AN APPLICATION OF OPTIMAL CONTROL

THEORY TO AGRICULTURAL

POLICY ANALYSIS

By

JAMES W. RICHARDSON

Bachelor of Science New Mexico State University Las Cruces, New Mexico 1971

Master of Science Oklahoma State University Stillwater, Oklahoma 1973

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1978

AN APPLICATION OF OPTIMAL CONTROL

THEORY TO AGRICULTURAL

POLICY ANALYSIS

Thesis Approved:

Thesis Adv tser 2 wa in

Dean of the Graduate College

AKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Daryll E. Ray, my adviser, for his guidance, encouragement and helpful comments in conducting the study and preparing this thesis. It has been my privilege to work with Dr. Ray for the past five years, as his research associate in the development of the National Agricultural Policy Simulator (POLYSIM), as his student, and as his advisee for this study. Appreciation is also expressed to Dr. Luther Tweeten, Dr. Harry P. Mapp, Jr., and Dr. P. Larry Claypool, members of my graduate committee, for their constructive criticism and comments during the preparation of this thesis. Special appreciation is extended to Dr. James N. Trapp, Department of Agricultural Economics, for introducing me to control theory techniques and for his encouragement and advise in applying control theory to the National Agricultural Policy Simulator for this study. I am indebted to Dr. James S. Plaxico, former Head of the Department of Agricultural Economics, and to Dr. James E. Osborn, Head of the Department of Agricultural Economics, and to the Agricultural Economics Department for arranging financial assistance during my graduate program. The Commodity Economics Division, ERS, USDA, funded a portion of the research for the development of the National Agricultural Policy Simulator, under research agreement No. 12-17-03-8-1047-X. The Oklahoma State University Agricultural Experiment Station provided the remainder of the funding for developing the simulator and all funding for adapting the model to include optimal control features, under Hatch Project No. 1612.

iii

I thank Mrs. Sandi Ireland for her invaluable time spent typing the rough and final drafts of this thesis. I am especially grateful to my parents, Mr. and Mrs. Dan McKinney, for their encouragement and continued support of my graduate study. Finally, I wish to thank my wife, Sheila to whom this thesis is dedicated, for her encouragement and sacrifices, without which this thesis would not have been possible.

TABLE OF CONTENTS

Chapter		Page
I. IN	TRODUCTION	. 1
•	The Problem	• 1 • 3 • 4
II. ME	THODOLOGY	. 5
	Applications of Control Theory Principles of Control Theory	. 5 . 6 . 11
	Policy Analysis	 14 14 15 15 28
III. A	DESCRIPTION OF THE POLYSIM MODEL	• 31
	Overview of the Model	 31 34 34 37 43 45 45 45 46 47 49 51 51 51 51 51 51 60 61 65 66 67
	Soybean Mill Demand	. 67 . 69

v

Chapter

	Export Demands	• .	•	•	•	70
	Total Utilization and Carryovers	•		•		71
	Accounting Identities.			•		72
	Crop Cash Receipts.					72
	Livestock Cash Receipts		•	•		73
	Realized Non-Money Income	•	•	•	•	74
	Covernment Payments	•	•	•	• •	75
	Government rayments.	•	•	•	•	75
	Aggregate Production Expenses	•	•	•	•	11
	Aggregate Net Farm Income	•	•	•	•	82
TV.	RESULTS OF USING CONTROL THEORY TO ANALYZE SELECTED					
	FARM PROGRAMS					83
		•	-			
	Farm Programs Selected for Analysis	•	•	•	•	83
	Data Requirements	•	•	•	•	86
	Consideration and Results of Applying Optimal					
	Control Techniques to Farm Policy	•		•	•	89
	Results for Farm Program No. 1	•	•			94
	Results for Farm Program No. 2					98
	Results for Farm Program No. 3					103
	Regults for Farm Program No. 4	•	•	•	•	107
	Songitivity of the Optimal Solution to Changes	•	•	•	•	107
	in the Derformence Measure					112
	In the refformance measure	•	•	•	•	112
V	SUMMARY AND CONCLUSIONS			_		117
••		•	•	•	•	
						117
	Problem Statement					117
	Objectives	•	•	•	•	118
	Methodology	•	•	•	•	110
		•	•	•	•	120
	Limitations of Using Control Theory for	•	•	•	•	120
	Limitations of Using control meory for					10/
	Farm Policy Analysis.	•	•	•	•	124
	Conclusions	•	•	•	• *	125
	Future Uses for the Control Theory Option					
	in POLYSIM	•	•	•	•	125
	NODO				,	107
REFEREN	NCES	•	•	•	•	127
ΛΟΡΕΝΠ	TYPS					131
ALLEND		•	•	•	•	191
	APPENDIX A - LISTING AND DESCRIPTION OF SUBROUTINES					
	ADDED TO POLYSIM FOR THE CONTROL THEORY OPTION					132
		-	-	-	2	
	APPENDIX B - DESCRIPTION AND LISTING OF DATA CARDS					
	FOR THE CONTROL THEORY OPTION IN POLYSIM.	_				153

LIST OF TABLES

lable				Pa	age
<u>,</u> I.	Upper and Lower Boundary Constraints for Loan Rates for Wheat, Corn, and Cotton 1978-1981	•	• •	•	16
II.	Upper and Lower Boundary Constraints for Target Prices for Wheat, Corn, and Cotton 1978-1981	•	• •	•	17
III.	Upper and Lower Boundary Constraints for Acreage Set- Aside Levels for Wheat, Corn, and Cotton 1978-1981 .	•	• •	•	18
IV.	Upper and Lower Boundary Levels and Their Respective Weights for an Aggregate Agricultural Performance Measure Used with POLYSIM	•	• •	•	22
V.	Default Elasticities for Livestock Production	•	• •	•	38
VI.	Three Sets of Demand Equations for Livestock and Live- stock Products at the Farm Level, Expressing Prices as a Function of Quantity	•	• •		40
VII.	Direct and Cross Acreage, Yield, and Supply Elasticiti	es	•	•	48
VIII.	Elasticity of Variable Production Expense for Model Crops	•	• •	•	53
IX.	Own Price Flexibility Schedules for Feed Grains, Wheat Soybeans and Cotton	•	•	•	56
Χ.	Elasticity of Concentrate Feed Conversion Rate and Elasticity of Percent of Feed Grains in Concentrates Fed for Each of the Livestock Categories in the Mode	1.	•	•	63
XI.	Domestic and Export Demand Elasticities for the Model Crops	•	• •	•	68
XII.	Elasticity of Non-Feed Costs for Livestock Production in the Model	•	•	•	80
XIII.	Predetermined Values of Program Participation Rates, Set-Aside Payment Rates, Slippage Rates, Acreage Allotments, and Farm Program Yields Used for Four Farm Programs,	, •			87

Table

XIV.	Optimal Values of Control Variables and The Simulated Values of Selected State Variables for Farm Program No. 1
XV.	Optimal Values of Control Variables and The Simulated Values of Selected State Variables for Farm Program No. 2
XVI.	Optimal Values of Control Variables and The Simulated Values of Selected State Variables for Farm Program No. 3
XVII.	Optimal Values of Control Variables and The Simulated Values of Selected State Variables for Farm Program No. 4
XVIII.	Optimal Values for Control Variables and The Simulated Values of Selected State Variables for Farm Program No. 1, Using Both the Lower Range Parameter Weights and the Higher Range Parameter Weights in the Performance Measure
XIX.	The Order of The Control Variables Used in Seven Farm Programs in POLYSIM
XX.	Variable Codes for Output Variables, Boundary Levels, and Parameter Weights Used in POLYSIM for the Performance Measure

LIST OF FIGURES

Figu	re	Page
1.	Flowchart of POLYSIM and Its Modifications for the Control Theory Option	. 29
2.	Example Relationships for Feed Grain Acreage and Cattle and Calf Production.	. 34

CHAPTER I

INTRODUCTION

The Problem

A commercial farm problem in the U. S. was first brought to the attention of decision makers by dissatisfied farmers in the early 1920's following drastic decreases in farm prices after World War I. The symptoms of the commercial farm problem included: chronic over-production, depressed prices for agricultural outputs and low rates of return for the factors of production. These symptoms of the farm problem have persisted over most of the last half century.

Several factors have been identified as contributing to the commercial farm problem; these are: 1) rapid technological advancements that increase agricultural productivity faster than the growth in demand for food, 2) the competitive nature of agriculture that essentially requires farmers to adopt new technology to remain in the industry, 3) resource immobility or fixity in agriculture, 4) the price inelasticity of shortrun supply of agricultural products and the inelastic demand for food with respect to both price and income (Heady, 1962; Tweeten, 1970; Brandow, 1977). Many viable recommendations for solving the farm problem have stressed overcoming the underlying causes of the farm problem. Primarily the recommendations have been centered around problems associated with labor and land. The long run policy recommendation for improving the situation of excess labor in agriculture has included

improved educational and skill training programs for the farm youth, creation of industrial relocation programs with subsidies for migration and improved national employment service to make the farm labor resource more mobile (Heady, 1962; Tweeten, 1970). Policy recommendations for reducing the supply of land in agriculture have included long-term land retirement, acreage allotments, and marketing quotas that restrict the amount of production in the agricultural sector (Heady, 1962; Tweeten, 1970). All of these recommendations are designed to bring the rate of return for farm labor in line with that in the non-agricultural sector. Recommendations such as Heady's and Tweeten's are directed toward a longrun solution to the farm problem but in the short-run the symptoms of the problem have been amelorated by federal farm programs.

Farm programs in the past have involved three general types of policies: direct payments to farmers, price support actions, and supply control. Reviews of the success and failures of particular farm programs can be found in Chapter 10 of Tweeten (1970) and the review of 1945-70 agricultural policy by Brandow (1977). Mandatory supply control programs have proven the most efficient in raising farm income but they have been associated with high social costs and were not acceptable to farmers as a whole. Programs that relied upon direct payments developed large treasury costs in an effort to raise farm income and usually did little to reduce over-production. Price support programs have often resulted in large stock piles of commodities and, from the standpoint of cost effectiveness, were the least effective in raising farm income. Despite the disadvantages of the farm programs, they have made it possible to reduce some of the excess capacity in agriculture without greatly reducing farm income in aggregate.

The primary interest groups involved in developing farm programs have been farmers, consumers and taxpayers. Farmers want high incomes with minimal governmental interference, consumers want a stable supply of food at low prices, and taxpayers want low treasury costs. Since these interests are conflicting and since the political powers of the groups have changed over time, farm programs have developed in a piecemeal fashion (Tweeten, 1970). These forces also have come into play in setting the values for farm policy variables such as support prices, allotments, acreage set-aside levels and target prices.

Farm programs have been used to deal with the symptoms of the farm problem in the past and as long as the farm problem exists, there is a need for economists to analyze the alternative farm programs and to make recommendations to the decision makers involved in making farm policy. However, with the added interest in government costs and the growing political powers of consumer groups, farm policy analysts are in need of a more precise performance measure than has been used in the past.

Objectives

The general objective of the thesis was to demonstrate the use of an optimal control technique for analyzing farm policy. Specific objectives were to:

1. Demonstrate the benefits from using optimal control techniques in conjunction with a simulation model over using only the latter.

2. Develop a conceptual performance measure for evaluating farm policies, given the goals of the three interest groups involved in policy decisions.

3. Indicate the type of results one can obtain from using control theory techniques to select values for farm policy variables, such as, loan rates, target prices, and acreage set-aside levels.

4

The objectives of the thesis were accomplished by adapting a control theory procedure to a national agricultural policy simulation model. The model selected was the National Agricultural Policy Simulator (POLYSIM), a computerized model developed by Daryll E. Ray and the author at Oklahoma State University (Ray and Richardson, 1978).

The goals of farmers, consumers and taxpayers were considered in developing a conceptual performance measure for evaluating alternative farm programs. In general, the value of the performance measure is increased as farm incomes increase and is decreased as consumer food costs increase and as government expenditures to agriculture increase. Several different types of farm programs are analyzed with optimal control techniques to determine the optimal levels of the farm policy variables, given the conceptual performance measure.

Organization of Remainder of Thesis

The remainder of the thesis is organized into four chapters. A review of control theory and the modifications to POLYSIM to adapt Box's Complex Procedure for optimal control to the model are presented in Chapter II. The mathematical relationships in the basic POLYSIM model are developed in Chapter III. Chapter IV contains the results of analyzing selected farm programs with the control theory option of POLYSIM. The summary and conclusions are presented in Chapter V.

CHAPTER II

METHODOLOGY

Optimal control theory is an applied mathematical technique developed to analyze systems under alternative sets of controls. In this study, the technique is used to determine the optimal values for agricultural farm policy variables such as: loan rates, target prices and acreage set-aside levels. The origin and applications of control theory are described in this chapter, as well as, the principles of control theory and how they are applied to agricultural policy analysis in this study.

Applications of Control Theory

The first application of control theory techniques was in the area of engineering in 1868, and used a single variable optimization technique. This work led to many other applications in the engineering area and during the second World War control theory was used extensively for studying military systems. Following the war, control theory was expanded to handle multi-variable optimization problems and was used extensively in aerospace and industrial development problems (Jacobs, 1975). It was during this stage that applied mathematicians contributed to the technique and numerous application oriented algorithms were developed (Box, 1965; Goldfeld, et al., 1966; Kendrick and Taylor, 1970; Swann, 1974; Fair, 1974; Chow, 1976). Recent contributions in the area of optimal control theory have involved the development of capabilities in

stochastic and adaptive controls (Kirk, 1970; Schweppe, 1973; Cooper and Fischer, 1974; Rausser and Freebairn, 1975).

Control theory has been used extensively by a relatively small group of economists over the past decade. Textbooks in the area by Intriligator (1971), Pindyck (1973), and Chow (1975), and journal articles by Arrow (1968), Dorfman (1969), Tintner (1969), Kendrick and Taylor (1970), Livesey (1971), Pindyck and Robert (1974), Rausser and Freebairn (1974a), Arzac and Wilkinson (1977) and Trapp (1977) have demonstrated that control theory is a useful tool for analyzing economic systems. Particular economic applications range from controlling the macro level growth indicators, such as: the unemployment rate, the general price level and government spending (Pindyck, 1973) to controlling beef trade policies (Rausser and Freebairn, 1974a). With the exception of Rausser and Freebairn's (1974a) work with beef import quotas, and Trapp's (1977) work with the peanut farm program, there have been no applications of control theory to macro level agricultural policy problems, reported in the literature.

Principles of Control Theory

The objective of optimal control techniques is to determine the levels of control variables that cause a particular system (or process) to satisfy a given set of boundary constraints and at the same time cause a given performance measure to be at a maximum (or minimum) (Jacobs, 1975; Kirk, 1970; Sage, 1968). In application the control mechanism selects values for the control variables, determines their impacts on the system's output variables and evaluates the performance measure based on the values of the relevant output variables. This process is

repeated in an iterative fashion until any change in the control variables results in a reduction in the value of the performance measure. To insure that the global optimal is reached the process must be repeated several times. Each time a different set of initial values for the control variables are used so the procedure is forced to search a different set of control paths.

Formulation of a control problem involves three steps: 1) development of a mathematical model of the system to be controlled; 2) a statement of the boundary constraints on the control variables and output variables; and, 3) a statement of the performance measure for the system (Kirk, 1970). The mathematical model should be a direct interpretation of the system, with particular detail given to the structure of the system and the linkages between the various sectors.

In control theory the endogenous variables in the model are referred to as the state variables (states) and are denoted as: $x_1(t)$, $x_2(t)$, ..., $x_n(t)$ for period t. The state variables used in the performance measure are referred to as the output variables or $y_1(t)$, $y_2(t)$, ..., $y_k(t)$. Exogenous variables that can be controlled by the policy maker are referred to as control inputs (controls). Controls for period t are: $u_1(t)$, $u_2(t)$, ..., $u_m(t)$; controls can be a function of time or the state variables. Values for the control variables over the period analyzed (t_0 to t_f) constitute the control path or history and values for the state variables make up the state trajectory (Kirk, 1970). When the controls are not a function of the state variables (μ *(t) = $e[x(t_0)$, t]) the system is an open-loop control problem: since once the initial control value ($x(t_0)$) is known, the entire control path is known. If controls are a function of the state variables (μ *(t) = f[x(t), t])

the system is in the closed-loop form or optimal feedback control. Farm policy is the closed-loop form since the level of policy controls is dependent upon the levels of output variables.

Boundary constraints are usually imposed on the control variables, and can be imposed on the state variables. The constraints are used to bound the states and controls within acceptable limits established by the physical, economic and social limits of the system. This is done to reduce the number of alternative control paths that must be investigated and to reduce the computer costs of solving the problem. The model is only solved for admissible controls and admissible trajectories, where an admissible control is a control path that satisfies all constraints on the controls over the entire time period, and an admissible trajectory is a state trajectory that satisfies all constraints over the entire time period. By specifying realistic boundary constraints on the controls and the state variables, the number of admissible trajectories can be reduced thus reducing the cost of solving the model for the optimal control path.

A performance measure, the criterion for evaluating the admissible control paths, must be developed for the particular problem being investigated. The performance measure is a mathematical equation that sums the weighted values of the output variables in the model. Values of the output variables are obtained by using the admissible control paths as input in the model, to obtain simulated values for the state variables. For economic applications, the performance measure could be stated in terms of maximizing the sum of producer and consumer surpluses or following the example of Rausser and Freebairn (1974b), the performance measure could be stated as a function of the relevant output variables in the system. Rausser and Freebairn (1974b) propose a three step procedure for specifying and estimating the performance measure in a control theory problem. The steps to the procedure are: 1) select relevant state variables as the output variables, 2) determine the appropriate mathematical form, and 3) obtain estimates of the parameters for the output variables. The guide line for selecting the output variables to include in the performance measure is quite obvious, select variables that are important to policy makers.

The mathematical form for the performance measure should formalize assumptions regarding the marginal social preference of individual output variables and the rate of substitution between the output variables. In application, the functional form needs to be as simple as possible to assign a unique real number to each set of output variables. The second step in the Rausser-Freebairn approach is identify the functional form of the performance measure. The functional form of the performance measure is dependent upon the type of problem being analyzed. For example a terminal control problem attempts to minimize the system's deviations in the final year (t_f) from some desired level of output or:

$$J = \sum_{i=1}^{n} [x_{i}(t_{f}) - r_{i}(t_{f})]^{2}$$

where t_f is the final year or stage of the system and r_i is the target value for state variable i (Kirk, 1970). Another type of performance measure is for tracking problems where the objective is to keep the state variable, $x_i(t)$, as close as possible to the desired state, $r_i(t)$, over the interval t_0 to t_f or:

$$J = \sum_{j=t_{o}}^{t_{f}} {n \choose \sum_{i=1}^{n} H_{ij} [x_{i}(t_{j}) - r_{i}(t_{j})]^{2}}$$

where H_{ij} is the weight assigned to the deviation for state variables i in time period j from the target level r_{ij} (Kirk, 1970; Theil, 1965; Ryan, 1974). Theil referred to this functional form as a quadratic preference function and used it for analyzing economic problems despite its obvious problem, that of using constant weights for under and over shooting the target level.

The last step in the Rausser-Freebairn procedure, estimating parameters for the performance measure is the most difficult step in applying optimal control theory to economic problems. The problem of specifying the appropriate parameters in the performance measure $(H_{ij}'s)$ has been of little importance in the past, since the functions used by engineers in optimal control theory require only that the weights cause the model to follow a prescribed trajectory or achieve a final targeted value. Such weights can be found through experimentation or by studying the physical relationships in the system. The performance measures developed for economic applications of control theory are not generally of the tracking function form so meaningful values for the weights must be developed (Bray, 1974; Rausser and Freebairn, 1974a, 1974b, 1975).

For applications of optimal control theory to economics, the weights in the performance measure are the marginal rates of substitution of one output variable for any other output variable. Given a performance measure (PM) that is a function of three output variables, X_1 , X_2 , X_3 (PM = $a + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_1X_2 + b_5X_1X_3 + b_6X_2X_3 + b_7X_1X_2X_3$) the marginal rate of substitution of X_1 for X_2 (MRS $_{x_1x_2}$) is a ratio of their respective first derivatives or:

$${}^{\mathrm{b}_2 \ + \ \mathrm{b}_4 \mathrm{X}_1 \ + \ \mathrm{b}_6 \mathrm{X}_3 \ + \ \mathrm{b}_7 \mathrm{X}_1 \mathrm{X}_3 }_{\mathrm{b}_1 \ + \ \mathrm{b}_4 \mathrm{X}_2 \ + \ \mathrm{b}_5 \mathrm{X}_3 \ + \ \mathrm{b}_7 \mathrm{X}_2 \mathrm{X}_3 } \ .$$

The marginal rate of substitution of X_1 for X_2 measures the quantity change in X_2 for a one unit change in X_1 , given that PM is unchanged. If a data series exists for PM, the function can be estimated with least squares and the parameter estimates obtained; however, the series usually can not be observed directly. A possible solution to the problem of estimating the parameters in PM is to reduce the complexity of the performance measure and normalize on a particular variable in the function. The performance measure, reduced to three terms by omitting the interaction terms and the intercept, becomes: $PM' = b_1X_1 + b_2X_2 + b_3X_3$. (In this form, PM can still be used as an index for comparing different outcomes of X_1, X_2, X_3 .) The MRS is now b_2/b_1 and the MRS is x_1x_2 is now b_2/b_1 and the MRS is b_3/b_1 . Normalizing on X_1 , making $b_1 = 1$, the marginal rate of substitution of X_1 for X_2 is b_2 and X_1 for X_3 is b_3 . So when $b_1 = 1$ in PM', the other parameters in PM are the marginal rates of substitution of X_1 for X_{i} or the ratio at which one unit of X_{1} substitutes for X_{i} without changing the level of PM. In a national performance measure the parameters $(b_i, i = 2, ..., n)$ are the tradeoffs between X_1 and X_i , at the margin, that are agreeable to the interest groups (and their respective political powers) involved in the political process.

Numerical Solution of Control Problems

Theoretical descriptions of optimal control theory problems generally utilize the state form (first order differential equations). Directsolution techniques are available for solving the state form by maximizing the Lagrangian (Chow, 1975; Kirk, 1970). However, as Swann (1974) points out, direct-solution techniques may not be practical because of the lengthy and complicated calculations involved in solving the derivatives. The problem often can be overcome with finite-difference approximations but this tends to introduce truncation and cancellation errors which can cause problems in obtaining the final solution.

An alternative to using direct-solution techniques is to use directsearch or numerical techniques. Numerical techniques do not require that the model be in the state form, and obtain the final solution without solving derivatives. Kirk (1970) and Swann (1974) describe several direct-search methods available for solving constrained optimization problems. Based on information in these and other sources (Kuester and Mize, 1973), the direct-search technique selected for this study is Box's Complex Procedure.

The Complex Procedure, developed by Box (1965), is capable of solving for the optimal set of controls in a multi-variable model that is in the form of a closed-loop feedback problem. Swann (1974) indicates that the Complex Procedure has been used quite extensively and successfully to solve a wide range of constrained optimization problems. The procedure has the flexibility of handling non-linear inequality constraints on the control variables and has been shown to be reliable when compared to more sophisticated mathematical techniques (Box, 1965; Goldfeld, et al., 1966). Since Complex is a direct-search technique, the procedure can be applied to an existing model without reprogramming the model to the state form. This was a major consideration since the model selected for this study (POLYSIM) can not be readily expressed in state form. (A computer algorithm for Complex is available in Kuester and Mize (1973) and a listing of the computer algorithm used for this study is presented in Appendix A.)

The objective of Box's Complex Procedure is to maximize the performance measure (F) subject to the boundary constraints or:

> Maximize: $F(y_1, y_2, ..., y_n)$ Subject to: $G_j \le u_j \le H_j$, j = 1, 2, 3, ..., m

where y₁, ..., y_n are output variables, u₁, ..., u_m are control variables, and G_j and H_j are lower and upper boundary constraints for control variable j, respectively. Values for the admissible control paths are used as input in a simulation model to obtain predicted values for the system's state variables, i.e., the state trajectory. The output variables are used in the performance measure to obtain a unique real number to be associated with the control path being evaluated.

To mathematically identify the surface of the performance measure, given m control variables, there must be at least m+1 sets of control paths. The control path associated with the lowest value for the performance measure is replaced with a path that results in a larger value for the performance measure and by repeating this replacement procedure, the maximum is eventually reached. Complex assumes convergence when the value of the performance measure for each of the m+1 points, is within β units for γ consecutive iterations. An iteration is the process that selects a new control path that does not result in repeating as the lowest function value. A more detailed description of the mechanics of Complex is available in Appendix A.

To apply Box's Complex Procedure, a FORTRAN simulation model of the system to be controlled must be provided by the user. Also, the relevant boundary constraints on the controls and a performance measure for evaluating the control paths must be specified according to the format described in Kuester and Mize (1973).

Applying Control Theory to Agricultural

Policy Analysis

The objective of using control theory for farm policy analysis is to determine the farm policy instruments (control inputs) subject to boundary constraints that cause aggregate measures of the agricultural economy (output variables) to maximize (or minimize) a given performance measure. Specifically the control variables for farm policy are loan rates, target prices, and acreage set-aside levels for feed grains, wheat and cotton. The aggregate measures of the agricultural sector or output variables are net farm income, total government expenditures for farm payments, consumer expenditures for food and other aggregate variables in POLYSIM. Other state variables in the system are: crop acreage, supply, prices, domestic demands, export demands, cash receipts, ending vear stocks, and livestock production, prices and cash receipts.

Model Specification

The first step in formulating a control problem for analyzing agricultural policy is to develop a mathematical model of the U. S. agricultural economy. The model used in this study is the National Agricultural Policy Simulator (POLYSIM), a disaggregated macro model of the U. S. agricultural economy with the following crop and livestock categories: feed grains, wheat, cotton, soybeans, cattle and calves, hogs, sheep and lambs, chickens, turkeys, eggs and milk (Ray and Richardson, 1978). A description of the mathematical relationships in POLYSIM is presented in Chapter III.

Boundary Constraints

The second step in formulating a control problem to analyze agricultural policy is to establish the boundary constraints on the control variables. The boundary constraints developed for the control inputs (loan rates, target prices and acreage set-aside) are presented in Tables I, II, and III. The lower boundary constraints for loan rates of wheat and corn are set at the legal minimum specified in the Agricultural Act of 1977 while the upper boundary is equal to the value of target prices in the same Act. The boundary constraints for target prices and acreage set-aside levels are tied to the Act of 1977 as indicated in Tables II and III. Constraints for the control inputs are tied to the Agricultural Act of 1977 in an attempt to incorporate the policy environment existing at the time the Act was written and passed. (Boundary constraints on state variables must appear in the performance measure when using Box's Complex Procedure.)

Performance Measure

The third step in formulating a control problem to analyze agricultural policy is the development of an aggregate performance measure for evaluating the state trajectories. The Rausser and Freebairn (1974b) procedure for identifying the performance measure is used in this study. The first stage is to determine the relavant variables to include in the performance measure. Tweeten (1970) has identified three broad political interest groups in farm policy as farm producers, consumers, and taxpayers. Farmers want farm income to be as high as possible while taxpayers want to hold down the level of payments to farmers and the

TABLE I

Year	Whe Lower \$/b	at Upper	Co Lower \$/b	rn Upper	Cotton Lower Upper		
1978	2.00	3.00	1.75	2.10	.37	.52	
1979	2.00	3.10	1.75	2.21	.37	.55	
1980	2.00	3.34	1.75	2.34	.37	.58	
1981	2.00	3.52	1.75	2.47	.37	.61	

UPPER AND LOWER BOUNDARY CONSTRAINTS FOR LOAN RATES FOR WHEAT, CORN, AND COTTON 1978-81

Source: Lower boundaries for wheat and corn 1978-81 are minimum legal values established in the 1977 Act; the legal minimum for wheat and corn is about 88 percent of the 1977 loan rate, using this for cotton we get a minimum of about 0.37; upper boundaries for all crops 1978-81, are estimated target prices over the life of the 1977 Act.

TABLE II

	Wheat		Co	rn	Cotton		
Year	Lower \$/b	Upper ou.	Lower \$/b	Upper u.	Lower \$/	Upper 1b.	
, 	• • • • • • • • • • • • • • • • • • •						
1978	3.00	4.00	2.10	3.10	.52	.75	
1979	3.16	4.21	2.21	3.26	.55	.79	
1980	3.34	4.45	2.34	3.45	.58	.84	
1981	3.52	4.69	2.47	3.64	.61	.88	

UPPER AND LOWER BOUNDARY CONSTRAINTS FOR TARGET PRICES FOR WHEAT, CORN, AND COTTON 1978-81

Source: Lower boundaries for 1978 are from the 1977 Act; for analysis purposes the upper boundaries for 1978 are at about 150 percent of the 1978 lower boundaries; the 1979, 1980 and 1981 values are the 1978 values escalated by the provisions of the 1977 Act (5.4, 5.7, 5.4 percent increases in 1979-81, respectively in variable production costs).

TABLE III

	Wh	eat	Feed	Grains	Cot	ton
	Lower	Upper	Lower	Upper	Lower	Upper
Year			m.	ac	· · · · · · · · · · · · · · · · · · ·	
1978	0	24.7	0	37.7	0	3.2
1979	0	24.8	0	37.7	0	3.3
1980	0	24.8	0	37.6	0	3.1
1981	0	24.8	0	37.5	0	3.2

UPPER AND LOWER BOUNDARY CONSTRAINTS FOR ACREAGE SET-ASIDE LEVELS FOR WHEAT, FEED GRAINS, AND COTTON 1978-81

Source: The Agricultural Act of 1977 specifies that the maximum acreage set-aside for cotton is 28 percent of planted acreage in the previous year. For cotton, planted acreage is about equal to harvested acreage so the maximum set-aside for cotton is 28 percent of harvested acreage in the previous year. For feed grains and wheat, planted acreage is often much larger than harvested acreage so the maximum set-aside is 35 percent of harvested acreage in the previous year. administrative costs of farm programs. Consumers are interested in a stable and abundant supply of food at reasonable prices. Based on this information variables that should appear in a performance measure for national farm policy analysis are: farm income, government expenditures to farmers, the cost of food for consumers and other variables specific to the farm policy under consideration.

The second stage of the Rausser-Freebairn approach is to determine the mathematical form of the performance measure. The mathematical form of a performance measure for farm policy analysis can be linear, quadratic, additive or multiplicative. The additive functional form appears satisfactory for the problem at hand since farm income, government payments to farmers, and consumer food costs can be summed (with the appropriate weights) to obtain a unique real number for evaluating a particular control path. Also, there is no reason to believe that the selected variables are related in a multiplicative fashion. A quadratic form is useful if the problem is to find the optimal controls that cause the output variables to follow a particular trajectory (Theil's quadratic preference function). However, using this approach for policy analysis forces one to a priori state the target levels for each output variable without considering information generated in the process of achieving the targeted values over time.

The functional form of the performance measure developed for this study is a modified version of the tracking function or quadratic preference function; it allows the analysts to target output variables within acceptable ranges and provides a weighting procedure that differentiates between positive and negative deviations from the acceptable range. These improvements make the performance measure much more useful

than the constant weight function originally used by Theil (1965). Also, the modified functional form does not force the analyst to provide single valued point estimates (targets) of the complete trajectory for the output variables but only upper and lower boundary limits. The performance measure is expressed as:

If lower bound limit is violated -

 $JL_{ij} = H_{ij} |Y_{ij} - LB_{ij}|$

If upper bound limit is violated -

$$JU_{ij} = I_{ij} |Y_{ij} - UB_{ij}|$$

Maximize:
$$J = \sum_{j=1}^{4} \left(NFY_{j} + NLY_{j} - \sum_{i=3}^{n} (JL_{ij} + JU_{ij}) \right)$$

where H_{ij} is the weight for output variable Y_i violating lower boundary limit LB_i in period j; I_{ij} is the weight for output variable Y_i violating upper boundary limit UB_i in period j; NFY_j is the level of realized net farm income in period j; and NLY_j is the level of net income for livestock producers in period j. (Net income for livestock production in the study is the difference between total livestock cash receipts and variable livestock production expenses. Net income for livestock producers [about \$18 billion per year] is included in the performance measure to prevent the control mechanism from increasing net income for the crop sector without regard to the impacts on the livestock sector. Farm programs that support feed prices at high levels result in high costs of feed stuffs to livestock producers which immediately reduce the net incomes for livestock producers and cause cut-backs in livestock production in the following year[s].)

The performance measure indicates that farm income is to be maximized subject to n-2 output variables. The n-2 output variables are government

program costs, consumer food costs, and relevant variables for the particular farm policy being analyzed. The JL_{ij} or JU_{ij}'s are set to zero when the boundary level of an output variable is not violated, so the objective function is not penalized when the values of the output variables fall within their acceptable boundary limits.

Theil's quadratic preference function is a special case of the performance measure used here, for if $LB_{ij} = UP_{ij}$, $I_{ij} = H_{ij}$ and the deviations from the targets are squared we obtain Theil's quadratic preference function. Also, the performance measure avoids the problem of single valued target levels for the output variables. Values for the upper and lower boundary limits can be specified from observing prior decisions by decision makers and by questioning decision makers as to the acceptable ranges for the output variables.

The third step in specifying the performance measure is to estimate the parameter weights for the output variables in the function. Bray (1974) suggests that the parameter weights may be determined through interviews with decision makers and government planners. Rausser and Freebairn (1974b) refer to Bray's method as the direct approach and add to this two other approaches. The indirect approach involves studying past political decisions and the arbitrary approach involves the analyst assigning arbitrary values for the parameter weights.

The upper and lower boundary levels for the output variables in the performance measure and their respective parameter weights are presented in Table IV. No boundary levels are specified for the farm income variables (net farm income and net livestock income) since the performance measure is designed to maximize farm income subject to the other output variables. The parameter weights for the farm income variables are equal

PLEASE NOTE:

Dissertation contains small and indistinct print. Filmed as received.

UNIVERSITY MICROFILMS.

TABLE IV

UPPER AND LOWER BOUNDARY LEVELS AND THEIR RESPECTIVE WEIGHTS FOR AN AGGREGATE AGRICULTURAL PERFORMANCE MEASURE USED WITH POLYSIM

	Projected Values	Lower	Upper	Lower • Parameter	Range Weights	Upper Range Parameter Weights		
Output Variables, for years	by CED Commodity Analysts (Baseline Values)	Boundary Level (LB _{ij})	Boundary Level (UB _{ij})	Lower Boundary (H _{ij})	Upper Boundary (I)	Lower Boundary (H _{ij})	Upper Boundary (I ₁)	
Realized Net Farm Income (m.\$) Year 1 Year 2 Year 3 Year 4	18,154.0 18,426.0 17,463.0 17,354.0			1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0	1.0 1.0 1.0 1.0	
Net Income for Livestock Producers (m.8) Year 1 Year 2 Year 3 Year 4	17,312.0 18,844.0 19,967.0 21,289.0			1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	
Consumers Total Expenditure for Food (m. \$) Year 1 Year 2 Year 3 Year 4	188, 300.0 192, 500.0 202,600.0 211,400.0	188,300.0 192,500.0 202,600.0 211,400,0	190,183.0 194,425.0 204,626.0 213,514.0	+2.0 +2.0 +2.0 +2.0	-2.0 -2.0 -2.0 -2.0	+4.0 +4.0 +4.0 +4.0	-4.0 -4.0 -4.0	
Total Government Payments to Farmers (m.S) Year 1 Year 2 Year 3 Year 4	2,054.5 3,025.8 3,362.9	850.0 850.0 850.0	3,700.0 3,700.0 3,700.0	0.0 0.0 0.0	-1.5 -1.5 -1.5	0.0 0.0 0.0	-4.0 -4.0 -4.0	
Total GCC Interest and Storage Costs (m.\$) Year 2 Year 3 Year 4	310.4 452.0 598.8	0.0	600.0 600.0 600.0	0.0 0.0 0.0	-1.5 -1.5 -1.5	0.0 0.0 0.0	-4.0 -4.0 -4.0	
Ending: Year Stocks of Feed Grains (m.t.) Year 1 Year 2 Year 3 Year 4	739.2 70.4 82.6 87.5 89.3	0.0 30.0 30.0 30.0 30.0	600.0 60.0 60.0 60.0 60.0	-104.0 -104.0 -104.0 -104.0 -104.0	-1.5 -82.5 -82.5 -82.5 -82.5	-104.0 -104.0 -104.0 -104.0 -104.0	-4.0 -82.5 -82.5 -82.5 -82.5	
Ending Year Stocks of Wheat (m.bu.) Year 1 Year 2 Year 3 Year 4	1,539.0 1,827.0 2,112.0 2,374.0	600.0 600.0 600.0 600.0	1,200.0 1,200.0 1,200.0 1,200.0	-3.4 -3.4 -3.4 -3.4	-2.8 -2.8 -2.8 -2.8	-3.4 -3.4 -3.4 -3.4	-2.8 -2.8 -2.8 -2.8	
Ending Year Stocks of Cotton (m.bales) Year 1 Year 2 Year 3 Year 4	4.3 4.2 4.5 4.1	2.0 2.0 2.0 2.0	4.0 4.0 4.0 4.0	-284.8 -284.8 -284.8 -284.8	-268.6 -268.6 -268.6 -268.6	-284.8 -284.8 -284.8 -284.8	-268.6 -268.6 -268.6 -268.6	

to 1.0, indicating that the value of the performance measure is increased one unit for each one unit increase in farm income and vice versa (Table IV). The parameter weights of 1.0 for the farm income variables are dictated by the decision to normalize the parameters in PM' on the farm income variables.

The cost of food to consumers in the U.S. or consumer's total expenditures for food is one of the primary output variables in the performance measure. The baseline values for consumer's total expenditures for food by commodity analysts in CED, USDA are presented in Table IV; these values are used as lower boundary levels, LB3;, in the performance measure. The upper boundary levels for total food costs, UB₃₁, are set at 101 percent of the baseline values. Food costs are generally measured in terms of a percentage change in total per capita food costs from year to year. The baseline values assume a per capita increase in food costs of three to four percent per year over the study period. So the one percent increase, used to obtain the upper boundary levels, puts the annual increase in food costs at about four to five percent. The value of total food costs is free to move within the upper and lower boundary levels (say between \$188,300 million and \$190,183 million in year 1) without changing the performance measure. However, values outside these boundary levels cause the performance measure to be changed according to the parameter weights identified for the output variable.

Two alternative sets of parameter weights or ranges are presented in Table IV for several of the output variables. The lower and upper boundary parameter weights, H_{ij} and I_{ij} , for consumer's total expenditures for food are +2.0 and -2.0 for the lower range and +4.0 and -4.0 for the upper range, respectively. Parameter weight +2.0 (H_{ij} in the

lower range) implies that each dollar decrease in total food costs below the lower boundary level increases the value of the performance measure by two units. So if total food costs in the U. S. decreased below the boundary level by an average of \$1 per consumer, the performance measure would be increased by about 440 million units. The upper boundary parameter weight -2.0 (I_{ij} for the lower range) implies that each \$1 increase in total food costs, above the upper boundary level, reduces the value of the performance measure by two units.

Values for the parameter weights in the lower range were selected based on the assumption that a \$220 million increase in consumer expenditures for food (\$1 per consumer) decreases the performance measure by about 440 million units or 1:-2 (Table IV). The upper range parameter weights reflect a trade-off of 1:-4 or twice the impact as the lower range. The lower range parameters are used to evaluate all four farm programs in the study and the upper range values are used to evaluate one of the four programs to demonstrate the sensitivity of the optimal solution to changes in the performance measure.

Government expenditures for the U. S. farm program are separated into two categories, direct payments to farmers and Commodity Credit Corporation (CCC) storage and interest costs. The annual baseline values for government payments and CCC costs over the study period are presented in Table IV. The lower boundary level for direct payments to farmers, LB_{4j} , is set at the baseline estimate of government payments for miscellaneous farm programs. The upper boundary level for government payments, UB_{4j} , is set at \$3,700 million, the baseline estimate of total payments during the last year of the study, 1981. The lower boundary level for CCC storage and interest costs, LB_{5i} , is set at zero while the upper

boundary level, UB_{5j}, is set at \$600 million (Table IV). The value for the upper boundary of CCC costs comes from the storage and interest costs for holding a reserve of 30 million tons of feed grains and 600 million bushels of wheat. (Values for the quantity of CCC reserves come from recommendations by Waugh [1967], Tweeten, Kalbfleisch and Lu [1971] and historical values for ending year stocks of feed grains and wheat. Waugh recommends a feed grain reserve of 30-40 million tons and a wheat reserve of 550 to 650 million bushels. Tweeten et al. recommends a wheat reserve of 600 million bushels.)

Parameter weights for total government payments to farmers and CCC storage and interest costs are assumed to be equal for this study since both variables represent costs to the taxpayer for having farm programs. The lower and upper boundary parameter weights, H and I , for government expenditures are 0.0 and -1.5 for the lower range and 0.0 and -4.0for the upper range, respectively (Table IV). A zero lower boundary parameter weight is selected for these variables in both ranges since it is not possible to have government payments or CCC costs below the lower boundary levels established in Table IV. The upper boundary parameter weights -1.5 and -4.0 indicate that a dollar of government expenditures above the upper boundary level (LB,) causes the performance measure to be decreased by more than a dollar or \$1.50 and \$4, respectively. Weights for the upper boundary levels on government payments to farmers and CCC storage and interest costs indicate the marginal disutility that taxpayers receive for each unit of expense over the upper boundary level of \$3,700 million and \$600 million, respectively. A weight of -1.5 implies that for each additional dollar the disutility is \$1.5 or half again more than the actual cash outlay.

Total ending year carryover of feed grains, wheat and cotton are included in the performance measure (J) to penalize the value of the performance measure when shortages or surpluses of these crops are encountered. The lower boundary levels (LB_{ij}) are set at 30 million tons of feed grains, 600 million bushels of wheat, and 2 million bales of cotton (Table IV). These values are in line with optimal carryover levels reported by Tweeten, Kalbfleisch and Lu (1971) and Waugh (1967). The upper boundary levels (UB_{ij}) are set at about twice the lower boundary levels for all three crops.

