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THE ASSIMILATION OF NEWTONIAN MECHANICS, 1687-1736

INTRODUCTION

The period extending from the publication of the Philosophiae 

naturalis nrincipia mathematica of Isaac Newton (1642-1728) in l687 to 

the publication of the Mechanica sive motus scientia analvtice exposita 

of Leonhard Euler (1707-1785) in 1736 is one that shows no profound new 

developments in mechanical theory and is, for this reason, passed over in 

works dealing with the development of mechanical thought on a large scale.̂  

However, precisely because there seems to be so little advance, 

this period is of interest from the standpoint of the process through 

which ideas are assimilated by what might be~t.ermed second-rate thinkers. 

These are the men who perform the work of criticism and elaboration on 

the ideas provided by the men of superior creative insight. The par

ticular period under consideration here is unusually illuminating for a 

number of reasons : the tension in the political atmosphere between

England and France, the impact of the initial phases of industrial rev

olution, but especially because of the nature of Newton’s innovations in

See René Dugas, A History of Mechanics (New York: Central
Book Company, Inc., 1955), Eugen K. Duhring, Kritische Geschichte der 
allgemeinen Prinzioien der Mechanik (Leipzig: Fues's Verlag, 1887)
Ernst Mach, Die Mechanik in ihrer Eutwickelung historisch-kritisch 
dargestellt (Leipzig: F. A. Brockhaus, 1904).
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mechanical thought and in the conception of the nature of scientific 

explanationo

In the Princinia. Newton laid out an extremely impressive, but 

somewhat obscure theory of mechanics. It takes a good measure of hind

sight and a considerable amount of analysis to make out the true nature 

of Newton's thought, so that the vast array of theorems presented in the 

Princinia seemed to his contemporaries more an achievement inviting awe 

and belief than an understandable theoretical system. In contrast to 

this, Euler, in his Mechanics. elaborated mechanical theory in terms of 

analysis, as is indicated in the title of the book, and, in so doing, 

produced a work that represented an understandable system, provided of 

course that one understood analysis, i.e., the differential and integral 

calculus. Euler wrote that the use of geometrical demonstrations— the 

means of demonstration employed by Newton— serves to convince one of the

truth of a statement of principle, but does not give understanding. This
2can only be achieved in analysis.

Euler's use of the word "understanding" seems to imply more than 

comprehension of a merely logical system. It demands insight into the 

actual physical processes whose observable consequences are represented 

by theory as well as insight into the ultimate nature of the matter involved 

in these processes. This sort of understanding is what was provided by the 

calculus.

2Leonhard Euler, Leonhard Euler's Mechanik oder analvtische 
Darstellung der Wissenschaft mit Anmerkungen und Erlauterungen. heraus- 
gegeben von J. Ph. Wolfers (Greifswald: C, A. Kogh's Verlagshandlung,
184.8), I, pp. 3-4..
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However, since Euler's formulation of mechanical theory, as 

well as those of Joseph-Louis Lagrange (1736-1813) and William Rowan 

Hamilton (l805-l865), was mathematically equivalent to Newton’s formula- 

tion, it seems likely that both, or all, were founded on the same 

mathematical basis. Further, there is the age-old distinction between 

mathematics as a method of discovery and mathematics as a means of demon

stration to consider: how did Newton come by the discoveries which he

proved in the traditional, geometrical manner? Since Newton was the 

inventor of an infinitesimal calculus, the so-called calculus of fluxions, 

there is a possibility that calculus was the tool used in the construc

tion of his theory. As such, the calculus would constitute the "under

standable" structure of the theory.

It is upon this thesis that the present work rests; with the 

assumption that analysis is the implicit structure of Newton's mechanics 

the period under examination takes on, in one aspect, the form of a 

dissemination.of a new type of mathematical thought, i.e., the infini

tesimal calculus. This would suggest that Gottfried Wilhelm Leibniz 

(1646-1716), who was an independent inventor of the infinitesimal calcu
lus, might have exerted a large influence on mechanical thought in the 

period. In fact, as will be shown, the influence of Leibniz, especially 

through John Bernoulli (1667-174-8), was more decisive than that of Newton 

on the French mechanicians, who were, on the whole, far advanced over 

their English contemporaries.

OErnest Nagel, The Structure of Science. Problems in the Logic 
of Scientific Explanation (New York: Harcourt, Brace and World, Inc.,
1961), p. 158.
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With this in mind, the study of the history of mechanical 

thought between 1687 and 1736 can be broken down into a number of major, 

problems: the mathematical nature and origins of Newton's theory of

mechanics, the difficulties that that theory entailed for his English 

followers, the differences between English and French mechanical tradi

tion, the nature and scope of Leibniz's contributions to mathematical- 

mechanical thought, grounds for the French acceptance and English 

rejection of Leibniz, and finally the basis on which a reconciliation of 

French and English mechanical thought could be made.

These subsidiary problems suggested by the mathematical aspect 

of the development of mechanical theory can be more easily and adequately 

treated when the relation of mathematics to physical theory is understood. 

According to Ernest Nagel, scientific theory can be analyzed into three 

major components: an abstract calculus^ which is the logical skeleton of

the theory; a set of rules that assign an empirical content to the abstract 

calculus (so-called rules of correspondence); and an interpretation for 

the abstract calculus, which gives "flesh" to the skeletal structure

From this analysis of the component parts of theory, the 

infinitesimal calculus invented by Newton and Leibniz should correspond 

to the logical structure of mechanics. That is, the system of postulates 

and definitions that constitute the basis of the theory should form an 

abstract relational structure for the terms of the theory which is the 

same as the infinitesimal calculus. For instance, the relationships 

between force, distance, velocity, and acceleration defined in the

'̂Ibid. ; p. 90.
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mechanical theory should correspond exactly to the relationships between 

similar terms in the infinitesimal calculus.

If the abstract calculus were the only significant aspect of 

scientific theory, the history of mechanics in the period would be simply 

a matter of tracing the spread of mathematical understanding; anybody who 

could operate with the calculus could understand and accept the corres

ponding theory of mechanics. However, the other two components of theory 

are of equal importance and are capable of producing controversy and even 

of obscuring the understanding or preventing the acceptance of the cal

culus as a proper relational structure for mechanics.

With regard to the matter of assigning empirical content to the 

theory, a long and acrimonious dispute was carried on between Newtonian 

and Leibnizian adherents over the proper empirical determination of force 

in a moving body; the Newtonians insisted that force was proportional to 

the velocity and the Leibnizians insisted that it was proportional to the 

square of the velocity. Both of these results could be derived from the 

theory and verified in experience, depending on whether one assumed that 

the time factor or the distance factor was of basic significance in the 

understanding of force.

The interpretation of the abstract calculus was, however, the 

popularly significant aspect of any mechanical theory, from the point of 

view of its acceptance or rejection. As has been stated, the interpre

tation gives "flesh" to the abstract calculus; it provides the physical 

and metaphysical elaboration that ties the theory to reality. The pic

ture of reality carried in Newton's mechanics, for instance, offended many 

men because in it particles of matter could affect other particles of
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matter without being in contact with them; it offended others because it 

seemed to make the world too deterministic and to leave no place for the 

free action of God or the freedom of the human mind. Leibnizian ideas on 

mechanics, on the other hand, were associated with his theory of "monads," 

which had a somewhat mystical character and was simply unacceptable in an 

individualistic and materialistic age; matter as hard massy particles did 

not have real existence for Leibniz. Neither theory was really able to 

solve the great problem of the age, the elimination of the mind-matter 

duality that had become explicit in the writings of René Descartes (1596- 

1650).

The interpretative ideas associated with Newtonian and Leibnizian 

mechanics were both in conflict with physical and metaphysical notions, 

stemming from Descartes, which maintained their influence through most of 

the period. However, Cartesian mechanics had a completely different 

relational structure than Newtonian and Leibnizian mechanics, one that 

could not be forced to agree with experience, so that it died a natural 

death. The other two theories were left to contend on interpretative or 

"explanatory" grounds.

Pierre Duhem (1861-1916), in his The Aim and Structure of Physical 

Theory, wrote that such interpretative or "explanatory" ideas associated 

with physical theory are to be distinguished from what he terms the rep

resentational part of the theory, the mathematical and empirical parts.

He found in this distinction a key to the understanding of a continuous 

tradition in science. Since the representational part merely represents 

the experiential content of the science, it is taken over virtually in



tact into any new theoretical system, while the explanatory part of the 

old theory is discarded.^

This idea can be applied to the competition between the theories 

of Newton end Leibnizo They both contained essentially the same repre

sentational parts, but the explanatory aspects of Leibnizian mechanics 

were too heavily metaphysical for the taste of the age, whereas Newton, 

although he in fact made just as many and as far reaching metaphysical 

assumptions as Leibniz, explicitly disclaimed any such content to his 

theory. In the famous "I frame no hypotheses" statement, Newton seemed 

to indicate that his work was purely mathematical and empirical, and this 

concept of the nature of science was to become a guiding principle in the 

eighteenth century.. By the end of the period scarcely a single reference 

to anything of a metaphysical nature can be found in the writing of the 

leading mechanicians, and, correspondingly, the name of Leibniz was no 

longer mentioned in connection with the science of mechanics.

The rejection of metaphysics in favor of mathematics and 

empiricism that bccurred in the eighteenth century is part of'the modern 

mentality, so that contemporary writers on science and the history of 

science tend to hold the belief that anriori metaphysical ideas, or 

religious notion's having to do with the world of nature, are purely 

detrimental to productive scientific work. Duhem gave classic expression 

to this idea, in terms of his distinction between the explanatory and 

representative parts of physical theory.

P̂ierre Duhem, The Aim and Structure of Physical Science, 
trans. Philip P. Wiener (Princeton, New Jersey: Princeton University 
Press, 1954)j p. 32.
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Now it is very far from being true that the explanatory 
part is the reason for the existence of the representative 
partj, the seed from which it grew or the root which nourishes its 
development; actually the link between the two parts is nearly 
always most frail and most artificial. The descriptive part has 
developed on its own by the proper and autonomous methods of 
theoretical physics; the explanatory part has come to this fully 
formed organism and attached itself to it like a parasite.

It is not to this explanatory part that the theory owes 
its power and fertility; far from it. Everything good in the 
theory, by virtue of which it appears as a natural classifica
tion and which confers on it the power to anticipate experience, 
is found in the representative part; all of that was discovered 
by the physicist while he forgot about the search for explana
tion, On the other hand, whatever is false in the theory and 
contradicted by the facts is found above all in the explanatory 
part; the physicist has brought error into it, led by his desire 
to take hold of realities.°

While this estimate of the role of metaphysical, explanatory 

ideas is born out to a certain extent by the history of mechanics in the 

period under consideration, a real question still remains as to the part 

played by such ideas in the inception of a physical theory such as New

tonian mechanics. In fact, an examination of the basic ideas upon which 

Newton raised his imposing theoretical structure will show that these 

ideas were almost all first expressed in distinctly metaphysical or 

religious writings of Newton's time or even earlier.

Whatever the source of the ideas that Newton used as the basis 

for his mechanics, his theory achieved a synthesis of a number of for

merly distinct theories. Prior to Newton's work there were at least three 

separate sciences dealing with subjects of a mechanical nature, all with 

their own concepts and axioms: the science of simple machines, or "mechan

ics"; the science of impact phenomena; and the science of the motion of 

freely falling bodies, projectiles, and pendulums,

Îbid.
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Although Newton was the first theoretician to successfully explain 

all the phenomena in these various areas bjLjneans of a single theory, he 

was by no means the first to attempt such a theoretical unification.

Neither was he the last, even in his life time, for, as has been indicated, 

his theory was either incomprehensible or unacceptable to many. Thus, the 

history of mechanics in the period can also be viewed under the aspect 

of a process through which several separate theories are unified in a 

higher synthesis. It is helpful to define such a development in logical 

terms as a preface to the historical treatment, just as the logical analy

sis of theoretical structure is an aid to the historical analysis of 

theory development in the manner discussed above.

The explanation of a theory or set of experimental laws dealing

with phenomena in a given field of inquiry by a theory formulated for

some other field is known as the reduction of the former, or secondary,
ntheory to the latter, or primary, theory. Thus, since Newton's mechan

ics can be said to have been formulated primarily to deal with the motion 

of bodies under the influence of central forces, the third of the sep

arate mechanical sciences listed above, the unification which his theory 

achieved can be described as a reduction of the secondary theories of 

simple machines and impact phenomena to the primary theory of the motion 

of bodies moving under the influence of central forces [— freely falling 

bodies, etc.] or "dynamics."

There are basically two types of reductions. In the first, 

deductive relations are established between two sets of statements—

'̂ Nagel, p. 338.
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theories— that employ the same vocabulary. In the second, where the 

vocabularies are dissimilar, a set of characteristics of one subject 

matter is assimilated into a set of characteristics which seem quite 

different; the primary theory then seems to wipe out familiar distinc

tions of the secondary theory as superfluous. That is, some of the 

characteristics assumed by the secondary science to be fundamentally
g

significant will no longer be so.

An example of what is meant by the first type of reduction, would 

be the use of the term "force" in the vocabularies of all of the separate 

theories mentioned. The unification of these theories involves the estab

lishment of logical relationships between the various meanings of this 

term, and by means of these relationships, the other terms in the theories 

may be interrelated in a deductive system. An instance of the second 

type of reduction can be seen in the reduction of the science of impact 

to that of the motion of bodies under the influence of central forces.

The latter science made no use of the notion of "collision" in its the

oretical structure, and, following the reduction, the previously basic 

distinction between elastic and inelastic collisions became non-essential; 

these two phenomena were then only special cases of a more general phe

nomena.

From the point of view of the historian of science, the interesting 

aspect of the logical definition of reduction lies primarily in the condi

tions under which the reduction is possible;these conditions must point to 

the historically significant developments leading toward the unification

Îbid.. pp. 338-340.



11

of separate theories. Such unification is one of the most important 

aspects of the history of science since it has long been the aim of 

scientific thought to attain to a unified understanding of the whole 

phenomenal world, (it is possible to argue that this is not the goal 

of science, that is, of all scientists, but virtually all that is vital 

in contemporary science can be seen as an attempt to reduce every science - 

to fundamental-particle physics.)

The formal conditions for theory reduction are as follows. The 

axioms, special hypotheses, and experimental laws of the sciences involved 

in the reduction must be known as explicitly formulated statements whose 

various terms have fixed meanings. These meanings must be fixed either 

through generally recognized definitions or established experimental
Qprocedures. For instance, before any synthesis of the mechanical sciences

could take place, such terms as "quantity of matter" or mass, had to be

given a fixed empirical meaning. This was one of Newton's greatest

achievements, although it was obscured in the Princinia.

Thus one part of any history of a theoretical unification must

deal with the formulation of each of the secondary theories; the elabora-
10tion of their concepts as well as of their relational structure. This 

leads to a second formal condition for reduction, in the case where the 

primary and secondary theories do not employ the same vocabulary.

^Ibid.. p. 345.
1 0Actually, tie relational structure of a theory partially 

defines all the theoretical concepts by stating the way in which they are 
interconnected with other concepts. The empirical meaning of the concept 
is independent of this partial definition, but clearly must be in harmony 
with it. See ibid., pp. 91-93.
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In that case the primary and secondary sciences usually have a 

number of terms in common, but, before its reduction the secondary science 

uses terms and asserts experimental laws with their help, that do not 

occur in the primary science.Since the meanings of expressions in a 

theory are partially defined by its relational structure or abstract 

calculus, the relational structure of the primary theory must provide 

logical connections between theoretical terms in the primary science and 

terms peculiar to the secondary science. If, for instance, the primary 

science deals with microscopic and the secondary science with macroscopic 

phenomena, the abstract calculus of the primary theory must provide a 

means of making the transition between the two realms.

This condition for reduction of theory is particularly applicable 

to Newton's synthesis of mechanics since the study of the motions of fall

ing bodies and of projectiles had, since the middle ages, made use of 

concepts like instantaneous velocity and acceleration, while the sciences 

of~simple machines and impact phenomena were formulated entirely in terms 

of observable entities. Thus the Newtonian synthesis depended on the 

construction of an abstract calculus capable of drawing together into a 

single deductive framework all the expressions used in mechanics, both 

of instantaneous or infinitesimal and of finite character.

This gives some insight into why the infinitesimal calculus was 

described by Euler as providing "understanding." The calculus was neces

sary to the explanation of the secondary mechanical sciences; through the 

calculus, their laws and axioms could be reduced to instantaneous motions

lllMd., pp. 351-352.
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of infinitesimal particles, or aggregates of these. That this particular 

sort of reduction appeared as "understandable” is in itself worthy of 

some investigation and analysis. Of course it did not appear so to many 

thinkers, at least at the beginning of the eighteenth century and 

earlier, but became more and more natural as time went on.

This increasing acceptability of reduction of all phenomena to 

events occurring at the infinitesimal level is of course related to what 

has been called the interpretive or explanatory part of theory. Clearly, 

even though Newton disclaimed any explanatory hypotheses, they are built 

into his theory in its calculus and constitute the strength of the 

theory. The question is, how was it possible that such a theory could 

eventually appear as one without metaphysical content. Or, how did the 

notion that everything is composed of infinitesimal bodies moving under 

the influence of certain forces become so common as to be a self-evident 

and uncritically accepted truth, rather than a metaphysical doctrine.

The answer to this sort of question must lie, in part, in 

considerations of a non-scientific character, in matters ranging from the 

moral and religious to the economic and political. Therefore, the his

tory of the assimilation of Newtonian mechanics during the period follow

ing the publication of the Principia should deal with any social and 

idealogical factors contributing to or impeding that assimilation. 

Further, since, as has been stated earlier, almost all the basic ideas 

upon which Newton founded his theory had been expressed in non-scientific 

writings, the theory itself might be, in part at least, attributable to 

the same social and idealogical factors which contributed to its ultimate 

triumph.
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Thus it appears that the key to the problem posed by this work 

lies in the translation into mathematical language of a certain approach 

to reality— essentially the atomistic conception of Lucretius— from 

which all the attendant problems outlined above with regard to specific 

prevailing conditions and specific personalities may be derived.

This is not to say that either Newton or Leibniz thought of 

themselves as followers of Lucretius, even though they both held that 

the world was composed of certain fundamental, irreducible parts. On 

the contrary, both men felt that their mathematical, mechanical systems 

were nothing more than representations of a world totally dependent on 

God. Therefore, that the formal system should survive, stripped of all 

its original meaning and clothed with significance completely foreign 

to the intentions of its originators, is an example of the irony of 

history.

Even though, from a modern scientific point of view tlie 

interpretative part of a theory is virtually a matter of indifference, 

on the broad stage of history it is of the utmost significance. The 

misunderstanding of Newton and Leibniz on this score, and the consequent 

distortion of their thought seem to represent a universal trend.

Consider for a brief moment certain great names of our time, 
which prides itself on a dominant identity enhanced by scientific 
truth. Darwin, Einstein, and Freud . . . would certainly deny 
that they had any intention of influencing, say, the editorials or 
the vocabulary, or the scrupulosity of our time in the ways in which 
they undoubtedly did and do. They could, in fact, refute the bulk 
of the concepts popularly ascribed to them, or vaguely and anony
mously derived from them, as utterly foreign to their original 
ideas, their methodology and their personal philosophy and conduct. 
Darwin did not intend to debase man to an animal; Einstein did not 
preach relativism; Freud was neither a philosophical pansexualist 
nor a moral egotist. Freud pointed squarely to the psychohistorical
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problem involved when he said that the world apparently could not 
forgive him for having revised the image of man by demonstrating 
the dependence of man's will on unconscious motivation, just as 
Darwin had not been forgiven for demonstrating man's relationship 
to the animal world, or Copernicus for showing that our earth is 
off-center. Freud did not see a worse fate, namely that the world 
can absorb such a major shock by splintering it into minor half- 
truths, irrelevant exaggerations, and brilliant distortions, mere 
caricatures of the intended design. Yet somehow the shock effects 
the intimate inner balance of many, if not all, contemporary indi
viduals, obviously not because great men are understood an̂  
believed, but because they are felt to represent vast shifts in 
man's image of the universe and of his place in it— shifts which 
are determined concomitantly by political and economic develop
ments. The tragedy of great men is that they are leaders and yet 
the victims of ideological processes.

Thus the study of the assimilation of Newton's mechanics must 

deal with a number of widely variant but, nonetheless interrelated prob

lems. The first of these is the logical, mathematical character of 

Newton's theory; the identity of the relational structure of Newton's 

mechanics with the calculus of fluxions must be demonstrated. The 

contrast between this new theory and previous theories in the "secondary" 

mechanical disciplines must then be brought out as well as the more or 

less continuous developments in mathematics and kinematics which cul

minated in Newton's synthesis and in that of Leibniz. It is in assoc

iation with the development of this mathematical treatment of motion that 

the metaphysical concepts and problems of the period were generated, and 

these must be seen both in their influence on the formation of theory and 

on the process of assimilation itself.

Such metaphysical ideas, before they’attain to expression, and 

certainly before they become influential in the thought of an age, are

1 2Erik H. Erikson, Young Man Luther. A Study in Psychoanalysis 
and History (New York: W. W. Norton & Company, Inc., 1958), pp. 177-
178.
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Implicit in the general cultural life of the age. Therefore^ some 

attention must be given to social, political, and artistic forms in 

the period, especially since it is only on the basis of guch considera

tion that any distortion of the thought of the great intellectual leaders 

that occurs during the process of assimilation can be really understood.

In this particular study, the process of assimilation takes 

place largely in the context of a dialogue between the followers of Newton 

and those of Leibniz, and to a lesser extent of Descartes. These two 

groups coincide almost exactly with a geographical grouping into English

men and Continentals, or a linguistic grouping into English and French- 

speaking people. Therefore, the social and especially the political 

differences between these groups should have some bearing on the problem. 

However, since respectable evidence for this sort of influence is rare, 

because of the very nature of scientific writing, political and social 

factors will only be mentioned where their influence can be seen explic

itly, and the bulk of the study will be concerned with the internal 

development of mechanical theory as it appears in the writings of the 

period.

The writing on mechanics after Newton may be arranged for study 

along the lines already indicated in four major groups: English Newton

ians . and Anti-Newtonians up to about 1730; French thinkers in mechanics 

between Descartes and Pierre Varignon (l654~lV22); Leibniz, Jean Bernoulli 

(1667-174-8), and French mechanicians using the Leibnizian form of analysis; 

and finally English writers on mechanics making use of the calculus of 

fluxions, principally Colin Maclaurin (1698-174-6),
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Once the work of these men had been accomplished, the formal 

structure of the new mechanics was made clear and available for the 

surge of theoretical development in mechanics that took place in the 

second half of the eighteenth century. Nothing essentially new had been 

added to the theory, as it was conceived by Newton or by Leibniz and it 

is not clear that anything was taken away from it either, but still, the 

idea of the universe underwent a considerable change during the period 

under consideration; it was far more "mechanical" at the end that it had 

been at the beginning. That is, the universe became self-sufficient in 

proportion as the formal structure of mechanics was elaborated in an 

understandable fashion.



CHAPTER I

THE MECHANICAL THEORY OF NEWTON'S PRINCIPIA

The purpose of this chapter is to show explicitly the scope and 

nature of Newton's theory of mechanics, that is, to show that it was a 

general theory of mechanics whose logical structure was fundamentally 

that of the infinitesimal calculus. By "general theory" it is meant that 

the theory was designed to explain all mechanical phenomena : not only

the motion of freely falling bodies, pendulums, and projectiles (which 

has been referred to as "dynamics" above), but also impact phenomena and 

the operation of the simple machines. The generality of the theory— the 

reduction of the secondary sciences of impact phenomena and simple machines 

to dynamics— is based on the shift from the traditional geometrical logical 

structure to the logical structure of the calculus of fluxions, a shift 

which Newton appears to have been at some pains to conceal.

The logical character of the Princinia is in fact not immediately 

apparent because Newton wrote it "in geometry." However, even though the 

great bulk of calculation in the working out of the theory is cast in the 

framework of traditional geometry, the logical structure is that of the 

calculus. This structure was simply introduced into the theory in the 

form of certain lemmas which will be discussed later. This idea is sup

ported in the preface to Newton's Treatise of the Method of Fluxions, where

18
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it is stated that "although the propositions in that book [the Princinia1

for the sake of elegance are demonstrated in the synthetic way according

to the manner of the ancients . . . yet it is well known that they were
1

first discovered by the use and application of some kind of analysis."

The mathematical, logical character of the Principia. as has 

been stated, is the source of the generality of Newton's mechanical theory, 

and this generality centers on the concept of force. Each of the secondary 

mechanical sciences made use of the term "force," but the meaning of force 

in-these sciences was not clearly fixed. Therefore, it is to the force 

concept that one must look in order to understand the process of reduction 

of all mechanical sciences to dynamics. Further, since Newton's concept 

of force will prove meaningful only in the context of the calculus, it is

not surprising that there would be a great deal of confusion among the

early Newtonians, who were not versed in the calculus, precisely over the 

meaning of force.

The approach to the concept of force in Newton's mechanics, and 

to its relationship with motion— the basic logical relation of the theory—  

must be made through the postulates of the theory and the accompanying

definitions. Through an analysis of these statements the precise relation

ship between force and motion can be brought out.

The First Law states that "every body continues in its state of 

rest, or of uniform motion in a right line, unless it is compelled to

Îsaac Newton, A Treatise of the Method of Fluxions and Infinite 
Series With Its Application to the Geometrv of Curved Lines (Translated 
from the Latin original not yet published; London, T. Woodman and J .
Millan, MDCCXXXVII), p. iv.
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change that state by forces Impressed upon it." The Second Law states 

that "the change of motion is proportional to the motive force impressed; 

and is made in the direction of the right line in which that force is
3impressed." For reasons to be brought out later, it is sufficient to 

examine only these two laws at present.

In the explanation accompanying the First Law, Newton attempted 

to make it appear as a simple empirical generalization drawn from everyday 

experiences; projectiles continue their motions in so far as they are not 

retarded by air resistance, tops spin, planets and comets preserve their 

motions. However, the explanation accompanying the Second Law is differ

ent and, from a modern point of view, bewildering. It states that if a 

given force generates a given motion, then double the force will generate 

double the motion, regardless of the time which elapses during the appli

cation of the force.^ From the absence of the time factor it appears 

that Newton's "motive force impressed" does not coincide with the modern 

force concept (which is related to acceleration rather than to simple 

change of motion).

The definition of "impressed force" provided by Newton turns 

out to be of little help in providing understanding. "An impressed force 

is an action exerted upon a body, in order to change its state, either of

2Isaac Newton, Sir Issac Newton's Mathematical Principles of 
Natural Philosophy and His System of the World. Translated by Andrew 
Motte, 1729. Translation revision and historical appendix by Florian 
Cajori (Berkeley, California: University of California Press, 194?),
p. 13.

% i d .

Îbid.
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5rest, or of uniform motion in a right line," This definition, when 

applied to the two laws, yields two statements: every body continues in

its state of rest or of uniform motion in a right line, unless it is 

compelled to change that state by actions exerted on it in order to 

change its state, either of rest or of uniform rectilinear motion; and, 

the change of motion is proportional to the action which causes it. These 

statements are merely specializations of the principle of sufficient 

reason and of the causality principle respectively, with the addition, not 

original with Newton, that uniform rectilinear motion is a natural state 

of a body.

Thus far there is no indication as to the meaning of force and 

nothing that gives any insight into the structure of the theory. However, 

it can be seen that both impressed force and its accompanying change of 

motion are produced by some agent. It follows from this that impressed 

force and change of motion are quantities of the same nature. This was 

necessary, for, as Newton wrote in his Treatise of the Method of Fluxions, 

"things only of the same kind can be compar'd together, and also their 

velocities of increase and decrease,"^

Thus, while "motive force impressed" and change of motion are 

basic terms of the postulates of the theory and are proportional to each 

other, their real relationship must be contained in their common cause, 

the action which produces them both. That action should also be the 

"force," which is the cornerstone of the theory. In order to get at the

^Ibid,, p. 2.

N̂ewton, Treatise of the Method of Fluxions, p. 26.
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action producing impressed force and change of motion, it is necessary to 

have an independent determination of impressed force, one that does not 

involve the change of motion.

The definition of the "motive quantity of a centripetal force" 

provides the necessary separate determination of impressed force. The 

motive quantity of a centripetal force is defined as the "measure" of 

centripetal force and is "proportional to the motion which it generates
7in a given time." Newton immediately identified this quantity with 

weight, so that impressed force is generated by weight, or by some weight

like endeavor, in time. Thus, the relation between impressed force and 

weight is the same as the relation between change in motion and accéléra- 

tion; the latter generates the former in time.

But what is the nature of weight? Newton distinguished three

aspects of centripetal force: its absolute quantity, its accelerative

quantity, and its motive quantity. Of these he said,

I refer the motive force to the body as an endeavor and propensity 
of the whole towards a center, arising from the propensities of 

the several parts taken together; the accelerative force to the 
place of the body, as a certain power diffused from the center to 
all places around to move the bodies in them; and the absolute force 
to the center, as endued with some cause, without which those motive 
forces would not be propagated through the spaces round about . . . .

Wherefore the accelerative force will stand in the same relation 
to the motive, as celerity does to motion. For the quantity of 
motion arises from the celerity multiplied by the quantity of matter; 
and the motive force arises from the accelerative force multiplied 
by the same quantity of matter.^

nNewton g Princinia. p« 4»
g
In this connection see E. J. Dijksterhuis, The Mechanization 

of the World Picture. Trans, by C. Dikshooru (Oxford: At the Clarendon
Press, 1961), pp.. 47O-473.

QNewton, Princinia. p. 5.
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Thus the weight of a body is the product of its quantity of 

matter and the accelerative force which characterizes the space occupied 

by the body and which is propagated from some center. The impressed force 

in a body is then equal to its quantity of matter multiplied by an accel

erative force characteristic of its place and by the time during which 

the accelerative force acts.

This statement is still not a separate determination of impressed 

force since it contains some terms not yet defined. Quantity of matter, 

according to Definition I, "is the measure of the same, arising from its 

density and bulk conjointly.This definition is not satisfactory, but 

for the present it can be assumed that quantity of matter is a determin

able quantity; the apparent circularity will be discussed later in 

connection with Newton's Third Law. This leaves accelerative force as a 

quantity not determined except through its effect.

However, according to the above, accelerative force is 

characteristic of a place, or of space, so that Newton's concept of space 

should give some notion as to the possibility of its separate determina

tion. There must be some active principle associated with space that is 

capable of providing the logical link between it and accelerative force.

In typical 17th centupy fashion Newton saw this connection in God.

In the general scholium at the end of Book III of the Princinia.

Newton wrote that God

is eternal and infinite, omnipotent and omniscient; that is, his 
dui'ation reaches from eternity to eternity; his presence from 
infinity to infinity; he governs all things, and knows all things 
that are or can be done. He is not eternity or infinity, but

^̂ Ibid.. p. 1.
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eternal and infinite; he is not duration or space, but he endures 
and is present. He endures forever and is everywhere present; 
and by existing always and everywhere he constitutes duration and 
space.

The evident relationship presented in this passage between space, time,

and deity, which amounts almost to identity, is further enhanced by

Newton's insistence on the absolute character of space and time.

I. Absolute, true, and mathematical time, of itself, and from 
its own nature, flows equably without relation to anything 
external . . . .

II. Absolute space, in its own nature, without relation to any
thing external, remains always similar and immovable.1̂

The form which these statements take is one that had been traditionally

reserved for statements about God: the only being whose very nature it

is to be and to act. Now there must be a clear relation between God and

force in order that the connection between place or space and accelerative

force be complete.

Newton was somewhat less explicit about the relationship between

God and force, but there is evidence that he believed God to be directly

and immediately responsible for the existence and action of forces such

as gravity. In a letter to Richard Bentley— a chaplin to the Bishop of

Worcester who had delivered a series of sermons entitled "A Confutation

of Atheism" in 1692— Newton wr-ote "You sometimes speak of gravity as

essential & inherent to matter: pray do not ascribe that notion to me,
13for ye cause of gravity is what I do not pretend to know . . .

^^Ibid.. p. 54-5.
12Ibid.. p. 6.
^̂ Isaac Newton, "Newton to Bentley, 17 January 1692/3," The 

Correspondence of Isaac Newton, ed. H. W. Turnbull (Cambridge: At the
University Press, 196l), III, p. 24-0.
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However, Bentley was less reticent, and in his reply to Newton's letter, 

stated that gravity "is above all Mechanism or power of inanimate matter, 

& must proceed from a higher principle and a divine energy & impression. 

This remark is contained in the third of six propositions found at the 

beginning of Bentley's letter.

Newton began his reply to this letter of Bentley by saying 

"Because you desire speed I'l answer your letter wth what brevity I can. 

In ye six positions you lay down in ye beginning of your letter I agree 

with you. Thus Newton gave his assent to the idea that the force of 

gravity, which is of course an accelerative force, is the product of 

divine energy. In the same letter he gave additional support to this 

notion by saying that "Tis unconceivable that inanimate brute matter 

should (without ye mediation of something else wch is not material) 

operate on and affect other matter wthout mutual contact; as it must if 

gravitation in the sense of Epicurus be essential & inherent in it.

On the basis of this evidence it seems safe to say that Newton traced
17the origin of accelerative forces directly to God.

^^Richard Bentley, "Bentley to Newton, 18 February l69l/3,"
The Correspondence of Issac Newton. Ill, p. 24-7.

^̂ Newton, "Newton to Bentley, 25 February 1692/3," The 
Correspondence of Isaac Newton. Ill, p. 253.

l^Ibid.. pp. 253-254.
17For further discussion of this point see A. Rupert Hall and 

Marie Boas Hall (eds.) Unpublished Scientific Papers of Isaac Newton 
from the Portsmouth Collection in the University Library. Cambridge 
("Introduction to Part III, theory of Matter"; Cambridge: At the
University Press, 1962), pp. 193-194. See also Alexander Koyre, From 
The Closed World to the Infinite Universe (New York, Evanston, and 
London: Harper and Row, [1958]), pp. 209-217.
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Finally, in the General Scholium of the Princinia. Newton wrote 

that "we know Him [God] only by His most wise and excellent contrivances 

of things, and final causes. . . . And thus much concerning God; to 

discourse of whom from the appearances of things, does certainly belong
18to Natural Philosophy."

Now God constitutes duration and space and is also the origin of 

irreducible accelerative forces, so that these entities are in some sense 

unified in God. This unification can achieve a mathematical expression 

through the concept of mathematical function; force is a function of 

duration and space. This allows the writing of an equation for it con

stitutes an expression or determination of force which is independent of 

the effect of force, a change of motion.

Newton did introduce force into celestial mechanics in just this 

way, through the gravitational hypothesis. The gravitational hypothesis 

itself is stated in Corollary I to Proposition LXXV of Book I of the 

Princinia. "The attractions of Spheres toward other homogeneous spheres

are as the attracting spheres applied to the squares of the distances of
19their centers from the centers of those which attract." Here Newton 

is talking about the motive quantity of a centripetal force, the product 

of the mass of a body with the accelerative force obtaining in its place. 

Thus, in the above proposition, the accelerative forces are represented 

by the reciprocal of the squares of the distances between the centers; 

they are functions of space.

18Newton, Principia. p. 54-6.
19Ibid.. p. 198.
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In this manner, God, the logical and actual connection between

space and force is suppressed in the mathematical formalism and the

result is a theory that has an empirical character.

Good empirical and experimental natural philosophy does not exclude 
from the fabric of the world and the furniture of heaven immaterial 
or transmaterial forces. It only renounces the discussion of their 
nature, and, dealing with them simply as causes of the observable 
effects, treats them— being a mathematical natural philosophy— as 
mathematical causes or forces, that is as mathematical concepts or 
relations . . . .  As for Newton himself, he is so deeply convinced 
of the reality of these immaterial and, in this sense, transphysical 
forces, that this conviction enables him to devise a most extra
ordinary and truly prophetic picture of the general structure of 
material beings.

The nature of force is however only partially elucidated by what 

has been brought out thus far. The meaning of force must be further 

determined by means of the logical relationships contained in the pos

tulates of the theory, that is in the Laws. The Second Law now has the 

meaning that a weight-like force, expressible as a function of space, 

multiplied by a time during which it acts will produce a definite change 

of motion. But this could be strictly true only for a constant force.

If the force varies with space, then the law could be approximately true 

only for very short time intervals.

In addition to this consideration, there is the notion that only 

quantities of the same kind, as well as their velocities of increase and 

decrease, can be set equal. It is not immediately obvious that a weight 

multiplied by a duration is of the same nature as a motion. But, if the 

matter is considered on an infinitesimal basis, the weight-like force then 

can be understood as the instantaneous increase of the impressed force and 

the change of motion as the instantaneous increment of motion. Or, it

20 /Koyre, p. 213.
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can be said that the action of a weight-like force through some time 

interval is equivalent to a series of instantaneous impressions of 

force.

Thus while the equality of impressed force and change of 

motion is the basic relationship of Newtonian mechanics, this equality 

is only understandable in terms of infinitesimals, that is, of instan

taneous changes, which as has been shown, result from the action of 

divine energy. The infinitesimal character of the theory can be 

further demonstrated through the first two corollaries to the laws of 

motion. The first corollary states that "a body acted upon by two 

forces simultaneously, will describe the diagonal of a parallelogram

in the same time as it would describe the sides by those forces 
21separately." The demonstration of the corollary is carried out 

through consideration of constant velocities, according to the follow

ing figure.

If a force M, "impressed apart in the place A," such as to 

cause a body to move with uniform velocity from A to B in a given time 

be applied simultaneously with a force N, also impressed in the place A,

0  jNewton, Princinia. p. lA.
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but tending to cause the body to move uniformly from A to C in the same 

time, then by the action of both forces, the body will move in the 

diagonal AD of the parallelogram ABDC.

This is the case because N acts parallel to BD and will not 

affect the time required for the body to arrive at BD, by the Second Law. 

Similarly, M will not affect the time required for the body to arrive at 

CD, so that at the end of the time interval the body will be at D. It 

must move in the diagonal AD, by the First Law, since no forces act upon 

it during the motion.

The significance of Corollary I is made clear in Corollary II: 

"And hence is explained the composition of any one direct force AD, out 

of any two oblique forces AC and CD . . . Corollary I is the "proof"

of Corollary II. However, the "direct forces" mentioned in Corollary II 

are clearly meant to represent weights while Corollary I deals with 

impressed forces in terms of constant velocities. The question is, in 

what sense is Newton justified in extending the result achieved in the 

first corollary to the second.

In the first, constant velocities are conceived of as lines 

generated by points moving with constant velocity. These lines AB and AC 

determine a parallelogram, and hence a diagonal AD, which expresses their 

relationship, their sum. This relation clearly holds good for the 

velocities thus represented and also for the impressed forces propor

tional to them. However, as has been pointed out, impressed force is

Z^Ibid.

23lbid.. p. 15.
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the product of a weight-like force and a duration, or weight is the 

instantaneous increment of impressed force. Therefore, by extending 

Corollary I to application in the situation of Corollary II, Newton 

clearly says that he is concerned with an instantaneous event. This 

conclusion receives support from the fact that the force M was "impressed 

in the place A."

The conception of impression of force in a place A, or of an 

instantaneous generation of impressed force leads to the idea of impact. 

Now, from what has been brought out thus far, weight is the instantaneous 

increment of impressed force, and, as such, is proportional to the instan

taneous increase in motion. Weight, therefore, can be thought of as the 

result of impact; its action in time— the production of a finite change 

of motion— is then really the summation of an indefinitely large number 

of impacts occurring within a given time interval.

Thus Newton's force concept can be seen to be in line with the 

views of the age to the effect that the basic process of mechanics is 

that of impact. However, he has succeeded in constructing a mathematical 

representation that allowed him to treat a succession of impacts as a 

continuous process, that is, the result of the action of an agent that 

has a continuous character in space— weight, or the motive quantity of a 

centripetal force.

It is open to question whether or not Newton took seriously the 

idea that centripetal or gravitational force was really caused by the 

impacts of material bodies of some sort striking the gravitating body. 

There is, as has been shown, much evidence to support the contention that 

Newton thought God to be the force-producing agent in space. But he did,
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at times, indulge in speculations on the possibility that the motions of

a material aether might be responsible for gravity. In this connection,

the Halls have written that

The very fact that he speculated at all on the aether as a mechanism 
to account for the forces attributed to material particles gratified 
the prejudice of an age that, lacking any concept of field-theory, 
loathed the notion of action at a distance and saw in the push-and- 
pull mechanism of an aether the only escape from it. Paced with a 
choice between a universe of Cartesian, billiard-ball mechanism 
rewritten in Newtonian terms and a universe requiring the incon
ceivable concept of action at a distance, the seventeenth, eighteenth, 
and nineteenth centuries preferred the former. But, because this was 
so, and because Newton himself shared the general contempt for the 
notion of action at a distance, we should not suppose that Newton was 
unaware of the distinction between an hypothesis and a theory; nor 
should we suppose that his speculations on the aether were the 
foundation of his theory of matter, when in fact they were at most 
no more than hypothetical ancillaries to it,24

In a sense, Newton had retained the Cartesian notion that motion 

is only imparted through impact, or, more specifically, a quantity of 

motion, an impressed force, or a momentum is transferred to a body only 

in discrete events. However, these discrete events, with the aid of the 

concepts of the calculus and his concept of weight could be treated as 

a continuous process. Both the continuity of the transfer of momentum 

and the relation between weight and momentum— weight is an instantaneous 

increment of momentum— were of extreme importance for the solution of 

the problem of the motion of the planets. The weight-momentum relation 

was necessary in order to relate the motion of the planets to the con

cept of gravity, and the continuity of the transfer of momentum was 

necessary to the treatment of motion in curved lines.

2^Hall and Hall, p. 193.



32

Also from these corollaries it can be seen in what manner Newton 

intended to represent the increment of motion to which impressed force 

was proportional. Both motion and increments of motion would be repre

sented by the length of a straight line or by a combination of straight 

lines. Then, in order to make this representation suitable for the 

treatment of motion in curved lines, recourse must be made to infinites

imal durations between impressions of motion, which would be the same as 

motion under the influence of an accelerative central force.

Of course motion in curved lines was of supreme importance for 

Newton, as was the idea of motion under the influence of central forces, 

since he wished to explain the motion of the heavenly bodies. There

fore, it is likely that the mathematical methods of representation of 

curves had some bearing on the formulation of the two corollaries just 

discussed. It was of course the analysis of curves, or of motion in 

curved lines, that provided the field of development for the calculus, 

so that at this point the identity of the logical structures of the 

mechanics and the calculus must become more explicit.

Newton's first attempt at a finished exposition of the calculus
25was probably "To Resolve Problems by Motion," dated October, 1666. In 

this work Newton attacked, as a first step in the treatment of curves, 

the problem of drawing tangents to "crooked lines." From the statement 

of the problem the means of representation of the curved line can be seen 

to correspond to the above representation of motion as a series of 

straight lines, or combinations of straight lines, each representing

^^Hall and Hall, p. 15.
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an instantaneous impression of force.

Seeke ... ye motions of those straight lines to wch ye crooked 
line is chiefely referred, & with what velocity they increase or 
decrease: & they shall give ... ye motion of ye point describ
ing ye crooked line; wch motion is in its tangent.

The solution to the problem is based on a description of the

curve as the intersection of two straight lines each moving in a

direction perpendicular to itself such that the lengths of the two

lines, measured from some fixed frame or reference, are in a constant

functional relationship. "If ye crooked line fac is described by ye

intersection of two lines cb and do ye one'moveing parallely, viz:

d

a

cb//ad and dc//ab; soe yt if ab=x, and bc=y=ad, their relation is 

x^-3yx^ I- ayxx - 2y^x + a^ = 0."^^ This relation between the lengths 

of the lines ab (x) and ad (y) represents the curve, and from it can 

be found a relationship between the velocities of increase of both x 

and y at any point of the curve. These two velocities can then be 

represented as a pair of perpendicular lines determining a small rec

tangle at the point on the curve. The diagonal of the rectangle is a

'̂'Isaac Newton, "To Resolve Problems by Motion," Unpublished 
Scientific Papers of Isaac Newton, p. 34.

2?Ibid.
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tangent to the curve at that point and its length represents the velocity 

along the curve, and thus, by the Second Law, also the impressed force 

in the direction of the motion. This is clearly similar to the kine

matic situation of Corollary I to the Laws, and makes evident the manner 

in which force as a function of space can be related to the change of 

motion of a body moving along a curved path in a scientifically meaning

ful way.

This sort of representation of curved lines— a functional 

relationship between the lengths of two straight lines— is common to the 

Princinia as well. For instance, in Book I, Section I, where Newton 

developed the method of the first and last ratios of quantities, the 

representation is basic. Section I consists of a series of lemmas which 

serve as a basis for the treatment of centripetal force. "These lemmas 

are premised to avoid the tediousness of deducing involved demonstrations 

ad absurdum . . . and now these principles being demonstrated, we may use
28them with greater safety."

Lemmas II, III, and IV are all concerned with the relationship 

between curvilinear figures and figures composed of their inscribed and 

circumscribed parallelograms as the number of the parallelograms is 

increased and their breadth diminished "in infinitum." Here also, the 

curved, or "crooked" line is reduced to a set of intersecting straight 

lines. If the curve itself is represented as a functional relation 

between lengths of two sets of intersecting straight lines, reference 

lines, then, as stated above, the instantaneous motion along the curve 

at any point, which is represented by the tangent at the point, is

28Newton, Princinia. p. 38.
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compounded of velocities, or rates of change of length, of the reference 

lines intersecting at the point.

However, it is the instantaneous change of motion along the curve 

that can be set proportional to the motive quantity of a centripetal 

force. The instantaneous change of motion is itself compounded of the 

instantaneous rates of change of the velocities of generation of the 

intersecting reference lines. The question now is, are the velocities of 

change of length of the lines, and the changes in these velocities, deter

minable from the functional relationship holding between the reference 

lines themselves? The answer to this question was given affirmatively 

by Newton in his calculus of fluxions.

Thus the calculus of fluxions can be seen to be an integral aspect 

of the theory of mechanics; the basic relationship of the theory the 

Second Law, is an infinitesimal one, that is, one dealing with motion 

occurring in a point of space and an instant of time, and, in order to 

have any empirical significance, this relation must be provided with a 

logical connection to the world of experience, that is, to observable 

positions in space.

