; the Diskss links may use a maximum of 4368 work sectors. The system was originally written for the $20 \mathrm{~K}-1620$ IBM computer. However, the version used here has been adapted for the IBM 360 which now is being utilized at the University.

On the following pages are presented the working details of the computer program together with brief discussions of the various subroutines. This is followed by a Fortran IV listing of the program.

INPUT CARD FORMATS

All fields are right-justified unless otherwise indicated.

> Problem Specification Card (DFINPT link)

Cols.
1- 4
5- 8 Left-justified alphameric name of factor one
9-12 Number of levels in factor one: negative if nested factor 13-16 Left-justified alphameric name of factor two

17-20 Number of levels in factor two: negative if nested factor
21-24 Left-justified alphameric name of factor three
25-28 Number of levels in factor three: negative if nested factor
29-32 Left-justified alphameric name of factor four
33-36 Number of levels in factor four: negative if nested factor
37-40 Left-justified alphameric name of factor five
41-44 Number of levels in factor five: negative if nested factor 45-48 Left-justified alphameric name of factor six 49-52 Number of levels in factor six: negative if nested factor 53-56 Left-justified alphameric name of factor seven

Cols.

Information

57-60 Number of levels in factor seven: negative if nested factor 61-64 Left-justified alphameric name of factor eight 65-68 Number of levels of factor eight: negative if nested factor 69-72 Must contain alphameric blanks

73-80 Not used; may contain user identification data
Note: All fields beyond column 20 are optional.

Continuation Cards (DFINPT link)
Cols.

1-4
5-8

9-12

13-16

17-20
21-24

25-28

29-32

33-80
Not used; may contain user identification data

Fixed Random Indentification Cards (EMS link)

Information

Number of nesting factors to be read from this card
Negative index of first nesting factor

Negative index of second nesting factor, if any
Negative index of third nesting factor, if any
Negative index of fourth nesting factor, if any
Negative index of fifth nesting factor, if any
Negative index of sixth nesting factor, if any
Negative index of seventh nesting factor, if any

Zero if factor one is fixed; one if factor one is random

13-16

17-20
Zero if factor two is fixed; one if factor two is random
Zero if factor three is fixed; one if factor three is random
Zero if factor four is fixed; one if factor four is random
Zero if factor five is fixed; one if factor five is random

Information

21-24 Zero if factor six is fixed; one if factor six is random 25-28 Zero if factor seven is fixed; one if factor seven is random 29-32 Zero if factor eight is fixed; one if factor eight is random

33-80 Not used; may contain user identification data
Note: All fields beyond column 8 are optional.

Score Cards (INPT 1ink)

Cols.

Information

1-12 SCORE in FORMAT (F12.0); decimal, if punched, overrides specification

13-16 Factor one index
17-20 Factor two index
21-24 Factor three index, if any
25-28 Factor four index, if any
29-32 Factor five index, if any
33-36 Factor six index, if any
37-40 Factor seven index, if any
41-44 Factor eight index, if any
45-80 Not used; may contain user identification data

DESCRIPTION OF ROUTINES
The Zero Order Degrees of Freedom Input program (DFINPT) reads from the Problem Specification card the number of factors (NFCTRS), then alternately an alphameric name element (ANAME (J)) and the number of levels associated with that element (LEVELS (J)), in FORMAT (I4, 8 (A4, I4), A4). The routine reads all fields, even if blank, for the purpose of placing flags used in later links. Columns 69-72 of the first card must contain
alphameric blanks to insure proper operation of the Output link.
Available storage limits the number of factors to seven unless an eighth factor is nested within all seven other factors. A negative element in LEVELS (J) indicates to the routine that the $j^{\text {th }}$ zero order interaction contains nesting factors. Scanning from left to right on the first card, a negative LEVELS (J) causes the routine to read another card in FORMAT (8I4) specifying the number of nesting factors (K) and then K negative indicies referencing the nesting factors (K). These indices (assigned when the alphameric names were read) correspond to the position of each name on the first card; indices begin with one. Note that Continuation Cards do not identify the nested factor; therefore Continuation Cards must be stacked in the sequence called for from the negative LEVELS (J) on the first card.

Whenever nesting factors appear, a branch to the Degrees of Freedom Function subprogram (KDF) evaluates the numerical df. For unnested interactions, the df equal LEVELS (J) - 1 .

This routine calls the PARTIN link upon completion.
The Partitioning program (PARTIN) unfolds a full model analysis of variance in accordance with rules set forth by Dr . A. E. Dahlke in "Integrated approach to Analysis of Variance", University of Oklahoma, 1966. A matrix of indices (referencing alphameric factor names read in DFINPT) represents each df expression. In PARTIN, nesting factors have negative indices; positive indices appear otherwise. Upon completion of each higher order interaction expression, a branch to the Degrees of Freedom Function subprogram (KDF) evaluates the numberical df.

The alphameric names, the levels of each factor, and the length of each df interaction matrix are moved to the disk working sector at the
conclusion of the partitioning process. The routine then calls the EMS link.

The Expected Mean Squares program (EMS) reads a card in FORMAT (8I4) specifying factors as fixed or random. A zero or blank punch indicates a fixed factor; a one in the field identifies each random factor. These fields appear in the same sequence as the names on the Problem Spedification Card in DFINPT.

The routine develops coefficients for the effects of treatment parameters in the full model. If a parametric combination appears in the expected value of a mean square, the coefficient becomes a one; otherwise the program specifies a zero coefficient. Following construction of the matrix, and its intermediate disk storage, the routine determines the appropriate error term for each mean square, if one exists. Immediately following each selection, the typewriter lists the indices of numerator and denominator mean squares together with the coefficients of the treatment parameters (they are also punched as output). These coefficients, in conjunction with the interactions in the summary table, may be used to write the parameters for any expected mean square. For convenience, the row of coefficients contains a blank after each tenth entry. In a row, coefficients run from right to left. A multi-row format is provided if the matrices are more than fifty elements in length.

The routine moves the error term indices (IERROR(J)) to the working sector and calls the INSTRN link.

The Instruction program (INSTRN) symbolically expands the df expressions produced in the DFINPT and PARTIN links, yielding a matrix (INSTRN; (J)) of algebraically signed term indices. A symbol table (TSYMBL(J))
and a matrix (ITERM(J) in core) stored on a disk sector corresponding to the symbol table index describe each term. A symbol identifies factors summed over after squaring in a computational routine. For each complete $\operatorname{ITERM}(J)$ matrix, the routine generates a $S Y M B O L$ and searches the TSYMBL(J) by brute force for its value. If located, the existing index is used in the $\operatorname{INSTRN}(J)$ matrix; otherwise, a new entry is made in TSYMBL(J) and the routine moves the current (ITERM(J)) matrix to working sector. Upon completion, each INSTRN(J) matrix occupies a unique disk storage area.

After defining instruction for all interactions, the program sequentially lists the in-core symbol table, five symbols per line without indices. The routine then calls the INPT link.

The Data Input program (INPT) reads in FORMAT (F12.0, 8I4) one SCORE per card together with its associated subscripts. The subscript order must agree with the order given for the alphameric names in DFINPT. One or two function subprograms (INDEX or JNDEX) assigns a storage location to the SCORE. With 193 or fewer scores the INDEX subprogram collapses the NFCTRS subscripts into a single value and stores the score as an element of $I(J)$ in core. With 194 or more, SCORE becomes the $j^{\text {th }}$ element of a temporary in-core matrix, where j is equal to the last index on the score card. After reading the greatest level of the last factor, the JNDEX subprogram collapses the remaining indices into a single value and the temporary matrix is moved to a disk sector corresponding to the value. With disk-stored data the input must be stacked in order such that the last subscript increases most rapidly. Any other sequence may cause mis-assignment and consequent faulty referencing of data during the computational subprograms.

The most economical operation with disk-stored data follows when the user names replications or subjects as the last factor on the Problem Specification Card.

The routine calls either SUMSQS or DISKSS, depending on the quantity of data specified by the user.

In-Core Sums of Squares program (SUMSQS) uses eight LOCAL subprograms (DOT£ through DOT7) to evaluate each term referenced the $\operatorname{ITERM}(J)$ matrix on disk storage, so no term need be evaluated more than once. The DOTn subprograms print or punch the sum, number of scores per sum, mean, and indices of various combinations of cells. The heading identifies factors summed over before squaring in the subprogram, and the routine punches or prints corresponding subscripts at their maximum level, other indices punch or print at their current value.

A running tally generates the value for an interaction's sums of squares. When the corresponding term index is positive, the routine adds the returned value from the appropriate DOTn subprogram to the sum cell; when negative, the returned value is subtracted. The final sums of squares (SUMSQS) replaces the INSTRN(J) matrix on the disk.

The routine calls the MEANSQ link.
The Disk-Storage Sums of Squares program (DISKSS), like its in ${ }^{-c o r e}$ counterpart, utilizes eight LOCAL subroutines (DDOTథ through DDOT7) to evaluate terms. Intermediate output from DDOTn routines follows the same format as DOTn output. However, evaluation of sums of squares follows a slightly different pattern: two sum cells are utilized (SUMSQP for positive and SUMSQN for negative term values) in an attempt to minimize the effects of roundoff error. With large problems, however, it remains the
user's responsibility to determine the numerical damage of runoff error in the computational routines provided.

The program calls the MEANSQ link.

The Mean Squares and F Test program (MEANSQ) retrieves from the disk and prints or punches the term values with an index corresponding to each TSYMBL(J) entry. Following evaluation of the mean squares, the routine conducts specified $\underset{F}{ }$ tests and scores each output line on the disk. The program calls the OUTPT link.

The Output program (OUTPT) provides a summary table of all prior computations. The routine identifies the source of each interaction by printing alphameric factor names. Nesting factors, if any, appear to the left of a four-character blank field (originally input as ANAME(J)); other factor names appear to the right of the blank field. The indices before each alphameric line correspond to the EMS indices and to the error term indices in the summary table. Sums of Squares, df, and mean squares are retrieved from the disk and printed for each interaction, followed by the error term index, $\mathbb{d f}$ and \underline{F} ratio.

```
    DIMENSIEN JDUMAY(3), INTRN(8) DFI40010
    DIMENSION KDUMMY(18),LEVELSI8) DF140020
    DIMENSION LONGI(127),LDUMMY(13)
    DIMENSION DF(1271,ANAME(91
    COMMON IRECRD, ISECTR,IDUMMY,J,K,NFCTRS, JDUMMY, INTRN,KDUMMY
    COMMON LEVELS,LONG1,LDUMMY,DF, ANAME
111 REAO (1,1,END=140) NFCTRS, (ANAME(J), LEVELS(J), J=1,8),ANAME(9)
    DG 108 1RECRD=1,NFCTRS
    I SECTR=27+IRECRD
    IF (LEVELS(IRECRDJ)103,101,102
101 STOE 00001
102 DF(ERECRD)=LEVELS(IRECRD)-1
    INTRN(1)=IRECRO
    WRITE (4'ISECTR,31 INTRNI1)
    LUNGI(IRECRO)=1
    GO TD 108
103 READ (1,2)K,(INTRN(J),J=1,K)
    IF IINTRN(1)|107,104,105
104 STOE 00000
105 CONTINUE
    DO 106 j=1,K
106 INTRN(J)=-INTRN(J)
107 LEVELS\IRECRD)=-LEVELS(IRECRD)
    K=K+1
    INTRN(K)=IRECRO
    DF &IRECRD)=KDF(K)
    WRITE (4'ISECTR,3) (INTRN(J), }j=1,K
    LONGI\IRECRD:=K
108 CONTINUE
110 CALL PARTTN
    GO TO 111
140 CALLE EXIT
    1 FORMAT (I4,8(A4,I4),A4) DFI70010
    2 FORMAT (814) DF170020
    3 FORNAT(5015)
        END
DF170260
```

```
    SUBROUTINE PARTIN
    DIMENSION ANAME(9),LEVELS(8)
    DIMENSION DF(1271,INTRN(8)
    DIMENSION LONG1(127)%IFCTR(8)
    DIMENSION ICOMPR(8) &DUMMY(4)
    COMMON IRECRD,ISECTR,I, J,K,NFCTRS,KOUNTI,IIII,JRECRD, INTRN
    COMMDN IFCTR,J2,K2,J3,K3,IHOLD,ITEMP,L2,L1,IDUMMY,JDUMMY
    COMMON LEVELS,LONGI,KDUMMY,ICOMPR,LDUMMY,DF, ANAME
    ITEMP=0
    KOUNTl=NFCTRS
109 IHOLD=KOUNTL
    DO 159 IRECRD=1,NFCTRS
    I SECTR=27+IRECRD
    K=LONGIMIRECRD)
    READ (40ISECTR,3) (IFCTR(J):J=1,K)
    L2=ITEMP+1
    DO }159\mathrm{ JRECRD=L2,IHOLD
    I SECTR=27*JRECRD
    K2=LONG1(JRECRD)
    READ (4'ISECTR;3) (ICOMPR(J);J=1,K2)
    IF (K-1)119.110,119
110 IF (K2-1:113,111,113
111 IF (IFCIR(1)-ICOMFR(1):112,159,112
112 INTRN{1]=IFCTR{1)
    INTRN(2)=ICOMPR(1)
    L1=2
    GO TO 150
113 J2=0
114 DO 116 % = 1, K2
    IF(IFCTR(1)-IABSIICOMPR\I)\)115,170,115
170 IF (J2)171,159,171
171 K=K2
    00 172 I=1,K
172 IFCTR\ID=1COMPR\I)
```