Upper boundary parameter weights (I_{ij}) , for penalizing the performance measure when ending year carryovers of feed grains, wheat and cotton exceed their respective upper bounds (UB_{ij}) , are stated in terms of the costs to society associated with a "surplus carryover". (A "surplus carryover" is defined as an ending year carryover in excess of the relevant upper boundary level.) The costs to society of a surplus carryover is the sum of direct costs (interest and storage charges) and opportunity costs for the resources used to produce the surplus carryover. Annual storage costs for feed grains are about \$7.20 per ton and for wheat the costs is about \$0.22 per bushel. Annual storage cost for cotton is about \$5.40 per bale. (Storage costs used here are based on values used by commodity analysts in CED, ERS, USDA to estimate total CCC storage costs.) Interest charges for CCC storage are 7.5 percent of the value of the stock, where value is based on the average loan rate.

The opportunity cost to society for surplus carryovers is the value of resources used in producing the surplus stocks. Theoretically the opportunity cost (marginal cost of production) for producing excess carryovers is measured as the area under the supply curve, associated
with the quantity of excess production (Tweeten, 1970). It is assumed in this study that the average per unit marginal (variable) cost of production for excess carryover is the particular crop's loan rate. This is a reasonable assumption since at high stock levels the market price is likely to equal the loan rate. Using the announced loan rates in the Agricultural Act of 1977 (\$2.00/bushel for corn, \$2.35/bushel for wheat and \$0.51/1b. for cotton) the marginal (variable) cost of production for surplus carryovers are: \$70 per ton of feed grains, \$2.35 per bushel of wheat, and \$244.80 per bale of cotton. Thus for feed grains the upper boundary parameter weight (I_{ij}) is -82.5 per ton or the sum of storage costs (\$7.20/ton), interest costs (\$5.30/ton) and the marginal (variable) cost of production (\$70/ton). So for every ton of feed grains in ending year carryover above 60 million tons, the performance measure is reduced 82.5 units. The upper boundary parameter weight for ending year stocks of wheat is -2.8 or for each bushel of wheat above 1,200 million bushels the performance measure is reduced by 2.8 units. The parameter weight for ending year stocks of cotton exceeding the upper boundary is -268.6(Table IV).

The lower boundary parameter weights for ending year carryovers of feed grains, wheat and cotton should be larger, in absolute terms, than the respective upper boundary parameter weights for these output variables. Higher parameter weights are justified because as ending year stocks get smaller the greater the possibility that they will be needed to meet domestic demands. The lower boundary parameter weights (H_{ij}) for feed grain, wheat and cotton ending year carryovers are: -104.0, -3.4 and -284.8, respectively (Table IV). The lower boundary parameter weights used in the study reflect higher storage costs than the upper

boundary weights, to account for society's increased marginal value of holding a reserve in the face of relatively tight supplies.

Modifications Made to POLYSIM

To incorporate Box's Complex Procedure in the POLYSIM model, several changes were made that affect data input and the order in which model components are executed. The original data cards required for POLYSIM are described in Richardson and Ray (1975a), and coding instructions for additional data cards required for the Control Theory Option are presented in Appendix B.

When the Control Theory Option is specified, the POLYSIM model calls the Complex Procedure which solves for a maximum value of the performance measure in an iterative fashion (Figure 1). The Complex Procedure selects admissible control paths, for the policy variables in the farm programs specified by the user. The user must provide the upper and lower boundary constraints for the policy (control) variables in subroutine CONST and the constraint subroutines it calls (see Appendix A).

The admissible control paths are used as the policy changes to be simulated and the subroutines in the model are executed to obtain the simulated values for the state variables (Figure 1). The simulated values for the output variables are used in the performance measure to evaluate the particular control path. The performance measure is provided by the user in subroutine OBJT (see Appendix A). Also, the user must provide the boundary levels and parameter weights for the performance measure (see Appendix B).

The process of selecting control paths, executing the POLYSIM subroutines, and evaluating the performance measure is repeated until the

Figure 1. Flowchart of POLYSIM and Its Modifications for the Control Theory Option

optimal control path is found. When the optimal control history is determined the program re-enters POLYSIM, executes the subroutines in the model and prints the results in the normal output tables (Figure 1).

CHAPTER III

A DESCRIPTION OF THE POLYSIM MODEL

Overview of the Model

POLYSIM was constructed differently from most simulation models to insure compatability with other policy analyses of the ERS. The model makes full use of forecasted data as a reference baseline. Included are the five-year baseline projections of commodity supplies, prices, and utilization made by ERS. Commodity specialists develop these projections using formal and informal forecasting models tempered with their own experienced judgments. The projections contain explicit assumptions concerning the rates of change in population, per capita incomes, consumer preferences, export demand, technology (including crop yields and livestock gains), and other supply and demand shifters. These projections also assume a specific set of Government farm programs. In most policy analyses, the basic supply and demand shifters remain unchanged. It is the policy related shifts and indirect economic responses through the price mechanism that count in analyzing the impacts of alternative policy proposals. POLYSIM simulates the effects of policy specifications that differ from those assumed in the baseline while holding all other supply and demand shifters the same. The model thus focuses on the interaction of supply and demand responses that result from specified changes in policy variables.

Commodity supply and demand elasticities represent an important part of POLYSIM. The driving forces in the model are the initial and subsequent changes in commodity prices resulting from changes in policy conditions. The magnitude of impact is determined by direct and cross supply and demand elasticities. The elasticities used in the model were developed in stages. Initially, a comprehensive literature review was made to gather past estimates of the required elasticities. Secondly, many of the elasticities were reestimated, using more recent data. Finally, to make the model more useful to ERS, commodity specialists reviewed the estimates, which had been categorized by commodity groups. The final revised estimates are used as default values in the model, but users can change any of the elasticities if they have better or more recent information. (Appendix A of Ray and Richardson (1978) contains a complete description of the elasticities used in POLYSIM.)

Commodities included in the model are feed grains, wheat, soybeans, cotton, cattle and calves, hogs, sheep and lambs, chickens, turkeys, eggs, and milk. As indicated earlier, the model is designed to simulate around a set of baseline conditions. Base estimates must be available for all years analyzed in the simulated time frame. To date, most applications have been for a time horizon of three to five years.

The user starts a simulation by changing one or more of the policy assumptions used in the base conditions; for example, by using a different series of loan rates. The simulation procedure traces through the effects on production, price, utilization, and farm income for each of the eleven commodity groups and on agriculture in the aggregate. Elasticities are used to calculate new values for the endogenous variables as deviations away from the base values. To simulate a change in an

endogenous variable such as feed grain acreage, the percentage change between simulated and base estimates for the expected price variables is multiplied by direct and cross price elasticities. This operation results in a percentage change in feed grain acreage which is used to obtain a simulated value under the new policy assumptions.

The calculation procedure used by POLYSIM is similar to the hand calculations an analyst might use to estimate the impact of a change in an economic variable. Suppose a previous analysis indicated that farmers would plant 110 million acres of feed grains given the expected price for feed grains and other assumed conditions. If an analyst were asked to estimate a new feed grain acreage assuming a ten percent increase in feed grain price (ceteris paribus), he probably would use an estimate of the elasticity of feed grain acreage with respect to feed grain price in his calculations. Specifically he would determine the percentage change in feed grain acreage by multiplying the elasticity of feed grain acreage wrt feed grain price (say .1) times the percent change in price, i.e., ten percent X .1 = one percent. To obtain the new level of feed grain acreage he would convert the percentage change in acreage to a decimal (.01), add it to 1.0 and multiply the result (1.01) times the initial feed grain acreage of 110. The estimated acreage would be 1.01 X 110 = 111.1.

POLYSIM uses this general calculation approach as is illustrated in the following example relationships for feed grain acreage and cattle and calf production. The percentage change in the left-hand variable calculated by the model is the sum of products of the elasticities and percentage changes in the right-hand variables (from their baseline values). The resulting percentage change in the left-hand variable is added to

		Due to Percentage
Percentage Change In	<u>Elasticity</u>	Change In
Feed Grain Acreage (t)	.10 03 06	Expected feed grain price (t) Expected wheat price (t) Expected soybean price (t)
Cattle and Calf Production (t) .11 02 01 05	Cattle and calf price (t-1) Hog price (t-1) Sheep and lamb price (t-1) Feed grain price (t-1)

Figure 2. Example Relationships for Feed Grain Acreage and Cattle and Calf Production

1.0 and multiplied by its base value. Although not included in the example, each quantity equation has a geometrically distributed lag structure to allow multi-period response to price.

The model is described in three parts or segments. The first segment describes the livestock production and consumption activities in the model. The second segment details the crop production and consumption portion of the model. The concluding segment describes the accounting identities for developing aggregate income estimates. Each segment contains a description of the equations used to estimate the output variables, as well as, a discussion of the farm policy provisions or variables that influence the output variables.

Livestock Production and Consumption

Livestock Production

POLYSIM begins each simulation year by computing the level of production for each of the livestock categories. Production is measured in millions of pounds of carcass weight for cattle and calves, hogs, and sheep, and in millions of pounds of ready-to-cook weight for chickens and turkeys. Egg production is measured in millions of dozens and milk production is in terms of millions of pounds of milk equivalents.

Following economic theory, the baseline value for each livestock group's production is adjusted up or down in response to changes in the expected price of the particular livestock group, and changes in the expected price of feed. Specifically, the production of cattle and calves responds to expected changes in own price, hog price, milk price and the price of feed grains. Due to the time lag in the production process, previous year prices are used as the expected prices in determining production response. Hog and sheep production is dependent upon their own price, cattle and calf price and feed grain price. Broiler, turkey and egg production is a function of their own price and the price of feed grains. Milk production is a function of expected changes in own price, cattle and calf price and the feed grain price.

Livestock production values are computed by a single equation for each livestock category. The appropriate prices in the equation are related to the dependent variables (million pounds of production) through elasticities; the hog production equation (1) demonstrates the mechanics of associating the appropriate prices and elasticities.

Simulated Baseline Hog Prod. = Hog Prod. * $\left[1.0 + \begin{cases} elasticity & % change hog \\ hog prod. wrt * price from \\ hog price & baseline_{t-1} \end{cases} \right] + \left[elasticity hog & % change cattle \\ rom baseline & % change cattle \\ rom baseline & from baseline_{t-1} \end{cases} + \left\{ \begin{cases} elasticity of \\ hog prod. wrt & * \\ feed grain price \\ rom baseline_{t-1} \end{cases} \right\} + \left(1.0 - adjustment \\ factor \end{cases} \right) * \left(\begin{cases} simulated baseline \\ hog prod. t-1 \\ rom baseline \\ rom baseline_{t-1} \end{cases} \right)$

The interpretation of equation (1) is as follows. The estimated level of hog production is obtained by adjusting baseline hog production to reflect supply response from changes that may have occurred in lagged prices of hogs, cattle and calves and feed grains. The price changes are in terms of percent of baseline prices. The effect of each price change (say, price of hogs) on production is estimated as the product of the percentage change in price and the elasticity of hog production with respect to the price. The net first-year effect of all price changes on production is the sum of products of the percentage price changes and associated elasticity. This net first-year effect (expressed as a decimal) is added to one and multiplied times baseline hog production to obtain a new production level that is consistent with the prices. Since complete response to price change is not immediate but is distributed over a number of time periods, a geometrically distributed lag structure is also included. The level of hog production in year t will be influenced not only by changes in prices that occurred in t-1 but also in previous periods. The ratio of short-run to long-run elasticities is used to compute the Nerlovian adjustment coefficient for the distributed lag portion of the equation.

A numerical example may be helpful in understanding what takes place in equation (1).

 $15033.6 = 14700.0 * [1.0 + (0.30 * \frac{0.39 - 0.38}{0.38}) + (-0.04 * \frac{0.43 - 0.44}{0.44}) + (-0.25 * \frac{1.64 - 1.75}{1.75})] + (1.0 - 0.5) * (1.338.0 - 13380.0)$

In the example, hog price increases by one cent per pound from the baseline value of 38¢, cattle and calf price decreases one cent and corn

price decreases eleven cents per bushel. The first year impact of these price changes is to adjust the baseline value for hog production up by 333.6 million pounds. If there are no price changes in the following year (t+1), the baseline production will be increased by 166.87 million pounds or (1.0 - 0.5) * (15033.6 - 14700.0), due to the lagged production response to the change in price in t.

The own and cross price elasticities for the livestock production equations are presented in Table V. Each row of the table gives the default elasticities for the respective livestock production equation which follows the form of equation (1). For example, the cattle and calf production equation has an own supply elasticity of +.110, cross supply elasticities for hog price and sheep price of -.005 and -.001, respectively, and a supply elasticity with respect to feed grain price of -.050. The production equations for the red meat groups contain cross supply elasticities because of the possibility of substitution across these categories. On the other hand, the default cross elasticities of supply for the poultry categories are zero because the facilities and management for producing each poultry group is relatively specialized.

Livestock Consumption

The quantity of livestock available for domestic consumption is production plus imports minus exports. Imports and exports of livestock are exogenous to the system and as such, are held constant at baseline levels (unless livestock import or export programs are being investigated).¹ As the quantity of beef available for domestic consumption

¹It is assumed that ending year cold storage inventories are equal to beginning year inventories.

Elasticity of	Cattle & Calf ^{Price} t-1	Hog Price t-1	Sheep Price t-1	Chicken ^{Price} t-1	Turkey Price t-1	Egg Price t-1	Milk ^{Price} t-1	Feed Grain ^{Price} t-1
Cattle and Calf Production _t	.110 (.440)	005 (020)	001 (004)					070 (280
Hog Production t	040 (080)	.300 (.600)	005 (010)					250 (500)
Sheep Production t	010 (020)	. · ·	.025 (.050)					040 (080)
Chicken Production t				.260 (.364)				220 (358)
Turkey Production					.250 (.425)			200 (340)
Egg Production t						.100 (.150)	}	060 (090)
Milk Production t							.100 (.250)	060 (150)

DEFAULT ELASTICITIES FOR LIVESTOCK PRODUCTION¹

TABLE V

Source: Appendix A, Section 1 of Ray and Richardson (1978).

¹Long-run elasticities are in parentheses under the respective short-run elasticity.

increases the price received by farmers for cattle and calves decreases, other things constant. For a disaggregated model, such as POLYSIM, it is not acceptable to compute prices for each livestock category without considering the other livestock categories. Economic theory and emperical findings (George and King, 1971; Brandow, 1961) indicate there is a significant cross price relationship between the major livestock categories. The Brandow and the George and King matrices of own and cross farm level price flexibilities for the seven major livestock categories are presented in Table VI. The matrix of price flexibilities provided by the Commodity Economics Division, ERS, USDA is also given in Table VI.

Livestock prices are computed using one of the price flexibility matrices and computed percentage changes in the quantity available for domestic consumption from their respective baseline values. The user must specify which of the farm level price flexibility matrices in Table VI is to be used.²

In computing cattle and calf prices, the first row of the selected price flexibility matrix is multiplied times the percentage change in the quantity available for domestic consumption for the corresponding commodity. The seven multiplication products are summed, added to 1.0, and the result is multiplied times the baseline cattle and calf price. Equation (2) displays the computation procedure.

²The CED matrix was developed by commodity analysts in CED, USDA to reflect the influence of grass fed beef on the market. The matrix is a hybrid of the Brandow matrix, the George and King matrix, and new coefficients for the cattle price flexibility wrt cattle available and for the chicken price flexibility wrt cattle availability.

TABLE VI

		BI	RANDOW MATRIX ¹	- Logarithm c	of Quantities	of:	
			Sheep	· · · · · · · · · · · · · · · · · · ·			
Logs of Prices of	Cattle ²	Hogs ²	and 2 Lambs	Chickens ²	Turkeys ²	Eggs ³	Milk ⁴
Cattle ⁵	-1.5862	2787	0363	1458	0248	0245	0283
Hogs ⁵	4180	-2.3269	0478	1929	0331	0351	0407
Sheep and Lambs ⁵	5026	4460	4832	1917	0317	0212	0243
Chickens ⁵	4750	4205	0450	-1.4907	1375	0301	0347
Turkeys ⁵	3112	2757	0295	5364	-1.1332	0265	0307
Eggs ⁶	1018	0856	0068	0348	0087	-3.5000	0648
Milk ⁷	0506	1189	0033	0172	0043	0230	-2.6390
	· · · · ·	GEORGE AN	ID KING MATRIX ¹	- Logarithm	of Quantities	of:	· · · · · · · · · · · · · · · · · · ·
Logs of Prices of	Cattle ²	Hogs ²	and 2 Lambs	Chickens ²	Turkeys ²	Eggs ³	Milk ⁴
Cattle ⁵	-2.3946	9051	0746	2716	0268	0270	0271
5 Hogs	7184	-4.7626	1231	2774	0296	0693	0696
Sheep and Lambs ⁵	5845	6916	6673	3299	0303	0420	0422
Chickens ⁵	9064	9825	0936	-1.8671	1011	0471	0472
Turkeys ⁵	4315	5858	0416	5126	7962	0207	0208

THREE SETS OF DEMAND EQUATIONS FOR LIVESTOCK AND LIVESTOCK PRODUCTS AT THE FARM LEVEL, EXPRESSING PRICES AS A FUNCTION OF QUANTITY

TABLE VI (CONTINUED)

		GEORGE A	AND KING MATR	IX ¹ - Logarith	um of Quantiti	les of:	
Logs of Prices of	Cattle ²	Hogs ²	Sheep and Lambs	Chickens ²	Turkeys ²	Eggs ³	Milk ⁴
Eggs ⁶	2683	4699	0262	0926	0163	-4.3350	4316
Milk ⁷	0884	1313	0089	0282	0060	1750	-3.1801
		CED LI	VESTOCK MATR	IX ¹ - Logarith	m of Quantiti	es of:	
Logs of Prices of	Cattle ²	Hogs ²	and 2 Lambs ²	Chickens ²	Turkeys ²	$Eggs^3$	Milk ⁴
Cattle ⁵	-1.6446	9051	0746	2716	0268	0269	0271
Hogs ⁵	7184	-2.3269	0478	1929	0331	0351	0407
Sheep and Lambs ⁵	5026	4460	4832	1917	0317	0212	0243
Chickens ⁵	7750	4205	0450	-1.4907	1375	0301	0347
Turkeys ⁵	4612	2757	0295	5364	-1.1332	0265	0307
Eggs ⁶	2684	4699	0262	0926	0164	-4.3350	4316
Milk ⁷	0885	1313	0089	0282	0060	1750	-3.1801

TABLE VI (CONTINUED)

¹Source: Appendix A, Section 2 of Ray and Richardson (1978).

 2 Million pounds slaughtered.

 $^{3}_{\rm Million \ dozen \ sold.}$

⁴Million hundred weight sold.

⁵Dollars per pound.

⁶Dollars per dozen.

7 Dollars per hundredweight.

Simulated Baseline cattle and = cattle and * $\begin{bmatrix} 1.0 + \begin{pmatrix} \text{own price} & \% & \text{change in} \\ \text{flexibility} & \% & \text{cattle & calves} \\ \text{available from} \\ \text{and calves} & \text{baseline} \\ \text{t} & \begin{pmatrix} \text{cross price} & \% & \text{change in} \\ \text{flexibility} & \text{hogs available} \\ \text{for hogs} & \text{from baseline} \\ \text{from baseline} \\ \text{t} & \begin{pmatrix} \text{cross price} & \% & \text{change in} \\ \text{from baseline} \\ \text{for sheep} & \text{from baseline} \\ \text{for baseline} \\ \text{for chicken} & \text{from baseline} \\ \text{for chicken} & \text{from baseline} \\ \text{for chicken} & \text{from baseline} \\ \text{for eggs} & \text{from baseline} \\ \text{for turkey} & \text{from baseline} \\ \text{for milk} & \text{milk available} \\ \text{for milk} & \text{from baseline} \\ \end{bmatrix}$

An equation similar to (2) is used to calculate the price received by farmers for each of the remaining six livestock categories. The percentage change in quantities of all seven commodities are used for all price equations along with the appropriate row of the selected matrix. For example, if the Brandow matrix is selected (Table VI), the hog price equation would use -0.4180, the cross price flexibility of hog price to the quantity of beef available, -2.3269, the own price flexibility of hog price, and so on.

Estimated livestock prices for period t are used to compute livestock cash receipts in period t and the livestock demand for feed grains in t. These t period prices are also used to estimate livestock production in the following period (t+1). The livestock cash receipts equations are discussed in a later section.

Indices of the Livestock Sector

POLYSIM provides estimates of the total number of livestock production units (grain-consuming animal units) and the index of prices received for livestock products as well as production and price estimates for the

seven major livestock categories. Livestock production units is an index series relating the number of livestock and poultry fed on farms during a given year to the feeding requirements of each major livestock category, in terms of different grains, high protein feeds and roughages (USDA, 1970). Grain consuming animal units are particular interest in the POLYSIM model.

The baseline level of livestock production units is modified if production in any of the seven livestock categories is different from their respective baseline levels. The factors which are applied to the difference between the baseline and calculated production levels are the same as those used by the USDA to construct the baseline livestock production units series (USDA, 1975). Equation 3 illustrates the computation procedure.

Calculated Baseline livestock = livestock + $\left\{ \begin{pmatrix} calculated baseline beef & -beef production t \\ production units \\ \end{pmatrix} = \left\{ \begin{pmatrix} calculated baseline box \\ hog & -hog \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ hog & -hog \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ hog & -hog \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ sheep & -sheep \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ sheep & -sheep \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ sheep & -sheep \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ sheep & -sheep \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} calculated baseline \\ milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ t \\ \end{pmatrix} \right\} + \left\{ \begin{pmatrix} milk & -milk \\ production \\ pr$

The index of prices received for livestock and livestock products is calculated in the model as an adjustment in the baseline index number for changes in the calculated prices received for livestock from their respective baseline values (4).

Calculated index Baseline index of of prices received = prices received * 1.0 + (cattle and calves weight * in the index for livestock for livestock % clange in cattle and calves price from baseline t + $\begin{pmatrix} hogs weight % change in \\ in the * hog price from \\ index & baseline_t \end{pmatrix} + \begin{pmatrix} hogs weight % change in \\ hog price from \\ hog price from$ (4) + (milk prices % change in veight in * milk price the index from baseline

The sum of the weighted percentage changes in livestock prices is multiplied by the baseline index number to get a calculated index number. The baseline index number implicitly contains the baseline prices received for each of the seven livestock categories and prices received for all other livestock products. By assuming that the prices of all other livestock products remain fixed at their baseline levels, the calculated index number need only be adjusted for relative changes in the prices of the seven livestock categories in the model. The weights for the individual livestock categories are used in (4) to appropriately weight the change in prices.

Crop Froduction and Utilization

Crop Production

The crop production section of POLYSIM includes equations for estimating barvested acreage, yield, and variable production expense per harvested acre for each of the four crops in the model (feed grains, wheat, soybeans, and cotton). Crop production is computed as the product of yield and harvested acreage. Feed grain production is in terms of million tons, while wheat and soybeans are in terms of million bushels. Cotton production is measured in millions of net bales.

45

Harvested Acreage

To estimate the harvested acreage for each crop, the baseline harvested acreage value is adjusted for farmer response to changes in expected crop prices from their respective baseline levels. Percentage change in crop price and prices of the other three crops are weighted by the direct and cross supply elasticities to arrive at the percentage adjustment in the base acreage value. An example of the calculation approach is given by equation (5) for feed grains harvested acreage.

Simulated feed Baseline feed grain grain harvested = harvested acreage * $\begin{bmatrix} 1.0 + (elasticity of fg acreage * m. acres t) \end{bmatrix}$ % change soybean price from baseline t-1 $+ \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ cotton price from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ from baseline \\ t-1 \end{pmatrix} + \begin{pmatrix} elasticity of % change \\ fg acreage wrt * cotton price \\ fg acreage wrt$ (5) $\begin{pmatrix} 1 \text{ ong run} \\ 1.0 - \text{ adjustment} \\ \text{factor} \end{pmatrix} * \begin{pmatrix} \text{calculated baseline} \\ \text{fg} & - \text{fg} \\ \text{acreage}_{t-1} & \text{acreage}_{t-1} \end{pmatrix}$

Equations similar to (5) are used to estimate harvested acreage for wheat, soybeans, and cotton. Lagged crop prices are used as expected price in the acreage equations. If the current years loan rate is greater than the previous year's crop price, the loan rate is used as the expected price in equation (5) for the calculation of harvested acreage. As will be seen in following sections, the loan rate also serves as the expected price if it is greater than lagged crop price in the yield and per acre variable production expense equations. This practice has been adopted because if loan rates exceed the previous year crop price the loan rate is the marginal value of output for planting and input use decisions. This feature allows the user to simulate the impacts of loan rates which exceed the expected market price on crop acreage, production and income.

Including the price of other crops in the harvested acreage equation (5) allows substitution of one crop for another in response to changes in relative prices. Assuming a homogeneous acreage response function of degree zero, an equal increase in the expected price of all crops and input prices should have no effect on the mix of crops grown; while a change in the expected price of only one crop would, of course, affect the crop mix. The elasticities used in the four acreage equations (5) approximate homogenity of degree zero (Table VII). The own acreage elasticity for feed grains is .10 in the short run and .15 in the long run while the cross elasticities with respect to wheat, soybeans, and cotton prices are -.03, -.06, and -.01, respectively (Table VII).

Acreage Set-Aside

Adjustments to acreage levels for simulating land diversion or setaside are made before computing acreage response to change in relative crop prices. The procedure for accounting for set-aside is different from the normal calculation approach used by POLYSIM. If the general POLYSIM calculation approach were used, a mathematical formulation to account for changes in set-aside from the level assumed in the baseline would appear at the end of equation (5). However, farmer adjustment in acreage as a result of set-aside programs are made completely during the crop year. There is no multi-year distributed lag in crop acreage response to set-aside. Hence, if the set-aside computation were tacked onto equation (5) which includes a distributed lag structure, set-aside

47 -

TABLE VII

DIRECT AND CROSS ACREAGE, YIELD AND SUPPLY ELASTICITIES¹

	Feed Grains	Wheat	Soybean	Cotton
	Price	Price	Price	Price
	t-1	t-1	t-1	t-1
Feed grains acreage	.10	03	06	01
	(.15)	(045)	(09)	(015)
Wheat acreage	03	.10	02	01
	(06)	(.20)	(04)	(02)
Soybean acreage	15	02	.25	03
	(187)	(.024)	(.312)	(037)
Cotton acreage	05	01	10	.30
	(10)	(02)	(20)	(.60)
Feed grain yield	.10 (.20)			
Wheat yield		.05 (.10)		
Soybean yield			.10 (.20)	
Cotton yield				.15 (.20)

Source: Appendix A, Section 3 of Ray and Richardson (1978).

¹Long-run elasticities are in parentheses under the respective short-run elasticity.

announced in year t would effect acreage in year t+1 even though the government enacted no set-aside program for year t+1. To get around this problem, the baseline harvested acreage is modified so as to include the effect of the user specified level of set-aside. This acreage value becomes the "new" baseline acreage which is used in equation (5) to compute harvested acreage.

The computational procedure is to first add the set-aside that was assumed in the original baseline to the original baseline value of harvested acreage and then subtract the set-aside specified by the user. Historically, however, not all acreage declared as set-aside would have been harvested even without the set-aside program. Some acreage in flood prone areas, on unproductive hilltops or in fallow are designated as setaside areas. This slippage, or lack of complete effectiveness of setaside in reducing harvested acreage, is taken into account in the computations. The rate of slippage, or percent slippage converted to a decimal, is user controlled. Equation (6) demonstrates the procedure for modifying baseline feed grain harvested acreage for set-aside. Similar relationships are included for wheat and cotton.

Calculated Baseline harvested acre- = harvested acre- + $\begin{cases} baseline acre$ $age for fg_t & age for fg_t & for fg_t & (6) \\ \\ 1.0 - slippage rate_t &) & - \begin{cases} user supplied acreage set- * (1.0 - fg slippage rate_t & (1.0 - fg s$

Yield Per Harvested Acre

Yield per harvested acre is measured in tons for feed grains, bushels for wheat and soybeans, and pounds of lint for cotton. Each crop yield

is estimated by adjusting the baseline value for yield up or down, in response to differences in the expected crop price from the baseline price. If the expected price is higher than the baseline price, more inputs, such as fertilizer, will be applied per acre which will increase yield per harvested acre. The four yield equations are of the form shown in equation (7) for feed grain yield. Lagged crop price is used as the expected price. (When loan rate in t is greater than lagged crop price, the loan rate is used as the expected price.) The distributed lag adjustment coefficient is included in each equation to allow multi-period adjustment in yields to a price change.

Simulated Baseline fg yield = fg yield * $\begin{bmatrix} 1.0 + \begin{pmatrix} elasticity of % change fg \\ fg yield wrt * price from \\ fg price & baseline_{t-1} \end{pmatrix}$ (7)+ $\begin{pmatrix} elasticity of fg % change in prices \\ yield wrt cost * paid for inputs \\ of production from baseline \\ t-1 \end{pmatrix}$ + $\begin{pmatrix} long run \\ 1.0 - adjustment \\ factor \end{pmatrix}$ * $\begin{pmatrix} calculated \\ yield_{t-1} \end{pmatrix}$ baseline $yield_{t-1}$

The baseline is developed assuming a specific rate of increase in input prices. By including the input price variable in the yield equation, the crop yields can respond to modifications of the inflation rate for inputs from the baseline rate of inflation. The default elasticity of yield with respect to the cost of production is -.10 for all four crops.

The default own yield elasticities for the crops in the model are in Table VII. The short run yield elasticity for feed grains is .10 and its long run elasticity is .20 (Table VII). For a detailed discussion of the source of these parameters, see Appendix A, Section 3 of Ray and Richardson (1978).

Production

Once harvested acreage and yield per harvested acre have been estimated, the total production for the crop is simply the product of the acreage and yield. For feed grains the equation for total production is (8).

Simulated fg		Simulated		Simulated		
production	=	fg acreage	*	fg yield	. (8)
m. ton		m. acres		ton/acre t		

The total production equation for wheat, soybeans, and cotton follow the same general form as equation (8).

Supply

The total supply of a particular crop is the sum of production, imports and stocks on hand at the beginning of the crop year. Total crop production comes from equation (8), imports are exogenous and the value of stocks on hand for time period t are the ending year stocks in time period t-1 or the carryin for period t. For feed grains the total supply equation is (9).

Simulated Simulated fg Exogenous Carryin fg supply = production + fg imports + of fg (9) m. tons t m. tons t m. tons t (9)

The total supply for the other three crops in the model follow the same form as equation (9).

Crop Production Expense

The final set of equations in the crop production section of the model calculate the variable production expense per harvested acre. As

the per unit prices of inputs increase, the cost of a given level of input useage per acre increases. Economic theory suggests that the quantity of inputs used per acre is inversely related to the price of the input and positively related to the price of the output. The variable expense per acre relationships allow for changes in per acre expense due to input response to changing crop prices as well as for the change in outlay per unit from changes in input price. The feed grain variable production expense equation (10) is typical of the equation used for all four crops in the model.

Simulated fg Baseline fg variable prod = variable prod * $\begin{bmatrix} 1.0 + elasticity of fg expense per acre t expense/acre t \end{bmatrix}$ % change fg * price from baseline t-1 + (elasticity of fg % change prices) expense per acre * paid from wrt prices paid baseline t-1(10)+ $\left(1.0 - \frac{\text{adjustment}}{\text{coefficient}}\right) * \left(\begin{array}{c} \text{simulated fg} & \text{baseline fg} \\ \text{variable prod} & - \text{variable prod} \\ \text{expense/acre}_{t-1} & \text{expense/acre}_{t-1} \end{array}\right)$

The lagged crop prices are used as the expected prices for equation (10). (When loan rate t is greater than lagged crop price, the loan rate is used as the expected price.) A distributed lag adjustment coefficient is used in equation (10) to allow for multi-period adjustments to changes in prices.

The own elasticities of variable per acre production expense for the crops in POLYSIM are presented in Table VIII. The elasticity of crop expense per acre with respect to the prices paid index is also presented in Table VIII. The sources of these elasticities are discussed in Appendix A, Section 3, of Ray and Richardson (1978).

52`

TABLE VIII

ELASTICITY OF VARIABLE PRODUCTION EXPENSE FOR MODEL CROPS¹

Elasticity of variable pro- duction expense _t	Feed Grain Price _t	Wheat Price t	Soybean Price t	Cotton Price t	Index of Prices ^{Paid} t-1
Feed grains wrt	0.100 (0.225)				1.00 (1.50)
Wheat wrt		0.050 (0.150)	• • •		1.00 (1.50)
Soybeans wrt			0.100 (0.225)		1.00 (1.50)
Cotton wrt				0.150 (0.225)	1.00 (1.50)

Source: Appendix A, Section 3 of Ray and Richardson (1978).

¹Long-run elasticities are in parentheses under the respective short-run elasticity.

Total variable production expense for each of the model crops is calculated as the product of the number of harvested acres and variables production expense per acre. The feed grain equation for total variable production expense (11) is typical of the four crop equations in the model.

Simulated fg	Simulated	Simulated fg	
<pre>total variable =</pre>	fg harvested *	variable prod	(11)
prod expense _t	acreage _t	expense/acre _t	

Crop Prices

Following Wold (1960, 1964), POLYSIM uses a recursive interpretation of supply, price and demand determination for agricultural crops. As has been discussed in earlier sections, current year production is a function of previous year prices and applicable federal farm policy provisions. After the current year crop has been produced, supply is essentially perfectly inelastic. Current year price is determined by the intersection of the perfectly inelastic supply curve and the expected demand curve. The quantity demanded is then a function of the crop price.

If the estimated crop supply is the same as the baseline crop supply the estimated price will be the same as the baseline price. If, on the other hand, estimated supply varies from the baseline supply, that is, there is a shift in the perfectly inelastic supply curve, the baseline price must be adjusted to reflect the new intersection of the supply and expected demand curves. The adjustment to the baseline price is computed as the product of the percentage change in supply from the baseline level and the inverse of the demand elasticity or price flexibility for the crop. The expected demand includes, of course, export demand as well as various domestic demands. In POLYSIM the baseline total demand is the expected demand. Given the prominance of sharp shifts in export demand in recent years, the price relationships are specified to allow the user to predetermine export demand and therefore shift the expected demand curve. Hence, a set of terms is included in the crop price equations to account for shifts in expected demand.

The feed grain price equation (12) is typical of the price equations for the model crops.

Calculated Baseline fg price fg price

Feed grain price is in \$ per ton units, wheat and soybeans are in \$ per bushel units, and cotton is in \$ per pound units. The default price flexibilities for the model crops are in Table IX.

The estimated per bushel prices for the separate feed grains, corn, grain sorghum, barley and oats are computed from estimated feed grain price. Corn price is calculated by equation (13).

Calculated Calculated corn price = fg price $\frac{1}{5.714} \times \begin{cases} \text{percent of} \\ \text{corn in} \\ \text{feed grains} \end{cases} + \begin{pmatrix} \text{percent of} \\ \text{grain sorghum} \\ \text{in feed grains} \end{cases}$ grain sorghum $\text{nutrient equiva-} \\ \text{lence to corn} \end{pmatrix} + \begin{pmatrix} \text{percent of} \\ \text{barley in} \\ \text{feed grains} \end{cases}$ barley nutrient $\text{equivalence to} \\ \text{corn} \end{pmatrix}$ $+ \begin{pmatrix} \text{percent of} \\ \text{barley in} \\ \text{feed grains} \end{cases}$ (13) $+ \begin{pmatrix} \text{percent of} \\ \text{oats nutrient} \\ \text{feed grains} \end{cases}$

TABLE IX

Feed Grains	Own Price Flexibility
relative coverage ¹ < 0.05	-6.00
$0.05 \ge$ relative coverage < 0.10	-4.00
$0.10 \ge$ relative coverage < 0.20	-3.50
$0.20 \ge$ relative coverage < 0.30	-2.00
$0.30 \ge$ relative coverage	-1.00
Wheat	
relative coverage < 0.10	-6.00
$0.10 \ge$ relative coverage < 0.15	-4.00
$0.15 \ge$ relative coverage < 0.20	-3.00
$0.20 \ge$ relative coverage < 0.30	-2.40
$0.30 \ge$ relative coverage < 0.50	-2.00
$0.50 \ge$ relative coverage < 0.60	-1.50
$0.60 \ge$ relative coverage	-1.00
Soybeans	
relative coverage < 0.033	-6.00
0.033 > relative coverage < 0.066	-4.00
0.066 > relative coverage < 0.100	-3.00
0.100 > relative coverage < 0.150	-2.50
0.150 > relative coverage < 0.200	-2.00
0.200 > relative coverage	-1.75
Cotton	
relative coverage < 0.15	-5.00
0.15 > relative coverage < 0.20	-4.00
0.20 > relative coverage < 0.25	-3.00
0.25 > relative coverage < 0.35	-2.25
0.35 > relative coverage < 0.55	-1.75
0.55 > relative coverage	-1.00

OWN PRICE FLEXIBILITY SCHEDULES FOR FEED GRAINS, WHEAT, SOYBEANS AND COTTON

Source: Appendix A, Section 4 of Ray and Richardson (1978).

¹Relative coverage is the expected ending year carryover expressed as a percent of expected total utilization. In the model,

relative coverage = $\frac{\text{calculated supply}_{t} - (\text{baseline or expected demands}_{t})}{\text{baseline or expected demands}_{t}}$

so as the fraction gets small the ending year carryover is small relative to demands and vice versa. To obtain equation (13), the relationship used by the USDA to compute feed grain price based on the prices, corn nutrient equivalences, the mix of the four separate grains was solved in terms of corn price. The constant 35.714 converts bushels to tons. The same proportional relationships between the baseline corn price and the baseline prices of grain sorghum, barley, and oats are used to compute the estimated prices for each of the minor feed grains. An equation similar to the oat price equation (14) is used to estimate the price for barley and grain sorghum.

Generally the prices differ by the feeding value of oats, barley, and grain sorghum relative to corn.

Government Price Supports

Non-recourse Commodity Credit Corporation (CCC) loans and direct government grain purchases have been part of farm program legislation since the 1930's. At the user's option, POLYSIM will simulate the support of crop prices at levels specified by the user. (Coding the "Farm Policy Card" for activating price supports is described in the POLYSIM User's Manual (Richardson and Ray, 1975a).) The crop price is calculated as usual based on the prevailing supply and demand conditions by equation (12). Price support action is taken only if the estimated price is less than the support price or loan rate. When the market price is less than the support price (or loan rate), the model computes the quantity of grain of fiber that must be diverted from the market to raise the average market price to the loan rate.

A typical equation for computing the quantity of grain that must be put under CCC loan or diverted from the market to raise market price to the new wheat price, a weighted average of the loan rate and the initial calculated wheat market price, is illustrated in equation (15).

Quantity of Calculated
wheat in CCC = supply of *
loan program wheat
t t
$$\begin{bmatrix} 1.0 - \frac{\text{New wheat price}_{t}}{\text{calculated wheat}} \\ \text{market price}_{t} \end{bmatrix}$$
 (15)
* price
flexibility

The formulation in the inner parentheses computes the percentage increase in the market price that is required to reach the support price or loan rate. The percent increase in price (with sign changed) is divided by the price flexibility of demand for crop to compute the percent reduction in supply that would make the market clear at the higher market price. This computation is equivalent to multiplying the percent change in price times the overall elasticity of demand for the crop. Hence, the equation determines the length of movement up the demand curve or equivalently the leftward shift in the perfectly inelastic short run supply curve that would result in the market price being equal to the loan rate.³ The calculated reduction in supply is the quantity of stocks

³The program can be easily modified so market price is increased to user specified percentage of the support rate based on an assumed participation rate. A substitute set of subroutines are also available that estimates quantities in CCC loan, quantities redeemed and quantities added to government stock. Variable length of CCC loans are allowed with this approach. An application of this set of computations can be found in (Ericksen, Ray, and Richardson, 1976).

that must be diverted from the market. The market price is set equal to the support price and the model proceeds to the crop demands section.

The CCC has always had some provision for releasing accumulated stocks in the market when the average market price exceeded the loan rate by a certain percentage. In the model, CCC loans are released to the market when the average market price, calculated by equation (12), is 50 percent greater than the loan rate. Stocks owned by the CCC are released to the market when market price exceeds loan rates by 75 percent. (Other release policies have been programmed by user specified options and are described in the POLYSIM User's Manual (Richardson and Ray, 1975a).) The quantity of stocks released by the CCC are calculated by equation (16).

Quantity of wheat Calculated
stocks to release = wheat *
from CCC stocks t supply t
$$\begin{bmatrix} 1.0 - \frac{\text{wheat release price}_{t}}{\text{calculated wheat}} \\ \text{wheat own} \\ \text{ is price} \\ \text{flexibility} \end{bmatrix}$$
 (16)

Equation (16) calculates the amount of stocks that the CCC can release without lowering the average market price below the release price. The average market price for the crop is set equal to the release price and the quantity of stocks held by the CCC in loan or owned are reduced by the amount of the stock release. The model then proceeds to the domestic demand equations with the revised market price for the particular crop.

The costs to the Commodity Credit Corporation for holding stocks of grains and cotton are calculated by the model. The total costs for holding government owned stocks include the interest charge for the

average value of stocks held, the in and out charge for entering the market, the storage cost for physical storage of a commodity, and the net profit or loss from the release of stocks. The total costs to the government for holding CCC loans is zero since the farmer who owns the commodity pays the storage costs, the in and out charge, the interest and stands to make a profit or loss.

Crop Demands

As indicated earlier the structure of agricultural crop supply, price and demand tend to be recursive in nature. Ceteris paribus, supply is a function of previous year price, price is determined by the level of supply relative to expected demand and actual quantity demanded is a function of price (and other variables). Hence a simplified causation diagram would appear as:

$$\begin{array}{ccc} \text{Price}_{t-1} & & \text{Quantity} & & & \text{Price}_{t} & & \text{Quantity} \\ & & & \text{Supplied}_{t} & & & \text{Demanded}_{t} \end{array}$$

In general, the domestic and export crop demand equations use changes in current year price from the baseline price and elasticities of demand to compute new quantities demanded. In the equations that follow this approach, it is assumed that demand shifters (population, per capita incomes, etc.) are unchanged from those implicit in the baseline demand quantities.