In other words, an instantaneously impressed force, which is the 

same as the motive quantity of a centripetal force, or a weight, and can 

be expressed as a function of space, can be equated with an instantaneous 

change of motion along a curved line; the sum of the instantaneous values 

of the impressed force and the inertial force in a moving body yield its 

instantaneous motion along the curved path. This motion is itself a 

function of the lengths of the reference lines whose relationship is 

the mathematical representative of the curve, and Is
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known, or can be ascertained from observation. In this way, a logical 

connection is established between the position of an object in space and 

its motion.

However, in order to fully explain the Laws of Motion it still 

remains to indicate the actual means by which Newton could deduce the 

necessary relation between the velocities of increase and decrease of 

lengths of lines from the functional relationship of those lengths. Then 

the solution to this problem, the core of the calculus of fluxions, must 

be related to the actual procedure of calculation used in the application 

of the theory. But before proceeding to the discussion of this problem, 

it is necessary to clear up the matter of the Third Law of motion and 

the question as to the meaning of the term "quantity of matter."

The definition of quantity of matter given above was that it is 

the product of density and volume, or bulk. At first sight this seems to 

be circular since density would seem to depend on qiuantity of matter. 

However, in his "De gravitatione et aequipondio fluidorum," Newton stated 

that "bodies are denser when their inertia is more intense, and rarer
29when it is more remiss." This definition is repeated in the Princinia 

in Corollary IV to Proposition VI of Book III which states that "by 

bodies of the same density, I mean those whose inertias are in the pro

portion of their bulks.

Thus quantity of matter is dependent on inertia, or the innate 

force of matter. Once this has been established, then it is possible to

29Isaac Newton, "De gravitatione et aequipondio fluidorum," 
Unpublished Scientific Papers of Isaac Newton, p. 150.

30Newton, Princinia. p. AlA.
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determine quantity of matter through an application of the Third Law of

Motion. "Those bodies are equipollent in their impact and reflection
31whose velocities are inversely as their innate forces." For instance, 

if the impacts of two objects dropped from measured heights on to a 

lever at equal distances from the fulcrum balance each other— are

"equipollent"— then the relationship mi/m2 = Vg/v^ = /hg/h^ holds, 

where m^ and mg are the innate forces, or masses, v^ and Vg the respec

tive velocities, and ĥ  and hg the respective heights.

Thus it is the Third Law which gives empirical content to the 

theoretical notion of mass and hence also of motion. As will be shown, 

it is the Third Law which makes Newtonian Mechanics a physical theory; 

for the First and Second Laws are purely mathematical in character.

That is, they contain the abstract relational structure of the theory, 

which, as has been stated and is yet to be shown, is the same as that 

of the calculus of fluxions.

The calculus of fluxions is presented in the Principia in a 

compressed form, and then not as a complete exposition of the method. 

However, the answer to the problem mentioned above— from a functional 

relationship between lengths to deduce the relation between the veloci

ties of increase and decrease of those lengths— is approached in Lemma 

II of Book II.

The Lemma states that "the moment of any genitum is equal to

the moments of each of the generating sides multiplied by the indices of
32the powers of those sides and by their coefficients continually." A

%bid.. p. 26.

^̂ Ibid., p. 2A9.
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genitum is defined as any quantity produced by the operations of

multiplication, division, and extraction of roots, rather than through

addition or subtraction of parts. These quantities are to be conceived

as variable and indetermined, as increasing or decreasing by a continuous

flux. The momentary increments or decrements of a genitum are called

moments and are not to be conceived as finite in magnitude, but as the

"just nascent principles of finite magnitudes," and can be thought of as

the velocities of the increments and decrements— "fluxions of quantities."

Wherefore the sense of the Lemma is, that if the moments of any 
quantities A, B, C, &C., increasing or decreasing by a continual 
flux, or the velocities of the mutations which are proportional to 
them, be called a, b, c, &c., the moment or mutation of the 
generated rectangle AB will be aB + bA; the moment of the gene
rated content will be aBC + bAC + cAB . . .33

The proof of the lemma is carried out in a number of cases, but 

Case 1 is basic to all the rest. There Newton considered a rectangle AB 

increasing by a continuous flux. The sides A and B have the mqpents a 

and b respectively. At the instant when the sides have the length A-l/2a 

and B-l/2b the area of the rectangle is AB-l/2aB-l/2bA+l/2ab. At the 

instant when the sides have the length A+l/2a and B_l/2b, the area is 

AB+l/2aB+l/2bA+l/2ab. The increment in area corresponding to the full 

increments to the sides is thus aB+bA.^^

This lemma does not constitute an explicit answer to the problem 

of finding the relationship of the "fluxions" of quantities since the 

fluxions, a and b, are given, but it contains the necessary rela

tionships. In the scholium immediately following the lemma Newton made

^% i d .. pp. 249-250. 

%bid.. p. 250.
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reference to a "general method which extends itself . . . not only to the 

drawing of tangents to any curved lines, whether geometrical or mechan

ical . . . but also to the resolving other abstruser kinds of problems,

..." and then stated that "the foundation of that general method is
35contained in the preceding Lemma."

Therefore we may turn to that more general method in order to 

find the relation between the fluxions of functionally related quantities, 

which is necessary to the full understanding of the Laws of Motion as 

developed above.

In the above r eference to a general method of dealing with 

problems related to curved lines, Newton was referring to a treatise
Q /

composed in 1671. The exposition of the calculus of fluxions to which 

we now turn was written in October, 1666, and "appears to be Newton's 

most complete exposition of his methods up to that time."^^ There is no 

reason to think that the method underwent any major conceptual changes 

between 1666 and 1671, especially since the method described in the 

earlier treatise, "To Resolve Problems by Motion," is perfectly compat

ible with the expositions of the method contained in the Princinia.

"To Resolve Problems by Motion" begins with a list of eight 

propositions, of which the seventh is logically the most important: the

proofs of the others are dependent on it. Proposition 7 states that,

35lbid.. pp. 251-252.
q/
This reference is to the Methodus fluxionum et serierum inf'in- 

itarum. Carl B. Boyer, The History of the Calculus and its Conceptual 
Development (New York: Dover Publications, Inc., 194-9), p. 193. See
below pp. 93-98.

'̂̂ Hall and Hall, p. 5.
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Haveing an Equation expressing ye relation twixt two or more lines,
X, y, z &c: described in ye same time by two or more moveing bodys
A, B, C, &c: the relation of their velocities p, q, r &c may be
thus found, viz: Set all ye terms on one side of ye equation that
they become equal to nothing. And first multiply each terme by so 
many times p/x as x hath dimensions in yt terme. Secondly, multi
ply each terme by so many times q/y as y hath dimensions in it
. . . .  The summe of all these products shall be equal to nothing, 
Wch equation gives ye relation of ye velocities p, q, . . .

This proposition alone suffices to determine the relationship 

between fluxions in terms of the functional relationships between the 

lengths of lines, of which the fluxions are the velocities of generation.

In order to get at the relational structure of the calculus of 

fluxions, it is necessary to examine the demonstration of proposition 7. 

The demonstration itself is preceded by a lemma which states that if two 

bodies, A and B, move uniformly, from a to c, d, e, f and from b to g,

h, k, 1 respectively, in the same time; then the lines ac and bg, cd and

gh, etc. are as the velocities, p and q, of those bodies. And even if 

the motion of the bodies were not uniform, still the "infinitely little" 

lines which they describe each "moment" are as the velocities with which 

they describe them. That is, A with velocity p will describe the line 

(cd=) p X o in an instant (o represents an instant of time) and B with 

velocity q will describe the line (gh=) q X o, since p:q::po:qo. Then 

if the described lines are (ac=)X and (bg=)Y, in one instant, they will 

be (ad=) X+po and (bh=)Y + qo in the next.^^ "

This lemma serves to relate instantaneous velocities to 

infinitesimal distances through the relationship of uniform velocities

^̂ Newton, "To Resolve Problems by Motion," Unpublished 
Scientific Papers, pp. 17-18.

% b i d .. pp. 31-32.



of equal duration to the finite distances which they describe. In other 

words, infinitesimal quantities stand in the same relationship to each 

other as the analogous finite quantities; they are qualitatively the 

same. This is explained in the lemma by saying that no matter how 

velocity may vary along a line, if distances described are taken to be 

infinitely small, the velocities with which they are described will have 

constant values over the distances. Then, since the time intervals are 

also infinitely small, they are "equal," and the ratio of the velocities 

will be equal to the ratio of the distances.

These basic ideas were formulated in the Princinia in greater 

generality and conciseness in lemma I, Section I of Book 1. Section I 

deals with the "method of first and last ratios of quantities''̂ *̂  and 

provides a basis for the determination of centripetal force from the 

motions of bodies. Lemma I of this section states that "quantities, and 

the ratios of quantities, which in any finite time converge continually 

to equality, and before the end of that time approach nearer to each 

other than by any given difference, become ultimately eq ual.Th is is 

a generalization of the notion that the ratio of velocities p/q approaches

the ratio of the distances, 2-  ̂as the times intervals are decreased inqt
£t

infinitum.

This lemma is fundamental to the determination of centripetal 

forces from the motion of bodies. Its similarity to the above lemma from 

"To Resolve Problems by Motion" is another indication of the role played

^̂ Newton, Princinia, p. 29.

^̂ Ibid.
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by the calculus in Newtonian mechanics. The "method of first and last 

ratios," at first glance, appears to differ from the method developed 

by Newton in "To Solve Problems by Motion, " but they will be shown to 

be equivalent.

Returning to the demonstration of proposition 7 of "To Solve

Problems by Motion,"

Now if ye equation expressing ye relation twixt ye lines x and 
y bee x^ - abx + â  - dyy = 0. I may substitute x + p o  and y + 
qo into ye place of x and y; because (by ye lemma) they as well 
as X and y, doe signify ye lines described by ye bodys A & B.
By doeing so there results

x^ + 3poxx + 3ppoox + p^o^ - dyy - 2dqoy - dqqoo = 0 
-abx - abqo 

+â

But - abx + â  - dyy = 0 (by supposition). Therefore there 
remains onely 3poxx + 2ppoox + p3o3 - 2dqoy - dqqoo = 0.

- abpo

Or dividing it by o tis 3px̂  + 3ppox + p^oo - 2dqy - dqqo = 0
-abp

Also, those terms are infinitely little in wch 0 is. Therefore, 
omitting them there rests 3 pxx - abp - 2dqy = 0. The like may 
be done in all other equations.

This demonstration rests on three basic ideas. Firstly, that 

straight lines are generated by the uniform motions of points (preceding 

lemma). Secondly, any such line may be considered as a composite of at 

least two other lines X and Y, and thirdly, any curved line can be con

ceived as composed of infinitesimal straight segments such that it can 

be characterized by a functional relationship between X and Y— in the
o 3above demonstration by the function X-̂ - abx + a - dyy = 0. From these

'̂ N̂ewton, "To Resolve Problems by Motion," Unpublished Scientific 
Papers, p. 32,
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three postulates Newton was able to derive an expression for the ratio of 

the "fluxions," that is the instantaneous velocities of change, of x and 

y, or X and ÿ, (x and ÿ replace p and q in later notation) from the 

expression for the curve as a function of x and y.

With X and ÿ, the instantaneous motion along any curved path can 

be calculated. However, it is the change in motion which is equivalent 

to impressed force. All that would be necessary to make this additional 

step would be to perform a similar calculation with a substitution of,

for instance, x + xo and ÿ + jo for x and ÿ, where x and "ÿ would be

velocity increments. or "second fluxions," and o represents an instant. 

Thus, this mathematical theory constitutes a solution to the problem of 

establishing a connection between instantaneous velocities of increase 

and decrease of lengths of lines— x and y— and the functional relation of 

the lengths, x and y, or between the instantaneous motion along the curve 

and the algebraic representation of the curve. The procedure can also be 

extended to represent instantaneous changes of motion, which in turn can 

be related to force. Thus from a knowledge of force in terras of space

variables, the path of the motion may be deduced.

However, Newton did not in fact make use of precisely this 

procedure in the Princinia in establishing the relationship between forces 

and curves, or orbits. Rather, he used the method of first and last 

ratios of quantities, mentioned earlier, which is a variation on the above 

method that permits a more conventional, geometrical treatment.

A typical example of Newton's use of this method is found in 

Corollary III to Proposition I, Theorem I, Section II of Book I. The 

theorem states that "the areas which revolving bodies describe by radii
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drawn to an immovable center of force do lie in the same immovable
A-3places, and are proportional to the times in which they are described.

The corollary states that "if the chords AB, BG, and DE, EF of arcs

described in equal times . . . are completed into parallelograms ABGV, 

DEFZ, the forces in B and E are one to another in the ultimate ratio of 

the diagonals BV,. EZ, when those arcs are diminished in infinitum.

Thus, the instantaneously impressed force, which is proportional 

to the diagonals BV, EZ, and becomes, in the "ultimate ratio," the con

tinuous change of motion as the "arcs are diminished in infinitum." is 

related to a curve which has the verifiable property that a radius to a 

point moving along the curve sweeps through equal areas in equal times. 

Further, Gorollary IV established a relationship between forces at 

various points alon,'-; the curve.

The forces by which bodies . . . are drawn back from rectilinear 
motions and turned into curvilinear orbits, are to each other as 
the versed sines of arcs described in equal times . . . when 
those arcs are diminished to infinity. For such versed sines are 
the halves of the diagonals mentioned in Gor. III.̂ ^

^̂ Newton, Principia. p. 4-0.

'^Ibid.. p. 41.

45lhid.. p. 42.
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Now, the versed sine of an arc of a curve is one half of the 

vertical distance from the tangent, drawn at one end of the arc, to the 

curve at the other end. This quantity is however proportional, as the 

arc is decreased in infinitum, to the second derivative, or the ratio 

of second fluxions of the curve. Thus the two approaches to the problem 

of relating the force on a moving body to the curve it follows are 

equivalent, the one "algebraic" in form, the other "geometrical."

Further, since the problems just discussed are fundamental to the treat

ment of the motion of bodies under the influence of centripetal or gravi

tational force in Newton's mechanics, the manner of their solution 

indicated the basic logical structure of the theory.

In both methods— that of the calculus of fluxions or that of 

first and*last ratios— the fundamental notions are that straight lines 

are generated by the uniform motions of points, that these lines can be 

resolved into two or more other lines, and that curved lines can be 

reduced to an infinite succession of infinitesimal segments. These same 

ideas are implicit in the Laws of Motion and the accompanying definitions 

and corollaries, where they are cast into a physical framework by means 

of the concepts of mass and force. The Laws state first that a body in 

motion with no forces acting on it will generate a straight line. 

Secondly, that any force may be resolved into components is deduced as a 

corollary of the Laws, and the deduction depends on the concept of unin

fluenced motion as the generator of straight lines. Finally, it is 

implied in the Laws that curvilinear motion requires the impression of a 

force proportional to the instantaneous change of motion at every point 

of the motion.
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Newtonian mechanics, as presented thus far, is a highly 

articulated system of mathematical thought that moves "from the phenomena 

of motions to investigate the forces of nature, and from these forces to 

demonstrate the other phenomena. The "other phenomena" with which the 

Princinia is mainly concerned are the motions of the heavenly bodies, but, 

as stated earlier, the Princinia contains a perfectly general mechanical 

theory which is equivalent to the "classical" formulations of mechanics. 

This equivalence has been elaborated in terms of mathematical structure, 

both formulations being based on the calculus, but there is still another 

aspect of equivalence between the Newtonian and "classical" formulations 

that is of significance, the unification of dynamics and statics, or the 

science of simple machines.

The unification of theories was described earlier in terms of 

the concept of reduction of theories, of a secondary theory to a primary 

one. Also, with regard to the theoretical development inherent in the 

Newtonian synthesis, the science of dynamics was designated as the pri

mary theory while the other mechanical sciences, impact phenomena, 

statics, etc., were designated as secondary theories. The implication 

in this was primarily that the laws and concepts of the secondary 

theories, in this case statics, are subsumed under and explained by laws 

and concepts formulated in the realm of the primary science, dynamics.

The reduction of statics to dynamics involved nothing more than 

the clarification of the force concept, which has already been described, 

and the extension of the Third Law of Motion to include the concept of

4^Ibid.. pp. mi-XVIII.
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static equilibrium. However, out of this arose the possibility of dealing

with dynamic states of machines using the same formal principle that was

traditionally employed in the purely static treatment of machines, the
47equilibrium principle. The manner in which this was accomplished is 

laid out in the treatment of machines contained in the scholium following 

the Laws of Motion.

There Newton wrote that

. . . the power and use of machines consist only in this, that by 
diminishing the velocity we may augment the force, and the contrary; 
from whence, in all sorts of proper machines, we have a solption to 
this problem: To move a given weight with a given power, or with a
given force to overcome any other given resistance. For if machines 
are so contrived that the velocities of the agent and the resistant 
are inversely as their forces, the agent will just sustain the 
resistant, but with greater disparity of velocity will overcome it.
So that if the disparity of velocities is so great as to overcome 
all that resistance which commonly arises either from the friction 
of contiguous bodies as they slide by one another, or from the 
choesion of continuous bodies that are to be separated, or from the 
weights of bodies to be raised, the excess of force remaining, after 
all these resistances are overcome, will produce an acceleration of 
motion proportional thereto, as well in the parts of the machine 
as in the resisting body. But to treat of mechanics is not my 
present business. I was aiming only to show by those examples the 
great extent and certainty of the third Law of Motion. For if we 
estimate the action of the agent from the product of its force and 
velocity, and likewise the reaction of the impediment from the 
product of the velocities of its several parts, and the forces of 
resistance arising from the friction, cohesion, weight and accele
ration of those parts, the action and reaction in the use of all 
sorts of machine’s will be found always equal to one another. And so 
far as the action is propagated by the intervening instruments, and 
at last impressed upon the resisting body, the ultimate action will 
always be contrary to the reaction.4^

The first thing of importance in this passage is Newton's 

explicit realization that an excess in the force of the agent over the

4?The development of the theory of simple machines and of the 
equilibrium principle will be discussed in Chapter IV.

^Ibid.. pp. 27-28.
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resistance of the load— a non-eq\iilibrium condition— will accelerate the 

machine and the load. However, since the purpose in treating machines 

at all was to show "the great extent and certainty of the third Law of 

Motion," which is a generalized form of the equilibrium concept, the 

equality of action and reaction had to be somehow established even in 

this dynamic situation.

The equilibrium principle itself provided an indication of the 

solution to this problem, for Newton had based the equilibrium principle 

on the consideration already cited that "in the use of mechanic instru

ments those agents are equipollent . . . whose velocities, estimated 

according to the determination of the forces, are inversely as the 

forces. From this notion of equilibrium was taken the concept of 

"action" as force times velocity.

Since Newton had at his disposal the concepts of instantaneous 

velocity and instantaneous change of velocity, or acceleration, which 

was associated with the instantaneous action of a force or weight, it 

was possible to conceive of an instantaneous reaction as proportional to 

the product of a velocity and an acceleration. Thus there was ^ "force 

arising from acceleration," or, what is now called an inertial force, 

that could be used to extend the idea of equilibrium to a state of 

accelerated motion.

If Newton's statement of the application of the Third Law of 

Motion to machines from the above quote were transcribed into a modern 

notation it would look like this:

49lbid.. p. 26.
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fv = ^  V. (^friction + w. + ĉohesion. + m.a. '),1 1  1 1 1

where f = force, w = weight, m = quantity of matter, a = acceleration, 

and V = velocity. The symbol ^  indicates a summation over all i 

parts of the machine, including the load. This would be a normal 

equation of static equilibrium except for the term m̂ â̂ , which is 

treated as though it were of the same nature as a weight.

In a machine, all the velocity ratios, v/v̂ , are constants of 

the machine, so that ignoring all but the last term on the right in the 

above expression results in the equation

f == ^  c.m.a.,
i  ̂1 ^

where ĉ  represents the constant velocity ratio. The force in this 

equation is weight; this is clear from the context. Furthermore, it is 

equal to mass, or quantity of matter, times acceleration.

However, force and the product of mass and acceleration are 

disparate quantities, and their equality is, in any case, not an expres

sion of the Second Law, which is concerned with impressed force and 

generated motion. The only way to solve these difficulties is to con

ceive weight as the instantaneous increment of impressed force and the 

product of mass and acceleration as the instantaneous increment of 

quantity of motion, as has been already indicated. Then if impressed 

force and generated motion are proportional, so are their velocities of 

increase.

Using the same argument as in the demonstration of proposition 

seven of "To Resolve Problems by Motion," if F is the impressed force;
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f, its velocity of increase; v, the generated velocity; and a, its 

velocity of increase, then the Second Law states that F + fo^hi(v+ao).

But, since F/̂ mv, it follows that, after dividing through by the tiny 

time interval o, f"̂ ma.

Thus Newton’s treatment of machines, involving the extension of 

the Third Law of Motion to dynamic situations so that they may be con

ceived of as systems in equilibrium, depends on the concept of weight as 

the velocity of increase of impressed force, which, in turn, implies the 

application of ideas fundamental to the calculus of fluxions. This can 

be taken as an instance of the unification of the mechanical sciences and 

its dependence on the fact that the logical structure of Newtonian mechanics 

is identical with that of the calculus.

Thus far, Newton's theory has been presented simply as an 

accomplished fact, with no indication as to any historical development 

leading up to his vast accomplishment. That there must have been such a 

development is clear from the fact, already mentioned, of the independent 

discovery of the calculus by Leibniz. In fact, such a phenomenon as an 

independent and virtually simultaneous discovery of a complex mathemati

cal logic suggests that the ideas fundamental to that logic must be the 

more or less common intellectual property of the age. If this were 

indeed the case it would be a fact of considerable importance from the 

standpoint of assimilation of the theory.

One prominent aspect of the common intellectual background of 

the seventeenth century was the complex of ideas that goes under the 

name of "mechanism; " very generally, the idea that everything is the 

result of the configurations and motions of material particles. An
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investigation of this basic approach to nature, through the writings of 

one of its most powerful exponents should show whether or not the fun

damental ideas of the new mechanics, and of the calculus, were implied 

by the mechanistic approach to reality.

The essence of "mechanism" is expressed in the modern notion of 

causality, or the causal definition of an object or phenomenon. The 

causal definition provides understanding of something by telling how it 

is generated or made. This form of definition, the basis for the mechan

ical understanding of nature was, according to Ernst Cassirer, first 

fully understood by Thomas Hobbes (1588-1679). Hobbes was "the first 

modern logician to grasp this significance of the 'causal definition.'

This suggests that the physical thought of Thomas Hobbes would yield the 

clearest insight into the question of whether or not the basic ideas of 

the calculus and the new mechanics are implicit in the mechanistic 

approach to the world.

There are other reasons for choosing Hobbes as an example par 

excellence of the mechanistic approach. According to his biographer.

Sir Leslie Stephen, he "was the most conspicuous thinker in the whole 

period between Bacon and Locke . . . Of course a great deal of his

prominence, or notoriety, arose from non-scientific writings and his 

reputation as an atheist, but these things stemmmed from a basic mechan

istic view of reality.

^^Ernst Cassirer, The Philosonhv of the Enlightenment (Princeton, 
N.J.: Princeton University Press, 1951), p. 254.

^^Leslie Stephen, Hobbes (Ann Arbor, Michigan: The University
of Michigan Press, 1961), p. 1.
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Hobbes' basic ideas on the nature of reality were formed on the 

basis of the most advanced scientific thought of his day— that of Galileo—  

and he enjoyed close contact with the development of physical thought 

during the years that he devoted to philosophy. This contact came about 

through the agency of Marin Mersenne (1588-I648), who served the European 

scientific community as "a central depot of information and a general
52channel of communication." Through Mersenne, Hobbes was put into con

tact with such important natural philosophers as Descartes and Pierre 

Gassendi (1592-1655).

Both Descartes and Gassendi were mechanistic thinkers, but Hobbes, 

while influenced by them, went beyond the position of either to one of 

extreme mechanism and materialism.^^ Hobbes carried the idea of mechan

ism to its logical conclusion, complete atheism, a conclusion that brought 

down upon him the condemnation of virtually everybody. In fact, his

influence was, in a sense negative— there never were any "Hobbesians" in
55the sense that there were Baconians and Newtonians. However,

Hobbes exerted a subtle but powerful influence on his critics: he
imposed upon them his own strict, rational standards of argument.
He obliged them to meet him on his own grounds, to combat him with 
his own weapons of logical exactitude and severe reasoning. He 
caused them, for purposes of argument, to lay aside their theo
logical presuppositions and moral predilections, and to try the

^^Herbert Butterfield, The Origins of Modern Science. 1300-1500 
(New York: Macmillan Co., I960), p. 71.

^̂ Stephen, pp. 24, 32-33.

. Bronowski and Bruce Mazlish, The Western Intellectual 
Tradition from Leonardo to Hegel (New York, Evanston, and Londop: Harper
and Row, 1962), p. 196.

I. Mintz, The Hunting of Leviathan (Cambridge: At the
University Press, 1962), p. 147.
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issues on their own merits. Thus by his very provocation, Hobbes 
endowed the thought of his critics with a strong rationalist 
impulse, . . . The critics were satisfied that they had cut Hobbes 
down to size; in fact they had yielded, slowly and imperceptibly 
but also very surely to the force of his rationalist method.5°

Perhaps the controversy between Hobbes and John Wallis (l6l8-

1703) is a case in point. Wallis was one of the first mathematicians of

the day and the author of the Arithmetica Infinitorum. which was an impor-
57tant step towards the development of the calculus. Thus, in the verbal 

and mathematical struggle that developed out of Hobbes' claim to have 

squared the circle, Hobbes, who was not much of a mathematician, was at 

a considerable disadvantage. Nonetheless, the controversy itsejf made 

clear the superiority of the mathematical methods of Wallis, which led to 

those of Newton, which in turn can be seen to be at least partially a 

logical outgrowth of the fundamental position of Hobbes.

Hobbes's ill-fated attempt to square the circle was contained in 

Chapter 20 of his De Cornore. which appeared in Latin in 1655 and in
eg

English translation in the following year. The attention attracted by

the book was due to the rather inept circle-squaring, and little or no

attention was paid to "its contributions to logic and scientific method

or . . . [to] the boldness of the metaphysical scheme for which it laid 
59the foundation."

5&lbid.. p. 149.
57Stephen, p. 52.
eg
Stephen, p. 50.

^^Richard S. Peters, (ed.), Thomas Hobbes. Body. Man. and 
Citizen. Selections from Thomas Hobbes (New York: Collier Books, 1962),
p. 16.
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The basis of Hobbes's metaphysical and physical thought lay in

his idea of causality, formulated in the De Coroore.

For whatsoever is produced, in as much as it is produced, h^d an 
entire cause, that is, had all those things, which being supposed, 
it cannot be understood but that the effect follows; that is, it 
had a necessary cause. And in the same manner it may be shown, 
that whatsoever effects are hereafter to be produced, shall have a 
necessary cause; so that all the effects that have been, or shall 
be produced, have their necessity in things antecedent. . . .

And from this, that whensoever the cause is entire, the effect 
is produced in the same instant, it is manifest that causation and 
the production of effects consist in a certain continual progress; 
so that as there is a continual mutation in the agent or agents, 
by the working of other agents upon them, so also the patient upon 
which they work, is continually altered and changed.

Here Hobbes has indicated that the explanation of any phenomenon 

must be constructed in terms of necessary causes of the phenomenon. These 

causes and their effect are in a temporal relationship of a peculiar 

nature. An entire cause is simultaneous with its effect, so that any 

phenomenon is the result of a continuous process, that is, not only the 

effect, but also the causes are characterized by continuous change. If 

this is the case, then it is necessary to consider causes in terras of 

infinitesimals, a conclusion which Hobbes drew.

One of the concepts evolved by Hobbes to deal with the motion

of bodies was that of "endeavor."

I define ENDEAVOR to ̂  motion made in less space and time than 
can be given; that is, motion made through the length of a point. 
and in an instant or point of time. For the explaining of which 
definition it must be remembered, that by a point is not under
stood that which has no quantity, or which cannot by any means be 
divided; for there is no such thing in nature; but that, whose 
quantity is not at all considered, that is, whereof neither quan
tity nor any part is computed in demonstration; so that a point is 
not to be taken for an indivisible, but for an undivided thing; as

^^Thomas Hobbes, Body. Man. and Citizen, p. 117.
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also an instant is to be taken for an undivided, and not for an 
indivisible timeo ^

"Endeavor" is a change of place conceived as occurring in an 

instant, and the velocity with which the change takes place, the 

"velocity of endeavor," Hobbes defined as "impetus. These infini

tesimal quantities were related to the idea of force, which was the

impetus or quickness of motion multiplied either into itself, or 
into the magnitude of the movent. by means whereof the said 
movent works more or less upon the body that resists it. 3̂

That is, force is equal either to the square of the instantaneous velocity

of the movent or to the product of its instantaneous velocity and its

magnitude.

In these concepts, Hobbes has attempted to lay the groundwork 

for a form of explanation of natural phenomena which proceeds from in

finitesimal, indetermined, and therefore fundamental motions as causes to 

observable phenomena as effects. This he termed the "compositive" method, 

by which

we are to observe what effect a body moved produceth, when ye 
consider nothing in it besides its motion; and we see presently 
that this makes a line or a length . . . and so forwards, till we 
see what the effects of simple motion are; and then, in like manner, 
we are to observe what proceeds from the addition, multiplication, 
subtraction and division of these motions, and what effects, what 
figures, and what properties, they produce . . . ■

^^Ibid.. p. 132.

62lbid.. pp. 132-133.

%bid... p. 136,

'̂̂ "The extension of a body is the same thing with the magnitude 
of it, . . .", Ibid., p. 103o

^^Ibid.. p. 76.
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The "compositive" method bears a strong resemblance to Newton’s 

brief statement of method cited above: "from the phenomena of motion to

investigate the forces of nature, and from there to demonstrate the other 

phenomena." In both cases, the consideration of motion begins with 

motion in a point and proceeds to the explanation of finite motions.

Thus, to a considerable extent, the ideas fundamental to the

calculus were present in Hobbes' thought, as logical implications of his

concept of causality, which explicitly employed the notion of the con

tinuity of causes and of effects, as well as their simultaneity. Hobbes

was not enough of a mathematician to exploit these ideas, and, in any

case there was an important omission in his system.

The missing element in Hobbes' analysis of motion was some way 

of obtaining a description of causes that was different from that of 

their effects. He saw the need for continuity in the causes producing 

continuously changing motion— an idea that was later to be raised to the 

level of a first principle of both mechanics and the calculus by Leibniz—  

but could conceive the cause of motion in a body, the exertion of force, 

only as the action of another body. In this connection Hobbes wrote 

that "when any body is moyed which was formerly at rest, the immediate 

efficient cause of that motion is in some other moyed and contiguous 

body. Therefore, in order to handle the motion of a body along a 

curyed path he must be able to mathematically describe the motions of the 

"moyents" which cause it to deviate from a straight line motion.

&6lbid.. p. 131.

^^That Hobbes was aware that some action was necessary to cause 
a moving body to deviate from motion in a straight line is apparent from
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This is the problem that Newton was able to overcome by making 

force a property of space and an action of God, that is, by virtually 

identifying space and God. Such a solution to the problem would have 

been out of the question for Hobbes even if he had thought of it; to 

conceive force as the action of God was not in line with the mechanistic 

view of reality. Newton's use of the idea thus suggests that yet another 

aspect of the intellectual background of the age entered into the syn

thesis represented by his theory of mechanics: namely, a tradition

stemming from Plato and Aristotle which held that non-material entities 

were real and irreducible factors in the existence and functioning of 

the physical world.

This tradition had undergone a revival, or more accurately

perhaps, a "renaissance," during the fifteenth century mainly through the

activity of the Florentine Platonists Giovanni Pico della Mirandola

(14.63-94) and Marsilio Ficino (1433-99) • For Pico and Ficino there

existed a duality of mind and nature, as indeed with all Platonists.

However in contradistinction to the mind-matter duality later developed

by Descartes and incorporated in the mechanistic view of the world,

this duality is not allowed to become an absolute dualism of the 
Scholastic-medieval variety. For the polarity is not an absolute, 
but a relative opposition. The difference between the two poles 
is only possible and conceivable in that it implies a reciprocal 
relationship between them. Here we have before us one of the 
basic conceptions of Florentine Platonism, one which was never 
completely submerged or extinguished by opposing currents of 
thought or by the tendency towards 'transcendence„ . . .' 
Transcendence itself postulates and requires 'participation',

his assertion that "when any body, which is moved in the circumference 
of a circle, is freed from the retention of the radious, it will proceed 
... in a tangent." Ibid., p. 139.



58

just as 'participation' postulates and requires 'transcen
dence'.^^

This basic- tenet of the Platonic approach to the physical 

world, the participation of the transcendent and immaterial in the 

natural and material, appeared in the writings of Henry More (1614.-88), 
one of the so-called Cambridge Platonists. However, in the course of a 

dispute with Descartes, More gave this idea a new form in terms of space.

Henry More does not have a good reputation as a clear and 

systematic thinker in the history of philosophy. He seems almost to 

belong to the hermetic or occultist tradition rather than to the philo

sophical tradition proper, to be

a spiritual contemporary of Marsilio Ficino, lost in the disenchanted 
world of the "new philosophy" and fighting a losing battle against 
it. And yet in spite of his partially anachronistic standpoint, in 
spite of his invincible trend towards syncretism which makes him 
jumble together Plato and Aristotle, Democritus and the Cabala, the 
thrice great Hermes and the Stoa, it was Henry More who gave to the 
new science— and the new world view— some of the most important ele
ments of the metaphysical framework which ensured its development.
. . . Henry More succeeded in grasping the fundamental principle of 
the new ontology, the infinitization of space, which he asserted 
with unflinching and fearless energy.

The "infinitization" of space means an identification of space

as the frame of reference for the action in the physical world of the

transcendent, immaterial, and infinite God. This view of space was set

forth in More's Enchiridium metanhvsicum published in 1671.

I have clearly shown that this infinite extension, which commonly 
is held to be mere space, is in truth a certain substance, and that 
it is incorporeal or a spirit. . . . This immense locus internus or

^^Ernst Cassirer, The Individual and the Cosmos in Renaissance 
Philosonhv. trans. Mario Domandi (New York and Evanston, 111.: Harper
and Row, 1964), pp. 86-87.

^%oyre, pp. 125-126.
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space really distinct from matter, which we conceive in our 
understanding, is a certain rather . . . confused and vague rep
resentation of the divine essence or essential presence, in so 
far as it is distinguished from his life and activities.'

This identification of God and space fulfills the Platonic

requirement of the participation of the transcendent in the natural in

a rather peculiar way. More accepted the common mechanistic notions of

the day as regards the ultimate construction of matter as homogeneous

atoms. He also accepted the Cartesian notion of conservation of the

quantity of motion in the universe. But, like Hobbes, More could not
71conceive of anything existing without extension. Therefore, it fol

lowed that God, or spirit, is an extended being and his participation in 

the natural world is a matter of moving the homogeneous atoms and arrang

ing them in various configurations.

Whence, I ask if it be unworthy of a philosopher to inquire if 
there be not in nature an incorporeal substance which, while it 
can impress on any body all the qualities of body, or at least 
most of them, such as motion, figure, position of parts, etc.
. . , would be further able, since it is almost certain that this 
substance removes and stops bodies, to add whatever is involved 
in such motion, that is, it can divide, scatter, bind, form the
small parts, order the forms, set in circular motions those which
are disposed for it. . .

Thus it can be seen that in the thought of Henry More, a friend

to Newton,living and writing at Cambridge University where Newton was 

also situated, there is a sort of synthesis of the mechanistic and

70Quoted by Edwin Arthur Burtt, The Metaphysical Foundations of 
Modern Physical Science, a Historical and Critical Essav (rev. ed.; New 
York: The Humanities Press Inc., 1951), p. 141.

^^Ibid.. pp. 128-129.

72lbid.. p. 131.
73See below, p. 64.



Platonic approaches to the understanding of the physical world. The 

resulting combination of ideas bears a strong resemblance to Newton's 

solution of the problem of providing a causal description of the motions 

of bodies. The concepts of absolute space and time and their connection 

with the divinity in both writers are particularly striking in their 

similarity.

One of the most interesting aspects of the similarity of Newton's

thought to the ideas of Hobbes and More, beyond the fact that they were
1Lantithetical figures, is that both Hobbes and More were basically un

acceptable to the English scientific community. Neither of them were 

really competent natural philosophers in either the experimental or math

ematical sense; they were speculative thinkers in an age that demanded 

concreteness and exactness in its understanding of nature.

The speculative character of their thought carries over into 

Newtonian mechanics where, however, it is covered up with, or developed 

into, a system with both mathematical clarity and empirical significance. 

Of course there are other developments, both of a mathematical and phy

sical character, that are presupposed by the Newtonian synthesis, but 

these are beyond the scope of the present study. It is Newton's depen

dence on the speculative, metaphysical thought of the age that has a 

direct bearing on such things as the formation of the force concept, the 

logical structuring (abstract calculus) of the theory, and the

IL"The warfare against Hobbes was undertaken primarily by the 
Neo-Platonist school of Cambridge whose chief literary representatives 
were Ralph Cudworth and Henry More." Wilhelm Windleband, A History of 
Philosophy. Vol. II: Renaissance. Enlightenment and Modern (New York,
Evanston, and London: Harper and Row, 1958), p. A35.
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interpretation of the theory, and these are more relevant to the process 

of assimilation than the concrete physical and mathematical discoveries 

that lead up to the theory.

There are two questions concerning Newton himself that arise 

from the dependence of his theory of mechanics on metaphysical specula

tions of the sort just discussed. First, was he personally involved to 

any extent in the metaphysical and/or religious problems of his day, and 

second, what sort of man is it that is capable of creating but of abstract 

and widely disparate thoughts on the nature of reality a coherent and 

verifiable description of man’s experience of the physical world? A brief 

sketch of Newton's personality can yield answers to these questions that 

are significant with regard to the understanding and acceptance of his 

theory of mechanics by others of his era.̂ ^

The picture of Newton that appears in modern treatments of his

life is usually one of extreme contradictions. For instance, Aldous

Huxley wrote of him that he

created the science of celestial mechanics; but he was also the 
author of Observations on the Prophecies of Daniel and the Apocalypse 
of St. John, of a Lexicon Propheticum and a History of the Creation. 
With one part of his mind he believed in the miracles and prophecies 
about which he had been taught in childhood; with another part he 
believed that the universe is a scene of order and uniformity. The 
two parts were impenetrably divided one from the other. The mathe
matical physicist never interfered with the commentator on the 
Apocalypse; the believer in miracles had no share in formulating the 
laws of gravitation/76

75For the following interpretation of Newton’s personality the 
writer is largely indebted to Kent A. Higgins, "Isaac Newton," a paper 
submitted as partial fulfillment of requirements for a course in the 
History of Science at the University of North Dakota, May 1966.

^^Aldous Leonard Huxley, "The Idea of Equality," Proper Studies 
(London: Chatto and Windus, 1957), p. 6.
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Huxley here depicts Newton as a personality harboring an 

irreconcilable conflict: the pious believer versus the mathematical

physicist. However, from the foregoing analysis of Newton's theory of 

mechanics, it appears that Newton was able to integrate, to some extent 

at least, these two seemingly disparate aspects of his mental make-up.

In fact the two really irreconcilable things about Newton are not his 

own inner characteristics, but rather the commonly accepted image of 

Newton as a scientific saint and the historical Newton.

In assuming that Newton's personality, and therefore his

interests as well, were actually integrated, it is still necessary to

take cognizance of John Maynard Keynes' observation that "in vulgar

modern terras, Newton was profoundly neurotic, of a not unfamiliar type,
77but— I should say from the records— a most extreme example." This is 

not to say that Newton's brilliance as a scientist was the result of any 

neuroses from which he may have suffered. Rather, the obviously neurotic 

aspects of his character— some of which will shortly be mentioned— can 

be seen to share a common cause with his genius.

It is not necessary to review Newton's entire life in order to

bring out the factor in his inner make-up that lies behind his outwardly 

contradictory traits. One need only focus on one of the most obvious and 

hence most easily overlooked facts about Newton and at some of the prob

lematic elements in his life that are directly related to it. That

central fact is simply that Newton was a genius of an extremely high 

order.

"̂ "̂ John Maynard Keynes, "Newton the Man," Men and Numbers (New 
York: Simon and Schuster, 1956), p. 278.
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The actual degree of Newton's intelligence— his I.Q.— can only 

be estimated on the basis of biographical data, and I*Q. itself is 

perhaps best defined as that which I.Q. tests measure, rather than a 

real indicator of intellectual capacity. Nonetheless, an estimate of 

Newton's I.Q. can serve as the basis for a comparison between Newton and 

contemporary study groups of similar I.Q. rating. In this way, some light 

may be shed on the great man's relationships with his associates and on 

the quality of his work, as seen by his contemporaries.

A study of 300 geniuses, among them Newton, including estimates

of their I.Q.'s on the basis of biographical data, has been done by

Catherine Morris Cox and associates. The figure at which they arrived
78in Newton's case was an I.Q. of 190. While the available data may not 

have been the best for such purposes, there is little doubt but what 

Newton had an intelligence of the very highest order, A rating of 190

I.Q. places Newton in the classification group of 170 I.Q. and beyond.

Psychological researches have shown that above average children 

and adolescents within an I.Q, range of 125 to 155 experience a very 

favorable development toward a successful and well-rounded personality. 

Their superior intelligence provides them with confidence and leadership 

capacity, and at the same time there are enough of them to make communi

cation and mutual understanding, possible.

But those of 170 I.Q. and beyond are too intelligent to be 
understood by the general run of persons with whom they make con
tact. They are too infrequent to find many congenial companions,

78Catherine Morris Cox, et al., Genetic Studies of Genius.
Vol. II, The Early Mental Traits of Three Hundred Geniuses (Stanford 
University: Stanford University Press, 1926), pp. 60, 365-366.
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They have to contend with loneliness and with personal isolation 
from their contemporaries throughout the period of their immaturity.
To what extent these patterns become fixed, we cannot yet tell.

In the case of Isaac Newton, there is reason to believe that 

personal isolation from his contemporaries did indeed become a fixed 

pattern of life. Newton's relationships with his acquaintances and 

scientific colleagues, as described by Louis Trenchard More, are some

thing less than warm and personal.

With the exception, perhaps, of Montague, Newton had no intijnate 
and personal friends who penetrated the ivory tower in which he 
jealously guarded his inner life. How aloof he wished to be is 
epitomized in his almost agonized cry that he would publish nothing 
more as it would result only in attracting acquaintance, what he 
sought most to avoid. Towards Boyle and Wren he showed a deep 
respect, and next to Montague his most congenial friends were 
Henry More and John Locke; but even they regarded him as difficult 
and "nice" to approach. Men of science, such as Hooke, Flamsteed, 
and Leibniz, who ventured in the same field of work and who felt  ̂
themselves competent to criticize him, were met by chilling rebuffs.

A particular aspect of the isolation of children of very high

intelligence is that, because they are physically unable to keep pace

with older children and are indifferent to the play of children of their
8lown age, their play tends to become lonely and sedentary. This trait

can be seen in Newton too, for, according to More, Newton "shunned all

forms of physical exercise, played no games, and disliked boys." Even

at Cambridge, consequently, he was completely out of touch with his fellow 
82undergraduates.

^^Leta S. Hollingworth, Children Above 180 I.Q. (Yonkers-on- 
Hudson, New York: World Book Co., 1942), pp. 94-95.

^̂ More, p. 130.
81Leta S. Hollingworth, "The Child of Very Superior Intelligence 

As a Special Problem in Social Adjustment," Mental Hygiene. XV (l93l),
p. 8.

82More, p. 30.
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The notion of social isolation as a direct result of great 

genius also helps explain Newton's penchant for becoming enmeshed in 

professional controversy while, at the same time, hating such embroilment. 

His exchanges with Robert Hooke (1635-1703), John Flamsteed (1646-1719), 

and Leibniz are the most famous of such incidents, and again there is 

close correspondence to modern observations on the very intelligent 

child. One of the main difficulties of such children, is, as Hollingworth 

puts it, to "suffer fools gladly.

This characteristic was recognized in Newton by More as something

that was a concomitant to his special genius, and thus More attempted to

excuse Newton's quarrels, saying that

they bulk too large in our estimate of his character as, after all, 
they occupied but a small part of a long life which was, on the whole, 
exemplary; and we must make allowances for his constitutional irri
tability when criticized, a trait which such inordinate flattery as 
was given to him could not fail to intensify. ^

However, the point is not to judge Newton, but to see what effects 

his character might have on his contemporaries. From the above, it would 

appear that he was esteemed almost to the point of being worshipped— a 

notion to which we will return— and was correspondingly unapproachable.

On the other hand, a case has been made for Newton's humility on the basis 

of the statement often attributed to him, "if I have seen further, it is 

by standing on the shoulders of giants. Further support for this view

^^Hollingworth, Children Above 180 I.Q.. pp. 258-259.

^ M̂ore, pp. 135-136.
gcEdward Neville da Costa Andrade, "Isaac Newton," Men and 

Numbers from the World of Mathematics, ed. James R. Newman (New York:
Simon and Schuster, 1956), p. 271.
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of Newton's character can be drawn from the simile he presumably used

to describe his achievements in natural philosophy.

I do not know what I may appear to the world; but to myself I seem 
to have been only like a boy, playing on the seashore, and diverting 
myself, in now and then finding a smoother pebble or a prettier 
shell than ordinary, while the great ocean of truth lay all undis
covered before me. °

This statement would only indicate Newton's awe of the universe, 

which to him, was pregnant with the divine presence. The statement, also 

shows him as being essentially alone, so that if he felt indebted to any 

"giants," he was probably not referring to any of his contemporaries, and 

certainly not to any of his critics.

Newton's awe of the universe was of a piece with his theological 

interests, and both of these things can be referred back to behavior 

patterns common to people of his intelligence group. Hollingworth wrote 

that

when we observe young gifted children, we discover that religious 
ideas and needs originate in them whenever they develop to a mental 
level past "twelve years mental age." Thus they show these needs 
when they are but eight or nine years old, or earlier. The higher 
the I.Q., the earlier does the pressing need for an explanation of 
the universe occur, the sooner does the demand for a concept of the 
origin and destiny of the self appear.