PAR40010
PAR40020
PAR40030
PAR40040
PAR 50010
PAR50020
PAR50030
PAR 70010
PAR 70020
PAR 70030
PAR 70040
PAR 70050
PAR 70060
PAR 70070
PAR 70080
PAR70090
PAR70100
PART0110
PAR70120
PAR 70130
PAR70140
PAR 70150
PAR 70160
PAR70170
PAR70180
PAR 70190
PAR70210
PAR70220
PAR 70230
PAR 70240

GOTO 159
PAR 70250
$115 \operatorname{INTRN}(1)=\operatorname{ICOMPR}(I)$
116 CDNTINUE
L $1=\mathrm{K} 2+1$
PAR 70260
PAR70270
PAR70280
INYRN(LI)=IFCTR(1)
IF (J21117.150s117
PAR7025:
PAR70300
PAR 70310
PAR70320
PAK70330
PAR 70340
PAR70350
PAR70360
PAR70370
PAK70390
PAR70400
PAR 70410
PAR70420
PAR70430
PAR 70440
PAR70450
22 IF (ICOMPRE1)/128,123:124
123 STGP 00003
PAR 70460
PAR70470
0
IF (ICQMPR(J)-IABSIIFCTR(I))) $125,159,125$
125 CONEINUE
DO $126 \quad I=1, K$
PAR 70490
PAR70500
PAR70510
PAR 70520
PAR70530
PAR 70540
PAR70550
PAR 70560
PAR 70570
PAR70580
PAR 70590
PAR70600

```
    IF (IFCTR(1)-IABSIECOMPR(J)\) 131,159,131
```

```
131 CONEINUE
132 CONTINUE
    DO 138 I=1,K2
    IF (ICOMPRIID)138:133.134
133 STUR 00005
134 DO 137 J=1,K
    IF IIFCTR(J))136,135:133
135 STDR 00006
136 IF (1COMPR(I)+IFCTR(J)/137.159,137
137 CONTINUE
    STOP 00007
138 CONTINUE
    K3=0
    DC 146 I=1,K
    IF (IFCTR(I)\140.139.147
139 STUE 00008
140 INTRN(II=IFCTR(I)
    K3=1
    DO 145 J=1,K2
    IF (ICOMPR(J1)142&141%140
141 STOR 00009
142 IF (IFCTR(I)-ICOMPR(J)) 145.143.145
143 K2=K2-1
    DO 144 J2=J,K2
    j3=J2+1
144 ICOMPR(J2)=ICOMPR(J3)
    GO TO 146
145 CGNTINUE
    STOR 00010
146 CONTINUE
    STOP 00011
147 J=K3
    DO 148 I=1,K2
    J=J+1
143 INTRN(J)=ICOMPR(I)
```

PAR70́620
PAR70630
PAR 70640
PAR 70650
PAR 70660
PAR70670
PART0580
PAR 70690 PAR70700 PAR70710 PARTO720 PAR70730 PAR70740 PAR70750 PART0750 PART0770 PAK70780 PAR70790 PAR 70800 PAR70810 PAR70820 PAR 70830 PAR70840 PART0850 PAR 70860 PART0870 PAR70880 PAR 70990 PAR70900 PAR70910 PAR70920 PAR70930 P4 70940 PAR70950 PAR70960

```
    L1=K3+K2 PAR70S70
    J3=k3+1 PAR70930
    DO 149 I= J3,K
    L=L1+1
149 INTRN(LI)=IFCTR(I)
150 K2=KOUNT1
    KOUNTI=KOUNTL+
    DO 154 I=IHOLO,K2
    IF (LUNG1(1)-L1)154;151,154
131 ISECTR=27+1
    READ (40ISECTR&3) (1COMPR(j)pJ=1,&1)
    00 153 J=1,11
    0O 152 K3=1,L1
    IF (ICCMPR(J)-1NTRN(K3))152,153,152
152 CONTINUE
    GO TO 154
153 CONTINUE
    KOUNTL=K2
    GO TO 159
154 CONTINUE
    ISECTR=27+KOUNT1
    DF(KGUNT1)=KOF(Li)
    WRITE (4'ISECTRO3) (इNTRN(J), J=L:L1)
    LUNG1/KGUNTLJ=Ll
159 CONTINUE
    IF ClHOLD-kCUNTL1100.061.100
160 1TENP = IHOLD
    GO TO 109
161 ISECTR=1
    WRITE(4%ISECTR,4) (ANAME(J!.0J=1&%)
    ISECTR=2
    WRITE (4'ISECTR,3) (LEVELS(J), D=L,NFCTMS)
    ISECTR=3
    WRITE (40&SECTR,3) (LUNGL(JJsf-1.KGUNT1)
    ISECTR=15
    WRITE (40ISECTR,G) (DF{J),j=1,KTVNT1)
PAR70930
PAR70990
PLRTL1000
FAR7:410
PART1020
F&R71030
FAR71040
pa!%11050
PAR71060
F4R71070
F6{71000
P&R71000
PART1100
FAR71110
PART11:0
Fart7.130
PAR71140
PAFI71120
FA|?1150
PA敋71470
pkkdild%
PA&71190
FAR71OOO
F&&71210
PAR71230
```



```
    163 CALL EMS
    PART1250
99999 RETURN
    3 FGR积AT(5015)
    4 FORMAT(60A4)
    6 FORMAT(40F5.0)
        END
    FARTB270
C
SUEROUTINE EMS
        DINENSION IRANDM(81,LUNG11127) EM540010
        DIMENSIEN IFCTR(8),ICGMPR(8) EMS40020
        GIMENSICN IEMS(127)gJEMS(127)
        DIMENSICN IERROR (127)
        COMMON IRECRD,ISECTR,I,J,K,NFCTMS,KOUNTI,KOUNT 3,JRECRB
```



```
        COMMON LDUMMY,L3,L4, ICOMPR,LONGI,IERROR,IEMS,JEMS
        READ {1,2)(IRANDM{J),j=1,NFCTRS)
        KOUNT 2=KOUNT1+22
        DO 213 IRECRD=1,KDUNT1
        I SECTR=27+IRECRD
        K=LGNG1\IRECRD)
        READ (4:ISECTR;5) (IFCTRIJ): J={,K)
        DO 212 JRECRD=1,KOUNT1
        ISECTR=27*JRECRD
        K 2=LONGI(JRECRD)
        J2=KQUNT1+1-JRECRD
        IF {K2-K)211,200,200
200 READ (4'ISECTR,5) (ICOMPR(U), j=i,k2)
    D@ 206 I=1,K
    DO 201 L2=1,K2 ENS70150
        LF(IABSIIFCTR(I))-1ABS(ICOMPR(L2)))201,202.201
    201 CONTINUE
    GO TO 211
    202 K2=K2-1
    IF 6K21203,210,204 E. EMS70200
    203 STCP 00013
FART1260
    4 FORMAT(6OA4)
        EMS540030
        EMSS40030
        EMS40040
        EMS50010
        EMS50020
        EMS50030
        ENAS70040
        Ev570050
        EMS70060
        EMS70s70
        EMS70080
    EMS70090
    EMS70100
    EMS7011O
    EMS70120
    EMS70140
```

```
204 DO 205 L3=12,K2
    14=L3+1
205 ICOMPR(13)=ICOMPR (L4)
206 CONTINUE
        DO 209 I=1,K2
        IF (ICOMPR(I)/209,207,208
207 STCP 00014
208 L2=ICGMPRIIJ
    IF (IRANDM{L2):205,211,209
209 CUNTINUE
210 IEMSIJ2)=1
    GO TO 212
211 IEMS(J2)=0
212 CONTINUE
    KOUNT 3=KOUNT 2+6*IRECRD
    ISECTR=KOUNT3
    WRITE (4'ISECTR,5) (IEMS(J), J=L,KOUNTI)
213 CONTINUE
    K=KEUNT1+1
    WRITE (3,3)
    DO 218 IRECRD=1,KEUNTL
    ISECTR=KOUNT2*S*IRECRD
    L2=K-IRECRD
    READ (4*1SECTR,5)(IEMS(J); J=1,KOUNT1)
    IEMS&&21=0
    DO 216 JRECRD=1, KCUNTL
    IF {JRECRD-IRECRD\214,216,214
214 ISECTR=KOUNT2+6*JRECRD
    READ (4'^SECTR;5) (JEMS(J): j=1,KOUNT1)
    DO 215 I=1,KDUNT1
    IF (IEMS&I)-JEMS(I/1216,215,216
215 CONTINUE
    IERROR(IRECRD)=JRECRD
    GO IO 217
216 CONTINUE
    IERROR(IRECRDI=0
EMS70220
EMS70230
EMS70240
EMS70250
EMS70260
EMS 70260
EMST0280
EMS70290
EMS70300
EMS70310
EMS70320
EMS70330
ENS70340
EMS70350
EMS70360
EMS70370
EMS70390
EMS70390
```

```
    217 IEMS(L2)=1 EMS70550
    WRITE (3,4)IRECRD,IERRORIIRECROD.(IEMS(J),J=1,KOUNTL!
    218 CONTINU
        I SECTR=9
        WRITE (4'ISECTR,5) [IERROR(J): J=1,KOUNTL
    220 CALLL INSTRN
90
99999 RETURN 
    2 FORMAT (8I41
    4 FORHAT (1HO, 214, 2X 5(10I2, 2X)/ (IH, 10X 5(10I2, 2X)|)
    5 FORMAT (5015)
END
EMS70610
C
C
        SUBROUTINE INSTRN
        DIMENSION TSYMBL{128!&LONG14127) INS400IO
        DIMENSION INTRNI81,ITERMI81 INS40020
        DIMENSIIN II(8),ITIME(7)
        DIMENSION IORDER(8),LONG2(128)
        INS40030
        DIMENSION INSTRX(128),LONG3(127)
        COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KOUNTI,KOUNT3,KOUNT4
        COMMON INTRN,KOUNT5,ITLME,J2,K2,J3,K3,LENGTH,ITEMP,L2,NSYMBL
        *NS
        COMMON 13,NINST, IORDER,LONGI,NADDED,LONG2,LORG3&ITERM,II IHS50030
        GOMMON INSIRX,TSYMBL
        WRITE (3.14)
        KOUNT 4=KIUNT 3+5
        KCUNT5=KOUNT4+KOUNT1
        TSYMBL(1)=999999.0EO
        NSYMBL=0
        DO 337 IRECRO=1,KOUNTI
        ISECTR=27+IRECRO
        DO 301 I=2,8
    301 IOROERIII=9999
        NINST=0
K=LONGI&IRECRD) [HNSO130
KEAE (4'ISECTR,5) (INTRN(S), J=1pK!
```

```
    DO 303 I= 1,K
    IF IINTRNIII:303,302,304
302 STOP 00015
303 ITERM\I\=INTRN(I)
    STOR 00016
304 NADEED=0
    LASTAD=K-I+1
    DO 305 J=2,8
305 II (a) =9999
306 11(1)=1
    j=1
    IF (NADDED)}300&315,30
300 STOR 00300
307 DO 308 L2=1,7
308 ITINE(L2)=1
309 K2=II\J)
    K3=I+J-1
    ITERM(K3)=INTRN(K2)
    IF (J-NADDED)310,315,310
310 IF (J-8)312,311,312
311 STOR 00017
312 J=J +1
    IF IITIME(J)-1)314,313,314
313 1TIME(J)=1TIME(J) +1
    L2={-1
    II(d)=114L2)+1
    GO TO 309
314 II(w)= II(J)+1
    GO IO 309
315 LENGTH=NADDED+1-1
    IF (LENGTH)316,317,318
316 STOR 00018
317 SYMBOL=0.0
    GO TO 324
318 DO 319 L2=1, LENGTH
319 IOROER(L2)=1ABS(ITERM(L2))
```

```
    J2=&ENGTH-1
    DO 322 L2=1:J2
    J3=k2+1
    DO 322 L3=J3,LENGTH
    IF (IORDER(L2)-ICRDERIL3)\322,320,321
320 STEP 00019
321 ITENP=I ORDER(L2)
    IORDER(L2)=IORDERIL3)
    IORDER(L3)=ITEMP
322 CONTINUE
    CONST=0.10
    SYMEDL=0.0
    DO 323 L2=1,LENGTH
    CONST=10.0*CONST
    ORDER=ICRDER\L21
323 SYMBOL=SYMBOL*ORDER*CONST
324 DO 325 L2=1,NSYMBL
    IF (SYMBOL-TSYMBL(LL2)) 325,326,325
325 CONTINUE
    NSYMBL=NSYMBL+1
    ISECTR=KDUNT4+NSYMBL
    L 2=NSYMBL
    TSYNBL(NSYMBL)=SYMBOL
    LONG2(NSYMBL)=LENGTH
    WRITE (40ISECTR,5) (IORDER(J2); J2=1,LENGTH)
326 NINST=NINST+1
    INSTRX(NINST)=L2*((-1)**{LASTAD-NADDED+2.)}
    IF (NADDEDI327,330,327
327 L2=7
328 LF (IIIL2)-(K-(NADDED-L2)))}333,329,33
329 IF (L2-1)334,330,334
330 IF INADDED-LASTAD\332,336,331
331 STOR 00020
332 NADDED=NADDED+1
    GO TO 306
333 II(d)=II(J)+1
```