However, in the case of livestock feed demands, the price of livestock, substitute feed prices and other demand shifters determined within the agricultural economy do not necessarily remain at levels implicit in the baseline. Hence, the various livestock feed demand relationships

are structured to include the impact of changes in demand shifters as well as the feed's own price. These relationships for estimating livestock feed demands are presented first. The domestic and export demand relationships which assume no changes in the demand shifters from the baseline follow the subsections on feed demand.

Feed Grain Feed Demands

The domestic demand for feed grains and by-products (protein) as livestock feed are calculated as a derived demand based on livestock production, livestock prices and the price of feed grains and soybean meal. The procedure is a multi-step method that is repeated for each of the seven livestock categories in the model and results in values for feed grains demanded by each livestock group. The equations follow the structure reported by Richardson and Ray (1977).

The five equations used to estimate feed grain demand for hogs are presented here to illustrate the procedure. The first step is to calculate the concentrate feed conversion rate, defined as the pounds of concentrates fed per pound of liveweight production.⁴ The baseline concentrate feed conversion rate (equation 17) is adjusted up or down depending upon

⁴Concentrates fed to livestock and poultry includes corn, sorghum, barley, oats, wheat, rye, oilseed meal, animal protein feeds, and other by-product feeds. For POLYSIM, wheat has been subtracted out of concentrates feed and is treated as a separate domestic demand for wheat. changes in the own livestock price and the price of feed grains and soybean meal. 5

Calculated concentrate feed conversion rate for hogs t rate for ho

If the simulated price of hogs is higher than the baseline value, the concentrate feed conversion rate will increase whereas if the feed grain or soybean meal prices are higher than their baseline value the feed conversion rate will decrease. The price elasticities of feed conversion rates for the livestock categories (17) in POLYSIM are presented in Table X.

The second step is to compute the quantity of concentrates demanded that is consistent with the calculated feed conversion rates and the calculated livestock production. Multiplying the concentrate feed conversion rate (pounds of feed per pound of production) by the calculated livestock production (millions of pounds) results in the total concentrates demanded by each livestock category. The total concentrates

⁵Soybean meal price is estimated in the model by the following equation:

 $PSM_{t} = -27.5326 + 5.9245 PSB_{t} + 0.6597 PCM_{t} + 0.5484 LSPU_{t}$ Student t 2.00 4.12 3.46 Elasticity 0.208 0.617 0.473 F = 250.8 R² = 0.98 S.E. = 5.83 D = 2.17 \overline{Y} = 80.4

where: PSM is price of soybean meal (\$/ton), PSB is price of soybeans (\$/bu.), PCM is price of cottonseed meal (\$/ton) and LSPU is number of livestock production units (millions), for years 1950-1974, less 1972.
TABLE X

			· · · · · · · · · · · · · · · · · · ·
Elasticity of feed Conversion Ratio _t for:	Own Livestock Price t	Feed Grain Price _t	Soybean Meal Price t
Cattle and Calves wrt Hogs wrt Sheep and Lambs wrt Chickens wrt Turkeys wrt Eggs wrt Milk wrt	0.894 0.132 0.566 0.180 0.197 0.153 0.080	-0.834 -0.051 -0.222 -0.180 -0.069 -0.122 -0.080	0.069
Elasticity of Percent of Feed Grains in Concentrates Fed for:	Own Livestock Price t	Feed Grain Price t	Soybean Meal Price _t
Cattle and Calves wrt Hogs wrt Sheep and Lambs wrt Chickens wrt Turkeys wrt Eggs wrt Milk wrt	-0.099 -0.230 -0.133 -0.097 -0.007 -0.005	-0.114 -0.092 -0.009 -0.002 -0.099 -0.106 -0.078	0.087 0.071 0.220 0.037 0.118 0.042

ELASTICITY OF CONCENTRATE FEED CONVERSION RATE AND ELASTICITY OF PERCENT OF FEED GRAINS IN CONCENTRATES FED FOR EACH OF THE LIVESTOCK CATEGORIES IN THE MODEL

Source: Appendix A, Section 5 of Ray and Richardson (1978).

equation for hogs (18) is typical for the other meat animal categories and differs from the milk and egg equations in that meat production is in carcass weight and must be converted to a liveweight basis.

The total concentrates demanded in (18) is a function of own and cross livestock prices lagged one period in the production equations, current own livestock prices in the feed conversion rate, as well as, the current prices of feed grains and soybean meal. Hence, the underlying relationships cause total concentrates demanded to be a derived demand of the livestock industry.

The third step is to estimate the percent of feed grains in the concentrates fed for each of the livestock groups. This set of seven equations is typified by equation (19) for hogs.

Calculated percent of fg in concentrates fed to hogs t (19) Calculated percent of fg in concentrates fed to hogs t (19) Celasticity of % fg concentrates fed to * price from hogs wrt hog price t % change fg * price from baseline t (19)

The amount of feed grains in concentrates fed, as a percentage, increases as the own livestock price increases but decreases when the feed grain

price increases. The default elasticities used in equation (19) for the separate livestock categories are presented in Table X.

The final step is to separate total concentrates demanded by each livestock category into feed grains and by-product feeds (high protein). This is handled by equations similar to (20) and (21) for each of the livestock categories. Equation (20) computes the derived demand for feed grains by hogs by multiplying the calculated total concentrates fed to hogs by the percent of feed grains in concentrates fed to hogs.

Calculated fg Calculated total Calculated percent of demanded by hogs = concentrates fed * fg in concentrates (20) m. tons₊ to hogs m. tons₊ fed to hogs₊

Feed grain demand is estimated for each livestock category in the same manner. Total feed grain feed demand is computed as the sum of the calculated feed grain demands in equation (19) over the seven livestock categories. The resulting feed grain demand is a derived demand for feed grains based on the livestock production and the simulated livestock and feed prices.

By-Product Feed Demands

The total by-product demand for each livestock category is calculated by equation (21); it is simply the difference between total concentrates demanded and feed grains demanded.⁶ Since the equation is similar for all livestock categories the equation for hogs is presented here.

⁶By-product feeds include high protein feeds, animal proteins, grain protein feeds, and other by-product feeds. High protein feeds are oilseed meal, such as soybean meal and cottonseed meal. Animal proteins are meat, fish, and milk by-products and grain protein feeds are by-product of millers and distillers.

The total by-product demand is the sum of the individual livestock categories' demand, computed by equation (21).

Domestic Demands for Other Model Crops

Wheat, soybeans, and cotton domestic demands consist of the following: wheat food demand, wheat feed demand, soybean mill demand and cotton mill demand. Other domestic demand for each of the four crops (seed demand, residual, etc.) are considered exogenous.

The domestic food demand of wheat is a function of wheat price and demand shifters, such as the level and distribution of disposable income and population. The influence of the demand shifter variables are embodied in the baseline domestic wheat food demand level. Changes in domestic farm policy will not significantly effect the level of population or values of other demand shifter variables. Hence, only the impact of a change in the price of wheat resulting from a change in policy or different yield and export projections are of importance. The domestic wheat food demand (22) is estimated as a deviation away from the baseline value resulting from changes in wheat price from its baseline.

Calculated domestic Baseline domestic wheat food demand = wheat food demand * $\begin{bmatrix} 1.0 + (elasticity of wheat food demand m. bu. t + (elasticity of wheat food demand wrt own price + (elasticity of wheat food demand + (elasticity of wheat food demand + (elasticity of wheat food demand + (elasticity of + (elastici$ m. bu.t (22) $\begin{array}{c} \text{\% change of} \\ \text{\ast wheat price} \\ \text{from baseline}_{t} \end{array} \right] + \left(\begin{array}{c} \text{long run} \\ 1.0 - \text{adjustment} \\ \text{factor} \end{array} \right) - \left(\begin{array}{c} \text{calculated baseline} \\ \text{wheat food - wheat food} \\ \text{demand}_{t-1} \end{array} \right)$

The distributed lag adjustment coefficient is included in (22) to allow domestic wheat food demand to have a multi-period adjustment to changes in wheat price. The default elasticities of wheat food demand with respect to own price are -.10 in the short run and -0.20 in the long run (Table XI).

<u>Wheat Feed Demand</u>. The domestic demand for wheat as livestock feed is a function of wheat price and feed grain price. When the price of wheat gets close to the price of corn wheat will be substituted for corn at the margin. Wheat feed demand is estimated with equation (23).

Calculated wheat Baseline wheat feed demand = feed demand * $\begin{bmatrix} 1.0 + (elasticity of wheat feed demand wheat feed demand wrt own price \end{bmatrix}$ (23) $\begin{array}{c} \text{\% change in} \\ \text{\ast wheat price} \\ \text{from baseline}_t \end{array} + \left(\begin{array}{c} \text{elasticity of} & \text{\% change in} \\ \text{wheat feed demand } \text{\ast fg price from} \\ \text{wrt fg price} & \text{baseline}_t \end{array} \right)$ + $\begin{pmatrix} long run \\ 1.0 - adjustment \\ factor \end{pmatrix}$ * $\begin{pmatrix} calculated baseline \\ wheat feed - wheat feed \\ demand_{t-1} & demand \end{pmatrix}$

A downward adjustment in feed grains fed to livestock, based on wheat's feeding equivalent relative to corn, is made whenever the wheat price gets within 12 percent of corn price. (On a corn equivalent feed unit basis wheat is 12 percent more valuable as a livestock feed than corn.)

Soybean Mill Demand. Soybean domestic mill demand is a function of the price of soybeans, the number of grain consuming livestock production units, mill capacities, prices of substitute protein sources and vegetable oils, population, and disposable incomes. All of these factors influencing demand are embodied in the baseline value for soybean mill demand. In a farm policy analysis where the demand shifters such as

TABLE XI

	Feed Grain Price _t	Wheat Price t	Soybean Price t	Cotton Price t
Wheat Domestic				
Food Demand wrt		-0.100		
Feed Demand wrt		(-0.200) -0.300 (-0.600)		
Soybean Domestic				
Mill Demand _t wrt			-0.350 (-0.700)	
Cotton Domestic				
Mill Demand _t wrt				-0.100 (-0.150)
Feed grain export demand wrt	-0.500 (-1.500)			
Wheat export demand wrt		-0.500 (-1.500)		
Soybean export demand wrt			-0.650 (-1.950)	
Cotton export demand wrt				-0.500 (-1.500)
ľ				

DOMESTIC AND EXPORT DEMAND ELASTICITIES FOR THE MODEL CROPS¹

Source: Appendix A, Section 4 of Ray and Richardson (1978).

1 Long-run elasticities are in parentheses under the respective short-run elasticity. income, population, and mill capacity are not altered, changes in mill demand for soybeans from its base value are largely dependent on soybean price and the level of livestock production. The soybean mill demand equation in POLYSIM allows the baseline soybean mill demand, as specified in equation (24) to respond to soybean price and the number of livestock production units.

Calculated Baseline soybean mill = soybean mill * $\begin{bmatrix} 1.0 + (elasticity of soybean mill demand demand m. bu.t + (elasticity of soybean mill demand wrt own price)$ % change in * soybean price from baseline + (elasticity of soybean mill demand wrt no. of livestock * production units% change in no. of livestock production units% calculatedsoybean milldemand m. bu.t-1baseline- soybean milldemand m. bu.t-1

The distributed lag adjustment factor is included in (24) to allow the domestic soybean mill demand to have a multi-period adjustment to changes in soybean price. The demand elasticities for (24) are presented in Table XI.

<u>Cotton Mill Demand</u>. Cotton domestic demand is made up entirely of mill demand. Mill demand for cotton is a function of cotton price, disposable incomes, population and the price of synthetic fibers. The baseline value for mill demand embodies all of these factors and, since farm policy only influences cotton price to any great degree, changes in mill demand from its baseline value are largely a function of cotton price. The cotton mill demand equation (25) adjusts the baseline cotton mill demand up or down as cotton price varies its baseline value.

Calculated cotton mill demand = mill demand * m. net bales t m. net bales t cotton price from baseline t m. net bales t net bal

The distributed lag factor in (25) allows the cotton mill demand to have multi-period adjustments to changes in cotton price. The default elasticity of demand for cotton at the mill wrt own price is -0.10 (Table XI).

Total domestic demands are calculated for each of the model crops (feed grains, wheat, soybeans, and cotton) as the sum of the endogenous demands and an exogenous other demand component. Total feed grain domestic demand is the sum of domestic feed demand and feed grains used for other than feed uses (food, seed and industrial). Wheat domestic demand is the sum of domestic food and feed demand and the exogenous component of seed and industrial uses. Soybean total domestic utilization is the sum of mill demand for crushing and the exogenous demand for seed. Cotton total domestic demand consists only of domestic mill consumption.

Export Demands

Foreign demands for feed grains, wheat, soybeans, and cotton are dependent upon the domestic price, the foreign supply, population and income of importing countries and other variables. The baseline values for crop exports are developed with specific assumptions pertaining to these variables. When a farm policy is analyzed which changes only the domestic prices, it can be modeled by adjusting the baseline export

value for changes in the price from the baseline. However, if the base assumptions pertaining to foreign supply are changed, the analyst can provide a new export value that has been determined outside the system. The prespecified export value is used as the calculated value from exports and the model computes the crop's price, taking into account the shift in the demand curve.

The feed grain export equation (26) typifies the export equations used for each of the four crops.

Calculated Baseline fg export = fg export * $\begin{bmatrix} 1.0 + \begin{pmatrix} elasticity of & \% change fg \\ fg export wrt * price from \\ own price & baseline \\ t \end{bmatrix}$ (26) + $\begin{pmatrix} 1.0 - adjustment \\ factor \end{pmatrix}$ * $\begin{pmatrix} calculated & baseline \\ fg & - fg \\ export \\ t-1 & export \\ t-1 \end{pmatrix}$

The distributed lag adjustment coefficient in (26) allows crop exports to have a multi-year response to changes in price. The export price elasticities for feed grains are reported in Table XI along with the export elasticities for wheat, soybeans, and cotton.

Total Utilization and Carryovers

For each crop the model calculates the total utilization for each time period as the sum of total domestic demands and export demands. Total carryover or ending year stocks is the difference between total supply and total utilization plus government stocks.

Accounting Identities

Crop and livestock cash receipts and the expenses for producing crops and livestock are simulated with a series of identity relationships. Also, identities are used to compute totals for production expenses, government payments and aggregate farm income.

Crop Cash Receipts

Simulated cash receipts for each crop and livestock category are computed by adjusting the baseline cash receipts for the commodity for changes in price and production. Cash receipts are not generally equal to price times production (value of production). Farmers do not market all of the annual production of grain. Crop and livestock farmers feed part or all of their home-grown to their livestock. Changes in farmer stored grain also influence the amount of grain sold for cash. In estimating cash receipts, the proportion of production sold for cash is implicitly assumed to be the same as in the baseline. The feed grain cash receipts equation (27) is typical of the equations used for the four crops in the model.

Simulated fg
cash receipts =
$$\left\{ \left(\frac{\text{simulated fg price}}{\text{baseline fg price}_{t}} * \frac{\text{simulated fg production}_{t}}{\text{baseline fg production}_{t}} * \frac{\text{simulated fg production}_{t}}{\text{baseline fg production}_{t}} * \frac{\text{simulated fg production}_{t}}{\text{baseline fg price}_{t-1}} \right\} + \left\{ \left(\frac{\text{simulated fg price}_{t-1}}{\text{baseline fg price}_{t-1}} * \frac{\text{baseline}}{\text{fg cash}} \right) * 0.35 \right\} + \left\{ \left(\frac{\text{simulated fg price}_{t-1}}{\text{baseline fg price}_{t-1}} * 0.65 \right) \right\}$$

The parameters 0.35 and 0.65 in (27) are weights to convert crop year cash receipts for feed grains to a calendar year basis. The default parameters for converting to wheat cash receipts to a calendar year are 0.65 and 0.35. The parameters for soybeans are 0.35 and 0.65 and 0.55 and 0.45 for cotton. The parameter values were suggested by the Farm

Income Group, NEAD, USDA, and can be changed by the user in the UPDATE program (Richardson and Ray, 1975b). As can be seen in equation (27), the baseline cash receipts are adjusted by the ratio of the simulated and baseline prices and the ratio of the simulated and baseline production levels. If there are no changes in price or production, the ratios reduce to ones and cash receipts are unchanged from the baseline.

Total cash receipts for all crops is computed as the sum of simulated cash receipts for the four major crops (feed grains, wheat, soybeans, and cotton), plus cash receipts for non-model crops. Since cash receipts for non-model crops are exogenous in the model, the baseline value is used in all analyses unless side calculations have indicated the new level for the variable, then it is read in as data.

Livestock Cash Receipts

Cash receipts for each of the seven livestock categories are estimated by adjusting the baseline cash receipts for proportional changes in the estimated price and production relative to their respective baseline values. The cash receipts for each livestock category are estimated with an equation similar to the following equation (28) for hogs:

Simulated hog Baseline cash cash receipts = receipts for * $\frac{\text{Simulated hog price}_{t}}{\text{Baseline hog price}_{t}}$ M. S_t hogs_t Simulated hog production_t Baseline hog production_t 73

(28)

Livestock production and price levels are simulated on a calendar year basis so no marketing year to calendar conversion is required for livestock cash receipts.

Cash receipts for livestock other than the seven major categories are exogenous. Total cash receipts for all livestock is the sum of the estimated cash receipts for the seven livestock categories plus the exogenous cash receipts for other livestock.

Total cash receipts for crops and livestock is the sum of cash receipts for all crops and all livestock. Total cash receipts are on a calendar year basis and reflect the changes in prices and production of the endogenous crops and livestock categories from their baseline values. To simulate total realized gross farm income, values are needed for the value of non-money income and government payments.

Realized Non-Money Income

The baseline value of home consumption of each livestock category is adjusted for changes in the price of the commodity. The equation for the value of home consumption of hogs (29) is similar to those used for the other livestock categories.

Simulated value of bome consumption = home consumption for hogs t = home consumption for home consumpti for home consumption for

It is assumed that the quantity of each type of livestock consumed on the farm is constant and only its value changes with a change in price. In reality, some change in quantity consumed would also occur with a price change. Since the demand for livestock products consumed on the farm is probably highly inelastic, the assumption is not very restrictive. Perquisites other than livestock consumed on the farm (rental value of dwellings, crops, firewood, and other income) is exogenous. Total realized non-money income is the sum of the value of home consumption for each of the major livestock categories plus the value of other farm perquisites.

Government Payments

Payments for acreage set-aside and deficiency payments, when applicable, are computed separately for each of the model crops. Set-aside payments are calculated for feed grains, wheat, and cotton with relationships similar to equation (30); which is presented in terms of feed grains.

Simulated fg set-	Set-aside	Set-aside payment	
aside payments =	acreage for *	per acre for fg	(30)
m. tons _t	fg m. ac. _t	\$/ac.	

The set-aside levels and payment rates default to baseline levels unless specified by the user. Per acre payment rates may be zero, if set-aside is required for eligibility for other provisions in farm legislation.

Deficiency payments are income support payments paid to farmers and originated with the Agricultural Consumer Protection Act of 1973 and are provided for in the Food and Agricultural Act of 1977. Payments are made only when the average crop price (for the first five months of the marketing year) is less than the target price. Deficiency payments are calculated by the model for corn, grain sorghum, barley, wheat and cotton.

The procedure for determining the deficiency payment for each of the five crops is similar and is presented here for the case of corn. The

first step is to determine the deficiency payment rate. By law, the payment rate is the lesser value of 1) the difference between target price and average market price, and, 2) the difference between target price and loan rate (31).

 $\begin{array}{ccc} & & & & & & \\ \text{Corn target price}_{t} & - & \text{Corn average market price}_{t} \\ \text{deficiency} & = & & & & \\ \text{payment rate}_{t} & & & & & \\ \text{Corn target price}_{t} & - & \text{Corn loan rate}_{t} \end{array}$ (31)

The total deficiency payment is the product of the deficiency payment rate, the program acreage, the farm program yield, and the fraction of farmers participating in the program (32).

Corn	Corn		Corn		Corn farm		Fraction of
<pre>deficiency =</pre>	deficiency	*	program	*	program	*	corn farmers
payment t	payment rate t		acreage t		yield t		in program _t (32)

The baseline values for target price, loan rate, program acreage, farm program yield, and fraction of farmers in the program are used in (32) to determine deficiency payments unless the user provides alternative values. Deficiency payments for corn, grain sorghum, barley, wheat and cotton are summed to obtain total government deficiency payments paid to farmers.

To accurately simulate the deficiency payment provision in the Food and Agricultural Act of 1977, the model explicitly considers the specified target prices for corn, grain sorghum, barley, wheat, and cotton for 1978 and a procedure for adjusting these values over time, based on changes in the variable cost of production (or total production costs excluding land and general overhead costs). The procedure is the same for all crops in the model and is demonstrated here for corn (33).

Corn	Corn		Variable		Variable		
target =	target	+	cost of	-	cost of		(33)
price _t	price _{t-1}		production t-1		production t-2		

As indicated by equation (33), the target price is increased over the previous years level if there is an increase in the variable cost of production.

Aggregate Production Expenses

Total variable production expense for the individual model crops (feed grains, wheat, soybeans, and cotton) is calculated by equation (11), which was presented earlier. Total variable production expense for the model crops is the sum of the expense levels for the four crops.

The total variable production expense for producing livestock is calculated as the sum of feed and non-feed variable costs. Feed costs are disaggregated into the following feed types: protein feed grains, wheat, and roughage. Protein feed costs are calculated in equation (34) based on by-product feeds fed to all livestock which was computed earlier in the model.

Protein feed	Simulated Soybean	
costs to	= by-product * meal	(34)
livestock _t	feed demands, price,	

In assigning a cost to the livestock sector for protein feed, all byproduct feeds (soybean meal, cottonseed meal, animal proteins, grain protein feeds and other by-product feeds) are costed out using the price of soybean meal. Feed grain feed cost for producing all livestock is the cost of feed grains fed to livestock on the farm where it is grown plus the cost of feed grains purchased and fed to livestock (35).

$$Fg feed costs to = \begin{cases} calculated fraction price of \\ fg fed to * of fg * feed \\ livestock_t sold_t grains_t \end{cases} + \begin{cases} calculated \\ fg fed to \\ livestock_t \end{cases}$$

$$* \left(1.0 - of fg \\ sold_t \end{array} \right) * \frac{fg variable cost of production_t}{fg yield per acre_t} \end{cases}$$
(35)

The portion of feed grains fed to livestock on the farm where it is raised is valued at its variable production cost per bushel while the portion that is purchased and then fed to livestock is valued at the average market price. The user may reprogram to value home-grown grain to include a portion of fixed costs by increasing variable cost by a specified percentage, say 25 percent.

The cost of wheat fed to all livestock categories is the market value of wheat times the quantity of wheat fed to livestock (36).

It is assumed that all wheat fed to livestock is purchased in the market. Hence, the wheat feed costs are not separated into two costing components.

Total roughage cost for all livestock production is computed as the sum of the cost of roughage fed to livestock on the farm where it is grown and the cost of roughage purchased and fed to livestock (37). $\begin{array}{l} \text{Roughage feed} \\ \text{costs for} \\ \text{livestock}_{t} \end{array} = \left\{ \begin{array}{l} \text{roughage} & \text{fraction of price} \\ \text{fed to} & * \text{roughage} & * \text{ of} \\ \text{livestock}_{t} & \text{purchased}_{t} & \text{hay}_{t} \end{array} \right\} \\ + \left\{ \begin{array}{l} \text{roughage} \\ \text{fed to} \\ \text{fed to} \\ \text{livestock}_{t} \end{array} \right\} \left(\begin{array}{l} \text{fraction of} \\ 1.0 - \text{roughage} \\ \text{purchased}_{t} \end{array} \right) \left(\begin{array}{l} \text{variable production} \\ * \text{ cost of} \\ \text{roughage}_{t} \end{array} \right\} \end{array} \right\}$ (37)

The portion of roughage that is purchased is costed out to the livestock sector at the market price for hay. The portion fed to livestock on the farm where it is grown is valued at the variable cost of producing hay.

Non-feed variable production expenses for livestock include salt, mineral supplements, and veterinarian expenses. As the price of livestock increases and the marginal value product of livestock output increases, farmers are willing to spend more for non-feed costs. The nonfeed cost in terms of dollar per unit is computed for each livestock category by relationships similar to equation (38), which is demonstrated here for hogs.

Simulated non-feed cost of = feed cost of * $\begin{bmatrix} 1.0 + (elasticity of non-feed cost for hogs wrt own price feed cost feed co$ (38)% change in * hog price from baseline

The baseline non-feed cost (\$/unit of production) is adjusted slightly upward for increases in the own livestock price from its baseline level and slightly downward when the own livestock price is less then the baseline. The default non-feed expense per unit elasticities are presented in Table XII. Total non-feed costs for livestock production (39) is the sum of the seven livestock production levels times their respective non-feed costs per unit of production.

79

TABLE XII

Elasticity of Non-Feed Cost For	Own Livestock Price t
Cattle and Calves wrt	0.100
Hogs _t wrt	0.020
Sheep and Lambs wrt	0.005
Chickens wrt	0.001
Turkeys wrt	0.001
Eggs _t wrt	0.001
Milk Cows _t wrt	0.001

ELASTICITY OF NON-FEED COSTS FOR LIVESTOCK PRODUCTION IN THE MODEL

Source: Appendix A, Section 5 of Ray and Richardson (1978).

Total non-feed
costs for =
$$\begin{pmatrix} \text{cattle and non-feed costs} \\ \text{calf pro- * of cattle and} \\ \text{duction}_{t} & \text{calves}_{t} \end{pmatrix} + \begin{pmatrix} \text{hog} \\ \text{pro-} \\ \text{duction}_{t} \\ \text{duction}_{t} \end{pmatrix} + \begin{pmatrix} \text{sheep non-feed} \\ \text{produc- * costs of} \\ \text{tion}_{t} & \text{sheep}_{t} \end{pmatrix} + \begin{pmatrix} \text{chicken non-feed} \\ \text{pro- * costs for} \\ \text{duction}_{t} & \text{chickens}_{t} \end{pmatrix} + \begin{pmatrix} \text{chicken starter} \\ \text{pro- * costs for} \\ \text{duction}_{t} & \text{chickens}_{t} \end{pmatrix} + \begin{pmatrix} \text{milk} \\ \text{produc- * costs for} \\ \text{torn}_{t} & \text{eggs}_{t} \end{pmatrix} + \begin{pmatrix} \text{milk} \\ \text{produc- * costs for} \\ \text{torn}_{t} & \text{eggs}_{t} \end{pmatrix} + \begin{pmatrix} \text{milk} \\ \text{produc- * costs for} \\ \text{milk}_{t} \end{pmatrix}$$

Total variable production expenses for livestock production is the sum of feed grains feed costs, protein costs, roughage costs, and nonfeed variable production costs.

Total variable production costs for model crops and livestock is the sum of total variable production costs for the four crops and the seven livestock categories, less double accounting of feed grains, soybeans, and wheat. "Double accounting" equations compute the portion of crop production expenses that was counted as feed expense for livestock. In the case of feed grains, the double counting adjustment is computed as the product of the variable production expense for producing a ton of feed grains and the tonnage of feed grains fed to livestock (equation (40)).

 $\begin{array}{l} Fg \ double \\ accounting \\ adjustment_{t} \end{array} = \begin{array}{c} Fg \ variable \ production \\ expense \ per \ acre_{t} \\ \hline Yield \ per \ acre_{t} \end{array} + \begin{array}{c} Fg \ fed \\ to \\ livestock_{t} \end{array} \tag{40}$

The double accounting adjustment is calculated similarly for the other grain crops.

81

Total farm production expenses is the sum of variable production expenses for all model crops and livestock (adjusted for double accounting), the production costs of other livestock and crops not included in the model and total fixed costs of production. The total fixed costs and production expenses for other livestock and crops are exogenous to the model.

Aggregate Net Farm Income

Several measures of aggregate farm income and government payments are computed by the model. Total market and government receipts is the sum of total cash receipts for all crops and livestock and total government payments. Total government payments to farmers is the sum of setaside payments for all crops, total deficiency payments for all model crops, and other direct government payments to farmers (wool' growers, bee keepers, disaster payments, sugar program, etc.). Realized gross farm income is the sum of total market and government receipts and total realized non-money income. Realized net farm income is the difference between realized gross farm income and total farm production expenses.

CHAPTER IV

RESULTS OF USING CONTROL THEORY TO ANALYZE

SELECTED FARM PROGRAMS

Farm Programs Selected for Analysis

Four farm programs are analyzed using the Control Theory Option in POLYSIM, to demonstrate the use of the technique for selecting values of particular farm policy variables. The farm programs analyzed are the following: No. 1 a price and income support program, No. 2 a price and income support program with voluntary acreage set-aside, No. 3 a price support and acreage set-aside program with a grain reserve provision, and No. 4 a price and income support program with voluntary acreage setaside and increased export demands for feed grains, wheat and cotton during the first year simulated. Each farm program is analyzed for the four year period of 1978-1981. A four year horizon is used because farm programs are usually written for a four year period. And the additional computer costs associated with adding more years to the problem become restrictive.

Farm program No. 1, a price and income support program, guarantees feed grain, wheat and cotton farmers a minimum price they will receive for their products and a minimum income they will receive for their elegible production. The loan rate is the mechanism used to establish the minimum price participating farmers will receive. If production is

sufficiently large to cause average prices to fall below the loan rate the Commodity Credit Corporation (CCC) is authorized to make loans to farmers, using their crops, valued at the loan rate, as collateral. In the event that prices continue to be low, the farmer can turn the collateral over to the CCC and the loan is considered paid. The income support is a direct payment to farmers, in the form of a deficiency payment, to make up the difference between the price participating farmers get for their crops in the market and the target price established in the farm program. The deficiency payment is paid according to the formula described in Chapter III. For program No. 1, the control mechanism selects values for the loan rates and target prices of feed grains, wheat and cotton that maximize the performance measure in Table IV. The loan rates and target prices must be contained within the upper and lower boundary constraints for these controls (Tables I and II).

Farm programs No. 2 and 4 have the price and income support provisions found in program No. 1 and in addition have an acreage set-aside provision. Acreage set-aside programs usually require that participating farmers divert a percent of their land to soil conserving uses. Farmers complying with the voluntary acreage set-aside requirements are then eligible for price and income supports, as well as, a payment for diverting the land. A non-zero payment rate for acreage set-aside is used to insure participation in the programs. The control mechanism selects acreage set-aside levels and loan rates for feed grains, wheat and cotton that maximize the performance measure in Table IV. The loan rates and acreage set-aside levels must be within the upper and lower boundary constraints for these control variables (Tables I and III). Target price

levels approved for the 1977 Agricultural Act are used as the target prices in programs No. 2 and No. 4, for the income support provision.

Based on the projections of commodity analysts in the USDA, the ending year carryovers of feed grains, wheat and cotton are expected to increase annually over the next four years from their relatively high levels in 1976 and 1977. Given this prospect, the acreage set-aside control variables for farm program No. 2 will most likely be set by the control mechaism at relatively high levels in an attempt to reduce ending year carryovers for feed grains, wheat and cotton to the upper boundary levels specified in the performance measure (Table IV). The situation is made slightly more complicated for program No. 4 by assuring higher 1978 exports then is assumed in running No. 2 and thereby reducing the excess supply in the first year simulated. The control mechanism can determine the acreage set-aside levels for feed grains, wheat and cotton that maintain ending year carryovers of these crops within the desired levels, rather than determining set-aside levels that would reduce the ending year carryovers to the maximum allowable levels.

A grain reserve program, No. 3, is analyzed to demonstrate how control theory can be used to select loan rates and acreage set-aside levels for feed grains, wheat and cotton that cause the CCC to maintain a fixed reserve of grains. A grain reserve of 20 million tons of feed grains and 500 million bushels of wheat is assumed to be established in 1977 by the CCC and the performance measure is modified slightly to encourage the CCC to hold the stocks over the four year period simulated, 1978-1981. The control variables, loan rates and set-aside levels for the three crops, are constrained to the upper and lower boundary constraints for these variables (Tables I and III).

Data Requirements

The POLYSIM model requires a reference baseline of forecasted data. The baseline must include projections of commodity supplies, prices and utilization, as well as aggregate values for receipts and costs. Commodity specialists in ERS develop the five-year projections used in POLYSIM using formal and informal forecasting models tempered with their own experienced judgments. The projections contain explicit assumptions concerning the rates of change in population, per capita incomes, consumer preferences, export demand, technology (including crop yields and livestock gains), and other supply and demand shifters. These projections also assume a specific set of Government farm programs. The particular baseline used for this study is the July 1977 baseline and assumes continuation of the 1973 Agricultural Act through 1982.

For the farm programs analyzed in this study, it was necessary to provide program participation rates, set-aside payment rates, slippage rates, acreage allotments and farm program yields. Values for these policy variables used in this study are presented in Table XIII.

The participation of feed grain, wheat and cotton farmers in a farm program that offers both price and income supports (program No. 1) is expected to be quite high, say 95 percent (Table XIII). On the other hand, a farm program that requires acreage set-asides to be eligible for price and income supports (program No. 2 and No. 4) is likely to have lower participation rates. The participation rates for programs No. 2 and No. 4 are assumed to be: 0.65 for feed grains, 0.80 for wheat and 0.80 for cotton. The relatively low target prices for corn used in programs No. 2 and No. 4 were assumed to reduce participation of corn producers to about 0.50 thus reducing the value for all feed grains.

TABLE XIII

		Farm Progra	ıms
		·····	No. 3 Price
	No. 1	Nos. 2 & 4	Support & Acre-
	Price	Price and	age Set-Aside
	and	Income Support	with a Grain
	Income	with Acreage	Reserve
Variable and Crop	Support	Set-Aside	Program
Program Participation $Rate^{1}$			
Feed grains	0.95	0.65	0.80
Wheat	0.95	0.80	0.80
Cotton	0.95	0.80	0.80
2 2			
Set-Aside Payment Rates		FD (D	
Feed grains		53.43	53.43
Wheat		32.23	32.23
Cotton		78.26	/8.26
Slippage Rate			
Feed grains		0.40	0.40
Wheat		0.40	0.40
Cotton		0.40	0.40
Acreage Allotments ¹			×.
Feed grains	76.0	76.0	
Wheat	56.9	56.9	
Cotton	10.0	10.0	
Farm Program Yields ³			
Feed grains	2.06	2.06	
Wheat	31.00	31.00	
Cotton	480.00	480.00	

PREDETERMINED VALUES OF PROGRAM PARTICIPATION RATES, SET-ASIDE PAYMENT RATES, SLIPPAGE RATES, ACREAGE ALLOTMENTS, AND FARM PROGRAM YIELDS USED FOR FOUR FARM PROGRAMS

 1 Values for 1978, 1979, 1980 and 1981 are equal to the value reported here.

 2 The set-aside payment rates reported here are for 1978, values for 1979, 1980 and 1981 are obtained by inflating the 1978 value by two percent per year.

³The farm program yields reported here are the 1978 values for feed grains and wheat. Feed grain farm program yields are increased by 0.03 ton per acre each year to obtain values for 1979, 1980 and 1981. Wheat farm program yields are increased 0.5 bushels per acre to obtain values for 1979, 1980 and 1981. Cotton farm program yields in 1979, 1980 and 1981 are equal to the value reported in the table for 1978.

Set-aside payment rates can be determined several ways, by sealed bids from individual farmers, by using the total fixed costs of owning the land and machinery to operate it, and by using the total fixed charges for the land. In this study, the set-aside payment rate for each crop is determined as the sum of total general overhead costs, total machinery ownership costs, and 20 percent of the interest and tax charges on the land. Using the average cost of production data provided by the Congressional Agricultural Committee (1977) and the formula above, the per acre set-aside payment rate for feed grains, wheat and cotton is about \$52.38, \$31.59, and \$76.73, respectively in 1977. (The set-aside payment rate for feed grains is a weighted average of the payment rate for corn, sorghum, and barley.) The per acre set-aside payment rates for 1978, reported in Table XIII, are obtained by increasing the 1977 values by two percent.

Slippage is the portion of each acre of set-aside that does not actually result in reducing production, due to farmers declaring their least productive land as set-aside and farmers using variable resources more intensively on the land in cultivation to increase production. Tweeten (1970) reports that prior to 1970 the slippage rate for feed grains was about 0.40 meaning that for each acre of set-aside, production was reduced by only 0.6 acres. Garst and Miller (1975) report the slippage rate for wheat at 0.39 during 1960-1970, and being as high as 0.59 between 1971 and 1974. The slippage rates selected for the acreage set-aside provisions in programs No. 2, No. 3 and No. 4 are 0.40 for feed grains, wheat and cotton (Table XIII).

Acreage allotments or program acreages for feed grains, wheat and cotton are used to calculate deficiency payments. The acreage allotments

in the July baseline are at 76.0 million acres for feed grains, 56.9 million acres for wheat and 10.0 million acres for cotton for farm programs No. 1, No. 2, and No. 4. The baseline values for allotments are used in this study to allow comparisons of deficiency payments in the baseline to those calculated for farm programs No. 1, No. 2, and No. 4 (Table XIII). Farm program yields (or administrative yields) of feed grains, wheat and cotton are used in computing deficiency payments for programs No. 1, No. 2, and No. 4 (Table XIII).

Consideration and Results of Applying Optimal

Control Techniques to Farm Policy

Each of the farm programs selected for this study are evaluated with respect to the lower range performance measure presented in Table IV. A detailed description of how Box's Complex Procedure solves an optimal control theory problem is presented in Appendix A. In general, the control mechanism systematically searches the surface of the performance measure for its global maximum, by iteratively selecting control paths that increase the value of the performance measure. The solution is at a maximum when a change in any control variable results in reducing the value of the performance measure. The control path associated with the maximum value of the performance measure is the optimum set of values for the control variables.

To insure that the final solution is at the global maximum for the given performance measure, the problem should be run several times. Each time a different set of initial values for the control variables should be used so the procedure is forced to search a different set of control paths. If the procedure returns the same answer each time, the analyst

can be fairly certain of having found the global maximum. The four farm programs evaluated for this study were each run three times to determine whether or not a global maximum had been located.

In the Complex Procedure, the performance measure is evaluated each time the control mechanism selects a new control path. To evaluate the performance measure, the new control path is used as input data in the POLYSIM model, and the model is simulated over the four year period, 1978-1981. Simulated values of the output variables in the model are used in the performance measure to obtain a unique real number for evaluating the new control path. The output variables in the performance measure are annual values for realized net farm income, net income for livestock producers, consumer's food expenditures, total government payments, total Commodity Credit Corporation (CCC) interest and storage costs, and the ending year carryovers of feed grains, wheat and cotton (Table IV).

The performance measure includes values for the output variables over the 1978-1981 period so the control mechanism must consider the immediate impacts, as well as the longer run impacts on the output variables when selecting values for the control variables. The control mechanism tries to raise net farm income as high as possible over the four year period while at the same time trying to minimize penalties that accrue when other output variables go outside their acceptable ranges. The control mechanism considers one unit of added income (or penalty) in 1978 equal to one unit of added income (or penalty) in 1979, 1980, or 1981 since the parameter weights are not discounted for time. The optimal solution often results in a trade-off between the added value of net farm income and a change in one or more other output variables; meaning that net farm

income could go higher but only by incurring an added penalty due to one or more of the other output variables being outside their respective boundary levels.

For the control mechanism to maximize the performance measure used in this study it must select values for the control variables (loan rates, target prices and acreage set-aside levels for feed grains, wheat and cotton in 1978-1981) with respect to their estimated impacts on the state variables in POLYSIM and the output variables in the performance measure. Both immediate impacts (one year) and longer run impacts (two or more years) are considered by the control mechanism.

In each of the four farm programs selected for the analysis the control mechanism must select optimal values for loan rates of wheat, corn and cotton. To select a value for wheat loan rate in 1978, as well as the longer run impacts in 1979-1981, on the state variables in the model and particularly the impacts on the output variables. The immediate impacts on the following state variables must be considered: the market price of wheat, quantity of domestic and export demands, and wheat cash receipts, as well as, their impacts on the output variables in the performance measure. The longer run impacts that must be considered are impacts on state variables such as: harvested acreage and supply of wheat, feed grains, cotton and soybeans, wheat yields, market prices of wheat, feed grains, cotton and soybeans, the quantity of domestic and export demands for the four model crops and cash receipts for all four model crops, because of their linkages to the output variables.

To select a value for the corn loan rate in 1978 the control mechanism must consider the immediate impacts (1978) on the following state variables: the market price for corn and the other feed grains, export

and domestic demands for feed grains, feed grains cash receipts, and livestock feed costs, because of the linkages between these state variables and the output variables in the performance measure. Also, the control mechanism must consider the longer run impacts (1979-1981) on the following state variables: livestock production, prices and cash receipts, harvested acreage for feed grains, wheat, soybeans and cotton, feed grain yields, supplies and prices of the four model crops, domestic and export demands for the model crops, total cash receipts for crops and livestock, and livestock feed costs due to their linkages for farm income, government payments, CCC costs, food costs and ending year carryovers for the four model crops.

The above discussion assumes only the selection of the 1978 loan rates to illustrate the linkages in POLYSIM. Actually, the control mechanism simultaneously selects values for the loan rates of corn, wheat and cotton in 1978, 1979, 1980 and 1981, after considering the impacts of the loan rates on the output variables in the performance measure. The immediate and longer run interrelationships described above for 1978 thus become confused with the immediate and longer run impacts due to selecting loan rates in each of the remaining years.

In addition to selecting values for the loan rates in farm programs No. 2, No. 3, and No. 4, the control mechanism also selects the acreage set-aside levels for feed grains, wheat and cotton in 1978, 1979, 1980 and 1981. The immediate impacts that the control mechanism must consider are the same as those for changing the loan rate, as well as, the impacts on: harvested acreage, production and supply for each of the three crops. The longer run impacts considered by the control mechanism in selecting

acreage set-aside levels are the same as those considered when selecting values for the loan rates of the three crops.