In the cases of children who test above 180 I.Q. observed by 
the present writer, definite demand for a systematic philosophy of 
life and death developed when they were but six or seven years old. 
Similar phenomena appear in the childhood histories of eminent 
persons, where data of childhood are available. Goethe, for exam
ple, at the age of nine, constructed an altar and devised a religion 
of his own, in which God could be worshipped without the help of 
priests.87

Now, an interest in theology was not at all peculiar for men of 

Newton's time, not even among men of science. In Newton's case, however,

G^Ibid.
8VHollingworth, Mental Hygiene. XV, p. 13
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this interest seems to be more than the reflection of a common 

preoccupation. It was with him a particular aspect of an overall 

behavior pattern; the reverse side, as it were, of his almost total 

isolation from human contact.

There is one last item that relates directly to Newton's social 

isolation; the somewhat perplexing fact that he spent a good deal of time 

simply copying things. With regard to this, I. B. Cohen has commented 

that:

Whiston tells us that he wrote out "eighteen copies of the first and 
principal chapter of the Chronology with his own hand but little 
different from each other." A theological manuscript in the Keynes 
collection, the "Irenicum, or Ecclesiastical Polity tending to Peace," 
is found in seven separate autograph drafts, which are almost iden
tical. Why did Newton copy out so much again and again? Many 
reasons have been advanced to explain Newton's copying, extracting, 
and summarizing the books that stood on his own shelf. In the 
Preface to the catalogue of the Portsmouth Collection it is remarked 
of the Newton manuscripts on historical and theological subjects;
"Much is written out, as if prepared for the press, much apparently 
from the mere love of writing. His power of writing a beautiful hand 
was evidently a snare to him." Anyone who has read Newton manuscripts 
cannot fail to be impressed by the beauty of his handwriting and so 
this remark contains a grain of truth. But another possible reason 
is that Newton was a man who did not easily communicate his ideas 
to others, either by word of mouth or in print. Such a man, lacking 
close friends, might well satisfy his inner need of expressing 
himself by writing to himself and for himself and enjoying the 
experience of writing out that which he could not print. From the 
enjoyment of reading his own thoughts in the intimacy of his own 
handwriting, it might not have been so great a step to the habit of 
transforming portions of books into texts which he could likewise 
read in his own handwriting. In any event, here is another curious 
and bewildering aspect of the man Newton. °

In the light of what has been said of Newton thus far, Cohen's 

conjecture seems completely accurate and completes the picture of Newton 

as a man living in a profound social and intellectual isolation. From

8̂ 1. Bernard Cohen, "Newton in the Light of Recent Scholarship," 
Isis., LI (i960), p. 504.
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this it follows that Aldous Huxley was essentially correct when he wrote 

that "the price Newton had to pay for being a supreme intellect was that 

he was incapable of friendship, love, fatherhood, and many other desir-
89able things. As a man he was a failure; as a monster he was superb."

The question that now presents itself is, given that Newton's 

mechanics was logically structured according to a mathematical system 

almost completely foreign to his age, that its metaphysical content was 

synthesized from two opposing and relatively unpopular views of reality, 

and that Newton himself lived in a sort of splendid isolation, how could 

this theory be assimilated by the men of his times. The answer to this 

question, as will be shown, is simply that it could not, at least not 

directly.

89Quoted in Men and Numbers, p. 277.



CHAPTER II 

THE NEWTONIANS AND ANTI-NEWTONIANS

The Newtonian synthesis in mechanics effected a reduction of 

statics to dynamics, first of all by explaining the fundamental concept 

of statics, the idea of equilibrium, through the Third Law of Motion, 

and secondly, by extending the Third Law and hence the concept of 

equilibrium by means of the idea of "inertial force," to cover dynamic 

states of machines. In this way, even in complex mechanical systems, the 

state of rest was deprived of its special nature and became Just a special 

case of motion. Fundamental to this reduction was the concept of force 

as weight acting in an instant of time, and the instantaneous action of 

weight was conceived by Newton to be the generation of motion. There

fore, the connection between statics and dynamics rested upon this 

particular connection between weight and motion.

Traditionally, statics, or the science of simple machines, had 

identified weight with "force," or "power." However, the action of the 

force or power had no particular relation to time. Similarly, in the 

science of impact phenomena, the idea of force was essentially indepen

dent of time, but there force was taken to be momentum, or quantity of 

motion. Newton, as has been shown, forged the connection between these 

two ideas of force, which are represented in the Princinia by the terms

69
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"motive quantity of a force" and "impressed force" respectively, by saying 

that the former generates the latter in time.

Therefore, in looking at the mechanical writings of the so-called 

Newtonians, an important indicator of the degree to which they have 

assimilated his thought lies in whether they have been able to follow 

Newton in his unification of statics and dynamics or whether they still 

treat them as essentially separate sciences with separate and unreconciled 

notions of force. If the force concept remains unclarified, then it is 

clear that the logical structure of Newtonian mechanics, which has been 

identified with the calculus, cannot be present. Further, since Newton's 

interpretation of his mechanics, in terms of the nature of matter, space, 

and of physical reality in general, was intimately related to the con

cepts underlying the calculus, their absence in the writings of the New

tonians would imply a view of reality substantially different from that 

of Newton. Thus, even with writers who vehemently espoused "Newtonianisni, " 

it is conceivable that their ideas bore only a superficial relationship 

to those of the master.

One of the first influential Newtonians was John Keill (l671- 

1721), who is said to have been the first to publicly teach Newtonian 

philosophy, and in particular, to teach it on the basis of the experiments 

on which it was founded.^ This by itself casts a shadow of suspicion on 

the depth of Keill's understanding of Newton, whose Platonic tendencies

^"John Keill," The Philosophical Transactions of the Royal 
Society of London from Their Commencement in 1665 to the Year 1800; 
Abbridged with Notes and Biographic Illustrations. V (London: C. & R,.
Baldwin, iSlO), pp. 417-418. This remark was made by J. T„ Desagulier 
(1683-1744)j a student of Keill's. "John Keill," Dictionary of National 
Biography. Vol. X.
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have been made explicit. In any case, Keill spent virtually his entire

adult life as a proponent of Newtonian philosophy. From 1691, when he

followed his professor, David Gregory, to Oxford, until his death, Keill
2was an active lecturer, writer and polemicist in the Newtonian cause.

His major work in the field of mechanics, the Introductio ad veram

nhvsicam. went through at least four Latin and two English editions during 
3Newton's lifetime.

Keill was also a member of the Royal Society of London from 1701 

until his death and, in this connection, became involved in the controversy 

between Newton and Leibniz over the question of priority in the invention 

of the calculus. It was Keill who prepared the refutation of Leibniz's 

accusation of plagiarism against Newton in 1708, and he also edited a 

report, called the Commercium Epistolicum. prepared by the Royal Society 

on the Newton-Leibniz controversy in 1712.^

Through all of this it is apparent that Keill was not only a 

longtime student of Newton's thought and one of his personal admirers, 

but that Newton had every chance to know the nature of Keill's work. 

Especially, he had ample opportunity to gain a knowledge of the depth of 

Keill's understanding of the principles upon which the mechanics of the 

Principia are based, that is, the principles of the calculus.

^"John Keill," D.N.B., Vol. X.
3John Keill, Introductio ad veram nhvsicam. seu lectiones 

phvsicae. habitae in schola naturalis philosophiae Academiae Oxonensis. 
Quibus accedunt C. Hugenii theoremata de vi centrifuga et motu circular! 
demonstrata (Oxoniae: T. Bennet, 1702). Latin editions two through
four appeared in 1705, 1715, and 1719 respectively. English editions 
appeared in 1720 and 1726.

^"John Keill," D.N.B., Vol. X.
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However, in turning to Keill's Introductio ad veram nhvsicam. 

one is confronted with something of a paradox; while the book bears a 

surface resemblance to Newtonian mechanics, there is in it little

attempt to exploit or even to elucidate the basic concepts of the pew

mechanics. This can be seen in the axioms listed by Keill.

I. There are no properties or affections of a nonentity or
nothing.

II. No body can be naturally annihilated.
III. Every mutation induced in a natural body proceeds from an

external agent; for every body is but a listless heap of 
matter, and it cannot induce any mutation in itself.

IV. Effects are proportional to their adequate causes.
V. The causes of natural things are such, as are the most

simple, and are sufficient to explain the phenomena: for
nature always proceeds in the simplest and most expeditious 
method; because by this manner of operating the divine 
wisdom displays itself the more.

VI. Natural effects of the same kind have the same causes: as
the descent of a stone and a piece of wood proceeds from 
the same cause; and there is also the same cause of light 
and heat in the sun and in the kitchen fire, of the reflec
tion of light in the earth and in the planets.

VII. If two things are so connected together that they perpetually 
accompany each other, that is, if one of them is changed or 
removed, the other likewise will be in the same manner 
changed or removed; either one of these is the cause of the 
other, or they both proceed from the same common cause.

VIII. Any body being moved in any direction, all its particles 
which are relatively at rest in it, proceed together in the 
same direction with the same velocity; that is, a relative 
place being moved, that which is placed therein will be 
also moved.

IX. Equal quantities of matter carried along with the same 
velocity, their Momenta or quantities of motion will be 
equal.

X. Equal and contrary forces acting on the same botjy, destroy 
their mutual effects.

XI. But from unequal and contrary forces there is produced a 
motion equivalent to the excess of the greater force.

XII. Amotion produced from conspiring forces, that is, acting in 
the same direction, is equivalent to their sum.

XIII. If what is equivalent be either augmented, or its contrary 
diminished, then it becomes the greater.
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XIVc All matter is everywhere of the same nature, and has the

same essential attributes, whether it is in the heavens or 
on the earth, whether it appears under the form of a fluid 
body, or a hard, or of any other whatever; that is, the 
matter of any body, for example of wood, does not differ 
essentially from the matter of any other body whatever.

XV. But the different forms of bodies are nothing but the 
different modifications of the same matter; and depend 
on the various magnitude, figure, texture, position, and 
other modes of the particles composing bodies.

XVI. So likewise the qualities, or actions, or powers, of some 
bodies on other bodies, arise only from the former attrac
tions and motion conjointly.5

Keill's axioms do not represent a single, coherent logical 

system. The set of axioms does not serve to clearly establish any sort 

of relational structure between theoretical terms which can themselves 

be given an empirical significance.

For instance, the axioms that most closely correspond to 

Newton's Laws are the third, the tenth, and the eleventh (relating to 

Newton's First, Third, and Second Laws respectively). These axioms of 

Keill's do not explicitly contain the theoretical terms that are basic 

to the mechanics. Axiom 111 mentions only "mutations" instead of changes 

in the state of motion, and "outside agents" instead of impressed force. 

Axiom XI makes use of the term "force" rather than the more specific 

motive force impressed, and Axiom X uses the same term, "force," in place 

of the mutual actions of bodies on each other, as in Newton's Third Law.

The use of the term "mutation" in Axiom 111 can be ignored in 

this connection since Keill evidently meant to include changes in the

5John Keill, An Introduction to Natural Philosophy: or Philo
sophical Lectures Read in the University of Oxford. Anno Pom. 1700. To 
Which Are Added the Demonstrations of Monsieur Huvgen's Theorems. Con
cerning the Centrifugal Force and Circular Motion (2nd ed.; London :
J. Senex, W. & J. Innys, J. Osborn & T. Longman, 1726), pp. 89-92.
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state of motion under the broader concept. However̂  the use of the 

unqualified term "force" in Axioms X and XI, along with the substitution 

of "agent" for impressed force in Axiom III indicates that Keill had no 

clear idea of the crucial distinction between motive and impressed

force. In his definition of "moving" or "impressed" force Keill spoke

of it as causing or changing the motion of a body.^

This was not the case in the mechanics of Newton, where impressed

force, or the force of a moving body, was a motion or an increment of

motion, but seen from the point of view of cause rather than of effect—  

a weight-like, or motive force was the cause of impressed force = change 

of motion. This deficiency in the conception of force is, by itself, 

sufficient to preclude the possibility of Keill's mechanics having the 

same logical structure as Newtonian mechanics. That structure may have 

been somewhat obscured in the Principia. but in the Introductio ad veram 

phvsicam it is absent.

The deficiency in the force concept becomes still more apparent 

in Keill’s treatment of machines. The traditional core of the theory of 

machines was the fundamental theorem of the lever— the forces being 

inversely as their distances from the fulcrum, or center of motion of the 

lever, the lever will be in a state of equilibrium. Keill proved this 

theorem by showing that if the ratio of the power, or moving force, to 

the weight, or load, is inversely as their respective distances from the 

center of rotation, then the "momentum" of the power will be the same as 

the "momentum" of the weight, "and consequently the power will be

^Ibid.. pp. 85-86.
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equivalent to the weight; which if it be ever so little increased will 

7raise the weight."

Keill has made use of Axiom X (that equal and contrary forces 

acting on the same body destroy their mutual effects) in his demonstra

tion. The way in which the demonstration proceeds is that if the weights 

are inversely as their distances from the center of rotation and their 

velocities are directly as these distances, then the products of weights 

and velocities, the momenta, will be equal, and hence, by Axion X these 

will destroy each others effects, and the lever will be in equilibrium. 

Here Keill has identified "force" with "momentum," but "momentum" is 

weight times velocity rather than the product of quantity of matter and 

velocity as in Newtonian mechanics.

Thus the Newtonian causal relation between weight and quantity 

of motion, or momentum, is replaced in Keill's mechanics by saying that 

weight is simply one of the factors in momentum. From this it follows 

that Keill could have no understanding of the idea of "inertial force" 

mentioned earlier in connection with Newton's treatment of accelerated 

states of machines, or of the extension of the Third Law to mechanical 

systems in motion. Thus it is not surprising that Keill did not mention 

the subject in his book, but stayed within the traditional, that is, 

static, limitations of the mathematical-theoretical treatment of machines. 

Therefore, although a dynamic concept, that of momentum, lies at the 

core of Keill's discussion of static problems, he has not been able to 

effect a true synthesis in the Newtonian manner.

?Ibid.. pp. 122-123.



76

Keill's treatment of the phenomena of impact, like his treatment 

of machines, bears only a superficial resemblance to Newtonian mechanics. 

There too, the discussion is based on the Third Law, or on his own Axiom 

X, but resembles the work of earlier writers, John Wallis and Edme.

Mariette (162O-I684), which will be discussed later.
Typical of Keill's approach to impact phenomena, is his 

discussion of elastic collision. He used a taut string as the model for 

an elastic body, which, when deformed, "will restore itself with the same 

force wherewith it was first inflected . . . [which] was equivalent to
g

the momentum of the impinging body . . . ." Therefore, the body will 

be reflected with the same quantity of motion which it had formerly.

The forces that Keill refers to here are, as before, momenta, 

so that he is still concerned with motions rather than the causes of 

motion. In contrast to this, Newton, in his rather brief treatment of 

elastic collision, had written of the elasticity of a body as having 

the character of a cause of change of motion, and he therefore asso

ciated a force with it. With regard to any given body, that force was 

"certain and determined, and makes the bodies to return one from the 

other with a relative velocity, which is in a given ratio to that rela

tive velocity with which they met.

By making elastic force a characteristic of a body, Newton opened 

up the possibility of an expression of that force independent of the change

g
Ibid.. p. IS3.
%saac Newton, Sir Isaac Newton's Mathematical Principles of 

Natural Philosophy and His System of the World. Trans. Andrew Motte,
1729. Translation revision and historical appendix by Florian Cajori 
(Berkeley, California: University of California Press, 194-7), p. 25.
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of motion which it produces. This is essentially the same thing that 

was accomplished by making the centripetal force a function of space. 

Keill, however, in limiting his conception of force to motion or momen

tum, passed up the possibility of finding a separate determination of 

force, and therefore a consistent mathematical treatment of motion, in 

the Newtonian sense, could not be effected.

Such a difference in logical structure as existed betweep 

Keill's and Newton's mechanics should carry with it some differences in 

the interpretation of the theory. In particular, there should be dif

ferences in any ideas concerning physical reality that are connected 

with the concepts of force and weight. As has been shown, Newton was 

able to conceive of weight, or motive force, as the product of the "ex

tensive" quantity of matter of a body with the "intensive" accelerative 

force that was a characteristic of space. Keill, on the other hand used 

weight in place of mass, which suggests that he regarded the gravitational 

force as a property of bodies themselves.

In his Introductio. Keill stated that although gravity is called 

an attraction, "it is not intended as a determination of the cause of 

motion, but is merely a naming of the cause in the manner of the

^̂ It is of significance that John Bernoulli, in 1723, had 
developed the notion of the elastic force of a body in ternjs of tjie 
calculus. The 1726 English edition of Keill's Introductio. however, 
contains the treatment just described. See John Bernoulli, "Discourse 
sur les Loix de la Communication de Mouvement, contenant la Solution de 
la premiere Question proposée par MM. de l'Académie Royale des Sciences 
pour l'Annee 172A," Recueil des nieces oui ont remporte les Prix. Fondez 
dans l'Académie Royale des Sciences par M. Rouille de Meslav. Conseiller 
au Parlament; depuis l'Annee 1720 iusau’en 1728. Avec Quelques Pieces 
qui ont concouru aux memes Prix (Paris: Claude Jombart, MDCCXXVIII),
pp. 12-15.
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paripatetics« This statement indicates that he was following Newton's

lead in refusing to admit to the framing of hypotheses concerning the

actual nature of the gravitational force. Nevertheless, he went on,

virtually in the same breath, to speak of the propagation of qualities 
12through space. Also, in an article on attractive forces that appeared

in the Philosophical Transactions in 1708, Keill laid down the attractive
13power of matter as a fundamental principle.

The attribution of attractive force to matter itself rather than 

to a more or less direct action of God in space fits in well with an idea 

expressed in Axiom V of the Introductio. There Keill used the term 

"nature" as a subject, in the grammatical sense: "nature always proceeds

in the simplest and most expeditious method; because by this manner of 

operating the divine wisdom displays itself the more."

The implication is that nature functions of itself, and that 

the economy and efficiency of its functioning displays the wisdom of its 

divine architect. Thus Keill's popularized Newtonianism reflects the 

deistic conception of God's relation to the world rather than the Pla

tonic notion of immanence that lay behind Newton's idea of force, and 

was in harmony with the then existing movement toward liberal protestan- 

tism. "From this time on there developed in a remarkable way and with 

extraordinary speed the tendency to a new type of Protestantism . . . .

11Keill, Introduction., pp. 4-5. 

l^ibid.

^%ohn Keill, "On the Laws of Attraction and Other Physical 
Principles," Phil. Trans. Abb.. V, p. 417.
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It was a Protestantism married to the rationalizing movement . . . .

In thiç way, "Newtonian" mechanics could become laden with powerful 

religious overtones that were essentially foreign to its original 

content.

Still, the question may be legitimately raised as to why, if 

Keill had in fact departed so drastically from Newton's thought as has 

been here indicated, did not Newton correct him? A sufficient answer to 

this question can be found in Newton's profound sense of isolation. From 

all indications, he neither expected nor particularly wished to be under

stood by his contemporaries. Thus, lacking any instruction in Newton's 

thought beyond what was contained in the Principia. the Newtonians had 

no choice but to fall back on their own understanding and on what they 

could learn from each other. Under the circumstances a further degen

eration in the understanding of the Newtonian system was all too possible.

J. T. Desagulier (i683-174A), one of Keill's pupils during the 

last series of lectures on experimental philosophy delivered by Keill at 

Hart Hall, Oxford, represents a further loss or confusion of Newton's 

thought. However, this did not prevent Desagulier from attaining to a 

certain degree of success as a representative of the new science. In 

1710 Desagulier took over Keill's old lectureship at Hart Hall. In 1713 

he left Oxford for London where he became famous for his public lectures 

in Newtonian science, and at about the same time he was made "curator" 

of experiments to the Royal Society.It should be noted that Newton

Ï̂ H. Butterfield, The Origins of Modern Science. 1300-1800 
(New York: Macmillan, I960), p. I84.

^̂ I. Bernard Cohen, Franklin and Newton. An Inquiry into 
Speculative Newtonian Experimental Science and Franklin's Work in
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vas the president of the Royal Society at this time and must have at

least given approval to the employment of Desagulier in this capacity.

Now, as indicated above, the measure of comprehension of 

Newton's mechanics lies in the degree to which a writer on the subject 

was able to give a unified treatment of statics and dynamics in terms

of Newton's Laws. In Desagulier's main work, A System of Experimental

Philosophy, there is little question of such a unification since he did 

not even see the direct applicability of Newton's Third Law to a general 

treatment of machines. Instead of making use of the laws in dealing with

machines, Desagulier inserted a rather lengthy discussion of them as

"laws of nature" following his theory of machines.Also, while his 

statement of the laws adheres closely to Newton's own wording, his con

ception of quantity of motion, or momentum, is the same as Kelli's, that 

is, the product of weight and velocity.

As the basis for the treatment of machines, Desagulier listed

ten definitions, three "suppositions" and four axioms. Of all of these 

statements, only one definition, that of equilibrium, has any manifest 

connection with Newtonian theory. "Equilibrium," wrote Desagulier, "is, 

when there is the same quantity of motion in the power, as there is in

Electricity as an Example Thereof (Philadelphia, Pa.: The American
Philosophical Society, 1956), pp. 2A3-24.5.

. T. Desagulier, A System of Experimental Philosophy. Proyed 
by Mechanicks. Wherein the Principles and Laws of Physicks. Mechanicks. 
Hydrostaticks. and Opticks Are Demonstrated (London: B. Creake and
J. Sackfield, 1719), pp. 47-62.

l^Ibid.. pp. 12-13.

%̂bid.. pp. 21-23.
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the weight; because their motions being contrary, the one destroys the

other.This equilibrium idea is the same as Keill's, but, whereas

Keill saw that it was directly applicable to any one of the machines,

Desagulier applied it only to the lever and then reduced all the other

machines to the lever. Such a treatment of machines is purely static;

its emphasis lying solely on geometrical and structural properties of

the machines rather than on the motions of their parts.

Desagulier was manifestly not of a mathematical turn of mind.

He seems to have been more in the tradition of the craftsman-technician

than that of the philosopher-mathematician, so that it is perhaps not so

astonishing that he failed to grasp the mathematical subtleties of the

new mechanics. Nonetheless, as Cohen has stated, he was regarded as an
20"ambassador of Newtonian thought," and thus his understanding of Newton 

must represent an at least respectable standard for his time. Thus one 

is confronted with a further degeneration of Newtonian thought while 

Newton himself was still very much on the scene.

Desagulier represents a low point in the understanding of 

Newton. Actually, as will be shown later, both Keill and Desagulier 

drew a great deal of their thought on mechanics from French work in the 

development of mechanics stemming from Descartes. The principal authors 

by whom they were influenced seem to have been Philippe de La Hire (I64O- 
1718) and Jacques Rohault (l620-l6?5). Rohault in particular was very 

popular in England in the late seventeenth and early eighteenth centuries.

%̂bid.. p. 21.
?nCohen, p. 245.
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His principal writings on mechanics were published there in both Latin
21and English translation.

Both Rohault and La Hire were basically Cartesian in their 

approach to physics (which means that they started from the basic assump

tion that all phenomena result from either impacts or pressures and that 

matter has only geometrical or spatial characteristics), so that "New

tonian" thought on mechanics up into the 1720's is seen to be strongly 

related to Gartesianism. The difference between "Newtonian" and 

"Cartesian" work in this period is largely superficial, a mere use of 

Newton's terms without any deep understanding of what they meant in 

Newton's theory.

Even Newton himself felt a need to counter the influence of 

Descartes in 1713, the time of the publication of the second edition of 

the Principia. The preface to the second edition, written by Roger Cotes 

(1682-1716), had as its primary object the combating of Descartes theory 

of vortices. "The need of such discussion, twenty-six years after the

21In 1697, Samuel Clarke, a Newtonian, published a translation 
of Rohault's Traite de Physique. The translation was accompanied by 
notes that explained the Newtonian view of the material covered, so 
that they constituted a virtual refutation of the text. However, the 
1698 edition contained the notes as annotations at the end of the 
text rather than as footnotes, and they do not refute the idea of 
vortices. The third edition of 1710 contained much enlarged notes, 
appearing as footnotes at the bottom of the pages to which they were 
applicable. An English translation of Clarke's work appeared as late 
as 1723. Florian Cajori, "An Historical and Explanatory Appendix,"
Sir Isaac Newton's Mathematical Principles of Natural Philosophy and 
His System of the World. Trans. Andrew Motte, 1729. Translation 
revision and historical appendix by Florian Cajori (Berkeley, Cali
fornia: University of California Press, 1947), pp. 630-631.
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first appearance of Newton's Principia indicates the great popular

22attachment to the views of Descartes."

By that time, however, the influence of Leibniz had made itself 

felt in French thought on mechanics, and Leibniz had expressed contempt 

for the "occult quality" of gravitation.^^ Thus a new challenge to 

Newtonian mechanical thought had appeared, significantly from the same 

quarter as the challenge to Newton's priority in the matter of the inven

tion of the calculus. The ensuing controversies were eventually to merge 

into one: the question as to the nature of the "force" of a body in

motion. From what has been said thus far, the confluence of the two
2/arguments in the force concept was a matter of almost logical necessity.

Leibniz' attack on the Newtonian system evoked a reaction from 

Newton through Cotes' preface to the second edition of the Principia and 

in the General Scholium added at that time. In his preface Cotes wrote:

But shall gravity be therefore called an occult cause, and 
thrown out of Philosophy, because the cause of gravity is occult 
and not yet discovered? Those who affirm this, should be careful 
not to fall into an absurdity that may overturn the foundations of 
all philosophy. For causes usually proceed in a continued chain 
from those that are more compounded to those that are more simple; 
when we are arrived at the most simple cause we can go no farther

Some there are who say that gravity is preternatural, and 
call it a perpetual miracle. ... It is hardly worth while to 
spend time in answering this ridiculous objection which overturns

22lbid.. p. 629.

letter from Leibniz to Nicholas Hartsoeker (1656-1725) 
stating that Newton's mechanics was built upon miracles was published 
in a weekly paper, Mémoires of Literature in May, 1712. Leibniz, 
prior to this, had attacked Newton in his Théodicée. Alexander Koyre, 
From the Closed World to the Infinite Universe (New York, Evanston, and 
London : Harper and Row, [l958j), p. 299.

'̂̂ For an amplification of this point see below, pp. 226-229.
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all philosophy. For either they will deny gravity to be in bodies, 
which cannot be said, or else, they will therfore call it pre
ternatural because it is not produced by the other properties of 
bodies, and therefore not by mechanical causes. But certainly
there are primary properties of bodies; and these . . . have no
dependence on the others. 5̂

Here again there is an attribution of gravitational attraction 

to matter as one of its fundamental properties; the same misconception 

already noted in the work of John Keill. This seems to contradict the 

other addition to the second edition of the Principia. the General 

Scholium, which was intended to combat another of Leibniz' objections: 

that the doctrines of the Principia would tend to weaken religion and 

spread materialism.^^ It has already been pointed out that making force 

a property of matter led to Deism, a point of view quite foreign to 

Newton. In the General Scholium in direct contradiction to this idea 

Newton laid out his thoughts on the near identity of space, time, and 

deity that were so important to the logical structure of the mechanics.

Thus, even in the attempt to refute their great antagonist, 

Newton and Cotes exhibited a very significant ideological difference.

The important thing at this point, however, is that Newton had been at

least momentarily aroused to the defense of his own theory of mechanics,

and possibly to the need to give some attention to what his defenders 

were saying in his behalf. While Desagulier's book (1719) certainly 

appears to have been written without any help from the master, a similar

^^Roger Cotes, "Preface to the Second Edition," Sir Isaac 
Newton's Mathematical Principles of Natural Philosophy and His System 
of the World. Trans. Andrew Motte, 1729. Translation revision and 
historical appendix by Florian Cajori (Berkeley, California: University
of California Press, 1947), p. XXVII.

oyre, p. 235.
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work, A View of Sir Isaac Newton's Philosophy, written some years later 

by Henry Pemberton (169A-1771) seems to have received a certain amount 

of attention from Newton.

Pemberton helped Newton in the preparation of the third edition

of the Principia and also performed an English translation of it which
27he intended to publish along with a "comment" on the Principia. In the 

course of this activity Pemberton had ample opportunity to familiarize 

himself with Newton's thought, and he stated, in the preface of his View 

of Sir Isaac Newton's Philosophy, that Newton approved of the book, which 

he and Pemberton had read together in great part.

Nevertheless, although, as will be seen, the work is definitely 

superior to that of Keill and Desagulier in the crucial matter of the 

conceptions of force and quantity of matter, it followed those writers 

in their failure to understand Newton's indications as to the proper 

basis for the treatment of machines.

Both Keill and Desagulier had obscured the concept of momentum 

and its relationship to weight by confusing weight and quantity of matter. 

This confusion, as pointed out earlier, arose partially through the attri

bution of gravitational attraction to matter as a fundamental property 

and partially through the inability to grasp the mathematical structure 

of Newton's mechanics. Pemberton, however, exhibited in his book a more 

proper Newtonian understanding of quantity of matter. In his explication 

of the concept of the "power of inactivity," vis inertiae. he stated that

27Henry Pemberton, A View of Sir Isaac Newton's Philosophy 
(London: S. Palmer, 1728), pp.[2r-a2v].

^^Ibid.. p. [a2r].



86

it is that

quality in bodies whereby they preserve their present state, with 
regard to motion or rest, till some active force disturb them. . . .
By this property, matter, sluggish and inactive of itself, retains 
all the power impressed upon it, and cannot be made to cease from 
action but by the opposition of as great a power, as that which 
first moved it.

The emphasis in the above definition, which itself is equivalent 

to the First Law of Motion, is on the inactive character of matter, rather 

than on any active force of matter. Furthermore, it was on the basis of 

the "power of inactivity" that the quantity of solid matter in a body was 

to be judged, and not directly by means of the weight of the body; the 

degree of the power of inactivity was assumed to be proportional to the 

quantity of solid matter. The proportionality between quantity of matter 

and weight, however, was not a matter of definition, but a consequence 

of the Second Law of Motion. Pemberton expressed this idea by saying 

that the power of inactivity of a body and therefore the quantity of 

matter was proportional to its weight, in support of which he cited 

Proposition XXIV of Book II of the Principia.

In Proposition XXIV, Book II, Newton proved, on the basis of 

the Second Law, that the quantities of matter in pendulous bodies are as 

the weights of the bodies and the square of their periods of oscillation. 

Assuming that the total periods of oscillation of the pendulums are in 

the same ratio as the times during which they traverse any corresponding 

portions of their respective arcs, and, by the Second Law, that the 

velocities generated during these times by the motive forces, or weights,

29Ibid., p. X2.
30Ibid., pp. 4-2-X3.
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are inversely proportional to the quantities of matter in the bodies, the
31above result follows easily.

By the reference to the above proposition, Pemberton’s work

gives positive evidence of an understanding of the central concepts of

mass and force that was lacking in his predecessors. At the same time,

however, his explication of the Second Law itself is not very clear. The

sense of the law, according to Pemberton, is that

if any body were put into motion with that degree of swiftness, as 
to pass in one hour the length of a thousand yards, the power which 
would give the same degree of velocity to a body twice as great, 
would give the lesser body twice the velocity . . . .

Here there is no explicit indication that the Second Law has any

meaning in terms of motive force acting in time, unless the term "power"

had that meaning for Pemberton in this context. While there' is no

definition of "power" in such terms in A View of Sir Isaac Newton’s

Philosonhv. Pemberton had earlier (l722) in a piece in the Philosophical

Transactions, given an indication that he understood the term power, or
33force, as an action in time producing change of motion.

The article is concerned with experiments made by Giovanni 

Poleni (1683-1761) in which globes of equal size but different weights
3/were allowed to fall on a yielding substance like soft wax. The

^ N̂ewton, Principia. p. 303.

^^Pemberton, p. 36.

Henry Pemberton, "A Letter to Dr. Mead, Coll. Med. Lond. &
Soc. Reg. S. Concerning an Experiment Whereby It Has Been Attempted to 
Show the Falsity of the Common Opinion, in Relation to the Force of Bodies 
in Motion," Philosophical Transactions. XXXII (1722-1723), pp. 57-68,

^̂ This experiment was described in Poleni’s de Castellis per 
quae derivantur fluviorum aquae habentibus latera convergentia liber quo
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The heights from which the globes were dropped were inversely proportional 

to their weights, so that the squares of the velocities of the globes at 

impact were also inversely as the weights. Under these conditions, the 

globes were found to make equal impressions in the wax, a result that led 

Poleni to infer that the forces of bodies in motion are proportional to 

the products of their weights and the squares of their velocities.

Pemberton reacted to this interpretation of the experiment, which

supported the Leibnizian view of the nature of force, by saying that the

experiment should be interpreted in such a manner as to shed light on 

the manner of penetration. That is, he denied Poleni's assumption that

the depth, or size, of the penetration is simply proportional to the

force of the striking body.

In order to reinterpret the experiment in terms of the way in 

which a yielding substance resists penetration, Pemberton reasoned that 

if two bodies, A and B, are dropped, as before, from heights inversely 

as their weights, then the ratio of their momenta at impact will be

“a = = ! | ! a 3  ! b .
%  V g  T^Vg

where M, W and V represent momentum, weight and velocity respectively. 

Next, Pemberton assumed that the resistance of a soft substance to pene

tration must be inversely proportional to the velocity of the penetrating

etiam continentur nova expérimenta ad aquas fluentes ataue ad nercussionis 
vires nertinentia (Patavii: J. Comini, 1718).

^^Pemberton, Philosophical Transactions. XXXII, p. 57.
36Ibid.. pp. 57-59.
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body, or directly proportional to the time required to penetrate through 

some given distance. The effect of the resistance to penetration, 

according to Pemberton, was a "momentaneous" loss of force, or momentum, 

which, being proportional to its cause, must be inversely proportional 

to the velocity. However, the momenta of the striking bodies were 

inversely as their velocities at the moment of impact, so that the 

"momentaneous" losses of momentum in the instant of impact are as the 

momenta with which the globes strike the wax. From this, Pemberton went 

on to conclude that the bodies must always make equal penetrations if, 

at the moment of impact, their momenta are inversely as their velocities.

The above interpretation, in spite of certain short-comings, does 

indicate that Pemberton understood force, or power, to cause a "momentan

eous" change in force, or momentum (unfortunately Pemberton was somewhat 

loose in his terminology, so that the sense of a term like force often 

has to be determined from the context). That is, the resistance of the 

soft material represented a force whose action during a very short time 

interval was to cause a change in momentum, which is the true sense of 

the Second Law of Motion.

Beyond the sheer conceptual grasp of the Second Law, however, 

Pemberton's treatment of the problem presented by Poleni's experiment 

has little to recommend it. The notion that the resistance of the wax to 

penetration must be inversely as the velocity of penetration was obviously 

contrived to yield the desired result, since all experience with the 

motion of bodies in resistant media indicated that the resistance of the

^^Ibid.. pp. 59-60.



90

media was directly, rather than inversely, proportional to the velocity « 

Thus Pemberton allowed himself to be led by his desire to refute an 

antagonist into some very bad physics. But if the physics was bad, the 

attempt at mathematical interpretation was worse.

The manner— an attempt to use infinitesimal quantities— in which 

the conclusion was drawn from the contrived relationship between "momen

taneous" change in momenta in the soft medium and the momenta of the 

bodies at impact is very unclear, and the conclusion itself is not a 

refutation of Poleni's interpretation. This lack of clarity shows that, 

although Pemberton was aware that Newtonian mechanics was meant to deal 

with infinitesimal time intervals, the mathematical treatment was beyond 

his power.

The failure to really grasp the mathematical structure of the

mechanics was basic to Pemberton's inability to apply the theory to

anything but the simplest situations. This is apparent in the discussion

of machines contained in A View of Sir Isaac Newton's Philosophy. The

approach to a theory of machines was made through a notion of virtual

velocities which Pemberton wrongly ascribed to Archimedes. His statement

of the principle involved is:

. . . when two weights are applied to any of these instruments, the 
weights will equiponderate, if when put into motion, their velo
cities will be reciprocally proportional to their respective 
weights.3Ô

This principle served to explain the action of each of the machines in 

sustaining a given load with a given force.

38Pemberton, A View of Sir Isaac Newton's Philosophy, p. 69.
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However, as stated and applied, Pemberton's equilibrium principle 

is independent of the rest of the theory; that is, it bears no necessary 

relationship to the laws of motion. His statement of the Thqrd Law, the 

basis for Newton's synthesis of statics and dynamics, is too specialized 

to have any possibility of direct application to the problems of statics. 

It deals exclusively with inelastic collision and is a direct consequence 

of the definition of the power of inactivity of matter. As seen by Pem

berton, the content of the Third Law was that a body, no matter how 

small, striking a second body, no matter how large, will impart some

motion to the second body and itself be deprived of just that much 
39motion. In this form, the law clearly has no direct application even 

to the equilibrium of simple machines, not to mention the analysis of 

dynamic states of machines. Therefore the union of static and dynamic 

theory achieved in the Principia is not present in Pemberton's book.

Thus, although there was, relative to the Newtonians discussed 

earlier, a certain conceptual improvement manifested in Pemberton's 

book, he was still liable to much of their misconception and unclarity.

In fact, it seems as though the parts of A View of Sir Isaac Newton's 

Philosophy in which Newton could have manifested the interest indicated 

by Pemberton must have been confined to the concepts of mass and force, 

and to their relationship. One reason for this might have been a sensi

tivity on Newton's part to the religious implications that have been 

shown to be contained in the idea that force is a property of matter. 

Beyond that, his normal aloofness seems to have reasserted itself.

^̂ Ibid.. p. 46.
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Pemberton himself provided an insight into Newton’s position in 

regard to the spread of his own ideas when he wrote that "though his 

memory was much decayed, I found he perfectly understood his own writings, 

contrary to what I frequently heard in discourse from many persons.

If nothing else, this remark indicates that at the time— in the last few 

years before Newton's death— there was a certain amount of disagreement 

between Newton and others over the content of the Principia. In view of 

what has been said thus far, Pemberton's claim that Newton's understanding 

was still accurate seems plausible. Any disagreement over the meaning of 

Newton's mechanical writings must therefore have arisen from such mis

interpretations as have been here brought to light and which were at that 

time, still deeply rooted. Even Pemberton, who had the benefit of pro

fessional association with Newton, was not able to lay out a general 

theory of mechanics giving full play to the conceptual structure forged 

by the great man.

Perhaps, however, it is unfair to judge Pemberton's book on this 

basis, since it seems to have been intended as something like a textbook 

rather than as an advanced or creative scientific work. It was designed, 

as were the books of Keill and Desagulier, to present an explication of 

Newtonian thought in language understandable to ordinary literate people 

and to students, and not to deal with questions of a difficult and 

abstract nature. Still, it is significant that Pemberton's treatment 

of mechanical problems is in large measure not Newtonian.

Considering the intended audiences of the works of Keill, 

Desagulier, and Pemberton, there is another factor that must have had

^^Ibid.. p. a2r.
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considerable impact on the way in which they presented the Newtonian 

system; the dissemination of the necessary mathematical techniques, that 

is, the calculus, was quite late and uneven in occurrence. The ideas 

basic to the calculus caused a great deal of controversy of a purely 

mathematical nature among academicians, as a consequence of which, the 

teaching of the calculus in the schools was held up even after the pub

lication of a number of treatises on the method. Under such conditions, 

books on mechanics intended for a student and lay audience could not make 

use of the ideas of the calculus even if it lay within the power of the 

author to do so.

It is beyond the scope of this work to delve deeply into the 

strictly mathematical aspects of the development of the calculus and of 

the problems that arose concerning it.^^ Of significance here is the 

fact that such problems existed and that their effect was to produce a 

certain amount of confusion. Part of this confusion derived from Newton

considerable amount of scholarship has been concentrated in 
this area. The following works, however, provide a good general coverage 
of the problems and issues surrounding the development of the calculus. 
Carl Boyer, The History of the Calculus and its Conceptual Development 
(New York: Dover Publications, Inc., 1949). Florian Cajori, A Historv
of Mathematics (2nd ed. rev.; New York: The Macmillan Company, 1931).
Florian Cajori, A History of Mathematical Notation. Vol. II (Chicago:
Open Court Publishing Co., 1929). Florian Cajori, "Discussions of 
Fluxions: From Berkeley to Woodhouse," The American Mathematical
Monthly, 24 (April, 1917), pp. 145-154. Eric Temple Bell, The Develop
ment of Mathematics (New York: McGraw-Hill, 1945). Ettore Carruccio,
Mathematics and Logic in History and in Contemporary Thought, trans.
Isabel Quigly (Chicago, 111.: Aldine Publishing Co., 1964)• J. F. Scott,
A History of Mathematics (London: Taylor and Francis Ltd., I960).
E. W. Strong, "Newton's Mathematical Way," The Journal of the History of 
Ideas. XII (Jan. 1951), pp. 90-110. E. W. Strong, "Newtonian Explica
tions of Natural Philosophy," The Journal of the History of Ideas.
XVIII (Jan., 1957), pp. 49-83.
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himself; from the fact that at different times he held different views 

of a very basic idea of the calculus, that is, of the nature of in

finitesimals . It should be noted that t his question is essentially 

independent of the logical structure of the calculus, which was common 

to all its various formulations.

The first published account of the calculus was contained in 

the first edition of the Principia (l68?). As already mentioned, the 

account of the calculus contained in the Principia was quite brief; in 

his attempt to give classical geometrical form to his work, Newton pre

sented only the shortest possible justification of his mathematical 

methods. The first real presentation of the method came in 1693 when a

portion of Newton's De Quadratura curvarum was printed in Wallis'
A2Algebra. In the De Quadratura. originally written in 1676, Newton 

attempted to avoid the use of infinitesimals, or "moments," that is, of 

indivisible but infinitely small quantities. In their stead, the method 

of "prime and ultimate ratios" was employed, the same method that 

was used in the exposition of the calculus contained in the Principia.

In modern terms, the method of prime and ultimate ratios represents a 

definition of the infinitesimal in terms of limits. In Newton's terms, 

it made use of a limiting ratio of so-called "nascent" or "evanescent" 

quantities, rather than indefinitely small but "atomic" entities. The 

complete De Quadrature was published in 1704 as an appendix to Newton's 

Optics.

^̂ Boyer, p. 201.
^̂ Scott, p. 51.
'̂ Boyer, p. 201.
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The next work on the calculus to be published was Humphrey

Ditton's An Institution of Fluxions, which appeared in 1706.̂ 5 The

essence of the method of fluxions as stated by Ditton was that

, . . the genuine sense and meaning of finding the fluxions of any 
flowing quantity, is as much as finding the nature and relation 
of the velocities of those motions, by w^ch the said flowing 
quantities are generated and described.

In the actual use of the method, however, Ditton treated the fluxions 

themselves as though they were very tiny increments, instead of veloc

ities of increase, of a flowing quantity. This is apparent from the 

fact that the fluxions were not multiplied by the symbol "o," repre

senting an instant of time.^^ The same omission was sometimes made in 

the 1704 publication of the ^  Quadratura. and it led a great many 

British mathematicians to regard fluxions as entities of infinitesimal 

magnitude.

Newton's De Analvsi per aeouationes numéro terminorum infinitas. 

appearing in 1711, was the next work on the calculus to be published in 

England. The use of infinitesimals in this treatise appeared as a direct 

contradiction to the definition of infinitesimals in terms of limits—  

prime and ultimate ratios— contained in the De Quadratura and the

/ C
Humphrey Ditton, An Institution of Fluxions; Containing the 

First Principles, the Operations, with Some of the Uses and Applications 
of that Admirable Method; According to the Scheme Prefix'd to his Tract 
of Quadratures by (its First Inventor) the Incomparable Sir Isaac Newton 
(London: James Rnapton, 1706).

^^Ibid.. p. 15.
47As an example of this practice see Ditton's fluxional deriva

tion of Galileo's laws of motion. Ibid., pp. 188-190.

'̂ B̂oyer, pp. 201-202.
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Principia. The method of the De Analyst which is completely dependent 

on the use of indivisible spatial and temporal increments, was devised, 

prior to that of the De Quadratura. in I669 and is similar to the work 
of Isaac Barrow (1630-1677), Newton's teacher.

In I7I5 there appeared a work entitled Methodus Incrementorium 

directa et inversa by Brook Taylor (l685-173l) which was an exposition 

of Newton's calculus based on prime and ultimate ratios. The major 

contribution of the work to the development of the calculus was to attempt 

to derive the ratio of the fluxions from the finite differences of moments, 

or momentary increments, rather than from Newton's somewhat vague "nascent 

and evanescent" quantities. In order to make the transition from the 

finite differences of moments to the infinitesimal ratio of fluxions,

Taylor was forced to conceive the ultimate ratio of Newton's method as a 

ratio "in which the quantities are already evanescent and are made zero."̂  ̂

This made the calculus neither clearer nor more rigorous.No doubt 

Taylor's innovation merely added to the already existing confusion over 

the nature and reality of the infinitesimal.

The controversy over infinitesimals continued on into the 1730's,

and in 1736, nine years after Newton's death, and in the midst of the

confusion there appeared an exposition of the earliest and the most
52productive form of Newton's calculus, the Method of Fluxions. The

49lbid.. p. 191.
*̂̂ Boyer, p. 234.

^̂ Bell, p. 285.
52Isaac Newton, The Method of Fluxions and Infinite Series with 

its application to the Geometry of Curve-Lines. trans. with commentary by 
John Colson (London: Henry Woodfall, 1736). See above, p. 39.



97

method expounded in this work is in essence the same as that described 

in "To Resolve Problems by Motion," which was cited previously as the 

earliest (1666) of Newton's complete expositions of the calculus. The 

basic similarity of the methods can best be realized in the context of 

a specific problem.

The first problem of the calculus is, given the relationship 

between fluent quantities, to find the relation between their velocities

of increase, or fluxions. The 1666 solution to the problem is given on

pages 42-43 of the present work and can be seen to be, except for nota

tion, the same as the solution that appeared in The Method of Fluxions

in 1736. There Newton stated that the moment of a flowing quantity, x, 

can be represented as the product of its celerity, x, and an indefinitely 

small quantity, o, that is, xo. The same can be done for any other 

fluent quantity, y. Then x and y, after an infinitesimal time interval 

become x + xo and y + ÿo. If these quantities are then inserted in the

original relation between x and y and all terms containing o are elimi-
53nated, the result will be the desired relationship between x and y.