INST0500 INS 70510 INS70520
INS 70530
INS 70540
INS70550
INS 70560
INS 70570
INS 70580
INS 70590
INS 70600
INS70610
INS70620
INS70630
INS 70640
INS 70650
INS 70660
INS70670
INS70680
INS 70690
INS70700
INS70710
INS70720
INS 70730

INS 70740
INS 70750
INS70760
INS70770
INS70780
INS70790
INS 70800
INS 70810
INS70820
INS70830
INS70840

```
        GO TO 307
    334 J=J-1
    335 L2=L2-1
    GO TO 328
    336 ISECTR=KOUNT5+2*IRECRD
        LONG3{IRECRDI=NINST
        WRITE (4'ISECTR,5) (INSTRX(J), J=1,NINST)
    337 CONIINUE
    WRIIE (3.15) (TSYMBL(J), J=1,NSYMBL)
    339 CALE INPT
99999 RETLIRN
    5 FORNAT (5015\
    14 FORMAT (//////17H TABLE OF SYMBOLS/d
    15 FORMAT (5F16.1)
    END
    INS70950
C
C
        SUBROUTINE INPT
        DIMENSICN LEVELS(8);X(193)
        DIMENSION IDUMMY(127). SDUMMY(16)
        DIMENSION KDUMMY(16);LUNG2(128)
    INP40010
        INP40020
        DIMENSION LONG31127)
        INP40030
        COMMON IRECRD,ISECTR,I,N,K,NFCTRS,KOUNT1,N,KDUNT4,IL,I2
        COMMON I3,14,15,I6,I7,I8,KOUNT5,KONST1,KONST2,KONST3,KONST4
        COMMON KONST5,KONST6,KONST7,J2,K2,J3,K3,LENGTH,ITEMP,L2,11,13,L4
        COMHON LEVELS,IDUMMY,LDUMAY,LONG2,LDNG3, JDUMMY,TOTAL
        COMMON DEN,SUM, SUM2,KDUAMY,KOUNTG,NRECRD,KLONG,X
        I SECTR=2
        INP70020
        READ (4'ISECTR,ó) (LEVELS(J), J=1,NFCTRS)
        KONST1=LEVELS&1)
        IF ANFCTRS-11400:407,401
    400 STOR 00021
401 KONST2=LEVELS(2)*KONSTL
    IF (NFCTRS-2)400.407,402
402 KONST 3=LEVELS131*KONST2
    IF (NFCTRS-31400.407.403
INS70850
    INS70860
    INS70870
    INS70880
    INS70890
    INS70900
    INS70910
    IAS70930
INS70940
```


DIMENSION LONG31127)

```
INP40030
COMMON IRECRD,ISECTR,I,S,K,NFCTRS, KOUNTI,N,KDUNT4, IL, I2
COMMAN \(13,14,15,16,17,18, K O U N T 5, K O N S T 1, K O N S T 2, K O N S T 3, K O N S 54\)
COMMON KONST5,KONST6,KONST7,J2,K2,J3,K3,LENGTH,ITEMP, \(2,11,13, L 4\)
COMAON LEVELS, IDLMMY, LDUMAY, LONGZ, LONG3, JDUMMY,TOTAL
GMMUN DEN, SUM, SUMZ, KDUAMY, KUUNTG;NRECRD,KLONG; \(X\)
READ ( \(4^{\circ}\) ISECTR, \(O\) ) (LEVELS(J), \(J=1\),NFCTRS)
KONSTL=LEVELS(1)
INP 70030
IF ANFCTRS-I 1400.407 .401 INP70040
```


for 00021

```
INP 70040
INP 70050
INP 70060
IF HNFGTRS-2)400.407,402
INP 70070
402 KONST \(3=\) LEVELS 13 ) \(\%\) KONST2
IF (NFCTRS 314008407.403
INP 70080
INPT0090
```


09 OOLdNI
$05 \varepsilon 0 L d N I$ $0 \varepsilon \varepsilon 0 L d N I$
$02 \varepsilon 0 L d N I$
$0 I E O L d N I$
$00 \varepsilon O L d N I$
$0620 L d N I$
$0820 L d N I$
$0 L Z O L d N I$
$0.920 L d N I$
$0 G 20 L d N I$
$0 \mapsto 20 L d N I$
$0 \varepsilon 20 L d N I$
$02 Z O L d N I$


```
    GO TO 4009
4002 J=12
    G0 T0 4009
4003 J=1/3
    GO T0 4009
4004 J=I4
    GO TO 4009
4005 J=15
    GO TO 4009
4006
    J=I6
    G0 T0 4009
4007 J=17
    GO 10 4009
4008 J=18
4009 X\JJ=SCORE
    IF (J-KLONG)420,4011,4010
4 0 1 0 ~ S T O R ~ 0 4 0 1 0 ~
4011 J=JNOEX(11)
    ISEGTR=KOUNTG*J*NRECRD
    WRIJE (4:ISECTR,7) (X(J), J=1,KLONG)
    G0 TO 420
    419 J=INDEX\111)
    X(J)=SCORE
    420 CONTINUE
    TGTAL=TOTAL +SUBTOT
    IF (K-K2)422,425,421
    4 2 1 ~ S T O Q ~ 0 0 0 2 4 ,
    422 IF (K-NROOT)424.423.421
423 J2=NREM
424K=K+1
    GO:TO 416
4 2 5 ~ C O N T I N U E
427 IF (N-193)428,428,429
4 2 8 ~ C A L L ~ S U M S Q S ~
    GO TO 99999
4 2 9 ~ C A L L ~ D I S K S S ~
INP 70460
INP 70470
INP70480
INP70490
INP70500
INP70510
INP 70520
INP70530
INP70540
I NP 70550
INP70560
INP 70570
INP 70580
INP70590
INP 70600
INP70610
INP70620
INP 70630
INP70640
```

```
99999 RETLRN
INP70800
    5 FORMAT (F12.0,814) INP70010
    6 FORMAT. (5015)
    7 FORMAT(20F12.5)
        END
    INP70810
C
    SUBRRUTINE DISKSS
    DIMENSION LONG3(127),INSTRX[128) DIS40010
    DIMENSIGN LONG2(128:,ITERM(8)
    DLMENSION LEVELS(8),Z(147)
    DIMENSION IDUMMY(B)
    COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KOUNT1,N,KOUNT4, IL,I2
    COMMON 13,14,15,16,17,18,KOUNT5,KONST1,KONST2,KONST3,KONST4
    COMMON KONST5,KONST6,KONST7,J2,K2,J3,K3,LENGTH,ITEMP,L2
    COMMON LI,L3,L4,LEVELS,INSTRX,LONG2,LGNG3,ITERM,IDUMMY
    COMMON TOTAL,DEN,SUM,SUMZ,J1,J4,J5,J6,J7
    COMMON J8,K1,K4,K5,K6,K7,K8,L5,L6,L7,L8,KOUNTG,NRECRD,KLONG DIS5006O
    COMMON SUMSOP,SUMSQN
    COMMON Z
    KLONG=LEVELS(NFCTRS)
    NHALF=NFCTRS/2
    DO 536 IRECRD=1,KOUNTI
    ISECTR=KOUNT5*2*IRECRD
    FINO (4'ISECTR)
    K=LONG3(IRECRDI
    SUMSQP=0.0
    SUMEON=0.0
    REAB (4'ISECTR;G) (INSTRX(J), J=I,K)
    DO 535 I=1. K
    ICONND= IABS(INSTRX(I))
    ISECTR= KOUNT4+ ICOMND
    FIND {4'ISECTR)
    LENGTH=LONG2(ICOMND)
    IF.(LENGTH:503,501,508 DIS70120
501 DEN=N
OIS70130
DIS50070
DIS70010
DIS70020
DIS70030
DIS70040
DIS70050
DIS70060
DIS70070
SUMEQN \(=0.0\)
DIS70080
ICONND \(=\) IABS(INSTRX(I))
ISECTR = KOUNT4+ ICOMND
FIND [4' \(^{\circ}\) ISECTR)
ENGTH=LBNG2 ICGMNDI
DIS70110
DEN=N
D1570130
```

```
    SUM2=TGTAL*TOTAL DIS70140
    LENGTH=1
502 ISECTR=KOUNT4+ICOMND
    FIND (4'ISECTR)
    VALUE=SUMZ/DEN
    WRIIE (4:ISECTR,7) VALUE
    LONG2\ICOMNDI=-LENGIH DIS70180
    GO:TO 504 DIS70190
503 READ (4'ISECTR;7)VALUE
504 IF. (INSTRXII)I506,505,507
505 STOQ 00025
506 SUMSQN=SUMSQN-VALUE
    GO TO 535
507 SUMSQP=SUMSGP+VALUE
    GO TO 535
    GQ TO 535 (4SECR,6) (ITERM(J),J=1, LENGTH)
    J2=GENGTH
    DO 510 IL=1,NFCTRS DIS70270
    DO 509. 12=1,LENGTH
    IF A.LTERM(12)-I11509,510,509
509 CONIINUE
    j2=\\2+1
    ITERM(J2)=11
5LO CONTINUE
DO 511. 11=1,NHALF
    12=NFCTRS-I1+1
    ITENP=ITERM(11)
    ITERM(11)=1TERM(12)
511 ITERM(12)=1TEMP
    K2=1
    K3=1
    K4=1
    K5=1
    K6=1
    K7=1
    K }8=
DIS70200
DIS70210
D1S70220
D1S70230
DIS70260
D1570150
O1570160
    DIS70170
    GO TO 504 CNTR,7IVALUE
01570240
01570250
DIS70270
0IS70280
DIS70290
D1570300
IS70300
DIS70310
D1S70330
Dis70340
DIS70350
01570360
D1570370
DIS70380
01570390
DIS70400
DIS70410
DIS70420
IS70420
DIS70430
DIS70440
DIS70450
```


[^2]```
 531 CALE DDOT4
 GO TO 502
 5 3 2 \text { CALU DOOT5}
 GO. TO }50
 533 CALL DDOT6
 GO TO 502
 534 CALE DDOT7
 GO TO 502
535 CONTINUE
 ISECTR=KOUNT5+2*IRECRD
 ISECTR=KOUNT5+2*IRECRD
 WRITE (4'ISECTR,7) SUMSQ
 536 CONEINUE
538 CALL MEANSQ DIS70940
539 K=JNDEX(I1)
99999 RETURN OIS70960
 6 FORMAT (5015)
 7 FORMAT(10F20.5)
 END
 01570970
C
 SUBROUTINE MEANSO
 DIMENSION IERROR(127);DF(127)
 DIMENSION SS(127),AMS(127)
 DIHENSION ANAME(9),LONG1(127)
 DIMENSION INTRN(8),IQUMMY(9)
 DLMENSION JDUMMY {3),KDUNMY{11%
COMMON IRECRD,I SECTR,I,J,K,NFCTRS,KOUNT1,NEG2,KOUNT4, INTRN
COMMON KOUNT5, IDUMMY,NEG; JDUMMY,LZ,KDUAMY, LONGL, ANAME, IERROR
 COMMON DF,AMS,SS
 HRITE (3,6)
I SECTR=1
 READ (4'ISECTR,4) (ANAME(J), J=1,9)
 ISECTR=3
READ (401SECTR;3) (LUNG1(J): }=|=1,\mathrm{ KOUNT1)
ISECTR=9
MEA40010
MEA40020
IHENSION ANAME(9), LONG1(127) MEA40030
MEA40040
MEA40050
MEA50010
MEA50020
MEA50030
MEA70050
OIS70820
DIS70830
CIS70840
DIS70840
DIS70850
DIS70860
DIS70870
DIS70880
D1570890
DIS70.890
 ISECTR=KOUNT5+2*IRECRD
 ISECTR=KOUNT5+2*IRECRD
DES70930
538 CALL MEANSQ DIS70940
DIS70950
 DIS70890
01570960
END
```