In farm program No. 1 the control mechanism selects the target prices as well as loan rates for corn, wheat, and cotton in each of the four years simulated. When selecting target price values, the control mechanism considers the loan rates and market prices for the respective crops, as well as the resulting values of total government payments and realized net farm income in each of the four years simulated. The deficiency payment rate is the smaller of target price minus loan rate or target price minus the market price. Since acreage allotments, farm program yields and program participation rates are fixed for each of the crops, the deficiency payment rate is the only degree of freedom the program has in determining the level of total deficiency payments. The target prices are usually set as high as possible without making total government payments exceed the \$3,700 million upper boundary level in the performance measure. The reason for this action is that higher government payments cause realized net income to increase without increasing food costs, changing ending year carryovers for the model crops and without decreasing net incomes for livestock producers.

The control mechanism selects values for all of the control variables simultaneously, after considering the immediate and the longer run impacts of its selections on the output variables in the performance measure. The optimal control paths for the farm policy variables, in the four farm programs selected for evaluation in this study, are presented in the following sections.

Results for Farm Program No. 1

For program No. 1, the control mechanism selects the values of loan rates and target prices for feed grains, wheat and cotton that maximize the performance measure (lower range weights) in Table IV. The optimal values of the control variables, and simulated values for selected state variables in the final solution, are presented in Table XIV. Given farm program No. 1 and the performance measure presented in Table IV, the optimal loan rates for wheat are: \$2.01, \$2.21, \$2.43, and \$2.68 in 1978, 1979, 1980 and 1981, respectively (Table XIV). The optimal wheat loan rates are higher than the baseline values for 1980 and 1981, but lower than the baseline in 1978 and 1979. Corn and cotton loan rates selected by the control mechanism are lower than the baseline values in all four years.

The corn loan rates are set just below the calculated corn price in all four years, to prevent the CCC loan actions from raising the price of corn and resulting in higher livestock feed costs and lower net returns for livestock producers. Also, higher corn prices would have caused an increase in the cost of consumer's expenditures for food by reducing livestock production and increasing the prices received for livestock. On the other hand, loan rates for wheat are used to support the average price of wheat in 1980 and 1981 since wheat prices have only minor influence on the consumer's expenditures for food, and raising the price of wheat tends to increase net farm income.

The optimal values of target prices for corn, wheat and cotton are set at their respective lower boundary constraints in 1980 and 1981 (Table XIV). Also, the optimal target prices for cotton in 1978 and 1979

TABLE XIV

OPTIMAL VALUES OF CONTROL VARIABLES AND THE SIMULATED VALUES OF SELECTED STATE VARIABLES FOR FARM PROGRAM NO. 1

			Baseline Values				Simulated Values			
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
CONTROL VARIABLES										
Price Support Levels										
Corn	\$/bu.	2.00	2.00	2.00	2.00	1.83	1.89	1.91	1.91	
Wheat	ds.	2.35	2.35	2.35	2.35	2.01	2.21	2.43	2.68	
Cotton	\$/1b.	.51	.51	.51	.51	. 42	.44	. 48	.50	
Income Support Levels						•		-	Ŧ	
Corn	\$/bu.	2.10	2.21	2.34	2.47	2.26	2.27	2.34 ^L	2.47 ^L	
Wheat	ds.	3.00	3.16	3.34	3.52	3.17.	3.19	3.34	3.52	
Cotton	\$/1b.	. 52	. 55	.58	.61	.52 ^L	.55 ^L	.58 ^L	.61 ^L	
<u>Set-Aside</u>						1. 1				
Feed grains	m. ac.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Wheat	ds.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Cotton	ds.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
STATE VARIABLES										
Hervested Acreage										
Feed grains	m. ac.	107.7	107.7	107.4	107.2	107.7	109.3	109.3	108.6	
Wheat	ds.	70.7	71.1	71.1	71.1	70.7	71.3	71.7	72.7	
Cotton	ds.	11.6	11.4	11.7	11.2	11.6	11.7	11.9	11.4	
Yield										
Feed grains	T./ac.	2.06	2.09	2.12	2.15	2.06	2.09	2.12	2.14	
Wheat	bu./ac.	31 .00	31.50	32.00	32.49	31.00	31.48	32.04	32.74	
Cotton	1b./ac.	480.00	480,00	480.00	480,00	480.00	480.00	478.77	477.34	
Export Levels		/	50 Q .	-	FF (50 4	52 5	54 6	56 6	
Feed grains	m. t.	50.4	52.2	53.7	55.4	1033 2	1068 2	1090.9	1077 2	
Wheat	m. bu.	1025.0	10/0.0	1110.0	1160.0	4 5	4 5	4 5	1077.2	
Cotton	m. bales	4.5	4.5	4.4	4.4	4.5	4.5	4.5	4.5	
Total Utilization					8 88 6	206.2	211 5	223.2	230 5	
Feed grains	m. t.	206.2	213.3	223.0	228.6	1035 2	1950 8	1966 7	1945 8	
Wheat	m. bu.	1925.0	1953.0	1991.0	2049.0	11 6	11 7	11 7	11 0	
Cotton	m. bales	11.6	11.7	11.6	11.8	11.0	11./	11.1	11.3	
Ending Year Carryovers			60 (07 5		70 /	87 7	96.1	98 1	
Feed grains	a. t.	70.4	82.6	8/.5	89.3	1528 8	1826 2	2156 8	2500 0	
Wheat	m. bu.	1539.0	1827.0	2112.0	23/4.0	1320.0	1024.2	21J0.0	4 5	
Cotton	m. bales	4.3	4.2	4.5	4.1	4.3	4.4	4.7	4.5	

		Baseline Values				Simulated Values				
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
	anter and a free a gray company									
CCC Inventory and										
Outstanding Loans						0.0	0.0	0.0	0.0	
Feed grains	m. t.	0.0	0.0	0.0	0.0	28.0	28.9	162 5	693.5	
Wheat	m. bu.	776.0	1130.0	1497.0	1848.0	20.9	20.9	0.0	0.0	
Cotton	m. bales	0.0	0.0	0.0	0.0	0.0	0.0	010		
Commodity Prices	`									
Corn	\$/bu.	2.00	2.00	2.00	2.00	2.00	1.98	1.94	1.93	
Wheat	ds.	2.35	2.35	2.35	2.35	2.31	2.37	2.43	2.66	
Soybeans	ds.	5.60	5.60	5.70	5.80	4.24	4.68	4.92	4.92	
Cotton	\$/1b.	. 54	.55	. 52	. 55	. 54	. 54	.51	.53	
Cattle and Calves	ds.	.42	.45	.49	. 50	.42	.45	.49	. 50	
Hogs	ds.	. 35	.41	.40	. 37	. 35	.41	.40	.37	
Total Government Payments	в. \$	2.019	3 . 549	4.712	5.850	3.650	3.918	4.862	5.732	
Total CCC Storage and Interest Costs	B. \$	0.150	0.310	0.452	0.599	0.150	0.012	0.012	0.065	
Consumer's Food Expenditures	в. \$	188.3	196.8	205.0	214.0	188.3	196.8	204.7	213.4	
Livestock Producer's Net										
Income	в. \$	17.312	18.844	19,967	21.289	17.667	18.955	20.005	21.068	
Realized Net Farm Income	в. \$	18.118	18.949	18.812	19.550	19.186	18.547	18.283	18.621	
Performance Measure									111,999.0	

TABLE XIV (CONTINUED)

¹Optimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted by superscript "U".

²The performance measure for the optimal solution presented here is the lower range performance measure in Table IV.

are equal to their lower boundary constraints. The optimal target prices for the three crops are set to their lower boundaries in an effort to reduce deficiency payments, since total government payments exceed the upper boundary limit in the performance measure (\$3,700 million) in 1979. 1980, and 1981, by \$218 million, \$1,162 million and \$2,032 million, respectively (Table XIV). The control mechanism can select control paths that result in the output variables exceeding their upper boundary levels, if the additional unit increase in the output variable increases net farm income by more than the added penalty decreases the value of the performance measure. In this particular case, the control mechanism could only reduce government payments by increasing the loan rate thus reducing the deficiency payment rates. However, such action would have raised market prices for the crops, resulting in reductions in the quantities demanded for domestic and export use as well as encouraging additional harvested acreage. Taken together these factors would have increased ending year carryovers, thus penalizing the value of the performance measure by more than the high level of government payments.

Harvested acreage for feed grains, wheat and cotton are slightly higher under program No. 1 than the baseline due to the supply response from the slight increase in wheat prices, and the decrease in soybean prices being relatively greater than decreases in either corn or cotton prices (Table XIV). The increase in harvested acreage of wheat and the decrease in the exports of wheat causes ending year stocks of wheat to increase 3.2 percent over the baseline, for the four year period. (Wheat exports are less than the baseline because of higher wheat prices in the last three years.) Ending year carryovers for feed grains and cotton increase 6.8 percent and 5.4 percent, respectively, over the baseline

values due to the increases in production being slightly greater than increases in demand for these crops. Production increases over the baseline values due to increases in harvested acreage of feed grains and cotton are a result of prices for these crops being slightly below the baseline values.

Simulated values of realized net farm income for farm program No. 1 are less than those for the reference baseline in 1979, 1980, and 1981 (Table XIV). Over the four year period simulated values for realized net farm income are less than the baseline by about one percent. The optimal control path for farm program No. 1 results in realized net farm income being less than the baseline values even though the performance measure seeks to maximize net farm income. The reason for the lower farm income is that the program also took into consideration the control path's impacts on consumer's food expenditures, the levels of ending year carryovers for the crops, total CCC storage and interest costs and the levels

Results for Farm Program No. 2

Farm program No. 2 is a price and income support program with a voluntary acreage set-aside provision to enable the government to reduce harvested acreages for feed grains, wheat and cotton. The control mechanism selects the optimal loan rates and acreage set-aside levels for feed grains, wheat and cotton in 1978, 1979, 1980 and 1981. The optimal solution of the performance measure, in Table IV (low range parameter weights), for farm program No. 2 is presented in Table XV. The value of the
TABLE XV

		Baseline Values				Simulated Values				
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
TONTON WADTADIDO										
Dates Support Lougle										
Frice Support Levers	e/1	2 00	2 00	2 00	2 00	1.80	1.82	1.82	1.84	
Uhoat	37 bu.	2.00	2.00	2.00	2.00	2.18	2.21	2.39	2.39	
Catton	ds.	2.35	2.33	2.33	2.55	.47	.49	. 51	. 53	
Cotton	\$710.	• 51	• 21	• • • •	.51		• • • •	•••		
Income Support Levels										
Corn	\$/bu.	2.10	2.21	2.34	2.47	2.10	2.21	2.34	2.47	
Wheat	ds.	3.00	3.16	3.34	3.52	3.00	3.16	3.34	3.52	
Cotton	\$/1Ь.	. 52	. 55	.58	.61	.52	.55	.58	.61	
Set-Aside										
Feed grains	m. ac.	0.0	0.0	0.0	0.0	9.9.	19.9.	19.6.	18.1	
Wheat	ds.	0.0	0.0	0.0	0.0	24.7	24.8	24.80	24.6	
Cotton	ds.	0.0	0.0	0.0	0.0	3.20	3.30	3.0	2,5	
ootton										
STATE VARIABLES										
Harvested Acreage										
Feed grains	m. ac.	107.7	107.7	107.4	107.2	101.8	97.3	97.8	97.9	
Wheat	ds.	70.7	71.1	71.1	71.1	55.9	56.7	57.6	58.2	
Cotton	ds.	11.6	11.4	11.7	11.2	9.7	10.0	10.8	10.5	
Vield										
Feed grains	T. /ac.	2.06	2.09	2.12	2.15	2.06	2.10	2.15	2,19	
Wheat	hu /ac	31.00	31.50	32.00	32.49	31 00	31.61	32.42	33.15	
Cotton	1b./ac.	480.00	480.00	480.00	480.00	480.00	488.69	497.08	500.56	
Run out Louola						•				
Export Levels		50 4	52 2	53.7	55.4	49.3	49.1	49.2	50.1	
reed grains	 	1025 0	1070 0	1110.0	1160.0	991.0	933.1	910.9	926.6	
Wheat	m. bu.	1025.0	10/0.0	4.4	4.4	4.2	4.0	3.9	3.9	
Cotton	m. Dales	4.5								
Total Utilization								200 9	21/ 9	
Feed grains	m. t.	206.2	213.3	223.0	228.6	204.6	204.6	209.8	214.8	
Wheat	m. bu.	1925.0	1953.0	1991.0	2049.0	1884.0	1/86.9	1/4/.5	1/61.9	
Cotton	m. bales	11.6	11.7	11.6	11.8	11.2	11.0	10.8	11.1	
Ending Year Carryovers										
Feed grains	n . t.	70.4	82.6	87.5	89.3	59.9	59.9	60.3	60.1	
Wheat	m bu	1539.0	1827.0	2112.0	2374.0	1119.9	1125.4	1247.5	1417.3	
Cattan	m halee	4.3	4.2	4.5	4.1	2.7	2.1	2.6	2.6	

OPTIMAL VALUES OF CONTROL VARIABLES AND THE SIMULATED VALUES OF SELECTED STATE VARIABLES FOR FARM PROGRAM NO. 2

		Baseline Values					Simulated Values			
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
				······································						
CCC Inventory and										
Outstanding Loans				0.0	0.0	0.0	0.0	0.0	0.0	
Feed grains	m. t.	0.0	11 20 0	1/07 0	1848 0	0.8	0.0	0.0	0.0	
Wheat	m. bu.	//6.0	1130.0	1497.0	0.0	0.0	0.0	0.0	0.0	
Cotton	m. bales	0.0	0.0	0.0	0.0					
Commodity Prices			*			2 00	2 21	2 26	2 27	
Corn	\$/bu.	2.00	2.00	2.00	2.00	2.09	2.21	3.00	3.03	
Wheat	ds.	2.35	2.35	2.35	2.35	2.31	4 83	6.00	6.28	
Soybeans	ds.	5.60	5.60	5.70	5.80	4.32	4.05	.61	.63	
Cotton	\$/1Ъ.	.54	.55	.52	•00	.01	. 46	.51	. 52	
Cattle and Calves	ds.	.42	.45	.49	.30	. 35	. 42	.43	.40	
Hogs	ds.	.35	.41	.40	. 37	• 55	• ••	• • •		
Total Government Payments	в. \$	2.019	3.549	4.712	5.850	3.180	3.460	3.680	4.266	
Total CCC Storage and										
Interest Costs	в. \$	0.150	0.310	0.452	0, 59 9	:0.150	0.017	0.0	0.0	
Consumer's Food Expenditures	в. \$	188,3	196.8	205.0	214.0	188.3	197.7	207.1	216.5	
Livestock Producer's Net	в¢	17.312	18.844	19,967	21,289	17,345	18,848	20,668	22,420	
Income	D. 9	1, 1, 112	23.044							
Realized Net Farm Income	в. \$	18.118	18.949	18.812	19.550	18.874	18.913	19,926	21,589	
Performance Measure									127,968.0	

TABLE XV (CONTINUED)

¹Optimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted by superscript "U".

²The performance measure for the optimal solution presented here is the lower range performance measure in Table IV.

performance measure for the optimal solution is 127,968. The optimal loan rates for corn, wheat and cotton are less than the average prices of the respective crops. So the loan rates for the three crops do not influence the average prices received by farmers and could be set to their respective lower boundary constraints without appreciably changing the solution.

Target prices for corn, wheat and cotton are predetermined, at their respective levels established in the 1977 Agricultural Act, for this farm program. By fixing the target prices, allotted acreage and farm program yields the deficiency payment is completely determined once loan rates and market prices are known. When the market price is greater than the loan rate, as in Table XV, the deficiency payment rate is the target price minus the market price. As the market price is brought closer to the target price, the deficiency payment approaches zero. This relationship partially explains why acreage set-aside is used to raise the average market price for corn, wheat and cotton to relatively high levels (Table XV).

Optimal acreage set-aside levels for wheat are equal to the upper boundary constraints for wheat (about 24.8 million acres) in all four years simulated (Table XV). The optimal acreage set-aside levels for cotton equal the upper boundary constraint (about 3.2 million acres) in the first two years simulated, 1978 and 1979. While the acreage set-aside levels for feed grains (about 20 million acres) are about one half as large as their upper limits of 37.7 million acres. High levels of setaside for wheat are used in the solution because they reduce wheat production causing the average market price of wheat to increase which reduces the deficiency payments for wheat. Another reason for the high

levels of acreage set-aside for wheat is to decrease the ending year carryovers of wheat to the upper limit specified in the performance measure (1200 million bushels).

Acreage set-aside levels for feed grains are sufficiently high each year to reduce the ending year carryovers of feed grains to about 60 million tons, the upper limit in the performance measure for this output variable. To achieve this goal the optimal quantity of feed grain acreage diversion changes from year to year; it is 10 million acres in 1978, 20 million in 1979 and 1980, and 18 million in 1981 (Table XV). Higher levels of feed grain set-aside are not used since they do not improve the value of the performance measure after once reducing carryovers to 60 million tons. Also, higher levels of feed grain set-aside would reduce the value of the performance measure by increasing corn prices which result in decreases in net incomes for livestock producers and in the following year result in increases in consumer expenditures for food. Acreage set-aside levels for cotton cause the ending year carryovers of cotton to be reduced to the acceptable range of 2.0 to 4.0 million bales, in the performance measure. The resulting prices of cotton are greater than the target price for cotton thus reducing the deficiency payments for cotton to zero (Table XV).

Government payments for farm program No. 2 are less than the \$3,700 million limit imposed on the performance measure, in all but the last year simulated when government payments are \$4,266 million (Table XV). Total government payments could not be decreased to the \$3,700 million limit in the last year simulated because higher wheat set-aside is not possible, higher cotton set-aside only increases cotton payments for set-aside since no deficiency payments are paid for cotton and higher

levels of acreage set-aside for feed grains result in higher corn prices which cause an immediate reduction of net income to livestock producers and thus reduce the value of the performance measure.

In the aggreagate, farm program No. 2 tends to increase both net income for livestock producers and total realized net farm income over the values in the baseline (Table XV). Realized net farm income is increased 10.4 percent in 1982 over its baseline value and the average increase over the four year period is about five percent. The optimal levels of acreage set-aside for feed grains, wheat and cotton in farm program No. 2 result in moderate increases in consumer's food expenditures over the baseline. Over the four year period, total consumer's food costs are estimated to increase about 0.7 percent over the baseline values.

Results for Farm Program No. 3

Farm program No. 3 is a price support and acreage set-aside program with a grain reserve provision. The control variables for the farm program are loan rates and acreage set-aside levels for feed grains, wheat and cotton in 1978, 1979, 1980 and 1981. The optimal values for the control variables in farm program No. 3 are presented in Table XVI. Farm program No. 3 includes a grain reserve provision that encourages the CCC to hold 20 million tons of feed grains and 500 million bushels of wheat. The CCC reserve of feed grains and wheat is assumed to be acquired in 1977. The objective is to determine loan rates and acreage set-aside levels that maximize the performance measure (lower range of weights) in Table IV, subject to the added constraint of maintaining the initial level of grain reserves from 1978 through 1981. The CCC release rule used for farm program No. 3 is the following: release CCC held reserves if the

TABLE XVI

OPTIMAL VALUES OF CONTROL VARIABLES AND THE SIMULATED VALUES OF SELECTED STATE VARIABLES FOR FARM PROGRAM NO. 3

		Baseline Values				Simulated Values			
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981
CONTROL VARIABLES									
Price Support Levels									
Corp	\$/bu	2.00	2.00	2 00	2 00	1.80	1.94	2.10	2.18
Wheat	de.	2.35	2.35	2.00	2.00	2.23	2.26	2.44	2.46
Cotton	\$/1b.	.51	.51	.51	.51	. 38	. 38	.42	.46
Income Support Levels ·									
Corn	\$/bu.	2.10	2.21	2.34	2.47	0.0	0.0	0.0	0.0
Wheat	ds.	3.00	3.16	3.34	3.52	0.0	0.0	0.0	0.0
Cotton	\$/1b.	. 52	. 55	.58	.61	0.0	0.0	0.0	0.0
Set-Aside									
Feed grains	m. ac.	0.0	0.0	0.0	0.0	11.8 ₁₁	20.9	27.8 ₁₁	31.9
Wheat	ds.	0.0	0.0	0.0	0.0	24.6 ₁₁	24.8 ₁₁	24.8	24.8 ₁₁
Cotton	ds.	0.0	0.0	0.0	0.0	3.2	3.3	3.10	3.2
STATE VARIABLES							•		
Harvested Acreage									
Feed grains	m. ac.	107.7	107.7	107.4	107.2	100.6	96.3	92.9	90.3
Wheat	ds.	70.7	71.1	71.1	71.1	55.9	57.7	58.5	58.6
Cotton	ds.	11.6	11.4	11.7	11.2	9.7	9.9	10.7	10.0
<u>Yield</u>	1								
Feed grains	T./ac.	2.06	2.09	2.12	2.15	2.06	2.10	2.16	2.22
Wheat	bu./ac.	31.00	31.50	32.00	32.49	31.00	31.89	32.71	33.37
Cotton	1b./ac.	480.00	480.00	480.00	480.00	480.00	488.66	497.21	501.24
Export Levels	- •	50 /	52 2	53 7	55 4	69 1	46.9	45.9	46.0
The states	m hu	1025 0	1070 0	1110.0	1160.0	900 4	854.6	857.8	894.0
Cotton	m. bales	4.5	4.5	4.4	4.4	4.2	4.0	3.9	3.8
Total Utilization									
Feed grains	m. t.	206.2	213.3	223.0	228.6	204.2	201.0	201.2	204.3
Wheat	m. bu.	1925.0	1953.0	1991.0	2049.0	1770.6	1688.6	1681.6	1723.5
Cotton	m. bales	11.6	11.7	11.6	11.8	11.2	11.0	10.8	10.9
Ending Year Carryovers		;							
Feed grains	m. t.	70.4	82.6	87.5	89.3	57.8	59.5	59.7	55.8
Wheat	m. bu.	1539.0	1827.0	2112.0	2374.0	1235.2	1385.9	1620.0	1852.6
Cotton	m. bales	4.3	4.2	4.5	4.1	2.7	2.0	2.5	2.1

		Baseline Values				Simulated Values			
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981
CCC Inventory and									
Outstanding Loans		0.0	0.0	0.0	0.0	20.0	20.0	20.0	20.0
Feed grains	m. c.	776.0	1120.0	1/07 0	18/8 0	500.0	500.0	500.0	500.0
Wheat	m. bu.	770.0	1130.0	1497.0	1040.0	0.0	0.0	0.0	0.0
Cotton	m. bales	0.0	0.0	0.0	0.0	010	0.0	.0.0	0.0
Commodity Prices									
Corn	\$/bu.	2.00	2.00	2.00	2.00	2.11	2.37	2.45	2.49
Wheat	ds.	2.35	2.35	2.35	2.35	2.92	3.11	3.11	3.09
Sovbeans	ds.	5.60	5.60	5.70	5.80	4.32	4.88	6.16	6.49
Cotton	\$/1b.	.54	. 55	. 52	.55	.60	.65	.61	.65
Cattle and Calves	ds.	.42	.45	.49	.50	.42	.46	.52	.53
Hogs	ds.	. 35	. 41	.40	. 37	. 35	.42	.45	.41
1085									
Total Government Payments	в. \$	2.019	3.549	4.712	5.850	2.544	3.144	3.359	3.696
Total CCC Storage and									
Interest Costs	в. \$	0.150	0,310	0.452	0.599	0.150	0.253	0.253	0.253
Consumer's Food Expenditures	B. Ş	188.3	196.8	205.0	214.0	188.3	197.9	208.7	218.1
Livestock Producer's Net									
Income	B. \$	17.312	18,844	19.967	21.289	17.169	18.425	21.549	23.232
		10 110	18.0/0	10 010	10 550	10 (/)	10.005		
Realized Net Farm Income	р. Э	10.118	10.949	10.012	19.000	18.041	18.992	21.034	22.911
Performance Measure									123,162.0

TABLE XVI (CONTINUED)

¹Optimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted by superscript "U".

²The performance measure for the optimal solution presented here is the lower range performance measure in Table IV.

average market price exceeds the loan rate by 50 percent and release only the amount of stocks needed to lower the average market price to 150 percent of the loan rate.

Loan rates are not used by the control mechanism to support the market price in this particular farm program since the support action results in the CCC acquiring control of additional stocks. So acreage set-aside is the predominate control variable for farm program No. 3. The optimal acreage set-aside levels for wheat and cotton are equal to the crop's respective upper boundary constraints in each of the four years simulated (Table XVI). Optimal acreage set-aside levels for feed grains range from 12 million acres to 32 million acres over the period simulated (Table XVI). So the feed grain acreage diversion levels are less than the boundary constraints (about 37 million acres); but are larger than the set-aside levels for feed grains in farm program No. 2 (Tables XV and XVI).

The high levels of acreage set-aside for feed grains, wheat and cotton cause the average market prices for these crops to be greater than the respective market prices in the baseline for each of the years simulated (Table XVI). The corn loan rate is increased from year to year but is never greater than the market price and it is never less than the market price by more than 50 percent. So the CCC release and acquisition rule for corn is never activated. A similar situation exists for wheat.

The total government payments for miscellaneous farm programs and acreage set-aside is less than the \$3,700 million upper limit imposed on the performance measure, in each year simulated (Table XVI). The upper limit is almost passed in 1981 with total government payments of

\$3,696 million. Additional acreage set-aside of feed grains is possible in 1981; however, higher levels of set-aside would increase total government payments over the upper limit and penalize the performance measure. Realized net farm income for farm program No. 3 is higher than the baseline values in each year simulated, and over the four years the simulated net farm income is nine percent greater than the baseline.

Results for Farm Program No. 4

The optimal levels of acreage set-aside and loan rates for farm program No. 4 (program No. 2 with increased export demands in 1978) are presented in Table XVII. The quantity of exports in 1978 for feed grains, wheat and cotton is predetermined at a relatively high level, to reduce the ending year carrovers of these crops (Table XVII). The predetermined value of exports equals the baseline export value in 1978, plus the percentage increase in exports between 1971 and 1972 (86 percent for feed grains, 58 percent for wheat and 57 percent for cotton). Target prices for farm program No. 4 are fixed at the baseline levels. The value of the performance measure for the optimal solution of program No. 4 is 131,946.0 as compared to 127,968.0 for farm program No. 2.

The high level of exports in 1978 reduce the ending year carryovers of feed grains, wheat and cotton, thus reducing the need for acreage setaside in 1978 for these crops (Table XVII). Optimal acreage set-aside levels for feed grains and cotton are less than 1.0 million acres in 1978. The resulting ending year carryovers for feed grains and cotton are approximately equal to the lower levels of these state variables in the performance measure, 30 million tons and 2 million bales, respectively (Table XVII).

TABLE XVII

		Baseline Values				Simulated Values				
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
CONTROL VARIABLES										
Price Support Levels		•								
Corn	\$/bu.	2.00	2.00	2.00	2.00	2.10	2.19	2.20	2.20	
Wheat	ds.	2.35	2.35	2.35	2.35	3.00	3.14	3.30	3.48	
Cotton	\$/1b.	.51	.51	.51	.51	.46	.51	.55	.58	
Income Support Levels										
Corn	\$/bu.	2.10	2.21	2.34	2.47	2.10	2.21	2.34	2.47	
Wheat	ds.	3.00	3.16	3.34	3, 52	3.00	3.16	3.34	3.52	
Cotton	\$/1b.	. 52	.55	.58	.61	.52	.55	.58	.61	
Set-Aside										
Feed grains	m. ac.	0.0	0.0	0.0	0.0	0.6	21,1	22.0.	16.7.	
Wheat	ds.	0.0	0.0	0.0	0.0	24.3	24.4	24.8	24.7 ^u	
Cotton	ds.	0.0	0.0	0.0	0.0	0.8	3.3	3.1	2.8	
STATE VARIABLES							•			
Harvested Acreage										
Feed grains	m. ac.	107.7	107.7	107.4	107.2	106.8	99.9	97.2	98.0	
Wheat	ds.	70.7	71.1	71.1	71.1	57.9	58.7	59.3	60.1	
Cotton	ds.	11.6	11.4	11.7	11.2	11.0	12.1	11.0	10.1	
Yield										
Feed grains	T./ac.	2.06	2,09	2.12	2,15	2.07	2.21	2.21	2.22	
Wheat	bu. /ac.	31,00	31.50	32.00	32.49	31.52	32.50	33.14	33.84	
Cotton	1b./ac.	480.00	480.00	480.00	480.00	480.00	551.09	515.42	505.57	
Export Levels		50 (50.0	53 7	55 /	02.9	(1.0	54 9	50.1	
Feed grains	m. t.	50.4	1070 0	1110.0	1160.0	93.0	1060.0	34.2	52.1	
Wheat	m. bu.	1025.0	10/0.0	1110.0	1100.0	1017.3	1009.2	884.9	819.1	
Cotton	m. bales	4.5	4.5	4.4	4.4	7.1	5.4	4.0	4.3	
Total Utilization				222.0	220 6					
Feed grains	m. t.	206.2	213.3	1001 0	220.0	243.1	194.2	214.8	218.5	
Wheat	m. bu.	1925.0	1953.0	1991.0	2049.0	2477.4	1890.9	1689.0	1616.5	
Cotton	m. bales	11.6	11.7	11.0	11.0	13.4	12.1	11.4	11.4	
Ending Year Carryovers		70 (82 C	· 97 5	80.3					
Feed grains	m. t.	70.4	82.0	07.5	2274 0	32.7	59.8	60.0	59.2	
Wheat .	m. bu.	1539.0	1827.0	2112.0	23/4.0	619.4	637.8	915.4	1333.6	
Cotton	m. bales	4.3	4.2	4.5	4.1	1.9	3.8	4.4	3.9	

OPTIMAL VALUES OF CONTROL VARIABLES AND THE SIMULATED VALUES OF SELECTED STATE VARIABLES FOR FARM PROGRAM NO. 4

			Baseli	ne Values	-	Simulated Values				
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981	
CCC Inventory and										
Outstanding Loans		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Feed grains	m. t.	0.0	0.0	0.0	0.0	122.2	122.2	129.8	314.7	
Wheat	m. bu.	//6.0	1130.0	1497.0	1848.0	0.0	0.0	0.5	0.5	
Cotton	m. bales	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	
Commodity Prices										
Corn	\$/bu.	2.00	2.00	2.00	2.00	3.12	2.28	2.23	2.25	
Wheat	ds.	2.35	2.35	2.35	2,35	3.45	3.22	3.30	3.43	
Sovbeans	ds.	5.60	5.60	5,70	5.80	4.46	6.02	6.50	6.01	
Cotton	\$/1b.	.54	.55	. 52	.55	1.07	.55	.54	. 59	
Cattle and Calves	ds.	.42	.45	.49	. 50	.42	.54	. 49	. 52	
Hogs	ds.	.35	.41	.40	. 37	. 35	.56	.40	.40	
Total Government Payments	в. \$	2.019	3.549	4.712	5.850	1.755	3.137	3.600	3.707	
Total CCC Storage and						0.150	0.0/0	0.0/0	0.054	
Interest Costs	B. \$	0.150	0.310	0.452	0.599	0.150	0.049	0.049	0.054	
Consumer's Food Expenditures	в. \$	188.3	196.8	205.0	214.0	188.3	206.6	205.4	216.7	
Livestock Producer's Net	D é	17 212	18 844	19 967	21, 289	13,501	27.449	19.564	22.728	
Income	D. 3	11.312	10.044	10,007	211207					
Realized Net Farm Income	в. \$	18.118	18.949	18.812	19.550	18.800	32.055	20.272	21.861	
Performance Measure									131,946.0	

TABLE XVII (CONTINUED)

¹Optimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted by superscript "U".

²The performance measure for the optimal solution presented here is the lower range performance measure in Table IV.

Set-aside for wheat in 1978 is 24.3 million acres, just slightly less than the maximum number of acres (24.7 million) that can be setaside in 1978 (Table XVII). High levels of wheat set-aside are used in 1978, in an effort to reduce the large carryin of wheat from 1977 (1,270 million bushels) in anticipation of the large carryovers in 1981. The acreage set-aside levels of wheat in 1979 and 1980 (24.4 and 24.8 million acres, respectively) are about equal to the upper boundary constraint for these control variables (Table XVII). An explantion of the high set-aside levels for wheat is that they are set high in 1979 and 1980 in an effort to hold carryovers for 1981 as close as possible to the 1,200 million bushel limit in the performance measure.

Acreage set-aside levels for feed grains in 1979 and 1980 are slightly higher for farm program No. 4 than for program No. 2; but acreage diversions are well below the maximums established by the upper boundary constraints in Table III. The reason for the increase in acreage set-aside is that to maintain ending year carryover of feed grains at about 60 million tons, additional acreage set-aside is needed to remove the effect of increases in feed grain harvested acreage and yields, that result from increases in feed grain price (corn).

Optimal set-aside levels for cotton are equal to their upper boundary constraints in 1979 and 1980 (3.3 and 3.1 million acres, respectively) in an effort to reduce the carryover in 1980 to 4 million bales, the upper limit in the performance measure (Table XVII). The complexities of farm program No. 4 demonstrate the dynamic properties of control theory, i.e., the optimal values selected for the acreage set-aside control variables in 1979 and 1980 are selected due not only to their immediate but also their longer run impacts on the performance measure.

The average market prices received for the model crops are considerably higher under farm program No. 4 than their respective values in the baseline and in program No. 2 (Table XVII). The higher prices are due in part to the increase in export demands for feed grains, wheat and cotton and to the high levels of acreage set-asides selected by the control mechanism. Also, loan rates for wheat and cotton are used to support the average market prices in 1980 and 1981. The selection of the loan rates for cotton are interesting in that the 1978 and 1979 values are the lowest possible values that permit a loan rate of \$0.55 per pound in 1980 (Table XVII). A constraint on the annual increase in loan rates prohibits increases of more than ten percent a year and this is the rate of increase between 1978 and 1979 and between 1979 and 1980.

Prices of beef cattle and hogs increase six percent and eleven percent, respectively, over the baseline values for 1978-1981 for farm program No. 4 (Table XVII). The increases in livestock prices are due to lower livestock supplies in response to increases in feed costs. The higher livestock prices are passed on to the consumer in the form of higher food costs (Table XVII). Over the four year period, total expenditures for food increases 1.6 percent over the baseline values and for the last three years, food expenditures increase about three percent. The impacts on food costs due to increases in the feed costs in 1978 primarily accrue in 1979 and 1980.

Realized net farm income for farm program No. 4 increases about 23 percent over the baseline between 1978 and 1981 (Table XVII). The primary increase in net farm income is in 1979 when net farm income increases from \$18.9 billion to \$32.1 billion. This 70 percent increase is due primarily to the livestock sectors response to the higher feed costs in 1978.

Sensitivity of the Optimal Solution to Changes

In the Performance Measure

The final solutions for farm program Nos. 1, 2, 3 and 4 are optimal for the lower range performance measure in Table IV. A change in the upper and lower boundary levels used in the performance weights associated with the boundary levels may cause changes in the optimal solution for the farm programs. A sensitivity analysis could be done for each farm program to determine the sensitivity of the optimal solution to changes in parameter weights and boundary levels for the critical variables in the performance measure. To demonstrate the type of information that a sensitivity analysis can provide, farm program No. 1 is solved a second time using the higher range of weights for the performance measure in Table IV.

The higher range performance measure has higher parameter weights (in absolute terms) for the boundary levels of consumer's food expenditures, total government payments and total CCC storage and interest costs (Table IV). For example, the upper boundary parameter weight for total government payments is changed from -1.5 to -4.0, implying that for each unit of expense over the upper boundary level (\$3,700 million) the disutility is \$4 to 2.66 times more disutility than when a weight of -1.5is used. The increased penalty (disutility) associated with government payments exceeding the upper boundary level causes the control mechanism to see values for the control variables that tend to hold government payments closer to the acceptable range. The optimal solutions for farm program No. 1, using both performance measures in Table IV are presented in Table XVIII.

TABLE XVIII

OPTIMAL VALUES FOR CONTROL VARIABLES AND THE SIMULATED VALUES OF SELECTED STATE VARIABLES FOR FARM PROGRAM NO. 1, USING BOTH THE LOWER RANGE PARAMETER WEIGHTS AND THE HIGHER RANGE PARAMETER WEIGHTS IN THE PERFORMANCE MEASURE

		Sinu	lated Values Us	Simulated Values Using Higher Range					
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981
CONTROL VARIABLES									
Price Support Levels						L		1 00	2 00
Corn	\$/bu.	1.83	1.89	1.91	1.91	1.75	1.78	1.90	2.03
Wheat	ds.	2.01	2.21	2.43	2.68	2.39	2.62	2.89	3.17
Cotton	\$/1b.	.42	.44	.48	.50	.51	. 54	. 38	.01
Income Support Levels				T.	L	т	1.	I .	L
Corn	\$/bu.	2.26	2.27	2.34	2.47	2.10	2.21	2.34~	2.47-L
Wheat	ds.	3.17,	3.19,	3.34	3.52	3.47	3.47	3.47,	3.52
Cotton	\$/1b.	.52 ^L	.55 ^L	. 58 ^L	.61	.56	.57	. 58	.612
Set-Aside									
Feed grains	m. ac.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Wheat	ds.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cotton	ds.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STATE VARIABLES						к. ^с			
Harvested Acreage									
Feed grains	m. ac.	107.7	109.3	109.3	108.6	107.5	108.7	108.3	107.7
Wheat	ds.	70.7	71.3	71.7	72.7	71.2	72.5	73.6	74.4
Cotton	ds.	11.6	11.7	11.9	11.4	11.6	11.7	12.2	12.1
Yield							-		
Feed grains	T./ac.	2.06	2.09	2.12	2.14	2.06	2.09	2.12	2.15
Wheat	bu./ac.	31.00	31.48	32.04	32.74	31.10	31.70	32.50	33.30
Cotton	1b./ac.	480.00	480.00	478.77	477.34	480.00	480.03	483.72	494.27
Export Levels				.					
Feed grains	m. t.	50.4	52.5	54.6	56.6	50.4	52.4	54.2	55.2
Wheat	m. bu.	1033.2	1068.2	1090.9	1077.2	972.6	991.7	962.4	914.4
Cotton	m. bales	4.5	4.5	4.5	4.5	4.5	4.5	4.2	4.1
Total Utilization									
Feed grains	m. t.	206.2	211.5	223.2	230.5	206.1	211.2	222.6	227.9
Wheat	m. bu.	1935.2	1950.8	1966.7	1945.8	1859.2	1853.6	1805.2	1842.3
Cotton	m. bales	11.6	11.7	11.7	11.9	11.6	11.7	11.3	11.4
Ending Year Carryovers		,							
Feed grains	m. t.	70.4	87.7	96.1	98.1	70.0	86.5	96.6	97.6
Wheat	m. bu.	1528.8	1824.2	2156.8	2590.9	1625.6	2073.3	2660.0	3396.2
Cotton	m, bales	4.3	4.4	4.9	4.5	4.3	4.4	5.5	6.9

		Simulated Values Using Lower Range				Simulated Values Using Higher Range			
Item	Unit	1978	1979	1980	1981	1978	1979	1980	1981
CCC Inventory and									
Outstanding Loans		0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0
Feed grains	m. t.	28.0	28.9	162.5	693.5	375.0	554.7	1201 1	2017 6
Wheat	m. bu.	0.0	0.0	0.0	0.0	0.0	0.0	2.7	2017.0
Cotton	m. bales			• • •				217	4.0
Commodity Prices									
Corn	\$/bu.	2.00	1.98	1.94	1.93	2.00	1.99	1.96	2.03
Wheat	ds.	2.31	2.37	2.43	2.66	2.59	2.62	2.86	3.15
Soybeans	ds.	4.24	4.68	4.92	4.92	4.24	4.71	4.92	4.92
Cotton	\$/1Ъ.	. 54	.54	.51	.53	• 24	. 54	.57	.61
Cattle and Calves	ds.	.42	.45	.49	. 50	.42	.45	.49	50
Hogs	ds.	. 35	.41	.40	. 37	• 35	• 41	.40	. 37
Total Government Payments	в. \$	3.650	3.918	4.862	5.732	2.969	3.724	3.824	3.834
Total CCC Storage and		0 150	0.012	0 012	0.065	0.150	0.150	0.277	0.480
Interest Costs	B. 9	0.150	0.012	0.011	0.005				
Consumer's Food Expenditures	в. \$	188.3	196.8	204.7	213.4	188.3	196.8	204.8	213.6
Livestock Producer's Net	n é	17.667	18,955	20.005	21.068	17.609	18,915	19.983	20.858
THCOME	D . V								
Realized Net Farm Income	в. \$	19.186	18.547	18.283	18.621	18.862	18.916	18.425	18.213
Performance Measure					111,999.0				93715.0

TABLE XVIII (CONTINUED)

¹Optimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted by superscript "U"

As hypothesized above, total government payments for farm program No. 1 are less for the optimal solution using the high range of weights than for the optimal solution using the low range of weights (Table XVIII). The reduction in total food costs due to shifting from the low set of weights to the high set is about \$0.3 billion over the four year period, given farm program No. 1. Total CCC costs are higher for the high range of weights, however the costs do not exceed the \$600 million upper limit established in the performance measure.

The optimal levels of the control variables for farm program No. 1 are slightly different for the two performance measures. Loan rates for wheat with the higher weights on the three output measures in the performance measure are \$2.39, \$2.62, \$2.89 and \$3.17 for 1978 through 1981, with \$2.01, \$2.21, \$2.43 and \$2.68 for 1978 through 1981, with the lower set of weights (Table XVIII). The higher loan rates for wheat are used to support the average market price of wheat to higher levels and thus result in larger accumulation of stocks by the CCC (2,017.6 million bushels in 1981 versus 693.5 million bushels in 1981). An explanation for the control mechanism using the wheat loan rate to support the price of wheat, is that the higher penalty on total government expenditures makes the use of large deficiency payments to raise net farm income less desirable. Since higher market prices reduce the deficiency payment rate for a given target price and increase net farm income the control mechanism uses the loan rate to increase the price. The same explanation can be used to explain the high support prices of cotton in 1980 and 1981 that cause the CCC to acquire stocks of cotton (2.7 million bales in 1980 and 1.3 million bales in 1981).