Thus, the method of fluxions depends on the use of an infinitesimal 

entity which is discarded in the final step. Newton was aware that such 

a procedure was not entirely rigorous, but it was effective; it was 

capable of providing the logical relationships necessary to the construc

tion of a comprehensive mechanical theory and to the solution of problems 

not amenable to the methods of classical geometry. Over the years between 

the invention of the method of fluxions and the publication of the Prin

cipia Newton had attempted to improve the logical foundations of the

^^Ibid.. pp. 24-25.
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calculus, and hence of the mechanics, and these various attempts 

appeared in print in the inverse chronological order of their conception. 

To make things worse, Newton presented the various forms of the calculus 

described above as being essentially equivalent. That almost god-like 

figure, in true god-like style, never admitted that he had undergone 

any change of mind with regard to infinitesimals.^^ It is no wonder 

that in the England of the early l8th century there was uncertainty 

among mathematicians and ignorance among non-mathematicians concerning 

the calculus.

The English universities reflect this state of affairs during

the period. A Dr. W. Heberden of St. John's College, Cambridge, made

the following comments on the examinations he recalled about 1730.

Locke, Clarke, and the four branches of natural philosophy were 
studied; while Newton, Euclid, and algebra were only known to 
those who chose to attend the lectures of Prof. Saunderson, for 
the college lecturers were silent on them.̂ 5

At that time, the Clarke translation of Rohault was still the Cambridge 

textbook in mechanics.Although, through its footnotes it contained 

an exposition of Newtonian philosophy, it was not a preeiminently 

mathematical work. As indicated in the above quotation, the mathe

matical aspects of Newtonian thought were taught as mathematics. and not

^̂ Eoyer, p. 222. In the sense that infinitesimals in any of 
the methods, always entered into the same sort of relationships, Newton 
was justified in asserting that he had never changed his mind concern
ing them. All forms of the calculus performed the same sorts of 
operations in essentially the same fashion.

55Christopher Wordsworth, Scholae Academicae. Some Account of 
the Studies at the English Universisites in the 18th Century (Cambridge : 
At the University Press, 1910), pp. 68-69.

^^Cajori, Principia, p. 631.
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as an integral part of physics. Further, such teaching probably reached

a relatively small number of students, even if after 1710, when Nicolas

Saunderson (1682-1739) succeeded William Whiston (1667-1752) as Lucasian

Professor of Mathematics, there was a rise in the price of copies of the
57Principia from ten shillings to two guineas.

In general, the situation at the great English universities 

seems not to have been particularly favorable to abstract mathematical 

studies during the first half of the eighteenth century. The main sub

jects of instruction at both Oxford and Cambridge were the classics and 

theology, which were taught and examined with hardly any change from 

the medieval system. "At neither university was either the obsolete 

curriculum or the dons, mostly die-hard, port-drinking tories," likely 

to stimulate intelligent interest in any subject of an advanced or con

troversial nature.

Such a situation with regard to the calculus explains to some 

extent the character of popular works on Newtonian thought such as those 

of Keill, Desagulier, and Pemberton. The mere fact that there was a good 

deal of confusion over the justification of the calculus, that is, over 

the nature and existence of the infinitesimal, which kept mathematicians 

and metaphysicians wrangling and possibly contributed to the failure of 

the universities to add the calculus to their curricula, should not, 

however, have prevented physicists from making use of a mathematical tool 

that, in any of its forms, obviously worked. One can only conclude that,

57Wordsworth, p. 69.

^̂ Basil Williams, The Whig Supremacv. 171A-1760 (Oxford: At
the Clarendon Press, 1939), p. 135.
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since a fair amount of material on the method of the calculus was 

published after 1693, and since the Newtonian writers examined thus far 

had committed serious conceptual errors that are typical of a finite, 

geometrical approach to mechanics as opposed to one making use of the 

calculus, the Newtonian mechanicians did not really grasp the dependence 

of mechanical theory on mathematical structure. Another way of saying 

the same thing is that there existed a separation, in the minds of most 

English thinkers of the day, between physics, as an empirical discipline, 

and mathematics; between what they believed to be the inductive method of 

science and the deductive method of mathematics. The English, at this 

time, had not yet overcome the Baconian influence toward simple empiri

cism, as a glance at the table of contents of any issue of the Philosoph

ical Transactions in the period will confirm.

Thus, even though there was little chance of any effective use 

of the calculus in popular works on the mechanics due to the problems 

involved in its dissemination, it seems that the absence of the calculus

in these works stems basically from the ignorance of the authors. It

has been pointed out that Newton himself was in a sense responsible for 

this state of affairs. Of the three Newtonian writers mentioned, only 

Pemberton had grasped the mass-weight relationship and, to some extent, 

the notion that the calculus was applicable to mechanical phenomena, but 

he had the benefit of personal instruction by Newton.

The idea that Pemberton's insights were indeed somewhat unique 

for the period and the direct result of Newton's personal influence, can 

be supported by the consideration of a work by Andrew Motte (d. 1730)
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entitled A Treatise of the Mechanical P o w e r s . 9̂ Motte, like Pemberton, 

was a translator of the Principia and so had an exposure to that work of 

the same nature as Pemberton's, except that Motte apparently did not work 

with Newton in the translation. Motte's own book on mechanics, first 

published in 1727 and in a second edition in 1733, unlike Pemberton's 

maintains the same conceptions of momentum, force, and weight as earlier 

writers, and like them exhibits no insight into the relation of the 

calculus to the mechanics.

Motte's work, as can be seen from the full title, was intended 

as lecture material for hearers of some ability in mathematics, that is, 

in geometry. Motte also hoped to reach "those gentlemen who have gone 

through courses of experiments . , and those just entering the study 

of natural philosophy, "as they will find the Laws of Motion, which are 

the foundations of that science, more largely explained than is commonly 

done . . .

The claim that the Laws of Motion were to be more fully 

explained than usual, and in the context of a "geometry lecture," would 

lead one to imagine that Motte intended a truly mathematical presentation 

of the mechanics. Motte, however, was in fact affected by the common 

notion of the separation of mathematical and physical principles even 

though in his definition of the subject of mechanics he seemed to

Andrew Motte, A Treatise of the Mechanical Powers. Wherein the 
Laws of Motion, and the Properties of Those Powers are Explained and 
Demonstrated in an Easy and Familiar Method. Being the Substance of Cer
tain Discourses Delivered at the Geometrv Lecture, at Gresham College 
(2nd ed.; London; Benjamin Motte, 1733).

^^Ibid., pp. [A3r-A3v].
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indicate otherwise. Mechanics, for him, dealt with the various ways in 

which force may be applied to bodies and with the different effects thus 

produced, with regard to velocity, direction, and quantity of motion. 

Further,

. . . this science, being part of what is called the mixed mathe
matics, requires some axioms or general principles, found out by 
certain and indubitable experiment, joined with strict geometrical 
reasoning, whereon to found its conclusions.

Here Motte seems to have grasped the notion that the axioms of a theory 

must be related to a mathematical deductive system, although, as will 

appear shortly, theory itself did not, for him, have the character of 

being the uniquely acceptable explanation of the phenomena within its 

scope. In any case. Motte was unaware that different mathematical de

ductive systems characterize various scientific theories; that is, he 

did not realize that Newtonian mechanics required a mathematical logic 

other than the classical geometry of finite quantities. This becomes 

apparent not only in his explication of the Laws of Motion, but also in 

his application of them to the analysis of machines.

In the Treatise of the Mechanical Powers the First Law of Motion 

was stated in straight Newtonian terms; matter continues at rest or in 

motion until some external cause alters its state. Motte presented this 

as a generalization of common experience, just as had Newton, but went 

on to discuss the impossibility of bodies moving or accelerating them

selves on the basis of the principle of insufficient r e a s o n S u c h  a 

discussion is superfluous, since the First Law is nothing more than a

^^Ibid.. pp. 2-3.

^^Ibid.. pp. 3-5.
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specialization of that principle in the first place, and the fact that 

Motte treated the law in this fashion shows up the way in which the 

empirical and logical elements of theory were related in his mind. The 

empirical elements were assumed to have significance and validity inde

pendently of the logical ones, which merely tended to support them.

The agent or cause producing changes of motion was force, the

real Newtonian meaning of which Motte almost grasped in his statement

of the measures of force.

Now in order to limit and determine the quantity of these forces 
. . . they are expressed either by the velocity they produce in a 
body impelled by them, the weight they are able to sustain or move, 
or by a compound of both together.

Force is also valued by the rectangle or product of these two, 
the velocity and the weight of a moving body . . . multiplied into
each other, which is called the momentum of that body.°^

Here Motte has seen that force, in the Newtonian system, has 

two determinations, weight and quantity of motion produced, but has not 

seen the causal connection between them. Instead, he has lumped them 

together as momentum in what seems to be an illogical fashion, and in 

so doing, has missed the meaning of mass and of the Second Law of Motion.

Motte's statement of the Second Law is that an increase or

decrease of motion in a body is proportional to the force acting on it

and in the direction of that force. The external force acting on the body 

must overcome or combine with an "active" force, the momentum, existing 

in the body, so that both of these forces must have the same nature. 

Assuming that weight, or centripetal force, is the external force

Ibid.. pp. 8-9.

% b i d .. p. 13.
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producing change of momentum, or of "active" force, then weight must 

appear on both sides of the proportionality represented by the Second 

Law. In that case, the law is reduced to being nothing more than an 

identity. As has been pointed out, the only way in which the Second 

Law can be given any content is by means of the calculus and the inde

pendent conceptions of force and matter.

Motte did not see the meaning of Newton's distinction between 

impressed and motive force, which has been shown to be only understandable 

and meaningful in terms of the calculus, and to be based on the idea that 

motive force is a characteristic of space and not of bodies themselves.

The simple geometrical approach that Motte attempted, along with the idea 

that weight is a fundamental property of matter, had led him into real 

confusion with regard to the Second Law.

In spite of the lack of clarity in his exposition of the Laws 

of Motion, Motte did attempt to base his treatment of machines on them.

In the preface to his Treatise of the Mechanical Powers. he wrote of the 

work to follow that "it begins with the Laws of Motion. Not that this 

previous step is absolutely necessary, it being easy to have shown the 

properties of the mechanical powers without it."̂ 5 The Laws of Motion 

were, to Motte, merely "convenient" to the treatment of mechanical powers. 

Thus, although he saw that the action of machines could be explained on 

the basis of the Laws of Motion, he did not feel that they provided the 

only valid explanation. Again the theoretical understanding was merely 

support for the empirically given.

65Ibid.. pp. [A2r-A2v].
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As could be expected, the connection established by Motte between 

the Laws of Motion and the functioning of machines was tenuous at best.

From the Second Law, he deduced that if a force contrary but equal to 

that of a moving body were to act on that body,, then the body would lose 

its motion entirely.This conclusion is equivalent to the Third Law of 

Motion, which is therefore no longer an axiom of the theory, but merely a 

corollary to the Second Law.

Now, since the force of a moving body was compounded of its

velocity and its weight, two bodies, whose velocities were inversely as

their weights, would communicate equal forces to one another and would

come to a halt. Likewise, if two such bodies should simultaneously

strike the ends of a balance, the equilibrium of the balance would not

be destroyed.From this point. Motte made the transition to "virtual"

motions of the weights in place of real velocities, setting up a proof

of the fundamental law of the lever.

Therefore the weight at A which is as 3 tends to go over the space 
. . . 1; at the same time the weight at B which is as 1 tends to 
go over the space ... 3» Now these two tendencies or efforts 
were shown to counterpoise each other; and therefore since the two 
weights tend contrary ways with equal forces, they . , . must 
remain in equilibrium.

From this "proof" of the law of the lever it can be seen in what 

manner Motte conceived the identity of weight and momentum. Their same

ness depends on the notion of a "virtual" velocity, that is, a velocity 

that is neither finite nor exactly zero, but is present only as a tendency.

^̂ Ibid.. p. 14. 

'̂̂ Ibid.. pp. 42-43. 
^^Ibid.. pp. 56-57.
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However, from his own formulation of momentum, as the product of weight 

and velocity, it follows that it would require an infinitely large static 

weight to counterbalance the force of any body with a finite motion. 

Therefore, Motte's treatment of the mechanical powers, in so far as it 

was supposed to be based on the Laws of Motion, was simply wrong, which 

probably would not have bothered him since such treatment was not really 

necessary to the description of the mechanical powers anyway.

A second edition of the book was published after Motte's death 

in 1733, almost at the end of the period under consideration, which 

indicates that the work was at least not universally recognized, at that 

time, as being incorrect and a basic perversion of Newton's theory of 

mechanics. One thing can be said for the Treatise of Mechanical Powers, 

however; even though fundamentally in error, it made an attempt to 

establish the relation between force as weight and force as momentum in 

terms of something approaching an infinitesimal increment of velocity.

The proper relationship between the two aspects of force did appear in 

another Newtonian work which appeared in 1730; A Demonstration of Some of 

the Principal Sections of Sir Isaac Newton's Philosophy, by John Clarke 

(1682-1757).69

Clarke's work was, to a large degree nothing more than a 

paraphrase of parts of the Principia and made no attempt to apply Newton's 

theory of mechanics to any problems not treated in the Principia itself.

69john Clarke, A Demonstration of Some of the Principal Sections 
of Sir Isaac Newton's Principles of Natural Philosophy in which his 
Peculiar Method of Treating that Useful Subject is Explained, and Applied 
to Some of the Chief Phenomena of the System of the World (London: James
and John Knapton, 1730).
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However, Clarke did elaborate on Newton's work to some extent and gave due

emphasis to the mathematical structure of the key concepts of mechanics,

that is, to the relation of the methods of the calculus to the concept of 
70force. For instance, in his discussion of Lemma X of Book I of the

Principia. which states that the spaces described by a body acted upon by

finite, variable or constant, forces are, at the start of the motion, to

each other as the squares of the times, Clarke stated clearly that the

action of force was the generation of velocity in time. In each time
71interval the force adds an increment of velocity.

Force was thus associated with a velocity of increase of a

quantity— velocity— and velocity of increase was a fundamental notion of

all of the methods of the calculus. In this particular work, Clarke used

the method of first and last ratios, as had Newton in the Principia: these

ratios were of the velocities with which quantities begin to be generated

or with which they decrease in the instant just before disappearing 
72altogether.

Clarke also added some elaboration of the force concept in its

relation to momentum in his treatment of gravitational force.

The force of gravity therefore is quite a different kind from the 
projectile force, and cannot strictly be compared with it, but 
only by a compound proportion made up of a finite and an infinite 
proportion . . .

7°Ibid.. pp. 71-76. 

71lbid.. pp. 75-76. 

72lbid.. pp. 71-72. 

'̂-̂Ibid.. pp. 125-126.
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This statement represents an addition to what is contained in 

the Principia and seems designed to combat the erroneous identification 

of weight and momentum such as has been seen in Motte's work. The iden

tification of weight and momentum was possible only if weight were

considered to be a fundamental property of matter in place of mass, and 

Clarke, in his discussion of force, addressed himself also to the correc

tion of this misconception. The centripetal forces— weight— were not to 

be considered as attractions;

, , . physically speaking, they may more truly be called impulses; 
for it is not probable that there is any natural virtue or power in 
the common center of forces, but that the revolving bodies are some
way impelled towards that center . . .

Thus, although Clarke was in no sense an original thinker 

capable of significant extension of Newtonian mechanics, he was at least 

a fairly faithful copyist who placed an emphasis on those key concepts 

that had been distorted by other Newtonian popularizers. His work repre

sents the first popular work on Newtonian mechanics by an English author 

that did not contain some important misconceptions, and to this extent 

it represents a significant landmark in the assimilation of Newtonian 

mechanics in England.

The basic misconceptions in the mechanics of the Newtonians— the 

failure to recognize its dependence on infinitesimals and the imputation 

of the gravitational force to matter itself— that were corrected in 

Clarke's work had, at the time of publication of his Demonstration, long 

been recognized as significant errors and attacked by the philosopher 

George Berkeley (1685-1753). While Berkeley is by no means to be thought

^̂ Ibid.. p. 262.
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of as having been primarily interested in the science of mechanics, still,

in the development of his philosophy of "immaterialism" the prevalent ideas

on the nature of mechanical phenomena were of profound importance. He

therefore, of necessity, took a position with regard to the true nature

of matter and motion; one that, as will be pointed out, was in some

respects closer to Newton's than that of Newton's professed followers.

Little is known of Berkeley's childhood and youth except that

his family was comfortably well off and that he received a good education.

He was first sent to Kilkenny school and then, in 1700, to Trinity College,

Dublin. At the time, Trinity College was more progressive than either

Oxford or Cambridge so that Berkeley could receive a thorough grounding

in contemporary mathematics and physical science, particularly in Newton's 
73work.

Berkeley was among the most precocious of the great philosophers,

and the philosophical position of his mature years was already largely

elaborated in the notebooks written while a fellow at Trinity. His major

work. The Principles of Human Knowledge. published in Dublin in May of

1710, already contained the essence of a philosophy which was never ser-
7/

iously modified throughout his life. That philosophy did, however, 

require amplification in various directions in order to deal with specific 

problems, and, in this sense, Berkeley's De Motu. published in 1721, and 

his Analyst, published in 173A, are of special significance for this study.

73G. J. Warnock, "Introduction," George Berkeley, The Principles 
of Human Knowledge and Three Dialogues between Hvlas and Philonous. ed.
G, J. Warnock (Cleveland, Ohio and New York: Meridian Books, 1963),
p. 7.

74lbid.. pp. 7-8.
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The occasion for the writing of the De Motu was apparently the 

prize question of the Paris Academy of Sciences for 1721 as to the cause 

of motion. ' Berkeley, at that time, was returning home from a continen

tal tour, and during a stay at Lyons he drew up the tract and sent it to 

the Paris Academy. He published it in 1721 in England.75

The De Motu could not be considered a "scientific" work in the 

usual sense of the word; it is philosophical in character. That is, it 

is an application of Berkeley's general philosophy to the specific ques

tion of the cause of motion. Nonetheless, it does contain Berkeley's 

criticism of Newtonian mechanical thought and presages his later attack 

on the calculus of fluxions.

Since the De Motu is an application of a general philosophy to 

a specific area of thought, it is necessary to briefly outline the main 

aspects of the general philosophical position. It was one of Berkeley's 

main purposes to eliminate error and confusion by making a careful 

inquiry into the basic elements upon which all knowledge is based, 

especially scientific knowledge. This purpose is clearly revealed by 

the full title of his major work: A Treatise Concerning the Principles

of Human Knowledge. Part I, Wherein the Chief Causes of Error and Diffi

culty in the Sciences, with the Grounds of Skepticism. Atheism, and 

Irréligion Are Inquired Into.̂  ̂ The cause of all these things, according

75a , a . Luce, "Editor's Introduction," The Works of George 
Berkeley. Bishop of Clovne. IV, eds. A. A. Luce and T. E. Jessop (London, 
Edinburgh, Paris, Melbourne, Toronto, and New York: Thomas Nelson and
Sons Ltd., 1951), p. 3.

^^George Berkeley, Berkeley's Philosophical Writings, ed,
David M. Armstrong (New York: Collier Books, 1965), p. A2. All cita
tions to Berkeley's works will be given in Berkeley's own section numbers.
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to Berkeley, was generally thought to be "the obscurity of things, or
77the natural weakness and imperfection of our understandings." However, 

that this was not really the case, but that the trouble lay with man's 

misuse of his own faculties and with difficulties of his own production 

was Berkeley's contention. "We have raised a dust, and then complain we 

cannot see."

In order to see how Berkeley cleared the dust obscuring mechanics 

and mathematics, one must turn first to his metaphysics. The main meta

physical doctrine in both of these areas, as has already been emphasized, 

is that of causality. The understanding of Berkeley's view of causality 

is, however, dependent on his doctrines as to the nature and existence of 

sensible objects and the minds which perceive them.

Minds, according to Berkeley, were active substantial beings 

capable of acting as causes, whereas sense impressions— which correspond 

to what are normally considered to be sensible objects— were mind-dependent 

and passive. As such, sense impressions— ideas of sense— could neither 

be causes nor represent causes. The essential passivity of "things" thus 

rests on Berkeley's refusal to consider them as actually existing inde

pendently of mind.

That neither our thoughts, nor passions, nor ideas formed by the 
imagination exist without the mind is what everybody will allow.
And to me it seems no less evident that the various sensations or 
ideas imprinted on the Sense, however blended or combined together

Citations to the Principles of Human Knowledge and the De Motu are from 
the Armstrong edition, those to the Analyst from the Luce and Jessop 
edition.

77Berkeley, Principles of Human Knowledge. "Introduction," 2. 
^̂ Ibid.. 3.
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(that is, whatever objects they compose), cannot exist otherwise 
than in a mind perceiving them.

For what are . . objects but things we perceive by sense?
and what do we perceive besides our own ideas or sensations? and 
is it not plainly repugnant that any one of these, or any combina
tion of them, should exist unperceived.

What we commonly call bodies, or objects, are no more than various combina

tions of sensible qualities, and hence so are the changes and motions 

occurring in them which we normally associate with an active cause.

Berkeley did not deny the existence of active causes, but he 

argued that, because causes are active, they can only be minds or spirits; 

the sensible ideas that constitute physical bodies are wholly passive.

Thus there is in Berkeley's thought a duality that, in a sense, is like 

the Cartesian duality of mind and matter. Berkeley, however, explained 

the dualism by designating mind as the cause of sense Impressions, or 

"matter."

We perceive a continual succession of ideas, some are anew excited, 
others are changed or totally disappear. There is therefore, some 
cause of these ideas, whereon they depend, and which produces and 
changes them. That this cause cannot be any quality or idea or 
combination of ideas, is clear from the preceding section. It must 
therefore be a substance; but it has been shown that there is no 
corporeal or material substance; it remains therefore that the 
cause of ideas is an incorporeal active substance or spirit.

Each man is an active, thinking substance, a cause. Man can,

through an act of the will, cause an idea to rise up in his imagination.

But it is different with sense impressions, or sense ideas.

Whatever power I may have over my own thoughts, I find the ideas 
actually perceived by sense have not a like dependence on my will.
When in broad daylight I open ray eyes, it is not in my power to

'̂ B̂erkeley, Principles of Human Knowledge. 3-4°

^°Ibid., 26.



113

choose whether I shall see or no, or to determine what particular 
objects shall present themselves to my view: and so likewise as to
the hearing and other senses; the ideas imprinted on them are not 
creatures of my will. There is therefore some other Will or Spirit 
that produces them.°l

It follows directly that the "other Will," or God, is the only cause

operating in the "world;" that is, God is the cause of the motions and

changes that we perceive.

In the assertion that God is the cause of the motions that take 

place in the sensible world, Berkeley's thought resembles that of Newton. 

Indeed both thinkers arrived at this conclusion by drawing the logical 

consequences inherent in the idea that matter is basically passive and 

inert. The difference in their thought is of course that Newton con

ceived of matter as independently existent and Berkeley made it dependent 

on God. Another similarity between the two is that they both knew that 

only effects are perceived by sense and that causes are inferred by 

reason. Since all causes were ultimately traceable to God, the causal 

structure of the natural world, natural law, which is the object of 

scientific investigation, was basically the set of rules by which God 

chooses to act. This idea, however, had different implications in the 

systems of Newton and Berkeley. As has been shown, the Newtonians 

exhibited a strong tendency to regard the theoretical terms of Newton's 

mechanics as representing real entities; invisible but material agents 

which produced observable effects in a unique and deterministic fashion. 

Thus natural law was thought to represent the absolute truth, right down 

to the finest detail.

^^Ibid.. 29.



114
For Berkeley, the character of natural law was significantly

different. Laws of nature are extracted from experience and

. . . are by men applied, as well to the framing artificial things 
for the use and ornament of life as to the explaining the various 
phenomena. Which explication consists only in showing the confor
mity any particular phenomenon hath to the general laws of nature, 
or, which is the same thing, in discovering the uniformity there is 
in the production of natural effects. . . c

Implied in this idea of scientific explanation is the notion 

that all of the theoretical terms are mere rational constructs having no 

necessary connection with any absolute reality. It was precisely this 

difference in the conception of scientific explanation that led Berkeley 

to attack the science of his day as false and demoralizing. Nonetheless, 

Berkeley held that theoretical treatment of nature does satisfy man's 

craving for knowledge, that is, for an understanding of the principles 

describing the uniformities in the workings of nature. This was tanta

mount to seeing the action of God rather than knowing the actual mechanism 

by which He works, which is the next thing to dispensing with God alto

gether.

The Newtonians, by Berkeley's time had already eliminated God 

from the functioning of nature by simply attributing gravitational force 

to bodies so that Berkeley, in attacking them could claim alliance with 

the great Sir Isaac. In the De Motu Berkeley wrote that "Newton every

where frankly intimates that not only did motion originate from God, but
8athat still the mundane system is moved by the same actus." Thus, as a

Ĝ ibid.. 62.

Ĝ lbid.. 105.

^^Berkeley, De Motu. 32.
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sort of appeal to universally recognized authority, Berkeley placed

emphasis on the similarity of his and Newton’s ideas in his attempt to

destroy the then prevalent notion of the new physics as ultimate truth,

while preserving it as a research tool.

Whereas the new philosophy, presuming on the name of mathematical 
physics, had subverted common-sense, destroyed the cosmos, called 
all familiar things in doubt; Berkeley, equally armed with the 
name of ma.thematical physics, reversed all this. He read man back 
into the focal point of nature; he dispelled the phantom ’matter’ 
of the physicists. ... At the same time, he was fully alive to 
the potentialities of the new science as a discipline, as a spear
head for the exploration of Nature in detail, and as a fertile source 
of inspiration for technical advance. ^

In order to accomplish this aim, Berkeley had to discredit the

idea that theoretical terms like force, mass, etc., used in Newtonian

mechanics represented physical reality. In particular, it was necessary

to show that an active principle like force could never be associated

with matter as one of its properties. Force, according to Berkeley, was

an occult quality of which the "symptons and measures" were commonly held

to be animal effort and corporeal motionThese "measures" of force

correspond to those set up by Newton, but whereas Newton had linked them

in a cause-effect relationship, Berkeley did not; they were both occult,
8*7and "what is itself occult explains nothing."

It then followed that if such terms are used to signify real 

entities abstracted from sense perceptions they would breed error and 

confusion. From this source would arise absurdities like the statement

W. R, Ardley, Berkeley's Philosophy of Nature (Bulletin No. 
63, Philosophy Series No. 3; University of Auckland, 1962), p. 10-

^̂ Berkeley, De Motu. 5,

^̂ Ibid.. 6.
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88that "the force of percussion, however small, is infinitely great."

According to Berkeley, this statement supposes that gravity is a real

quality of bodies, different from all others, and that it is distinct

from motion. But a very small percussion produces a greater effect than

the greatest gravitational force without motion, from which it follows

that the force of percussion exceeds the force of gravity by an infinite
89ratio, or is infinitely great.

This is an absurdity since no force makes itself known except 

through action which is inseparable from motion. Thus the so-called 

"dead force" of gravitation is really nothing at all. It is to the force 

of percussion as a point is to a line and not as a part to a whole.

In this criticism, Berkeley was ridiculing the notion that 

weight, or gravitation, or "dead force" bears an infinitesimal relation

ship to the force of a moving body. If nothing else, his criticism shows 

that Berkeley had grasped the significance of the infinitesimal relation

ship between weight and momentum, which, as has been shown, is the basic 

relationship of Newton's mechanics and the point that most clearly 

exhibits its dependence on the calculus. In the same argument Berkeley 

also attacked a basic error of the Newtonians, that the force of gravity 

is a real property of bodies. Further, he suggested a causal connection 

between the notion of the reality of the gravitational force in bodies 

and the idea of the infinitesimal relationship of force to momentum.

^Ibid.. 9.

'̂̂ Ibid., 9-10. 

9Qjbid.. 11-14.
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This connection, however, was not the correct one, for the attribution 

of gravitational force to bodies tended rather to obscure the infini

tesimal character of the weight-momentum relationship.

All his objections to the new physics were summarized by 

Berkeley in three rules: "(l) to distinguish mathematical hypotheses

from the natures of things; (2) to beware of abstractions; (3) to con

sider motion as being something sensible, or at least imaginable, and to
91be content with relative measures." The adherence to these rules would 

leave the theoretical structure of mechanics untouched and "the study of 

motion will be freed from a thousand minutiae, subtleties, and abstract 

ideas.

Berkeley had thus, in his attack on Newtonian physics, done a

possible service to that science in pointing out the proper understanding

of, or at least calling attention to, some of the basic ideas of Newton's

theory that had been lost on the Newtonians. A similar service with

regard to the calculus of fluxions was performed by Berkeley with the

publication of the Analyst in 1734.

The motives behind the production of this work were similar to

those back of the De Motu. and can, as with the De Motu. be read from the

subtitle of the work: "A Discourse Addressed to an Infidel Mathematician,

Wherein it is examined whether the object, principles, and inferences of

the modern Analysis are more distinctly conceived, or more evidently
93deduced, than religious Mysteries and points of Faith." The actual

91lbid.■ 66.
92lbid.
93Berkeley, The Works of George Berkeley. Bishop of Clovne. 53.
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events leading up to the writing of the Analyst have been summarized by- 

Eric Temple Bell.

It seems that Newton's friend Hailey, posing as a great mathematician, 
had proved conclusively to some deluded wretch the inconceivability 
of the dogmas of Christian theology. The converted one, a friend of 
Berkeley's, refused the letter's spiritual offices on his deathbed. 
Profoundly shocked by the soul-destroying savagery of the 'modern 
analysis', and mindful of his education in semi-civilized Rhode 
Island, the good bishop went after the scalp of fluxions. 4̂

The attack on fluxions was a continuation or an extension of the 

attack on the mechanics both in that Berkeley saw the integral relation

ship between the two and because his aims and methods were the same in 

both cases. As to the relationship between the calculus of fluxions and 

the mechanics, Berkeley wrote that

. . . the Method of Fluxions is the general key by help whereof the 
modern mathematicians unlock the secrets of Geometry, and conse
quently of Nature. And, as it is that which hath enabled them so 
remarkably to outgo the ancients in discovering theorems and solv
ing problems, the exercise and application thereof is become the 
main if not the sole employment of all those who in this age pass 
for profound geometers.

With regard to the method of attack, Berkeley again struck at

the logical foundations of the theory in question, asking as to the con-

ceivability and reality of the theoretical terms, in this case the

fluxions. After developing the concept of the fluxion in terms of the

velocity of generation of a flowing quantity, Berkeley went on to the

description of the relation between the fluxion and any finite quantity,

a procedure reminiscent of his treatment of force in the De Motu.

The fluxions are celerities, not proportional to the finite 
increments, though ever so small; but only to the moments or

%Bell, p. 287.

^^Berkeley, The Analvst. 3.
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nascent increments. . . . And of the aforesaid fluxions there be 
other fluxions, which fluxions of fluxions are called second 
fluxions. And the fluxions of these second fluxions are called 
third fluxions: and so on . . .ad infinitum. . . . Certainly in
any sense, a second or third fluxion seems an obscure mystery.
The incipient celerity of an incipient celerity, the nascent argu
ment of a nascent argument, i.e., of a thing which hath no
magnitude.96

More important perhaps than this type of criticism of the

calculus was a statement that has become known as Berkeley's Lemma:

If with a view to demonstrate any proposition, a certain point is 
supposed, by virtue of which certain other points are attained; 
and such supposed point be it self afterwards destroyed or rejected 
by contrary supposition; in that case all other points attained 
thereby, and consequent thereupon, must also be destroyed and 
rejected, so as from thence forward to be no more supposed or
applied in the demonstration.97

This applies to the methods of the calculus presented in the De Analvsi 

and the Methodus fluxionum. In each of these works Newton had assumed an 

infinitesimal increment, o, at the beginning of the demonstration and 

then expanded the quantity (x + o) into the equation. Then, in order to 

obtain a result, the increment, o, was either rejected, as in the De 

Analvsi. or allowed to vanish, as in the method of fluxions. But o was 

originally assumed to differ from zero so that setting it equal to zero 

later in the demonstration is contrary to the original assumption and 

invalidates the demonstration.

Berkeley's attack on the calculus was sufficiently powerful to 

draw fire from Newton's defenders. The resistance to his ideas led 

Berkeley to produce fresh attacks on the calculus which were, however, 

largely reiterations of the conclusions of the Analvst. All of this was

9&Ibid.. 4.
^^Ibid.. 12.
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in the context of the controversy over infinitesimals discussed earlier, 

which, by and large, was completely separated from mechanical, physical 

thought. Berkeley, however, as has been shown, did relate the calculus 

to mechanics, perhaps because from his point of view all theoretical 

knowledge of causes was of necessity hypothetical and mathematical. In 

any case, the relatedness of mechanics and the new analysis was further 

emphasized in the "Queries" at the end of the Analyst.

In Query 9, Berkeley asked if the doctrine of forces does not 

illustrate the involvement of mathematicians in disputes and paradoxes 

concerning things that cannot be conceived. Query 28 asks if the shift

ing of hypotheses— Berkeley's Lemma— is not a sophism that infects both 

mechanical philosophy and abstract geometry. In Query 30, it is asked 

whether motion can be conceived in a point of space. Query 48 asks if 

there may not be sound as well as unsound metaphysics and logic and 

whether modern analytics is not related to one of these. Finally,

Query 56 asks

. . . whether the corpuscularian, experimental, and mathematical 
philosophy, so much cultivated in the last age, hath not too much 
engrossed man's attention; some part whereof it might have usefully 
employed.98

Queries 48 and 56 indicate Berkeley's realization of the 
dependence of Newtonian mechanics on a specific logic and a specific 

metaphysic, and it is evident from the foregoing that his attacks on the 

mechanics and on the calculus arose out of his own metaphysics and logic. 

It is of some significance that Berkeley's metaphysical position was not 

a particularly startling one. Its core was contained in an essay by

9Glbid.. 50.
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Michel Eyquem de Montaigne (1533-1592) entitled "Apology for Raymond

Sebond." There he wrote that

. . .  to judge the appearances that we receive of objects, we should
need a judicatory instrument; to verify this instrument, we need 
demonstration; to verify the demonstration, an instrument: there we
are in a circle.

Since the senses cannot decide our dispute, being themselves 
full of uncertainty, it must be reason. No reason will be estab
lished without another reason: there we go retreating back to
infinity.

Our imagination is not itself applied to foreign objects, but 
is conceived through the mediation of the senses; and the senses do 
not comprehend the foreign object, but only their own impressions.
And thus the image and semblance we form is not of the object, but 
only of the impression and effect made on the sense; which impres
sion and the object are different things. Wherefore whoever judges 
by appearances judges by something different from the object.99

Thus the thought of Berkeley can be seen as an outgrowth of a 

complex of ideas of considerable age. Furthermore, it had a great inner 

consistency and showed a mastery of logical and mathematical techniques 

that commanded respect. Berkeley himself, as bishop of Cloyne (1734),

must have been a respected figure. All of this adds up to the fact that

Berkeley's anti-Newtonianism could gain a hearing and command attention, 

whether or not it exerted any great influence on the course of English 

thought in mechanics. Such, however, was not the case with a contemporary 

of Berkeley's, Robert Greene (l678-1730), who is also known as an anti- 

Newtonian .

Greene's anti-Newtonianism, unlike Berkeley's, met with derision 

and contempt. He had difficulty in getting his work published, and one 

almost gets the feeling that he experienced something like persecution

99Michel Eyquem de Montaigne, "Apology for Raymond Sebond," 
Selections from the Essays of Michel Evouem de Montaigne, trans. & ed. 
Donald M. Frame (New York: Appleton-Century-Crofts, 1948), pp. 60-61.
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for his ideas. In any case, Green's criticisms of Newton and the 

Newtonians, his own ideas on the nature of matter, and the resulting 

theories of mechanics are interesting in their own right. Greene's 

criticism of Newton started in the same place as Berkeley's— with 

Newton's notion of a homogeneous, passive matter, whose motions in 

absolute space and time form the basis of the phenomenal world. From 

this point their thought took different paths in overcoming the contra

dictions that seemed to arise from that position. Rather than assume 

with Berkeley that matter and force were not physical realities at all, 

Greene assumed that matter was identical with force, or, more accurately, 

with two forces which he called the "expansive" and "contractive" forces.

This placed Greene in a position much different from Berkeley's, 

for while Berkeley could still accept the whole Newtonian scheme as 

useful and meaningful in a limited sense, it was incumbent on Greene to 

develop a counter theory, one that could not "stand on the shoulders of 

giants" as Newton's theory did. Greene was not the heir to an estab

lished tradition, even though some of his ideas bear a certain resemblance 

to those of Leibniz, In effect he had to start from the beginning in the 

development of a comprehensive theory of mechanics, which, by the fact of 

its radical character, was doomed to failure.

The magnitude of such an undertaking is truly staggering and it 

should not be surprising if the final result turns out to be less than 

perfect in the sense of being free of inner contradictions and capable 

of accurately treating all known phenomena. Moreover, men who are already 

committed to one theory or doctrine do not take such things into consid

eration in their view of an opposing theory, especially when it is proposed
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by a man of little or no prior scientific or social distinctiono 

Rather, they will simply discount the author as a crack-pot and assign 

his ideas to oblivion, no matter what their merit.

Such was the case with Robert Greene, and for this reason his 

story sheds a new light on the process of assimilation of Newtonian 

mechanicso Thus far it has appeared that the Newtonians, although they 

espoused the new mechanics, did not understand it in any depth. Through 

the career of Robert Greene one can gain some insight into the reasons 

behind that espousal, which, if not based on understanding and convic

tion, must have had strong extra-scientific elements.

Comparatively little has been written about Robert Greene except 

what has been excited by his eccentricities, since his thought ran counter 

to the main intellectual currents of his time. The few available details 

of his life shed no light on his development as an independent thinker.

He was the son of a mercer of Tamworth in Staffordshire, who died when 

Robert was quite young. The responsibility for the boy's education was 

taken over by an uncle, John Pretty, who eventually sent the boy to Clare 

Hall, Cambridge. There Greene earned the B.A. in l699 and M.A. in 1703. 

Subsequently, he became a fellow and tutor of his college and entered the 

ministry of the Anglican Church. In 1727 Greene served as proctor at 

Cambridge and in 1728 proceeded to the doctorate. He died in 1730 at 

Birmingham.

Beyond this bare outline of Greene's activities almost the only 

information about him comes from his own writings, particularly from the

100"Robert Greene," D.N.B.. VIII.
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prefaces to his two treatises on natural philosophy and his will. The

first of the treatises on natural philosophy appeared in 1712 and was

entitled The Principles of Natural Philosophy in Which Is Shown the

Insufficiency of the Present System to Give Us Any Just Account of That 
101Science. In the same year, Greene published a work on solid geometry

which occasioned some speculation as to his sanity. The historian Robert

Sanderson (l660-174l) wrote to William Jones (1675-1749), a friend of

Newton and Hailey and vice-president of the Royal Society, that "the

gentleman has been reputed mad for these two years last past, but never
102gave the world such ample testimony of it before."

Augustus De Morgan (l806-l87l) said of this sort of attitude

that

. . . it is the weakness of the orthodox follower of any received 
system to impute insanity to the solitary dissentient: which is
voted (in due time) a very wrong opinion about Copernicus, Columbus, 
or Galileo, but quite right about Robert Greene. If misconceptions, 
acted upon by too much self-opinion, be sufficient evidence of mad
ness, it would be a curious inquiry what is the least percentage of 
the reigning school which has been insane at any one time.1̂ 3

If De Morgan's judgment of Sanderson's motives in imputing 

madness to Greene are correct, then Sanderson's opinion would have been 

strongly influenced by the remarks Greene made about Newton in the Prin

ciples of Natural Philosophy, the avowed purpose of which was to "evince

Robert Greene, The Principles of Natural Philosophy in Which 
Is Shown the Insufficiency of the Present Systems to Give Us Any Just 
Account of That Science and the Necessity There Is of Some New Prin
ciples in Order to Furnish Us with a True and Real Knowledge of Nature 
(Cambridge: Edm. Jeffery, 1712).

102Augustus De Morgan, A Budget of Paradoxes (2nd ed.; New 
York: Dover Publications, Inc., 1954), I, p. 135.

lO^Ibid.. p. 136.
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what little satisfaction we are to expect from reason, and even from 

those who have entered into the depths of it with the utmost genius and 

penetration.

After this indirect assertion that even Newton could err,

Greene became a bit more blunt. He wrote that there were basically two 

kinds of men who espoused the new philosophy. The first of these, 

"instead of pursuing truth without any bias, reason with inveteracy and 

design; ..." men such as Hobbes, Locke,- and Spinoza. The second 

kind consisted of men like Newton, Hailey, Raphson, etc., for whom 

Greene professed the highest veneration. However, Greene felt himself 

"obligated to depart from their sentiments and apprehensions of nature 

in obedience to a just and . . . impartial inquiry into it. . . .

The first group had been willfully inimical to religion and

virtue, and therefore had fallen into error. But that

. . . the greatest and most exalted geniuses of their times should 
fall in with the same notions can no otherways be explained, than 
from their being unwarily led into them by the authority and impres
sions of those who writ before them.^06

This must indeed have sounded like the babbling of a lunatic to 

Newton's friends and followers, for not only was Greene imputing error 

to Newton, but to the whole mechanistic tradition reaching back to 

Galileo. Only from the point of view of quite recent times does Greene's 

objection to mechanistic theory make a great deal of sense. Greene was, 

however, aware that he had taken on a huge task, one to which he most

^̂ "̂Greene, Principles of Natural Philosophy, p. *2v.
105Ibid.. pp. a2r-a3v.

°̂̂ Ibid.
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probably could not do justice.

And as to any errors or mistakes, in respect of reason, it cannot 
be expected we should be entirely free from them, who are obliged 
to proceed in a different method from that which any philosophers 
have done, and therefore are deprived of those assistances from
others, which might be some kind of direction to us in our■ • 107inquiries , , .

Greene also seemed to feel that his work would have more to 

overcome than merely logical and scientific criticism; it would also have 

to overcome certain prejudices of a religious and political nature. An 

indication of this was given in the dedication of the Principles of 

Natural Philosophy, which was to Robert Harley, Earl of Oxford, who led • 

the Tory government under Queen Anne (1702-1714.) from 1710 to 1714-.

England was at the time engaged in the War of the Spanish 

Succession which the Whig faction, under the leadership of Godolphin and 

Marlborough, had prosecuted with vigor. This war, along with all the 

others that had been fought against the France of Louis XIV, produced a 

considerable amount of aggressive national feeling, which, because the 

Whigs were, generally speaking, "Latitudinarians" in a religious sense, 

came to be associated with that religious position. In the period just 

prior to Harley's rise to power, the Whigs held most of the bishoprics 

while the High Churchmen, who were almost exclusively Tory, had an over

whelming predominance in the church as a whole. Thus, when in 1709 

Marlborough requested of Anne that she make him Captain-General for life, 

many Englishmen felt that he was a Cromwell in disguise and that the 

established church as well as the crown was in danger. This feeling, in 

combination with the rising costs of the war and the slaughter at the

107T... . ,Ibid., p. b4r.
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battle of MaIplaquet, turned the tide of popular opinion against the 

Whigs.

Parliament was dissolved in 1710, and at the general election a

strong church and Tory majority was returned, partially through the

efforts of the Established clergy. Through their sermons, the clergy-
108men inflamed their parishoners against the Whigs. It was on this wave 

that Harley rode to power, and it was against this background that Greene 

saw Harley as a God-send, both to England and to the cause of true reli

gion, both of which Greene wished to support with his own work. In his 

dedication Greene wrote that he could not but "believe . . . [Harleyj to 

be raised by the providence of almighty God for the support and patronage 

of our most holy faith, against the insults of the several atheists, 

deists, Socinians, and . . . Arrians of our age."^^^

Greene later had reason to regret this support of Harley and 

Toryism, for by the time of the appearance of his second work on natural 

philosophy. The Principles of the Philosophy of the Expansive and Con

tractive Forces. i n  1727, the Whigs were long since back in power and 

the Tories were partially discredited in the eyes of many Englishmen 

because of efforts made on behalf of the Stuart pretender. Since the 

universities of Oxford and Cambridge were heavily church oriented, it was

^^^The Age of Louis XIV. Vol. V of The Cambridge Modern History, 
ed. A. W. Ward, G. W. Prothero, and Stanley Leathes (New York: The
Macmillan Co., 1908), pp. 4-66-469.

*̂̂ Ĝreene, Principles of Natural Philosophy, p. [ .

^̂ R̂obert Greene, The Principles of the Philosophy of the Ex
pansive and Contractive Forces, or an Inquiry into the Principles of the 
Modern Philosophy. That Is. into the Several Chief Rational Sciences. 
Which Are Extant (Cambridge: Cornelius Crownfield et al.. 1727).
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natural that they also be Tory as regards their political sympathies. 

Indeed, there was Jacobite activity at both universities during the reign 

of George I (1714-1727).

For instance, on May 28, 1715, George I's first birthday since 

his accession, some bell's were rung at Oxford in celebration. This small 

show of loyalty to the Hanoverian so infuriated the mob that they tore 

down a good part of the Presbyterian meeting h o u s e . T h i s  incident, 

which clearly shows the association of Whig politics and liberal reli

gion, appeared originally in the writings of Thomas Hearne (1678-1735),
112a Tory and an anti-Newtonian.

There is an account of some further events of May 28, 1715,

stemming from Nicholas Mhurst (1702-1742), an ardent Whig, in which the

Oxonians' actions appear even more treasonable. A group of Whigs, the

Constitution Club, had met that evening to celebrate their monarch's

birthday and had planned a bonfire for the occasion.

But before the bonfire could be lighted, a very numerous mob, which 
had been hired for that purpose, tore to pieces the faggots and then 
assaulted the room where the club was sitting with brickbats and 
stones. All the time the mob was thus employed, the disaffected 
scholars, who had crowded the houses and streets near the tavern, 
continued throwing up their caps and scattering money amongst the 
rabble and crying out, 'Down with the Constitutioners ; down with 
the Whigs; no G e; Ja— s for ever. T~)

This account was printed in Amhurst's periodical, the Terrae- 

Filius: Or, the Secret History of the University of Oxford in Several

^^^Christopher Wordsworth, Social Life at the English Univer
sities in the Eighteenth Century (Cambridge: Deighton, Bell and Co.,
1874), p. 41.

112Wordsworth, Scholae Academicae, p. 71.
113Wordsworth, Social Life at the English Universities, p. 43»
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Essays. The Terrae-Filius had a short existence, from January to July of

1721, but during that period it sustained itself mainly through

attacks on Oxford. Amhurst, writing in the Terrae-Filius.