```
 REAE (4*ISECTR,3) (IERROR(J), j=1,KOUNTI)
 ISECTR=15
 MEA70080
 REAB (4'ISECTR,5) (DF(J), j=1,KDUNT1)
 DO 601 IRECRD = 1,KOUNT1
 ISECTR=KOUNT5+2*1RECRD
 READ (4'ISECTR,8) SUMSQ
 SS\IRECRDI=SUMSQ
 601 AMSAIRECRDI=SUMSQ/DFIIRECRO)
 J=KGUNT L+1
 ISECTR=KOUNT4+1
 DO 602 IRECRD=1,J
 READ (4'ISECTR,8) VALUE
 WRITE (3,7IVALUE,IRECRD
 S02
 CONTINUE
 DO 607 IRECRD=1,KOUNT1
 L2=IERRORIIRECRD)
 IF (L2)603.604,605
 003 SIOP 00603
 604 F=0.0
 DFRDMD=0.0
 GO 10 606
 605 F=AMS(IRECRD)/AMS(L2)
 DFRCMD=DF(L2)
 606 WRITE (4'ISECTR,8) SS(IRECRD),DF(IRECRO),AMS(IRECRD),L?,OFRDMD,F
 6 0 7 \text { CONTINUE}
 6 0 9 ~ C A L L ~ O U T P T ~
99999 RETHRN
 3 FORMAT(5015)
 4 FORMAT(60A4)
 5 FORMAT(40F5.01
 6 FORMAT (/17X,1OHTERM VALUE,11X.5HINDEX//)
 MEATOOLO
 7 FORMAT (F30.8,8X,14) MEA70020
 8 FORMAT(3F20.5,15,2F20.5)
 END
MEA70310
```

            SUBROUTINE QUTPT
            DIMENSION ANAME{9):LONG1(12.7), INTRN18:, IDUMMY(3),M{9) KDUMMY(9)
            COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KDUNIT1,KOUNT3,KOUNT4,INTRN
    ```

```

                    2DFREMN, DFRDMD:P
    ```

```

    1,(M6,M(6)),(47,M(7)),(M8.M(8)),(M9,M(9))
    WRITE (3,8)
    DO 616 IRECRD =1, KOUNT1
    ISECTR=1RECRD * 27
    FIND (4'ISECTR)
    K= LONGI\IRECRD)
    NEG = O
    READ (4'ISECTR,5) (INTRN(S', 
    ISECTR = KOUNT5 + 2*IRECRD
    FIND (4'ISECTR)
    D0 601 I=1.9
    601 M(1)=9
DO 604 I=1,K
IFIINTRN(I3) 603,002,605
602 STOP 00602
6 0 3 ~ N E G ~ = ~ N E G ~ + ~ 1 ~
604 M(I) = -INTRN(I)
STOE 00604
605 IF(NEG) 606.608,607
606 STOP 606
607 IFIRST = NEG +1
GO 10 609
608 IFIRST = 1
609 DD 610 I = IFIRST.K
J=I+1
O10 M(J: =INTRNII)
611 WRITE (3,9) IRECRD,ANAME(M1),ANAME(M2),ANAME(M3),ANAME(N4)
1. ANAME\M5\, ANAME (MG), ANANE\M7), ANAME (A8);ANAME(MO)
G12 READ (4'ISECTR,6) SUMSQ,OFRDMN,AMNSQ;\&2,DFRDMD,F

```

FF(12) 613,614,615
613 STOE 00613
614 WRITE \((3,10)\) SUMSQ, DFRDMN: AANSQ
GO TO 616
O15 WRITE (3,10) SUMSQ,DFRDMN, AMNSQ, L2,DFRDMD.F
616 CONTINUE
99999 RETURN
5 FORMAT (5015)
6 FORMAT(3F20.5,15,2F20.5)
8 FORNATI 1HI, 50X, 2OHANALYSIS DF VARIANGE /1HO: 53X. 13HSUMMARY TA
1BLE / \(1 \mathrm{HO}, 14 \mathrm{X}, 6 \mathrm{HSOURCE}, 18 \mathrm{X}, 15 \mathrm{HSUHS}\) OF SQUARES, \(2 \mathrm{X}, 2 \mathrm{HDF}, 7 \mathrm{X}\),
2LIHAEAN SQUARE, 3X, 5HERROR, 3X, 2HDF, 9X,THF RATIO)
9 FORMAT (IHO, \(14,4 \times, 9(A 4,1 \times\))

1F14.8!
END
C
C
FUNCTION KDF(K)
DIMENSION INTRN(8), IDUMMY(18)
40010
DIMENSION LEVELS(8), ADUMMY 192)

COHMON INTRN, IDUMMY, LEVELS, ADUMMY 50020
\(K D F=1\)
DO \(804 \quad \mathrm{I}=1, \mathrm{~K}\)
70010
DO \(804 \quad 1=1, K\)
70020
\(J=\) INTRNII)
70030
IF (J) \(803,801,802 \quad 70040\)
801 STOP 00800
802 KDF=KDF*(LEVELS \((J)-1)\)
70050

270070
\(803 \mathrm{~J}=-\mathrm{J}\)
KDF=KDF*LEVEXS(J) 70090
804
CONTINUE
70100
RETURN
70110
END

FUNCTION JNDEX(I9)
COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KCUNTE,N,KOUNT4,IL,I2 COMMON 13,14,15,16,17,18,KOUNT5,KONSTI, KONST2,KONST3,KONST4 CEMMON KONST5:KONSTG, KONST7
KTEMP=NFCTRS-
GO TO (907,906,905,904,903,902,901),KTEMP

\(n \pi\)

END \(+\)

震

05002000
07002000
\(0 \varepsilon 002000\)
02005000
09005000
05005000
07005000
\(0 \varepsilon 005000\)
02005000
01005000
02007000
\(0100 \$ 000\)
\(0920 \angle 0 \square 6\)
\(0520 \angle 060\)
\(0 母 20 \angle 000\)
\(0 E 20200 G\)
OZ 202000
OZ 2020010 OT20L5GO OOCOLDOO \(0020 \angle O\)
\(06 T O L 00\) 08102000 8102000
\(1 \angle T 02000\) \(2 \angle 10 \angle 000\)
\(0910 \angle 0 G 0\)
\(0510 \angle D O O\) DD070140
DD070150 0
8
0
0
0
0
5
0 00
08
08
0
0
0
0 08
80
-2
0
0
0 0.0
0
0
0
0
0
0
0
0
 08002000
```

    DO 1102L8=1,J8 00070060
    II(K8)=L8
    DO 1102 L7=1,.j7
    L1(K7)=L7
    D0 1102 L\epsilon=1:J6
    1\(K6)=L6
    00.1102 L5=1,J5
    II|K5)=15
    00 1102 14=1,34
    IL(K4)=L4
    DO.1102 L3=1.J3
    11(K3)=13
    D0 3102 L2=1,.j2
    II|K2)=L2
    DO 1101 Ll=1.d1
    II(K1)=L1
        J=JNDEX(T1)
        IF (J-KHOLDI10,11,10
    10 ISECTR=KOUNT6+J*NRECRD
    KHOLD=3
    READ (4:ISECTR,6) (2IJ),J=1,KLONG)
    11 LLAST=II(NFCTRS)
    1101 SUM=SUM+Z(ILAST)
SUM2=SUM2+SUM*SUM
VALUE=SUM/DEN
WRITE (3,13)SUM,DEN,VALUE,(II(J),J=1,NFCTRS)
1102 SUM=0.0
RETURN
13 FORMAT (F18.8,F18.8,F18.8.813)
1LO0 FORHAT (/22H SUMMATION DVER FACTOR,14//)
6 ~ F O R M A T ( 2 0 F 1 2 . 5 ) ~
END
00070330
C
C
SUBRRUTINE bDOT2




```
 WRITE (3,13)SUM,OEN,VALUE,III(J),J=1,NFCTRS) DDO70300
 1202
 SUM=0.0
 RETURN
 13 FORMAT (F18.8,FIE.8,F18.8,813)
 1200 FORMAI (/23H SUMASATION OVER FACTORS,214//)
 6 FORMAT(2OF12,5:
 END
 00070330
C
\begin{tabular}{|c|c|}
\hline SUBROUTINE DDCT3 & \\
\hline DIMENSION II 18) K KUMMY(2) & D0040010 \\
\hline OIMENSION LDUMMY(407), 2 (147) & D0040020 \\
\hline COMMON IRECRD, ISEGTR,I,J,K,NFCTRS,KGUNT 1 , N, KOUNT4, II;KOUNTS & D0050010 \\
\hline COMMON KONST1, KDNST2,KONST3,KONST4, KONST5,KONST6,KONST7 & ODO50020 \\
\hline & D0050030 \\
\hline & D0050040 \\
\hline COMMON \(16,27,18, K C U N T 6, N R E C R D, K L O N G, 2\) & DOO50050 \\
\hline & DD050060 \\
\hline & ODO50070 \\
\hline DENFJ1* \(12 *\) J3 & 00070030 \\
\hline KHCLD \(=0\) & D0070040 \\
\hline WRITE (3,1300)K3, K2,K1 & DDO70050 \\
\hline DO 1302 L8=1, J8 & D0070060 \\
\hline \(I I(K 8)=L 8\) & DD070070 \\
\hline DO \(1302 \quad L 7=1, \mathrm{~J} 7\) & 00070080 \\
\hline II(K.7) = L 7 & D0070090 \\
\hline DO \(1302 \quad 16=1, \mathrm{~J} 6\) & DDO70100 \\
\hline \(1 . I(K 6)=L 6\) & DD070110 \\
\hline Dd 1302 L5 \(=1,35\) & DDO70120 \\
\hline II (K5) = L 5 & DDO70130 \\
\hline DO. \(1302 \quad L 4=1,34\) & D0070140 \\
\hline II (K4) \(=\mathrm{L} 4\) & 00070150 \\
\hline DO 1301 L3=1, 13 & DD070160 \\
\hline I1(K3) = L 3 & DDO70170 \\
\hline D0. \(1301 \quad L 2=1, \mathrm{~J} 2\) & DD070180 \\
\hline \(1 \mathrm{I}\left(\mathrm{K}_{2}\right)=\mathrm{L} 2\) & DDO70190 \\
\hline
\end{tabular}
```

```
 CO 1301 LI=1,UZ DnO702SD
 II(*)}=\textrm{LI
 J=JraEx(11)
 IF (6-KHOLO)10.1]qIO
 10 ISECTE=KDUMTG+S*N&ECEM
 KHDLE=J
```



```
 11 12AST= E|(NFCIRS)
1301 SU年云绝+2(ILAST)
 SUN2=SU42+5UN+5UN
 VLLUE=SUN/DEN
```



```
1302 5um=0.0
 KETURN
```





```
 NO
 SUERDUTINE DOGTA
 DEHEMSION IIGO&,KDUMMY(2)
 10040010
 DINENSICN LDUMPY(407),2{147)
 COKPON &REORD,ASECTR,I,N,K,NFCTRS,MQUNTL,M,KDHMT4, IT,KDEFT:
```





```
 CEMNON LEsLT,LG,KOUNTG&NRECRD,KLONG:?
```





```
 Kbgev=0
```



```
 LC 1%UZ & &=1& 18
 11(k3)=L3
 UO 14ソ2 &7=1&%7
 00n70210
 000%0220
 000T0230
 D00%%240
 L406050
010?%260
0r4?0270
0W%%280
05070290
[0]%0300
UuC!OS10
D#क-0320
Tve%0010
Debros30
```

```
SURRDUTINE DDOTA
DIMEASICN 1 If © ，KDUMMY 2 ：
［1040910
DINENSICN LDUMAY（4073，21：47）
```



```
00060020
DD550010
E00．00200
DDese0．30
［Dunsw40
00550050
D0040060
Dne50070
0L410030
प0070040
D0076050
acc 70060
cos70070
```



```
D0070003
```

```
II{K7)=1.7 DDO70090
DO. 1402 L6=1:J6 DD070100
II(K6)=16
DO 1402 1:5=1,45
II(K5)=L5
DO 1401 14=1,14
II (K4)=L4
DO.1401 L = =1, J3
II(K3)=L3
DO 1401 L2=1,J2
II(K2)=12
DO 1401 L1=1,J1
II(K1)=L1
J=JNDEX(I1)
IF (J-KHOLD)10,11,10
10 ISECTR=KOUNT6+J*NRECRD
KHOLD=J
REAB (4*ISECTR,6) (Z(J),J=1,KLONG)
 11 ILAST=II(NFCTRS)
1401 SUM=SUM+2\ILAST)
SUM2= SUM2 + SUM*SUM
VALLE=SUM/DEN
HRITE (3,13)SUM,DEN,VALUE, (II|J),N=1,NFCTRS)
1402
SUM=0.0
RETURN
13 FORMAT {F18.8,F18.8,F18.8.8I3)
1400 FORMAT //23H SUMMATIEN QVER FACTORS:414//)
 6 FORMAT(2OF12.5)
 END
DD070330
C
C
SUBROUTINE DDOTS
OIMENSION II(8),KDUMAY(2) DDO40010
DLMENSIGN LDUMMY(407),24147)
GOMMON IRECRD, ISECTR,I,J,K,NFCTRS,KOUNT1,N,KOUNT4,II,KOUNT5 DOO5001O
COMMON KONST1,KONSI2,KGNST3,KONST4,KONST5,KONST6;KONST7
DDO50020
```