The higher ranges of parameter weights on government payments leads the control mechanism to select values for the target prices that are closer to the market prices for the respective crops than the target prices for the lower range of weights (Table XVIII). As mentioned before, the reason for this action is to reduce the deficiency payment rate. The target prices of wheat for farm program No. 1 are \$3.17, \$3.19, \$3.34, and \$3.52 in 1978, 1979, 1980 and 1981, respectively when the low range of weights are used for the performance measure and the target prices are \$3.47, \$3.47, \$3.47 and \$3.52 in 1978, 1979, 1980 and 1981 when the high range of weights are used (Table XVIII). However, the deficiency payment rates for wheat are less for the target prices associated with the higher range of weights, than for the target prices associated with the lower range of weights.

The two solutions for farm program No. 1 in Table XVIII indicate that changes in the parameter weights in the performance measure can result in changes in the optimal values of the control variables, and the state variables. The sensitivity of the optimal values for the control variables, to changes in the parameter weights for the performance measure is a critical factor in using control theory and requires attention. In application, analysts can obtain estimates of the parameter weights directly from the decision makers to reduce the uncertainty surrounding these parameters. And as Rausser and Freebairn (1974) indicate a range of parameter weights may be used in the analysis rather than using single valued estimates of the parameter weights.

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

Problem Statement

The commercial farm problem in the U. S. was brought to the attention of decision makers by dissatisfied farmers in the early 1920's, following drastic decreases in farm prices after World War I. The symptoms of the commercial farm problem at that time included: chronic overproduction, depressed prices for agricultural outputs and low rates of return for the factors of production. The same symptoms of the farm problem have persisted over most of the last half century.

Several factors have been identified as contributing to the commercial farm program; these are: 1) rapid technological advancements that increase agricultural productivity faster than the growth in demand for food, 2) the competitive nature of agriculture that essentially requires farmers to adopt new technology to remain in the industry, 3) resource immobility or fixity in agriculture, 4) the price inelasticity of shortrun supply of agricultural products and the inelastic demand for food with respect to both price and income (Heady, 1962; Tweeten, 1970; Brandow, 1977).

Farm programs have been used to deal with the symptoms of the farm problems in the past and as long as the farm problem exists, there will

be a need for economists to analyze the alternative farm programs and to make recommendations to the decision makers involved in developing farm policies. The primary interest groups involved in developing farm programs have been farmers, consumers and taxpayers. Farmers want high incomes with minimal governmental interference, while consumers want a stable supply of food at low prices, and taxpayers want low treasury costs. Since these interests are conflicting and since the political powers of each group have changed over time, farm programs have been developed in a piecemeal fashion (Tweeten, 1970). With the added interest in government costs and the growth in political powers of consumer groups, farm policy analysts in the future must be prepared to incorporate the interests of all three groups into their analyses more precisely than they have in the past.

Objectives

The general objectives of the thesis were to demonstrate the use of optimal control techniques for analyzing farm policy. The specific objectives were to: 1) demonstrate the benefits from using optimal control techniques in conjunction with a simulation model; 2) develop a conceptual performance measure for evaluating farm policies, given the goals of the three interest groups involved in policy decisions; and 3) indicate the type of results one can obtain from using control theory techniques to select values for farm policy variables, such as, loan rates, target prices, and acreage set-aside levels.

The objectives of the thesis were accomplished by adapting a control theory procedure to a national agricultural policy simulation model. The model selected was the National Agricultural Policy Simulator (POLYSIM),

a computerized model developed by Daryll E. Ray and the author at Oklahoma State University (Ray and Richardson, 1978).

Methodology

Control theory is a mathematical technique that can be used to determine the levels of control variables that cause a particular system to satisfy a given set of boundary constraints and at the same time cause a given performance measure to be at a maximum (or minimum) (Jacobs, 1975; Kirk, 1970; Sage, 1968). In application the control mechanism selects values for the control variables, determines their impacts on the system's output variables and evaluates the performance measure based on the values of the relevant output variables. This process is usually repeated in an iterative fashion until any change in the control variables results in a reduction in the value of the performance measure.

The system being controlled in this study is the agricultural economic system in the United States. The control variables in the system are the farm policy variables - loan rates, target prices and acreage set-aside levels - for feed grains, wheat and cotton. The state variables in the system are commodity supplies, prices and utilization, as well as aggregate values for production expenses, government expenditures and cash receipts.

The performance measure for control theory is similar to the objective function for programming models. For farm policy analysis the performance measure is a mathematical statement of the trade-offs, both explicit and implicit, between the primary interest groups - farmers, consumers and taxpayers. The variables included in the performance measure are: realized net farm income, net income for livestock producers, total consumer's expenditures for food, Commodity Credit Corporation (CCC) expenditures for storage and interest charges, and ending year carryovers for feed grains, wheat and cotton.

The functional form of the performance measure developed in the thesis is a complete generalization and improvement of the quadratic preference function introduced by Theil (1965). The quadratic preference function assumes constant weights for positive and negative deviations from the targeted value for each output variable. The new functional form allows the analysts to target output variables in the system within acceptable ranges and provides a weighting procedure that differentiates between positive and negative deviations from the acceptable range. Parameter weights and upper and lower boundary levels (acceptable ranges) for the output variables in the performance measure are synthesized from various sources to demonstrate the use of control theory for analyzing farm policy (Table IV).

Results

Four different farm programs are analyzed using the Control Theory Option in POLYSIM, to demonstrate the uses of the technique for selecting values of particular farm policy variables. The farm programs analyzed are the following: No. 1, a price and income support program; No. 2, a price and income support program with voluntary acreage set-aside; No. 3, a price support and acreage set-aside program with a grain reserve provision; and, No. 4, a price and income support program with voluntary acreage set-aside and increased export demands for feed grains, wheat and cotton during the first year simulated. Each farm program is analyzed for the four year period of 1978-1981.

Target prices and loan rates for corn, wheat and cotton in 1978, 1979, 1980 and 1981 are the control variables for farm program No. 1. The control variables for farm programs No. 2, No. 3, and No. 4 are loan rates and acreage set-aside levels for feed grains (corn), wheat and cotton in 1978, 1979, 1980 and 1981. Farm program No. 3 has in addition to these control variables, a requirement that the CCC must hold 20 million tons of feed grains and 500 million tons of wheat as a grain reserve.

The results from analyzing the four farm programs, identified above, with an optimal control technique indicate that the technqiue can be used for farm policy analysis. The optimal values of the control variables appear to be realistic with respect to the prevailing economic conditions for the farm program being evaluated and the performance measure used in the analysis. The optimal loan rates for corn in farm program No. 1 are: \$2.26, \$2.27, \$2.34 and \$2.47 per bushel for 1978, 1979, 1980 and 1981, respectively (Table XIV). The optimal target prices in 1980 and 1981 for corn, wheat and cotton in farm program No. 1 are set at their respective lower boundaries in an attempt to reduce the deficiency payments for these crops since total government payments exceeded the upper boundary level of \$3,700 million for the last three years simulated.

The optimal values for the acreage set-aside levels of feed grains, wheat and cotton in farm program No. 2 are set with respect to several constraints. The acreage set-aside levels for wheat are set equal to the upper boundary constraints in the first three years simulated in an effort to reduce ending year carryovers, and to raise the average market price of wheat. The result is to increase the value of production for wheat and to reduce government deficiency payments for wheat farmers. A similar explanation can be used to explain the optimal levels of acreage set-aside for cotton. However, the optimal acreage set-aside levels for feed grain in program No. 2 are set at about two thirds of their upper boundary constraints (Table XV). Higher levels of set-aside for corn would have caused corn prices to increase, thus leading to reductions in livestock production and increases in consumer food costs.

Farm program No. 3 includes a hypothetical grain reserve provision that requires the CCC to hold 20 million tons of feed grains and 500 million bushels of wheat. The control mechanism is used to determine the optimal values for loan rates and acreage set-asides of feed grains, wheat and cotton that maximize the performance measure and encourage the CCC to hold exactly the desired reserves. The acreage set-aside levels for wheat and cotton are set to their maximum levels (24. and 3.2 million acres, respectively) in all four years in an attempt to increase market prices and reduce the ending year carryovers for these crops. The setaside values for feed grains (12, 21, 28 and 32 million acres in 1978, 1979, 1980 and 1981, respectively) are set just high enough to hold ending year stocks within the acceptable range specified in the performance measure (Table XVI). The optimal loan rates for corn (\$1.80, \$1.94, \$2.10 and \$2.18 over the 1978-1981 period) and for wheat (\$2.23, \$2.26, \$2.44 and \$2.46 in 1978-1981) are set at levels that do not invoke the release or acquisition rules for the CCC, thus causing the CCC to hold exactly the desired level of reserves.

The provisions in farm program No. 4 are the same as those in program No. 2; however, the excess supply situation in the latter is reduced by predetermining exports for feed grains, wheat, and cotton at relatively high levels during the first year simulated. The carryovers for the

three crops are reduced in 1978 due to the high export levels thus reducing the need for acreage set-aside. The acreage set-aside levels for feed grains and cotton are less than 1.0 million acres in 1978, for farm program No. 4 while they are set at 10 million acres and 3.2 million acres, respectively, in 1978 for program No. 2 (Table XVII). The acreage set-aside levels for feed grains in 1979, 1980 and 1981 are set higher for program No. 4 than No. 2 in an effort to maintain carryovers within the acceptable ranges in the performance measure by removing the effects of the supply response for feed grains to the higher corn prices in 1978.

Farm program No. 4 is quite interesting in that the complexities of the program demonstrate how the longer run implications of the control variables are considered in selecting values for the farm policy variables. The acreage set-aside levels of wheat in 1978, 1979 and 1980 are about equal to the upper boundary constraints even though ending year carryovers for these years are about equal to the lower level of the acceptable range for wheat carryover. The reason for this is that the maximum level of wheat set-aside in 1981 is not large enough to hold carryovers in 1981 to the acceptable range of 1200 million bushels. So by restricting harvested acreage in 1979 and 1980 the level of beginning year stocks in 1981 is reduced, thus reducing the penalty in 1981 for carryovers greater than 1200 million bushels (Table XVII).

Farm program No. 1 is solved a second time to demonstrate the sensitivity of the optimal solution to changes in the parameter weights used in the performance measure. The parameter weights for consumer's food expenditures, total government payments and CCC storage and interest costs are increased in absolute terms. The results of the analysis

indicate that the optimal values of the control variables are quite sensitive to the value of the parameter weights in the performance measure.

Limitations of Using Control Theory

for Farm Policy Analysis

The primary limitation to using optimal control techniques for farm policy analysis is the need for a performance measure that incorporates the goals of farmers, consumers and taxpayers. Hopefully the functional form for the performance measure, developed in this study, provides a framework around which policy analysts can develop more meaningful performance measures in the future. The problem of selecting values for the parameters in the performance measure may be eased in the future as control theory is used more widely for farm policy analysis.

Another limitation to using optimal control techniques for policy analysis is that the analyst must have a mathematical model of the particular farm sector to be controlled. This limitation may be an asset since the analyst must become very familiar with the system to be controlled to build a mathematical model of the system. So the analysts may be able to more accurately identify the variables to be controlled and the critical output variables to be included in the performance measure.

Limitations to the present application of control theory are the following: the weights used in the performance measure are not the true values but feasible values that demonstrate the technique, the parameter weights in the performance measure are not discounted for time, the POLYSIM response parameters (elasticities) may not be the true values, and the July 1977 CED, USDA baseline may not be correct with respect to the projections of supply and utilizations for the commodities in the model. In view of these limitations, the values of the control variables reported in the study should not be considered to be the optimal values for the policy variables but examples of the type of information one can obtain by applying control theory techniques to farm policy analysis.

Conclusions

In conclusion, this study demonstrates that an optimal control technique can be used for analyzing farm policy. The values of the farm policy variables selected by the control mechanism appear to be reasonable with respect to the prevailing economic conditions, economic theory, and the performance measure used in the analysis. Results reported in the study indicate that the control mechanism selects values for the control variables in a simultaneous fashion, with respect to the short-run and longer-run effects on the state variables. The ability of the control mechanism to account for the total impact on the performance criteria over the planning period can not be duplicated with the use of simulation alone.

Future Uses for the Control Theory

Option in POLYSIM

In the future, work needs to be done to improve the parameter weights used in the performance measure. This is an important area since the results of solving farm program No. 1 using two different sets of parameter weights for the performance measure indicate that the optimal values of loan rates and target prices are sensitive to the values of the parameter weights in the performance measure. The values for the parameter

weights may best be developed from working directly with farm policy decision makers. The policy makers could specify a set of parameter weights, and after evaluating the results of the analysis modify the parameter weights and repeat the analysis. The process could be repeated several times until the policy maker fully understood the meaning of the parameter weights and felt certain of the values for the parameter weights.

Another area for future applications of the Control Theory Option in the model is to use the model as a one (or two) year planning model. The model would determine the optimal values for the farm policy variables in the following year, based on the prevailing economic environment in the current year and the farm policy variables available for the Secretary of Agriculture to adjust. Also, the control theory model could be stated in a stochastic mode by selecting random values for crop yields and export demands and then determining the optimal values for the farm policy variables. Probability distributions could then be constructed for the optimal values of the control variables selected by the control mechanism and for the state variables in the model.

REFERENCES

- Arrow, K. W. 1968. "Applications of Control Theory to Economic Growth." American Math. Soc., <u>Mathematics of the Decision Sciences</u>, (2)85-119.
- Arzac, Enrique R. and Maurice Wilkinson. 1977. Optimal Stabilization of a Quarterly Econometric Model of the U. S. Livestock and Feed Grain Markets: Some Preliminary Results. Presented at the Sixth Annual NBER Conference on Economics and Control, Yale University, May 25-27.
- Box, M. J. 1965. "A New Method of Constrained Optimization and a Comparison with Other Methods." <u>Computer J.</u> 8:42-52.
- Brandow, G. E. 1961. <u>Interrelations Among Demands for Farm Products and</u> <u>Implications for Control of Market Supply</u>. Pennsylvania Agr. Exp. Sta. Res. Bul. 680.
- Brandow, G. E. 1977. "Policy for Commercial Agriculture, 1945-71," <u>A</u> <u>Survey of Agricultural Economics Literature, Volume 1</u>, ed. Lee R. Martin, Minneapolis: University of Minnesota Press.
- Bray, Jeremy. 1974. "Predictive Control of a Stochastic Model of the U. K. Economy Simulating Present Policy Making Practice by the U. K. Government." Ann. Econ. and Soc. Meas. 3:239-255.
- Burmeister, Edwin, John Jackson, and Stephen Ross. 1977. "The Evaluation of Simple and Optimal Decision Rules with Misspecified Welfare Functions." <u>Applications of Control Theory to Economic Analysis</u>, ed. John D. Pitchford and Stephen J. Turnovsky. Amsterdam: North-Holland Pub. Co. pp. 155-171.
- Chow, Gregory. 1975. <u>Analysis and Control of Dynamic Economic Systems</u>. New York: John Wiley and Sons.
- Chow, Gregory. 1976. "An Approach to the Feedback Control of Nonlinear Econometric Systems." Ann. Econ. and Soc. Meas. 5:297-309.
- Cooper, J. Phillip and Stanley Fischer. 1974. "A Method for Stochastic Control of Nonlinear Econometric Models and an Application: Abstract." Ann. Econ. and Soc. Meas. 3:205-206.
- Dorfman, Robert. 1969. "An Economic Interpretation of Optimal Control Theory." Amer. Econ. Rev. 59:817-831.

- Ericksen, Milton H., Daryll E. Ray and James W. Richardson. 1976. "Farm Programs and Grain Reserves - Simulated Results." <u>Analyses of Grain</u> <u>Reserves, A Proceedings</u>. Compiled by David J. Eaton and W. Scott Steele, ERS-USDA, in cooperation with the National Science Foundation. ERS Report No. 634.
- Fair, Ray C. 1974. "Methods for Computing Optimal Control Solutions on the Solution of Optimal Control Problems as Maximization Problems." Ann. of Econ. and Soc. Meas. 3:135-153.
- Garst, Gail D. and Thomas A. Miller. 1975. "Impact of the Set-Aside Program on the U. S. Wheat Acreage." Agri. Econ. Res. 27:30-37.
- George, P. S. and G. A. King. 1971. <u>Consumer Demand for Food Commodities</u> <u>in the United States with Projections for 1980</u>. Univ. of California. <u>Giannini Foundation Monograph 26</u>.
- Goldfeld, Stephen M., Richard E. Quandt, and Hale F. Trotter. 1966. "Maximization by Quadratic Hill-Climbing." <u>Econometrica</u>. 34:541-551.
- Heady, Earl O. 1962. Agricultural Policy Under Economic Development. Ames: Iowa State University Press.
- Holbrook, Robert S. 1974. "A Practical Method for Controlling a Large Nonlinear Stochastic System." <u>Ann. of Econ. and Soc. Meas.</u> 3:155-175.
- Intriligator, Michael D. 1971. <u>Mathematical Optimization and Economic</u> Theory. Englewood Cliffs: Prentice-Hall, Inc.
- Jacobs, O. L. R. 1974. <u>Introduction to Control Theory</u>. London: Oxford University Press.
- Johnson, James and Milton H. Ericksen. 1977. <u>Commodity Program Provi</u>sions Under the Food and Agriculture Act of 1977. USDA-ERS Agri. Econ. Report No. 389.
- Kendrick, David and Lance Taylor. 1970. "Numerical Solution of Non-Linear Planning Models." Econometrica. 38:453-467.
- Kirk, Donald E. 1970. Optimal Control Theory: An Introduction. Englewood Cliffs: Prentice-Hall, Inc.
- Kuester, James L. and Joe H. Mize. 1973. <u>Optimization Techniques with</u> Fortran. New York: McGraw-Hill Book Company.
- Livesey, D. A. 1971. "Optimizing Short-Term Economic Policy." <u>The</u> Econ. J. 81:525-546.
- Pindyck, Robert S. 1973. <u>Optimal Planning for Economic Stabilization</u>. London: North-Holland Publishing Company.

- Pindyck, Robert S. and Steven M. Roberts. 1974. "Optimal Policies for Monetary Control." <u>Ann. Econ. and Soc. Meas.</u> 3:207-237.
- Rausser, Gordon C. and John W. Freebairn. 1974a. "Approximate Adaptive Control Solutions to U. S. Beef Trade Policy." <u>Ann. Econ. and Soc.</u> <u>Meas.</u> 3:177-203.
- Rausser, Gordon C. and J. W. Freebairn. 1974b. "Estimation of Policy Preference Functions: An Application to U. S. Beef Import Quotas." <u>Rev. Econ. and Stat.</u> 56:437-449.
- Rausser, Gordon C. and Richard Howitt. 1975. "Stochastic Control of Environment Externalities." <u>Ann. Econ. and Soc. Meas.</u> 4:271-292.
- Ray, Daryll E. and James W. Richardson. 1978. <u>Technical Description of</u> POLYSIM. Oklahoma Agri. Exp. Sta. Bul., forthcoming.
- Richardson, James W. and Daryll E. Ray. 1975a. <u>User's Manual for the</u> <u>National Agricultural Policy Simulator (POLYSIM)</u>. Okla. Agr. Exp. Sta. Res. Rep. P-727.
- Richardson, James W. and Daryll E. Ray. 1975b. <u>User's Manual for UPDATE</u> <u>an Auxiliary Program for POLYSIM</u>, Okla. Agr. Exp. Sta. Res. Rep. P-726.
- Richardson, James W. and Daryll E. Ray. 1977. <u>The Structure of Feed</u> <u>Grain and Concentrate Feed Demand by Livestock Category</u>. Journal Article No. J-3337 of the Oklahoma Agricultural Experiment Station, Oklahoma State University.
- Ryan, D. M. 1974. "Penalty and Barrier Functions." ed. P. E. Gill and W. Murray. <u>Numerical Methods for Constrained Optimization</u>. London: Academic Press. pp. 175-190.
- Sage, Andres P. 1968. <u>Optimum Systems Control</u>. Englewood Cliffs: Prentice-Hall, Inc.
- Schweppe, Fred C. 1973. <u>Uncertain Dynamic Systems</u>. Englewood Cliffs: Prentice-Hall, Inc.
- Swann, W. H. 1974. "Constrained Optimization by Direct Search." <u>Numerical Methods for Constrained Optimization</u>. ed. P. E. Gill and W. Murray. London: Academic Press. pp. 191-217.
- Theil, Henri. 1965. "Linear Decision Rules for Macrodynamic Policy Problems." <u>Quantitative Planning of Economic Policy</u>. ed. B. G. Hickman. Brookings. pp. 18-37.
- Tintner, Gerhard. 1969. "What Does Control Theory Have to Offer?" J. Farm Econ. 51:383-398.
- Trapp, James N. 1977. "Peanut Market Structure: An Analysis of Its Influence Upon Peanut Policy Trade-Offs." Mimeo. Department of Agricultural Economics, Oklahoma State University.

Tweeten, Luther. 1970. Foundations of Farm Policy. Lincoln: University of Nebraska Press.

- Tweeten, Luther, Dale Kalbfleisch, and Y. C. Lu. 1971. <u>An Economic</u> <u>Analysis of Carryover Policies for the United States Wheat Industry</u>. Okla. Agr. Exp. Sta. Tech. Bul. T-132.
- U. S. Congress, Senate, Committee on Agriculture and Forestry. 1977. <u>Costs of Producing Selected Crops in the United States - 1975, 1976,</u> <u>and Projections for 1977</u>. Prepared by ERS-USDA, 95th Congress, lst session, January 21.
- U. S. Congress, Senate. 1973. <u>Agriculture and Consumer Protection Act</u> of 1973. Public Law 93-86, Senate Bill 1888, 93rd Cong., 1st sess., August 10.
- U. S. Congress, Senate. 1977. Food and Agricultural Act of 1977. Conference Report No. 95-418, 95th Cong., 1st sess., September 9.
- U. S. Department of Agriculture. 1975. <u>Livestock-Feed Relationships</u> National and State. Supplement for 1975 to Stat. Bul. No. 530.
- U. S. Department of Agriculture. 1976. <u>Major Statistical Series of the</u> <u>U. S. Department of Agriculture</u>. Volume 2. Agricultural Production and Efficiency. Agr. Handbook No. 365.
- Waugh, Fredrick V. 1967. "Reserve Stocks of Farm Products." <u>Agricul-</u> <u>tural Policy: A Review of Programs and Needs</u>. Vol. V. National Advisory Commission on Food and Fiber, Washington, D.C. pp. 3-52.
- Wold, H. 1960. "A Generalization of Causal Chain Models." <u>Econometrica</u>. 28:443-463.
- Wold, H. 1964. <u>Econometric Model Building: Essays on the Causal Chain</u> Approach. Amsterdam, Holland, North-Holland Publishing Co.

APPENDIX A

LISTING AND DESCRIPTION OF SUBROUTINES ADDED TO POLYSIM FOR THE CONTROL THEORY OPTION The Control Theory Option in POLYSIM uses the Complex Procedure introduced by Box (1965), to find the set of controls (farm policy variables) that maximize a given performance measure. A Fortran computer program of Box's Complex Procedure (COMPLEX) is available in Kuester and Mize (1973). To incorporate the procedure into POLYSIM, minor changes were made in COMPLEX to simplify data input, output and storage. The individual computer subroutines in COMPLEX are described in this Appendix. (The computer subroutines for POLYSIM are described in Appendix B of Ray and Richardson (1978).) To append the control theory program to POLYSIM, an additional "call" statement is necessary in the POLYSIM MAIN. As described in Appendix B of this study the COMPLEX algorithm is called only when the user specifies the Control Theory Option as part of the usual coding for a POLYSIM run. A listing of the POLYSIM MAIN is presented at the end of this Appendix.

The computer program for using COMPLEX includes the following subroutines: COMPLX, CONSX, CHECK, CENTR, CONSTT, CO718, CO719, CO720, CO721, CO722, CO723, CO724, OBJT, and RANG. POLYSIM is linked to the Complex algorithm through subroutine COMPLX. The data files are passed from POLYSIM to COMPLX by way of the commoned dimension statements in POLYSIM. Subroutine COMPLX has two functions; they are to read the Control Theory Data Cards and to print an output table of the optimal values for the control variables.

The Complex Procedure begins each problem by setting up the initial values for the m control variables. A control problem with m controls has m+1 or k control paths to identify the performance measure. Each of the k control paths has values for each of the m control variables and is considered to be a coordinate for one point on the surface of the

performance measure. The control paths are stored in a k by m matrix (X), with the rows containing the k different control paths and the columns containing the values for the m different control variables. The initial control paths can be user supplied or they can be random values, uniformly distributed between the respective lower and upper boundary constraints. The source of the initial control paths is determined by the user, depending upon the data input option specified on the I-O Card (see Appendix B).

Once the X matrix is initialized with starting values for the control variables, each control path is checked to be sure it is admissible (subroutine CHECK). The value of each control variable is compared to its respective lower and upper boundary constraints, provided by the user in subroutine CONSTT and CO718 - CO724, to be sure the control is admissible. If a value is inadmissible, the value is moved inside the violated boundary constraint by a small amount DELTA, say 0.001.

After determining that the control paths are admissible, the performance measure is evaluated for each of the k control paths. The OBJT subroutine contains the performance measure and the call statements for the POLYSIM subroutines so it is called each time a control path is evaluated. To evaluate the initial control paths subroutine OBJT is called k times, each time a different control path is used as input in the POLYSIM model. Simulated values of the output variables are used in the performance measure (Table IV) to obtain a unique real number for evaluating the particular control path. The values of the performance measure are stored in the F array which is a kxl array.

After evaluating the kth initial control path, COMPLEX begins the iterative procedure that leads to the optimal control path for the given

performance measure. The first step in each iteration is to identify the control path (row of X) associated with the minimum value of the performance measure, say row i. The control mechanism then replaces the rejected row, i, with a control path that is associated with a higher point on the surface of the performance measure.

New values for control path i are calculated by the following formula:

$$X_{ij}(new) = \bar{X}_{jc} + \alpha(\bar{X}_{jc} - X_{ij}(old)); \quad j = 1, 2, ..., m$$

where X_{ij} (new) is the new value of control variable j in coordinate or control path i, α is the reflection factor (Box (1965) recommends 1.3), and \overline{X}_{jc} is the centroid for control variable j. The centroid, \overline{X}_{jc} , is the average difference between the rejected control variable X_{ij} (old) and the other k-l values for control variable j. The centroid for each of the m control variables is calculated in subroutine CENTR. The reflection factor, α , is greater than one to insure that the control mechanism searches both sides of the centroid in its approach to the optimal control values.

The new values for the control variables $(X_{ij}(new))$ are then checked against the lower and upper boundary constraints to insure that the control path is admissible. The value of the performance measure for the i^{th} control path is obtained by using control path i as input in POLYSIM and simulating values for the endogenous variables in the model. If the i^{th} control path is no longer associated with the minimum point on the performance measure the first iteration is complete. However, if the i^{th} control path repeats as the lowest point, new control values are selected
checked and evaluated until the ith path is no longer associated with the minimum point on the performance measure.

At the end of each iteration the convergence criteria is checked to see if the performance measure is at a maximum (subroutine CONSX). A maximum is declared if for γ iterations the highest and lowest values of the performance measure remain within β units of each other. (Values for γ and β are provided by the user on the Control Theory Data Cards, see Appendix B.)

By rejecting the control path associated with the minimum value for the performance measure and replacing it with a control path that has a higher performance measure, the procedure will ultimately find the maximum value of the performance measure. The control path associated with the maximum point on the performance measure is considered to be optimal for the given performance measure. To insure that the final solution is at the global maximum for the performance measure the problem should be run several times. Each time a different set of initial control paths should be used so the procedure searches a different set of values for the control variables. If the procedure returns the same answer several times, the analyst can feel fairly certain of having found the global The four farm programs evaluated for this study were each run maximum. three times to determine whether or not a global maximum had been located. For each run the model used a different set of initial control paths and each time the same answer was returned. The number of iterations required to locate an optimum varied from 600 to 1000, depending upon the complexity of the problem.

The boundary constraints for the control variables are critical to the use of the Complex Procedure. The user must provide values for the

boundary constraints in the user provided constraint subroutines: C0718, C0719, C0720, C0721, C0722, C0723, and C0724. Based on the farm program being simulated, subroutine CONSTT calls the appropriate constraint subroutine. The names of the farm programs available in the Control Thoery Option and their respective constraint subroutines are presented in Table XIX. For example, when a price support program is being simulated subroutine CO719 is called, or when a price and income support program is being simulated subroutine CO721 is called (Table XIX). The constraint subroutines listed in this Appendix use the boundary constraints presented in Tables I, II, and III. The lower boundary constraints are in array G and the upper boundary constraints are in array H. For each farm program the order of the control variables in arrays G and H is the same as the order in array X, where the values of the control variables are The names of the control variables, used for each of the seven stored. constraint subroutines (farm programs) are presented in Table XIX. The order of the control variables in Table XIX is the order used in array G, H, and X for each of the constraint subroutines.

The order of the control variables for each farm program (Table XIX) is stored on a direct access disk to reduce the data cards needed for the Control Theory Option in POLYSIM. A Fortran program, BOXFILE, is used to store information for the order of the control variables on disk. A listing of BOXFILE is included at the end of this Appendix. Coding instructions for BOXFILE are included as comment cards at the beginning of the program.

TABLE XIX

THE ORDER OF THE CONTROL VARIABLES USED IN SEVEN FARM PROGRAMS IN POLYSIM

Order Number	Farm Program and Variable Name	Variable Code in POLYSIM
	Voluntary Acreage Set-Aside Program (Subroutine CO718)	
1 2 3 4 5 6 7 8 9 10 11 12	Feed grain acreage set-aside m. ac. year 1 Feed grain acreage set-aside m. ac. year 2 Feed grain acreage set-aside m. ac. year 3 Feed grain acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 1 Wheat acreage set-aside m. ac. year 2 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 4 Cotton acreage set-aside m. ac. year 1 Cotton acreage set-aside m. ac. year 2 Cotton acreage set-aside m. ac. year 3 Cotton acreage set-aside m. ac. year 3 Cotton acreage set-aside m. ac. year 3	1 1 1 3 3 3 3 6 6 6 6 6 6
	Price Support Farm Program (Subroutine CO719)	
1 2 3 4 5 6 7 8 9 10 11 12	Wheat loan rate \$/bu. year 1 Wheat loan rate \$/bu. year 2 Wheat loan rate \$/bu. year 3 Wheat loan rate \$/bu. year 4 Corn loan rate \$/bu. year 1 Corn loan rate \$/bu. year 2 Corn loan rate \$/bu. year 3 Corn loan rate \$/bu. year 4 Cotton loan rate \$/lb. year 1 Cotton loan rate \$/lb. year 2 Cotton loan rate \$/lb. year 3 Cotton loan rate \$/lb. year 4	55 55 55 54 54 54 54 54 56 56 56 56 56
	Income Support Program (Subroutine CO720)	
1 2 3 4 5 6 7 8	Wheat target price \$/bu. year 1 Wheat target price \$/bu. year 2 Wheat target price \$/bu. year 3 Wheat target price \$/bu. year 4 Corn target price \$/bu. year 1 Corn target price \$/bu. year 2 Corn target price \$/bu. year 3 Corn target price \$/bu. year 4	52 52 52 51 51 51 51

TABLE XIX (CONTINUED)

Order Number	Farm Program and Variable Name	Variable Code in POLYSIM
9	Cotton target price \$/1b. year 1	53
10	Cotton target price \$/1b. year 2	53
11	Cotton target price \$/1b. year 3	53
12	Cotton target price \$/1b. year 4	53
	Price Support and Income Support Program (Subroutine CO721)	
1	Wheat loan rate \$/bu. year 1	55
2	Wheat loan rate \$/bu. year 2	55
3	Wheat loan rate \$/bu. year 3	55
4	Wheat loan rate \$/bu. year 4	55
. 5	Corn loan rate \$/bu. year 1	54
6	Corn loan rate \$/bu. year 2	54
7	Corn loan rate \$/bu. year 3	54
8	Corn loan rate \$/bu. year 4	54
9	Cotton loan rate \$/1b. year 1	56
10	Cotton loan rate \$/1b. year 2	56
11	Cotton Ioan rate \$/1b. year 3	56
12	Cotton Ioan rate \$/1b. year 4	56
13	Wheat target price \$/bu. year 1	52
14	Wheat target price \$/bu. year 2	52
10	Wheat target price \$7bu, year 5	52
17	Corp target price \$7bu, year 4	51
10	Corp target price \$/bu, year 1	51
10	Corp target price \$/bu year 3	51
20	Corn target price \$/bu year /	51
20	Cotton target price $\$/10$, year 1	- 53
21	Cotton target price \$/1b, year 2	53
23	Cotton target price $\$/1b$, year 3	53
24	Cotton target price \$/1b. year 4	53
	Voluntary Acreage Set-Aside With Price Suppor For Participating Farmers (Subroutine CO722)	ts
1	Wheat loan rate \$/bu. year 1	55
2	Wheat loan rate \$/bu. year 2	55
3	Wheat loan rate \$/bu. year 3	55
4	Wheat loan rate \$/bu. year 4	55
-5	Corn loan rate \$/bu. year 1	54
6	Corn Ioan rate \$/bu. year 2	54
7	Corn Ioan rate \$/bu. year 3	54
8	Corn Loan rate \$/bu. year 4	54
9	Cotton Ioan rate \$/10. year 1	סכ

TABLE XIX (CONTINUED)

Order Number	Farm Program and Variable Name	Variable Code in POLYSIM
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Cotton loan rate \$/lb. year 2 Cotton loan rate \$/lb. year 3 Cotton loan rate \$/lb. year 4 Feed grain acreage set-aside m. ac. year 1 Feed grain acreage set-aside m. ac. year 2 Feed grain acreage set-aside m. ac. year 3 Feed grain acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 1 Wheat acreage set-aside m. ac. year 2 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 4 Cotton acreage set-aside m. ac. year 1 Cotton acreage set-aside m. ac. year 2 Cotton acreage set-aside m. ac. year 3 Cotton acreage set-aside m. ac. year 3 Cotton acreage set-aside m. ac. year 3	56 56 1 1 1 3 3 3 3 6 6 6 6
1	Voluntary Acreage Set-Aside With Price and Income Supports-The Agricultural Act of 1977 (Subroutine CO723) Wheat loan rate \$/bu. year 1	55
$ \begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ \end{array} $	Wheat loan rate \$/bu. year 2 Wheat loan rate \$/bu. year 3 Wheat loan rate \$/bu. year 4 Corn loan rate \$/bu. year 1 Corn loan rate \$/bu. year 2 Corn loan rate \$/bu. year 3 Corn loan rate \$/bu. year 4 Cotton loan rate \$/lb. year 1 Cotton loan rate \$/lb. year 2 Cotton loan rate \$/lb. year 3 Cotton loan rate \$/lb. year 3 Cotton loan rate \$/lb. year 4 Feed grain acreage set-aside m. ac. year 1 Feed grain acreage set-aside m. ac. year 2 Feed grain acreage set-aside m. ac. year 3 Feed grain acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 1 Wheat acreage set-aside m. ac. year 1 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 4 Cotton acreage set-aside m. ac. year 1 Cotton acreage set-aside m. ac. year 2	55 55 54 54 54 54 56 56 56 56 56 56 1 1 1 1 3 3 3 3 3 6 6

TABLE XIX (CONTINUED)

Order Number	Farm Program and Variable Name	Variable Code in POLYSIM
	Voluntary Acreage Set-Aside With Income Supports	
	(Subroutine CO724)	
1 2 3 4 5 6 7 8 9 10 11	Feed grain acreage set-aside m. ac. year 1 Feed grain acreage set-aside m. ac. year 2 Feed grain acreage set-aside m. ac. year 3 Feed grain acreage set-aside m. ac. year 4 Wheat acreage set-aside m. ac. year 1 Wheat acreage set-aside m. ac. year 2 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 3 Wheat acreage set-aside m. ac. year 4 Cotton acreage set-aside m. ac. year 1 Cotton acreage set-aside m. ac. year 2 Cotton acreage set-aside m. ac. year 3	1 1 1 3 3 3 3 6 6 6 6
13	Wheat target price S/bu year 1	52
14	Wheat target price \$/bu. year 2	52
15	Wheat target price \$/bu. year 3	52
16	Wheat target price \$/bu. year 4	52
17	Corn target price \$/bu. year 1	51
18	Corn target price \$/bu. year 2	51
19	Corn target price \$/bu. year 3	. 51
20	Corn target price \$/bu. year 4	51
21 22	Cotton target price \$/1b. year 1	53
22	Cotton target price \$/1b. year 2	53
23	Cotton target price \$/1b. year 3 Cotton target price \$/1b. year 4	53

		CALL CONS	00006500
		1300 CONTINUE	00006600
C*************************************	\$0010 00 CC	2000 CLATINE	00006700
C DETERMINISTIC POLYSIA MAIN	0000200	CALL TABL	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
C CONTROL THEORY OPTION	00000300	CALL TAB2	00006900
C+++++++++++++++++++++++++++++++++++++	* 3 8 8 0 0 0 4 3 0	CALL TAB3	00007000
C LATEST REVISION 5-4-77	JJ 00 05 00	1900 CENTINGE	00007100
LEMMEN / CMAINS/ SIMNAM(20), NEAUG(150), NE(LE(500), DA(1,1),	33000700		00007200
	000000000		00007300
CHANGE ZONATNA SUMELLA SUMERA SUME	000000000		0.0007400
INTEGER FI(9(), TITLE(2),20), LABEL(84,33), SKIP(8)	00001000		\$00007500
CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP	00001100	C//// THIS VERSION OF BOX CONTAINS COMMON STATEMENTS AND BANG AS A	00007700
INTEGER DIVAC, TARGET, FREMKT, SUPEG, SUPART, SUPCOT, SUPSOY, 473	00001200	C//// FANDEM NO. GENERATOR FOR THE BANDOM PUINTS ON THE SURFACE.	00007500
COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT,	00001300	C///// ALSO, THE VERSION HAS THE PROVISION FOR THE USER TO PROVIDE	00007900
ISUPSCY, A73, IKEY1, IKEY2	00001400	C///// THE POINTS FOR ALL OF THE INITIAL POINTS ON THE SURFACE.	000000000000000000000000000000000000000
COMMEN /CMAIN7/ NFILEE(40), NCFILE(180), NDUM(180), ICFILE(200)	00001500	C///// REVIZED BY JWR 6/77.	JJJ008100
GOMMEN /CMAINB/ IFI(50), IF2(50), 4(20), TREND(80), NAR,	00 00 16 00	COMMEN /CMAIN3/ SIMNAM(20), NEXGG(180), NEILE(300), DM(7,7),	00008200
1FGYDEV, FGEDEV, WHYDEV, WHEDEV, SYYDEV, SYEDEV, CTYDEV, CTEDEV	00001700	1EF(200)	33 03 83 00
COMMON /CMAINC/ LFM, NGSIM, NPRB, NGBS, NPRC, NHI, NH2, NH3, NH4	00001800	INTEGER FT(9C). TITLE(2C,2O), LABEL(84,33), SK (P(8)	00008400
COMMEN /CMAIND/ LCAN, FGEXP, FPRIC, WPEPL, IEN, DUMIL4.3)	00001900	COMMEN 70MAIN57 FT, TITLE, LABEL, SKIP, JUMP	33008500
CUMPEN ZEMAINEZ IFSITE, NUD, ISLAND, ITENIA, IDATE, IDASE, IDOJ	00002000	INTEGER DIVAL, TARGET, FREMRI, SUPFG, SUPHI, SUPLIT, SUPSUY, A73	0 0 0 0 87 0 0
I NACIST, KING, NDROM, NDIVAC, NOTARG, NDALL, MIDAN, NDIVA NEXP.	00602200	COMMENT ZUMALINOZ LIVACI LANGEL, FREMRI, SUPEG, SUPWHI, SUPCEL,	00008700
2 NOACRE, NYLFID, NPROD. IVARE, INDXX, NESTSI, NPART, NCONST	00002300	CONTRACT AND ADA. ECEVE. EDIC. DECEN. TEN. DEMILS)	01008600
COMMEN /CMAINH/ NOPOL, NEPOL, NRO, IDROP, LASTYR, ACRE(14,12)	00002400	COMMEN /CMAINE/ NCPCI - NEOL NRC, DECEMENTAR, ACRE(14.12)	00005000
CCMMCN /CMAINI/ YIELD(16,4), IAJLOT, ADJTG, 12, IT, IX, IST	00 CO 25 00	CCMMCN /CMAINI/ YIELD(10.4).IAJIDT. ADJTG. 17. IT. IX. IST	000091.00
COMMEN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300)	00002600	CCMMEN /CGJYS/ ACJ(65), CONST(110), AY(16), C(14,300), B(14,300)	,00009200
1EXOG(14,180), OLDEXO(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE,	30002700	1EXJG(14,180), OLDEXO(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IF,	00009300
2IS, LG, J, I, IHOLDI, IFOLD2, AHOLDI, AHOLD2, AHOLD3, AHOLD4	00002800	2IS, LJ, J, I, IHGLD1, IHGLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4	33009430
COMMEN /CSTGE/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMUDE(80),	00002900	CCMMCN /CSTEC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMODE(80),	00009500
1AMAX(80), PERC(80), IDATA(3,100),CDATA(14,100),INTER, NTER,AMATRX	(00003000	1AMAX(80), PERC(30), IDATA(3,100), CDATA(14,100), INTER, NTER, AMATRX	(33034603
28.8) , IENDI, IEND2, ISII, ISI2, IEX2	00003100	28.8) , IENDI, IEND2, ISTI, IST2, IEX2	00009700
COMMEN /CUMUL/ PVAL(80,12) ,ISTART, TEND	00003200	COMMEN /CMAINE/ IFI(50), IF2(50), A(20), IRENC(80), NAR,	00005800
DEFINE FILE $10(3/3/3)(0,3)(0,3)(0,4) = 111(3/3/3)(0,3)(0,3)(0,4)$	00003600	IFGTUEV, FGEDEV, WHTDEV, WHEDEV, STDEV, STEDEV, CITDEV, CIEDEV	30039903
DEFINE FILE $16(301,2304,0304)$	000000400	TATEGE CAMMA	00010000
12345 EORMATING, POLYSIM MAIN BEGUN!)	00003600	COMEN (SAMAINI/ ITMAX .IO. R(40.60) . NO. ALPHA. BETA. GAMMA	00010200
WRITE(0,12345)	00003700	INTEGER BEG. END. BEG2	00010300
NAR=5959979	00003800	COMMEN /BMAIN2/ IBASE, DELTA, KUDE, IPRINT, IC, 3EG, END, BEG2	03010400
CALL INTI	00003900	CCMMEN /BMAIN3/ X(60,99) .N.M.K.IEV1,IEV2, K1.F(60).6(99).H(99)	00010500
DO 1900 LFM=1,100	00004000	1,XC(60),NDEBLG ,KNB,NB2,NB3,NB1	00010600
200 CALL INITAL	00 00 41 00	CCMMON /BMAIN4/ NBFILE(99)	00010700
IF (NPRB.NE.O) CALL TAB2	00004200	DIMENSION AN AM (5)	00010800
NPRB=0	00004300	1 FORMAT(11,9X,F10.0,314)	00010900
LALL INIZ	00004400	2 + URMA1(11, 93, 3+10, 0, 214)	00011000
	00004500	4 FURMAT (0F10.44) 3 FURMAT (1 - 14.10/10F10 5.71)	00011200
D(1) = (1 + (1 + (1 + (1 + (1 + (1 + (1 + (1	00004700	6 FERMAT (0.0011200
NTER	00004800	7 FCRMAT('0', TA, 'J', TT7, 'VARIABLE NAME', T42, 'X(1,J)', T59, 'C(J)',	00011400
CSIMULATION LCOP	00004900	1 T74• "H(J)")	00011500
DO 1000 I= 3 .NOBS	00005000	8 FCFMAT(* *,//, * THE USER PROVIDED VALUES FUR POINTS 1-K*)	00011c00
I - I = J	00005100	10 FCRMAT (1H1.//,18X.24HCCMPLEX PROCEDURE OF BOX)	00011700
CALL SETUP	00005200	11 FORMAT(* *,/,T3,*PARAME TER S*,/	30011800
CALL LVSK	00005300	1, T5, 'NO. OF EXPLICIT CONSTRAINTS(N) = ', I4,/	00011900
CALL TGTP77	00005400	1.T5. ND. OF IMPLICIT CONSTRAINTS(IC = 1, 14,/	00012000
CALL ADJEUT	00005500	3_{1} 3_{1} 3_{1} 3_{1} 3_{1} 10_{1}	00012100
CALL CHURW Call Edge	00005700	3+13+TNL. UF FUINIS UN SUKFALEIKI ="+14+7 3 TE 100 OF MAYIMUM ITERATION/ITHAYIAF 14 /	00012200
CALL FUER CALL WHEAT	00005800	3+(3+(3+)) OF PAALMUM ITERATIONS(CAMMA)=+314+/ 3215.4NC. OF PEPEAT ITERATIONS(CAMMA)=+314.//	00012500
	00005900	3.TS. TREEFECTION FACTOR (ALPHA) =1. F6.2./	00012500
CALL CETTEN	00006000	$3 \cdot 15 \cdot 10 \text{FGREE CE ACCURACY (BETA)} = 1 \cdot 10 \cdot 217$	00012600
CALL FED2	00006100	3. T5. WITHIN ROUNDS ADJUST (DELTA) = \cdot F8.4./)	00012700
CALL RECPTS	30 00 62 00	12 FCRMAT (//,2×,14HRANDCM NUMBERS)	00012800
CALL GOVP	00 00 63 00	13 FORMAT (/, 3(2X, 2HR(, 12, 1H, , 12, 4H) = , F6.4, 2X))	00012900
CALL TOTALS	00006400	14 FORMAT (///.2X.30HFINAL VALUE OF THE FUNCTION = .E20.8)	0001 30 00

.