, . . claimed that he need 'not use any argument or produce any 
vouchers to prove' the existence of treason in Oxford, attacked the 
program of studies followed in the university, though admitting 
'that Locke, Clarke, and Sir Isaac Newton begin to find countenance 
in the schools and that Aristotle seems to totter on his ancient 
throne,' adduced the usual charges of perjury, and compared the 
Oxford heads with the directors of the South Sea Company, whose 
fundamental crime had been to betray the trust reposed in them by 
■ the government and nation.

Here the failure to teach Newtonian doctrines was virtually equated 

with treason, betrayal of the public trust. It appears that religion, 

politics, and science had become intermingled and that science had there

fore picked up emotional overtones in the England of the 172C's, or at the 

very least in the mind of Nicholas Amhurst. Amhurst did apparently bear 

a special grudge against Cxford— he had been expelled for dissolute 

behavior— and his attacks may have been partly exaggerations and inven

tions, but they did achieve a popularity sufficient to warrant the repub

lication of the Terrae-Filius in two volumes in 1727.^^^

Greene was sensitive to the emotional attachment to Newtonian 

mechanics and to the fact that it drew its strength from the force of 

nationalism. Therefore, in the preface to The Principles of the Philos

ophy of the Expansive and Contractive Forces, he attempted to divert this 

force to the support of his own ideas. He wrote;

^%bid.. p. 612.
R. Ward, Georgian Oxford. University Politics in the l8th 

Century (Cxford: At the Clarendon Press, 1958), p. 79.

^^^Wordsworth, Social Life at the English Universities, p. 612.
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I cannot here but aquaint the world that the present philosophers 
derive all their notions of nature from Italy and Galileus, or 
from Descartes and France, excepting what Kepler, a German, has 
done in respect of those sciences, and from whom Sir Isaac Newton 
is said to have taken his principle of gravitation, and who is 
esteemed to have been the most learned and sagacious man of his 
age; but in all other respects, our philosophy, as it is now received
and embraced, is the product of popish countries. . . .

All therefore, which I design and intend is to propose a 
philosophy which is truly English, a Gantebridgian, and Clarensian 
one, as it was born and educated and studied in those places. . . . '

Greene's attempt at swinging public sentiment to his support by

claiming to be the only really English philosopher and emphasizing the 

common foe of all the English religious factions was of course hopeless, 

and, if he was not mad before the publication of his magnum opus, its 

failure to make any impact may have deranged him slightly. The will that 

he left behind at his death in 1730, by its strange and pathetic charac

ter, certainly indicates a state of mind other than normal.

The main provisions of the will are all concerned with placing

Robert Greene before the public eye. This goal is pursued in almost every

conceivable fashion.

Item, this frail and perishing body, which now continually eloggs 
the life and activity of the mind, weak and infirm at the best in its 
constitution, thin and consumptive in its frame and complection, and 
continually liable to rheums, catarrhs, and defluxions, I give and 
bequeath to the anatomist and physicians for the instruction and 
information of others . , . and if any observations occurr which may 
be of advantage to the world . . . it is my will and pleasure, that 
they should be communicated to it in the Philosophical Transactions 
or any other way the most extensive . , . .̂ 18

Further, the fragments of the carcass were to be buried as near 

the communion table as possible in All Saints, Cambridge, provided a new

p. [AAv ],
117Greene, Philosophy of the Expansive and Contractive Forces. 

^̂ ^Gentleman's Magazine. LIII (1783), p. 657.
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chapel were not erected at Clare Hall before his death. As for his 

bones, Greene willed that they be formed into a skeleton and placed in 

the library next to the books which he had written. The skeleton was to 

be called "Mr. Greene." Then the will goes on to specify the erection of 

monuments— each supplied with an extravagant description of himself— the 

preaching of sermons, and the making of awards to students in his name. 

Copies of his works, whether published before or after his death were to 

be presented to all the public libraries and to the libraries of each of 

the colleges of Cambridge and Oxford.

Greene's will reveals something that must be considered as an 

obsession with the idea of making his work public and receiving recogni

tion for it. This indicates that his desire for expression and recogni

tion was frustrated during his life, which is understandable in terms of 

the above discussion, if not solely in terms of the intrinsic value of 

the system of thought that he produced.

The chief expression of Greene's natural philosophy is to be 

found in his Principles of the Philosophy of the Expansive and Contractive

Forces, much of which was written even before the publication of his
120Principles of Natural Philosophy in 1712. Therefore, the discussion 

of Greene's thought may be confined to the later work.

From Greene's point of view, the Newtonian and Cartesian 

philosophies were essentially the same; they both rested upon the funda

mental notions of an inert matter and motion. In constructing a new

^̂ %bid.. pp. 657-658.
120Greene, Philosophy of the Expansive and Contractive Forces.

p. [b]_r].
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philosophy of nature, Greene would have to replace these ideas with his

own basic concepts, which were those of the expansive and contractive 
121forces. To do this it was necessary to reduce the notions of matter,

space, and time to the action of the two forces.

The substratum, or essence, of matter was force. Greene based

this statement on the argument that the sensation of matter would be

impossible unless some kind of action were "impressed upon our minds from 
1 22it." The gravity, or weight, of matter is one of our sensations of 

matter, and like solidity and extension, it could be different for equal 

quantities of matter. Such differences would arise from different innate 

forces, and since there is a doubly infinite number of possible combina

tions of the expansive and contractive forces, there must be a corres

ponding number of intrinsically different types of matter.

The concept of space as mere three dimensional extension, or the 

vacuum, Greene thought to be a misleading abstraction. Such an idea of

space really says nothing of our experience of space, which includes light, 
123heat, sound, etc. Space was to be conceived as an actual sensation, 

and sensation is not possible without action or force. So far Greene's 

approach to the conception of space is reminiscent of that of Berkeley, 

but at this point, rather than attribute all action to mind, Greene pur

sued the notion of force as the basis of action in space. The intensity 

and combination of the forces he thought must be variable from point to

^^^Ibid.. p. [â v]. 

^^^Ibid.. p. 286. 

^^^Ibid.. pp. 40-41.
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point in space in order to account for the inhomogeneity of perceived 

space. The inhomogeneity of space was, in turn, expressed through the 

concept of a variable space density, which Greene expressed geometric

ally in terms of the dimensionality of the space. The dimensionality of 

space could be infinite; for instance, a point in Euclidian space might

actually, that is in "greenian" space, have the dimensionality of a line,
12/,

or a surface, or a solid, or any higher dimensionality.

The dimensionality of the space occupied by a body was, for 

Greene, a means of representing the particular combination of intensi

ties of its forces. Thus the normal distinction between "matter" and 

"void" disappears in Greene's system for both are represented by certain 

characteristics of space. Greene wrote that there is an infinite variety 

in the kinds of bodies, "whose different constipations of actions, or 

whose expansive and contractive forces, may be represented by these

different extensions, which can never be reduced to an unvaried and
125abstracted one of mere length, breadth, and thickness . . . .

The aether, as well as heat, or fire, and light, was one of the 

kinds of "bodies" represented by a certain dimensionality of space, so 

that both matter and space, in the usual sense, were seen to be only 

different manifestations of the expansive and contractive forces. In 

accordance with this conception, Greene denied the existence of solid, 

massy, inert, and impenetrable parts of matter.

pp. 229-230. 
^^^Ibid.. p. 230. 

12&Ibid.. pp. 1-20.



13k

The notion of time, like those of matter and space, had to be

formed from experience. Therefore, Newtonian absolute time was seen as

an unrealistic abstraction, and only time derived from some observed
127motion could have any significance. But what motion should be chosen 

as the measure of time in any given situation? Greene's answer to this 

question is an essential part of his mechanics. He said that "real time 

is the same in its measure as the celerity or the space described by it 

. . . for the real times, in which spaces are performed are commensurate
1 pOto those spaces which are performed . . . . That is, given a velocity,

different "abstracted" lengths may be described in the same time, because

"the first . . . [may be] more thin or diluted and the last . . . more

constipated and dense," so that the same celerity, or force, will des-
129cribe one as quickly as the other. Or, velocity and true length, 

which is dependent on the density of the space traversed, are fundamental 

quantities rather than distance and time. Both velocity and space den

sity, however, correspond to forces, so that Greene has indeed eliminated 

the notion of time from his philosophy and replaced it with forces.

The sense of Greene's notion of time and its measure can probably 

be seen best in terms of an example. If two bodies with the same force 

move through media of different densities, then the body in the denser 

medium will move through a smaller "abstract" distance in a given time 

than will the body in the lighter medium. The traditional mechanical

127Ibid.. p. a.

IZGlbid.. p. 50.
129Ibid.
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explanation for this would be that the velocity of the body in the denser 

medium is less since a part of its force is used in overcoming the resis

tance of the medium. Greene said, however, that velocities of bodies are 

the same if their forces are the same, but a body in a denser medium goes 

"further" in the same "abstract" distance. Time was a function of velo

city and distance, rather than velocity being a function of distance and 

time, and both velocity and distance, or space, were conceived in terms 

of combinations of expansive and contractive forces.

Thus far, Greene’s conceptions are internally coherent, but they 

have become quite divorced from the world of experience which they were 

to truly represent. He appears as something of a visionary in his asser

tion that all space is characterized by forces, and startlingly so in the 

notion that this can be represented in terms of a higher dimensionality, 

but he had no way of giving these forces any empirical significance.

Expansive force was made to "concur with velocity," and contrac

tive force to act "counter to it and with gravity," and both could be
130either intrinsic to bodies or impressed upon them.

These forces, and any combination of them, could exist in a point 

of space in accordance with the notion that a "point" may have any dimen

sionality. Since expansive forces corresponded to velocities, these too

might exist in a point, a situation Greene thought to be manifest in the
131case where forces are applied to a body which cannot be moved by them.

As a consequence, the distinction between static and dynamic force did

130lbid.. p. 59.

^^^Ibid.. p. 288.
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not exist in Greene's system; it was replaced by a distinction between 

different kinds of spaces— diluted or constipated ones.

Since static and dynamic forces were essentially the same,

Greene was able to use the theory that he had developed for the treatment 

of simple static problems as the basis for a general treatment of dyna

mical situations. Greene's theory of the mechanical powers, or simple 

machines as such does not make use of all the ideas just developed, but 

rather handles the traditional problems in an almost traditional fashion. 

That is, his treatment is completely static, it sees all the machines as 

variations on the lever, and its key concept is that of equilibrium. The 

nature of equilibrium was, however, seen in a novel way due to the con

cepts of expansive and contractive force.

The equilibrium condition was seen as dependent on the fulcrum, 

or "center of detention" in Greene's terminology, as well as on the 

weights attached to the lever. The center of detention represented a 

force center of the opposite nature to that of the weights; it was con

tractive while the force of the weights was, in this application, expan

sive, since it tended to produce motion. If a weight is applied to the 

center of detention itself, the contractive force will completely pre

dominate and no motion will result. But if the weight is applied at some 

distance from the center of detention, its expansive force will not be 

completely destroyed and some motion will result. In general, the weight 

of a body will exert an action proportional to its distance from the center 

of detention. Thus, if bodies are placed at the ends of a lever, each 

will exert an action proportional to its distance from the fulcrum and
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to its weight, so that, if the weights are in the inverse ratio of these
132distances, the system will remain poised.

This "proof" of the fundamental theorem of the lever, although 

based on a new conception of the mode of action of force, still shows 

only a relationship between the static configuration of the system and 

the state of static equilibrium. In fact, Greene's proof is in the Archi

medean tradition; its equilibrium principle is based on the idea of a

center of gravity, which is a special case of the center of detention "on
133which forces are equally poised."

However, because of the identity of static and dynamic force, 

which rests on the conceptions of matter, space, and time, Greene was able 

to treat dynamical states of machines with the same conceptual apparatus 

and to generalize still further to all problems involving centers of 

detention. In this regard, Greene first considered a lever with a single 

body of given gravitational force attached to it at some distance from 

the center of detention. The force of the body, according to Greene, is 

in such a case to be measured by the distance to which the body will move
13/

under its action, and is therefore dissipated as the motion progresses. 

Thus the weight will move to a position such that it approaches the lowest 

point, but the total distance covered by the motion will be proportional 

to the original force of gravitation. If then that force corresponds to 

a distance greater than the length of the lever arm, the lever will

^^^Ibid., p. 68.

^^%bid.. p. 80.

^^^Ibid.. p. 288.
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oscillate or rotate until the entire force has been dissipated. If the 

gravitational force is permanent and constant, then the revolutions will 

be continuous and uninterrupted. A blow or percussion at some point of 

the lever would impart additional force to the system.

Greene gave a general mathematical expression to these ideas in

a single relationship.

The forces, or moments, or powers of bodies, which have a contractive 
or gravitating force, and one of percussion, and which act from a 
center of detention are greater, the greater that gravitating force 
is, the greater the sum or quantity of it is, the farther it is 
removed from the center of detention, and the greater the expansive 
force which is impressed, and the farther its distance is from the 
same center.1̂ 5

If M and m represent the moments (Greene's equivalent of quantity 

of motion) of the bodies, C and c their contractive, or gravitational, 

forces, A and B the sums or quantities of these (that is, the volume of 

the bodies, since intrinsic forces are thought of as intensive quanti

ties), R and r their distances from the center, and P and p the impressed 

expansive forces, then the following relation holds

M ̂  ACFR .136 
m Bcpr

If, in this relation, A = B and P = p and the forces of gravity 

increase with distance from the center, then M/m = R /r . That is, the 

gravitating "forces " will be as the squares of the distances from the 

center. Since, however, these forces "have the nature of an Expansive 

from it, their forces will be reciprocally as the square of the said

135lbid., pp. 80-81.

^^^Ibid..~Pb.'81-82.
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137distances• . . . ' This line of thought could then be applied to the 

motion of the planets around the sun through the substitution of an 

expansive, or repulsive, force in the sun for the rigid connection of 

the lever. That is, the expansive force of the sun is balanced by the 

contractive force of the planet with the result that the planets rotate 

rather than moving directly toward the sun. This idea Greene felt was
1 qo

implicit in Kepler's work.

It was impossible to treat the sun simply as a gravitating mass. 

It must have a tremendous expansive power tending to repel the planets as 

well as to heat and light them. In fact, according to Greene, the expan

sive power of the sun is so great that were it not for the great 

contractive-cold power of the moon, the earth would be incinerated. The 

earth and the other planets are carried about the sun like a stone in a 

■ sling, their contractive forces acting analogously to the sling. Also,

it is the rotation of the sun, combined with its expansive force, that
139produces the rotation of the planets on their axes.

Thus Greene generalized the basic law of statics, the law of 

the lever, to the extent that it became the basis for the explanation of 

the motions of the planets around the sun. In that explanation, moreover, 

the sun was allowed to retain a character much more in keeping with its 

appearance rather than its function, in a completely abstracted fashion, 

as a huge conglomeration of inert matter. Greene's theory does, however.

^̂ '̂ Tbid.. p. 82. 

^^^Ibid.. pp. 85-86. 

l̂ îbid.. pp. 177-178.
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have the very considerable disadvantage of not being logically 

satisfactory. But then, as has been pointed out, much of the Newtonian 

thought of his contemporaries harbored large inconsistencies that did not 

noticeably detract from its popularity and for which there was far less 

excuse.

Another damaging aspect of Greene's philosophy was that its 

scope was forbiddingly large; in fact it was all-inclusive. Greene wrote 

that

All properties of matter mentioned in philosophy are derived 
from . . . [the expansive and contractive forces], whether those 
which are termed accidental, or those which are called essential; 
all the principles in chemistry and the observations observable in 
it, as fermentation, precipitation, coagulation, crystallization 
etc. and all the phaenomenons which present themselves to us from 
the animal, the vegetable, or the mineral kingdom, all the prin
ciples of anatomy, and of the motion of the lungs, of the blood, and 
of the muscles, of the animal spirits, or the nervous juice, and the 
union of the human system with our minds, and the sympathy which the 
one has with the other, are likewise deducible from these forces of 
expansion and contraction.

In fact, of course, Newtonian natural philosophy was just as 

broad in scope in so far as it postulated certain basic ideas concerning 

the nature of matter and of physical process in general, but neither 

Newton nor any of his followers attempted to apply their ideas to the 

entire spectrum of natural phenomena in a single volume. Greene, on the 

contrary, attempted, in his Philosophy of the Expansive and Contractive 

Forces, to say everything. The volume is divided into seven books titled 

as follows:

Book I. Concerning the Principles of the Mechanical Philosophy.

Book II. Concerning the Principles of the Physical Astronomy.

l̂ Îbid.. p. 290.
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Book III. Concerning the Chief Properties of Matter, as also 
Concerning the Principles of Chymistry, Anatomy, Pneumaticks and 
Hydrostaticks.

Book IV. Concerning Opticks, Dioptricks, and Catoptricks.

Book V. Concerning the Metaphysicks and Logicks, or the Système
of Ideas of Mr. Locke.

Book VI. Concerning the Ethicks, or Natural Religion, of Des-Cartes's 
Meditations, Mr. Locke's Essay, of Dr. Clarke, and Mr. Wollaston.

141Book VII. Concerning Algebra.

It is easy to imagine what sort of reaction a work of this 

character must have evoked, and it is not surprising that Greene was ig

nored in the scientific writings of his contemporaries and all but for

gotten in the succeeding years. Nonetheless, it is clear that Greene was 

aware that nothing but a complete system of knowledge could hope to replace' 

the Newtonian system, and that his principle objections to that system have 

been vindicated in the course of development of physical theory. Thus, in 

some respects, Greene, like Berkeley, was more aware of the content and 

implicit scope of Newton's theory of mechanics than his Newtonian contem

poraries. Beyond that, he saw the necessity of resolving the dichotomy 

between static and dynamic conceptions of force, which, as has been pointed 

out, was the basic failing of Newton's followers in their conceptual grasp 

of the new mechanics. If Greene's method of resolving this dichotomy was 

essentially different from Newton's, this does not alter the fact that he 

envisioned a unified system of thought growing out of fundamental ideas 

on the real nature of phenomena, in place of a number of unrelated and 

limited systems of thought applying to various specific areas of experience.

^^^Ibid.. pp. [b2r - b3r],
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The Newtonians, throughout the period from the publication of 

the Principia to the 1730’s, had not been able to grasp Newton's mechan

ics either as a complete and unified theory capable of handling all 

mechanical problems or as a program for the treatment of all problem 

areas in natural philosophy. The anti-Newtonians, however, did see New

tonian mechanics in this light and based their objections to it precisely 

on those features of the theory— the conceptions of homogeneous matter, 

space, and time, all capable of indefinite division— which gave it its 

great scope and power. Berkeley in particular seems to have realized 

that the logical framework of the theory was the calculus, which alone 

was capable of uniting these elements into a coherent, mathematical, 

explanatory framework.

Berkeley also obj ected strongly to the Newtonian error of 

attributing active force to matter, as opposed to Newton's actual under

standing in which the only active substance was God acting in space. As 

has been pointed out, this error— making weight a property of matter— was 

a prime cause of the conceptual difficulties that stood in the way of a 

real grasp of Newton's theory. Consequently, English mechanicians 

throughout the period under consideration made little progress beyond the 

state of mechanical knowledge prior to Newton, except for a change in 

terminology. They were still largely confined to traditional methods of 

handling static problems which were not related to the methods used in 

other sorts of mechanical problems such as impact phenomena or the motion 

of pendulums.

In the same period of time on the continent, primarily in 

France, there was not only a good deal more work done in mechanics, but
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there was also a perceptible movement toward a unified theory of 

mechanics that reached a critical point even before the turn of the 

century.



CHAPTER III 

FRENCH MECHANICS IN TRANSITION

The unified theory of mechanics that was produced by Newton and 

misapprehended by his followers was designed to deal with dynamic pro

cesses rather than solely with separate and distinct states of mechanical 

systems, as, for instance the equilibrium state of a simple machine or 

the states of a system of bodies before and after collision. The cal

culus of infinitesimals was crucial to the treatment of dynamic process, 

and, since the calculus was not generally understood by the Newtonians 

and certainly not associated with the mechanics, they did not understand 

Newton's mechanics as process. (Or perhaps it was their failure to con

ceive of the mechanics as process that caused them to miss the signifi

cance of the calculus.) In any case, the Newtonians rather consistently 

used Newton's terminology of force, quantity of motion, etc., in a static 

context, thereby distorting the mathematical relationship among these 

terms.

Basic to the idea of process is the idea of continuity. By the 

end of the 17th century the concept of continuity already had a, long 

history in mathematical and metaphysical contexts, and it will be seen 

that French writers in mechanics made distinct attempts to apply conti

nuity to the understanding of observable mechanical phenomena. Along with

144
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the very basic notion of continuity, another more specifically mechanical 

concept played a large role in the orientation of French mechanical 

thought toward process: the principle of virtual velocity. Newton made

use of the principle as an application of the Third Law of Motion to 

explain the equilibrium condition, but his followers made very little of 

it. In French mechanical thought, on the other hand, the principle became 

a broadly accepted basis for the explanation of equilibrium, thus lending 

a dynamic character to static problems even before a really unifying 

theory of mechanics was at hand.

Still a third idea played an important role in impregnating 

French mechanical thought with the idea of process, namely elasticity.

It has been pointed out that Newton included a conceptually adequate 

treatment of elasticity in the Principia. which, like the concept of 

virtual velocity, was not picked up and applied by the Newtonians. The 

reason for this was the confusion over the ideas of force and momentum.

In their desire to make force a property of bodies, the Newtonians fused 

the conceptions of gravitational force and the force of a moving body 

and, in so doing, simply eliminated the notion of force as push or pull 

in favor of force as momentum. This step was in line with the prevailing 

conception of matter as composed of inert, impenetrable, perfectly hard 

atoms.

In such a system of thought, the treatment of impact phenomena 

was fundamentally concerned with inelastic collision and could do no more 

than state rules governing the velocities of bodies before and after 

impact. These rules, in turn, were based on the idea of the conservation 

of momentum or moving force, which could be a property of perfectly hard
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bodies. The problem of elastic collision, which implied the existence of 

active forces in bodies, was simply not accepted by the Newtonians as a 

significant‘one.

On the continent however, from the time of Huygens on, elastic 

collision was the subject of much investigation and exerted a considerable 

influence on mechanical thought toward the concept of continuous process. 

Elasticity clearly has the property of continuity, whereas perfect hard

ness has the opposite character. Prom the point of view of elastic 

collision the notion of an inert matter was an absurdity, and force 

appeared as the fundamental reality in the world of nature. This basic 

idea, which has already been seen in the work of Robert Greene, was 

elaborated by Leibniz into a philosophy of nature known as the theory of 

monads. This philosophy differed radically from that of Newton basically 

in that Newton ascribed the properties of continuity and force to the 

action of God in space while Leibniz made them the essential character

istics of actual phenomena. Thus both men, in spite of their differences, 

could and did incorporate the infinitesimal calculus, as the mathematics 

of the continuum, into their philosophies of nature.

Aside from the consideration of metaphysical questions, which 

will be further discussed in a later chapter, insofar as they have a 

bearing on mechanics, the problems and concepts that assumed importance in 

French thought on mechanics in the last decades of the seventeenth century 

tended to focus it on processes of change and therefore to make it more 

open to the assimilation of the calculus as its proper form of mathe

matical expression.
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It has been stated that the mechanical thought of the early 

Newtonians was heavily influenced by the work of Jacques Rohault and that 

throughout the entire period from the appearance of the Princinia until 

the 1730's little substantial progress was made beyond Rohault's views in 

the work of the Newtonians, in spite of the tremendous accomplishment of 

their master. Therefore, Rohault's mechanics constitutes a convenient 

starting point for a comparison of English and French work in the field.

His ideas on simple machines were expressed in the usual geometrical 

style, that is, in terms of sets of definitions, axioms, and theorems deduced 

from them. In order to give a complete representation of the theory of 

mechanics at this stage of its development, the full set of definitions, 

postulates, and axioms will be given, along with Rohault’s proof of the 

fundamental theorem of the lever.

Definitions :

1. The absolute gravity of a body in a fluid medium is the force 

by which that body tends to descend when it touches nothing but adjacent 

parts of the fluid.

2. The relative gravity of a body is the force by which it tends 

to descend when it is in contact with something other than the medium, for 

instance, an inclined plane or some other machine,

3. The center of magnitude of a body is the point which is most 

nearly equidistant from all its extremities (and not at an infinite 

distance).

4. The center of motion of a body, or the fixed point, is the 

point upon which the body may rest, or about which it may revolve.
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5. The center of gravity of a body is the point around which all 

the parts of a body are balanced, so that if the body is supported at that 

point in any situation, the parts on one side will have no more force than 

the parts on the other, and hence all the parts will be in equilibrium 

and hinder each other from descending.

6. Power or moving force is that by which a body may be sustained

or moved.

7. The quantity of a power is determined by the quantity of the 

gravity of the body on which itacts, whether merely sustaining the body 

or drawing or pushing it in the line in which it tends to descend.

8. A machine is that by the help of which a body is either moved 

of hindered from moving. Machines are either simple or compound. The 

simple machines are the balance, the lever, the pulley, the wheel and 

axle, the wedge, the screw, and the inclined plane.

9. The application of a weight or power to a lever is the angle 

of the line of direction of the weight or power with the lever.

10. The distance of a weight or power is the distance from the 

point of application to the machine to the center of motion,

11. Mechanics is the science of the effects of powers insofar as 

they are applied to machines.

Postulates:

1, Heavy bodies tend to the center of the earth along straight 

lines which may be assumed to be parallel.

2. A power applied at right angles is capable of producing a 

greater effect than if it were applied obliquely.
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Axioms :

1. The center of magnitude in a regular, homogeneous, 

horizontally situated body is also the center of gravity of the body.

2. The gravitities of homogeneous bodies are in the proportion 

of their bulks.

3. That which sustains any one point of a heavy body, sustains 

all its points which lie on the straight line passing through that point 

and the center of the earth.

A. A weight or power which pushes or draws a point of a body,

pushes or draws all points of the body which lie in its line of direction.

5. If a power has its line of direction in a plane and tends to

make that plane revolve around a fixed point, all the parts of the plane 

will receive an impression of the power in such a manner that all parts 

lying in a circle around the fixed point as center will tend to move 

about the fixed point with an equal force.

6. When a power applied to a machine is just able to sustain a 

weight, then just a little more power will both move and sustain the 

weight.

7. If the gravity diffused throughout all the parts of a body 

is able to move it, then if all the gravity is united at the center of 

gravity, the body will be moved as before.̂

Jacques Rohault, Oeuvres Posthumes de M. Rohault (Paris:
Gulllame Desprez, 1682), pp. 4V9-488. Jacques Rohault, A Treatise of 
Mechanicks: or. the Science of the Effects of Powers or Moving Forces
As Applied to Machines. Demonstrated from Its First Principles, trans. 
Thomas Watts (2d ed.; London: Edward Symon, 1717), pp. 1-10.
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The above definitions and axioms have a marked static and 

geometrical character as compared with those of Keill, at least insofar 

as terminology is concerned. The key concept is that of the center of 

-gravity, which, however, contains the idea of oppositely directed but 

balanced forces which cancel one another. This idea, with the substitu

tion of momentum for force, was the basis for Keill's proof of the 

fundamental theorem of the lever. (See pp. 74-75") Also, at the end of 

his proof, Keill made use of Rohault's 6th axiom, which is a direct con

tradiction to Newton's thought. Thus Kelli's proof, although framed in 

Newtonian words was not fundamentally different from that of Rohault, 

which is essentially the same as that of Archimedes (287-212 B.C.).^

Rohault's statement of the fundamental theorem of the lever is

that "if two weights applied to the ends of a horizontal balance are in
3reciprocal proportion of their distances they will be in equilibrium." 

That is, if the weights D and E, applied to the ends of the horizontal 

balance AB whose fixed point is at C, are in the proportion D:E : : BC:AC, 

then the balance is in equilibrium.

2On the basis of the resemblance between Rohault's work and that 
of Archimedes it would seem possible to do without Rohault in explaining 
the particular form of the mechanics of the early Newtonians such as 
Keill. However, the sixth axiom of Rohault's system, which was used by 
Keill and others is not one of Archimedes axioms. See René Dugas, A 
History of Mechanics, trans. J. R. Maddox (New York: Central Book Co.
Ltd., n.d.), p. 25.

3Rohault, A Treatise of Mechanicks. p. 12.
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The proof proceeds as follows. A point F is determined such 

that FA=BC and FB=AC. Now, by axioms 1. and 7., the weights may be 

replaced by homogeneous bodies; D by GF and E by FH. Since D;E :: BC:AG 

and BC:AC :: AFzFB : : GF:FH by construction, then D:E :: GF:FH or 

D:GF : : E:FH. Thus the whole body, GH, is homogeneous and, since GA=BG 

and AG=BH, is supported at its center. By axiom 1. the center of gravity 

is thus at 0 and so, by the definition of center of gravity, the body 

will be in equilibrium.^

The essence of the a bove proof lies in the identification of the 

center of gravity of the system independently of the state of equilibrium. 

This is done through axioms 1. and 7. Thus a relation is established 

between the geometrical configuration of the system and the state of 

equilibrium. Or, what amounts to the same thing, force is replaced by 

extension in the mathematical treatment of the problem.

The notion of force, or power, is contained in definitions 1,2,

6, & 7 where it is identified with weight, or gravity; its effect is to 

sustain a weight or to move it uniformly along the line in which it tends 

to descend. Thus, it is easy to see how the identification of weight and 

momentum could have developed out of Rohault's force concept. There is 

a further suggestion in this direction in his explanation of the nature 

of gravity.

He wrote that all bodies on earth experience a centrifugal force 

due to their inertia and the rotary motion of the earth. Some bodies 

experience this to a lesser degree than others and hence are forced

^Ibid.. pp. 12-13.
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downwards.^ Hence what we experience as gravity is really the result of 

an inertial motion » The identity of weight and motion is further sug

gested by Rohault in his extension of the above ideas to explain the 

acceleration due to gravity. When a body begins to fall, its velocity is 

not very great because the subtle matter permeating the universe cannot 

at first make the body move with all the velocity with which the subtle 

matter tends to flee the center of the earth. But, once the body has 

been started, the subtle matter, which is trying to gain as much height 

as possible, continues pushing the body downwards and so continually adds 

new degrees of velocity to the body. Therefore, the fall will be more 

rapid in proportion to the height from which it began.

The acceleration of gravity, according to this account, is due 

to a transfer of motion, which is what is experienced as weight. Transfer 

of motion, as pressure or impact, is therefore the fundamental process of 

the whole complex of mechanical phenomena as far as Rohault was concerned. 

This insight can of course be traced to Descartes, and, insofar, it is 

the same as Newton's approach to mechanics. The great difference between 

the Cartesian and Newtonian approaches to mechanics lies in the fact that 

Descartes, and Rohault after him, saw the fundamental process of the 

transfer of momentum as the instantaneous impact of inert bodies, that 

is, inelastic collision, and Newton transformed this into the action of 

force— pressure— in time, that is, into a continuous process.

^Jacques Rohault, Traité de Physique (sixième edition; Paris: 
Guillame Desprez, rue saint Jacques, MDCLXXXIIl), II, 131-132.

Îbid.. pp. 137-138.
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Unfortunately for Rohault, the Cartesian exposition of the

phenomenon of impact was not understandable in any scientific sense.

Impact and pressure— the only causes he is prepared to allow— must 
... be recognized as operating in a manner not dynamically 
explicable, not even when operating between entities all of which 
are physical . . . .  Save on a metaphysical basis, and by this he 
means on a theistic basis, there can be no understanding, none at 
least that is genuinely scientific, of motion and of the laws to 
which it conforms.7

Thus Rohault had to confine himself on this all-important subject to an

appeal to God.

The first consideration was that God had created a certain 

amount of motion at the beginning and that that original quantity is 

always absolutely conserved in the ordinary concourse of bodies. There

fore, if a body in motion meets one at rest and pushes it before itself,
git must lose as much of its motion as it communicates to the other. On 

this basis, Rohault was able to draw deductions concerning a few specific 

cases of the impact of bodies of various sizes, but could do nothing 

toward the production of a consistent explanation of the laws either of 

machines or of falling bodies in terms of the laws of impact.

In spite of obvious shortcomings, Rohault's views on mechanics 

do serve to point up the difficulties which had to be overcome in the 

creation of a unified theory, given the preconceptions common to the age. 

His theory further serves as a standpoint from which the work of succeed

ing writers may be seen in perspective, either as conforming to his 

thought or showing some significantly different traits. By its defects

7Norman Kemp Smith, New Studies in the Philosophy of Descartes. 
Descartes as Pioneer (London: Macmillan & Co. Ltd., 1952), p. 194»

R̂ohault, Traité de Physique, p. 71.
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Rohault's mechanics indicates the direction that must be taken by future 

attempts at the production of a unified theory of mechanics» In parti

cular, the laws of impact must be more thoroughly represented and 

correlated with the other areas of mechanical knowledge. That is, the 

conditions described earlier for the reduction of theories must be met.

(See pp. 11-12.)

Even before the publication of Rohault's Traité de Mechanigue the 

laws of impact had become the subject of much investigation. Almost simul

taneously, in 1669; three authors produced sets of rules applying to the 

collision of bodies. In the issue of the Philosophical Transactions of 

January 1669 Dr. John Wallis and Dr. Christopher Wren published accounts 

of theories of impact.^ Christian Huygens (1629-1695) published a similar 

work in the Journal des Scavans in March of the same year which was 

republished in the Philosophical Transactions in April, 1669.^^

Wallis' theory of impact treats only inelastic collision and is 

based on fundamental algebraic laws. The laws that serve as postulates 

for his theory are that equals added to equals produce equals; that if A 

produces the effect E, the 2A produces the effect 2E, 3A produces 3E, and 

so on; and, lastly, the law of association, mPC - mPxC = PxmC. These

%ohn Wallis, "A Summary Account Given by Di. „ John Wallis of 
the General Laws of Motion, by Way of a Letter Written by Him to the 
Publisher and Communicated to the R. Society, Novemb. 26, 1668," Philo
sophical Transactions, III (l668), pp. 864-866. Christopher Wren,
"Theory Concerning the Same Subject. ..." Philosophical Transactions.
Ill (1668), pp. 867-868.

^^Christian Huygens, "A Summary Account of the Laws of Motion, " 
Philosophical Transactions. IV (l669), pp. 925-928. Christian Huygens, 
"Regies du mouvement dans la rencontre des corps," Journal des Scavans.
II (1667-1671), pp. 531-536.
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statements amount to a mathematical assertion of the widely held notion 

that physical bodies and their motions only differ according to quantity. 

Specifically they state that the motion of a body M with a velocity of 

nC is the same as the motion of a body nM with a velocity C, where n is 

only a number. This Wallis saw as the principle of all machines for the 

facilitation of motion as well as the principle governing the collision 

of bodies,

Not only did this strictly algebraic principle support the
12identification of force and momentum, but it also yielded a very simple

means of deducing the desired rules of collision. If it is also assumed

that colliding bodies will remain together after impact, then, if a body

P moving with velocity C— and hence a force PC— impinges on a body mP,
_ i _ c

the two bodies will move on together with a velocity 1 + m . That is,
1

PC = 1 + m (P + mP)C = (P + mP) xl + m , Thus the conservation of

motion in impact, in the algebraic sense, was simply a physical interpre

tation of the algebraic law of association, which, as the title of the 

article indicates, was seen as a "general law of motion,"

Wallis' physical theory was thus clearly based on algebra, which

deals with finite quantities, even though, as has been pointed out, his

^̂ Wallis, Philosophical Transactions, III, 864-865• See also 
John Wallis, "The General Laws of Motion," Philosophical Transactions 
Abridged. I (1665-1672), pp. 307-309=

^ În his De Motu. appearing in 1669-70, Wallis defined force as 
that which is capable of causing motion, but used the term almost exclus
ively to mean momentum, i.e., only motion can cause motion. Momentum he 
defined as "that which tends to the production of motion," but it was also 
proportional to the product of force and time, J, F, Scott, The Mathe
matical Work of John Wallis. P.P., F.R.S, (l6l6-1703) (London: Taylor
and Francis Ltd., 1938), pp. 108-110,

13Wallis, Philosophical Transactions. Ill, 865-866,
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mathematical work provided considerable impetus to the development of

the calculus, and his idea of force as the cause of motion came close to

an anticipation of Newton's insight into the nature of force. This being

the case, Wallis naturally treated the subject of elastic collision as a

sort of addendum to the theory of inelastic collision.

If the bodies be not absolutely hard, as is above supposed, but 
elastic, yielding to the stroke, and then restoring themselves to 
their figure again by an equal force, the bodies, instead of moving 
on together, may in that case recede from each other, and that more 
or less in proportion to the restoring force . . . . ^

Presumably the "restoring force" referred to had the nature of a 

momentum, so that it was possible to think of elastic action in terms of 

the absorption and subsequent emission of momentum by the colliding bodies. 

It was on this basis, as will be shown, that much of the further study 

of elasticity developed.

In contrast to Wallis' theory of impact Wren's work dealt with 

elastic collision and was based on the assumption that there is a "nat

ural velocity" for each body. The natural velocity of a body was taken 

to be reciprocally proportional to the body. That is, if there are two 

colliding bodies A and B, their respective natural velocities and

are in the ratio Yâ = After collision, the two bodies would
Vb A

retain their natural velocities. If, on the other hand, colliding bodies 

do not have their natural velocities before collision, then collision 

will correct this imbalance by transferring motion from one body to the 

other such that the velocities after collision are in the proper ratio to 

the bodies.

^̂ Wallis, Philosophical Transactions Abridged. I, 310.

^̂ Wren, Philosophical Transactions. Ill, 867-868. Philosophi
cal Transactions Abridged. 1, 310-312.
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The way in which this must be understood is that if there are 

two bodies A and B in collision, with initial velocities and that 

are not "natural" velocities, then, assuming that is greater than the 

natural velocity of A, the excess of over the natural velocity of A 

will be transferred to B in the collision. By definition, the natural 

velocities are in the inverse ratio of the bodies so that A*s natural 

share of the total velocity of approach, Vĝ + V-̂, must be

9 (Va + Vb).A + B

If Y^ is greater than this quantity, then the excess is

V,- (V, + V,)

This quantity is therefore added to the natural velocity of B, which B 

retains in the collision, to form the final velocity of B after collis

ion. However, the excess of Vg over the natural velocity of A is the 

expression for the velocity of the center of gravity of the system.

Thus, the rules for the velocities of bodies in elastic collision that 

could be derived from Wren's system were correct, from the modern point 

of view.

Wren's theory, although it yields correct results, is nonetheless 

inadequate. The postulates from which the rules are derived are equiva

lent to the rules themselves; their scope does not exceed the laws or 

rules which they were designed to explain. This can be seen clearly from 

the fact that the concept of natural velocity only has meaning in a col

lision situation. The theory was therefore of no consequence in the 

further development of mechanics.
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Huygens's rules of elastic collision, as they appeared in the 

Philosophical Transactions. were the same as Wren's, but the theory 

behind them was much different. That theory did not appear with the 

rules in 1669, but considerably later, in 1703, in a work entitled 

Tractatus de motu corporum ex percussione. In this work, five postu

lates are listed, chief among which is the statement that if two equal 

bodies with equal velocities come from opposite directions and meet each 

other directly, then they will both rebound with the same speed with 

which they came.^^ This statement corresponds to the equilibrium prin

ciples of a theory of statics, such as the statement that equal bodies 

at equal distances from the point of suspension of a lever will be in 

equilibrium. The structural similarity to static theory goes still 

further, since, in order to derive the theorem corresponding to the 

fundamental law of the lever, Huygens made use of an axiom relating the 

center of gravity of a system to its dynamic configuration. That is, 

the theorem that bodies whose masses are inversely proportional to their 

velocities will rebound from collision with the same velocities was 

proved on the basis of the axiom that the common center of gravity of

a system of bodies moving only under the influence of gravity cannot 
l8ascend. This basic theorem of elastic collision, which had the status 

of an axiom in Wren's theory, along with the assumption that a common

..̂ Ĉhristian Huygens, tlber die Bewegung der Korper durch den 
Stoss. Uber die Gentrifugalkraft ("Ostwald's Rlassiker der exakten 
Wissenschaften," Nr. 138; Leipzig: Wilhelm Engelmann, 1903), p. 64.

^^Ibid.. p. 3.
1 OIbid.. pp. 16-20.
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motion of both bodies has no effect on the results of collision, forms 

the basis for calculating the velocities of bodies after impact.

Huygens then proved a number of theorems of a general nature.

He showed that the sum of the products of the masses and the squares of 

the velocities before and after collision will be equal. The conserva

tion of the quantity of motion was a further consequence of the theory, 

along with the conservation of the velocity of the common center of 

gravity. All of these conservation laws were presented in 1669 in the 

Journal des Sgavans, but the conservation of the velocity of the common 

center of gravity was singled out as "une loy admirable de la Nature.

With the work of Wallis and Huygens, two theories of impact 

became available. While both of them yielded verifiable results in their 

limited fields of application, the two theories showed considerable dif

ferences in structure. The one derived from a strictly mathematical 

axiom and the other from statements with a direct physical meaning. The 

physical significance of Huygens' postulate concerning the center of 

gravity of a system of bodies moving solely under the influence of grav

ity was most clearly related to the motion of pendulums and to the motion 

of freely falling bodies and thus implied a logical connection between 

elastic collision and gravitational attraction.

Such a connection was exploited, in a strictly experimental 

fashion prior to the publication of Huygens' theory of impact in a work

19Huygens, Journal des Spavans. II, 534°
20The principle in question was earlier enunciated by Huygens 

in his Horologium oscillatorium sive de motu nendulorum ad horologia 
aptato demonstrationes geometricae (Paris, 1673), Dugas, p. 187.
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of Edme. Mariette (1620-168̂ ) entitled Traite de la Percussion ou Choc

des Corps. Like Rohault, Ma.riotte assumed that inelastic collision

was the basic phenomenon of dynamics. However, since there were no hard

bodies, that were also perfectly inelastic, available for experimental

purposes, he built up his theory on the basis of experimentation with

soft bodies. The experiments were performed with pendulums contrived so

that the bobs— the colliding bodies— were just touching at the lowest

point of their respective arcs. With this arrangement it was possible to

measure velocities before and after impact by the length of the arcs

traversed as the bobs descend before or ascend after collision. With

this apparatus Mariotte was able to establish a series of propositions

equivalent to the rules of impact derived on an a priori basis by Wallis.

Principle among these was the law that colliding bodies move together

after impact with a velocity equal to the algebraic sum of the momenta
22before collision divided by the sum of the masses.

21This treatise is contained in the Histoire de 1'Académie 
Royale des Sciences. Tome I, Depuis son établissement in 1666 jusqu'a 
1686 (Paris, 1726), The entry in the Histoire dates from l67f. The 
work went through three editions by 1679j the third being the basis for 
the edition appearing in the collected works of Mariotte. Oeuvres de 
M„ Mariotte de 1'Académie Royale des Sciences; comprenant tous les Traitez 
de cet Auteur, tant ceux qui avoient de.ia paru séparément, que ceux qui 
n'avoient pas encore été publies; Imprimées sur les Exemplaires les plus 
exacts & les plus complets; Revues & corrigées de nouveau. I (The Hague: 
Jean Neaulme, 17fQ), p. [ **2vJ.

2PMariette, Histoire de 1*Académie Royale des Sciences, I, 
I84-I85. Mariotte's work was not totally independent of theoretical 
foundation. He needed three assumptions for the interpretation of his 
experiments: a statement equivalent to Newton's First Law; the statement
that the heights to which bodies will rise are proportional to the veloci
ties with which they begin the ascent; and the statement that the small 
oscillations of a pendulum may be assumed to be equal in duration even 
though the arcs through which they travel are different. Mariotte, 
Oeuvres. I, 4-5.
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The principles of inelastic collision then served Mariotte as 

the basis for the explanation of elastic collision. The motion of col

liding elastic bodies after their initial contact could be divided into 

two parts: the primary, or inelastic, and the elastic, or reflective.

The primary, or inelastic, part of the motion was the motion they would 

carry out if they remained together. The secondary motion was regarded 

as one superimposed on the primary motion by the action of the ressort, 

or elasticity of the bodies.

In order to establish the character of the "secondary" motion, 

Mariotte again had recourse to experimentation. His ninth experimental 

principle states that if an elastic body is struck by a hard and inflex

ible body, it will, upon regaining its original form, give back to the

striking body its original velocity. The proof of this principle was an
2/experimental demonstration making use of the same equipment as before. ^ 

Then follows the proposition that if two elastic bodies whose velocities 

are reciprocally as their weights strike each other directly each body 

will rebound with its initial velocity. Mariotte demonstrated this 

proposition on the basis of the above principle; since the primary motion 

is zero in this case, the shock will have the same effect as if each body 

had struck an inflexible body. Each body will then deform the other to 

the same degree, and, in resuming their original forms will regain their 

original velocities

^̂ Mariotte, Oeuvres. I, 28,

24%bid.. p. 23.

^̂ Ibido, p. 29.
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The first consequence of this proposition is that any two bodies 

pressed together so that they are in "tension" will, upon the release of 

the restraint, repulse each other in such a manner that each body takes 

an equal quantity of motion. That is, the reflective motion will always 

be such that the velocities of the two bodies are reciprocally as the 

weights. The second consequence is that the elastic bodies share the 

relative velocity of the collision (the mutual velocity of approach) 

according to the inverse proportion of their weights, whatever "proper" 

velocities they may have had before collision.

In one sense, Mariotte’s approach to elastic collision is similar 

to Wren's; both of them wrote in terms of a sharing of the relative 

velocity of collision by the colliding bodies in the reciprocal ratio of 

their masses. However, Wren's emphasis was placed on what looks like a 

metaphysical notion of "natural" velocity and a process whereby nature 

evens out excesses and deficiencies. Mariotte, on the other hand, focused 

attention on the elastic action of the bodies themselves as the key to the 

problem.

Mariotte also added new interest to the consideration of 

elastic impact through his speculation on a "paradox" that appeared as a 

consequence of the principles he had elaborated. Consider a body. A, at 

rest with a mass of one to be struck by a body, B, with a speed of one 

hundred and a mass of ninety-nine. Their primary velocity will then be 

^l~+~9^ = 99. Now the bodies share the relative velocity of 100 accord

ing to the inverse ratio of their masses so that A receives 99 units of

2&Ibid.. p. 30.
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velocity from the elastic action and B receives 1 unit. Thus A has a

total velocity after collision of 198 and B a total velocity of 98.