```
 COMMON J2,K2,J3,K3,KDUMMY,L2,L1,L3.L4,LDUMMY,ADUMMY,DEN DDO50030
 COKMON SUM,SUM2,J1,14,J5,J6,,17,J8,K1,K4,K5,K6,K7,K8,L5
 COMMON L6,L7,L8,KCUNT6,NRECRD,KLUNG,Z
 EQUIVALENCE (II(1),I1),(1I(2),I2),(1I(3),53),(14,II(4)),(I5,II(
 15)1,(11(6),16),(11(7),17),(15(8),18)
 DENFJ1*J2*J3*34*J5
 KHOLD=0
 WRIFE (3,1500)K5,K4,K3,K2,K1
 DO 1502 L 8=1:.18
 II{K8)=L8
 DO 1502 L7=1;J7
 LI(k7)=L7
 DO 1502 L6=1. J6
 II(K6)=L6
 DO 1501 L5=1,J5
 II(K5)=L5
 DO .1501 14=1,J4
 1I(K4)=L4
 DO 1501 L3=1:J3
 II(K3)=L3
 DB 1501 L2=1,.12
 II(K2)=L2
 DO 1501 11=1.J1
 II(K1)=Ll
 J=JNDEX([1)
 IF (J-KHOLO110,11,10
 10 ISECTR=KOUNTG+J*NRECRD
 KHOLD=J
 READ. (4'ISECTR;6) (Z(1), j=1,KLDNG)
 11 ILAST=II(NFCTRS)
1501 SUM=SUM+2(ILAST)
 SUM2=SUN2+SUM*SUM
 YALUE=SUM/DEN
 WRITE 13.13
1502 SUM=0.0
 RETURN
```

D0050030 DDO5 0040 DDO50050 DDO50060 D0050070 D0070030 DD070040 00070050 DDO70060 DDO70070 D0070080 DDO70090 DD070100 DDO70110 DDO70120 DDO70130 00070140 DD070150 D0070160 D0070170 0D070180 DDO 70190 D0070200 00070210 DDO70220 DD070230 D0070240 DD070250

D0070260 D0070270 DOD70280 DDO70290 DDO70300 DD070310 D0070320
$0 n$
13 FORNAT (F18.8,F18-8,F18.8,8I3)
1500 FGRMAT (123H SUMMATION GVER FACTORS,514//)
6 FORMAT(20F12.5)
END

0عと0L000
01002000
nw
 $9 H^{\circ} T=97$
$L T^{*}+T=2$ $87=\{8 X 1 T 1$
$8 f^{\circ} T=87202 T \mathrm{DO}$
 1 （81＊（8）II）（LI＇（L）II）＇（91：（9）II）＊（（ST
 L1000 3NIIMO\＆8חS ang



```
 DO 1701 L5=1, 15 00070120
 II(K5)=L5
 DO 1701 L4=1,34
 II(K4)=L4
 00. 1701 13=1.J3
 1 I (k3)=L3
 00. 1701 L2=1,32
 I1(K2)=12
 DO 1701 L1=1.J1
 II(Kl)=L1
 J=JNDEX\I1)
 1F (J-KHOLD\10,11,10
 10 ISECTR=KQUNT6+j*NRECRD
 KHOLD=J
 READ (4!ISECTR,G) (Z(J),J=1,KIONG)
 11 ILAST=II(NFCTRS)
1701 SUMजSUM+ZIILAST)
 SUM2= SUM2 + SUM*SUM
 VALAE=SUM/DEN
 WRITE (3,13)SUM, DEN, VALUE,{II(|) sJ=1,NFCTRS)
 1702 SUM=0.0
 RETURN
 13 FORNAT (F18.8,F18.8.F18.8,813)
1700 FORMAT (/23H SUMMATIEN OVER FACTCRS,7&4//]
 6 FORMAT(20F12.5)
 END
D0070330
C
C
SUBROUTINE SUMSQS
DIMENSION LONG34127), INSTRX(128)
DIMENSICN LONG2(128).ITERM(8)
DIMENSION LEVELSI8),X(193)
DIMENSION IDUMMY(8)
COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KOUNTI,N,KOUNT4,IL,I2
COMMON 13,14,15,16,17,18,KOUNT5,KONST1,KONST2,KONST3,KONST4
COMMON KONST5,KONST6,KONST7,J2,K2,J3,K3,LENGTH,ITEAP,L2
DIMENSION LONG3(127), INSTRX(128)
SUM40030
```

```
 COMMON L1,I3,L4,LEVELS,INSTRX,LONG2,LONG3,ITERM,IDUMMY SUM50040
 COMMON TOTAL,DEN,SUM:SUM2,J1,J4,J5,J6,J7,J8,K1,K4,K5,K6 SUM50050
 COMMON K7,K8,L5,L6,17,L8,KOUNT6,NRECRD,KLONG;X
 NHALF=NFCTRS/2
 DO 536 IRECRD=1,KOUNT1 SUM70020
 ISECTR=KOUNT5*2*IRECRD SUM70030
 K=LONG3(IRECRD)
 SUMSQ=0.0
 READ (4'ISECTR,6) (INSTRX(J), J=1,K)
 00 535 I=1,K
 ICONND= IABS{INSTRX{I)]
 ISECTR=KCUNT4+ICOMND
 LENGTH=LONG2(ICOMND)
 IF (LENGTH)503:501,508
501 DENFN
 SUM2=TOTAL*TOTAL
 LENGT:H=1
502 ISECTR=KOUNT4+IGOMND
 VALUE=SUM2/DEN
 WRITE (4'ISECTR,7) Value
 LONG2(ICOMND)=-LENGTH
 GO JO 504
503 READ (4'ISECIR,7) value
504 IF (INSTRX(I)I506,505,507
505 STOP 00.025
506 SUMSQ=SUMSQ-VALUE
 GO IO 535
507 SUMSQ=SUMSQ+VALUE
 GO TO 535
508 READ (4'ISECTR,6) (ITERM(J),J=1,LENGTH)
 J2=LENGTH
 DO. 510 Ml=1,NFCTRS
 DO 509 M2=1,LENGTH
 IF (ITERM(M2)-M1)509:510,509
509
 CONEINUE
SUM70280
J2=\omega2+1 SUM70290
```





```
 j19 K1=1TERM(1)
 JL=tEVELS\K1)
 SUMFO.0
 SUM2=0.0
 LOOR=NFCTRS-LENGTH+1
 G0 TO (527,528,529,530,531,532,533,534),LDOP
 527 C ALL DOTO
 GO 10 502
 528 CALL DOT1
 G0.TO 502
 529 CALE DOT2
 GO TO 502
 530 GALL DOT3
 GO TO 502
 531 CALL DOT4
 GO TO 502
 532 CALL DOT5
 GO TO 502
 533 CALL DOT6
 GO TO 502
 534 CALL DOT7
 GO TO 502
 535 CONTINUE
 I SECTR=KCUNT 5*2*IRECRD
 WRITE \4*ISECTRg7! SUMSQ
 536 CONTINUE
 538 CALL MEANSQ
 539 K=INDEXGIL\
99999 RETURN
 6 FORHAT (5015)
 7 FORMAT(10F20.5)
 END
 SUM70940
C
C
 FUNCTION INDEXII9)
 COMMON IRECRD,ISECTR,I,N,K,NFCTRS,KOUNT1,N,KOUNT4,I1,I2
```

SUM 70660 SUM 70670 SUM70680 SUM70690 SUM 70700 SUM70710 SUM70720 SUM70730 SUM70740 SUM70750 SUM70760 SUM70770 SUM70780 SUM70790 SUM 70800 SUM70810 SUM70820 SUM70830 SUM70840 SUM70850 SUM70860 SUM70870 SUM 70880 SUM70890

SUM70900
SUM70910
SUM70920
SUM70930

SUM70940

```
 COMMON 13,I4,15,I6,I7,I8,KOUNT5,KONST1,KONST2,KONST3,KONST4
 COMMON KONST5,KONSTG,KONSIT
IND50030
JTEMP=0 INO70010
GO. TO 1708,707,706,705,704,703,702,701),NFCTRS IND70020
1NO70030
701 JTEMP=(18-1)*KONST7
 702 JTEMP=JJEMP+(17-1)*KONST6
 703 JTEMP = JTEMP+(16-1)*KONST5
 704 JTENP=JTEMP+(15-1)*KONST4
 705 JTEMP = JTEMP+(14-1)*KGNST3
 706 JTEMP=JTEMP+(13-1)*KONST2
 707 JTENP=JTEMP+(12-1)*KONST1
 708 INDEX=JTEMP+11
RETURN
END
IND70040
IND70050
IND70060
IND70070
IND7008O
INB70090
EN
IND70110
IND70120
C
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SUBROUTINE DOTO} \\
\hline DIMENSION [1(8), KDUMMY(2) & DOT40010 \\
\hline DIMENSION LDUMMY(407), X (193) & DOT40020 \\
\hline COMADN IRECRD,ISECTR I I, J, K, NFCTRS,KOUNTI,N,KOUNT4, II, KOUNT5 & DOT50010 \\
\hline COMMDN KONST1, KONST2,KONST3,KONST4,KONST5,KONST6, KONST7 & DOT50020 \\
\hline COMMDN J2, \(22, J 3, K 3, K D U M M Y, L 2, L 1,13, L 4, L D U M M Y, A D U M M Y, D E N ~\) & DOT50030 \\
\hline & DOT50040 \\
\hline COMMON L6,L7,L8,KOUNT 6, NRECRD,KLONG, \(X\) & \\
\hline EQUIVALENCE (1141),11),(11(2),12),(11(3),13),(14,1144), (15,11(& DOT50060 \\
\hline 15) , (1116),16),(11(7),17),(11(8),18) & DOT50070 \\
\hline DEN=1.0 & DOT70010 \\
\hline DO 1001 L8=1, J 8 & DOT70020 \\
\hline \(\underline{I I}(\mathrm{~KB})=\mathrm{L} 8\) & DOT70030 \\
\hline DO 1001 L7=1, \({ }^{\text {J }}\) & DOT70040 \\
\hline \(11(K 7)=17\) & DOT 70050 \\
\hline DO \(1001 \mathrm{~L} 6=1, \mathrm{~J} 6\) & DOT70060 \\
\hline II (\(\mathrm{K}_{6}\)) \(=16\) & DOT70090 \\
\hline \(00.100115=1,15\) & DOT70070 \\
\hline \(1 \mathrm{I}(\mathrm{K} 5)=\mathrm{L} 5\) & dor70080 \\
\hline DO \(1001 \mathrm{~L}=1 \mathrm{l}, \mathrm{J} 4\) & DOT 70100 \\
\hline
\end{tabular}
```

```
 II(K4)=L4 DOT70110
 DO 1001 L3=1.J3 DOT70120
 11(k3)=L3
 DC 1001 L2=1:J2
 II(K2)=L2
 DO 1001 LL=1,J1
 II(K1)= L1
 J=INDEX(11)
1001 SUM2=SUM2*X(J)*x(J)
RETURN
END
DOT70130
DOT70130
DOT70140
DOT70150
DOT70160
DOT70170
DOT70180
Dat70190
DOT70200
c
SUBROUTINE DOTl
DIMENSIGN IE(8), KDUAMY(2)
DOT40010
DIMENSION LDUMMY(407); (1193)
DOT40020
COMMON IRECRO,ISECTR,I,J,K,NFCTRS,KOUNTI,N,KOUNT4,II ,KOUNT5
 DOT50010
COMMON KONSTI,KCNST2,KONST3,KGNST4,KONST5;KONSTG,KONST7
DOT50020
DOT50030
COMHON J2,K2,J3,K3,KDUMMY,L2,L1,L3,L4,LDLUMMY,ADUMMY,DEN
0,r50040
COMMON SUM,SUM2,J1,J4,J5,J6,J7,J8,K1,K4,K5,K6,K7,K8,L5
DOT50040
COMMON L6,L7,L8,KOUNTG, NRECRD,KLONG,X
EQuIvalENCE (IM(1),11),(11(2),12),(11(3),13),(14,11(4)),(15,11(
15);,(11(6),16),(11(7),17),(11(8),18)
DEN=J1 (3,1100)K1
DOT70030
WRITE (3,1100)KI
DOT70040
DO 1102 L8=1,J8
II(K8)=L8
DOT70050
DO 1102 L7=1:J7
II(K7)=L7
DO 1102 L6=1,J6
II(k6)=L6
DO 1102 14=1,J4
II(K4:=L4
DO 1102 L3=1;J3
LI(K3)=L年
DOT70060
DOT70070
DOT70080
DOT70090
DOT70100
00T70130
DOT70140
11(K3)=13
0OT70150
DO 1102 L2=1,J2
```

```
 II|K2)=L2 DOT70180
 DO 1101 Ll=1:J1 DOT70190
 II(K1)=L1
 J=INDEX(11)
1.01 SU&FSUM+X(J)
 SUM2=SUM2+SUM*SUM
 VALUE=SUM/DEN
 WRITE (3,13)SUM,DEN,VALUE, (II(J),J=1,NFCTRS)
1102 SUM=0.0
RETURN
0
RETURN
1100 FORMAT (/22H SUMMATIGN GVER FACTOR,I4//1
END
OOT70200
DOT70210
 DOT70220
DUT70230
DOT70240
DOT70280
C
\(c\)
SUBROUTINE DOTZ
DIMENSION II (81, KDUMMY(2)
DUT40010
```


## DIMENSION LDUMMY(407):X(193)