	15	FJRMAT (//.2x.14HFINAL X VALUES)		3001 31 00	
	16	FORMAT (/, 2X +2HX(+12+4H) = +4X+544, F30+10, 10X, 14)		3301 320 0	
	17	FORMAT (///.2X.38HTHE NUMBER OF ITERATIONS HAS EXCEEDED .I	4,10×	, 0001 3300	
	1	18HPROGRAM TERMINATED)		0001 34 00	2
	18	FORMAT(* * RANCOM NO. SEED IS = * 2x, F12.0 ./)		3 3 3 3 5 0 3 3 5 0 3	
	19	FORMAT ('1',' JOB TERMINATED BECAUSE CARDS FUR COMPLX ARE D	JF JF	0200013600	
	1	DER ()		0001 3700	
		NI = 5		00 01 38 00	
		NC = 6		0061 3900	,
С		PULL THE NEFILE FROM DISK BASED ON PRUGRAM TO ANALYZE.		00014000	1
		IF (DIVAC .NE. C.AND.LCAN.EJ.O.AND.TARGET.EQ.J) KNB=718		0001 41 00	
		IF (DIVAC.EQ.C.AND.LCAN.NE.D.AND.TARGET.EQ.D) KNB=719		33014200	
		IF (DIVAC.E. C.AND.LCAN.EC.O.AND.TARGET.NF.O) KNB=720		0001 4300	
		IF (DIVAC.EQ.C.AND.LOAN.NE.D.AND.TARGET.NE.O) KNB=721		00014400	2
		IF (DIVAC.NE.C.AND.LCAN.NE.O.AND.TARGET.EU.O) KN3=722		00014500	2
		IF (DIVAC.NE. C. AND.LGAN.NE.U. AND.TARGET.NE.UJ KNB=723		00014600	
		IF (DIVAC, NE. C. ANULLIAN. EV.U. AND. JAKGET. NE.U] KNB=724		2001 4700	
		READ(10, KNB) (NBFILE(L)+L=1+90)		00014800	
~		WKITELC, SP KND		0001 5000	
L		READ THE I-U CARD LODINT NDERUC IRASE		0001 5000	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2001 52 00	
c				0001 5300	
C		READ THE PARTHETER CARD. READING 27 IKC. ALPHA. HETA, DELTA, GAMMA, ITMAX		0001 5400	
		IE/IND NE NI CO TO 29		0001 5500	
				0001 5600	
	20	W91TE(6.19)		0001 5700	
	27	STOP		0001 5800	9
	32	ΝΔΡΞΔΝΔΡ		0001 5900	. 8
С		BASED ON POLICY BEING RUN SET-UP THE NO. OF EXPLICIT & IMP	LICIT	00016000	c
-		BE G= 1		00016100	
		END=NBFILE(1)-2		00016200	8
С		N IS NO. OF EXPLICIT IND. VARIABLES.	60	00016300	5
		N= END		00016400	
С		M IS NC. OF SETS OF CONSTRAINTS IMPL. & EXPL. IN G&H.	· 99	MAX00016500	
		M=NBFILE(2)-2		00016600	
		BEG2=END+1		00016700	-
С		IC IS NO. OF IMPLICIT CONSTRAINTS IC=M-N.	M-N	.00016800	· · ·
		IC=M-N		00016900	C
С		K IS NO. OF POINTS ON THE COMPLEX.	30	MAX0001 7000	
-		K=END+ 1		00017100	
C		PRINT THE PARAMETER SUMMARY		0.001 72.00	
		WRITE INC, UTUS		00017400	
6		TELO, OUT THE Y MATRIX		00017500	
c		LENG UUT THE A MAINIA		0001 7600	1
		00 31 I=BEG_N		00017700	
	31	X(11,1) = 0.0		00017800	
	41	CONTINUE		0001 7900	C**
C	• =	PUT THE BASELINE DATA IN THE FIRST POINTS ARRAY STORAGE.		00018000	
		IF(IBASE.NE.C) GO TO 40		00018100	C*(
		DO 35 J=BEG.M		00018200	
		IO=NBFILE(J+2)		00018300	
	35	X(1,J)=EXOG(3,IO)		0001 84 00	
С		READ THE USER SUPPLIED VALUES FOR X FOR POINTS 1 THROU	IGH K.	00018500	
с		THE STARTING VALUE CARDS.		00 01 86 00	
	40	IF(IEASE.NE.1) GU TC 450		00018700	
		WRITE(6.8)		00018800	
		DC 425 L=1.K		00 01 89 00	
		READ(5,4) (X(L,J),J=BEG,END)		00019000	
	425	WRITE(6,3) L. (X(L,J),J=BEG,END)		00019100	
		GO TC 210		00019200	
	450	LINTINUE		00019300	
				0001 5500	
				00.01.96.00	
		MRTIECO+11		0001 7000	

•

		DO 250 Hadeo M	00019700
			0.001.99.00
		READ(10' NEXCOUNEFILEILI) J A9. (ANAM(LI), LI= 1, 5)	00019900
۰.	250	nRITE(6,6) J.(ANAM(L1),L1=1,5), X(1,J),S(J),H(J)	00020000
		IF(IEASE.EW.3) GO TC 210	00020100
		5C 1CC []=1.K	0 0 0 2 0 2 0 0
		CO 1CO LIEFEG-END	00020300
			00020400
		RANL - RANGINAR)	00.02.05.00
		k(11, JJ) = KENI	0 2 0 2 0 5 0 0
	100	CONTINUE	00020800
		NRITE (NO.012)	0 3 92 07 3 3
		WRITE (0.13) ANAR	00020800
			00 02 09 00
		$P_{1} = P_{1} = P_{1$	00021000
			00021100
	200	CENTING	0.002 1200
	210	CONTINUE ,	00021200
		CALL CONSX	0062.1300
		IF (IQ-ITMAX) 23-20-30	0002140 0
	20	WRITE (ND.014) F(IEV2)	00021500
			00021600
			010/1700
			00021800
	30	WRITE (NO.017) TIMAX	00021000
		DC 850 I=1+K	00021900
		DO SCO J=BEG.M	0 3 92 20 00
		L=J+2	O J O2 21 O O
		PEAD(10) = NEY(G(NBET(E(1)))) A9. (ANAM(1)). 1=1.5)	00022200
		μ_{0} (15 (N-0.14) ((NAM(1))) (15=1.5) (X(1,1)) (1	20022300
		WRITE (NU, 016) STRAAMELITEL-LYST ALTON T	00022400
	900	CONTINCE	00022500
	850	CENTINUE	00022500
2		STURE THE POINTS ON DISK FOR COLD START . 0003 IN CC 28-32 1-0 CC	00022600
		DO 875 J=1.M	00022700
	875	BRITE(16, 1) (X(I, 1), I=1, K)	00022800
	000		00022300
	999		2002 3200
		LU 300 JEBEG.M	00000000
			00023100
		L≓J+2	00023100
		L≂J+2 REAC(1C' NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5)	00023100 90023200
		L=J+2 REAC(1C' NEXCG(NBFILE(L))] A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(1EV2,J)	00023100 90023200 00023300
	300	L=J+2 REAC(1C' NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CENTINUE	00023100 90023200 00023300 00023400
-	300	L=J+2 REAC(10* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J.(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE OUT THE VALUES OF THE (UPTIMAL SOLUTION INTO THE EXOS ARRAY	00023100 90023200 00023300 00023400 30023500
c	300	L=J+2 REAC(1C' NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.OI() J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY	00023100 90023200 90023300 00023400 90023500 00023500
C	300	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (N0,016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2	00023100 90023200 9002330J 00023400 90023500 00023600 00023700
C	300	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE OPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG.M	00023100 90023200 0002330J 00023400 00023500 00023600 00023700
c	300	L=J+2 REAC(IQ: NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE OPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG.M IOJ=NBFILE(ICOL+1)	00023100 90023200 0002330J 00023400 00023500 00023600 00023703 00023600
C	300	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG.M IOJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2)	$\begin{array}{c} 0 & 0.2 & 31 & 0.0 \\ 9 & 0.02 & 32 & 0.0 \\ 0 & 0.02 & 33 & 0.0 \\ 0 & 0.02 & 34 & 0.0 \\ 0 & 0.02 & 35 & 0.0 \\ 0 & 0.02 & 36 & 0.0 \\ 0 & 0.02 & 36 & 0.0 \\ 0 & 0.02 & 36 & 0.0 \\ 0 & 0.02 & 36 & 0.0 \\ 0 & 0.02 & 39 & 0.0 \end{array}$
C	300	L=J+2 REACIIO: NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IUJ=NBFILE(ICOL+1) IC=NBFILE(ICCL+2) IF(IC.NBFILE(ICCL+2)	0 0 0 2 31 0 0 9 0 0 2 32 0 0 9 0 0 2 33 0 0 0 0 0 2 34 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 37 0 0 0 0 0 2 37 0 0 0 0 0 2 34 0 0
C	300	L=J+2 REAC(10* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 DO 11C ICOL=BEG,M IOJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(ICLNE.IDJ) I=2 I=1+1	$\begin{array}{c} 0 & 0 & 2 & 31 & 0 \\ 9 & 0 & 02 & 32 & 0 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 & 0 \\ \end{array}$
C	300	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9, (ANAM(L1), L1=1,5) WRITE (NO,016) J, (ANAM(L1), L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+1) IC=NBFILE(ICCL+2) IF(IC.NE.IOJ) I=2 I=1+1 EXEC(L IO) = X(IEV2,ICOL)	00023100 90023200 0023400 0023400 0023500 0023500 00023700 00023700 00023700 00024000 00024100
c	300	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 DO 11C ICOL=BEG.M 10J=NBFILE(ICOL+1) IC=NBFILE(ICCL+2) IF(IC_NE-ICJ) I=2 I=I+1 EXCG(I,IC) = X(IEV2,ICOL)	00023100 90023200 00023300 00023500 00023600 00023600 00023600 0002300 00024000 00024000 00024100 00024200
C	3C0 110	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IOJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC.NE.IOJ) I=2 I=1+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN	$\begin{array}{c} 0 & 0 & 2 & 3 & 1 & 0 \\ 9 & 0 & 0 & 2 & 3 & 2 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 6 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
5	3C0 110	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (N0,016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICCL+2) IF(IC_NE_IOJ) I=2 I=1+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END	0 0 0 2 31 0 0 9 0 0 2 32 0 0 0 0 2 33 0 3 0 0 0 2 34 0 0 0 0 2 35 0 0 0 0 2 35 0 0 0 0 2 37 0 3 0 0 0 2 37 0 3 0 0 0 2 37 0 3 0 0 0 2 4 0 0 0 0 0 2 4 3 0 0 0 0 0 2 4 3 0 0 0 0 0 2 4 4 0 0 0 0 0 2 4 4 0 0 0 0 0 2 4 4 0 0 0 0 0 2 4 5 0 0 0 0 0 2 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C *	3C0 110	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG.M IOJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC-NE.IDJ) I=2 I=1+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END	$\begin{array}{c} 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 9 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
C *	3C0 110	L= J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	$\begin{array}{c} 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 9 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
C*	3C0 110	L=J+2 REAC(1C* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 DO 11C ICOL=BEG.M IOJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC_NE.IDJ) I=2 I=I+1 EXCG(I.IO) = X(IEV2,ICOL) RETURN END SUBROLTINE CCNSX	$\begin{array}{c} 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 2 \ 4 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
c c*	3C0 110 ***	L=J+2 REAC(IQ: NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG.M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN FND SUBROLTINE CCNSX COMMCN /CCMAIN3/ SIMNAM(20). NEXOG(180). NFILE(300), DM(7,7),	$\begin{array}{c} 0 \ 0 \ 0 \ 2 \ 3 \ 1 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
c c*	3C0 110 ****	L=J+2 REAC(10* NEXCG(NBFILE(L))) A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 D0 11C ICOL=BEG.M IDJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC_NE_IDJ) I=2 I=1+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END SUBROUTINE CCNSX COMMCN /CCMAIN3/ SIMNAM(20), NEXOG(183), NFILE(333), DM(7,7),	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 33 0 0 0 0 2 34 0 0 0 0 0 2 35 0 0 0 0 0 0 2 35 0 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 4 0 0 0 0 0 2 4 0 0 0 0 0 2 4 0 0 0 0
c*	3C0 1110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L))] A9,(ANAM(L1),L1=1,5) WRITE (N0.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC_NE_IOJ) I=2 I=1+1 EXCG(1,IO) = X(IEV2,ICOL) RETURN FND SUBROLTINE CCNSX ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 2 32 0 0 0 0 0 2 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c*	3C0 110 ****	L=J+2 REAC(10' NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 D0 11C [COL=BEG.M IDJ=NAFILE(ICCL+2) IF(IC_NE_IOJ) I=2 I=I+1 EXCG(1,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 33 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 0 2 36 0 0 0 0 0 2 36 0 0 0 0 0 2 37 0 0 0 0 0 2 40 0 0 0 0 0 2 40 0 0 0 0 0
c*	3C0 110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L))] A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IUJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC=NE.IOJ) I=2 I=I+1 EXCG(I.IO) = X(IEV2,ICOL) RETURN END SUBROLTINE CCNSX ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 0 2 34 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 36 0 0 0 0 0 2 36 0 0 0 0 0 2 37 0 0 0 0 0 2 40 0 0 0 0 0 2 40 0 0 0 0 0
c c*	3C0 110 ***	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IDJ) I=2 I=1+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 35 0 0 0 0 2 35 0 0 0 0 2 35 0 0 0 0 2 36 0 0 0 0 2 36 0 0 0 0 2 37 0 0 0 0 2 2 3 0 0 0 0 2 4 0 0 0 0 0 2 2 5 0 0 0 0 2 5 0 0
c*	3C0 110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L)]] A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IUJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I.IO) = X(IEV2,ICOL) RETURN END SUBROLTINE CCNSX ************************************	$\begin{array}{c} 0 \ 0 \ 2 \ 3 \ 1 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
c*	3C0 110 ****	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+1) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	$\begin{array}{c} 0 \ 0 \ 2 \ 31 \ 0 \ 0 \ 0 \ 2 \ 31 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $
c c*	3C0 110 ***	L=J+2 REAC(1C* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.O1(*) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY 1=2 D0 11C [COL=BEG.M 10J=NBFILE(1CCL+1) IC=NBFILE(1CCL+2) IF(IC.NE.IOJ) I=2 I=1+1 EXCG(I.IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 33 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 0 2 35 0 0 0 0 0 0 2 37 0 0 0 0 0 2 40 0 0 0 0 0 2 40 0 0 0 0 0
c c*	3C0 110 ****	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IDJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 36 0 0 0 0 0 0 2 37 0 0 0 0 0 2 37 0 0 0 0 0 2 37 0 0 0 0 0 2 4 0 0 0 0 0 2 4 0 0 0 0 0 2 4 0 0 0 0
c c*	3C0 110 ****	L=J+2 REAC(1C* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C [COL=BEG.M IDJ=NBFILE(1CCL+2) IF(IC_NE.IDJ) I=2 I=1+1 EXCG(I.IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 33 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 0 2 36 0 0 0 0 0 2 37 0 0 0 0 0 2 30 0 0 0 0 0 2 30 0 0 0 0 0
c c*	3C0 1110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L)] } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 2 32 0 0 0 0 2 35 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 37 0 0 0 0 0 0 2 37 0 0 0 0 0 2 37 0 0 0 0 0 0 2 4 0 0 0 0 0 0 2 4 0 0 0 0
c c*	3C0 110 ***	L=J+2 REAC(1C* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 DO 11C [COL=BEG.M IDJ=NBFILE(1CCL+1) IC=NBFILE(1CCL+2) IF(IC_NE_1OJ) I=2 I=I+1 EXCG(1,IO) = X(1EV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 2 32 0 0 0 0 2 32 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 2 36 0 0 0 0 0 2 36 0 0 0 0 0 2 37 0 0 0 0 0 2 40 0 0 0 0 0 2 40 0 0 0 0 0
c c*	3C0 110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L)] } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IOJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN FND SUBROLTINE CCMSX ************************************	$\begin{array}{c} 0 \ 0 \ 2 \ 3 \ 1 \ 0 \ 0 \ 2 \ 3 \ 1 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
c*	3C0 110 ***	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IDJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 2 33 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 0 2 36 0 0 0 0 0 2 36 0 0 0 0 0 2 37 0 0 0 0 0 2 40 0 0 0 0 0 2 40 0 0 0 0 0
c c *	3C0 110 ****	L=J+2 REACI10' NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SULUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN FND SUBROLTINE CCNSX ************************************	$0 \ 0 \ 2 \ 3 \ 1 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
c c*	3C0 110 ****	L=J+2 REAC(10* NEXCG(NBFILE(L)) } A9,(ANAM(L1),L1=1,5) WRITE (NO,O16) J,(ANAM(L1),L1=1,5), X(1EV2,J) CONTINUE PUT THE VALUES OF THE UPTIMAL SOLUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG,M IDJ=NBFILE(ICOL+1) IC=NBFILE(ICOL+2) IF(IC.NE.IDJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END ************************************	0 0 0 2 31 0 0 0 0 2 31 0 0 0 0 0 2 32 0 0 0 0 0 2 35 0 0 0 0 0 2 35 0 0 0 0 0 0 2 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C*	3C0 110 ****	L=J+2 REAC[10; NEXCG(NBFILE(L)]] A9,(ANAM(L1),L1=1,5) WRITE (NO.016) J,(ANAM(L1),L1=1,5), X(IEV2,J) CGNTINUE PUT THE VALUES OF THE UPTIMAL SULUTION INTO THE EXOG ARRAY I=2 D0 11C ICOL=BEG.M IUJ=NBFILE(ICCL+1) IC=NBFILE(ICCL+2) IF(IC=NE=IOJ) I=2 I=I+1 EXCG(I,IO) = X(IEV2,ICOL) RETURN END COMMCN /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), DM(7,7), IFE(2CO) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), DM(7,7), IFE(2CO) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN3/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 CCMMCN /CMAIN5/ FT, IKEY2 CDMMUN /CMAIN5/ IVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, ISUPSCY, A73, IKEY1, IKEY2 CDMMUN /CMAIN6/ LOVAC, NEGXP, FPRIC, WPLCPI, IEN, UUM(14,3) CCMMCN /CMAIN6/ LOVAC, NEGXP, FPRIC, WPLCPI, IEN, UUM(14,4) CCMMCN /CMAIN6/ NEDCL, NEPOL, NEOJ, ADJIG, IZ, IT, IX, IST CCMMCN /CGUVS/ ADJIG5, CONST(110), AY(16), C(14,300), B(14,300) IEXOG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, IS, LU, J, I, IHDODI, INCD2, ANDIDI, ANGL02, ADJUD3, ANDL04 CCMMCN /CSTEC/ YIELDX(4,4), EXPORT(4,4), AMIN(d0), AMODE(d0),	$0 \ 0 \ 2 \ 31 \ 0 \ 0 \ 2 \ 31 \ 0 \ 0 \ 0 \ 0 \ 2 \ 32 \ 0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 32 \ 0 \ 0 \ 0 \ 0 \ 2 \ 35 \ 0 \ 0 \ 0 \ 0 \ 2 \ 35 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $

14M4X(30), PERCIEO, 104T4(3,100), COATA(14,100), INTER, NTER, AMATRX(0002630) í. 28.81 . IENJ1, IENJ2. IST1. IST2. IEX2 33026403 INTECER GAMMA 00026500 COMMEN /BMAINI/ ITMAX , 10, F(60,60) , NO, ALPHA, DETA, GAMMA C 00026600 INTEGER BEG.END. BEG2 30 32 67 33 DELTA, KODE, IPRINT , IC , BEG, END, BEG2 00026800 COMMEN /BMAIN2/ IBASE. COMMEN /BAAIN3/ X(60,99) .N.M.K.IEV1.IEV2. KI.F (60).G(99).H(99)00026900 1.XC(60).NDEBUG .KND,N32.N83.N81 0.0027000 CCMMEN / JMA 144/ NEFILE(99) 33627100 1 FORMATI! .. GOING TO 170 FOR TIME NO. .. 14,3E15.51 00027200 16 FORMAT('.. STORED & POINTS DN DISK FOP ITERATIO + NO. ',14) 0 C2 7 3 0 0 17 FORMATE .. DATA FOR & POINTS READ FROM UNIT 16') 30027400 018 FORMAT (//.2x. 30HCCCRDINATES OF INITIAL COMPLEX) 00027500 019 FORMAT (/.5(1X.2HX(.12.1H.12.4H) = . E13.0)) 00027600 00027700 021 FORMAT (1.2X.22HVALUES OF THE FUNCTION) 00027300 22 FCRMAT (/, 5(1X, 2HF(,12,4H) = , E13.6)) J23 FORMAT (//.2X.17HITERATION NUMBER .15) 00027900 024 FORMAT (/, 2X, 3 OHCGORDINATES OF CORRECTED POINT) 00028000 025 FORMAT (/.2X.27HCOURDINATES OF THE CENTROID) 00028100 C26 FORMAT (/,5(1X,2HX(,12,6H,C) = , E13.6)) 0 0 0 2 8 2 0 0 30.02.83.00 1234 FORMAT('.2%, 'SUBPOUTINE CONSX') IF (NCEBUG.NE.D) WRITE(0,1234) 00028400 10 = ITERATION INDEX 00028500 IEVI = INDEX OF POINT WITH MINIMUM FUNCTION VALUE. 00028600 С IEV2 = INDEX OF FOINT WITH MAXIMUM FUNCTION VALUE. 0 0 0 0 2 87 00 C = POINT INDEX. 00 02 88 00 С T KODE = CONTFOL KEY USED TO DETERMINE IF IMPLICIT CONSTRAINTS 00028900 С 0002 90 00 ARE FROVICED. . C 00 02 91 00 С К1 = DO LCCP LIMIT 3 3 02 92 00 $I_{2} = 1$ KUDE = 0 00029300 IF (M-N) 20.20.10 00029400 10 KODE = 100 02 95 00 00 02 96 00 20 CENTINUE CALCULATE COMPLEX POINTS AT RANCOM FRON UNIFORMLY DISTRIBUTED 00029700 C NOS. & THE BOUNDARY CONSTRAINTS. 00029800 С 00.02 99.00 IF(IBASE.EQ.1 .OR. IBASE.EQ.3) GO TO 61 00030000 [ROW1 = 2]IF(IPASE . EQ . 2) IROW1 = 100030100 00030200 DU 65 II=IRUNI.K 00030300 DU 5C J=BEG, END 00030400 I = II00 03 05 00 CALL CONSTT 00030600 $X{II},J = G{J} + R{II},J + (H{J}) - G{J}$ 00030700 50 CONTINUE CHECK THE VALUES OF EXPLICIT VARIABLES 00030800 С 00 03 09 00 DC 35C J=BEG.END IF(X(I,J)- G(J)) 320,320,333 00031000 $32C \times (I,J) = G(J) + DELTA$ 00031100 03031200 GO TO 350 00031300 330 IF(H(J)-X([,J]) 340,340,350 00031400 340 X(I.J) = H(J)- DELTA 350 CONTINUE 00031500 00031600 CALL CONSTT 00031700 KI = II00031800 CALL CHECK 00031900 IF (II-2) 51, 51, 55 00032000 51 IF (IPRINT) 52, 65, 52 20032100 52 WRITE (NO.018) 00032200 10 = 100032300 WRITE (NU.015) (IC. J. X(10.J), J= BEG, END) 55 IF (IPRINT) 56, 65, 56 00032400 56 WRITE (NC.019) ([1, J, X(II.J), J= BEG.END) 00032500 00032600 65 CONTINUE 00032700 GO TO 69 ENTER HERE IF THE USER HAS PROVIDED X VALUES FOR 1 THROUGH K 00032800 С

Ĺ,		CALL CONST TO CALCULATE OTHER X VALUES & GET READY TO	CALL	F JNC J J J J Z 4 O J
	61	CENTINUE		0 0 0 3 3 0 0 0
		IF(IEASE.EJ.1) GO TO 63		0003 31 00
C		READ THE K PEINTS FRUM DISK. UNIT 16.		00033200
		CC 62 L=1.M		0 0 03 33 00
	€2	<pre>PEAD(16' L) (X(1KK+L)+1KN=1+K)</pre>		00033400
		nRITE(6,17)		00033500
	63	CENTINUE		00033600
		WRITE (NO.J18)		00033700
		DD 64 I=1.K		00033300
		CALL CONSTT		00033900
		κ1=I		00034000
		CALL CHECK		00034100
		wRITE (NO, 019) (I , J, $X(I , J)$, J= BEG, END)		0 0 0 3 4 2 0 0
	64	CONTINCE		0.0034500
	65	K1 = K		11134501
				00034600
	70	CONTINUE		10034700
	10			00034800
				00034400
		14 - 0 IE (IDEINT) 72, 80, 72		00035000
	72	WRITE (NO. 021)		20035100
		WRITE (NG.022) (J. E(J). J=1.K)		00035200
С				00035300
č		THE PROGRAM WORKS BETWEEN HERE AND \$240 RETURN		0 0 0 3 54 0 0
č		UNTIL AN CPTIMUM IS REACHED.		00035500
č				00035600
	80	IEV1 = 1		0 0 03 57 0 0
С		FIND THE INDEX FOR THE MINIMUM OF F(I) . I=1.K		00 03 58 00
		DO 100 ICM=2.K		20035900
		IF (F(IEV1)-F(ICM)) 100,100,90		00036000
	90	IEVI = ICM		30036100
	100	CONTINUE		00036200
С		FIND POINT WITH HIGHEST FUNCTION VALUE		00036300
		IEV2 = 1		00036400
		DO 120 1CM=2.K		00036600
		TF (F(LEV2)-F(1CM)) 110,110,120		00036700
	110			00036800
~	120	CUNTINGE		0.0036900
č		CHECK CONVERGENCE CRITERIA		00037000
č		CHECK CONVERGENCE CHITEMIN		00037100
C		IE (E(IEV2)-(E(IEV1)+BETA)) 140-130-130		00037200
	130	KOUNT = 1		00037300
		GO TO 150		00037400
	140	KCUNT = KOUNT + 1		00037500
		IF (KOUNT-GAMMA) 15C,240,240		00037600
С				00037700
С		REPLACE POINT WITH LOWEST FUNCTION VALUE		00037800
	150	CONTINUE		00037900
		CALL CENTR		00038000
		DO 160 JJ=BEG.END		00038100
	160	$X(IEV1,JJ) = (1.0+ALPHA) \neq (XC(JJ)) - ALPHA \neq (X(IEV1,JJ))$		00038200
		I = IEV1		00036400
		LALL LEEUK		12038500
		LALL UBJI		33038633
		1004AT=0		00038700
	1.70			0.0038800
c	110	CONTINUE		00 03 89 00
č		REPLACE NEW PUINT IF IT REPEATS AS LOWEST FINCTION VALUE		00039000
č		ACTURACE ACT FORMER OF A CONTRACT AND CONTRACT AND A		00035100
č		FIND THE INDEX FOR THE FLD WITH THE MINIMUM VALUE.		00039200
		ICOUNT=1+ ICCUNT		00039300
		IEV2 = 1		00039400

CO 190 ICM=2.K 00039500 IF (F(IEV2)-F(ILM)) 190,190,180 00039600 160 IEV2 = ICM 0.10397.00 190 CENTINUE 00039800 IF (1Ev2-1EV1) 223,230,220 00**0399**00 200 DD 210 JJ=8EG,END 0004 00 00 L=K/4 00040100 IF(K.GT.2 .AND. ICCUNT.GE.L) XC(JJ)=X(IEV3,JJ) 00040200 x(IEV1,JJ)=(x(IEV1,JJ) + XC(JJ))/2.0 00040300 210 CENTINUE 300404000 $I = I \in V1$ 0 3 04 05 00 CALL CHECK 00 04 05 00 CALL JBJT 00 04 07 00 IF(IPRINT) 460,485,480 00040800 480 WRITE(6,1) ICOUNT, F(IEV1), F(IEV2) , F(IEV3) 00040900 WRITE (N0,022) (1, F(I), I=BEG,K) 00041000 485 CONTINUE 00041100 IF(ICCUNT.EQ. K) GO TO 220 00041200 GO TO 170 00041300 22C CONTINUE 20041400 IF (IPRINT) 230, 228, 230 00041500 230 WRITE (NO,023) IC 00041600 WRITE (NU.024) 20041700 WRITE (NO,019) (IEV1, JC, X(IEV1,JC), JC= BEG, END) 00041800 WRITE (NO.021) 00041900 WRITE (N0,022) (1, F(1), I=BEG,K) 00042000 WRITE (NO,025) 00042100 WRITE (NO,026) (JC, XC(JC), JC=BEG,ENC) 00042200 228 10 = 10 + 1 00042300 STORE THE X MATRIX ON DISK AT THE END OF EVERY TENTH ITERATION 00042400 FOR A COLD START, '0003' IN CC 28-32 OF I-O CARD. 00042500 IF (MOD(10,10).NE.C) GO TU 239 00042600 DO 238 L=1.M 00042700 238 WRITE(16' L) (X(IKK,L), 1KK=1,K) 00042800 WRITE(6.16) IU 00042900 wRITE (NO.022) (I. F(I), I=8EG.K) 00043000 239 IF (10-ITMAX) 80,80,240 0004 31 00 240 RETURN 00043200 END 00.04 33.00 SUBREUTINE CHECK 00043500 COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NEILE(300), DM(7,7), 00043700 1FF(200) 00043800 INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) 00043900 COMMEN /CMAINS/ FT, TITLE, LABEL, SKIP, JUMP 00044000 INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSDY, A73 00044100 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, 00044200 ISUPSOY, A73, IKEY1, IKEY2 00044300 COMMEN /CMAINE/ LFM, NGSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 00044400 COMMON /CMAIND/ LOAN, FGEXP, FPRIC, WPLCP1, IEN, DUM(14,3) JJ04 45 00 CCMMON /CMAINH/ NCPOL, NEPOL, NRO, IDROP, LASTYR , ACRE(14,12) 00044600 COMMON /CMAINI/ YIELD(16,4), IAJLOT, ADJTG, IZ, IT, IX, IST 00044700 COMMCN- /CGUVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), 00044800 1EXOG(14,180), DLDEXD(14,183), E(200), EXG, 1FLAG, JJ, IP, IG, IE, 00044900 215. LC. J. I. IHOLDI, IHOLD2. AHOLD1. AHOLD2. AHOLD3. AHOLD4 0 0 0 4 50 00 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMODE(80), 00 04 51 00 1AMAX(80), PERC(80), IDATA(3,100), CDATA(14,100), INTER, NTER, AMATRX(00045200 28.81 .IEND1. IEND2.IST1.IST2.IEX2 00045300 INTECER GAMMA 30 04 54 00 CCMMEN /BMAINL/ ITMAX , IO, R(60,60) , NG, ALPHA, BETA, GAMMA 00045500 INTEGER BEG, END. BEG2 30045600 CCMMCN /BNAIN2/ IBASE. DELTA, KODE, IPRINT , IC , BEG, END, BEG2 3004 5700 COMMCN /JMA IN3/ X(60,99) .N,M.K.IEV1,IEV2, KI.F(60).G(99).H(99)00045800 1.XC(60),NDEBLG .KNB,NB2,NB3,NB1 00045900 CCMMEN /BMAIN4/ NBFILE(99) 00646000