II a done donné à un autre corps presque le double de la vitesse 
qu'il avoit lui-meme, & il a conservé la sienne presque entiers,
& tout la vitesse qui etoit avant de choc est presque triplée par
le choc.27

On the other hand, if the body at rest has a mass of ninety-nine

and the body moving with a velocity of one hundred has a mass of one,

after collision the large body will have a speed of 2, or a motion of
28198, and the small body will have a motion of 98, totaling 296. In 

this case the total number of degrees of velocity remains the same while 

the amount of motion is increased, while in the first case the opposite 

was true.

The paradoxical nature of these observations naturally disappears 

if they are analyzed on the basis of the algebraic conservation of motion, 

but that is a prejudice that Mariotte did not share with Wallis. He 

seems to have felt that his paradox might yield some profound insight 

into mechanical law, for he went on to further speculation on the subject 

that is of interest both for its form and for its physical significance.

He conjectured that if the masses of the two bodies were made ever more 

unequal "to infinity," then when the small body is struck by the large 

one, the large body will preserve all its speed and will give twice as 

much to the small body. At least that speed would differ from "twice as 

much" by less than the smallest number one could imagine. In the other

27Mariotte, Histoire de I'’Académie Royale des Sciences, I, 189, 

Ẑ Ibid.
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case, the large body would not move at all and the small body would

retain the same speed,

"Limits" of this nature were common to the mathematics of

infinitesimals of Bonaventura Cavalieri (1598-1647), the so-called

method of indivisables, which was contained in his Geometria indivisibili-
29bus continuorum nova quadam rations promota of 1635. The significant 

thing about Mariotte's use of the idea is however that he attempted to 

use it to establish the relationship between weight and momentum; that 

is, he saw that this crucial dynamic relationship could be approached on . 

the basis of infinitesimals. The context in which Mariotte tried to 

establish the weight-momentum relationship was the proof of a proposi

tion necessary to the treatment of the problem of the center of percus

sion of a physical pendulum.

The proposition states that if the quantities of motion of 

bodies falling on the ends of a lever are inversely as their distances

from the fulcrum of the lever, then there will be equilibrium at the 
30instant of impact. The proof of the theorem starts from the fundamen

tal theorem of the lever— in the equilibrium condition the weights are 

inversely as their distances from the fulcrum. One of the weights on the 

lever is then replaced by a jet of water that can also sustain the equi

librium of the lever. Now each particle of water is a body much smaller 

than the body it strikes and is perfectly elastic. Thus the situation is

. F, Scott, A History of Mathematics (London: Taylor and
Francis, I960), pp. 106-107, The example of Cavalieri's method given 
by Scott is concerned with a strictly geometrical problem, but the 
similarity to Mariotte*s usage is still apparent,

^̂ Mariotte, Oeuvres. I, 82,
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a physical approximation to the second part of Mariotte*s application 

of the "method of indivisibles" to his paradox. Since a continuous 

series of shocks of tiny elastic particles can sustain a stationary 

weight, each instantaneous shock must have the same nature as weight.

Thus the sameness of weight and impact is established.

Mariotte did not pursue this line of inquiry further. Instead 

he replaced the remaining weight by another Jet, so that now two jets 

falling through different heights maintained equilibrium across the 

balance. The next step was to replace the jets with equal solid bodies 

falling from the same heights as the jets; they too must maintain equi

librium at the moment of impact. From this point the proof was completed

by means of the relationship between the velocity of a falling body and
31the height through which it has fallen.

Mariotte now introduced a new expression, "solid quantity of 

motion," in order to achieve an economical expression of the above prop

osition.

L'on voit par ces raissonemens qu'afinque deux corps étant en 
movement & tombant de part 6 d'autre du centre d'une balance en 
même tems, fassent équilibré au moment de leur choc; il faut que 
le nombre solide, produit par la multiplication du poids de l'un 
par sa vitesse & par la distance du point où il tombe jusques 
au centre de la balance, soit égal au nombre solide de l'autre 
poids multiplié de même . . . .32

Mariotte felt that this principle was a very important one. It 

formed the basis for his treatment of physical pendulums and embodied the 

basic laws of falling bodies, statics, and impact. It can be seen that

31lbid.. pp. 82-83.

^^Ibid., p. 84.
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the principle, as stated by Mariotte, bears a certain resemblance to the 

principle of virtual velocity since, in the instant of impact, the mo

menta of the bodies are the acting forces and their distances from the 

center can be taken to represent velocities. As has been stated, the 

principle of virtual velocities was to play a significant role in French 

mechanical thought; even in this crude and imperfect form it gave promise 

of providing the key to a unified theory of mechanics.

In another work, the Traite du mouvement des Eaux, Mariotte

raised his principle, in a somewhat altered form, to the status of a

universal principle of mechanics.

Lorsque deux poids ou deux autres puissances sont disposées en sorte 
que l'une ne puisse se mouvoir qu'elle ne fasse mouvoir l'autre, si 
l'espace que doit parcourir un des poids selon sa direction propre 
& naturell est à l'espace que doit parcourir l'autre in même tems 
selon sa direction propre & naturelle réciproquement comme ce 
dernier poids est au premier; il se fera équilibré entre les 
deux poids; mais si l'un des poids est in plus grande raison à 
l'autre, il le forcera.33

Thus Mariotte, although starting from the same suppositions with 

regard to the nature of matter as were held by his contemporary Rohault, 

was able to produce a system of thought that cam very close to a unified 

theory of mechanics. Of course, in so doing, Mariotte had deviated from 

the notion that inelastic collision must be the fundamental dynamic 

phenomenon. The key relationship of his theory, that between weight and 

momentum, was based on the property of elasticity, which however was 

itself not understandable in terms of the current, that is Cartesian, idea 

of matter. Perhaps for this reason Mariotte's ideas were not accepted by 

the entire French scientific community or by English writers. However,

33Mariotte, Oeuvres, II, 360.
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from this time onwards there were two main trends in continental 

mechanical theory; one continuing along the lines set in Rohault's 

mechanics, and the other drawing the implications contained in the work 

of Mariotte. (Perhaps it would be better to define these two trends in 

terms of the greater names of Descartes and Huygens, but both Rohault's 

and Mariotte's works contained extensions or modifications of the ideas 

of the former writers that were of significance.)

The main implications in Mariotte's work centered around the 

ideas of continuity and process. As has been pointed out, elasticity 

has the property of continuity, and elasticity forms the basis of 

Mariotte's synthesis. The type of speculation that he used to approach 

the weight-momentum relationship, the notion of limit, depends on the idea 

of continuity, and the resulting "universal principle," that of virtual 

velocities, represents the static situation in terms of motion, or pro

cess. On another level, Mariotte's work can be seen to suggest that 

the force of moving bodies is not to be measured by their quantity of 

motion. For instance, in the two situations that made up his paradox, 

there was a difference in the quantities that were conserved: total

velocity in one case and quantity of motion in the other. As was pointed 

out, the idea of algebraic conservation of motion would resolve the para

dox, but, for those who did not hold to the absolute character of space, 

that solution was not meaningful. On the other hand, the product of mass 

and the square of the velocity was conserved in both cases. This fact 

could be tied in with the proposition that the height to which a body will 

rise is proportional to the square of its velocity at the beginning of the 

ascent. This proposition, in turn, provided the link between impact and
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stationary weight in the experiment with the water jets maintaining 

equilibrium with a weight.

Most importantly perhaps, the idea of elasticity as a property 

of bodies and as a source of motion suggested a causal relation between 

weight, or pressure, and momentum. That is, bodies, by their very nature 

could be seen to be agents capable of producing motion. For instance, 

Mariotte had concluded as a first consequence to his law of elastic col

lision that when two elastic bodies are pressed together, they will repel 

one another in such a fashion that each will take an equal quantity of 

motion. Here motion had clearly been created— unless one wished to 

insist that since the motions were equal and oppositely directed they 

added up to no motion at all— out of a pressure, or tension, such as can 

be produced by weight and is equivalent to weight.

All of these implications were not seen by Mariotte. He did 

not attempt to elaborate the causal relationship between weight and 

momentum that was contained in his observation of the ability of a 

stressed body to produce motion or of a continuous series of shocks to 

sustain a weight. The reason that he did not do this, or see that it 

could be done, was simply that he was not in possession of the necessary 

logical tools. As has been shown in connection with Newton, the infini

tesimal calculus was necessary to the treatment of the causal relation 

between weight and momentum.

While Mariotte did make an attempt to apply a mathematical idea 

associated with the beginnings of the calculus to his physics, his approach 

lacked, in particular, the important notion of causality as formulated by 

Thomas Hobbes. The Hobbesian concept of causality implied the existence
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of indefinitely small constituent parts of both matter and motion and, 

further, that the understanding of phenomena must be in terms of such 

parts. This-idea was part of Newton's thought in the development of the 

new mechanics and the calculus, although he made no mention of any debt 

to Hobbes on this score. The other inventor of the calculus, Gottfried 

Wilhelm Leibniz, however, explicitly acknowledged his enthusiasm for 

Hobbes' ideas, and it was Leibniz who provided the basis for a consistent 

mechanical interpretation of all of the above implications in Mariotte's 

work.

In a letter to Hobbes dated July 1670, Leibniz wrote that

There is nothing more polished and better adapted to the public 
good than your definitions. Among the theorems which you deduce 
from them there are many which will remain established. There are 
some who have abused them, but I believe that in most cases this 
occurred because the right principles of application were ignored.
If one were to apply the general principles of motion— such, for 
example, as that nothing begins to move unless it is moved by 
another body, that a body at rest, however large, can be impelled 
by the slightest motion of a moving body, however small, and 
others— if one were to apply these by an ill-timed leap to sensi
ble things, he would be derided by the common man . . .  .34

This passage suggests that Leibniz had the important insight that 

Hobbes' ideas on motion were first of all concerned with the behavior of 

the indefinitely small, insensible elements of motion and that the trans

ition from these elements to the explanation of sensible phenomena was 

one that required a particular technique. Hobbes' ideas seem to have 

impressed Leibniz deeply as the key to the understanding of the world and 

of God, for, in the same letter, Leibniz praised Hobbes in a rather 

unusual manner.

34Qottfriend Wilhelm Leibniz, Philosophical Papers and Letters, 
trans. and ed. with an introduction by Leroy E. Loemaker (Chicago, 111.; 
University of Chicago Press, 1956), I, 163.
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I shall always profess . . . that I know no one who has 

philosophized more exactly, clearly, and elegantly than you, not 
even excepting that man of divine genius, Descartes himself. I 
wish that you, my friend, who of all mortals could best do it, had 
taken into consideration what Descartes attempted rather than 
accomplished— that you had ministered to the happiness of mankind 
by confirming the hope of immortality.35

Thus there was by 1670 a combination of ideas in Leibniz’s 

mind similar to that which has already been pointed out as the meta

physical ground from which the mechanics and mathematics of Newton 

developed. The Platonistic element in Leibniz's mentality, which insisted 

that mathematical investigation of nature would, if properly conducted, 

lead to the assurance of the existence and activity of God, stemmed from 

his formal education. Although his teachers have been described as 

Protestant Aristotelians, they were scholars of an especially eclectic 

variety and most were members of the Herborn school of encyclopedists?^ 

Following in the tradition of the Florentine Academy, this school of 

thought sought its unifying principle in Christian Platonism. Their 

primary influence on Leibniz was to provide him with a "new Platonistic 

metaphysics of universal harmony governing a multitude of interrelated, 

vitalistically conceived individuals.Beyond that, the Herborn school 

influenced Leibniz toward a rationalism in which experience, reason, and
OQ

revelation were regarded as complementary sources of knowledge.

^^Ibid.. p. 166.

Leroy Loemaker, "Leibniz and the Herborn Encyclopedists," 
Journal of the History of Ideas. XXII (1961), 332.

'̂̂ Ibid.. p. 324.

^^Ibid.. p. 331.
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With this complex of ideas in mind, Leibniz produced, in 1671, 

a "Theory of Abstract Motion" which he dedicated to the Paris Academy.

The theoiy postulated several principles that show a strong resemblance 

to Hobbes' ideas on matter and motion but also preserve the notion of the 

"vitalistically conceived individual," that is, an individual conceived, 

not in terms of inert matter, but in terms of active force. Motion was, 

first of all, continuous, which is to say that it is divisible into 

indefinitely small elements. Further, when a body is at rest, it will 

always remain at rest unless a new cause of motion occurs. Conversely, 

if a body is in motion it will maintain both speed and direction unless 

a cause for a change occurs.

The cause of motion was called conatus. which "is to motion as

a point to space, or as one to infinity, for it is the beginning and end 
39of motion." Conatus was conceived by Leibniz as the action of one body 

on another, in accordance with the notion of causality. This implied 

that bodies could not be perfectly hard and impenetrable. In impact, 

the boundaries of the colliding bodies must either interpenetrate or be 

in the same point of space. This interpenetration, or beginning of union 

of the colliding bodies was accompanied by, or produced, a conatus which 

ended their motion relative to one another.

Leibniz also ascribed conatus to curves or, conversely, a curve 

was generated by conatus. Just as curves could be compounded to form new 

curves, so could one conatus be compounded with another to form a third.

%bid.. pp. 218-219.

°̂Ibid.. pp. 219-220.
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Further, unequal conatl that could not be compounded had to be 

subtracted and equal ones that could not be compounded were destroyed. 

Conati were thus, according to their nature as both motion in a point 

and cause of motion, subject to given rules in their compounding. Then, 

any regular curve could be thought of as composed of or generated by two 

other curves— possibly straight lines— the conati of which were in some 

fixed relationship. If that relationship could be deduced, then the curve 

itself could be explained as the result of fundamental elements of motion. 

This, however, was a strictly mathematical problem, or could be treated 

as such, so that Leibniz's thought was directed by its own logic and 

conceptual structure, from considerations of motion to the study of the 

mathematics of curved lines.

In 1672 Leibniz was in Paris on a diplomatic mission and there 

began a study of mathematics.^2 Descartes' Geometry gave him some dif

ficulty, but Christian Huygen whom he met in 1672, came to his assistance 

as his mathematics tutor. In the same year Leibniz read Gavalieri's 

Geometria indivisibilibus. and also in that year, on a visit to London, 

became familiar with the work of Isaac Barrow (1630-1677), concerning 

the problem of finding the tangent to a curve.

Barrows' conception of the nature of a curve coincided with 

Leibniz's earlier ideas on the relation of conatus and motion— a curve is 

composed of infinitesimal straight-line segments and, at the same time,

41lbid.. p. 221.
/ 2
For an account of Leibniz's mathematical training see E. T. 

Bell, Men of Mathematics (New York: Simon and Schuster, 1957), pp. 117-
130. See also Gottfried Wilhelm Leibniz, The Early Mathematical Manu
scripts , trans. with notes by J. H. Child (Chicago: Open Court, 1920),
pp. 11-15.
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is generated by the motions of a point. Tangents to curves were then 

extensions of the infinitesimal line segments as well as the instantan

eous directions of the motion of the moving point which generated the 

curve. The problem of finding tangents to curves was thus the same 

problem as finding the relation of the conati of which a curve is com

posed. Further, the inverse problem— given the tangent to a curve in some 

functional relationship, to find the curve— was the same thing as finding 

the curved path a body would follow under the influence of known conati. 

Barrow stated the reciprocal character of these two problems— Barrow's 

theorum— in his Lectiones opticae et geometriae of 1670,^^ and provided 

methods for their solution which differ from Leibniz's differential 

calculus chiefly in. notation.^

From these and other authors Leibniz had, by 1675, acquired a 

thorough knowledge of the current state of mathematics, including the 

problem of tangents and quadratures.^^ It seems that there was little

^^Ettore Carruccio, Mathematics and Logic in History and in 
Contemporary Thought, trans. Isabel Quigly (Chicago, 111.: Aldine
Publishing Co., 1964), p. 216.

^^Florian Cajori, A History of Mathematics (2nd ed.; New York:
The Macmillan Co., 1931), p. 189. Cajori quotes J. H. Child, The Geo
metrical Lectures of Isaac Barrow, "Isaac Barrow was the first inventor 
of the infinitesimal calculus."

^^The problem of quadratures refers to the finding of the area 
enclosed by some curved line, or generally integration. The relation 
between this and the "inverse" problem described above, and their con
nection with mechanical motion was implicit in a work of Evangelista 
Torricelli (l608-l647), the De Motu gravium. Torricelli considered the 
diagrams of space traversed and speed of a moving body as functions of 
time and pointed out that the ordinates of the space curve are propor
tional to the areas enclosed by the speed curve, while the ordinates of 
points on the speed curve are angular coefficients of the tangents of 
the space-curve. Barrow acknowledged Torricelli and Galileo as
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left to do toward the invention of the infinitesimal calculus except to 

produce a notation and method of solution of the two problems that 

expressed their intimate relatedness. This task, however, proved to be 

as difficult as it was important. In a work of 1674, Leibniz had given 

an indication of the role which he expected the infinitesimal calculus, 

or Analysis, to fulfill.

1. The method of universality instructs us how to find by means 
of a single operation analytical formulas and general geometric 
constructions for different subjects or cases each one of which 
would otherwise need a particular analysis or synthesis. As a 
result its use may be considered as extending to algebra and 
analysis and as spreading to all the parts of pure or applied 
mathematics.

2. Now as all the propositions of applied mathematical sciences
may be stripped of their matter by means of a reduction to pure
geometry, it will suffice to show its use in geometry. This boils 
down to two points; namely, first, the reduction of several dif
ferent cases to a single formula, rule, equation, or construction, 
and secondly, the reduction of different figures to a certain har
mony in order to demonstrate or resolve universally a number of 
problems or theorems about them . . . .  if in time the Geometry of 
infinites might be rendered a little more susceptible of Analysis 
so that the problems of quadratures, of centers, and of the dimen
sions of curves could be solved by means of equations, . . .  we
should obtain a great advantage from the Harmony of the figures
for the purpose of finding their quadrature as well as that of 
others

Although the "method of universality," or "characteristic," as 

Leibniz called, was to be a perfectly general science of which analysis 

and algebra were only branches, still, analysis would have the task of

forerunners. Carruccio, p. 216. Leibniz, however, later remembered 
having received his insight into the problem not directly from Barrow 
but that it came as an inspiration while reading the Traite des Sinus 
du quart de cercle of Blaise Pascal (1623-1662). Leibniz, "Letter to 
Bernoulli, April 1703" Early Mathematical Manuscripts, pp. 15-18.

^^Gottfried Wilhelm Leibniz, "On the Method of Universality," 
Leibniz Selections, ed. Philip R. Wiener (New York: Charles Scribner's
Sons, 1951).
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giving expressions to all the "harmonies" of the physical world. Analysis 

would be the mathematical framework and structure of all physical theory.

It would contain and express all the Important relationships that obtain 

in the phenomenal world. Thus, from the very beginning Leibniz had an 

idea of his calculus as the logical, relational structure of theory.

The symbols employed in the calculus, and the manner of their 

interrelationship should be truly representative of the structure of 

reality. Successful construction of theory would thus involve the choice 

of "real" characters qualified by their relationships in such a way as to 

reveal the organization of the world in their formulas.This idea 

found expression in the notion of the mathematical function. The mathe

matical function represented a "law" expressing the dependence of one 

variable on other variables. A variable was a symbolic representation of 

a continuous series of particular values determined by the relationship 

expressed in the law, or function, to corresponding values of other var

iables. Thus the function was a mathematical analogy to Leibniz’s later 

philosophical solution of the problem of the relationship of the individual 

to the whole. Every equation or functional relationship, f(x,y,z, ...) = 0 

could be solved for any one of the variables. The resulting equation was 

then its principle, representing its dependence, through all its changes, 

on the rest of the world, so to speak,

However, Leibniz also recognized that there are certain primitive 

elements of reality. In a work of the year 1679, entitled "On Universal

/ 7Leroy Loemaker, "Introduction," Philosophical Papers and 
Letters, p. 36.

^̂ Ibid.
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Synthesis and Analysis, or the Art of Discovery and Judgment," Leibniz 

gave expression to this idea in terms of the causal definition of Thomas 

Hobbes. His interpretation of the causal definition was, however, not 

exactly the same as that of Hobbes. In Leibniz's hands it yielded a new 

concept; that of %ompossibility. "

A nominal definition of a thing, according to Leibniz consisted 

in the enumeration of elements sufficient to distinguish it from every

thing else. These elements could be further resolved into primitive 

elements, which are understood of themselves. All definitions are thus 

combinations of primitive elements. But, in setting up definitions, it 

is necessary to e stablish their possibility— to show that all their

elements are mutually compatible (compossible).

The best and easiest way to do this is to define a thing in

terms of the elements by which it is generated, by which it is caused.

But the concept of the circles set up by Euclid, that of a 
figure described by the motion of a straight line in a plane about 
a fixed end, affords a real definition, for such a figure is evi
dently possible. Hence it is useful to have definitions involving 
the generation of a thing, or if this is impossible, at least its 
constitution, that is, a method by which the thing appears to be 
producible or at least possible.

Ultimately, then, all material phenomena were produced by combinations

of basic conati linked together by certain relationships expressive of

their compossibility. The expression of these relationships was the

role that the calculus was to play in the understanding of the world.

Shortly after successfully devising his notation of sums, , 

and differences, dx, probably in 1680, Leibniz set down the basic

^̂ Leibniz, Philosophical Papers and Letters. I, 352-354.
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concepts of his calculus in a treatise entitled Elementa calculi novi.

This treatise, which remained unpublished, was, as the title suggests,

devoted to the solution of the problems of tangents and quadratures. The

tangent was expressed through the ratio dx/dy and the area of the figure,

the quadrature, by S ydx.^^
The basic character of the infinitesimal differences, dx and dy,

was their fixity. The size of dx was constant but not determined, and dy

bore a functional relationship to dx. Also both were conceived as "mo-
52mentaneous increments" of their respective variables, so that they 

indeed had all the characteristics of the earlier concept of conatus, 

and the new calculus was therefore intended as an expression of the real 

structure of phenomena, that is, of mechanics.

At the same time, Leibniz was aware that a mathematical system 

alone was insufficient for the complete understanding of natural phenom

ena; it could only provide a relational structure. In his "Introduction 

on the Value and Method of Natural Science" written between 1682-1684, 

he stated that

The operation of a body cannot be understood adequately unless we
know what its parts contribute; hence we cannot hope for the
explanation of any corporeal phenomenon without taking up the 
arrangement of its parts. But from this it does not follow that 
nothing can be understood as true in bodies save what happens

. M. Child, ed.. Early Mathematical Manuscripts, pp. 135-136. 
The full title of the treatise is Elementa calculi novi pro differentiis 
et summis. tangentibus et quadraturis. maximis et minimis, dimensionibus 
linearum, superficium. solidorum, aliisgue communens calculum transcen- 
dentibus.

^̂ Leibniz, Early Mathematical Manuscripts, p. 138.

^^Ibid.. pp. 137-138.
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materially and mechanically, nor does it follow that only 
extension is to be found in matter . . . .  We must recognize 
thàt.ithere are two kinds of distinct attributes, one of which 
must be sought in mathematics, the other in metaphysics . . . .  
Metaphysics provides existence, duration, action and passion, 
force of acting, and end of action, or the perception of the
agent.53

At this point, several questions arise. Did Leibniz himself 

construct a theory of mechanics on the basis of his calculus and, if so, 

was that theory essentially the same as Newton's. Finally, did such a 

theory have any influence on contemporary thought on mechanics? With 

regard to the first question, Leibniz did produce at least the beginnings 

of a theory of mechanics embodying his calculus. This did not take the 

form of a single unified treatise, perhaps because Leibniz was too much 

involved in other affairs to devote the necessary time to such an 

undertaking.

In the winter of 1685-1686 Leibniz wrote his Discourse on 

Metaphysics. T h i s  work contains the background thinking on the deter

mination of the measure of "force" in moving bodies and seems to have
55arise directly from Leibniz's contact with Huygens. Force, as meas

ured, is an effect— the product of a summation of conati— but its 

correct mathematical description was necessary to any physical theory 

that would give a causal account of motion. Huygens had, in effect, 

taken the position that elasticity is an essential property of matter,

5̂ Leibniz, Philosophical Papers and Letters. I, 4A7.

^^Gottfried Wilhelm Leibniz, Discourse on Metaphysics, trans. 
Peter G. Lucas and Leslie Grint (Manchester, England: Manchester
University Press, 1953), p. xiii.

^̂ Kurt Huber, Leibniz (München: Verlag von R. Oldenbourg,
1951), pp. 204-205.
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an idea that coincided vith Leibniz'd owi convictions. Further Huygens 

had shown, as had Mariotte,^^ that the conservation of the products of 

mass and the square of the velocity was a consequence of the elastic 

nature of matter, and, in the work of both men, this fact implied a 

logical connection between the various sorts of mechanical phenomena.

Leibniz accordingly turned to Huygens’ principle (in its 

Galilean form) concerning the center of gravity of a system of bodies in 

motion in order to determine the measure of force.

I suppose that a body falling from a certain height acquires 
the force to rise to it again, if its direction so causes it; . . . 
for example, a pendulum would rise again perfectly to the height 
from which it descended, if the resistance of the air and some other 
small obstacles did not diminish by a little its acquired force.

Leibniz then assumed that as much force is required to lift a 

body of one pound to a height of four fathoms as is necessary to lift a 

body of four pounds to a height of one fathom.That is, "force" was 

compounded of weight and distance according to the law of association; 

nW X S = W X nS, where W is weight, S is the distance, and n is a num

ber. The force so compounded Leibniz also knew to be proportional to 

mass times velocity squared, and he went on to say that the "new philo

sophers" accepted this idea.^^

^^Leibniz knew and corresponded with Edmonde Mariotte. W. H. 
Barber, Leibniz in France, From Arnauld to Voltaire. A Study in French 
Reactions to Leibnizianism. 1670-1760. (Oxford: At the Clarendon
Press, 1955), p. 7.

^Leibniz, Discourse on Metaphysics, p. 29.

"̂ Ibid., pp. 29-30. This follows from the principle of static 
equilibrium. It is significant that Leibniz brought together both dynamic 
and static ideas of force in his attempt to determine the measure of force.

59ibid.
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By "new philosophers," Leibniz was referring to those who had 

broken away from C%rtesianism, those who had recognized the necessity for 

some metaphysical principle of action in mechanics, something beyond mere 

extension and motion. These "new philosophers" did not exist in great 

numbers in the France of the late 17th century due to the immense popu

larity of Cartesian thought, and so it was necessary that Leibniz's early 

works on mechanics should take the form of attacks on Cartesian mechanics. 

This being the case, it was only natural that Leibniz should attack Des

cartes at the most basic and yet the weakest part of his system, the laws 

of impact.

Accordingly, Leibniz, in March of 1686, published in the Acta 

Eruditorurn "A Brief Demonstration of a Notable Error of Descartes and 

Others Concerning a Natural Law, According to Which God is Said Always to 

Conserve the Same Quantity of Motion; a Law Which They Also Misuse in 

Mechanics. The "notable error" to which Leibniz referred was the 

identification of motive force and quantity of motion. In the Discourse 

Leibniz had shown that the measure of force was as the product of weight 

and distance, on the assumption that, if there are no external obstacles, 

a body will rise to the same height from which it has fallen. Force, as 

measured in this way must clearly be conserved due to the impossibility 

of a perpetual motion machine.

On the other hand, although a body A weighing one pound and 

falling through a distance of four yards has the same "force" as a body B

^^Gottfried Wilhelm Leibniz, "Brevis demonstratio erroris 
memorabilis Cartesii et aliorum circa legem naturalem, secundum quara 
volunt a Deo eandem semper quantitatem motus conservari; qua et in re 
mechanica abutuntur." Acta Eruditorum (l686), pp. 161-163.
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weighing four pounds and falling through a distance of one yard, their

momenta are different. Body A would have a momenta only half that of

body If momentum was. not the measure of force, still force must be

some function of velocity, and Leibniz easily concluded that it must be
2 62proportional to the square of the velocity and that its measure is mv , 

a result that coincided with, and was no doubt suggested by, Huygens' work 

on elastic collision and pendulums, as well as that of Mariotte.

Leibniz then went on to explain why, in spite of this error, the 

Cartesian concept of force was satisfactory in the treatment of simple 

machines. In all such machines, in the equilibrium condition, the mag

nitudes of the bodies are reciprocally as their "virtual" velocities, 

their distances from the center of rotation. "It is therefore merely 

accidental here that the force can be estimated from the quantity of 

motion.

Thus far Leibniz had only attacked the underlying principle of 

the Cartesian laws of impact and, as yet, it is not apparent that his 

objections to them or his own ideas on force have anything to do with a 

mechanical theory based on the calculus. In fact, the full elaboration 

of his force concept in terms of indivisibles and the relation of the 

force concept to the problems of tangents and quadratures did not appear 

for some time. Nonetheless, Leibniz did apply the concept of continuity, 

a basic idea of the calculus, to the study of impact at an early date.

^̂ Leibniz, Philosophical Papers and Letters, I, 455-457.

^^See Max Jammer, Concepts of Force, a Study in the Foundations 
of Dynamics (New York: Harper Torchbooks, 1962), pp. 163-164.

^^Leibniz, Philosophical Papers and Letters, I, 457-458.
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In July 1687, there appeared in the Nouvelles de la Republique 

des Lettres a, piece entitled "Extrait d'une lettre de M. Leibniz sur un 

principe general, utile à l'explication des loix de la nature, par la 

consideration de la sagesse divine; pour servir de répliqué à la réponse 

du R, P. Malebranche."^^ The general principle involved was that of con

tinuity, which Leibniz stated in the following manner.

When the difference between two instances in a given series, or 
that which is presupposed, can be diminished until it becomes 
smaller than any given quantity whatever, the corresponding differ
ence in what is sought, or in their results, must of necessity also 
be diminished or become less than any giyen quantity whatever.65

As applications of this principle Leibniz cited the conic

sections and the laws of impact. With regard to the conic sections,

Leibniz observed that the ellipse approaches the parabola as one focus
66is removed to infinity. The same principle applied to impact would 

imply that the state of rest was really only one of infinitely small 

velocity, so that there could be no qualitative difference between the 

properties of bodies at rest and of those in motion, just as there was 

no qualitative difference between the ellipse and the parabola. In 

general, the modes of behavior of bodies in motion in various circum

stances should shade into one another in a continuous fashion.

^“̂Barber, p. 24.6.

^^Leibniz, Philosophical Papers and Letters. 1, 539»

66The first expression of this application of the mathematical 
idea of continuity occurred in the Ad vitellionem paralipomena of 
Johannes Kepler (1571-1630), published in I604.. In this work Kepler 
demonstrated that the conic sections form a continuous series. See 
C. Taylor, "The Geometry of Kepler and Newton," Transactions of the 
Cambridge Philosophical Society. XVlll (19OO), 201.
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Descartes' failure to see this had been the cause of his failure 

with the laws of impact. For instance, Descartes' first rule of impact 

stated that equal colliding bodies with equal speeds would be reflected 

with the same speeds, while the second rule stated that if the colliding 

bodies B and C had equal speeds but B was slightly larger, then C would 

be reflected with its former velocity, but B would continue its motion. 

There is a great difference between the behavior of the bodies under these 

two sets of circumstances that does not disappear as C and B are made 

more and more nearly equal. Thus they indicate a discontinuity in nature 

which is not, according to Leibniz, permissible.^^ Thus, while this 

particular idea of continuity is not exactly the same as the concept of 

continuity associated with causal relationships, still Leibniz's use of 

it indicates his conviction that mechanics.'must be structured by the 

principles of the calculus.

Leibniz was impelled toward further systematization of mechanics 

in terms of the calculus through Newton's Principia, which reached him in 

Italy around 1690.^^ This led Leibniz to further elaboration of the force 

concept. Another impetus in the same general direction came in 169A from 

an attack on the Leibnizian calculus by the Dutch geometer Bernard 

Nieuwentijdt (165A-1718).

^̂ Leibniz, Philosophical Papers and Letters, I, 539-540. These 
same ideas were also expressed in a letter to Pierre Bayle (1647-1706) 
printed in July 1687 in the Nouvelles de la République des Lettres. 
Leibniz, Opera philosophies que exstant latina. gallica. germanica omnia. 
Ed. J. E. Erdman, reproduction of edition of I84O (Meisehheim; Scientia 
Aalen, 1959), p. 105.

I, 58.
^^Loemaker, "Introduction," Philosophical Papers and Letters.
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Nieuwentijdt argued that Leibniz could not explain how his 

infinitely small differences differed from absolute zero, or how a sum 

of these differences made up a finite magnitude (essentially the same 

objections later raised in England against the calculus of fluxions) 

Leibniz's answer to these objections ("Reply to Nieuwentijdt") was based 

on the notion of continuity, but that concept itself underwent at this 

time a significant change. Up until Nieuwentijdt's attack, the infin

itesimal differences, which were equivalent to the conati. were conceived 

as being of fixed, if indefinite, magnitude; they were velocities in a 

point. But now, possibly because of Leibniz's recent exposure to the 

Principia, the infinitesimal differences took on a more dynamic 

character.

Of course it is really true that things which are absolutely equal 
have a difference which is absolutely nothing . . . .  Yet a state 
of transition may be imagined, or one of evanescence, in which 
indeed there has not yet arisen exact equality or rest or parallelism, 
but in which it is passing into such a state, that the difference is 
less than any assignable quantity; also that in this state there will 
still remain some difference, some velocity, some angle, but in each 
case one that is infinitely small.

Here the concept of conatus has taken on a more dynamic flavor; it has

become something that produces change. Correspondingly the concept of

continuity becomes one of a continuous flow rather than of a summation of

infinitesimal but static increments. The notion of conatus as producing

change was to be quickly assimilated into Leibniz's concept of mechanical

force.

^̂ See pp. 93-98 above.
70̂Leibniz, Early Mathematical Manuscripts, pp. 148-149.
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Leibniz was not alone in his defense of the calculus. Other 

defenders of the new method were the Bernoulli brothers, Jacob (1654-- 

1705) and John (1667-174-8), the Marquis de l'Hôpital (I66I-I704),
Jacob Hermann (1678-1733), and Pierre Varignon (1654-1722),̂  ̂all of whom 

were to do significant work in the development of the new mechanics based 

on the calculus. Christian Huygens also urged Leibniz to the defense of 

his ideas, as is evident from a letter from Leibniz to Huygens dated 

June 12, 1694°
Your exhortation confirms me in the purpose I have of producing 

a treatise explaining the foundations and applications of the cal
culus of sums and differences and some related matters. As an 
appendix I shall add the beautiful insights and discoveries of 
certain geometricians who have made use of my method if they will 
so kind as to send them to me. I hope that the Marquis de I'Hppital 
will do me this favor if you judge it fitting to suggest it to him. 
The Bernoulli brothers could also do it. If I find something in 
the works of Newton which Mr. Wallis has inserted in his algebra 
which will help us get forward, I shall make use of it and give him 
credit. But I venture to ask that you yourself will favor me with 
what you judge appropriate, as, for example, your analysis of 
Mr. Bernoulli's problem by means of this kind of calculus. . . .

From this letter and the "Reply to Nieuwentijdt," it can be seen 

that Leibniz had not only come a long way toward the basic insight of 

"Newtonian" mechanics— the idea of force as a cause of change which is 

fundamentally conceived in terms of infinitesimals— but that his mathe

matical methods had been accepted and applied by other eminent mathemati

cians. Since mathematics and physics had been kept in close association 

by Leibniz himself, it is only understandable that his associates would, 

as will be evidenced, themselves apply the new mathematical methods to 

physical problems along the lines suggested by Leibniz.

71Loemaker, Philosophical Papers and Letters. II, 880.
72Leibniz, Philosophical Papers and Letters. II, 684-685.
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A beginning to a new dynamics was made by Leibniz in two 

writings of the year 1695. In his "Systems nouveau de la nature et de 

la communication des substances, aussi bien que de l'union qu'il y a 

entre l'ame et le corps," which appeared anonymously in the Journal des 

Sçavans, Leibniz attempted to reintroduce the notion of substantial forms 

into philosophy. Matter was to be conceived neither in purely geometrical 

terms as extension, nor in terms of impenetrable and indivisible material 

atoms moving in the void. Rather, matter was to be conceived in terms 

of "atoms" of substance or form.

The fundamental atoms of substance were called "primitive force."

This force did not contain only act, but an "original activity" as well.
73This, along with extension was part of the essence of body. The idea 

that primitive force is not only act, but also activity, reflects Leib

niz's recent insight into the nature of the infinitesimal differences, 

the conati. of the calculus. Forces are not only velocities in a point, 

but are also activities producing velocity.

In a first draft of the "Système nouveau" Leibniz wrote

By force or power fpuissance] I do not mean the power fpouvoir] 
or mere faculty, which is nothing but a near possibility of acting 
and which, being as it were dead, never produces an action without 
being stimulated from without, but I mean something between power 
to act rpouvoir] and action, something which includes an effort, 
an actual working [acte], an entelechy, for force passes of itself 
into action, in so far as nothing hinders it. Wherefore I regard 
force as constitutive of substance, since it is the source [prin
cipe] of action, which is the characteristic of substance. 4̂

73Leibniz, "Système nouveau de la nature et de la communication 
des substances, aussi bien que de l'union qu'il y a entre l'ame et le 
corps," Journal des Sgavans. XXIII (l695), pp. A44-454.

7/
Leibniz, The Monadology and Other Philosophical Writings, 

trans. with introduction and notes by Robert Latta (Oxford: University
Press, 1898), p. 300.
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This new concept of force served to place dynamics squarely 

within the framework of the calculus. Force became a form, that is, a 

mathematical concept, that lay somewhere between "dead force," or weight, 

and the "living force" of a body in motion, whose measure, as has been 

shown, was proportional to the square of the velocity of the body.

Leibniz developed this idea of force further in a work entitled "Speci

men Dynamicum; in Behalf of the Admiration of Laws of Nature Concerning 

Corporeal Forces, the Discovery of Their Mutual Actions, and Their

Reduction to Their Causes," which appeared in the Acta Eruditorum in 
751695.

In the "Specimen Dynamicum," the metaphysical status of force, 

and consequently of the calculus, was made clear. "There is nothing real 

in motion itself except that momentaneous state which must consist of a 

force striving toward change. Whatever there is in corporeal nature 

besides the object of geometry, or extension, must be reduced to this 

f o r c e . H e r e  Leibniz was referring to "primitive force" which was a 

species of what he termed "active force." Also under the classification 

of active force was the so-called "derivative force" that was exercised 

through the limitation of primitive force resulting from the conflict of 

bodies with each other. Derivative force would thus correspond to that 

force that can be sensed in a stressed elastic body or in the impact of 

a moving body.

The classification "active force" suggests the existence of a 

"passive force," which Leibniz also broke down into the species primitive

75Leibniz, Philosophical Papers and Letters. II, 712.

'̂ Îbid =
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and derivative. These corresponded to the power of suffering or 

resisting and constituted a "secondary matter." Bodies thus act by
77virtue of their form and suffer or resist by virtue of their "matter." 

The passive, resisting force is equivalent to the Newtonian concept of 

mass, or quantity of matter.

"Derivative" force was the force connected with local motion, 

through which all material phenomena could be explained. In the actual 

explanation of local motion, however, Leibniz did not use this term, but 

rather those of "dead" and "living force." An example of his use of 

these terms should serve to clear up their meaning, as well as their 

relationship to "primitive" force.

Consider a rotating hollow tube containing a ball that is free 

to move along the length of the tube, as in the following figure. At

D
D

/

I / 1/

the beginning of the rotation the conatus of the radial movement (the 

instantaneous radially directed velocity) is infinitely small with

77Ibid., pp. 714-715.
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rjOrespect to the tangential impetus DD'. However, if the centrifugal 

impulsion arising from rotation is continued for some time, then the ball 

must attain a

. . . certain complete centrifugal impetus D'B' comparable to the 
impetus of rotation DD'. Hence the nisus is obviously twofold, an 
elementary or infinitely small one, which I call a solicitation, 
and one formed by the continuation or repetition of these elementary 
impulsions, that is, the impetus itself.

Hence force is also of two kinds: the one elementary which I
also call dead force because motion does not yet exist in it, but 
only a solicitation to motion, such as that of the ball in the 
tube; . . . the other is ordinary force combined with actual 
motion, which I call living force. An example of dead force is 
centrifugal force, and likewise the force of gravity or centripetal 
force; also the force by which a stretched elastic begins to restore 
itself.79

In this passage Leibniz has stated the fundamental relationship 

of the new dynamics; the summation, or integral of the elementary impul

sions— primitive forces— is equal to the total acquired impetus of the 

motion. There was however a question remaining. Impetus, or quantity of 

motion was not the same as living force, which was proportional to the

square of the velocity, yet both living force and impetus arose "from an
80infinite number of impressions of dead force." How then was the trans

ition from dead to living force to be understood?

Leibniz observed that many men had seen a proportionality between 

dead force, or weight, and the product of mass and velocity.

78An impetus, or quantity of motion has existence only in time.
It is a summation, or integral of impulsions over a given time interval. 
Ibid.. p. 715.

79ibid.. pp. 716-717.

G°Ibid., p. 717.
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This happens for a special reason, namely, that when, for example, 
different heavy bodies fall, the descent itself, or the quantities 
of space passed through in the descent are, at the very beginning 
of motion while they remain infinitely small or elementary, pro
portional to the velocities or to the conatuses of descent. But 
when some progress has been made and living force has developed, 
the acquired velocities are no longer proportional to the spaces  ̂
already passed through in the descent,but only to their elements.

By this Leibniz meant that there appears to be a proportionality

between the force of a falling body and its velocity in the first instants

of motion because, during that time, velocity and space traversed are

proportional. However, as the duration of the fall increases, the

velocities of descent are only proportional to the instantaneous elements

of the space traversed (ds); while the total force of the motion must be
82calculated "in terms of the spaces themselves." In modern (Leibnizian) 

notation, this would be expressed as Jfds ̂  v̂  of fds-~l/2vdv.

This relationship can be seen to correspond to, or to contain, 

the two "measures" of force earlier determined by Leibniz, and it fully

describes the transition from dead to living force in terms of the cal-
81cuius. The relationship is also equivalent to Newton's Second Law, the 

only difference being that the "evanescent" character of force is con

ceived in terms of space rather than of time, as is the case with Newton.

There is a certain sense in which Leibniz was more consistent 

than was Newton. Leibniz stated that force was something absolutely real 

in created substance, but

Gllbid.. pp. 717-718.

BZlbid.
83The relation, fds ̂ vdv, can be transformed as follows: 

fds " dt/dtds/dt ° dv or fdt/—' dv or f-̂ 'dv/dt.
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. 0 . space, time and motion are of the nature of relations and 
are not true and real per se but only insofar as they involve the 
divine attributes such as immensity, eternity, and activity or the 
force of created sbustances

This is reflected in the relationship between dead and living force, since 

there appear in it no absolute spaces or times, but only increments, or 

elements thereof. He could accept the fact that velocity does appear as 

an absolute in the relationship because it is expressive of force. New

ton on the other hand had asserted that space and time are absolute, and 

yet they do not appear as such in his Laws of Motion.

The relativity of motion led Leibniz to still another important

conclusion, namely that, since motion consists in mere relationship, the

. . . equivalence of hypotheses is not changed by the impact of 
bodies upon each other and that such rules of motion must be set 
up that the relative nature of motion is saved, that is, so that 
phenomena resulting from collision provide no basis for deter
mining where there was rest or determinate absolute motion before 
the collision. 5

Since the impact of two bodies is the same no matter which of them is 

assumed to have true motion, the effects of percussion must be equally 

distributed in both. Both bodies suffer and act equally. Thus it is 

possible to derive the effect in one from the action in the same one, or, 

what amounts to the same thing, bodies move under their own force. Since, 

further, "only force and the effort arising from it at any moment exist 

. . . and every effort tends in a straight line, it follows that all 

motion is in straight lines, or compounded of straight lines.Finally,

B^lbid., p. 728.
85Ibid.. p. 729.
^^Ibid.. pp. 733-735.
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there is no body, however large or small, that has no elasticity and is 

not permeated by still subtler substances„ "There are no elementary
87bodies, . . . [and] analysis precedes to the infinite."

Leibniz cannot be said to have delivered a fully articulated 

theory of mechanics to his colleagues and in this respect he fell far 

short of Newton’s achievement. Of greater significance is the simple fact 

that Leibniz had colleagues with whom he could and did share his most pro

found insights on the nature of the physical world. As has been shown, 

these insights both begin and end with the idea of elasticity— the power 

of continuous action that is substantially present in every body— and 

include the fundamental insight into the causal relationship between 

weight and motion. The fact that Leibniz’s expression of this relation

ship, although mathematically equivalent to Newton’s, was based on 

entirely different metaphysical suppositions and dealt with "forces" 

rather than instantaneous increments of motion should serve to establish 

the originality of Leibniz’s ideas. Furthermore, the form of the rela

tionship used by other writers provides a clear indication as to which of 

the two men, Newton or Leibniz, had exerted the greatest influence on 

their thought. It was not until late in the period under consideration 

here that the mathematical equivalence of the two forms came to have 

greater significance than their differing metaphysical contents.

Newton and Leibniz were of course not the only sources of 

influence on French mechanical thought. More so than in England, the in

fluence of Descartes and Rohault had to be overcome before it was possible

8?Ibid.. p. 731.
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to even see a causal relationship, of the kind set up by Newton or 

Leibniz, between weight and motion. As has been pointed out, the work 

of Mariotte represented a departure from Rohault and serves to define a 

trend in French mechanics that emphasized the notions of elasticity and 

continuity. Therefore, the men associated with it tended to assimilate 

the work of Leibniz and/or Newton much more easily than would any strict 

follower of Rohault and Descartes. Consequently, the latter group would 

be of interest, not because of any significant contributions to the 

development of theoretical mechanics, but because they would constitute 

one of those not so rare groups in the history of ideas that seems to 

prefer to put up with the inadequacies of an old system of ideas rather 

than to accept new ones.