```
DOT40020
COMMON IRECRD,ISECTR,I;J;K,NFCTRS,KOUNTI,N,KBUNT4, II,KDUNT5
DOT50010
COMMON KONSTI, KONST2,KONST3,KONST4,KONSTS,KONST6,KONST7
COHAON J2,K2,J3,K3,KDUMMY,L2,L1,L3,L4,LDUMMY,ADUMMY,DEN
D0T50020
DOT50030
COMMON SUM, SUM \(2, J 1, J 4, j 5, J 6, J 7, J 8, K 1, K 4, K 5, K 6, K 7, K 8, L 5 \quad\) DOT50040
COMAUN L6,L7,L8,KOUNT6, NRECRD,KLONG, X
EQUIVALENCE (II(1), II), (II(2), I2), (11(3), I3), (14, II(4)), (15, 11
DOT50060
1.5) : (11 (6), 16) , (II(7), 17); (II(8), 18)
DEN: 1 1* J 2
OOT50070
DOT70030
WRITE \((3,1200) \mathrm{K} 2, \mathrm{~K} 1\)
DO 1202 L \(8=1,18\)
\(1 \mathrm{I}(\mathrm{K} 8)=\mathrm{L} 8\)
DO \(1202 L 7=1 ; \mathrm{J} 7\)
II(K7)=L7
DO 1202 L6=1, 16
II (K6) \(=16\)
DO 1202 L5=1.J5
II (K5) \(=15\)
DOT 70040
DOT70050
DOT 70060
DOT70070
Dor 70080 DOT70090 DOT70100 DOT70110
DO 1202 L4=1,N4
DOT70120
DOT70130
```

```
 II(K4)=L4 DOT70140
 II(K4)=L4
 II(K3)=L3
 DO 1201 L2=1,52
 II(K2)=L2
DO 1201 LL=1,J1
 II{KL}=L1
 J=LNDEX(IL)
1201 SUM=SUM+X(J)
 SUM2=SUM2+SUM*SUM
 VALUE=SUM/DEN
 WRITE (3,13\SUM,OEN:VALUE, (IIIJ),J=1,NFCTRS)
1202 SUM=0.0
RETURN
13 FORNAT (F18.8.F18.8,F18.8,813)
1200 FORNAT (/23H SUMMATIGN OVER FACTORS,214//)
END
DOT70160
OT70160
DOT70170
BOT70180
DOT70190
00170200
00T70210
DOT70220
DOI70220
DOT70230
10170240
DOT70260
DOT70270
```




```
C
SUEROUTINE DOTB
DIMENSICN II{8),KDUMMY{2)
DIMENSION LDUMMY(4071;X(193)
COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KOUNTI,N,KOUNT4,II,KOUNTS
COMMON KONSTI,KONSTZ,KONST3,KGNST4,KGNST5,KONSTG,KONST7
COMMON J2,K2,43,K3,KDUMMY,L2,L1,L3,L4,LDUMMY,ADUNMY,BEN
COMMON SUM,SUM2,J1,J4,J5,J6,J7,J8,K1,K4,K5,K6,K7,K8,L5
COMMON LG,L7,L8,KCUNTG;NRECRD;KLONG;X
```




```
DEN=\1#.j2*$3
WRITE (3,1300!K3,K2,K1
DO 1302 L8=1.J8
II(K8)=L8
DO i302 L7=1pJ7
LI(K7)=L7
DO : 1302 L6=1,36
DOT40020
DOT50010
DOT50020
DOT50030
00T50000
DEN=JI招&3
D0T50070
DOT70030
00T70040
OOT70050
00T70050
```

```
 &140!=LS EOTyNO
 DO 1202 L5=1:JS
116K5!=L5
 00 1302 L4=1, Ji
 II (K4) = L4
 [0] :501 L3=1&N3
 II(kz)=13
00 1301 1.2=1.J:
11(K2)=L2.
DO .1301 L1=2.J1
11(Kit=L1
J=INDEXIILI
1301 SUM=SUM+X(J)
SUMa=SUM2+SUM*SUM
```




```
1202
SUH=0.0
KETURN
```




```
END
017%110
DOTTOL20
00r70130
DOT70130
DOT 70140
DOT7O150
00t40ys0
```



```
0OT73180
10!T0!00
00T70900
[UT7O210
0णT70220
D0T70230
DUT70240
00%70250
00T70260
00%70270
0UT?0010
00770260
\(i\)
SUBREUTINE jeta
CIMENSICN WI: 31 , KDUMAY(2
BCT4 \(021:\)
```

DOT 40020

```
```

DINENSIOH LDUMMY(407) X(103)

```
```

DINENSIOH LDUMMY(407) X(103)

```


```

0055002?

```

```

DOT50030

```

```

DOT50040

```


``` 15)),(11(6), 16),([1(7),17),(11(6):10)
DEN=」1*32*33*34
\(00 T 70030\)
WRITE \(3,14001 K 4, K 3, K 2, K 1 \quad\) DGT70040
DO 1402 18=1. 18
D0T70050
```

```
IT&K\=L8 DOT70060
DO .1402 L7=1:J7 DOT70070
II (K %)=L7
DO 1402 Lí=1,36
II(K6)=L6
DO. 4002 L5=1,J5
II(K5)=L5
DO 1401 L4=1:14
11(K4)=L4
D0 1401 13=1:.13
IIfk3j=L3
DO 1401 L2=1,J2
II (K2)=L2
CO 1401 Ll=1.J1
1\\K1)=L1
J=1NDEX(11)
1401 SUN=SUN+X(J)
SUM2=SUM2+SUM*SUM
VALUE=SUM/DEN
```



```
1402
SUM=0.0
RETURN
13 FORNAT (FI8.8,F18.8,F16.8,813)
1400 FORNAT //23H SUMMATIGN GVER FACTORS,414//1
END DO170070 DCT70080 aOT 70090 DOTTOLOO D0170110 DOT70120 DOT70130 DOT70140 DOT70150 COT 70160 00770170 DOT70180 00170190 DOT 70200 DOT 70210
DOT70220
Dur 70230
00770240
DOT70260
DO170270
00170010
END
DOTTO280
\(C\)
C
```


15) 1. (11161,16), (111 (7), 171, (11 (8), 18)
 WRIJE 13,1500$) K 5, K 4, K 3, K 2, K 1$
DO $1502 \quad L 8=1, \mathrm{~J} 8$
11(K8)=18

II (K7) $=17$

DO. $1502 L 6=1,16$
II $(K 6)=L 6$
II (K5) = L5

DO $1501 \quad 14=1,14$

II(K3) $=13$
DO $1501 \quad \mathrm{~L} 2=1, \mathrm{~J} 2$
I (K 2) $=\mathrm{L} .2$
II $(K 2)=L .2$
DO $1501 \quad L 1=1,31$
II $(K 1)=L 1$
II\{Kl)=L
$\mathrm{SUA}=\mathrm{SUM}+\mathrm{X}(1)$ SUM $2=S U M 2+S U M \# S U M$
$\forall A L U E=S U M / D E N$
VALUE=SUM/DEN
WRITE $13,131 S U$
WRITE $(3,13$ ISUM, DEN, VALUE, (II(J), $J=1$, NFCTRS)
SUM=O.
RETURN
FORMAT (FI8.8,F18.8,F18.8, $8 I 3)$
FGRMAT (/23H SUMMATION GVER FACTORS,5I4//)
END
SUBROUTINE DOTG
DIMENSION II(8), KDUMMY(2)
COMMON COAMON KONST1,KONST2,KONST3,KONST4,KONST5,KONSTG,KONSIT

```
    COMMON J2,K2,J3,K3,KDUMMY,L2,L1,L3,L4,LDUMMY,ADUMMY,DEN DOT50030
    COMMON SUM,SUN2,J1,J4,J5,J6,J7,J8,K1,K4,K5,K6,K7,K8,L5
    DOT50040
    COMMON L6,L7,L8,KCUNT6,NRECRD,KLUNG,X
    EQUIVALENCE (II(1),I1),(11(2),I2),(11(3),13),(14,II(4)),(15,II(
    15):(11(6),16),(14(7),17),(11(8),18)
    DENF,1*J2*,j3*J4*J5*J6
    WRITE (3,1600)K6,K5,K4,K3,K2,K1
    DO 1602 L8=1;J8
    II(K8)=L8
    DO 1602 L7=1, \7
    II(K7)=L7
    DO .1601 L6=1,J6
    II(K6)=L6
    DO 1601.L5=1,d5
    II(K5)=L5
    DO 1601 L4=1, J4
    II($4)=[4
    DO 1601 L3=1, J3
    II(K3)=L3
    DO 1601 L2=1,32
    II(K2)=L2
    DO 1601 L1=1.J1
    II(K1)=L1
    j= LNDEX(Il)
    1501 SUM=SUM+X(J)
    SUM2=SUM2+SUM*SUM
    VALUE=SUM/DEN
    WRITE (3,13)SUM,DEN,MALUE,(II(N), J=1,NFCTRS)
    1602 SUM=0.0
        RETHRN
    13 FORMAT (F18.8.F18.8,F18.8.813)
1000 FGRMAT (/23H SUMMATLON QVER FACTORS,6I4//)
            END
        DOT50060
        DOT50070
        00T70030
        DOT70040
        DOT70050
        DOT70060
        DOT70070
        DOT70080
        DOT70090
        DOT70100
        DOT70110
        DOT70120
        DOT70130
        DOT70140
        DOT70150
    00T70160
    DOT70170
    DOT70180
    00170190
    DOT70200
    DOT70210
    DOT70220
    DOT70230
    00170240
DOT70250
DOT70260
OOT70270
DOT70010
DOT70280
```

