STUDY OF RELATIVISTIC EFFECTS IN MAGNETO-

EMISSION FROM WHITE DWARFS

By

CECELIA TRECIA HILL MARKES
: 4
Bachelor of Science
Southwestern Oklahoma State University
Weatherford, Oklahoma
1968

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1971

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1978



UN!VERS!TY

LIBRARY

STUDY OF RELATIVISTIC EFFECTS IN MAGNETO-

EMISSION FROM WHITE DWARFS

Thesis Approved:

NYV J JMW

\ A A
AN

// 7%/%/1%&/ Y/ //// W
A Fbl

APNE AN\

Dean of the Graduate College

ii



PREFACE

Since the relativistic harmonic oscillator Hamiltonian has no solu-
tions, an approximate model of an oscillator in a magnetic field has
been developed. The exact solutions of this Hamiltonian are used in
‘time—dependent perturbation theory to study magnetoemission from white
dwarfs.

The fractional circular polarization as a function of wavelength
was found to agree in the low temperature limit with that predicted by
existing non—relativistié theory. This, however, does nqt agree with
experimental observations in the infrared region. The inclusion of more
and more excited states appears to tend to quench one of the polarization
components. lTherefore,‘the source of the disagreement between theory
and expériment must be sought elsewhere than in a collection of charged
harmonic oscillators interacting with a magnetic field. Thus, while the
mechanism responsible for the circular polarization discovered over a
wide range of wavelengths is not understood and there is still disagree—
ment between theory and observations, there appears to be evidence for
the existence of strong magnetic fields in white dwarfs just as in
neutron stars.
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CHAPTER I
INTRODUCTION

There exists a great deal of knowiedge about white dwarfs--proper
motion, cluster membership, structure, and evolution (1). On one
matter of astrophysicai interest, however, reseafch and observational
interest has been fairly recent. As far as>high_central density is
concerned, a thte dﬁarf’is‘almost similar to a neutron star. Although
there is some question about the upper limit to the mass of a neutron
star, it has long been recégnized that after all the thermonuclear
sources of energy fér the central ﬁaterial of a massive star have been
exhausted, following an inverse B-decay type of reaction, a condensed
neutron core would be formed k2,3,4). Following the 6riginél sﬁggestion
of Gamow and Landau, Oppenheimer and Volkoff (5) were the first to
establish the gravitational equilibrium of such a neutron star using
the equation of state for a cold Ferni gaé and general relativity.

Interest in neutron stars has exploded after the discovery of
pulsars (6,7,8,9) which are now strongly suspected'to be rotat;ng neu-
tron stars. The point of interest for this work'is‘that the spectfa of
radio emission from these stars point to the existence of strong surface
magnetic fields on the order of 1Ol3<3 - 1015(3 resulting from the col-
lapse of con&entional stellar fields. Conductivity of stellar matter
is said to be so slight that the decay time for the magnétic field ex~

ceeds the collapse time which is probably on the order of a few seconds.



It is estimated that in a neutron star, the radius of which is a few
kilometers, the field strength increases as l/B2 during the gravita-
tional contraction so that fields as high as'1016(§ can be expected.
This has stimulated interest in stellar magnetic fields in general. In
the solar system, for instance, the Earth, Sun, and Jupiter are the
only objects known to possess magnetic fields. Polarized radip emis~
sions have led astrophysicists to believe that the magnetosphere

around Jupiter is considerably stronger than that of the Earth (10).

Of particular interest is magnetoemissién from white dwarfs. Per-
haps the easiest way to detect stroﬁg magnetic fields would be to look
for Zeeman splitting in the star's discrete emission spectrum és has
been done’in the case of the Sun's magnetic field. This has not, how-
evér, been possible in the case of white dwarfs whose spectra are
diffuse and somewhat continuous. Kemp, et. al. (1l) observed circularly
polarized light from the white dwarf.er+7008247 in 1970. Since that
time partially polarized light has been detected in the radiation from
nine other whité dwarfs (12). Kemp (13), and later Chanmugam and co-
workers (14,15), assumed that the circular polarization is due to strong
magnetic fields in the white dwarfs and used a non-relativistic charged
oscillator model to study this magnetoemission. Their theory predicts
circular polarization proportional to the wavelength A, but the results
of their calculations are not in complete agreement with observations.
There are two shortcomings in their theory. Although the oscillators
are electrons, which are fermions, the intrinsic magnetic moment is
ignored and relativistic effects, which persist in such circumstances,
are also neglected. The purpose of this work is to determine if com-

pleting their model by evaluating the contributions of these two effects



can bring the theory into better agreement with observations. One
method of including spin effects would be to add a spin-interaction
term to the Schroedinger Hamiltonian. However, this would still be
inadequate. It is well-known that both relativity and spin effects
are built into a Dirac Hamiltonian. The difficult problem is to find
a relativistic oscillator model because it is well-known that the Dirac
equation with an isotropic harmonic oscillator potential has no
solution.