However, in the France of the period, there were few "purists” 

of any sort in the field of mechanics. Most of those publishing treatises 

and articles in the field showed a good deal of eclecticism. Although the 

Cartesian system had great appeal, still there were areas where its fail- 

ure was all too obvious. As an example of the conflicting influence

"Pierre-Silvain Neges (1632-1707) . . . had become an ardent 
Cartesian under the influence of Rohault (1620-1675), whose Paris lec
tures did much to popularize Descartes' views, and had devoted his life 
to the propagation, with a few personal amendments, of the Cartesian 
system. He had lectured on Cartesianism with great success at Toulouse 
and elsewhere from 1665 to 1680, returning in that year to continue 
Rohault's lectures, and subsequently gave himself up to writing in the 
Cartesian cause. His reply to Leibniz, which appeared in the Journal des 
Savants in June 1697, was couched in the most indignant terms. He vigor
ously denied all Leibniz's assertions, maintaining that they were based 
on a misinterpretation of Descartes, and went on to launch a personal 
attack on Leibniz. Behind a façade of self-confident contempt, this 
reveals a good deal of uneasiness about the progress being made by 
Descartes' opponents, of whom Leibniz is clearly regarded as one of the 
leaders, and the inability of the Cartesians to check it.” Barber, 
pp. A7-Â8.
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of Rohault and Mariotte, the work of Philippe de La Hire (1640-1718) is

of particular interest because La Hire wrote his Traité de Mécanique
89before the impact of Leibniz's thought was very widely felt.

Since the theory of simple machines constituted the strongest 

portion of Rohault's mechanics, the greatest similarity between La Hire 

and Rohault is to be found in that area. The crucial definition of center 

of gravity as given by La Hire is almost the same as that of Rohault: a

point within the body such that, if the body is suspended at that point, 

all the parts of the body will remain at rest. Also the center of grav

ity is a point which can be considered to be as heavy as if the weight of 

the entire body were concentrated there.

However, whereas Rohault had included the idea of equilibrium 

in his conception of the center of gravity, La Hire explicitly avoided

this. For him the basic idea of machines was that if "all things are
91equal on both sides" of the fixed point there will be equilibrium. In 

the words "all things" there lies a significant departure from Rohault's 

treatment, for La Hire introduced into his mechanics the idea of the 

moment of a heavy body, a concept not found in Rohault. The moment is 

the "effort" with which a power can act on a body when applied to a 

machine. This effort, or moment, is composed of the absolute gravity of 

the power and the "force" with which it acts. "This composition is not

89 ^Philippe de La Hire, Traité de Mécanique ou l'on explique tout
ce qui est nécessaire dans la Pratique des Arts, et les Propriétés des 
Corps pesants lesquels ont un plus grand Usage dans la Physique (Paris:
De L'imprimerie Royale et se vend chez Jean Anisson, MDGXCV).

90Ibid.. pp. 8-9.

^^Ibid.. pp. 14-15.
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a simple addition of the parts of the absolute gravity with those of its 

force, these parts being assumed equal, . . . but a compound addition 

which is a multiplication of the parts of the absolute gravity [of the 

power] . » o by those of its force.

In the discussion of simple machines, the term "force" means 

lever arm, or distance from the fixed point, but in the discussion of 

impact, "force" means velocity. For instance. La Hire stated that the 

"effort" that a moving body can exert is equal to the product of its abso

lute gravity and its velocity.Here La Hire has attempted to lay the 

groundwork for a synthesis of statics and dynamics— the concept of 

"moment" approaches both the ideas of virtual velocity and of momentum, 

except that his "effort" of a moving body involves weight rather than 

mass. In demonstrating the usual theorems concerning the lever, which he 

regarded as the basic machine, La Hire did not, however, make any specific 

use of the moment concept. Instead he followed a procedure essentially 

identical to that of Rohault.Therefore, the relational structure of 

La Hire's mechanics, in spite of the idea of the effort of a power, or its 

moment, is one connecting static configurations of weights and lengths to 

the state of equilibrium. It does not embody any notion of causality.

Just as La Hire's work tends to resemble that of Rohault in the 

field of statics, it tends to draw on that of Mariotte in the field of 

impact phenomena. The usual rules of inelastic collision provided the

92ibid.. pp. 10-11,
937̂ Ibid., pp. 401-402.
^̂ Ibid., pp. 13-23.
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basic framework, and the rules for elastic collision were derived from 

them through the addition of the notion of elasticity„ As with Mariette, 

elasticity, for La Hire, simply meant that when two elastic bodies have 

been deformed through impact, at the instant when they have regained 

their original forms, they will have the same relative velocity as they 

had before collision. This relative velocity will be divided between the 

two-bodies inversely according to their weights.

Unlike Mariette, however. La Hire did not make use of the notion 

of elasticity in attempting to establish the relationship between weight 

and momentum even though he made the attempt in the context of the same 

problem— the proposition that, if the "efforts" of two bodies falling on 

opposite ends of a balance are inversely as their distances from the 

fulcrum, there will be equilibrium at the moment of impact. La Hire 

reasoned that, since the same quantity of motion can be produced in an 

infinite number of combinations, the weights may be adjusted so that they 

are in the ratio of the momenta. Then their velocities would be equal.

Now the same momenta may be maintained by increasing the weights and 

decreasing the velocity indefinitely. This process may be carried out 

until the velocity has become vanishingly small, and the weights (although 

now indefinitely large) may be assumed to be at rest. If the lever arms 

are in the inverse ratio of the momenta, the balance will now be in 

equilibrium, by the fundamental theorem of the lever.

Thus, by considering weight and momentum, or static and dynamic 

"effort," to be the same. La Hire was able to reduce a dynamic situation

95lbid.. p. 390.

^^Ibid., pp. 4OI-403.
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to a static one. But in so doing he also brought to light the infinite 

gap between them. Nonetheless, it was possible to solve many problems on 

this basis of the substitution of weight for momentum: for instance, that

of the center or percussion.

In his treatment of the center of percussion of a compound body. 

La Hire simply assigned to each point of the body a static load which was 

proportional to the momentum of the point. Then the center of percussion 

of the body, according to his definition, would be identical with the 

center of gravity of his construction. This sort of problem caused no 

difficulties, since it involved no causal action and was, in spite of the 

motion of the body, essentially a static matter, one involving only geo

metrical configuration. As long as there is some proportionality between 

weight and momentum, the substitution of one for the other could be suc

cessfully made even though the exact nature of their relationship was 
97not known.

La Hire also attempted to derive laws of motion of falling bodies

from his theory of impact, but did not succeed in doing more than reca

pitulating the work of Galileo, who he cited as its original author. 

Without the concepts of mass or force. La Hire could do no more than 

assume the occurrence of successive "blows" exerted on the body in equal 

time intervals. This sufficed for a loose derivation of the proportion

ality of distance traversed to the square of the elapsed time, but could
98lead to no rigorous dynamic relationships.

^^Ibid,. pp. 404-405. 
98Ibid,. pp, 409-418,
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Thus La Hire's mechanics, as contained in the Traité de Mécanique 

falls far short of the unification of the mechanical disciplines. His 

failure to grasp the notion of causality led him to identify weight and 

momentum in the single concept, "moment," With this idea as its central 

concept, La Hire's theory of mechanics could do no more than loosely hold 

together the laws and rules produced in various fields. It could explain 

none of these in a satisfactory manner, and most importantly, it yielded 

no new insights.

Nonetheless, La Hire's work does serve to illustrate further 

that there was a drive among French mechanicians toward the production of 

a unified, dynamic theory, and that the fulfillment of this drive was 

absolutely dependent on the acceptance of the calculus as the logical 

structure of physical theory. Even more illustrative of the truth of 

these assertions is the work of Pierre Varignon (1654-1722) over the 

period from 1687 to 1720. Varignon not only attempted his own novel 

synthesis of mechanics on the basis of a single principle, but eventually 

came under the influence of Leibniz and the new mathematics.

In 1687 Varignon published a work entitled Pro.iet d'une nouvelle

mechanique that proposed to base the theory of mechanics, that is, of
99machines, on an entirely new principle. Varignon was impressed by the 

fact that all authors on mechanics reduced the action of all of the simple 

machines to that of the lever. This he rightly saw as an indication that 

their basic principles were not broad enough to demonstrate the properties

99Pierre Varignon, Projet d'une nouvelle mechanique avec un 
examen de l'opinion de M. Borelli sur les proprietez des poids suspendus 
par des cordes (Paris: chez la Veuve d'Edme Martin, Jean Boudot and 
Estienne Martin, 1687),
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of the various machines separately. Whereas other authors had 

demonstrated the "necessity" of equilibrium, Varignon wished to under

stand its "nature." That is, he wished to study the "generation" of 

equilibrium.This intention on the part of Varignon indicates that 

he had already moved in the direction of causal thinking in the modern, 

or Hobbesian sense.

In his investigation he first considered a body on an inclined 

plane and saw that the equilibrium between the sustaining force and the 

weight follows the proportion of the sine of their mutual angle. He 

considered also pulleys and levers and found always the same— equilibrium 

is to be understood from the point of view of the composition of motion.

It is significant that Varignon understood equilibrium in terms of the 

composition of motion. What was the relationship between motion and 

force? In the single axiom given in the Projet d'une nouvelle mechanique,

Varignon stated that the spaces traversed by a body in equal times are in
102the proportion of the forces moving the bodies. That is, moving force 

is proportional to velocity, the basic statement of Aristotelian dynamics. 

Indeed, Varignon "remained consciously faithrul. to Aristotelian dynamics 

Varignon's Aristotelianism, along with his search for causal 

understanding, both tended to make him open to Leibniz's ideas. Leibniz 

was, after all, endeavoring to restore a typical Aristotelian doctrine—

1 0 0 ^ ,  . j rvs/. . -V 1Ibid., pp. [eijr-ivJ.

lÔ Ibid.
1 n?û̂ Ibid., pp. 1-2.
103Rene Dugas, A History of Mechanics, trans. J. R. Maddox 

(New York: Central Book Co., 1955), p. 255.



200
that of substantial form— to its rightful place in physics within a 

causal frameworko

Varignon attempted to apply his idea of force and motion to

dynamics in his "Regies du Mouvement en général" of 1692.^^^ In this

work, the main principle of motion was that

, . . dans toutes sortes de mouvemens, soit qu'ils se fassent en 
roulant ou en glissant, soit en ligne droit ou en ligne courbe, 
soit que ces mouvemens soient uniformes ou acelerez ou retardez, 
dans toutes les proportions et dans toutes les variations 
imaginables; la somme des forces qui font le mouvement dans tous 
les instants de sa duree, est toujours proportionelle a la somme 
des chemins ou des lignes que parcourent tous les points du corps mû.l05

Here again is the Aristotelian idea that motive force is 

proportional to velocity. But since Varignon, according to the causal 

point of view, was attempting to understand motion in its basic, instan

taneous elements, force was proportional to distance. Actually, his 

principle expresses the result of a summation of all the instantaneous 

elements of the motion. Translated into the symbolism of the calculus, 

it would read Ĵ fdt — '<5'mds, where f represents force, dt an instant 

of time, m the quantity of matter in the body, and ds the elementary 

path lengths.

This relationship, although incorrect from a modern point of 

view, nonetheless shows that Varignon's thoughts on force and motion had 

placed him in a position where further progress in the understanding of 

motion was dependent on the possession of a mathematical tool that would

^^̂ Tierre Varignon, "Regies du Mouvement en général," Mémoires 
de 1'Académie Royale des Sciences, Tome X, pp. 225-233*

lO^Ibid., p. 226.
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allow him to carry out the kind of summation he had indicated. In 1693 

Varignon presented two articles to the Paris Academy that represented an 

attempt to reduce all known laws of motion to his general principle, and 

which embodied a means of summation of instantaneous values of force.

The first of these articles, entitled "Regies des Mouvemens 

Accelerez Suivant Toutes les Proportions Imaginables d’Accelerations 

Ordonnées," appeared in May of 1693.^^^ In it Varignon set up a mathe

matical symbolism embodying his ideas which would allow the desired deri

vation of known laws from them. The symbols used are as follows:

Body Mass Space Time Initial Force Exponent of 
Abscissa

M e f c r
N g h d s P

Final Abscissa Final Velocity
V X
y z

Given these quantities, Varignon stated that the velocity increases as

the power, p, of the times or the spaces, or more generally as the power,

p, of the "abscissas" v and y, which may represent anything one wishes.

Then, since in each body the forces at each instant are proportional,

to the velocities they produce, and

... que (hyp.) les vitesses suivent ici la raison des puissances p 
des abscissas des grandeurs v et y; si l'on fait iP/yP = r/^^p et 
iP/ p = ®/gyPj l'on aura rvP et syP pour les plus grandes forces 
des corps Met N à la fin de leurs mouvemens ou des espaces f et h. 
Donc les sommes des forces qui se sont successivement trouvées dans 
chacun des corps M et N pendant les temps C et D „„. sont entr'elles 
comme rvP^P et syP'*'̂ .̂ '̂

p+1 p+1

^^Ppierre Varignon, "Regies des Mouvemens Accelerez suivant 
toutes les proportions imaginables d’accélérations ordonnées," Mémoires 
de 1'Académie Royale des Sciences. Tome X, pp. 339-343.

°̂'̂ Ibid.. p. 340.
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In this passage, Varignon has created an expression for the force of a 

moving body in such a form as to be capable of "integration" of the 

simplest kind; /x^dx = —
u+1
u + 1

With this expression for the total force of the motion, Varignon 

could now go on to the complete expression of his general principle. The 

total forces of M and N are proportional to ef and gh, the products 

of mass and distance. Thus follows the relationship

ryP^^ _ syP~*~̂ , or efsyP^^ - ghrvP~*~̂  .
ef gh

Varignon gave this relationship in yet another form: xesyP = zgrvP,

which results from the above if x and z, the final velocities, are 

expressed as f/v and h/y respectively. In this case, v and y are 

apparently taken as times. Then, in order to find in these equalities the 

particular laws governing each possible assumption concerning acceleration, 

it is only necessary to sbustitute in place of yP̂ ,̂ yP  ̂ the parallel
108powers of the variable that is supposed to regulate the acceleration.

Varignon's equation was not, in itself, a particularly valuable 

addition to theoretical knowledge of the phenomenon of motion. In a meth

odological sense, however, it is of some significance. He had recognized 

that the elementary force moving a body had to be an integrable function

108Ibid., p. 341- Varignon applied his equation to the problem 
of falling bodies in "Application de la Regie Generale des Mouvemens 
accelerez à toutes les hypothesespossibles d'accélérations ordonnées 
dans la chute des corps," Mémoires de 1'Académie Royale des Sciences,
Tome X (1693), pp. 354-360. The article appeared in June, and, in it, 
Varignon managed to derive all of Galileo's results with regard to 
falling bodies from his own general equation.
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of some variable of the motion. It was natural to choose velocity, since 

according to his Aristotelian bias, motive force was proportional to 

velocity. Varignon further was able to employ the ideas of cause and 

effect; the sum of all the elementary causes, or forces, must be equal 

to the total effect, which he saw as the total distance traversed by every 

part of the body. Also, the causal relationship between force and distance 

traversed was contained in a specific operation of the calculus.

During the next few years Varignon published nothing in the 

field of mechanics. It seems as though he was in the process of assim

ilating the new mathematics of Leibniz, John Bernoulli and 1'Hôpital.

L'Hôpital was in contact with both Leibniz and Bernoulli in 1693,^^^ and 

in 1696 he published the first textbook on the calculus, the Analyse des 

infiniment petits pour l'intelligence des lignes courbes, which was based 

in part, on earlier work by John Bernoulli.Thus there was available 

to Varignon a complete treatise on the Leibnizian calculus at a time when 

his own thoughts on mechanics had led him to the need of a fuller under

standing of the new mathematics.

But whatever the exact source of Varignon's knowledge of the 

calculus may have been, in January of the year 1700 he was fully able to 

handle problems connected with motion in terms of the calculus. At that 

time he published an article in the Mémoires de 1'Académie Royale des

^^^See Eric Temple Bell, The Development of Mathematics (New 
York: McGraw Hill, 1945), p. 285, and Florian Cajori, A History of
Mathematical Notations, Vol. II, Notations Mainly in Higher Mathematics 
(Chicago, 111.: Open Court Publishing Co., 1929), p. 185.

^^^Carl Boyer, The History of the Calculus and Its Conceptual 
Development (New York: Dover Publications Inc., 1949), p. 238.,
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Science that dealt with finding the force, velocity, distance and time 

of variable rectilinear motion.

The problem was stated in terms of the following figure.

C
TD, VB and FM represent, by their common abscissa, AH, the space travelled 

by a body along AC. The elapsed time in this motion is expressed by the 

ordinate HT of the curve TD, and VH and VG rxpress the velocity in each 

point H. The ordinates FH, FG and FE represent "de force vers C(je

I'appelleray dorénavant Force Centrale à cause de sa tendance au point C
112comme centre)." TD, Varignon called the "time curve," VB and VK were 

"curves of velocity," and the other three were called "curves of force."

The abscissa AH was set equal to x, the time HT = AG = t, the 

velocities at H, HU = AE = VG v, and the central forces corresponding 

to HI»' = EF = GF - y. Then dx represented the space traversed each 

instant at velocity v, of which dv was the increment; ddx was the space 

traversed by virtue of the increment of velocity in the instant, and dt

111Pierre Varignon, "Manière generale de determiner les Forces, 
les Vitesses, les Espaces et les Temps une seule de ces quatre choses 
étant donnée dans toutes sortes de mouvemens rectilignes variés à dis
cretion," Mempires_d^_lV_Açadgm^^ 1700, pp. 22-27.

112Ibid., p. 22.
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represents the instant. Velocity, according to Varignon, consisted only ' 

in a "rapport” of the space traversed by a uniform motion to the employed 

time, or v = dx/dt. Then dv = ddx/dt, where dt was- taken as constant. 

These relations constituted a "first rule" for the solution of the 

problem.

Then Varignon went on to state, as a "second rule," a relationship

equivalent to Newton's Second Law of Motion.

De plus les espaces parcourus par un corps mû d'une force constante 
et continuellement appliqué, telle qu'on conçoit d'ordinaire lâ  
pesanteur, étant en raison composée de cette force et des quarrés 
des temps employés à les parcourir; l'on aura aussi ddx = ydt̂ , 
ou y = ddx = dv. H4 

dt2 dt

Varignon did not give the source of this relationship, and it, at first 

glance, seems to conform neither to his own earlier ideas, nor to the work 

of Newton or Leibniz. The end result, y = dv/dt looks more like Newton's 

force-motion relation than Leibniz's, but the derivation is not at all 

the same. Where Newton thought of force in terms of an instantaneous 

increment of motion and as a flowing quantity, Varignon has put force and 

the square of „the, time interval together to give the increment of distance 

due to the change, in velocity. Since this combination bears no relation

ship to the basic ideas of Newton or Leibniz, it is likely that it is in 

some way derivable from Varignon's earlier general principle of motion.

In fact, one would expect that Varignon might have attempted simply to 

cast that principle into the language of the new mathematics.

^^^Ibid.. p. 23.

^^^Ibid.
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The general principle, as originally set up, already contained 

the summation of the elementary forces as the cause of the total displace

ment of the body. But, through the adoption of the new methods and nota

tion, Varignon was impelled to relate the quantity ddx, the space traversed 

by virtue of the velocity increment, to force, rather than the total space 

traversed. Translated into the new symbolism, and with time substituted 

for the "abscissa," v, and p set = 1, Varignon's original principle 

relating the force at any time to its effect becomes yt~^ dx (y, the 

centripetal force, replaces r, the earlier "initial" force, and dx is 

the element of distance traversed in an instant). The desired relation

ship between ddx and force can now be reached in a single step by
■ ’ ' 2 115differentiation, ddx/dtydt or ddx ̂  ydt .

Thus, in a sense, Varignon never had to change his mind at all 

about the relationship of force and motion. He was able to keep the 

Aristotelian conception that motive force is proportional to velocity. 

Through the adoption of the calculus, however, the formerly unitary con

cept of motive force took on a two-fold character. The first attempt at 

the formulation of dynamical laws of motion in 1693, with its rudimentary 

use of the calculus, had brought with it the rather obscure "initial" 

force alongside of total force, the two being related through an expon

ential function of the time. With the full application of the calculus, 

the "initial" force emerged as the instantaneous rate of change of momen

tum on the one hand, and as centripetal or weight-like force on the other,

while the "total force" was still related to the observable motion of the 
. \

115This is not intended as a rigorous deduction. It is the 
author's opinion that Varignon's deduction was not more rigorous at this 
point.
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body. That is, the two ideas of force came to be related through 

differentiation, or integration with respect to time, and this sort of 

relationship, as has been pointed out, was the essence of the idea of 

causality.

One of the most interesting aspects of Varignon's work to this 

point is that his basic insights are clearly not too dependent on the 

logical rigor of his thought processes. A too scrupulous attention to 

infinitesimal differences would have prevented him from ever making the 

transition from his original idea to that which seemed correct in the 

light of the work of Newton and Leibniz. In fact, in the same article, 

Varignon showed that his two rules were equivalent to the principles of 

both Newton and Leibniz.

Varignon remarked that his two rules yield the same results as 

Proposition XXXIX of Book I.of Newton's Principia.

D
E

e
c

Suppose the body E to fall from any place A in the 
right line ADEC; and from its place E imagine 
a perpendicular EG always erected proportional 
to the centripetal force in that place tending 
toward the center C; and let BEG be a curved 
line, the locus of the point G. And in the 
beginning of the motion suppose EG to coincide 
with the perpendicular AB; and the velocity of 
the body in any place E will be as a right 
line whose square is equal to the curvilinear 

q area ABGE. HV

If the ordinate EG, the centripetal force, is represented by y and the

I'̂ Ibid., p. 27.
117Isaac Newton, Sir Isaac Newton's Mathematical Principles of 

Natural Philosophy and His System of the World. Trans. Andrew Motte, 
1729. Translation revision and historical appendix by Florian Cajori 
(Berkeley, California: University of California Press, 1947), p. 125.
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abscissa AC by x, the area ABGE is represented hyj^ydx. Then, according

to Newton's proposition, the instantaneous velocity, v, is such that

J*yàx or y/ ydx. Varignon's two rules give dt = dx/v and

dt = dv/y. Consequently, dx/v = dv/y or ydx = vdv, which gives

ydx = j w  or ^ = s/2- ydx, which is Newton's result, but achieved

with a minimum of effort. Also, the relationship achieved through the

elimination of dt between Varignon's first and second rules is the
12.8basic relationship of Leibniz's mechanics.

This performance on Varignon's part points up a number of 

significant things. First of all he seems to have felt that he had 

accomplished his results in a manner that was his own and significantly 

different from that of either Newton or Leibniz. Secondly, he was thor

oughly familiar with the Principia and not only understood it in a manner 

far superior to the "Newtonians" of his day, but regarded it as a work of 

great authority. One might then say that Varignon's work was done under 

the influence of Newton, except that he made use of the Leibnizian form 

of the calculus. However, Varignon's results, as has been shown, repre

sent a growth out of earlier, essentially different ideas about force and 

motion, that were shaped into their final form through adaptation to the 

calculus, Newton only represented substantiation of already achieved 

results.

Those results were extended to non-rectilinear motion in another 

mémoire submitted to the Paris Academy in 1700,^^^ in which Varignon

ll8Varignon, Mémoires de 1'Académie Royale des Sciences. 1700,
p. 27.

119Pierre Varignon, "Du Mouvement en General. Par toutes sortes
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produced "une formule tres-simple des Forces Centrales, tant centrifuges

que centripètes, lesquells sont le principal fondement de l'excelent
120ouvrage de M. Newton, De Phil, natur princ. Math.

In this mémoire, all things are the same as in the preceding

one except that the body moves along a curved line rather than a straight

one toward the center of force. Again there are two basic variables, x,

the distance to the center of force, and the time, t. The velocity is

again represented by v, and the absolute central force by y. However,

Varignon had to introduce the distance traversed along the curve, s, and

its element ds, the distance traversed at velocity, v, in the time

interval dt. Then, dds was the distance along the curve traversed by

virtue of the increment dv.

As the first rule, Varignon then defined v as ds/dt, from

which vollows dv = dds/dt. The force along the curve, the component of

y that is directed along the tangent to the curve, is y^, so that,
(ix ?according to the same argument used before, dds = y—  x dt or

y = ^ w à  =
Again Varignon has made use of his own form of the fundamental 

dynamical relationship and arrived at a differential equation almost 

identical to Leibniz's equation for the transition from dead to living 

force. It is perhaps of significance that this more general rule for 

finding central forces was written in the Leibnizian. form when it could

de Courbes; et des Forces Centrales, tant centrifuges qui centripites, 
nécessaires aux corps qui les décrivent." Mémoires de 1'Académie Royale 
des Sciences. 1700, pp. 83-101.

^ZOibid.. p. 83.
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just as easily have been written y ^  = In any case Varignon again

referred to both Newton and Leibniz as sources tending to confirm his

analysis of central forces and their effects;

. 0 . encore la seconde de ces Regies suffira-t-elle pour cela, 
ainsi qu'on le va voir dans les exemples suivants par la conformité 
de mes solutions avec celles de M. Newton dans ceux qui nous seront 
communs. Quant à l'exemple de M. Leibniz, étant d'Astronomie, ce 
sera pour une autre fois.122

Thus far, ail of Varignon's work in dynamics has concerned itself

with the problem of bodies moving under the influence of central forces.

Insofar, his work is specialized and cannot be considered as presenting

a unified theory of mechanics. In particular, the force concept, while

exhibiting the necessary internal structure, that is, the weight-motion

relationship, has not been generalized beyond the action of gravity, or

weight. However, in 1707, Varignon submitted a memoir to the Paris
123Academy in which the concept of force was considerably broadened.

Varignon noted that Newton, in the Principia. Leibniz in the 

Actes de Leipsik of 1689, Huygens in his discourse on the cause of grav

ity, and Wallis in his Oeuvres Mathématiques had all treated the resistance 

of media to the motion of bodies passing through them. The results that 

all of these men had achieved on the basis of their hypotheses as to the 

nature of the resistance, as well as whatever results might follow from

121Since, however, both y and v are given as functions of x 
through the "curves of force" and the "curves of velocity," the inte
grations indicated in the equation ydx = vdv can be carried out 
immediately.

IZ^Ibid., p. 88.
123Pierre Varignon, "Des Mouvemens faits dans des milieux qui 

leur résistent en raison quelconque," Mémoires de 1'Académie Royale des 
Sciences, 1707, pp. 382-398.
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any other hypothesis, Varignon felt could be expressed in a single 

proposition of his devising.

For the expression and proof of this all-inclusive proposition, 

Varignon required a number of definitions and lemmas. The "instantan

eous resistance" he defined as being proportional to the instantaneous 

decrements of velocity. These decrements he termed "successively con

tinuous" if they occurred without interruption and were all of the same 

order of magnitude. In general, any quality which the moving body would 

have without the resistance of the medium was to be described as "primi

tive.

With these basic ideas established, Varignon went on to the 

statement of two lemmas, the first being that the instantaneous and 

successively continuous resistances of any medium to any finite movement 

of finite duration are infinitely small with respect to the "persevering" 

force which produces the finite motion of the mobile. This statement 

serves to place the decrements of velocity resulting from the resistance 

in the same order of magnitude as the increments of velocity that would 

result from the a ction of the force in the absence of the medium. Its 

demonstration consists in the observation that if the instantaneous resis

tances were finite, their sum over any time interval would be indefinitely
125large and the assumed motion would be impossible.

The second lemma states that the sum of the instantaneous 

velocities of a body moved in any manner is always proportional to the

IẐ ibid.. pp. 384-385.
125ibid.. pp. 385-387.
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length of the path which they have caused it to traverse, one after the 

other by instants. The demonstration proceeds in terms of the calculus; 

if e is the distance traversed, t the time, and u the instantaneous 

velocity, then u = de/dt, udt = de, udt = e.̂ ^̂

The proposition itself was stated in the form of a problem,

namely to find an expression for the resistance of a medium such that the

sum of the velocity lost by the mobile due to the resistance and the

velocity remaining to it would be, at every point, the same as its
127"primitive" velocity. While this proposition looks innocent enough, 

there is a good deal more to it than at first meets the eye. Varignon 

was here attempting to set up a perfectly general differential equation 

for motion in resistant media that would be valid for any hypothesis 

concerning the nature of the resistance. The only condition imposed was 

that the sum of instantaneous lost and retained velocities be equal to 

the instantaneous "primitive" velocity at every instant of the motion.

The method of solution is somewhat complex and will be largely 

omitted here except for those parts that bear on the generalization of 

the concept of force. In general, the solution proceeds on the basis of 

curves of "primitive" velocity, "lost" velocity or resistance, "remaining" 

velocity, and resisting force, all .plotted against time as their common 

abscissa. Thus, as in his earlier work, Varignon's aim in this problem 

is to elaborate the relationship between the ordinates of these curves.

The basic relationship among these curves is that the ordinate 

of the force curve, z, is always in a constant ratio to the instantaneous

IẐ ibid.. p. 386.

12?Ibid.
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increment of the resistance, dr, which in turn is proportional, by the 

first definition, to the instantaneous decrement of velocity. Their

constant ratio is equal to dt/a, where both dt and a are constant.

Now, the increment of resistance, dr, is equal to the instantaneous incre

ment of "primitive" velocity, dv, minus the change in the "remaining" 

velocity, du, or dr = dv-du. Thus results the differential equation 
dv-du - ^  which is the equation for the curve of resistance, z and v

being given. The result is then v-u = ^^zdt.^^^

Z represents a cause of a change in motion that can be any 

function of the velocity, or of anything else for that matter. It is the 

hypothesis as to the nature of the resistance. Further, if dv is assumed 

to result from the action of some central force, f, then it may be replaced 

by fdt, so that the differential equation becomes du = (f-|)dt. The 

quantity f-^ is then a "resultant" force, and the relationship between 

"force" and motion has been broadened to the point that it applies to any 

dynamical situation.

With this step, Varignon gave evidence of an almost complete 

understanding and acceptance of the theory of mechanics usually described 

as Newtonian. Not only has he shown that his methods are equivalent to 

the Newtonian system insofar as the treatment of central forces is con

cerned, but also he has taken the further step of generalization of the 

force notion to the point where it is a mathematical entity, a function, 

that represents a cause of a change in motion. The main things that 

could be considered as lacking in Varignon's mechanics are the connection

1PAIMd., pp. 386-387.
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of statics and dynamics through the principle of virtual velocities and 

the connection of dynamics and the laws of impact through an analysis of 

elasticity as a force with some functional dependence on factors in the 

collision of bodies. Both of these necessary additions, as will be shown 

in the next chapter, were to be supplied by John Bernoulli, who therefore 

can be said to complete the assimilation of "Newtonian" mechanics on the 

continent.

In this review of the transition period ,of French mechanics, 

from Rohault to Varignon, the influence of Leibniz, principally through 

his form of the calculus, has been apparent. Under the impact of the 

ideas of causality and continuity as expressed in the calculus, the 

Cartesian view of the physical world rapidly gave ground before the new 

methods and the metaphysical content attached to them. However, in 

Varignon there appears a deviation from Leibniz's metaphysical ideas that 

is perhaps a vestige of the Cartesian outlook. Particularly in his trea

tise on motion in resistant media, Varignon used the basic dynamic

relationship in its Newtonian form. This implies that he considered
2momentum, mv, to be the "force" of a body in motion rather than mv , and 

that the action of force in time was somehow more basic than its action 

through space. These ideas are more compatible with the thought of 

Descartes than with the corresponding Leibnizian forms.

Thus there appears here something that might be regarded as a 

tendency to assimilate the insights opened up by Leibniz and the calculus 

into a Cartesian framework. The culmination of this tendency was to 

appear in a treatise by John Bernoulli which unsuccessfully attempted 

to reinstate the Cartesian vortices on the basis of the new dynamics.
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Even among those who were most indebted to Leibniz there persisted a 

predilection for Cartesian metaphysics which, in its final demise, 

tended to obscure Leibniz's role in the development of mechanical 

thought and to deposit all the laurels on Newton's godly brow.



CHAPTER IV

FRENCH AND ENGLISH MECHANICS IN CONFLICT

The central figure in the further development of mechanics in 

France up to the end of the period under consideration was John Bernoulli, 

The closeness of his relationship with Leibniz has already been pointed 

out and is evidenced by the fact that their published correspondence runs 

to two volumes.^ However, it is not the specific character of their cor

respondence but the fact of their long professional contact, along with 

Bernoulli's published writings in the field of mechanics, that is of 

significance for this study. Bernoulli's work stands by itself and 

represents not a recapitulation of any Leibnizian mechanical system, but 

rather an application of the Leibnizian method of analysis. That method, 

while applied to the solution of certain specific problems by Bernoulli 

and others, tended to draw all of its areas of application into a single 

theoretical structure.

This process of the unification of mechanics was carried a long 

way by the work of Varignon up to 1707, especially in the generalization 

of the force concept. Varignon, however, with his almost exclusive con

cern for the analysis of motion under the influence of central forces,

Ĝul. Leibnitii et Johannis Bernoulli Commercium Philosophicum 
et Mathematicum, (Lausan. et Genev.: 1745), 2 volumes.

216
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had departed from one of the major themes of French mechanical thought 

up to that time, namely, the property of elasticity in the context of 

the collision of elastic bodies. As has been indicated earlier,

Bernoulli was to take up this question again, but only after the elapse 

of a considerable span of time. His early work in the field of dynamics 

dealt with the same problems that had been treated in Varignon’s memoirs 

of 1700 and 1707. With regard to the problem of the dynamics of bodies 

moving under the impulsion of central forces, the expression of Bernoulli's 

thought came as a reply to a letter from Jacob Hermann (1678-1733) that
pwas published in 1710 in the Mémoires of the Paris Academy.

Hermann's work is heavily mathematical, making use of integral 

and differential calculus to second order derivatives. This mathematical 

apparatus was brought to bear on the "inverse" problem of centripetal 

forces; that is, if an expression for the force is known, to find the 

trajectory of the motion. While Varignon's work on central forces dealt 

with this problem, Hermann's method of attack was considerably different 

and much more detailed.

L
Xs

Jacob Hermann, "Extrait d'une lettre de M, Hermann à M. Ber
noulli de Padoüe le 12 Juillet 1710," Mémoires de 1'Académie Royale des 
Sciences, 1710, pp. 519-520.
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In the above figure, let SI = x and IC = Then SC = i/x̂  + y2  ̂

BH or GG = dx, GH or EG = dy, KG or DF = -ddx, and EF = -ddy. Hermann 

first showed that ydx - xdy is equal to twice the areas of the triangles 

BSG or OSD which are equal and remain constant throughout the motion.

The similar triangles EDF and CSI yield the expression

ED = -ddx \/x̂  + y^,
X

which, taken in a constant time interval, represents the deviation of the 

mobile from the position it would attain through motion at constant 

velocity. This distance Hermann identified as resulting from the action 

of the centripetal force, which was assumed to vary as

2 2 ) 2 _L 2X + y x*̂ + y

since the numerator is a constant of the motion.

The two expressions were then equated to produce a differential 

equation of the second order,
x(ydx - xdy 

-addx = ---------- ■------,
(x2 +  y 2 )  y/x2 +  y 2

where "a" is a constant of proportionality. The integration of the above 

equation yielded an expression for the trajectory, a+^ = i/x̂ + ŷ ,

which Hermann identified as an equation for three of the conic sections: 

a parabola if b = c, an ellipse if b > e, and an hyperbola is b < c.̂

The key point of this mathematical tour de force is the 

identification of the distance ED, traversed in an instant of time, with 

the action of the centripetal force, and in spite of the suppression of

Îbid.

(ydx - xdy)'
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the time factor, the solution appears to be quite Newtonian in character; 

the distance ED represents an instantaneous acceleration.

Bernoulli's reaction to Hermann's work was, first of all,

critical. He remarked that Hermann had only found a particular solution

to a problem where the result was already known. Also, if the force law
2were any other than l/r the method of solution would be impossible, since 

the variables were so mixed up. And finally, Hermann had not shown that 

no orbits other than the three conic sections were possible.^ In both 

Hermann's work and Bernoulli's criticism of it there appears an enormous 

degree of both mathematical and physical sophistication compared to the 

work that was done prior to the publication of Leibniz's calculus. 

Bernoulli's demand that a solution to the "inverse" problem should pre

clude the possibility of the existence of orbits other than those 

specifically indicated that satisfy the conditions of the problems, is 

truly remarkable. Not only does this demand indicate that Bernoulli had 

a profound understanding of the calculus, but also that he saw the cal

culus as the structure of physical reality. The notion of proving that

a solution to a problem is absolutely unique is a much stronger one than 

simply finding one solution that works. Bernoulli's demand also seems to 

be an expression of Leibniz's notion of "compossibility;" those, and only 

those, orbits may actually exist as physical realities whose elements 

are mutually compatible, that is, whose elements conform to the basic 

differential equations generating the motion. It should then be possible

^John Bernoulli, "Extrait de la Réponse de M. Bernoulli à 
M. Hermann datée de Basle le 7 Octobre, 1710," Mémoires de 1'Académie
Royale des Sciences. 1710, pp. 521-523.
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to show mathematically that only a limited group of curves have this

characteristic and to identify each member of that group.

Following his criticism of Hermann, Bernoulli ventured to

present his own solution to the problem, one that would be perfectly

general as to the force hypothesis, would not deliver an equation in

which the unknowns were mixed, and which would be free from "differentio- 
5différentielles."

Preliminary to his solution of the problem, Bernoulli proved a 

lemma that is also to be found in Newton's Principia (Proposition XL of 

Book I), which is of some particular significance because Bernoulli 

remarked of Newton's proof, in comparison with his own, "mais elle y 

trop embarrassée: la voici plus simplement."^ The lemma states that if

two bodies whose masses are proportional to their weights begin their 

descent from the same point A, with equal velocities and equal forces

C ÛT Y

Îbid.. p. 523.

^Ibid. Abraham de Moivre (1667-1754) published an article 
entitled "Observations on Mr. John Bernoulli's Remarks on the Inverse 
Problem of Centripetal Forces in the Mémoires of the Paris Academy for 
the Year 1710; With a New Solution of the Same Problem," Philosophical 
Transactions. N° 340 (1713), pp. 91-95, De Moivre's solution makes only 
scant use of the calculus.
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toward the same point 0, the one following a straight line AO toward 0

and the other moving along the curve ABC, than at all equal distances

from the point of attraction, 0, the two bodies will always have equal 
nvelocities.

Bernoulli's proof of the lemma is based on two propositions.

First the force acting along the curve, in the direction of the arc Bb, 

is to the force acting along Ee as Ee is to Bb, Secondly, the ele

mentary times necessary to traverse Bb and Ee are in the ratio Bb 

to Ee, Then, since the increments of velocity are proportional to the 

acting forces and the elementary times, the velocity increments along 

ABC will be as Ee x Bb and those along the vertical as Bb x Ee,

The same thing being true for any elements equidistant from C, it follows 

that the velocities at all points are the same.

As a corollary to the lemma, Bernoulli derived an expression 

for the velocity as a function of the distance from the center. In the 

above figure, DGg represents the velocity, v, along AC or ABC, and 

CE is the distance, x, from the force center. The force directed toward 

C is 0 which is given as a function of x according to some law. Then, 

since the elementary time is equal to dx/v, and since the elementary 

time multiplied by the force gives the momentaneous augmentation or 

diminution of velocity, dv, with which the body approaches or departs from 

0, 0dx/v = -dv, or 0dx = -vdv. This yields the integral J*0dx = ab - w, 

where ab is a constant quantity. Therefore v = /sb - ̂  0dx, a result

^Bernoulli, Mémoires de 1'Académie Royale des Sciences. 1710,
p, 523,
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which is substantially the same as Varignon's earlier conclusion, except 

for the constant of integration.

From this point, Bernoulli was able to find an expression for 

the trajectory, ABC, assuming that the above integration is possible. Let 

OA = a, AL = Z, LI = dz, and Nb = xdz/a. Then, the time required to pass 

through Bb will be proportional to Nb x BO = xxdz/a. Since distance 

traversed is equal to the velocity multiplied by the elapsed time,

Bb = xxdz/a x \/ab -J*0dx. But Bb is also equal to

J ^ , .2  4. xxdẑ
V — 5—  )

BT

so that, equating these expressions, there arises a differential equation 

for the trajectory in terms of Z and x

aacdx_______________dz =
abx^ - yè' , ) 0dx - aaccxx

This equation expresses the "nature" of the trajectory; every integral of 

it is a physical possibility.

There are a number of things with regard to Bernoulli's work on 

the inverse problem that are of significance. Perhaps the most obvious 

of these is that his work constitutes an explicit challenge to Newton and 

his followers. Not only did he claim that his methods were simpler, and 

therefore, from a mathematician's point of view, more correct than New- 

ton̂ s; but he also exhibited, to advantage, the power of the Leibnizian 

calculus to handle physical problems. Considering that, just at this time, 

the dispute over the authorship of the calculus was just getting under way,

^Ibid., pp. 524-526.
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it is easy to see that Bernoulli's successful use of its Leibnizian form 

could only add fuel to the fire.

With regard to the fundamental dynamic relationship, Bernoulli 

seems to represent a sort of compromise position between Newton and 

Leibniz. He starts from the position that force, multiplied by the ele

mentary time, gives the instantaneous increment of velocity, but then 

substitutes the expression dx/v for the elementary time, which yields 

the Leibnizian dynamic relationship, 0dx = vdv. Such a substitution is 

impossible within the framework of the calculus of fluxions. There all 

of the infinitesimal quantities are envisioned in relation to a "flow" 

taking place in absolute time. There is no symbol representing the ele

mentary time itself, nor any way of representing an increment or decrement 

of a quantity as independent of time; there is no dx, but only x. Thus, 

from a strictly Newtonian point of view, Bernoulli's work looks very 

Leibnizian, in spite of the fact that he began his calculations from the 

idea of force acting through time rather than through space. Aside from 

that, the algebraic juggling of elementary quantities must have appeared 

highly suspect to the English Newtonians— a sort of mathematical slight- 

of-hand employed by alien mathematico-metaphysicians.

In 1711 Bernoulli published another memoir that posed a challenge 

to the Newtonians. This memoir dealt with the problem of the motion of 

bodies in resistant media, as had Varignon's memoir of 1707.^ The problem

^John Bernoulli, "Extrait d'une Lettre de M. Bernoulli, écrite 
de Basle le 10. Janvier 1711 touchant la maniéré de trouver les forces 
centrales dans des milieux resistans en raisons composée de leurs 
densites et des puissances quelconques des vitesses du mobile.Mémoires 
de l'Académie Royale des Sciences. 1711, pp. 4-7-56.
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was stated by Bernoulli in the following manner; find the central force 

required for a body to describe a given curve in a medium in which the 

density varies according to a given law, and which resists the body in 

the ratio of the density and any power of the velocity.

The solution begins by resolving the forces acting on the body 

into components along the tangent to the path and perpendicular to it.

A differential equation for the component perpendicular to the path is 

then found through the use of a lemma stating that the time, t, required 

to traverse a space, s, by a body moving under the influence of a con

stant force, p, is expressed by y/2s/p.̂  ̂ Next the tangential component 

of the central force is calculated, and to this is added (or subtracted, 

depending on whether the body was ascending or descending) the resistance

of the media. The resulting quantity, multiplied by dt = ds/v is then
12set equal to the velocity increment, dv.

In this solution, Varignon's generalization of the force concept 

has been given full play and even extended to a case of curvilinear 

motion. Bernoulli advanced still further beyond Varignon's work in per

forming the integration necessary to arrive at an expression for the 

force in terms of the given equation of the trajectory and law of the 

resistance of the medium. Also, as in his memoir of 1710, Bernoulli 

found occasion to indulge in criticism of Newton,

On this occasion his criticism was not that Newton's methods in 

this instance were unnecessarily complicated, but that they yielded absurd

^^Ibid.. p. 47.
^^Ibid. The demonstration of the lemma uses the familiar 

Leibnizian relation pds = vdv.
^^Ibid., pp. 48-49.
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results, a contention which he proceeded to demonstrate in a number of 

examplesSuch criticism must have clearly demonstrated to all those 

who were aware of it that the Leibnizian mathematical physicists, led by 

Bernoulli, were indeed threatening to eclipse the great English light.

The classic expression of Newtonian concern over the Leibnizian 

menace is to be found in the correspondence between Leibniz and Samuel 

Clarke.Originating in the controversy over priority of invention of 

the calculus, the correspondence eventually gave expression to a dispute 

of much greater breadth and significance. Since, as has been shown, there 

was a distinct metaphysical background and content peculiar to each of the 

two forms of the calculus, the controversy was bound to bring these dif

ferences to light. The basic metaphysical differences between Leibniz 

and Newton all hinged on their respective ideas as to the nature of matter, 

a question which had, by this time, achieved a particular form in the 

context of the phenomenon of collision. In this way the Leibnizian- 

Newtonian dispute was to serve to rekindle interest in the theory of 

impact,

In his correspondence with Clarke, Leibniz attacked the 

metaphysical support of Newton's Laws of Motion, the concepts of absolute 

space and time. Once these were destroyed, the characterization of

l^ibid.. pp. 49-53» Newton's error was pointed out to him by 
Nicolas Bernoulli (1687-1759), a nephew of John, in 1712. Newton's 
acknowledgement of the correction was to propose John Bernoulli for 
membership in the Royal Society, Florian Cajori, "An Historical and 
Explanatory Appendix, " Sir Isaac Newton's Principles of Natural Philos
ophy and His System of the World, p. 657.

'̂̂ The Leibniz Clarke Correspondence together with Extracts from 
Newton's Principia and Opticks. Edited with introduction and notes by 
H. G. Alexander (New York: Philosophical Library Inc., 1956).
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quantity of motion as the force of a moving body would fall as well, for 

Leibniz, with Newton, regarded force as something absolutely real. This 

being so, force could not be represented by motion, if motion were merely 

relative, as must follow from the relativity of space and time.

Leibniz argued, in his third letter of the correspondence, that, 

if space were something in itself, and absolutely uniform, then one point 

of space would not differ from any other point. Thus there would be no 

reason why God should have placed objects in space in one given manner 

rather than in another contrary way, for instance by changing East into 

Vest. If, however, space is nothing but the order of the objects, then 

those two states would not be different from one another, and the seeming 

arbitrariness of God's decision would disappear. The difference between 

two such states is "therefore only to be found in our chimerical supposi

tion of the reality of space in itself.Essentially the same argument 

was used against absolute time.