С

С

С

1.2	34	ECRMATINE 2X. ISLAROUTINE CHECK!)	30046200
	24	$F = \{ N \in F : N \in A \}$ we it $F = \{ A \in A \}$	0.0046300
			00046400
	10		33346535
		ICCUNT=1+ ICCUNT	00046600
		CALL CENSTT	00046700
с		CHECK AGAINST EXPLICIT CUNSTRAINTS	00046500
		DO 50 J=BE3, END	0 3 64 69 00
		1F [x(1,j)-G(j)] 2C, 20, 30	30047900
	20	X(I,J) = G(J) + DELTA	JU J4 71 JJ
		GO TC 50	00047200
	3 C	IF (H(J)-X(I,J)) 40,40,50	00047300
	40	$X(I \cdot J) = H(J) - DELTA$	0 0 0 4 7 4 0 0
	50	CONTINUE	0 0 0 4 75 0 0
		IF (KODE) 11C,11C,6C	00047600
С		CHECK AGAINST THE IMPLICIT CONSTRAINTS	00047700
	60	NN = END + 1	00047800
		DO ICC J=NN·P	00047900
		CALL CENSIT	00046000
		$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \right) $	10.06 82.00
	70		10048300
	60		00 34 64 00
	20		00042500
		CALL CENTR	3 3 64 56 00
		DD 9C JJ=8EG -END	3304 8793
		X(I,JJ) = (X(I,JJ) + XC(JJ))/2.0	33 34 83 33
	90	CENTINUE	00048900
1	co	CONTINUE	0 J J J J J J J J J J J J J J J J J J J
		IF (KT) 110, 110, 10	3 3 34 91 33
1	10	RETURN	00049200
		END	00044300
~ + +	***		n n n/ n/ n /
C++		***************************************	10049409
		SUBRCUTINE CENTR	00049500
C**	***	SUPRCUTINE CENTR ************************************	00049500
C**	***	SUBRCUTINE CENTR ************************************	00049409 00049500 00049600 00049700
C**	***	SUBRCUTINE CENTR ************************************	00049500 00049500 00049600 00049700 00049800
C**	***	SUBRCUTINE CENTR ************************************	0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 7 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), DM(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGED DIVAC INFORT FORMAT	0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 7 0 0 0 0 0 4 9 5 0 0 0 0 0 4 9 5 0 0 0 0 0 5 0 1 0 0
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON (CMAIN4/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73	0 0 04 95 00 0 0 04 95 00 0 0 04 96 00 0 0 04 97 00 0 0 04 97 00 0 0 04 97 00 0 0 04 99 00 0 0 05 00 00 0 0 05 01 00 0 0 05 02 00
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73. [KEV1.] [KEV2]	0 0 04 95 00 0 0 04 95 00 0 0 04 95 00 0 0 04 97 00 0 0 04 97 00 0 0 04 99 00 0 0 05 00 00 0 0 05 02 00 0 0 05 03 0 0
C**	***	SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPUT, SUPSDY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEYI, IKEY2 COMMON /CMAINC/ LEM. NOSIM. NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4	0 0 04 95 00 0 0 04 95 00 0 0 04 96 00 0 0 04 97 00 0 0 04 97 00 0 0 04 97 00 0 0 05 00 00 0 0 05 02 00 0 0 05 03 00 0 0 0 5 04 00
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LUAN, FGEXP, FPRIC, WPLCP1, IEN, DUM(14,3)	0004950 00049500 00049500 00049500 00049500 00049500 0005000 00050200 00050200 00050200 00050500
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, ISUPSOY, A73, IKEV1, IKEV2 COMMON /CMAIN6/ LUAN, FGEXP, FPRIC, WPCCP1, IEN, DUM(14,3) CCMMCN /CMAIND/ LUAN, FGEXP, FPRIC, WPCCP1, ACE(14,12)	00049400 00049500 00049500 00049700 00049700 00049700 0005000 00050200 00050200 00050200 00050400 00050400 00050400
C**	***	SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, ISUPSOY, A73, IKEYI, IKEY2 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LDAN, FGEXP, FPRIC, WPLCPI, IEN, DUM(4,3) CCMMCN /CMAIN1/ VIELD(16,4),IAJLOT, ADJTG, L2, IT, IX, IST	0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 97 0 0 0 0 0 4 97 0 0 0 0 0 4 97 0 0 0 0 0 5 0 0 0 0 0 0 5 0 1 0 0 0 0 5 0 2 0 0 0 0 5 0 2 0 0 0 0 5 0 4 0 0 0 0 5 0 5 0 0 0 0 0 5 0 5 0 0 0 0 0 5 0 5
C**	***	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCPMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LGM, FGEXP, FPRIC, WPLCPI, IEN, DUM(14,3) CCMMCN /CMAINI/ VIELD(16,4),IAJLOT, ADJIG, I2, IT, IX, IST COMMON /CGOVS/ ADJ(65), CONSTILU), AY(16), C(14,300), B(14,300),	0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 97 0 0 0 0 0 4 97 0 0 0 0 0 4 97 0 0 0 0 0 5 0 0 0 0 0 0 5 0 0 0 0 0 0 5 0 2 0 0 0 0 5 0 4 0 0 0 0 5 0 5 0 0 0 0 0 5 0 6 0 0 0 0 0 5 0 6 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C**	***	SUBRCUTINE CENTR COMMON /CHAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LUAN, FGEXP, FPRIC, WPCCP1, IEN, DUM(14,3) CCMMCN /CMAIN1/ LUAN, FGEXP, FPRIC, WPCCP1, IEN, DUM(14,3) CCMMCN /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, [2, IT, IX, IST COMMON /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE;	0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 95 0 0 0 0 0 4 97 0 0 0 0 0 4 97 0 0 0 0 0 5 0 0 0 0 0 0 0 5 0
C**	*** 1 1 2	SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, IF, JUMI4, 3) CCMMCN /CMAINC/ LGN, FGEXP, FPRIC, WPLCP1, IEN, DUMI4, 3) CCMMCN /CMAIN/ NCPOL, NEPOL, NRO, IDROP, LASTYR, ACRE(14,12) COMMON /CMAINI/ YIELD(16,4), IAJLOT, ADJTG, IZ, IT, IX, IST COMMCN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, IS, LO, J, I, IHCLD1, HOLD2, AHOLD1, AHOLU2, AHOLD3, AHOLD4	300 9503 000 9503 000 4503 000 4503 000 4503 000 4503 000 5030 000 5030 000 5030 000 5030 000 5030 000 50400 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503 000 50503
C**	**** 1 1 2	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LGM, FGEXP, FPRIC, WPLCPI, IEN, DJM(14,3) COMMON /CMAINI/ YIELD(16,4),IAJLOT, ADJTG, L2, IT, IX, IST COMMON /CG0VS/ ADJ(65), CONSTILU), AV1(6), C(14,300), B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, ZIS, LO, J, I, IHCLD1, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTEC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMODE(6)).	0004950 0004950 0004960 0004960 0004960 0005000000
C**	**** 1 1 2 1	SUBRCUTINE CENTR COMMON /CHAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, ISUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LUAN, FGEXP, FPRIC, WPCCPI, IEN, DUM(14,3) CCMMCN /CMAIN1/ LUAN, FGEXP, FPRIC, WPCCPI, IEN, DUM(14,3) CCMMCN /CMAIN1/ VIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMON /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, IEXCG(14,180), PEFC(80), ILATA(3,100),CDATA(14,100),INTER, NTER, AMATRXI	0004900 0004900 0004900 0004900 0004900 0005000 0005000 0005000 0005000000
C**	**** 1 1 2 1 2	SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SIMMAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SKIP(8) CCMMCN /CMAINS/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAING/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEYI, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, AMOB(3), COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH2, NH3, AMOB COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, AMOB COMMON /CMAINC/ LFM, NT, NT, NT, NT, NT, NT, NT, NT, NT, NT	000000000000000000000000000000000000
C**	**** 1 1 2 1 2	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPHHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPHHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ LIVAC, TARGET, FREMKT, SUPFG, SUPHHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LDAN, FGEXP, FPRIC, WPLCPI, IEN, DJM(14,3) COMMON /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, 12, IT, IX, IST COMMON /CG0VS/ ADJ(65), CONSTILU), AY1(6), CI(4,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, 21S, LO, J, I, IHOLDI, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTEC/ YIELDX(4,4), EXPORT(14,4), AMIN(83), AMODE(6), IAMAX(80), PERC(80), IDATA(3,103),CDATA(14,100),INTER, NTER,AMATRX(20,0), INTEGER BEG,END, BEG2	00049503 00049503 00049603 00049603 00049603 00050200 00050200 00050200 00050200 00050200 00050200 00050200 00050200 00050200 00050200 00050200 00050200000000
C**	**** 1 1 2 1 2	SUBRCUTINE CENTR COMMON /CHAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPMHT, SUPCOT, ISUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LUAN, FGEXP, FPRIC, WPCCP1, IEN, DUM(14,3) CCMMCN /CMAIN1/ LUAN, FGEXP, FPRIC, WPCCP1, IEN, DUM(14,3) CCMMCN /CMAIN1/ NCPCL, NCPOL, NC0, IDROP, LASTYR, ACRE(14,12) COMMON /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMCN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ISX, LO, J, I, IHOLD1, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AHOLD4 CAMAX(80), PEFC(80), IDATA(3,100),CDATA(14,100),INTER, NTER, AMATRXI 28,8], IEND1, IEND2, ISTL,ISX2,IEX2 INTEGER BEC, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2	000000000000000000000000000000000000
C**	**** 1 1 2 1 2	SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SUBRCUTINE CENTR SIMMAN / CMAIN3/ SIMNAM (20). NEXOG(180), NFILE (300), D4(7,7), IEE (200) INTEGER FT(9C). TITLE(20,20), LABEL(84,33), SK IP(8) CCHMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEYI, IKEY2 COMMON /CMAIN6/ LIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEYI, IKEY2 COMMON /CMAIN6/ LIVAC, FOR SUP, PFRIC, WPLCPI, IEN, DUM(14,3) CCMMCN /CMAIN6/ LUAN, FGEXP, FPRIC, WPLCPI, IEN, DUM(14,3) CCMMCN /CMAIN6/ LUAN, FGEXP, FPRIC, WPLCPI, IEN, DUM(14,3) CCMMCN /CMAIN6/ LUAN, FGEXP, FORIC, WPLCPI, IEN, DUM(14,3) CCMMCN /CGOS/ ADI65), CONSTILUD, ADJTG, (Z, IT, IX, IST COMMCN /CGNIC, YIELDX(4,4), EXPORT(4,4), AMIN80), AMD0E(80), LEXCG(14,180), DEEXC(14,180), ECATA(14,100),INTER, NTER, AMATXI 28,8], IEND1, IEND2,ISTI,IST2,IEX2 INTEGER BEC,END, BEG2 CCMMCN /BMAIN3/ X(60,99), N,M,KXIEVI,IEV2, KI,F(60),G199),H(99)	300 9500 000 9500 000 9500 000 9500 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 000 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 9700 970
C**	**** 1 1 2 1 2 1	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCPMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAINC/ LGM, FGEXP, FPRIC, WPLCPI, IEN, DJM(14,3) CCMMCN /CMAINI/ YIELD(16,4),IAJLOT, ADJTG, L2, IT, IX, IST COMMON /CGONS/ ADJ(65), CONSTILU), AY1(6), C(14,300),B(14,300), IEXCG(14,180), OLDEXO(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, 215, L0, J, I, IHOLDI, IHOLD2, AFOLDI, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMIN(83), AMOLG(6), IAMAX(80), PERC(80), IDATA(3,103),CDATA(14,100),INTER, NTER,AMATRX(128,0), FBC(80), BEC2 CCMMCN /BMAIN2/ IBA5E, DELTA, KODE, IPRINT, IC, BEG,END,BEG2 CCMMCN /BMAIN2/ X60,991, N,M,X,IEV1,IEV2, K1,F(60),G(99),H(99) I,XC(60),NDEBUG, KNB,NB2,NB3,NB1 (COMMCN /BMAIN2/ AB61E(50)	0.00 95.00 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 0.00 95.10 </td
C***	**** 1 1 2 1 2 1 2 1 2 1 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, ISUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, ISUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, ISUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOB, NDRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOB, NDRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, SUPPORTICA, ADJTG, I2, IT, IX, IST COMMON /CGOVS/ ADJ(65), CONST(110), AV116), C(14,300), B(14,300), EXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ISX, LO, J, I, IHCLD1, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMT(180), AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMT(180), AHOLD4 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, & BEG2 COMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, & BEG, END, &	000000000000000000000000000000000000
C**	**** 1 1 2 1 2 1 2 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LGM, NEPOL, NRO, IDROP, LASTYR, ACRE(14,12) COMMON /CMAINI/ VIELD(16,4),IAJLOT, ADJTG, [Z, IT, IX, IST COMMCN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), R14,300), IEXCG(14,180), DLDEXO(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, ZIS, LD, J, I, IHCD1, IDATA(3,100),CDATA(14,100),INTER, NTER, AMATRXI 28,8),IEND1, IEND2,IST1,IST2,IEX2 INTEGER BEG,END, BEG2 CCMMCN /BMAIN3/ X(60,99), N,M,K,IEV1,IEV2, K1,F(60),G199),H(99) IXC(60),NDEBUG ,KNB,NB2,NB1NB1 CCMMCN /BMAIN3/ X60,1234).	000000000000000000000000000000000000
C***	**** 1 1 2 1 2 1 2 1 2 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPHHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ FT, TITLE, LABEL, SKIP, SUPHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ FT, TITLE, LABEL, SKIP, SUPHT, SUPCOT, SUPSOY, A73, IKEYI, IKEY2 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LOAN, FGEXP, FPRIC, WPL(E), IEN, DUM(14,3) CCMMCN /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMON /CGONS/ ADJ(65), CONSTILU), AY(16), C(14,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, 21S, LO, J, I, IHOLDI, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMON /CSTEC/ YIELDX(4,4), EXPORT(14,4), AMIN(83), AHOLG(3), IAMAX(80), PEFC(80), IDATA(3,103),CDATA(14,100),INTER, NTER,AMATRX(28,8), IEDDI, IED2.ISTI,IST2,IEX2 INTEGER BEC.END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG,END,BEG2 CCMMCN /BMAIN2/ X60,99), N,M,K,IEV1,IEV2, KI,F(60),G(99),H(99) I,XC(60),NDEBUG, KNB,NB2,NB3,NB1 COMMCN /BMAIN2/ X60,99), N,M,K,IEV1,IEV2, KI,F(60),G(99),H(99) I,XC(60),NDEBUG, KNB,NB2,NB3,NB1 COMMCN /BMAIN2/ NBFILE(99) FORMAT(' ',2X, 'SURROUTIME CENTR') IF(NCEBUG,NE.0) WRITE(6,1234) DC 2C (I=HEG,END)	000000000000000000000000000000000000
C**	**** 1 1 2 1 2 1 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOB, NDRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOB, NDRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPR8, NOB, NDRC, NH1, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, SUPPO, ANJIG, IC, IT, IX, IST COMMON /CMAIN6/ LED01(6,4), IAJLOT, ADJTG, IC, IT, IX, IST COMMON /CGOVS/ ADJ(65), CONST(110), AV106, C14,300), B(14,300), EXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ZIS, LO, J, I, IHCLD1, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMN(180), AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMN(180), AHOLD4 COMMCN /SMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN3/ X(60,99), N,M,K, IEVI, IEV2, K1, F(60), G(99), H(99) IF(NCEBUG.N, C0) WRITE(6, 1234) DC 2C J=BEG, END XC(J) = 0,0	000000000000000000000000000000000000
C**	**** 1 1 2 1 2 1 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINI/ LUAN, FGEXP, FPRIC, WPLCP1, IEN, DUM(14,3) CCMMCN /CMAINI/ UAL, NEOL, NRO, IDROP, LASTYR, ACRE(14,12) COMMON /CMAINI/ VIELD(16,4),IAJLOT, ADJTG, (Z, IT, IX, IST COMMCN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), IEXCG(14,180), DLDEXO(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ZIS, LD, J, I, IHOLD1, IHOLD2, ANOLD1, ANGLU2, AMIN(80), AM:04 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AM:04(6), LAMAX(800, PERC(80), IDATA(3,100),CDATA(14,100),INTER, NTER,AMATRXI Z8,8) IENDI, IEND2,ISTI,IST2,IEX2 INTEGER BEG,END, BEG2 CCMMCN /BMAIN3/ X(60,99), N.M.K,IEV1,IEV2, K1,F(60),G199),H(99) IXC(60),NDEBUG ,KNB,NB2,NB3,NB1 CCMMCN /BMAIN3/ X(60,99), N.M.K,IEV1,IEV2, K1,F(60),G199),H(99) IXC(60),NDEBUG ,KNB,NB2,NB3,NB1 CCMMCN /BMAIN4/ NBFILE(5,1234) DC 2C J=BEG,END XC(J) = 0.0 DO 10 [L=1,K]	000000000000000000000000000000000000
C**	**** 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCHMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPHHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ FT, TITLE, LABEL, SKIP, SUPFG, SUPHHT, SUPCOT, SUPSOY, A73, IKEVI, IKEV2 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LFM, NOSIM, NPRB, NOBS, NPRC, NHI, NH2, NH3, NH4 COMMON /CMAIN6/ LDAN, FGEXP, FPRIC, WPL(E), IEN, DJM(14,3) CCMMCN /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMON /CGONS/ ADJ(65), CONSTILU), AY(16), C(14,300),B(14,300), IEXCG(14,180), OLDEXC(14,180), E(200), EXC, IFLAG, JJ, IP, IG, IE, 21S, LO, J, I, IHOLDI, IHOLD2, AHOLDI, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTEC/ YIELDX(4,4), EXPORT(14,4), AMIN(83), AHOLG(3), IAMAX(80), PEFC(80), IDATA(3,103),CDATA(14,100),INTER, NTER,AMATRX(28,8), INTEGER BEC,END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG,END,BEG2 CCMMCN /BMAIN2/ X60,99), N,M,K,IEVI,IEV2, KI,F(60),G(99),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COHMCN /BMAIN2/ X60,99), N,M,K,IEVI,IEV2, KI,F(60),G(99),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COHMCN /BMAIN2/ X60,99), N,M,K,IEVI,IEV2, KI,F(60),G(99),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COHMCN /BMAIN2/ NBFILE(99) FORMAT(* ',2,, 'SURROUTIME CENTR*) IF(NCEBUG.NE.0) WRITE(6,1234) DC 2C J=EG,END XC(J) = 0.0 DD 10 IL=1,K1 XC(J) = XC(J) + X((L,J)	J) 0 (4 9-5) 0 0 0 0 (4 950 0) 0 0 0 (4 950 0) 0 0 0 (4 950 0) 0 0 0 (4 950 0) 0 0 0 (4 950 0) 0 0 0 (4 950 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 0 (5 0) 0 0 (5 0) 0 0 (5 0) 0 0 (5 0) 0 0 (5 0) 0 0 (5 0) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 15 0) 0 0 (5 14 0) 0 0 (5 14 0) 0 0 (5 14 0) 0 0 (5 14 0) 0 0 (5 14 0) 0 0 (5 14 0) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 10) 0 0 (5 2) 0 0 (5 2) 0 0 (5 2) 0 0 (5 2) 0
C**	**** 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCUT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAIN6/ DIVAC, NEPDL, NRO, IDROP, LASTYR, ACRE(14,12) COMMON /CMAIN1/ VIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMON /CMAIN1/ YIELD(16,4),IAJLOT, ADJTG, I2, IT, IX, IST COMMCN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), BEXCG(14,180), OLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ISX LO, J, I, IHCLD1, IHOLD2, AHOLD1, AHCLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMT(180), AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMT(180), AHOLD4 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2 CCMMCN /BMAIN3/ X(60,99), N,M,K, IEVI, IEV2, K1,F(60),G(99), H(99) I,XC(60), NDEBUG , KNB, NB2, NB3 COMMCN /BMAIN4/ NB1LE(99) FORMAT(', 2x, 'SURBUTINE CENTR') IF(NCEBUG.NE.0) HRITE(6,1234) DC 2C ==BEG, END XC(J) = 0.0 DD 10 [L=1,K1 XC(J) = XC(L) + X([L,J) PK = K1	000000000000000000000000000000000000
C**	**** 1 1 2 1 2 1 3 4	SUBRCUTINE CENTR COMMON /CMAIN3/ SIMNAM(20), NEXOG(180), NFILE(300), D4(7,7), IEE(200) INTEGER FT(9C), TITLE(20,20), LABEL(84,33), SK IP(8) CCMMCN /CMAIN5/ FT, TITLE, LABEL, SKIP, JUMP INTEGER DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73 COMMON /CMAIN6/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPCOT, SUPSOY, A73, IKEY1, IKEY2 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINC/ LFM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4 COMMON /CMAINI/ LUAN, FGEXP, FPRIC, WPLCPI, IEN, DUMI1(4)3) CCMMCN /CMAINI/ UAD, FGEXP, FPRIC, WPLCPI, IEN, DUMI1(4)3) CCMMCN /CMAINI/ UAD, FGEXP, FPRIC, WPLCPI, IEN, DUMI1(4)3) CCMMCN /CMAINI/ UAD, FGEXP, FPRIC, WPLCPI, IEN, DUMI1(4)3) CCMMCN /CGOVS/ ADJ1651, CONSTILU0), AV1160, C114,300, B114,300), IEXCG(14,180), DLDEXO(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, ZIS, LD, J, I, IHOLD1, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 COMMCN /CSTCC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMODE(60), IAMAX(800, PERC(80), IDATA(3,100),CDATA(14,100),INTER, NTER,AMATRXI Z8,8), IEND1, IEN02,IST1,IST2,IEX2 INTEGER BEC,EN0, 8E62 CCMMCN /BMAIN3/ X(60,99),N.M.K.IEV1,IEV2, K1,F(60),G199),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COMMCN /BMAIN3/ X(60,99),N.M.K,IEV1,IEV2, K1,F(60),G199),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COMMCN /BMAIN3/ X(60,99),N.M.K,IEV1,IEV2, K1,F(60),G199),H(99) I,XC(60),NDEBUG ,KNB,NB2,NB3,NB1 COMMCN /BMAIN4/ NBFILE(59) FORMAT(' ',2X, 'SUBROUTINE CENTR') IF(NCEHUG,NE.0) WRITE(6,1234) DC 2C J=BEG,END XC(J) = (XC(J) + X(IL,J) RK = K1 XC(J) = (XC(J)-X(IEV1,J)/(RK-1.5)	000000000000000000000000000000000000

4

	RETURN	00052700	· (.	Y*S IN 211 - 218 OR J1 000	155303
		00052+00	C .	13*S IN 225 - 239 COD CR J2 000	159403
	こうごう かんしょう シャット シャー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー・マー	\$ 1136 26 30	č	BIS IN 226 - 240 EVEN OR K2	159500
C+***		000000000	ž	-15 18 251 - 255 633 08 13	55600
	SUBRELTINE DEJT	00053000	č .	11 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 97 00
C****	***************	*00053100	C	1.5 11 252 - 200 EVEN UK N3	5 6 8 0 1
	COMMEN //CMAIN3/ SIMNAM(20), NEXUG(180), NEILE(300), DM(7,7),	3 3 8 5 3 2 0 0	C	$JL^{1}S_{1}N_{2}Z^{1}Z^{2}B_{1}S_{2}D_{1}S_{$	5,0000
	1FE(2CC)	00053300	C	JUIS IN 231 - 283 OR JU	12 44 0 2
	INTEGER ET(90), TITLE(20,20), (ABEL(84,53), SKI2(8)	00 05 34 00		DO 115 I=3.NCBS 030	50000
		0.005 35 00		000 115 J=1+8 000	06 01 00
	CUPPEN / CHAINS/ FILLITEL LADEL SAIT JUST	0.05 34 00		11 = 270+1	06 02 0 0
	INTEGER DIVAC, TARGET, FREMAT, SUPEG, SJEWHT, SUPCOT, SJESST, ATS	00055600		0.000	6 03 00
	CCMMCN /CMAIN5/ DIVAC, TARGET, FREMKT, SUPFG, SUPWHT, SUPGUT,	00053100			6 04 00
	ISUFSCY, A/3, IKEY1, IKEY2	00053800		JP=2 + 3 + 3	4 05 00
	COMMON JUMAINCZ LEM, NOSIM, NPRB, NOBS, NPRC, NH1, NH2, NH3, NH4	30053900		((1, 0)) = 0.0	
	CCMMON / ZCMAIND/ LOAN, EGEXP, EPRIC, WPLCP1, IEN, DUM(14,3)	0 0 0 5 4 0 0 0		C(I, JL) = 0.C 000	5 05 00
	COMMON COMATANY NORCE, NERO, NRO, LOROP, LASTYR , ACRE(14-12)	00054100	11	5 C(I,JU) = 0.C	36 07 0 0
	COMMON (CANTER) HERDELE ALTA HOT AD TO ALTA IN THE IST	00054200	C	MOVE THE OUTPUT VARIABLES INTO FILES 211 - 218 300	00 80 60
	COMMEN /CARRIA TIEDUID 4/11AJCOT ADJOL 12, 11, 14, 13	00054200	•	DC 120 1=3-NCBS 000	0.09.00
	CUPMEN /CG3VS/ AD3(85); CSNS1(110); AT(18); C(14)S00);B(14)S00	00004300		(1, 2n) = (1, 93) (20)	061000
	1EX06(14,180), DEDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE,	00054400		C(1) =	6 11 00
	ZIS, LO, J. I. IHCLDI, IHOLDZ, AHOLDI, AHOLDZ, AHOLD3, AHOLD4	00054500		$C(1,2)^2 = C(1,0)^2 = C(1,0)^2$	61200
	COMMEN /CSTEC/ YIELDX(4,4), EXPORT(4,4), AMIN(80), AMODE(80),	JJC54600		C(1, 213) = C(1, 100)	1200
	LAMAX(80), PERC(80), [DATA(3,100),CDATA(14,100),INTER, NTER, AMATRX	(00054700		C(1,214) = C(1,096) 0.00	01200
	28.8) . IENDI. IEND2. ISTI. IST2. IEX2	00054800		C(1.215)= C(1.202) 000	61400
	COMPANY COLUMNY EGENDI. SVEYDI. HHEYDI. (TEYDI	00054900		C(1, 216) = C(1, 041) 300	06 15 00
	Threes of the second second	2205 5200		C(1,217) = C(1,042) 000	061600
	INTEGER BEGENDI DEGA	2225 51 02		C(1, 218) = C(1, 044) 200	61700
	CUMMEN /BMAIN2/ IBASE, DELTA, KODE, IPRINT, IC, BEG, END, BEG2	33335100	1.2	000 0000	06 18 00
	COMMEN /BMAIN3/ X(60,99) ,N,M,K,IEV1,IEV2, K1,F(60),G(99),H(99)	00055200	12		6 19 00
	1.XC(E0],NDEBLG .KNB,NB2,NB3,NB1	00055300	C	CUMPLIE THE JL'S AND JU'S	6 20 00
	COMMEN /BMAIN4/ NBFILE(99)	00055400		DJ 140 I=3.NCBS 550	52000
1	FORMAT('.1C(5F12.2.3X, 5F12.2./))	00055500		J2 = 223	00 21 00
	FORMAT(THE VALUE OF THE PEFORMANCE MEASURE = '.12.F20.1)	0 0 0 5 5 5 0 0		J3=243 000	DE 22 OU
122	EDMAT(1 1.7). ISDROUTINE OBIT()	00055700		K2=224, 300	62300
1234		30055600		K3=250 JJ0	05 24 00
	IFINDEBCG.NE.UJ WRITELO,12347	200555000		000	06 25 00
-		00055900		11-210-11 200	06 26 00
С	MOVE THE POLICY VARIABLES' VALUES INTO EXUG .	00056000		31-210+0	16 27 00
	I = 2	00056100		J[=270+L	14 22 00
	DO 110 ICOL= BEG, M	00 05 62 00		J0=280+L	362803
	ICJ=NBFILE(ICOL+1)	0 0 05 63 00		J2=2+J2	16 29 00
	$I_{0} = NBE [I_{1} \in (I_{1} \in I_{1} + 2)]$	00056400		000 000	06 30 00
		0 0 0 5 6 5 0 0		K2=2+K2 000	36 31 0 0
		00056600		K3=2+K3 000	06 32 00
	1 = 1 + 1	00056700	c	PENALTY FOR THE LOWER BOUNDARY BEING VIOLATED. THE JL'S 000	06 33 DD
. 110		30070700	C	$f_{1} = f_{1} = f_{1$	36 34 00
	DO 95 1=3,NOES	20026800	~	Proving contraction of the proving states the state of th	16 35 00
	FXCG(1,61) = EXOG(1,54) * (OLDEXO(1,61) / OLDEXO(1,54))	00056900	L	PENALIT FUR THE OPPER BEUNDART BEING VIGLATED, THE JOS	16 36 00
	EXOG(1,62) = EXOG(1,54) * (OLDEXO(1,62) / OLDEXO(1,54))	00057000		$IF(C(I,JI) \circ GT \circ C(I,K2)) \cap C(I,JU) = C(I,K3) * (ABS C(II,JI) - C(I,K2)) = C(I,K2)$	
	EXCG(1,59) = EXCG(1,51) * (OLDEXC(1,59) / OLDEXC(1,51))	00057100		IF (NCEBUG) 130,130,129 000	00163700
	$E \times OG(1.60) = E \times OG(1.51) * (OLDE \times O(1.60) / OLDE \times O(1.51))$	00057200	12	9 WRITE(6,1) C([,J1),G([,J2),C(I,JL),C([,J3),C([,J1),C(I,K2),C(I,J0)000	06 38 00
C G		20057300		1.C(1.K3) 300	053900
r	STANDATION LOOP IN POLYSIM.	00057400	13	C CENTINLE 000	06 40 0 0
L	SIPULATION LEDE IN FOLISING	00057500	14	0.CONTINUE 000	05 41 0 0
	DU LLUU L- J HUDS	00.0576.00	C	PROVISION FOR A STOCK RESERVE PROGRAM OF 20 M.T. JF FG & 500 M.BU.JJO	06 42 00
	J= [-]	00057800	č		06 43 00
	CALL SETUP	00057700	C	UC WILLAT 000	06 44 00
	CALL LVSK	00057800		IF(KNB.NE. 722) GU IU I4L	16 4 6 10
	CALL TGTP77	30057900		DU 142 1=3+NLBS 000	004500
	CALL ADJLOT	00058000		C(1,291) = -1C000.0* (ABS(C(1,150) + C(1,209) - 20.0)) 000	064600
	CALL CROPO	00058100		C(1,292) = -1C000.0* (ABS(C(1,151) + C(1,210) - 500.0)) 300	JE 41 JU
	CALL EDGE	00 05 82 00	14	2 CENTINUE 200	06 48 00
		00058300	14	L CONTINUE 000	06 49 00
		00058400	c	PENALTY FOR CORN PRICE GETTING GUT OF LINE WITH WHEAT. 200	06 50 00
	CALL SUTB	0005 05 00	-	D0 143 1=3-N(BS 000	06 51 00
	CALL COTTON	00058500		[E(t, t, 1, 0, 1), Ct, t, t, c, c, c, c, 0, 0, a, t, t, 2, 0, 1) = -1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	06 52 00
	CALL FED2	00058500		$\frac{1}{1} \frac{1}{1} \frac{1}$	16 53 00
	CALL RECPTS	00 05 87 00		T(MB2(C(1+105) -(0+40404 * C(1+501 1))	
	CALL GOVP	0088000	14.	3 CENTINUE 000	00 54 00
	CALL TOTALS	00058900	С	SUM THE PENALTY VALUES. 200	16 55 00
	CALL CENS	00055000		SUM = 0.0	06 56 00
1200		30 05 91 00		DO 145 I=3,NCBS 000	00 57 00
C	DEDECOMANCE REACHER FILL OF THE TEYT (1)	00059200		SUM = C(1,271) + C(1,272) + C(1,273) + C(1,274) + C(1,275) + 000	06 58 00
L.	PERFURMANUE MEASURE FLIDI UN IN INE ILAI (J)				

	1C(1,276) +C(1,277) +C(1,278) +C(1,281) +C(1,282) +C(1,283) +	3306 590 0	IEXNG(14,180), OLDEXG(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, 0007250)
	2C(1,284) +C(1,285) +C(1,286) +C(1,237) +C(1,268) + SUM	0006 6000	2IS, LO, J, I, IHCLD1, IHCLD2, AHCLD2, AHCLD2, AHCLD3, AHCLD4 0007260	
17	3 + U(1+291) + U(1+292) + U(1+293)	00066200	UCHMEN / BMAINS/ X(5),99) .N.M.K.IEVI,FEV2, KI,F(6)],6(99),H(99)307270)
1.	F(IR) = SIM	00066200	1 / ALLOGI / NUERLOGI / KNR / NO2 / NO3 / NO1 000/2800 1 / 24 ENDMATTI - 23 - 13 DEDITINE (2014)	
	wRITE(6.2) 13 . F(18)	00066400	IE (NEE 200 NEI TE (NEE 201 NEI TE (NEE 201 S) 000 7300	,
	IF(IPRINT) 05.65.60	00 06 65 00	C LOWER COUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 0007310	5
	60 CONTINUE	00 06 66 00	DO 10 L = 1,12 0007320)
	CO 150 J=1,8	00 06 67 00	10 G(L) = 0.0 0007330)
	JL = 270+J	00 06 68 00	C UPPER EDUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 0007340)
1.0	JUF220FJ 50 LDT514 1) //////////////////////////////////	0006 7000	0001 L=1,4 000/350	
· · ·	ZERD OUT THE C MATRIX FOR THE NEXT TIME	00067100)
Č,	65 DO 8C J=1,22C	00067200	H(L) = 0.35 + B(1,1) 0.00734.00	
	DO 75 I=3, NO BS	00 06 73 00	H(LW)= 0.35 * 3(1,2) 0007390)
	75 C(I+J)=0.0	00067400	H(LC)= 0.28 + B(I.4) 0007400)
1	20 CONTINUE	00067500	1 CONTINUE 00074100)
	IF (NCPOL.EU.O) GO TO 81	00067600	RETURN 0.007.42.0) .
	DU 79 JEI,NUFUL	00067700		
	ISTART = ICATA(2, 1)	00067900	SUPRENTINE CC719 00074500	,)
	IEND=1DATA(3,J)	00068000	C*************************************)
	DO 76 I=ISTART, IEND	00 06 81 00	C BOUNDARY CONSTRAINTS FOR CONTROL VARIABLES IN THE 2007470	-)
	L = (I - ISTART) + 1	00068200	C PRICE SUPPORT PROGRAM ONLY 0007480)
	76 C(I.KOD)=CJATA(L.J)	00068300	C 14 14 55 55 55 55 54 54 54 54 56 56 56 56 56 0007490)
	79 CENTINUE	00 06 84 00	CCMMEN /CGJVS/ ADJ(65), CONST(110), AY(16), C(14,303),B(14,303),03075300)
، ۲	BE CONTINUE DESTANTISH EVOC TO THE BASELINE WALKES AND USED SUDDITED VALUES	00068500	1×10^{-1})
C	DO 90 J=1.130	00058700	Γ (MMCN / RAIN3/ X160, 99) N. W.K. IEVI, EV2, KI, E(60), COM (90) 37530)
	DO 85 (=3.NOES	00068800	1 × X (6 C) • NDE BLG - KNB • NB2 • NB3 • NB1)
	85 EXOG(I,J)=OLDEXO(I,J)	00068900	1234 FORMAT(* *,2X, *SUBROUTINE CO719*) 3307550)
	90 CENTINUE	00069000	IF (NCEBUG.NE.0) WRITE(6,1234) 0007560)
	$E \times G = E \times OG(2,37)$	00069100	C WHEAT LOWER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES 0007570) .
		00069200	G(1) = 2.0 00075800	2
		00059300	$G(2) = 2 \cdot 0$ $O(0/590)$	
C * *	cruu ***********************************	**00069500	G(4) = 2.0 00076100)
	SUBROUTINE CONSTT	00069600	C CCRN LOWER EDUNDARY CONSTRAINTS, TABLE 1, FUR LOAN RATES 0007620)
C**:	******	**00069700	G(5) = 1.75 0007630)
С	SUB CONSTT CALLS THE RELEVANT SUBROUTINE FOR THE BOUNDARY CONSTR	A-0006 98 00	G(6)= 1.75 0007640)
C.	INTS ON THE CONTROL VARIABLES, BASED ON THE FARM PROG. SIMULATED	00069900	G(7)=1.75 0007650)
	- CUMMEN /CGUVS/ AUJ(65), CUNSI(110), AY(16), C(14,300), B(14,300) TEXAC(14,130), DUDEYC(14,180), E(200), EYC, TELAC, TH, TR, TC, TC	00070000	G(B) = 1.75 0007660) .
	215, 10, 1, 1, 10101, 10002, AHOLD1, AHOLD2, AHOLD3, AHOLD3, AHOLD3	00070200	G ()= 0.37	
	COMMCN /BMAIN3/ X(60,99) .N.M.K.IEV1.IEV2. KL.F(60).G(99).H(9	9)00070300	$G(1C) = C \cdot 37$ 0007 69 00	
	1,XC(60),NDEBLG ,KNB,NB2,NB3,NB1	00070400	G(11)= 0.37 00077000	
	1 FCFMAT(' ',I4,13(10F10.4,/,5X))	00070500	G(12)= 0.37 00077100)
12:	34 FORMAT(' ',2X, 'SUBROUTINE CONSTT')	00070600	C WHEAT UPPER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES 00077200	
	IF(NCEBUG.NE.O) WRITE(6,1234)	00070700	H(1)= 3.00 00077300	
	IF(NNDEW- 710) CALL CUTTO IF(KNR -FD. 719) CALL CUTTO	00070900		-
	IF (KNB .EV. 720) CALL CO720	00071000	H(4)= 3.52 0.00770	
	IF(KNB .EQ. 721) CALL CO721	00071100	C CURN UPPER BOUNDARY CUNSTRAINTS, TABLE 1, FOR LOAN RATES 00077700	1
	IF(KNB .E. 722) CALL CO722	00071200	H(5)= 2.10 00077600	
	IFIKNB .EQ. 723) CALL CO723	00071300	H(6)= 2.21 00077900	
	IF(KNB .EQ. 724) CALL CO724	00071400	H(I) = 2.54 0007 60 00	
	IF UNCEDUG.NE .UJ WKI IE(0,1) I (X([,L],L=1,M) Detudn	00071500	CETTENUPER FOUNCARY CONSTRAINTS, TABLE 1, FOR LOAN RATES DADADAD	
. •	END	00071700	H(s) = 0.520 Dotter to be the transfer of t	
(***	****	**00071800	H(10) = C.54E 0007860C	
	SUBROUTINE CC718	J0071900	H(11)= 0.579 00078500	
C * * *	**********	**00072000	H(12)= 0.610 00076500	1
C.	BOUNDARY CONSTRAINTS FOR CONTROL VARIABLES IN THE	30072100	DD 1 L=1.4 03078700	
	ACREAGE SET-ASIDE PROGRAM ONLY	00072200	LU=L+4 00078800	1
C		0.07.02.05	$\mathbf{I} = \mathbf{I} \cdot $	

147

						*
RETHEN	01075100	с	BOUNEARY CONSTRAINTS FOR CONTROL	VARIABLES IN	THE	22085723
	00076200	Ĩ.	PRICE & INCOME SUPPORT PROGRAM.			0000000000
	** 3 3 07 92 00	•	CONNEY /COOVS/ ADJI651, CONST(1	10) - 47(16) -	6(14.300).8(14	-3031 0306 5200
	00079300		1EXC3114-1801, CUDEXC114-1801, F12	101. EXG. 16		- IE. 00054000
	++03075500		215-17-1 L L LHCLDL, THOLDS, AND		AUCH 03 AUCH 02	121 00086000
	33076430		CUMPLY JANSING YILS COL N. H.	LENI LEND		00086100
C CUUNDART CURSTRATHIS FOR CONTROL VARIABLES IN THE	000707000		1 YELAN MERIC - YAA NOT NO, YOL	* 1 E VI #1 E VZ #	NL 17 (007 +3194)	PL(AA100080500
L INGLEE SUPPLET (TARGEL PRICE) PROGRAM.	00079700	12	34 E DMAT/1 1.2Y. ICLASSITINE (07)11			00086300
	00079800	12.	TELNEEDIC VE DI UDITELA 10241	,		31086410
LLMMLK /CGUVS/ ADJ(65), CGNS1(113), AY(16), U(14,300), B(14,300	1.000/9900	c	1FINLEDUG. 18 JJ WEITELG 12047			10056500
IEX06(14,183), OLDEX0(14,183), E(200), EXG, IFLAG, JJ, IP, IG, IE	, 00080000	č	CLASTRAINTS FLR 121			00086600
215, LJ, J, I, HOLDI, HOLDZ, AHOLDI, AHOLDZ, AHOLCZ, AHOLCA, AHOLD4	00080100	L	WHEAT LOWER EDUNDARY CONSTRAINTS,	TABLE I. FU	K LUAN KATES	33086733
CCMMEN /BMAIN3/ X160,991 ,N.M.K.IEV1,1EV2, KI.F1601,G(991,H19	910080200		G(1) = 2.5			00086503
1.XC(60),NDEBLG ,KNB,NB2,NB3,NB1	00080300		G(2) = 2.0			0 3 08 69 00
1234 FORMAT(* *,2x, *SLBROUTINE CO72C*)	00 08 04 00		G(3) = 2.0			00057000
IF(NEEBUG.NE.O) WRITE(6,1234)	00 08 05 0 0	_	$61 \ 41 = 2.0$	1 () () () () () () () () () (00087100
C MHEAT LOWER BOUNJARY CONSTRAINTS, TABLE 2, FOR TARGET PPICES	00080600	C	LUKN LOWER BOUNDARY CONSTRAINTS,	TABLE 1, FOR	R LOAN RATES	00087200
G(1) = 3.00	0 0 0 8 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0		G(5) = 1.75			3303 730 3
G(2) = 3.16	0008 C8 00		G(6) = 1.75			00 C8 74 00
G(3) = 3.34	00080900		G(7) = 1.75			300a 753 0
G(4) = 3.52	0003 1000		G(3) = 1.75			30087503
C CORN LOWER BOUNDARY CONSTRAINTS, TABLE 2, FOR TARGET PRICES	00081100	C	COTTENLOWER EDUNDARY CONSTRAINTS.	TABLE 1. FOR	R LOAN RATES	00087700
G(5) = 2.10	00081200		G(9) = 0.37			00 08 78 00
G(6) = 2.21	00081300		G(10)= 0.37			0 0 08 7 9 0 0
G(7) = 2.34	00081400		G(11)= 0.37			00088000
G(8) = 2.47	00081500		G(12) = 0.37			00058100
C COTTENIQUER POUNEARY CONSTRAINTS, TABLE 2, FOR TARGET PRICES	00081600	С	*HEAT LOWER BOUNCARY CONSTRAINTS,	TABLE 2, FOR	R TARGET PRICES	J J J B 8 2 J J
G(1, 9) = 0.52	00081700		G(13) = 3.00			00088300
G(1C) = -548	0008 18 00		G(14) = 3.16			00058400
G(11) = 0.575	00081900		G(15) = 3.34			00088500
6(12) = -610	00082000		G(16) = 3.52			00086600
C WHEAT UPPER BOUNDARY CUNSTRAINTS, TABLE 2, FOR TARGET PRICES	22082100	C	CORN LOWER BOUNDARY CUNSTRAINTS.	TABLE 2. FOR	R TARGET PRICES	22038720
H(1) = 4.00	00082200		G(17) = 2.10			0003 6800
$n_1 = 1 = 4.00$	0008 2300		G(18)=2.21			0.006.8900
(1) = 2 - 3 - 2 - 4 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	2208 24 00		G(19) = 2.34			0.03970.0
(1, 3) = -1.13	30.00 25 00		G(20)=2.47			0.3.08.51.00
TH TT - TOT AND ADV (CONSTRAINTS, TABLE 2, EAD TARGET DITCES	30052500	C	COTTCNLOWER BOUNDARY CONSTRAINTS.	TABLE 2. EDE	R TARGET PRICES	00085200
UI 51 - 3 14	0008 2700	-	G(21) = 0.520			33389333
114 31 - 3410	00002100		G(22) = 0.548			00089400
	00082800		6(23)= 0.579			0.089500
$\Pi_1 i i = 3.42$	00002900		G(24) = 0.610			000000000000
$\mathbf{r}_{1} = 0 + 0$	JU08 5000	r	WEAT HODED DOWNDARY CONSTRAINTS		A FOAN DATES	000000000
U DITENUPPER EDUNDART CONSTRAINTS, TABLE 2, FUR TARGET PRICES	00003100		H(1)- 3 00	INDEL IN FOR	C LOAN RAILS	1004 06 00
	0008 52 00					0008 98 00
H(10) = .79	00083300		(2) = 2 = 2			J J 00 4 9 J J
H(11) = .835	00083400		HI 37- 3-34			00090000
H(12) = .881	0008 35.00	c		TABLE 1 CO	A LOAN DATES	00090100
$DU \ge L=2+4$	00063600	L.	H(5) = 2 10	HADLE IN FUR	CUAN NAICS	00090203
LW = L - 1	00083700		$n_{1} = 2 \cdot 10$			00090500
I + (X(1,L), L) = X(1,L) = X(1,L)	00083800					
2 IF(X(I,L).GT.(1.1C * X(I,LW))) X(I,L) = 1.10 * X(I,LW)	00 08 39 00		F(1) = 2.54			00040500
DC 3 L=6,8	0 0 0 8 40 0 0					00090600
LW = L - 1	0 0 08 41 00	L.	CUTTONOPPER EJUNDARY CONSTRAINTS.	TABLE 1. FUR	CLUAN RAIES	30090700
IF(X(I+L)+LT+X(I+L+I)) X(I+L) = X(I+LW)	00084200		H(9) = 0.520			00090800
3 IF(X(I+L)+GT+(I+10 * X(I+LW))) X(I+L) = $1 \cdot 10$ * X(I+LW)	00084300		H(10) = 0.548			000909000
DO 4 L=10, 12	00084400		H(11)= 0.579			30091300
	0 J 08 45 00		F(12)= 0.610			00091100
$IF(X(I_{+}L)_{+}LT_{+}X(I_{+}LW)) X(I_{+}L) = X(I_{+}LW)$	00084600	C	WHEAT UPPER EOUNDARY CONSTRAINTS.	TABLE 2. FOR	I AR GET PRICES	00091200
4 IF(X(I,L).GT.(1.1C * X(I,LW))) X(I,L) = $1.10 $ * X(I,LW)	00 08 47 00		H(13) = 4.00			00091300
DC 1 L=1.4	00054300		H(14) = 4.21			00091400
LC = L + 4	00034900		H(15)= 4.45			00041500
IF(X(I+LC)+GT+(0+90909 * X(I+L))) X(I+LC) = X(I+L) * 0+90909	0008 50 00		H(16) = 4.69			00091500
1 CCNTINUE	00085100	С	CCRN UPPER EDUNDARY CONSTRAINTS.	TABLE 2, FOR	<pre>< TARGET PRICES</pre>	00091700
RETURN	0008 52 00		H(17)= 3.16			00 09 18 00
END	0008 5300		H(19)= 3.26			00 09 19 00
C * * * * * * * * * * * * * * * * * * *	** 00 08 54 00		H(19)= 3.45			00092000
SUBROUTINE CC721	00085500		H(2C) = 3.64			00 09 21 00
C*************************************	**00085600	C	COTTONUPPER EDUNDARY CONSTRAINTS.	TABLE 2. FOR	R TARGET PRICES	00 09 22 00
				× *		