 DLMENSION II481;KDUMMY(2)
 DIMENSION LDUMMY(4071,X(193)
 COMMON IRECRD,ISECTR,I,J,K,NFCTRS,KOUNT1, N,KOUNT4, II,KOUNT5
 COMMON KONSTI,KONST2,KONST3,KONST4,KONST5,KONST6, KONST7
 CO#MMON ,12,K2,J3,K3,KDUMMY,L2,L1,L3,L4,LDUMMY,ADUMMY,DEN
 CONNON SUM,SUM2,J1,J4,J5,J6,J7,J8,K1,K4,K5,K6,K7,K8,L5
 COMMON L6,L7,L8,KOUNT6,NRECRD,KLONG;X
 EQUIVALENCE (II(1),14),(II(2),I2),(II(3),I3),(I4,1I(4)),(15,II(
 15)1,(II(6),16),(14(71,17);(14(8),18)
 DEN=J1&J2*J3*34*J5*J6*J7
 WRITE (3,1700)K7,K6,K5,K4,K3,K2,K1
 DO 1702 L8=1:J8
 IT(K8)=L8
 DO 1701 L7=1,J7
 II(K7) = L7
 DO 1701 L6=1, 16
 1I(K6)=16
 DO: 1701 L5=1,J5
 II(K5)=L5
 DO 1701 L4=1,J4
 11(84)=L4
 DO 1701 L3=1,J3
 II(K3)=L3
 DO 1701 L2=1,J2
 II(K2)=L2
 DO 1701 L1=1:Jl
 II(K1)=L1
 J=INDEX(IL)
 1701 SUM=SUM+X(.)
SUM2=SUM2+SUM*SUM
VAL*UE=SUM/DEN
WRITE (3,13)SUM,DEN,VALUE,(IIIJ),J=1,NFCTRS)
1702
SUM=0.0
RETURN
13 FORNAT (F18.8,F18.8,F18.8,813)
1700 FORNAT 6/23H SUMMATION OVER FACTORS,714//1:
END

```

DOT40010 DOT40020 DOT50010 DOT50020 OOT 50030 DOT50040

DOT50060 DOT50070 DOT70030 DOT 70040 DOT70050 Dat70060 DOT70070 DOT 70080 DOT70090 Dat70100 DOT 70110 00170120 Dat 70130 DOT70140 DOT 70150 DOT70160 DOT70170 DOT70180 DOT 70190 DOT 70200 DOT70210
1701 SUMESUM+X(.1)
SUMZ \(=\) SUM \(2+\) SUM*SUM DOT70220 DOT70230 DOT 70240 DOT70250 DOT70260 DOT 70270 DOT70010
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline C IN & \multicolumn{9}{|l|}{INPUT DATA} \\
\hline \(C\) & & & & & & & & & \\
\hline C & & & & & & & & & \\
\hline C & & & & & & & & & \\
\hline C & \multicolumn{9}{|l|}{EXPERIMENT I DATA} \\
\hline C ER & \multicolumn{9}{|l|}{ERROR SCORES} \\
\hline C EA & \multicolumn{4}{|l|}{EACH ROW REPRESENTS THE} & \multicolumn{5}{|l|}{SCORES IN ONE CELL} \\
\hline C & \multicolumn{9}{|l|}{THE ORDER IS X-SUB-NISAR} \\
\hline C & WHERE & THE EX & TREME & RIGHT & HAND S & SUBSCRI & INC & ASES & FIRST \\
\hline 2.70 & 2.90 & 2.60 & 3.60 & 3.00 & 2.40 & 02.80 & 3.50 & 2.70 & 2.90 \\
\hline 2.80 & 3.50 & 2.30 & 2.90 & 2.60 & 3.20 & \(0 \quad 3.90\) & 3.70 & 2. 60 & 2.20 \\
\hline 1.90 & 2.50 & 1.70 & 3.00 & 2.20 & 2.70 & 02.50 & 2.80 & 3.20 & 2.50 \\
\hline 3.60 & 3.40 & 3.70 & 3.50 & 3.30 & 2.30 & 02.90 & 2.90 & 1.60 & 3.50 \\
\hline 3.00 & 3.40 & 3.70 & 3.00 & 3.30 & 3.50 & 02.40 & 3.50 & 3.40 & 3.30 \\
\hline 2.90 & 3.30 & 2.20 & 2.70 & 3.20 & 1.60 & 03.40 & 1.60 & 3.40 & 3.20 \\
\hline 2.00 & 2.10 & 1.70 & 2.70 & 2.60 & 3.00 & 02.50 & 2.20 & 2.80 & 2.80 \\
\hline 2.90 & 3.20 & 3.20 & 3.20 & 3.40 & 3.50 & 03.20 & 3.60 & 3.00 & 3.10 \\
\hline 3.40 & 3.30 & 3.00 & 3.80 & 3.80 & 3.40 & 02.90 & 2.70 & 3.50 & 3.30 \\
\hline 3.60 & 3. 50 & 3.40 & 3.30 & 3.40 & 3.40 & 03.40 & 3.30 & 3.00 & 3.40 \\
\hline 2.90 & 3.30 & 3.40 & 3.10 & 3.50 & 3.40 & 03.20 & 2.50 & 2.70 & 2.30 \\
\hline 3.30 & 2.10 & 3.40 & 3.50 & 3.70 & 3.10 & 03.60 & 3.40 & 2.20 & 2.60 \\
\hline 2.60 & 3.40 & 2.80 & 3.10 & 3.40 & 2.30 & 02.80 & 2.10 & 3.40 & 2.60 \\
\hline 2.50 & 3.20 & 2.50 & 1.80 & 3.30 & 3.70 & 03.00 & 3.70 & 3.10 & 2.50 \\
\hline 2.60 & 3.20 & 1.60 & 2.90 & 2.80 & 1.90 & 02.60 & 2.30 & 3.00 & 3.60 \\
\hline 2.20 & 2.00 & 1.80 & 3.10 & 1.90 & 3.10 & 03.50 & 3.10 & 2.70 & 2.80 \\
\hline 3.00 & 3.20 & 3.20 & 3.50 & 3.20 & 3.30 & O 2.00 & 2.70 & 3.00 & 2.90 \\
\hline 2.10 & 3.50 & 3.40 & 2.80 & 3.40 & 3.50 & 03.30 & 2.90 & 2.70 & 3.60 \\
\hline 2.40 & 2.80 & 3.10 & 3.10 & 3.50 & 3.10 & 02.60 & 2.10 & 2.90 & 3.50 \\
\hline 3.00 & 3.10 & 3.60 & 3.20 & 3.20 & 2.90 & 02.90 & 3.70 & 3. 20 & 2.80 \\
\hline 3.00 & 2.20 & 2.60 & 3.60 & 3.20 & 3.30 & 03.10 & 3.10 & 3.20 & 2.20 \\
\hline 3.40 & 3.20 & 3.30 & 3.40 & 3.30 & 3.30 & \(0 \quad 3.50\) & 3.40 & 3.40 & 3.20 \\
\hline 1.50 & 2.70 & 2.90 & 2.80 & 2.40 & 3.40 & \(0 \quad 1.90\) & 2.80 & 3.00 & 2.40 \\
\hline 3.60 & 3.70 & 3.50 & 3.20 & 2.30 & 3.10 & 12.50 & 2.10 & 3.00 & 2.90 \\
\hline
\end{tabular}

\section*{EXPERIMENT I DATA}

TIME SCORES
EACH RGW REPRESENTS THE SEDRES IN ONE CEIL
THE OROER IS X-SUB-NISAR
WHERE THE EXTREME RIGHT HAND SUBSCRIPT INCREASES FIRST 64.4253 .7241 .7527 .8926 .0977 .7144 .2135 .8645 .1745 .33 \(65.1738 .1750 .3971 .04134 .06 \quad 94.66 \quad 36.75 \quad 34.2967 .0891 .33\) \(72.12 \quad 83.53 \quad 86.79 \quad 35.09 \quad 45.08 \quad 50.78 \quad 36.33 \quad 42.33 \quad 46.58 .55 .47\) 59.5051 .5051 .0543 .5057 .7896 .5055 .49 79.22111.5843.35 \(49.54 \quad 23.93 \quad 25.19 \quad 38.22 \quad 37.40 \quad 38.31 \quad 49.25 \quad 35.65 \quad 57.34 \quad 39.39\) \(55.4244 .4897 .3356 .5745 .05 \quad 56.36 \quad 50.60 \quad 71.88 \quad 67.23\) 54.64 \(35.9237 .9563 .2641 .5146 .8941 .4434 .85 \quad 62.8643 .91 \quad 35.40\) \(62.63: 74.4976 .5265 .30 .54 .26 \quad 81.20 \quad 52.22 \quad 73.4165 .1547 .31\) \(62.5590 .23146 .2043 .32 \quad 85.0548 .19 \quad 71.5841 .3033 .14103 .30\) \(29.4445 .98 \quad 71.62106 .50 \quad 35.30 \quad 70.2941 .33 \quad 51.00 \quad 54.47 .39 .16\) \(58.2855 .30 \quad 34.50 \quad 33.7946 .00105 .50 \quad 64.81 \quad 53.06112 .9030 .69\) \(42.6949 .06 \quad 23.55 \quad 33.15 \quad 26.30 \quad 28.37 \quad 39.06 \quad 51.05 \quad 67.34 \quad 36.00\) \(53.00 \quad 51.5345 .50 \quad 59.75 \quad 36.37 \quad 55.31 \quad 50.43105 .10 \quad 27.35 \quad 45.73\) \(41.3141 .5469 .71103 .2150 .2442 .82 \quad 33.43 \quad 24.54 \quad 27.22 \quad 47.86\) \(54.4583 .7761 .3069 .59 \quad 87.00191 .79 \quad 75.50 \quad 87.66 \quad 67.55 \quad 69.12\) 134.2570 .9195 .8075 .11121 .9843 .9042 .11161 .8546 .2540 .60 \(51.0435 .7547 .5940 .90 \quad 38.13 \quad 27.4748 .1380 .40431 .60 .21 .05\) \(59.9541 .9246 .7656 .23 \quad 53.9247 .67 \quad 87.62 \quad 65.35 \quad 70.64 \quad 20.45\) 53.2551 .1269 .5136 .9244 .5333 .1764 .0889 .22103 .8246 .93 \(62.82 \quad 30.9053 .4849 .5451 .13 \quad 55.83 \quad 65.03 \quad 47.3249 .0269 .97\) 103.6167 .3855 .2643 .8755 .5453 .3852 .6185 .1852 .34107 .08 \(36.0941 .5140 .66 \quad 33.63 \quad 57.7543 .24 \quad 33.54 \quad 55.79 \quad 2.8 .7441 .30\) 74.1949 .4555 .6026 .1924 .84 .31 .8458 .4261 .0450 .4343 .00 \(46.86 \quad 29.54 \quad 62.78 \quad 37.50 \quad 74.06 \quad 28.51 \quad 45.81 \quad 86.13 \quad 39.50 \quad 61.68\)

EXPERIMENT II DATA
ERROR SCORES
EACH ROW REPRESENTS THE SCORES IN ONE CELL
THE ORDER IS X－SUB－NISAR
WHERE THE EXTREME RIGHT HAND SUBSCRIPT INCREASES FIRST
\begin{tabular}{llllllllll}
2.70 & 2.90 & 2.60 & 3.60 & 3.00 & 2.40 & 2.80 & 3.50 & 2.70 & 2.90 \\
2.80 & 3.50 & 2.30 & 2.90 & 2.60 & 3.20 & 3.90 & 3.70 & 2.60 & 2.20 \\
1.90 & 2.50 & 1.70 & 3.00 & 2.20 & 2.70 & 2.50 & 2.80 & 3.20 & 2.50 \\
3.60 & 3.40 & 3.70 & 3.50 & 3.30 & 2.30 & 2.90 & 2.90 & 1.60 & 3.50 \\
3.20 & 3.20 & 3.00 & 3.10 & 3.40 & 3.30 & 3.00 & 2.70 & 3.30 & 2.20 \\
3.40 & 3.50 & 2.60 & 2.70 & 3.00 & 3.20 & 3.30 & 3.10 & 3.60 & 3.10 \\
3.80 & 3.50 & 2.80 & 1.60 & 3.10 & 3.20 & 3.20 & 2.90 & 3.30 & 3.00 \\
2.40 & 3.30 & 2.90 & 3.30 & 2.40 & 3.70 & 2.30 & 3.80 & 3.20 & 3.90 \\
2.70 & 3.00 & 3.40 & 3.20 & 2.30 & 2.00 & 2.90 & 2.40 & 3.70 & 2.80 \\
2.70 & 3.10 & 3.10 & 2.90 & 3.70 & 3.20 & 3.20 & 3.60 & 3.30 & 3.10 \\
2.70 & 3.40 & 2.00 & 1.90 & 3.30 & 2.70 & 2.80 & 3.40 & 3.60 & 3.80 \\
3.30 & 1.90 & 3.70 & 3.20 & 3.70 & 3.20 & 3.20 & 2.80 & 3.70 & 3.60 \\
2.60 & 3.40 & 2.80 & 3.10 & 3.40 & 2.30 & 2.80 & 2.10 & 3.40 & 2.60 \\
2.50 & 3.20 & 2.50 & 1.80 & 3.30 & 3.70 & 3.00 & 3.70 & 3.10 & 2.50 \\
2.60 & 3.20 & 1.60 & 2.90 & 2.80 & 1.90 & 2.60 & 2.30 & 3.00 & 3.60 \\
2.20 & 2.00 & 1.80 & 3.10 & 1.90 & 3.10 & 3.50 & 3.10 & 2.70 & 2.80 \\
2.80 & 3.00 & 3.10 & 3.20 & 2.70 & 2.80 & 2.70 & 3.00 & 3.00 & 3.60 \\
3.50 & 2.90 & 3.10 & 2.60 & 3.00 & 3.40 & 2.50 & 3.50 & 3.50 & 3.40 \\
3.60 & 3.30 & 3.30 & 3.30 & 3.00 & 3.00 & 3.00 & 2.40 & 3.00 & 3.10 \\
2.20 & 3.10 & 3.20 & 3.00 & 3.50 & 3.80 & 2.70 & 3.20 & 3.60 & 3.30 \\
3.10 & 2.40 & 3.20 & 3.40 & 3.00 & 2.10 & 2.90 & 3.20 & 1.90 & 2.80 \\
3.00 & 2.90 & 3.50 & 3.50 & 3.80 & 3.40 & 3.30 & 3.20 & 3.50 & 3.50 \\
3.10 & 3.10 & 2.90 & 3.50 & 3.40 & 3.20 & 3.10 & 3.00 & 2.80 & 3.10 \\
3.50 & 2.80 & 3.50 & 3.30 & 2.50 & 3.40 & 3.50 & 3.20 & 3.60 & 2.90
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{c} \\
\hline c & & & & & & & & & \\
\hline \multicolumn{10}{|l|}{C} \\
\hline \multicolumn{10}{|l|}{c} \\
\hline \multicolumn{10}{|l|}{c} \\
\hline \multicolumn{10}{|l|}{c} \\
\hline C EX & \multicolumn{9}{|l|}{EXPERIMENT II DATA} \\
\hline C T & \multicolumn{9}{|l|}{TIME SCORES} \\
\hline C E & \multicolumn{9}{|l|}{EACH ROW REPRESENTS the scores in one cell} \\
\hline C T & \multicolumn{9}{|l|}{THE ORDER IS X-SUB-NISAR} \\
\hline \(C\) W & WHERE & THE EXT & REME & RIGHT & HAND S & SUBSCRIP & INC & REASES & FIRST \\
\hline 64.42 & 53.72 & 41.75 & 27.89 & 26.09 & 77.91 & 44.21 & 35.88 & 45.17 & 46.33 \\
\hline 65.17 & 38.17 & 50.89 & 71.04 & 92.00 & 94.66 & 36.75 & 34.29 & 67.08 & 91.33 \\
\hline 72.12 & 83.53 & 86.79 & 35.09 & 45.08 & 50.78 & 36.83 & 42.33 & 46.68 & 55.47 \\
\hline 59.50 & 51.50 & 51.05 & 43.50 & 57.78 & 96.50 & 55.49 & 79.22 & 59.00 & 48.35 \\
\hline 34.71 & 33.20 & 37.21 & 30.11 & 33.20 & 33.18 & 56.83 & 60.12 & 32.73 & 46.89 \\
\hline 35.72 & 47.23 & 64.54 & 47.66 & 46.35 & 49.96 & 26.34 & 78.65 & 34.67 & 47.93 \\
\hline 47.97 & 59.23 & 74.011 & 38.47 & 68.46 & 46.93 & 55.54 & 58.70 & 70.97 & 80.56 \\
\hline 59.48 & 40.07 & 44.05 & 67.75 & 65.52 & 39.33 & 50.08 & 44.73 & 70.72 & 28.20 \\
\hline 42.47 & 39.15 & 51.09 & 57.85 & 73.05 & 58.45 & 75.66 & 34.65 & 41.55 & 52.65 \\
\hline 49.52 & 80.07 & 47.35 & 49.82 & 57.87 & 39.31 & 75.87 & 48.22 & 49.97 & 50.93 \\
\hline 69.58 & 51.53 & 43.30 & 60.68 & 73.21 & 71.86 & 55.46 & 41.26 & 35.49 & 54.51 \\
\hline 32.381 & 106.58 & 35.91 & 44.40 & 34.76 & 26.81 & 45.20 & 49.98 & 37.94 & 30.07 \\
\hline 53.00 & 51.53 & 45.50 & 59.75 & 36.37 & 55.31 & 50.43 & 55.00 & 27.35 & 45.73 \\
\hline 41.31 & 41.54 & 69.71 & 50.00 & 50.24 & 42.82 & 33.43 & 24.54 & 27.22 & 47.86 \\
\hline 54.45 & 83.77 & 61.30 & 69.59 & 87.00 & 86.00 & 75.50 & 87.66 & 67.55 & 69.12 \\
\hline 72.00 & 70.91 & 95.30 & 75.11 & 60.20 & 43.90 & 42.11 & 61.86 & 46.25 & 40.60 \\
\hline 87.70 & 72.61 & 78.71 & 41.24 & 61.61 & 63.95 & 54.64 & 50.00 & 55.12 & 68.32 \\
\hline 72.36 & 62.71 & 80.52 & 65.91 & 43.10 & 50.86 & 58.50 & 71.62 & 34.02 & 49.59 \\
\hline 60.95 & 34.75 & 42.55 & 56.61 & 37.20 & 57.56 & 49.43 & 55.74 & 50.35 & 56.05 \\
\hline 68.17 & 95.42 & 60.78 & 65.70 & 55.87 & 46.30 & 36.45 & 50.04 & 62.36 & 68.47 \\
\hline 20.87 & 38.54 & 47.91 & 34.90 & 27.72 & 65.87 & 51.98 & 22.75 & 42.21 & 54.18 \\
\hline 63.21 & 71.97 & 45.74 & 43.34 & 40.38 & 39.51 & 40.66 & 55.77 & 42.34 & 39.34 \\
\hline 73.53 & 42.01 & 74.99 & 63.93 & 36.43 & 49.90 & 32.71 & 65.221 & 102.78 & 60.16 \\
\hline 59.97 & 64.84 & 28.23 & 91.03 & 93 & 45.38 & 79 & 30 & 58. & 78.47 \\
\hline
\end{tabular}

APPENDIX D

\section*{APPENDIX D}