Another, to Leibniz, objectional result of the doctrines of 

absolute space, time, and motion was the consequent variability of the 

quantity of active force. In the same letter Leibniz also attacked this 

idea. God would have to be directly involved in any such process result

ing in a change of motion, and a loss of something that directly represents

God's action would imply an imperfection in His creation, which is impos- 
16sible.

Clarke replied to this in the same vein, saying that he did not 

consider the diminishing of active force to be a disorder at all and

^^Ibid., p. 26. 

l&Ibid., p. 29.
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17therefore not an imperfection in God's creation. Such a reply was not 

only unanswerable but also unsatisfactory and, in his fourth letter Leib

niz simply reasserted the constancy of the quantity of active force. 

Leibniz's obstinancy led Clarke, in his fourth reply, to bring in the 

example of the collision of inelastic bodies of equal force. In this 

case, both bodies, as is well known from the rules of impact, lose their

motion, and thus the quantity of force is, in fact, diminished, no matter
18how you calculate it.

Clarke, by bringing in this idea, had opened the way to a 

discussion of the nature of matter itself because, in this way, he forced 

Leibniz to reach beyond the known rules of impact for a defense of his 

position. Leibniz stated, in fifth letter, that when two soft inelastic 

bodies collide, they do, as wholes, lose some of their force. However, 

in that case, the parts receive it, "being shaken by the force of the con

course." The forces are thus not destroyed, but merely redistributed, and,

while Leibniz agreed that the quantity of motion does not then remain the
19same, he still maintained the difference between it and force.

In his fifth reply, Clarke admitted the possibility of a

redistribution of force resulting from the collision of soft bodies but

insisted that the question at issue was really concerned with the colli-
20Sion of perfectly hard inelastic bodies, Clarke was in a sense correct

l̂ Ibid.. p. 34.
1 G>
Ibid.. p. 52.

l^ibid.. pp. 87-88.
°̂Ibid.. p. 111.
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in insisting that their differences depended on the question of the 

collision of perfectly hard bodies. If perfectly hard, inelastic bodies 

did exist as the basic constituents of matter, and if the laws of inelas

tic collision were correct, then motion, or force, could be lost. 

Furthermore, space and time would then of necessity be absolute, the 

medium of action of absolute and irreducible force. Then the Newtonian 

dynamic relationship, the Second Law of Motion, would represent physical 

reality and, consequently the force of a moving body would be proportional 

to its velocity, or mv.

Leibniz, however, could not admit the existence of hard, 

inelastic bodies. Such an admission would have destroyed the entire 

structure of his thought, which was erected upon the basic idea of the 

innate activity of matter. That activity, as has been pointed out, was 

essentially activity in space, that is, within the simultaneous ordering 

of bodies, and its effect was proportional to the square of the produced 

velocity. Thus the question over the nature of matter led directly to 

the question as to the correct measure of the force of bodies. Both ques

tions were closely related to the phenomena of impact, and so the rivalry 

between Newtonian and Leibnizian became focused on that one apparently 

crucial issue. Leibniz's death in 1716, the same year as his fifth 

letter to Clarke, seemed to produce a lull in the argument that had just 

achieved distinct form. There were perhaps also reasons of a totally 

different nature for the abatement of the controversy.

Louis XIV had died in 1715 and the government of France had 

passed into the hands of Philip, Duke of Orleans, who was regent during 

the minority of Louis XV, from 1715 to 1723. Orleans was a notorious and
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unpopular figure, and in his efforts to retain power he sought alliance

with England. George I (1714-1727), who at that time occupied the English

throne, was also an unpopular leader, troubled by the constant threat of 

a Jacobite rising (see pp. 128-129). Like the regent in France, George I 

felt insecure; so that both in England and France the dynastic situation 

contributed to a desire for European stabilization and harmony. It is 

impossible to state with certainty that the dynastic situation had any 

effect on the impending quarrel between English and French mechanicians, 

or, more accurately, between the mechanical philosophers of the English 

Royal Society and those of the Paris Academy. Both of these groups, how

ever, existed under royal patronage and it is possible that they might 

have reflected their royal patron's desire for mutual accord by simply 

allowing a thorny issue to rest for a time.

It was not, in any case, until 1723, the year of the Duke of

Orleans' death, that the question of the impact of hard bodies came into

prominence again. In that year John Bernoulli wrote a treatise in answer

to the prize question of the Paris Academy for 1724. The question was,

"What are the laws according to which a perfectly hard body, put in

motion, moves another body of the same nature, whether it be at rest or
21in motion, which it encounters either in the void or the plenum."

Johann Bernoulli, Opera Omnia (Lausanne et Genevae: Sumptibus
Marci-Michaelis Bousquet et Sociorum, MDCCXLII), III, 8. See also John 
Bernoulli, "Discourse sur les Loix de la Communication du Mouvement, 
contenant la Solution de la premiere Question proposée par MM. de 1'Acad
émie Royale des Sciences pour l'Année 1724," Recueil des pieces qui ont 
remporte les Prix. Fondez dans 1'Académie Royale des Sciences par M. 
Rouille de Me slay. Conseiller ou Parlement: depuis l'Annee 1720 jusqu'en
1728. Avec quelques Pieces qui ont concouru aux mêmes Prix (Paris:
Claude Jombert, MDCCXXVIII), p. 5. Each section of the volume appears
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The way in which the question was posed presents something of an 

enigma in the light of the Leibniz-Clarke correspondence. It seems that 

the phrasing of the question, where "perfectly hard" meant inflexible, 

biased the competition in favor of the Newtonian position. It is also a 

possibility, however, that the form of the question reflects a Cartesian 

bias. In any case, the question did call forth, from John Bernoulli, a 

highly significant treatise which, if it did not win the prize, repre

sented another step in the unification of mechanical theory and a triumph 

for the Leibnizian doctrines of matter and force.

Bernoulli's first task in the "Discourse" was to dispose of the

concept of hardness that constituted the basic principle of the Newtonian

and Cartesian views of matter. He stated that such a view is a chimera

... qui repugne à cette loy generate que la nature observe constamment 
dans toutes ses operations; je parle de cet ordre immuable et per
pétuel, établi depuis la creation de l'Univers, qu'on peut appeller 
LOY DE CONTINUITE en vertu de laquelle tout ce qui s'exécute,
s'exécute par des degres infiniment petits. Il semble que le bon
sens dicte qu'aucun changement ne peut se faire par sault, ... rien 
ne peut passer d'une extrémité a l'autre, sans passer par tous les 
degrez du milieu.22

Here Bernoulli had, as Leibniz before him, presented the principle 

of continuity as the underlying principle of all creation; the fundamental 

principle of the calculus was also that of physics. Continuity provided 

the logical framework for the understanding of events, because, without
23it, there could be nothing but arbitrary acts of creation and destruction.

to have been published separately as indicated by separate title page 
and pagination. Bernoulli's treatise was then first published in 1724, 
the prize year.

Bernoulli, Recueil, p. 5.

Z^ibid.
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However, with regard to the nature of matter itself, Bernoulli exhibited 

distinctly Cartesian ideas.

Matter was to be considered as being by nature perfectly fluid 

so that while none of its parts had any necessary mutual cohesion, they 

could amass themselves into elementary molecules, from which would be 

formed sensible bodies of different qualities. The various qualities of 

bodies— liquidity, softness, hardness, etc.— resulted from different 

figures and motions of the elementary molecules and from the particles . 

passing through their interstices, which held them either separated as 

fluids or compressed them more or less strongly. Bodies formed by the 

compressing action were, according to Bernoulli, called "hard" in pro

portion to the resistance made by the parts of the body to any force
2.Ltending to separate them.

The proper definition of hardness was then to be constructed in 

terms of force, or resistance to force. By Bernoulli's definition, a 

body is perfectly hard when, upon any change in the arrangement of its 

parts, a very quick and elastic "strength" restores them to their initial 

situation in an imperceptible time. The initial displacement, in accor

dance with the question at issue, was assumed to be occasioned by impact 

of another body.^^

In this way Bernoulli linked up the idea of hardness with that 

of elasticity. Elasticity itself was still the property by which all the 

parts of a body regain their initial states following a displacement.

24Ibid.. p. 7.

^^Ibid.. p. 9.
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Hardness was derived from this through the addition of a time factor; the 

degree of hardness was inversely proportional to the time required for 

restoration. Since a "perfectly hard" body was defined as one in which 

the restoration time was infinitesimal, even this extreme instance was 

brought within the framework of the principle of continuity. Consequently, 

the impact of bodies, even of perfectly hard ones, was now a problem to 

be understood in terms of the calculus.

Bernoulli's treatment starts from the axiom that bodies moving 

in the void will retain their velocity and direction in the same straight 

line unless some interference occurs. Then follows the "proposition" 

that a hard body, striking directly against a perfectly elastic spring 

that is immovably fixed at one end, must rebound along the same direction 

and with the same speed. The equality of speed and direction before and 

after collision was seen by Bernoulli as a consequence of the law of 

equality of action and reaction. "This proposition is clear and its 

truth springs to the eye if one gives the least bit of attention to the 

nature of action and reaction, which are always equal.

The nature of action and reaction had proved to be one of the 

most obscure aspects of Newtonian mechanics. Not only had Newton used 

the terms in several senses, but the equality of action and reaction, the 

Third Law of Motion, had been used as the basic principle by which Newton 

drew together into a single dynamic structure the formerly separate 

sciences of impact phenomena and machines. Newton's own followers had 

consequently had great difficulties with the notions of action and

2&Ibid., pp. 11-12.
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reaction; and so Bernoulli's understanding of those terms should shed 

further light on the origins of his thought as well as on its degree of 

maturity.

The nature of action and reaction, as seen by Bernoulli in the 

context of the above proposition, was as follows. In the first instant 

after contact, the spring is forced to contract a little, and consequently 

takes a little of the velocity from the striking body. This process con

tinues, through a series of infinitely small diminutions of the force of 

the moving body, until the spring and the body are at rest, at which point 

the process is reversed. The same elements of force are returned to the

body in the inverse order, so that at the end of the process the body has
27the same speed and line of direction as before impact.

Here action and reaction appear at two different levels. At one 

level, they appear as total processes occurring successively in time: 

the compression followed by the extension of the spring, and the loss of 

motion of the body followed by its recovery. At the other level, the 

infinitesimal and simultaneous level, action and reaction appear as a 

diminution of the force of the moving body causing and caused by a contrac

tion of the spring.

The mathematization of these ideas was carried out by Bernoulli 

in terms of the following situation. ABMN is a cylinder closed at AB 

and open at MN. ABDE is filled with compressed air retained by the 

moveable diphragm DE (which is kept from moving toward MN by a stop), 

and the ball G moves initially toward the diaphragm with speed GE,

2?Ibid.
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Cnce the ball has struck the diaphragm, its speed will begin to diminish 

by degrees, while the density of the enclosed air will increase in pro

portion to the movement of the diaphragm until a point is reached where 

the velocity is fully destroyed. Then, once the motion has been stopped, 

the air will begin to accelerate the diaphragm and ball toward the rear 

at a rate always equal to the retardation suffered by the ball. Even

tually, at DE, the ball will regain its initial speed.

Now let X equal M, the distance of the diaphragm from the 

base, and v the instantaneous speed. If the resisting force is assumed 

proportional to the density, it is then proportional to l/x, from whence 

it follows that the element of velocity, dv, will be proportional to 

dx/xv, or vdv -* dx/x.^^ It then follows by integration that v^ is

proportional to In x, or v^+ /in x. Thus the speed in either direc

tion, either by compression or distension of the spring, is the same for 

any given value of x, and the proposition is proven.

In this proof Bernoulli made use of the Leibnizian form of the
29fundamental dynamic relationship. The way in which he applied the 

equality of action and reaction to the situation indicates, of itself, 

that his conception of the dynamic relationship was framed in terms of 

force rather than in terms of instantaneous changes in velocity. The

^^Ibid., pp. 12-15.

^̂ See pp. 189-92 above.
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action of the spring involved a force acting through an infinitesimal 

distance to produce a change in the force of the striking body.

In spite of the fact that Bernoulli's verbal description of the 

problem has a strictly Leibnizian character, in the mathematical formula

tion he made use of the more Newtonian dynamic relationship that he had 

also used in earlier treatises. However, from the substitution of dx/v 

for dt, the Leibnizian form emerges immediately and, as has been pointed 

out, even this substitution was not possible in a strictly Newtonian 

framework.

In order to apply the results of his analysis of elastic action 

to the collision of bodies, Bernoulli introduced another idea, the prin

ciple of virtual velocities. This principle had constituted a major theme 

in French mechanical thought, not only as a principle of equilibrium, but 

as a unifying principle of all mechanical disciplines. The title of the 

third chapter of Bernoulli's Discourse indicates that he too thought of 

it in this fashion: "Ce qui c'est que la vitesse virtuelle. Principe de

1'équilibré appliqué à la production du mouvement, par l'entremise d'un
30ressort entre deux corps en repos."

Virtual velocities were defined by Bernoulli as

.0. celles que deux ou plusieurs forces mises en équilibré 
acquièrent quand on leur imprime un petit mouvement; ou si ces 
forces sont deja en mouvement, la vitesse virtuelle est 1'element

30Bernoulli, Recueil, p. 15. In a letter to Varignon of 1717 
Bernoulli had described the principle of virtual velocities in detail. 
There the product of force and virtual velocity was termed energy and "in 
all equilibrium of any forces, in whatever way they may be applied and in 
whatever direction they may act . . . the sum of the positive energies 
will be equal to the sum of the negative energies taken positively,"
Quoted by René Dugas, A History of Mechanics, trans. J. R. Maddox (New 
York: Central Book Company, Inc., 1955), pp. 231-233-
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de vitesse, que chaque corps gagne ou perd, d'une vitesse 
deja acquises, dans un tems infiniment petits, suivant sa
direction.^!

This definition of virtual velocity made it possible for Bernoulli to

link together the ideas of static equilibrium and the equality of action

and reaction. Action, the product of a force and a distance, had already

been applied on the scale of the infinitesimal so that, on that scale,

the distance could also be considered a velocity, a "virtual" velocity.

The other factor in action, the force, Bernoulli identified with the

Leibnizian term, "force morte," as opposed to "force vive."

La force vive est celle qui réside dans un corps, lorsqu'il est 
dans un mouvement uniforme; et la force morte, celle gui reçoit un 
corçs suns': mouvement lorsqu'il est sollicite et presse de se mouvoir, 
ou a se mouvoir plus ou moins vite, lorsque ce corps est deja en 
mouvement.32

With this complex of ideas Bernoulli was in a position to derive

the fundamental theorem of elastic collision from the basic laws of

dyanamics and statics, thus accomplishing the unification of these theories 

and the explanation, or reduction, of the theory of impact. From the 

principle of virtual velocities, Bernoulli drew the conclusion that two 

agents are in equilibrium when their "absolute" forces— forces mortes—  

are in reciprocal proportion to their virtual velocities. Then, in 

order to extend this idea of equilibrium to the dynamic situation, he 

introduced the idea of an inertial force, or resistance, corresponding 

to the increment of velocity, i.e., the virtual velocity. Thus every

%bid.. p. 19.
32Ibid.

^^Ibid., p. 20.
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accelerating or decelerating body represented an equilibrium state between 

a force morte and an inertial force.

This being the case, if the same force morte acts on bodies of 

different masses, A and B, their respective inertial forces, in spite of 

their difference in mass, must be the same. If the inertial force, the 

force of resistance of a body to change, is assumed to be proportional to 

its mass, then the virtual velocities of bodies A and B must be in the 

inverse ratio of their masses.

Bernoulli presented these ideas in terms of a situation wherein

the two bodies, A and B, are initially at rest, with a stressed spring

between them. The spring, which represents the elasticity of the bodies,

in expanding must exert an equal "effort" in both directions. Then,

II est visible que chacun de ces corps oposera aux mouvement du 
ressort par son inertie une resistance proportionelle a sa masse..
Il faut donc, en vertu de l'hypothese prise de la mechanique, que 
les deux efforts opposez du ressort étant égaux, la force de 
l'inertie qui.est en A, soit à la force de l'inertie qui est en 
B; ou que la masse A soit a la masse B in raison réciproque de ce 
que la vitesse virtuelle du corps B est a la vitesse virtuelle 
du corps A; et comme la chose continue touj ours pendant que le 
ressort en se dilatant accéléré la vitesse de ces corps, il est 
clair que leurs accelerations sont continuellement en raisons 
réciproques des masses A et B, ce qui forme une raison constant. ^

It then follows that the velocities acquired by both bodies through the 

complete dilation of the spring must be in the same ratio as the virtual 

velocities at every point. Therefore they are in the reciprocal rela

tion of their masses, which was to be proven and, from this point, the 

proof of the fundamental theorem of elastic collision follows easily.

In this treatment of elastic collision, Bernoulli exhibited a 

complete command of the conceptual apparatus of "Newtonian" mechanics,

^^Ibid.
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even to the point of recognizing the inertial force of accelerating 

bodies. He brought together in a consistent and usable synthesis the 

fundamental laws of the three main mechanical sciences, elaborating their 

relationships in terms of the calculus. Thus the ideas of continuity, 

causality, elasticity, virtual velocity, and generally the idea of 

process had opened the way to a unified mechanical theory that, while 

it was essentially the same as Newton's mechanics, had its own develop

ment, one which was largely independent of any positive influence from 

Newton or the Newtonians.

The failure of the Newtonians to grasp the new machanics was due 

largely to their identification of force as both weight and momentum and, 

to this point, the nature of force, Bernoulli devoted a great part of 

his treatise. The fifth chapter is entitled "De la force vive des corps 

qui sont en mouvement," and, as one might imagine, it constitutes a con

tinuation of the now long dormant controversy that had first flared up 

in the Leibniz-Clarke correspondence. In his discussion of force vive. 

Bernoulli wrote that

... comme on a été long-tems dans la persuasion que la quantité 
de-mouvement, ou le produit de la masse d'un corps par sa vitesse, 
etoit la mesure de la force de ce corps, on a crû faussement 
qu'il étoit nécessaire qu'il y eut toujours un égal quantité de 
mouvement dans 1'Universe.

L'origine de cette erreur, ainsi que je l'ai deja insinué, 
vient de ce qu'on a confondu la nature des forces mortes, avec 
celle des forces vives; car voyant que le principe fondamentale 
de la statique, exige que dans 1'équilibré des puissances, les 
momens soient en raison composée, des forces absolues, et de leurs 
vitesses virtuelles. On a étendu mal à propos ce principe plus 
loin qu'il ne falloit, en l'applicant aussi aux forces des corps 
qui ont des vitesses actuelles.

35lbid., p. 35.



239
Having pointed out the source of the error with regard to the

measure of the force of moving bodies, Bernoulli went on to state that

Leibniz was the first to realize that the true measure of the force of a

body in motion was the product of its mass and the square of its velocity.

Leibniz's adversaries had objected to his idea on the ground that he had

not taken account of the time during which the motion was carried out and

Leibniz had responded to their objections,

. „. mais il ne gagna rien sur des esprits prévenus en faveur du 
sentiment commun et errone, que la force des corps en mouvement 
étoit égale à la quantité de leur mouvement ... Ce fut en vain 
qu'il fit voir à ses adversaires, que si l'opinion qu'ils souten- 
noient avoit lieu, on pouvoit executer un mouvement perpétuel 
purement mechanique, ce qui, selon M. de Leibnitz, etoit absolu
ment impossible; ces adversaires aimerent mieux admettre la 
possibilité d'un mouvement perpétuel artificiel, que d'abandoner 
une opinion reçue depuis long-tems, pour embrasser une nouvelle 
qu'ils regardoient comme une espece d'heresie en matière de
Physique 0̂ 6

Thus, in Bernoulli's view Leibniz's ideas were subject to a 

conscious, and yet irrational, rejection on the grounds that they repre

sented a sort of heresy. The supporters of the traditional idea of force 

clearly preferred to accept absurdities that happened to be logical con

sequences of their doctrines rather than to alter those doctrines. 

Bernoulli also cited Samuel Clarke as one who had attempted "à tourner 

en ridicule le sentiment de ce grand homme sur l'estime de la force vive, 

non sans une surprise extrême de la part de ceux qui reconnaissent la 

vérité de ce sentiment."

Nonetheless, Bernoulli was not, himself, totally convinced by 

Leibniz's arguments. They had however given him occasion to think; "ce

^^Ibid., p. 37.

3?Ibid.
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n'est qu'après une longue et serieuse meditation que je trouvai enfin 

le moyen de me convaincre moi-même, par des démonstrations directes, et

au-dessus de toute exception. 1,38

The direct and unexceptionable methods to which Bernoulli

referred had to do with the action of springs; springs provided the most

ready means to the study of elastic action and, hence, "sur la production
39et la force du mouvement." The reasoning that Bernoulli had employed ■ 

started from the realization that springs of various lengths may exert 

the same "force morte" when compressed and yet impart very different 

velocities to identical bodies in fully distending themselves. There

fore, the total force, which corresponds to the force vive cannot be the 

same as force morte. On this basis it was possible to prove that the 

force vives of two equal balls impelled by different springs are as the 

squares of the resulting velocities.

As a further proof that the force of a moving body is proportional 

to the square of its velocity. Bernoulli posed the following situation.

i

C

38Ibid., p. 38.

id., p. 39.
'̂ ■̂ Ibid., pp. 43-45. The proof itself makes use of Bernoulli's 

usual form of the fundamental dynamic relationship f(dx/v) = dv, which 
he refers to as a "loi connue de 1'acceleration."
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A ball C begins its motion with a velocity of two degrees. At 

points L, M, N, and 0 it strikes springs which each absorb one degree of 

velocity, as indicated in the diagram. Thus the ball, with its initial 

velocity of two has bent four springs, each of which absorbs one degree 

of velocity.

Puis done les effets totaux sont entre eux, comme les forces qui 
ont produit ces effets, il faut que la force vive du corps C, mû 
avec deux degres de vitesses, soit quatre fois plus grande que la 
force vive du même corps mû avec une degree de vitesse.

This "thought experiment" is of interest because it implies that
2the determination of the measure of force as mv is a direct result of

the law of composition of velocities, a law which was beyond question.

It was therefore necessary for Bernoulli's opposition to show that the

experiment could also be interpreted in such a fashion that it would

uphold the traditional idea of force.

Such an attempt was made by a John Eames (died 1744). Eames, in

1726, wrote an article for the Philosophical Transactions entitled "Remarks

upon a Supposed Demonstration that the Moving Forces of the Same Body Are
42Not as the Velocities, but as the Squares of the Velocities." Eames 

did not bother to mention the source of this "supposed demonstration," 

which seems to indicate a certain amount of hostility toward its author. 

Perhaps Eames would have been more magnanimous if his own arguments had 

been a little sounder.

The attack on Bernoulli's interpretation of the experiment 

centered on the fact that, in drawing his final conclusion as to the force

^^Ibid., pp. 51-53. Also, the total force absorbed by all the 
springs can be easily seen to be the sum Of all the products vdv.

^^Philosophical Transactions. XXXIV (1726-1727), pp. 188-191.
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of bodies, Bernoulli had compared bodies with dissimilar motions; one body- 

had suffered three oblique and one direct impact, and the other body, 

with one degree of velocity, had struck only one spring directly. A 

proper comparison must involve balls with similar motions.

In order to achieve such a comparison, Eames supposed that the 

same ball has an initial velocity of one degree and that the springs absorb 

one half of a degree rather than one. Then all things proceed as in the 

original experiment except that the total effect is four times one half, 

or two. Comparing these two trials, Eames "found" that reducing the velo

city by one half also reduced the effect by one half, and therefore that 

the force was proportional to the velocity.43

It is hard to say that either Eames’ or Bernoulli’s interpretation 

of this experiment is correct to the absolute exclusion of the other. The 

two interpretations seem to deal with entirely different aspects of the 

phenomenon in question and are not really incompatible. Bernoulli’s 

interpretation deals with the internal causal relation between force and 

velocity in a single process, and Eames’ deals with a comparison of two 

similar processes. One can, however, scarcely escape the impression that 

Eames, like Pemberton in the earlier mentioned attack on Poleni's exper

iment, was simply trying to get the "right answer," and stubbornly 

refusing to admit that Bernoulli’s thoughts were of any significance at 

all.

4^Ibid.. pp. 190-191.

^Golin Maclaurin, Piece qui a remporté le prix de 1’Académie 
Royale des Sciences, proposé pour l’annee mil sent cens vingt quatre 
selon la fondation faite par M. Rouille de Meslay, ancien conseiller au 
Parlement de Paris (Paris: Claude Jombert, MDGCXXIV). Bernoulli’s
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When one considers the state of mechanical knowledge in England 

at the time it is not surprising that Eames' arguments bear no relation

ship to any particular physical or mathematical principal, but depend on 

a demand whose relevance is not at all clear. What does strike one as 

surprising is that such arguments were taken seriously not only in Eng

land but on the continent as well. This is evidenced by the fact that the 

essay that won the prize of 1724, for which Bernoulli's treatise was in 

competition, was of a character similar to Eame's work.

The prize essay of 1724 was written by Colin Maclaurin (I698- 

1746) and presented essentially the same view of collision phenomena as 
had Wallis and many others after him.'^ Maclaurin's approach to the 

problem reflected the influence of Newton only in that, like his English 

contemporaries, he stated Newton's Laws as a preface to calculations that 

had little, if anything to do with them.^^ entire treatment of the

collision of perfectly hard bodies, or of any bodies, was derived from 

the single proposition that the common velocities of the bodies after 

impact is the quotient of the algebraic sum of their momenta before im

pact and the sum of the masses.Hard bodies were simply assumed to be 

inelastic; matter was by nature passive and inert.

Aside from its rather perfunctory and unoriginal treatment of 

the prize question, Maclaurin's treatise offers some polemic against the

treatise seems to have been published at the same time as this one, and 
both are included in the single volume dated 1728. Each treatise has 
separate pagination.

45lbid.. p. 5.
^̂ Ibid.. pp. 16-17,



Leibnizian position with regard to the force of bodies in motion.

Considering the amount of space devoted to this question by both Bernoulli

and Maclaurin, it appears that the prize competition was used by both men

as a platform upon which to debate the question of force.

Maclaurin's first attack on the Leibnizian idea of force was

framed in terms of an hypothetical situation. A man on land throws an

object with a certain effort, imparting to it a certain speed, Vg. A man

on a boat moving relative to the man on shore with a velocity v̂  throws

an identical object with the same effort. Now if one calculates the

force in the Leibnizian fashion, a certain discrepancy arises.4? If the

force that the object has by virtue of the motion of the boat with res-

pect to the land is proportional to vq , and the force imparted to it by

the man on a boat is proportional to v̂ , then the total force is propor- 
2 2tional to vq + vg . However, of one takes the total velocity of the

object with respect to the land as v̂  + Vp, then the force should be
2 2 2 proportional to (vq + vp) , which is not equal to v^ + vp . Whichever

way you make the calculation, something is wrong; if the calculation of

force is based upon the total velocity— force -̂ (v-̂  + 2v^vg + v^ ) —

then the effort of the man in the boat appears to produce a greater

effect than the same effort of the man ashore,If, however, force is

assumed proportional to simple velocity, no such difficulty arises,

47lbid., pp. 7-8,
y g
Ibid, This argument could have been answered in Bernoulli's 

terms if the "effort" is represented asXfdx = vdv. If the calculation 
for the man on the boat is carried out with respect to the shore, then 
V = V]_ + vp, dv = dvp, X = X]_ + Vgt, and dx = dx]_ + tdvp + V2dt, Sub
stituting these values for dx and v yields an expression, which when 
integrated contains the factor V]_vp on each side of the equation. Thus
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Maclaurin raised yet another obje Lon to the Leibnizian idea 

of force, this time in terms of elastic collision. Assume that two iden

tical elastic bodies, A and B, moving in the same direction, with veloc

ities of ten and five degrees respectively, come into collision. If 

they were inelastic, they would have a common velocity of seven and one 

half units, but being perfectly elastic they will change velocities so 

that A will have five units and B ten. That is, the spring will separate 

the bodies with five degrees of velocity, two and one half to each body, 

or, by Leibnizian reckoning 25/4 degrees of force. Without the action of 

the elasticity, A had 225/4 degrees of force, from which the spring with

drew 25/4 leaving 200/4 or 50 degrees of force. However A, after collision, 

is known to have only five degrees of velocity or twenty-five degrees of 

force. Again the difficulties are removed if the forces are measured by 

simple velocity.

Both of these paradoxes really hinge on the same question, the 

question of transferring forces from a moving frame of reference to a 

stationary one. The complexities of such a transfer had not yet become 

apparent to the mechanicians of the early 18th century and so Maclaurin's 

objections must have appeared formidable indeed, just as formidable as 

Bernoulli’s experiments and arguments supporting the Leignizian point of 

view. From the standpoint of the assimilation of Newtonian mechanics, 

however, Maclaurin’s work shows little advance over his English

the effort of the man on the boat, as seen from the shore, contains that 
factor, and he does appear to achieve a greater effect from the same 
effort than does the stationary man.

Ibid,, p, 9.
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contemporaries, and is distinctly inferior to that of Bernoulli, In 

Maclaurin's arguments there is almost no attempt to understand the trans

mission of force as a process, no attempt to understand the relation 

between the tension of the spring and the production of motion, and, in 

short, no attempt at a unified theory of dynamics. Thus the really sig

nificant aspect of Bernoulli's treatise tended to become obscured by the 

apparently insoluble question as to the measure of the force of moving 

bodies,

If Bernoulli's insights into a general theory of mechanics, as 

contained in his Discours, were temporarily overlooked because of the 

force controversy, they were nonetheless on record and available to a

new generation of mechanical philosophers, Pierre Louis Moreau de Mau-

pertuis (1698-1759) was one of this new group, which could be character

ized by a common and unquestioned assumption that mechanics was nothing 

more nor less than applied analysis.

There is no need to examine in detail the early work of

Maupertuis even though it is of interest in its own right. What is of

significance here is merely that, in those treatises that were written 

before 1735, the Influence of Leibniz and Bernoulli is plainly visible. 

For instance, in 1730 Maupertuis published a memoirs entitled "La Courbe

Descensus AEquabilis dans un milieu resistant comme une puissance quel-
50conque de la vitesse,"

The curve Descensus AEquabilis was the curve that Leibniz had 

proposed to illustrate the fact that the time during which a force acts

'̂ Mémoires de 1'Académie Royale des Sciences, 1730, pp, 233-242,
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is an arbitrary factor, and that it is the distance through which it acts 

that is directly related to the effect produced. Maupertuis' treatment 

of the problem is of a character virtually identical with that of Ber

noulli's mémoire of 1711. To find the accelerative force, he constructed 

differential expressions for gravitational force and force of resistance. 

"Or la force accélératrice, multipliée par le temps, donne la difference 

de la vitesse." Like Bernoulli, however, Maupertuis substituted dx/v 

for the time dt in order to arrive at a first order differential equa

tion for the motion.

In a mémoire of 1732, Maupertuis again revealed the Leibnizian 

influence on his thought. This mémoire, "Sur les Loix de 1'Attraction, 

attempted to use the principle of continuity in order to understand why 

the force of attraction between massy particles is reciprocally as the 

square of the distance rather than as some other power of the distance. 

Presumably God could have set it up in any fashion.

First Maupertuis set up a differential equation for the 

attraction exerted by a surface of revolution on a point mass. On this 

basis he calculated the total attractive force for a number of examples 

that parallel those treated by Newton in sections XII and XIII of Book I 

of the Principia. Finally, he concluded that, if the force were to 

decrease in any ratio greater than the square of the distance, any object 

touching the surface would experience a much greater attraction than one 

only infinitesimally removed from the surface. This would be a discon

tinuity, that is, something unintelligible, and therefore a rational God

^̂ Memoires de l'Académie Royale des Sciences.. 1732, pp. 343-
362.
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£̂2would reject such a possibility..' Thus Maupertuis, like Leibniz and 

Bernoulli, saw the calculus, the mathematics of the continuum, as the 

structure of reality, and physics, therefore, as applied analysis.

It is of some significance that, in this memoirs, the idea of 

attraction over large distances was simply taken for granted, the fact and 

mathematical form of the attraction being referred to God. Such an atti

tude was not at all inconsistent with the metaphysics of Leibniz, but it 

was incompatible with the assumptions of the Cartesian world-view. As has 

been indicated, there was, even in Bernoulli's writings, a tendency toward 

the resuscitation of Gartesianism within the context of the new physics, 

and this tendency found concrete and general expression in the French 

Academy's prize question for 1730.

Quelle est la cause de la figure elliptique des Orbites des 
Planetes, et pourquoy le grand axe de ces Ellipses change de 
position, ou ce qui revient au même, pourquoy leur Aphelie ou 
leur Apogee repond successivement à differens points du Ciel?

The prize went to John Bernoulli but his treatise, while 

exhibiting his usual mastery of mathematical technique and creative in

sight, contained some fatal inconsistencies. His results must have con

tributed considerably to a general acceptance by the new generation of 

mathematical physicists of the Newtonian attitude of "hvnothes non fingo."

Bernoulli's attempt to rework the Cartesian system in terms of 

the new mathematical dynamics takes, as its starting point. Propositions

^̂ Ibid.. pp. 348-361.

Quoted by John Bernoulli, Nouvelles Pensées sur le Système de 
M. Descartes et la Maniéré d'en déduire les Orbites et les Anhelies des 
Planetes. Piece qui a remporte les Prix propose par 1'Académie Royale des 
Sciences pour l'Annee 1730 (Paris: Claude Jombert, MDCCXXX), pp. 1-2, The
treatise is also contained in volume III of the Opera Omnia, pp. 133-173.
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LI and LII of Book II of Newton's Principia. Newton had intended these 

as proofs of the impossibility of the Cartesian vortex theory, but Ber

noulli showed them to be in error. Newton, in calculating the frictional 

force acting on cylindrical layers of fluid moving with respect to one 

another, had neglected the effect of the normal force between the layers. 

Newton's erroneous calculations had then led to the result that objects—  

planets— moving in such vortices cannot have a period of revolution pro

portional to the 3/2 power of the radius, which is indicated by Kepler's 
Third Law. Bernoulli called Newton's calculations "manifest sophistries."^^ 

The calculation of the total frictional force as made by Bernoulli 

takes three factors into consideration: normal force, or pressure; rela

tive velocity of translation between successive layers; and length of 

lever arm. The total moment of the force had to be equal to a constant 

in order that uniform circulation be maintained, and this led to the dif

ferential equation (vxdx - xxdv) » cf _ d̂x, which determines

the curve of velocity, v, with respect to radial distance x The result
55is that the period is as the 4/3 power of the radius.

Next, Bernoulli made a similar calculation for spherical layers

of fluid instead of cylindrical ones, and obtained the result, in that

case, that the period varies as the 5/3 power of the radius. (Newton had

calculated the period in this case to vary as the square of the radius.)
4 3 5Thus the two cases calculated just straddle the correct value: -, -.

This result was not altogether satisfactory, so further refinements were 

introduced.

^̂ Ibid.. pp. 12-14.
^^ibid.. pp. 18-20.
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Since the density of the aetherial medium must be assumed to 

vary with the distance from the center of the vortex, the density can be 

introduced into the above equations as an additional variable and deter

mined through the imposition of Kepler's Third Law as a condition of the 

problem. When this is done, it is clear that Kepler's Law will be satis

fied and all that remains to question is the essentially unobservable 

aetherial density.

Proceeding in this fashion, Bernoulli showed the aetherial density

to be reciprocally proportional to the square root of the distance from

the center. Thus the density of the aetherial medium must be infinite at

the center of the vortex and approach zero asymptotically as the distance

becomes large.However, pressure of the aetherial medium was then

found to be directly proportional to the square root of the radius which

is a manifest contradiction, since in any usual sense of the terms

"pressure" and "density," the two are directly proportional to one 
57another.

To avoid this contradiction, Bernoulli fell back on the Cartesian 

idea that there are aetherial particles of various sizes. The larger 

particles, impelled by centrifugal force, wander outwards and the fine 

particles tend to gather at the center producing the high density. Thus 

the high density refers to the fine particles and the low pressure at the 

center to the larger particles, and all of these particles swim in an 

infinitely subtle fluid,Such an explanation was an apparent departure

5&lbid.. pp. 25-26.
'̂̂Ibid.. p. 26.

^̂ Ibid.. pp. 26-27.
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from the strictly mathematical reasoning that had characterized 

Bernoulli's earlier work and seems to represent a regression to the 

"occult."

It was on the basis of such "occult" qualities as the aetherial

density that Bernoulli attempted to explain the elliptical shape of the

planetary orbits and the fact that the great axis of an orbit will change

its position over a great number of planetary revolutions. The planets

were assumed to be of a density not quite the same as that of the part

of the vortex where they came into existence. For this reason there will

be a radial oscillation of the planet as well as a circular motion due to

the vortical motion. The correct combination of these two motions will
59produce the desired planetary motion.

All of the calculations involved in Bernoulli's attempt to 

revive the vortex theory are based on the new mechanics, so that the 

treatise does not really represent a departure from the theoretical 

structure of mechanics that had been elaborated in Bernoulli's previous 

work. What the treatise does present is an interpretation of that theo

retical structure, a metaphysical, or physical, garment with which to 

clothe the theoretical skeleton. Just why Bernoulli chose a Cartesian 

interpretation rather than a Leibnizian one is not clear.But that he 

did make this choice was an important factor in so far as the recognition 

of Leibniz's part in the development of mechanics was concerned.

59lbid.. pp. 28-29.
^Opor a detailed discussion of French reaction against Leib

nizian metaphysics see chapters VI-X of W. H. Barber, Leibniz in France, 
from Arnauld to Voltaire. A Study in French Reactions to Leibnizianism, 
I67O-I76O (Oxford: At the Clarendon Press, 1955).
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The result of Bernoulli's choice was that he committed himself 

to a fruitless interpretative enterprise that led him into a good deal of 

bad physics at the same time that he implicitly rejected the influence of 

Leibniz. Thus men like Maupertuis contented themselves with a mathe

matical physics virtually free of superfluous and controversial meta

physical appendages. In Euler's Mechanics, which, as pointed out in the 

introduction, treats mechanics simply as applied analysis, there is no 

mention of any causes of motion except unadorned theoretical terms 

defined in the context of their interrelationships and empirical signi

ficance .

Although Euler, as well as all succeeding continental 

mechanicians, made use of the Leibnizian form of the calculus and the 

dynamic relationship as worked out by Bernoulli, he was Newtonian in the 

sense that he eliminated any explanatory parts of the theory of mechanics. 

This meant, in a sense, a victory for the Newtonian cause. Leibnizian 

and Cartesian opposition to the Newtonians simply faded away. Even the 

force controversy was dropped, for Euler clearly saw that the action of 

force in time produced momentum and the action of force through space pro

duced "vis viva," or as he put it, an increment in the square of the 

velocity.Neither of these two modes of action of force was assumed to 

be more fundamental than the other since, by definition, dt =

^^Leonhard Euler's Mechanik oder analytische Darstellung der 
Wussenschaft mit Aumerkungen und Erlauterungen. ed. J. P. Wolfers (2 
vols.; Greifswald: C. A. Koch's Verlagshandlung, I848), p. 49°

62Ibid.
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But whether or not the Newtonians can be said to have achieved 

a victory over their adversaries, the leadership in the field of ̂ ^chan- 

ics had long since passed across the channel and was not to ret'/̂ r. Their 

victory, such as it was, was truly empty.



CONCLUSION

This history of the assimilation of "Newtonian" mechanics 

brings to light a number of important insights, not only with regard to 

specific developments in its own field, but also in a broader sense. In 

the latter category, its most significant implications have to do with 

the rule of extra-scientific influences on the development of science.

It is perhaps self evident that the scientific activity, seen as the 

production of explanatory, deductive systems of thought and their appli

cation to natural phenomena, must have some relation to intellectual and 

emotional currents prevalent in society. The postulates of any theory 

are, after all, a priori assumptions that by their very nature are 

incapable of proof.

Nonetheless, it has long been the attitude of most scientists, 

and of many historians and philosophers of science, that the "scientific 

method" guaranteees the scientist that the results of his endeavors shall 

be free of all those impurities which might result from his personal 

character, the biases built into his language, and the preconceptions of 

his social group. In this view, scientific knowledge appears as equiva

lent in truth value to the religious systems of earlier ages: a repre

sentation of ultimate reality or, at the very least, a close approximation 

to it.

254
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The very fact that science has come to assume this character over 

the course of the past three or four hundred years would seem to indicate 

the action of a powerful tendency on the part of western culture to 

achieve some fixed point of reference in a world whose traditional modes 

of conception and systems of values had been demolished by the twin revolu

tions of the Renaissance and the Reformation. Thus it is conceivable that 

the idea of a "scientific method" itself represents an emotional need, 

that the precepts of such a method were heavily influenced by preconcep

tions generated in a particular historical situation, and that it there

fore represents no "real" procedure by which real scientists have done 

their work, but rather an idealization bearing little relation to actual 

practice.

The present work, while it clearly cannot offer definitive 

answers to the questions that arise in this context, can at least provide 

provisional answers based on the materials it presents. The primary 

questions to be answered center on the nature of scientific method, both 

as conceived and as applied during the period. Was there in fact a 

scientific method? What effect did scientific method have on the pro

duction and/or assimilation of Newtonian mechanics? And finally, was 

scientific method itself related to ideas of a specifically non- 

scientific character?

With regard to the question as to the existence of a scientific 

method, there certainly was a more or less explicitly formulated method 

common to most English natural philosophers of the period. It is this 

method to which Newton modeled his Principia and which he himself
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formulated in his "Rules of Reasoning in Philosophy."^ This method based 

itself on the notion that experience of the phenomenal world will yield 

to the careful observer those ideas or fundamental elements of experience 

on the basis of which all phenomena may be understood.

Since these basic ideas are drawn from experience they can have 

no necessary relationship to any a priori logical system, with the pos

sible exception of geometry, insofar as geometry represents a real science 

of space. From this it follows that any other mathematical system could 

have no true relationship to the physical theory. Certainly the infini

tesimal calculus, a logical system dealing with essentially unobservable 

matters, had an a priori character, and was therefore at best a short cut 

in the geometrical demonstration of propositions.

This conception of scientific method, as has been shown, was not 

only not the basis upon which Newton developed his theory of mechanics, 

but also it served to retard the understanding and acceptance of his 

work. In this instance then, "scientific method" indeed appears as an 

ideal that bears no relation to practice and which, like all such ideals, 

only serves to obscure understanding. But if not related to actual 

practice, to what was this ideal of scientific method related? In its 

elaboration in the writings of John Locke it was related to Deism. Also, 

the Newtonian's general confusion over the relationship between weight 

and momentum has been shown to have been a product not only of their in

ability to grasp the calculus, but also of their desire to place the

Îsaac Newton, Sir Isaac Newton's Mathematical Principles of 
Natural Philosophy and His System of the World. Translated by Andrew 
Motte, 1729. Translation revision and historical appendix by Florian 
Cajori (Berkeley, California: University of California Press, 194-7),
pp. 398-4-00.
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source of gravitational attraction in bodies themselves. This in turn 

was related to the deistic notion that the world is a self-moving machine 

whose basic elements are accessible to reason based on experience.

However, the above "scientific method" was not the only approach 

to science current in Europe during the period. There was also a metho

dology, stemming from Galileo, that is sometimes given the name of 

"empirical Pythagoreanism." As the name suggests, this method combines 

the a priori and empirical approaches to knowledge of the physical world, 

and it does this in a particular way. The postulates of theory are the 

product of creative insights into the mathematical realities behind the 

phenomena and the logical consequences of the postulates found in this 

manner are then tested through controlled experimentation. That is, the 

phenomena produced in the experiment serve to validate the theory.

The method of "empirical Pythagoreanism" clearly leaves room for 

the action of extra-scientific currents in the matter of creative insight. 

This is evidenced by the rather heavy theological and metaphysical ele

ments present in the thought of both Newton and Leibniz. Both men were 

convinced that the understanding of the world is based on the notions of 

dynamic causality and continuity. Both men embodied these ideas in a 

mathematical system that was to represent the reality behind phenomena 

and provide a logical relation between that ultimate reality and the 

phenomenal world. However, the ideas that surrounded and gave physical 

meaning to the notions of causality and continuity were quite different 

in the minds of Newton and Leibniz. At the same time these peripheral 

ideas appear to have been necessary to the inception of the mathematical 

theory. Newton's fluxion represented the flow of a physical quantity in
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absolute time; and Leibniz's idea of the differential, or momentanéous 

increment, was modeled after the conatus of a body.

With this in mind, the "method" of empirical pythagoreanism 

hardly seems to be a method at all, or at least one that may be sucess- 

fully practiced only by geniuses, for out of the most diverse elements, 

new concepts and relationships are created which place the entire field 

of inquiry in a new light. Both Newton and Leibniz provide substantia

tion for this idea in that their mathematical-physical theories can be 

seen as integral parts of general philosophical and religious syntheses, 

which, in turn, contained ideas that were common to their age.

The successors to Newton and Leibniz gradually eliminated the 

obvious metaphysical appendages to the new mechanics, priding themselves 

on a truly scientific approach and on a knowledge solidly based on reason 

and experience. Then David Hume (1711-1776) exposed the concept of 

causality as an uncritically accepted and unjustified notion. In more 

recent times the idea of continuity has lost its position as a constant 

characteristic of natural processes, and with this the Newtonian system 

fell.

The mere fact that the Newtonian system no longer holds sway 

over the entire physical world is proof enough that its underlying con

cepts were not the result of insight into the nature of things external 

and physical. Rather, those insights must have arisen out of the inter

nal development of human thought in its effort to conceptually order 

human experience of the world.

These observations are not intended as a criticism of Newtonian 

mechanics as a great scientific achievement. They are meant only to
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indicate a general culture dependence of science, not to impugn its 

usefulness or even its validity as a description of human experience.

Human experience of the world is, after all, only loosely related to what 

may or may not exist in the external world.

Thus the general import of this work tends to bear out Berkeley's 

view of Newtonian mechanics in particular and of science in general, with 

the modification that it is not God but man, as an historical and social 

being, that produces ideas in man's mind. In another sense too, Berkeley's 

thought is peculiarly applicable to this history. Newton's production of 

a new mechanical theory met with no direct comprehension and acceptance. 

Only after Leibniz's influence was felt did the European mechanicians show 

any understanding of Newton. Thus like the great tree falling in the 

forest, Newton's thought made no sound, because nobody heard it. And when 

it was discovered, almost fifty years later, that such a great event had 

occurred, everybody assumed that it must have made a great sound, and so 

the histories have recorded it.
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