COTTONLOWER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES H(21)= 0.750 00092300 C H(221= 0.790 00092400 +(23)= 0.835 00092500 H(24)= 0.851 30092600 3309 2700 DU 2 L= 2.4 03392630 1 w = 1 - 1 00092900 IF (X(1,L).GT.(1.10 * X(1,LW))) X(1,L) = 1.10 * X(1,LW) С IF(X(I,L),LT,X(I,LN)) X(I,L) = X(I,LW)0 0 0 9 30 0 0 C 2 CENTINUE 00093100 C 00 32 00 00 DC 3 L= 6.0 20093300 1 4=1-1 IF(X(I,L).GT.(1.10 + X(I,LK))) X(I,L) = 1.10 + X(I,LW) 3 3 0 9 3 4 0 0 C. 3009 3500 $IF(X(I,L) \cdot LT \cdot X(I \cdot L \cdot I)) X(I \cdot L) = X(I \cdot L \cdot I)$ 00093600 3 CONTINUE DO 4 L= 13,12 00093700 LW=L-1 20093800 **3 0 39 39 33** С IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)IF(X(I,L).GT.(1.10 * X(I+LW))) X(I+L) = 1.10 * X(I+LW) 00094000 00054100 4 CONTINUE 00094200 DO 5 L= 14.16 00.0943.00 1 W=L-1 C 1F(X(1,L).GT.(1.10 * X(1,LW))) X(1,L) = 1.10 * X(1,LW) 00094400 IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)00094500 00094600 5 CONTINUE 00094700 DB 6 L= 13,20 0 0 0 9 48 00 L₩=L-1 IF(X(I,L).GT.(1.10 + X(I,Lw))) X(I,L) = 1.10 + X(I,LW) 00094900 C. IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)0 0 0 9 50 0 0 03035100 6 CENTINUE DO 7 L= 22.24 0009 52 00 0009 5300 LW=L-1 0 0 0 9 5 4 0 0 С $IF(X(I_{+}L) + LT + X(I_{+}LW)) X(I_{+}L) = X(I_{+}LW)$ IF(X(I,L).GT.(1.10 * X(1,LW))) X(1,L) = 1.10 * X(I,LW) 00095500 2009 56 00 7 CONTINUE 00095700 00 1 1=1.4 LC = L + 4 00095800 C L1=L+12 0.0095900 00096000 12 = 1 + 16IF(X(I,LC).GT.(0.90909*X(I,L))) X(I,LC) = 0.90909 * X(I,L) 00 09 61 00 IF(X(1,L2).GT.(0.9C909*X(1,L1))) X(1,L2) = 0.90909 * X(1,L1) 00096200 00 09 63 00 1 CONTINUE 00076400 RETURN 00096500 END SUBROUTINE CC722 00096700 BOUNDARY CONSTRAINTS FOR CONTROL VARIABLES IN THE 00096900 ACREAGE SET-ASIDE & PRICE SUPPORT PROGRAM 00077000 ſ COMMEN /CGDVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), 00097100 1EX0G(14,160), DLDEXC(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IE, 00097200 215, LO, J. I, IHOLDI, IHOLD2, AHOLD1, AHOLD2, AHOLD3, AHOLD4 22097300 CCMMCN /BMAIN3/ X(60,99) ,N,M,K,IEV1,IEV2, K1,F(60),G(99),H(99)00C97400 1.XC(60),NDEBLG ,KNB,NB2,NB3,NB1 2005 7500 1234 FURMAT(',2X, 'SUBROUTINE CO722') 0.0.0976.00 LC = L + 4IF (NDEBUG.NE.O) WRITE(6,1234) 20 09 77 00 C CENSTRAINTS FOR 722. 0037800 WHEAT LOWER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES 20057900 RETURN 00098000 G(1) = 2.000 09 81 00 END G(2) = 2.000 09 82 00 G(3)= 2.0 00098300 G(4) = 2.0CORN LOWER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES 20098400 00098500 G(5)= 1.75 00 09 86 00 r G(6) = 1.750078700 G(7)= 1.75 00 09 88 00 G(8)= 1.75

C

C

3005 9000 G(9) = 0.3700099100 G(10)= 0.37 00099200 G(111= 0.37 03059300 G(12)= 0.37 00099400 G(13)= 0.0 WHEAT LOWER BOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 00099500 30049603 CORN LOWER BOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE COTTENLOWER EDUNCARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 0079900 00099800 DO 1C 1=14.24 2204 49 22 10 G(L) = 0.0 00100000 WHEAT UPPER BOUNDARY CUNSTRAINTS, TABLE 1, FOR LOAN RATES 00100100 H(1)= 3.00 00100200 H(21= 3.16 00100300 H(3) = 3.34 00100400 H(4) = 3.5200100500 CORN UPPER EDUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES 00100600 H(5) = 2.10HI 6)= 2.21 00100700 H(7)= 2.34 00100800 00100900 H(8) = 2.4730131000 COTTONUPPER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN KATES 00101100 H(9)= 3.52 00101200 H(1C) = 0.54833131303 H(11)= 0.579 00101400 H(12) = 0.610CORN UPPER EDUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 20101500 H(13)= 0.35 + 107.7 33131603 H(14)= 0.35 * 107.7 00101700 00101800 H(15)= 107.4 * 0.35 00101900 H(16) = 107.2 * 0.3500102000 WHEAT UPPEREDUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 00102100 H(17)= 70.7 * 0.35 00102200 H(18)= 71.1 * 0.35 H(19)= 71.1 * 0.35 00102300 H(20)= 71.1 * 0.35 00102400 COTTON UPPER EQUNCARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE 00102500 H(21) = 3.200102600 00102700 +1221= 3.3 00102800 +(23)= 3.1 00102900 H(24)= 3.2 00103000 DO 2 L=2.4 00103100 1W = 1 - 1IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)00103200 2 IF(X(I,L).GT.(1.1C * X(I,LW))) X(I,L) = 1.13 * X(I.LW) 00103300 00103400 $DO_{3} = 6.8$ 00103500 1 = 1 - 11F(X(I,L),LT,X(L,LW)) X(I,L) = X(I,LW)33103600 3 IF(X(I,L).GT.(1.10 * X(I,LW))) X(I,L) = 1.13 * X(I,LW) 00103700 00103800 DO 4 L=10,12 20103900 LW = 1 - 1IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)00104000 4 IF(X(I.L).GT.(1.10 * X(I.LW))) X(I.L) = 1.10 * X(I.LW) 00104100 00104200 D(1 | 1 = 1.400104300 IF(X(I,LC).GT.(0.90909*X(I.L))) X(I.LC) = 0.90909 * X(I.L) 00104400 00104500 1 CONTINUE 00104600 00104700 SUERCUTINE CC723 00104900 BOUNDARY CONSTRAINTS FOR CONTROL VARIABLES IN THE 33135100 ACREAGE SET-ASIDE, PRICE & INCOME SUPPORT PRUGRAM 00105200 COMMON /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300), B(14,300), 03105300 IEXOG(14,180), OLDEXC(14,180), E(200), EXG, 1FLAG, JJ, IP, IG, IE, 30105433

2IS, LC, J, I, IHCLD1, IHOLD2, AHOLD1, AHOLD2, AHOLC3, AHOLD4	00105500	IF(X(I,L).LT.X(I,LW)) A
CCMMCH /3MAIN3/ X(60,59) .N.M.K.IEV1.IEV2. KI.F(60).G(99).	H(99)33135600	4 IF(X(I,L).ST.(1.10 * X)
1.XCL601.NDE3LG .KN8.NB2.NB3.NB1	00105700	DO 1 L=1.4
1234 EDRMAT(1 1.2%, 1SLHROUTINE CC7231)	00105800	1 C = L + 4
	33105203	1E(X/1-1C).GT.10.909093
Character Contractor and Character and Character Contractor	00104000	1 CONTINUE
L CUNSTRAINTS FUR 123	00108000	I CLATINGE
WHEAT LUWER BOUNDARY CONSTRAINTS, TABLE I, FUR LOAN RATES	JJ136100	RETURN
G(1)= 2.00	33136230	ENC
G(2)= 2.30	00106300	C = + + + + + + + + + + + + + + + + + +
S(3) = 2.00	00106400	SUBROLTINE CC724
6(4) = 2.00	33106500	C*************************************
CCRN LOWER FOUNCARY CONSTRAINTS. TABLE 1. FOR LOAN RATES	22106600	C BOUNEARY CONSTRAINTS F:
	0.01067.00	C ACREAGE SET-4STOE & INC
	00106900	C CONSTRAINTS 724
G(0) = 1.75	00106800	CONSTRAINTS 124.
G(T) = 1.75	00108900	
G(8) = 1.75	2010/200	1FXUG(14,180), ULDEXU(14
COTTENLOWER BOUNCARY CONSTRAINTS, TABLE 1, FOR LOAN RATES	30137100	215, LC, J, I, IHULDI,
G(9) = 0.37	00107200	CCMMEN /BMAIN3/ X(6)
G(1C) = 0.37	00107300	1,XC(60),NDEBLG ,KNB,Ni
G(11) = 0.37	00107400	1234 FORMAT(* *,2X, *SUBROU
C(12) = 0.37	2010 75 00	IE (NCEBUG.NE.O) WRITE(
	22127600	C WHEAT LOWER BOUNDARY (
WHEAT LOWER COUNDART CONSTRAINTS, TABLE 5, FOR SET-ASIDE	55157800	C(11 - 3.0)
C CURN LUWER EDUNLARY CONSTRAINTS, TABLE 3, FUP SET-ASIDE	00107700	G(2) = 3.00
C COTTENLOWER BOUNDARY CONSTRAINTS, TABLE 3, FUR SEI-ASIDE	35107800	G(2) = 3.10
DU 10 L=13+24	20107900	G(3) = 3.34
10 G(L) = 3.0	00108000	G(4) = 3.52
C WHEAT UPPER BOUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES	30108100	C COPN LOWER BOUNDARY C
h(1) = 3.00	00108200	G(5) = 2.10
(1 - 2) - 3 - 16	00108300	6(.6) = 2.21
	20108600	G(7) = 2.34
	00108500	C(0) = 2.54
H(4)= 3.52	00108500	
CURN UPPER EDUNDARY CONSTRAINTS, TABLE I, FUR LUAN RATES	00108600	C CUTUNLOWER EDONLART CO
H(5) = 2.10	00108/00	61.91 = 0.52
H(6) = 2.21	00108800	G(10) = .548
H(7) = 2.34	00108900	G(11) = 0.579
H(8) = 2.47	00109000	G(12) = .610
COTTONUPPER POUNDARY CONSTRAINTS, TABLE 1, FOR LOAN RATES	00109100	C WHEAT LOWER BOUNDARY CO
	00109200	C CERN LOWER FOUNDARY C:
	00109300	C COTTONLOWER BOUNDARY C
	00100600	00 20 11=13 36
H(II)= 0.579	00109400	
H(12) = 0.610	00109500	20 0(11) = 0.0
C CURN UPPERBOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE	33109600	C LOWER BOUNDARY CL
H(13) = 0.35 + 107.7	00109700	G(25) = 3.00
$H(14) = 0.35 \times 107.7$	00109800	G(26) = 2.10
H(15)= 107.4 * 0.35	30109900	G(27) = 0.52
$H(16) = 107.2 \pm 0.35$	00110000	C WHEAT UPPER BOUNDARY CO
WHEAT UPPER HOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE	00110100	H(1) = 4.00
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	00110200	H(2) = 4.21
	00110200	$\mu(2) = 4.45$
$H(18) = 71 \cdot 1 + 0 \cdot 33$	00110300	u(x) = (x)
H(19) = 71.1 + 0.35	00110400	n(4) = 4.07
H(20)= 71.1 + 0.35	00110500	C LURN UPPER EUUNDARY C.
C COTTON UPPEREDUNDARY CUNSTRAINTS, TABLE 3, FOR SET-ASIDE	00110600	H(5) = 3.16
H(21)= 3.2	00110700	H(6) = 3.26
F(22) = 3.3	. 00110800	H(7) = 3.45
H(23) = 3.1	00110900	H(8) = 3.64
	2.111000	COTTONUEPER BOUNDARY C.
		H(9) = .75
	2011 1200	W(10) = 70
	30111200	11107 = 0.025
IF(X(I,L),LT,X(I,LW)) X(I,L) = X(I,LW)	00111300	M(11) = .000
2 IF (X (I,L).GT.(1.1C * X (I,LW))) X (I,L) = 1.13 * X (I,LW)	00111400	H(12) = .881
DO 3 L=6.8	00111500	C CORN UPPER BOUNDARY CO
LW = L - I	00111600	H(13)= 0.35 + 107.7
IF(X(I + I) + I + X(I + LW)) X(I + L) = X(I + LW)	00111700	H(14)= 0.35 # 107.7
3 $F(X(1,1),GT_1(1,1)) + X(1,LW)) X(1,L) = 1.10 + X(1,LW)$	00111800	$H(15) = 107.4 \neq 0.35$
	23111900	H(16)= 107.2 * 0.35
	0.011 20.00	
LW = L = 1	00112000	C BULAI OFFEREDUNDART CO

	$T = \{X \mid J = \{X \mid J = \{X \mid J = X \mid J = X \mid J = J = J = J = J = J = J = J = J = J$	00112100
	$\frac{1}{2} \left(\frac{1}{2} \right) \left(1$	2011 2200
	$4 + \{X_{1}, \{1, 1\}, $	JUTI 2200
	DO 1 L=1.4	00112300
	1 C = L + 4	03112400
	15/(1 + 1) = 20000 = $(1 + 1)$ = $(1 + 1)$ = $(1 + 1)$	2211,2500
		001222000
	I CENTINUE	00112600
	RETURN	0011270u
	END	33112±00
r * * *		3011 29 33
C+++		00112/00
	SUBROLTINE CL724	2011 2000
C***	************	00113100
C	BOUNEARY CONSTRAINTS FOR CONTROL VARIABLES IN THE	00113200
č	ACDEACE SET ASTINE & INCOME SUDDED DREEDAM	00113300
L .	ACKEAGE SET-FSTDE & INCOME SOFFERT FRED AND	00110000
C CO	NSTRAINTS 724.	JJ11 3400
	CCMMEN /CGOVS/ ADJ(65), CONST(110), AY(16), C(14,300),B(14,300),	00113500
	JEX06(14,180), OLDEX0(14,180), E(200), EXG, IFLAG, JJ, IP, IG, IF,	30113600
	215 I.C. I. J. HOLDI, HELD2, AHOLDI, AHOLD2, AHOLD3, AHOLD4	01113700
	2.13, EG, 3 , 1, 100001, 10002, and 501 , and 22 , and 232 , and 234 , and 3400 , 34	30113409
	CLMMEN /BMAIN3/ X160:991 +N.#.K.IEVIIIEVZ, KIFT601:6(991-0(991	0011 5000
	1.XC(60).NDEBLG .KNB.NB2.NB3.NB1	00113900
123	4 FORMAT(* *.2X. *SUBROUTINE CO724*)	33114000
	TE INFERIO NE A) #017616 12361	00114100
2	A THE DECOMPTON CONTRACTOR TANKS TANKS TO TAKE TAKET	2211 4200
ι	WHEAT LUWER BUUNDART CONSTRAINTS, TABLE 2, FOR TARGET PRICES	JJ114200
	G(1) = 3.00	00114300
	G(2) = 3.16	00114400
	(1, 1) = 1, 24	111145.00
		00114400
	G(4) = 3.52	00114600
С	COPN LOWER BOUNDARY CONSTRAINTSY TABLE 2, FOR TARGET PRICES	30114700
	$G(-5) = 2 \cdot 10$	30114800
	(1, 4) = 2, 21	00114900
		0011 6000
	G(7) = 2.34	0011 5000
	G(8) = 2.47	30115100
С	COTTONLOWER EDUNCARY CONSTRAINTS, TABLE 2, FOR TARGET PRICES	0011 5200
-	C(-9) = 0.52	00115300
		1116621
	G(10) = .548	3311 3433
	G(11) = 0.579	0011 55 00
	G(12) = .610	00115600
r	WHEAT LOWER BOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE	2211 57 03
~	THE ALL CONTRACT CONTRACTING THE ST FOR SET AS IDE	0.011 590"
ι	CCRN LUWER EDUNDART CONSTRAINTS, TABLE 5, FUR SET-ASIDE	0011 3800
С	COTTONLOWER BOUNDARY CUNSTRAINTS, TABLE 3, FOR SET-ASIDE	3311 5900
	DC 20 II=13.24	00116000
		00116100
~ '	0.01117 - 0.0	10114200
L	LUWER BUUNDART CONSTRAINTS, TABLE 2, FOR TARGET PRICES	10110500
	G(25) = 3.00	00116300
	G(26) = 2.10	00116400
	G(27) = 0.52	20116502
<i>c</i>	UNERT UNDER BOUNDARY CONSTRAINTS TARKE 2 EAR TARGET RELES	00114401
L.	WHEAT UPPER EUDINART CUNSTRAINTS, TABLE 2, FUR TARDET PATCES	00110000
	H(1) = 4.00	20110100
	H(2) = 4.21	00116800
	H(3) = 4.45	00116900
		00117000
_	n(4) = 4.07	00117000
C	CORN UPPER EUUNDARY CONSTRAINTS, TABLE 2, FOR TARGET PRICES	2011/102
	H(5) = 3.16	00117200
	H(-6) = 3.26	20117300
		00117400
	n(1) = 3.43	00117600
	H(8) = 3.64	00117500
C	COTTENUPPER BOUNDARY CONSTRAINTS, TABLE 2, FOR TARGET PRICES	00117600
	H(9) = -75	00117700
		00117800
	1111107 - +17	22117600
	H(11) = -835	2011 1460
	H(12) = .881	00118000
c	CORN UPPER BOUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE	00118100
		10118200
		00110200
	$H(14) = 0.35 \times 107.7$	0011 83 00
	$H(15) = 107.4 \neq 0.35$	00118400
	$H(16) = 107.2 \times 0.35$	00118500
r i	WHEAT UDDEDEDUNDARY CONSTRAINTS, TABLE 3, FOR SET-ASIDE	00118600
1 .	NIGHT OFFICIOUSUART CONSTRAITIST TROLE STITUS SCITHISTS	

$H(17) = 70.7 \neq 0.35$	20118700
H(13) = 71.1 + 0.35	JO11 86 00
$H(19) = 71.1 \pm 0.35$	0011 89:00
H(2C) = /1.1 = 0.35	00119000
C. COTTON UPPER EQUILARY CONSTRAINTS, TABLE 3, FER SET-ASIDE	22119100
H(21) = 3.2	00119200
H(22) = 3 - 3	00119300
p(23) = 3 - 1	3011 94 00
H(24) = 3.2	00119500
C UPPER BUINDARY CONSTRAINTS, TABLE 2, FOR TARGET PFICE	5 00119600
H(25) = 4 - 02	00119700
H(26) = 3.16	20119800
H(27) = 0.75	2011 9900
[0, 1] = 1.4	00120000
1C = 1 + 4	00120100
$[F(X(1,1,C), y_1, (2, 5), 9)] \times ((1, L)) = 3, 9) = X(1, L)$	00120200
1 CENTINUE	00120300
RE TURN	00120400
END	00120500
[* * * * * * * * * * * * * * * * * * *	*************
FUNCTION RANG(NARG)	00120700
[* * * * * * * * * * * * * * * * * * *	********00120800
C GENERATES PSEUDC-RANDOM NUMBERS, JNIFORMLY DISTRIBUTED ON (0.1	. 00120900
C THIS VERSION IS FOR THE 13M 360.	00121000
FOUTVALENCE (RAN, JRAN)	00121100
DIMENSION N(128)	00121200
DATA NEIRST/ 7/ K/7654321/ L/3141593/ M/271023183/	30121300
DATA 4K/231525/ ML/282629/ MM/253125/	00121400
IF (NARG) 20,1 C, 20	00121500
10 IF (NF IRST) 30.6C.3C	33121600
20 KLM= IABS (2 * 1 ARG+1)	30121700
K=KLM	00121800
L=KLM	00121900
M= KL M	00122000
NARG=0	00122100
20 NFIRST=0	00122200
ND IV=1677721 €	00122300
RD1V=32768.*65536.	00122400
00 50 J=1,12 E	00122500
K= K * MK	0 3 1 2 26 00
50 N(J)=K	00122700
60 L=L≄ML	00122800
J=1+IABS(L)/NDIV	0 3 1 2 2 9 0 3
¥= K≠ MM	00123000
NR = IABS(N(J) + L + M)	00123100
RAN= FL CAT (NR)/ RD I V	0012 32 00

C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C///// C//////	MRCFI MRCFI	0 XF 10 XF 10 XF 10 DE 10		S A SXCG DDAT/ THE 18-0 SEC SEC SEC SEC SEC SEC SEC SEC SEC SEC	FORT FILE (PRC) CAR DRDE CUDE CUDE CUDE CUDE CUDE CUDE CUDE CU	RAN S IN DCEDU DS A R OF CC. CC. CC. CC. CC. CC. CC. CC	PROG PROG POL IRE. S: 3 THE UBRO 1-4 5-8 9-1 13-1 17-2 21-2 23-2 23-3 33-8 901. J.JNE 3X1) .600 .1=1	RAM YSIN CAR 7 S UTIN 2 6 0 4 8 2 0 0 NB(S XT)).L ,90)	TO A IN ROS ETS. EE E E E E E E E I I A T T I I D O.1	PUT TO PER IS WU I XOG XOG XOG XOG XOG XOG F TH SEC F TI	ON THE FAR PLUS FIL FIL FIL FIL FIL CONC 3 CA	CIN XM S S TH S TH LE I LE I S AM S ARD ARD	SK G, PROD AME 15 11 HE 1 NO. NO. NO. NO. SE T T 2	THE H, GRAM AS NO. FOR FOR FOR FOR FOR FOR ANNE T. U ARE	FILE S CF CF CF CC CF CC CAR D CAR D SE S BLAN	NOS FIL ING DR DE DN TR DN TR CND TH TH CONT TO CAR NK •	• THA ES II 2014 R OF OLS CONTICONTICONTICONTICONTICONTICONTICONTI	AT ROL ROL ROL ROL CON LE TE VE N	00122 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00124 00125 00126 00127 00128	39 00 40 00 41 00 42 00 43 00 44 00 45 00 45 00 46 00 47 00 48 00 49 00 49 00 49 00 49 00 49 00 50 00
200	D()	300	L=1,	7															0012	74 OU
300	KH =	*L + \D(1)	717 0' KF) ()	1B(J,	L),J	=1,9	0)										i	0012 00127	7500- 7533-
100	00	400	L=1.	6C				,											0012	00 77
400	ST	1E1. 0P	6.31	L . I î	ND (L)	11+1)=1 , /	1											0012 00127	7800- 7900-
	END)	_					-											00128	80 0 0
14	14	1	1	1	1	3	ڌ	3	3	6	5	6	6	6						
30																				
14	1.4	55	55	55	55	54	54	54	54	5	6 5	ö6	56	56						
00																				
14	14	52	52	52	52	51	51	51	51	.5.	3 9	53	53	- 53						
0.0																				
26	26	55	5 5,	55	55	54	54	54	54	50	6 5	56	56	56	52	52	52	52	51	51
51	51	53	5 3	53	53															
00	24	55	55	55	55	ñ4	54	54	54	5	<u>،</u>	56	56	56	1	. 1	1	1	2	2
20	3	رر 6	رر 6	ر ن	.6	74	74	74	74				50		. T	. 1	. 1	1	5	3
0.0				_	·		_			_			_	_						
25	29 03	55 04	55	55 (4	55	54	54	54	54	50	6 5	06	56	56	01	01	01	01	03	03
00	0.5	00	00	(0																
26	26	1	1	1	1	3	3	3	3	i	6	ю	6	6	52	- 52	52	52	51	51
51 - 00	51	5.4	55	53	53							;								

APPENDIX B

DESCRIPTION AND LISTING OF DATA CARDS FOR THE

CONTROL THEORY OPTION IN POLYSIM

The POLYSIM User's Manual describes the data cards required to run the model, as well as, the coding instructions for the Core Data Cards (Name Card, Simulation Card, and Farm Program Card) and the Optional Data Cards (Richardson and Ray, 1974a). The additional data cards required to use the Control Theory Option in POLYSIM are described in this Appendix.

Changes in POLYSIM Data Cards

The Control Theory Option is activated by coding a 'l' in card column 77 of the Simulation Card. Other than the 'l' in column 77, the coding instructions for the Simulation Card are the same as those presented in the POLYSIM User's Manual. It should be noted that the policy programs coded on the Farm Program Card determine the control variables (farm policy variables) the model uses to maximize the performance measure. If an acreage set-aside program is selected, the set-aside levels for feed grains, wheat and cotton are the control variables. Similarly, when price and income support programs are used, separately or together, the control variables are respectively, loan rates and target prices for corn, wheat and cotton.

Performance Measure Cards

To generalize the Control Theory Option, provisions are available that allow the user to provide the upper and lower boundaries of the output variables used in the performance measure and their respective parameter weights. The values for the performance measure are provided by the user on the Performance Measure Cards, a new set of Optional Data Cards created for the Control Theory Option.

The performance measure described in the text is:

If lower bound level is violated -

$$JL_{ij} = H_{ij} |Y_{ij} - LB_{ij}|$$

If upper bound level is violated -

$$JU_{ij} = I_{ij} |Y_{ij} - UB_{ij}|$$

$$Maximize: J = \sum_{\substack{j=1 \\ j=1 }}^{4} \sum_{\substack{i=1 \\ j=1 }}^{n} (JL_{ij} + JU_{ij})]$$

where H_{ij} is the weight for output variable Y_i violating a lower boundary level LB_i in period j; I_{ij} is the weight for output variable Y_i violating an upper boundary level UB_i in period j. Values for variables LB_{ij} and UB_{ij} and parameter weights H_{ij} and I_{ij} used in this study are presented in Table IV.

A list of the output variables in POLYSIM associated with variables LB_{ij} and UB_{ij} , in this study, are presented in Table XX. Also, Table XX includes a list of the parameter weights, H_{ij} and I_{ij} , in the performance measure. Each data series $(LB_{ij}, UB_{ij}, H_{ij}, I_{ij})$ is entered on a separate Performance Measure Card, using the variable code in Table XX to identify the particular series being provided. For example, the boundary level for feed grain ending year carryover is identified by code number 235, and the lower boundary parameter weight for the variable is identified by code number 261 (Table XX).

Coding instructions for the Performance Measure Cards are presented below:

TABLE XX

VARIABLE CODES FOR OUTPUT VARIABLES, BOUNDARY LEVELS, AND PARAMETER WEIGHTS USED IN POLYSIM FOR THE PERFORMANCE MEASURE

Variable Codes	Output Variables	Abbreviated Variable Name
	Output Variables in Performance Measure (J)	
в 93	Realized net farm income m. \$	Y
в 212	Net income to livestock producers m. \$	Y _{2i}
в 100	Total U. S. consumer expenditure for food m. \$	Y _{3i}
в 96	Total government payments to farmers m. \$	Y _{4i}
в 202	Total Commodity Credit Corporation (CCC) storage and interest costs	Y ₅₁
в 41	Feed grain ending year carryover m.t.	Y _{6i}
в 42	Wheat ending year carryover m. bu.	Y _{7i}
в 44	Cotton ending year carryover m. net bales	Y _{8j}
	Lower and Upper Boundary Levels for Output Variables	
в 225	Lower boundary level of realized net farm income m. \$	LBli
в 226	Upper boundary level of realized net farm income m. \$	
в 227	Lower boundary level of net income to livestock producers $m.$ \$	LB ₂₁
в 228	Upper boundary level of net income to livestock producers $m.$ \$	UB ₂₁
в 229	Lower boundary level of total U. S. consumer expenditure for food m. \$	
B · 230	Upper boundary level of total U.S. consumer expenditure for food m. \$	UB 31
в 231	Lower boundary level of total government payments to farmers m.t.	

TABLE XX (CONTINUED)

Variable Codes		Output Variables	Abbrevaited Variable Name
в 232		Upper boundary level of total government payments to farmers m.t.	^{UB} 4i
в 233	•	Lower boundary level of total CCC storage and interest costs $$ m. $\$$	
в 234		Upper boundary level of total CCC storage and interest costs $$ m. \$	UB 5i
в 235		Lower boundary level of feed grain ending year carryover m.t.	LB ₆₁
в 236		Upper boundary level of feed grain ending year carryover m.t.	UB 6i
в 237		Lower boundary level of wheat ending year carryover m.t.	LB ₇₁
в 238		Upper boundary level of wheat ending year carryover m.t.	^{UB} 7i
в 239		Lower boundary level of cotton ending year carryover m. net bales	LB ₈₁
в 240		Upper boundary level of cotton ending year carryover m. net bales	UB ₈₁
		Lower and Upper Boundary Parameter Weights for Output Variables	
в 251		Lower boundary parameter weight for realized net farm income	H
в 252		Upper boundary parameter weight for realized net farm income	I ₁
в 253		Lower boundary parameter weight for net income to livestock producers	H ₂₁
в 254		Upper boundary parameter weight for net income to livestock producers	I _{2i}
в 255		Lower boundary parameter weight for total U. S. consumer expenditure for food	H _{3i}
в 256		Upper boundary parameter weight for total U. S. consumer expenditure for food	I _{3i}
в 257		Lower boundary parameter weight for total government payments to farmers	H _{4i}
в 258		Upper boundary parameter weight for total government payments to farmers	I _{4j}

TABLE XX (CONTINUED)

Variable Codes	-				Ou	tput	Variables	Abbreviated Variable Name
в 259		Lower	boundary	parameter	weight	for	total CCC storage and interest costs	H _{5i}
в 260		Upper	boundary	parameter	weight	for	total CCC storage and interest costs	I ₅₁
B 261		Lower	boundary	parameter	weight	for	feed grain ending year carryover	H ₆₁
в 262		Upper	boundary	parameter	weight	for	feed grain ending year carryover	I ₆₁
в 263		Lower	boundary	parameter	weight	for	wheat ending year carryover	H _{7i}
в 264		Upper	boundary	parameter	weight	for	wheat ending year carryover	I ₇₁
в 265		Lower	boundary	parameter	weight	for	cotton ending year carryover	H ₈₁
в 266		Upper	boundary	parameter	weight	for	cotton ending year carryover	I _{8j}

Card Column	
1	Enter a '6'.
2-20	A user specified name for the data series being pro- vided, for example: 'LB GOVT PAYMENTS'.
21-23	The variable code in Table XX associated with the data series being provided, for example: enter '231' for the lower boundary level of government payments.
24–25	The last two digits of the first calendar year to be simulated, i.e., '78' if the first year simulated is 1978.
26-29	Blank.
30	The number of years of data being provided '4', since the study period is four years.
31-40	The value of the data series for the first year to be simulated. Punch all values with a decimal point (say, 2.0), if the value is negative enter it as a negative (say, -1.5).
41-50	The value of the data series for the second year to be simulated.
51-60	The value of the data series for the third year to be simulated.
61-70	The value of the data series for the fourth year to be simulated.
71-80	Blank.

The user may use as many Performance Measure Cards as necessary to enter all of the boundary levels and parameter weights for the performance measure. (Upper and lower boundary levels for the farm income variables (225-228) are ignored by the model in its current form; but, are provided in Table XX for completeness.) Following the last Optional Data Card (the last Performance Measure Card) the user must provide the data cards for the Control Theory Option.

Data Cards for the Control Theory Option

Data cards for the Control Theory Option are separated from the POLYSIM data cards by one blank card. The first data card for the Control Theory Option is an I-O Card. The I-O Card provides a means for the user to indicate the type of input to be provided and the type of printed output desired from the model. The second card or Parameter Card is provided for the user to input parameters necessary for the optimization routine. The Parameter Card is the last data card unless the user selects the input option of providing the starting values for each of the m control variables. In such a case, m+1 (or k) Starting Values Cards follow the Parameter Card.

I-O Card

The I-O Card is the first data card for the Control Theory Option; it provides four options for entering the initial values for the control variables (policy variables) and three options for printing the output. Code the I-O Card as follows:

Card Column

1	Punch	a	'7'	•

2-10 Punch 'II-O CARD'.

11-20 An odd, six-digit number, to be used as a random number generator seed (punched with decimal point) as '999991.0'.

> Code '00000' if a minimum amount of output is desired until the maximum value of the performance measure is found. Code '0001' to print the value of the control variables, and the performance measure on each iteration.

25-28

21 - 24

Code '0001' to use the de-bug option for locating problems in the COMPLEX subroutines.

29-32

The option to indicate the source of the k initial values for the m control variables. A '0000' indicates the program will use the baseline values for one point, and select values for k-1 points at random. A '0001' indicates the user will provide data cards for the initial values of all control variables. A '0002' indicates that the initial values for all k points are to be selected at random. A '0003' indicates that initial values for all k points were stored on a direct access disk (unit 16) in a previous run and are to be used for this run.

33-80

Blank.

Parameter Card

The computer program used in this study to execute Box's Complex Procedure requires values for five parameters. These parameters are provided by the user on the Parameter Card. (Integers must be right justified.)

Card Column

1	Punch an '8'.
2-10	Punch 'PARAMETER'.
11-20	The reflection factor ALPHA, Box (1965) suggests using '1.3'.
21-30	The convergence parameter BETA, as '0.50'.
31-40	The within bounds accuracy for the constraints, DELTA, as '0.001'.
41-44	The number of iterations to continue searching after finding an optimal, GAMMA, as '0005'.
45-48	The maximum number of iterations the search program can go through in trying to locate the maximum of the performance measure, as '0400'.
49-80	Blank.

When a control path (a coordinate on the surface of the performance measure) is rejected the new values for the control variables are moved ALPHA units closer to the centroid. By using a value greater than one (1.3) we are assured of searching both sides of the centroid for the optimal control path. The Complex Procedure assumes convergence when the value of the performance measure for the k points on the surface is within BETA units for GAMMA iterations. When control values are selected that lie outside the boundary constraints, the control value is moved inside the violated boundary by DELTA units. More detailed descriptions of the parameters are available in Kuester and Mize (1973).

Starting Value Cards

The Starting Value Cards are used when the user chooses to provide the m+l (or k) starting values or control paths for the m control variables (option '0001' in card columns 28-32 of the I-O Cards). The starting values are stored in a k by m matrix, X. Each Starting Value Card provides values for m control variables, so k different Starting Value Cards must be provided. The order of the control variables on the Starting Value Cards depends upon the farm program being simulated, since each program has a different set of controls. The order of the control variables is indicated in Table XIX for each of the seven farm programs available in the Control Theory Option. For example, the storage locations in the X matrix, for an income support program, are: columns 1-4 for wheat target prices, columns 5-8 for corn target prices, and columns 9-12 for cotton target prices (Table XIX). To input data for the X matrix, the position of variables on the Starting Value Cards must follow the order of control variables in Table XIX.

The initial values for the first eight control variables in any of the seven farm programs are coded as:

Card Column

1+10	Value	for	X(1,1),	punched	with	decimal	point.
11-20	Value	for	X(1,2),	punched	with	decimal	point.
21-30	Value	for	X(1,3),	punched	with	decimal	point.
31-40	Value	for	X(1,4),	punched	with	decimal	point.
41-50	Value	for	X(1,5),	punched	with	decimal	point.
51-60	Value	for	X(1,6),	punched	with	decimal	point.
61-70	Value	for	X(1,7),	punched	with	decimal	point.
71-80	Value	for	X(1,8),	punched	with	decimal	point.

This same format is used for the next set of eight control variables if necessary for the program being sinulated or X(1,9) through X(1,16) in Table XIX. If more than 16 control variables are being used, continue on a third and fourth card, until reaching control variable X(1,M) in Table XIX. Then repeat the process for the second point or X(2,i), i = 1, 2, ..., m. The process is complete after coding k sets of the Starting Value Cards.

As new values for the control variables are calculated, during the solution of the Complex Procedure, they are stored in the X matrix. The X matrix is stored on a direct access disk (unit 16) every tenth iteration, so if the programs stops prematurely the calculations can be resumed at the last solution set stored on disk. Calculations can be resumed by re-submitting the program with option '0003' specified in card column 28-32 of the I-O Card. The process of re-submitting the program can be repeated as many times as necessary to get the program to a maximum value for the performance measure.

To reiterate, the cards needed to activate the Control Theory Option for POLYSIM, in the order in which they must appear, are:

One Blank Card,

The Name Card,

The Simulation Card (with '1' in column 77),

The Farm Program Card,

Optional Data Cards:

Elasticity Cards,

Policy Data Cards,

Predetermined Data Cards,

Performance Measure Cards,

One Blank Card,

The I-O Card,

The Parameter Card,

The k Starting Value Cards (these are optional).

A listing of the data cards used to evaluate farm program No. 4 are presented in this Appendix to aid the user in understanding the different cards described above.

	FARM PREGRAM	NO.4. PRI	ÇE 8	S INCOME	SUPPORT	wITH SET-ASI	DE, HIGH	EXPORTS	78
2	1.0.2.1	78004							1
਼ਰ	FFGM TADAGT	10010	ωL,	2 10		2 14	2 / 7		
· >	ULEN FARGET	05178	- 4	2.10	2.21	2.34	2.41		
5	WEEL TARGET	05278	4	3.00	2.10	3.34	2.52		
<u>י</u>	CULT TARGET	05378	4	• 52	• 548	• 5.79 5.5 50	. 610		
2	FO FAYMENT / AL	0/5/8	4	22.43	24.21	22.24	56.71		
਼ੇ	WHIPAYMENT / AC	07078	4	32.23	20 32	33.53	34.20		
2	LC DADT DATE	JIII0 34670.	4	10.20	45	01.45	65.00		
2	EU PARI KATE	J3010	4	•05	•02	· • • • • • •	•05		
ີງ ເ	WHIPAKI BATE	100110	4	• 0 	• O a	• 0	• 0		
2		00010	4	• • •	• •	• 0	• 0		
5	LISI LODACE	() = 2.73		• 4	• 4	• 4	• •		
5	CCTSI LDOACE	00570	4	• 4	• 4	• 4	• +		
5	LE CEL CESTS	01000	2	2 1 4	7 14	0.75	• •		
5		01078		06	22	075			
- 6	CET COE COSTS	01078	ר ג	1 44	- 22	075			
6	LE EXPORTS	01778	1	44.82	J. 40	•015			
4	LE EXPORTS	03878	1	1017.3	4				
	IC EXPORTS	04078	1	7.05					
6	LB EARM INCOME	22578	4	0.0	0.0	0.0	0.0		
- 6	UH FARM INCOME	22678	4	0.0	2.0	0.0	0.0		
6	LA LASK INCOME	22778	4	0.0	0.0	0.0	0.0		
6	LE LVSK INCOME	22878	4	0.0	0.0	0.0	0.0		
6	LB ECTD COSTS	22978	4	188300.	192500.	202600	211400		
6	The FRAD COSTS	23078	4	190183	194425	204626	213514		
6	LA GEVE PAYMENTS	23178	4	850.	850	850.	850		
6	LE GEVE PAYMENTS	23278	4	3700.	3700.	3700.	3700.		
6	TH COL COSTS	23378	4	0.0	0.0	0.0	0.0		
6	UP CCC COSIS	23478	4	600.	600.	600.	600.		
6	TH EG STOCKS	23576	4	30.	30.	30.	30.		
6	UB FG STOCKS	23678	4	60.	60.	60.	60.		
6	LE WHT STOCKS	23778	4	600.	600.	600.	600.		
6	LE WHT STACKS	23878	4	1200.	1200.	1200 .	1200.		
6	LB COT STOCKS	23978	4	2.	2.	2.	2.		
6	UE CCT STUCKS	24078	4	4.	4.	4.	4.		
e	H FARM INCOME	25178	4	1.	1.	1.	1.		
6	I FARM INCOME	25273	4	1.	1.	1.	1.		
6	H LVSK INCOME	25378	4	1.	1.	1.	1.		
6	I LVSK INCOME	25473	4	1.	1.	1.	1.		
6	H FEED CESTS LOW	25578	4	2.	2.	2.	2.		
Ŀ	I FOOD COSIS LOW	i 256 7 8	- 4	-2.0	-2.0	-2.0	-2.0		
ŧ.	H GOVE PAYME LOW	25118	4	0.0	0.0	0.0	0.0		
6	I GOVE PAYME LOW	25878	- 4	-1.5	-1.5	-1.5	-1.5		
Ŀ	H LCC COSTS LOW	25978	4	0.0	0.0	C.O	0.0		
6	I CCC COSTS LUW	20078	4	-1.5	-1.5	-1.5	-1.5		
6	H FG STOCKS	26178	4	-104.	-104	-1 04-	-104.		
Ŀ	I FG STRICKS	26 2 78	4	-82.5	-82.5	-82.5	-82.5		
6	H. WHT STOCKS	26378	4	-3.4	-3.4	-3.4	-5.4		
6	I WHI STOCKS	26478	4	-2.8	-2.8	- 2. 3	-2.3		
6	H COT STOCKS	26578	4	-284.8	-284.0	-284.8	-284.3		
6	E COT STOCKS	26678	4	-268.6	-268.6	-268.6	-268.	t	
0			~						
7	I-C. LARD 999997.	C	0	U					
51	PARAMETER 1.3	10.0		0.001	5065	G			

VITA²

James W. Richardson

Candidate for the Degree of

Doctor of Philosophy

Thesis: AN APPLICATION OF OPTIMAL CONTROL THEORY TO AGRICULTURAL POLICY ANALYSIS

Major Field: Agricultural Economics

Biographical:

- Personal Data: Born in Reserve, New Mexico, March 17, 1949, the son of Mr. Herbert Richardson and Mrs. Della McKinney.
- Education: Graduated from Las Cruces High School, Las Cruces, New Mexico, in May, 1967; received the Bachelor of Science degree from New Mexico State University with a major in Agricultural Economics in May, 1971; received the Master of Science degree from Oklahoma State University with a major in Agricultural Economics in July, 1973; completed the requirements for the Doctor of Philosophy degree from Oklahoma State University with a major in Agricultural Economics in May, 1978.
- Professional Experience: Student Aid, Department of Agricultural Economics and Agricultural Business, New Mexico State University, September-May of 1967-1971; Agricultural Management Trainee, Farmers Home Administration, USDA, June-August of 1969 and 1970; Research Assistant, Department of Agricultural Economics, Oklahoma State University, September, 1971-June, 1973; Research Associate, Department of Agricultural Economics, Oklahoma State University, July, 1973-August, 1974; Research Assistant, Department of Agricultural Economics, Oklahoma State University, September, 1975 to present.
- Professional Organizations: Member of the American Agricultural Economics Association, Southern Agricultural Economics Association, Alpha Zeta, and Phi Gamma Mu.