\section*{INFORMATION* AS A MEASURE OF LEARNING}

One of the major problems in investigating learning behavior is that of finding an appropriate measure of learning. The normal practice is for an experimenter to observe behavior from which he infers learning which he scales in some manner. A simple scale would consist in the assignment of behavior to perhaps each of two categories depending on the inference of learning or no learning, and recording a "yes" or a "no". This implies that each time the subject faces a choice decision that there must be a "right choice" and a "wrong choice". These choices are classified as right or wrong.by the experimenter.

The latter method has the disadvantage of introducing experimenter bias to a great degree. Instead of just recording behavior he is also imposing on the behavior a logical structure which may be artificial. Error scores, for example, do not necessarily show wrong learning or no learning. If a child, for example, answers the question: "How much is \(7+12\) ?" as 20 everytime, the child has obviously learned the wrong answer, and a simple error score would not reveal this as learning.

\section*{The basic test supporting an inference of learning is repeated be-} havior. For subjects that cannot verbalize, it is the only indication. The basic measure of learning then should be based on records of behavior.

\footnotetext{
* Information, as used here, is an identical term for negentropy (Brillouin, 1962).
}

This measure should also allow comparisons of learning among a set of organisms.

The problem may be stated as follows: let the subject be faced with a sequence (or set) of choices \(C_{i}\), \(i=1,2, \ldots, n\). Let there be \(m_{i}\) possible responses at each choice point. Find an appropriate measure to determine if a certain pattern of responses has been learned.

A large body of literature has been developed utilizing the notion of response probability (Atkinson, Bower, and Grothers, 1965). It is this idea that we want to incorporate into a measure of learning using the tools of information theory.

The amount of information \(H\) obtained from an event, such as a run through a maze, which has n possible outcomes each with response probability \(P_{j}, j=1,2, \ldots, n\) is defined to be
\[
\begin{equation*}
H=-\sum P_{j} \log _{2} P_{j} \tag{9}
\end{equation*}
\]
\[
\text { where } \begin{aligned}
& \sum P_{j}=1.0 \text { and } \\
& 0 \leq P_{j} \leq 1.0 \text { for all } j .
\end{aligned}
\]

It could be verified that \(H\) is maximum when \(P_{j}=P\) for all \(j\), i.e. all outcomes are equally likely, and that \(H=0\) when one outcome is certain (Goldman, 1953; Brillouin, 1962; Raisbeck, 1964).

As \(P_{j}\) approaches 1.0 , hence \(\log _{2} P_{j}\) approaches zero, \(P \ell\) approaches zero \(\ell \neq \mathrm{j}\) for some trial (k) and \(H\) approaches zero. i.e. the smaller the initial uncertainty about the outcomes, the smaller the amount of information gained from a run. When one outcome becomes certain no information is gained by the occurence of the event, and it may be said that the animal (subject) has learned. Another way of viewing the latter
statement is that if an outcome is certain, this will be demonstrated by the identical repetition of behavior. This is a demonstration of learning. If one has not learned, i.e., the response is uncertain, then information is gained from the trial which will affect the succeeding outcomes.

There is ample literature (Tolman, 1939; Estes, 1960; Audley, 1960; Spence, 1960; Atkinson, 1960; La Berge, 1962) demonstrating that choices (choice behavior) at a decision point in lower animals are random. As the event (trial) is repeated, the probabilities are modified until \(P_{j}\) approaches 1.0 for some \(k\). The question arises then \({ }_{3}\) is this modification a cognitive process or is it the result of chemical and mechanical processes stimulated by the trial behavior.

Since a living organism can be considered an energy-system (Duffy, 1962), it is suggested here that the criterion for modification of choice behavior is the minimization of energy. The organism will discover that repetitive pattern which in a given situation will minimize energy. This concept of minimum energy has been touched upon by some investigators (Washburn, 1926; Milsum, 1966) but has never been used to advantage in learning theory.

The trial and error behavior exhibited by self-organizing and adaptive systems (living organisms) permits the system to search for a stable equilibrium state which will enhance its probability of survival. In attaining this equilibrium state, the behavior of the organism suggests that it may be using some principle of economy of energy consistent with its survival. (In the maze problem, for example, the rat always chose the shortest path, RRRR, to the goal - i.e. the minimum energy path when learning was achieved.)

The maze in our experiment consists of four actual choice points and four pseudo-choice points (Chapter II). At each actual choice point the rat was faced with making a decision for which it was scored with an \(R\) or \(W\). The sequence of combinations of \(R, W\) or both consisting of four elements, defined the path the rat chose. Retrace of a path or part of a path was not considered due to the lack of foresight on our part to record these events during the experiment. At each actual choice point, therefore, there are two possible outcomes, each of which can be initially assumed to be equally likely. The maximum information in a maze run is therefore:
\[
\begin{equation*}
-\sum_{i=1}^{4} P_{i} \log _{2} P_{i}=-\sum_{i=1}^{4} \frac{1}{2} \log _{2} \frac{1}{2}=4 \text { bits } \tag{10}
\end{equation*}
\]
at the start of the experiment for each animal. As the experiment progressed, the response probabilities were computed by
\[
\begin{equation*}
P_{j}^{*}=\frac{\text { number of times choice } j \text { is made }}{\text { total number of choices }} \tag{11}
\end{equation*}
\]
for each choice point. The probability of correct response at each choice point is plotted vs. trial number as shown in Figures \(D-1\) through \(D-4\). A composite plot for all four choice points is shown in Figure D-5. The total information gained on any trial is then computed as
\[
\begin{equation*}
H=-\sum_{j=1}^{4} P * \log _{2} P * \tag{12}
\end{equation*}
\]

Figures D-6 and D-7 illustrate some of our experimental results. In Figure \(\mathrm{D}-6\), as the trial number increases, the behavior is less random, the information gained (H or negentropy) from the trial approaches zero, and the amount learned has evidently increased. In Figure \(D-7\), it can be seen that as the trial number increases, the information gained (H) does
not show a decreasing trend. This indicates that there is still a considerable amount of random behavior and consequently the trials have resulted in very little learning. (As shown by the graph legend, this was due mainly to the effects of noise.)

It should be noted that if a rat were to make consistently wrong choices the measure index (H or negentropy) would still show learning. However, this did not occur (as demonstrated by our experiment) because it violates the concept of minimum energy expenditure. In other words, the following two conditions must be simultaneously satisfied.
1. H must approach zero (necessary condition).
2. The path chosen must be the minimum energy path (sufficient condition).

It should be further noted that this measure ( \(H\) ) allows learning comparisons just as error or time scores do. What makes this measure (H) unique, however, is that it points out consistency in behavior.

A possibly useful model for simulating the probabilistic learning system could be constructed as a special kind of Markov chains, called "random walks with an absorbing barrier." The assumptions underlying the construction of such models have been well explained by La Berge (1962), Atkinson (1960) and Atkinson, Bower and Crothers (1965). The random walk model is best explained in a diagrammatic form (Figure D-8).

There aie nine different positions or "states": the states \(S_{i}\), \(i=0,1,2 \ldots, 9\). The arrows between any two states represent possible transitions. Beside each arrow is written the probability that the transition occurs next when the subject is in the state at the origin of the arrow. The state \(S_{9}\) has an arrow only back to itself, with associated


FIGURE D-1. PROBABILITY of CORRECT RESPONSE AT CHOICE POINT 1 ( \(\mathrm{S}_{1}\) )


FIGURE D-2. PROBABILITY OF CORRECT RESPONSE AT CHOICE POINT \(2\left(S_{3}\right)\)


FIGURE D-3. PROBABILITY OF CORRECT RESPONSE AT CHOICE POINT 3 ( \(\mathrm{S}_{5}\) )


FIGURE D-4. PROBABILITY OF CORRECT RESPONSE AT CHOICE POINT \(4\left(\mathrm{~S}_{7}\right)\)


FIGURE D-5. PROBABILITY OF CORRECT RESPONSE AT ALL FOUR CHOICE POINTS


FIGURE D-6. NEGENTROPY OF THE RAT-MAZE SYSTEM
This curve is based on the response probabilities at the four actual choice points.


FIGURE D-7. NEGENTROPY OF THE RAT-MAZE SYSTEM This curve is based on the response probabilities at the actual choice points.


FIGURE D-8. STATE TRANSITION DIAGRAM OF A RANDOM WALK MODEL FOR CHOICE BEHAVIOR
transition probability of unity. This identifies \(S_{9}\) as an "absorbing state" in the sense that once the subject enters this state the opportunity for any further state transitions is terminated, and that the experimental trial (trial begins by introducing the subject at \(S_{o}\) ) is ended.

It is obvious that in order to give a complete mathematical analysis, which would permit simulation the probabilities associated with retracing are required. The constraint equations
\[
\begin{gathered}
o_{1}+o_{2}=1.0 \\
P_{1}+P_{2}+P_{3}=1.0 \\
o_{1}^{\prime}+o_{2}^{\prime}=1.0
\end{gathered}
\]
\[
\text { and } \quad P_{1}^{\prime}+P_{2}^{\prime}+P_{3}^{\prime}=1.0
\]
can then be used to predict the most probable path the rat would choose at any trial. However, as mentioned earlier these retrace probabilities were not recorded during the course of this study and therefore a proper simulation would not be of any practical value at this time. It is recommended that in future work the path of the subject be recorded including retrace, for this would then furnish the required information to enable the experimenter to write the proper mathematical relations describing the system.```


[^0]:    ${ }^{1}$ S. S. Stevens (ed.), Handbook of Experimental Psychology, John Wiley and Sons, New York, 1951, p. 518.

[^1]:    ** significant at the 0.01 level

    * significant at the 0.05 level

[^2]:    
    
     oodo
    