It has, however, been possible to develop an equivalent Dirac
model with exact solutions which render it possible to make up the
inadequacies in the Kemp-~COR theory in the study of magnetoemission

from white dwarfs.



CHAPTER II
MAGNETOEMISSION AND WHITE DWARFS
Magnetoemission

Magnetoemission relates to the emission of light from any thermal
source ih é magnetic field. Kemp, Swedlund, and Evans (16) reported in
1970 the experimental detectioﬁ of spectrally diffuse circular‘polari—
zation of light ffom various incandescent bodies in a magnetic field
even though the emission spectrum is continuous and extends over a wide
range of frequencies. Their experiments consisted of placing various
thermal light sources in a laboratory magnetic field and looking for
partial circular polarization in light émitted along the field direc-
tion. They studied emission from incandescent metals (gold, platinum,
and.copper), solid insulators and an okyaCetylehe flame at temperatures
ranging from lOOOOC to lSOOOC. Detection.was at wavelengths ranging
from near infrared to the visible region. A fractional circular polar-
ization of electronic origin was detected. A typical numerical value
for this fraction is about lO_5 in. the neighborhood of a wavelength of
1.5 ym in a magngtic field of 25 kG. Whiie the model proposgd by Kemp
and others to explain this Will be discussed in a later chapter, a com-
parison with similar processes, Zeeman effect and synchrotron radiation
in particulér, will bring out the distinguishing characteristics of
ﬁagnetoemission.

The Zeeman effect (17) essentially relates to a discrete spectrum



and can be understood classically in terms of the Larmor frequecy (or
Zeeman frequency) of the precessional motion of a rotating charged par-
ticle in a uniform magnetic. field. It is well-known that the Zeeman
components are circularly polarized when viewed along the direction of
the magnetic field and linearly polarized perpendicular to the field.
Quantum mechanically this effect is understood in terms of radiation
selection rules governing the change in azimuthal quantum number of a
one particle quantum mechanical central field system. The essential
quantum mechanical features of the Zeeman effect are also useful in the
study df magnetoemission.

In the case of radiation from an accelerating point charge, the
radiation intensity and polarization can be relafed to the classical
trajectory dynamics of the particle (18, 19, 20). If the velocity of
the particle is not too gfeat compared to the speed of light, the rad-
iation has a sinze angular dependence, 0 beiné the angle betweeh the
direction of the particle's acceleration ahd the direction of observa-
tion, and the total power radiated varieé as the square of ﬁhe
acceleration. For a circulating charge the radiation is polarized in
the plane of the Orbit.‘ The radiation emitted by.a relativistic parti-
cle subject to arbitrary accelerations is eéuivalent to that of a
particle moving instaﬁtaneously at constant sbeed in an appropriate
circular path. The radiation is concentrated in a narrow cone of
vertical angle

A v V1 - vz/c2 (2-1)

¢

and is seen by the observer as a pulse of radiation analogous to the
beam swept by a searchlight. The radiation is strongly, though not

completely, polarized in the plane of motion. For periodic circular



motion of the charge the spectrum is discrete, consisting of the fre-
quency of circular motion and a few harmonics thereof. In the more
general case it is spread over a wider range of frequencies. In the
case of-circular orbits the radiation is c;lled cyclotron radiation if
the velocity is non-relativistic and synchrotron radiation if the velo-
city is ultra-relativistic (v v ¢). These orbits can be due to magnetic
fields as inbthe case of the synchrotron radiation from the Crab nebula
or from Jupiter.

In the case of magnetoemissibh the point of interest is that pho-
tons of both left- and righﬁ—handed circular polarization ére emitted
and the fractional difference in the observed intensities between these
two types is found to be simply related to their frequencies as well as
the magnetic field. Thus, whereas in the case of a discrete atomic
speétrum, the expefimentally observed Zeemanbsplittinqs lead to a mea-
surement of -the magnetic field, in the cage of a'continﬁous thermal
radiation, the fractional circulaf polarization can lead to an estimate -

of the magnetic fields.
Experimental Observations of White Dwarfs

Whité’dwarfs‘(l) are stellar objects with largé masses, small
radii, énd low luminosities. The masses ére comparable to the mass of
the sun while the radii are comparable to the radiﬁs of the Earth. As
a result of this combination, white dwarfs are extremely dense, typical-
ly of densities approximately lO7 gm/cm3. One theory of formation (21)
of white dwarfs is that after the ceﬁtral reserves of nuclear fuel are
used up, the star collapses into a degenerate ball consisting mostly of

helium with a central température of lO7 OK (22) . The corresponding



mean thermal energy per particle is ~ kT = 103‘eV. Since this is much

greater than 79 eV, -the ionization energy of helium (23), almost all of
the helium is ionized. Order of magnitude calculations (22) for the
Fermi momentum and Fermi energy show that these ére comparable to the
momentum mc and energy m02 of an electron; therefore, thé motions of the
particles are largely relativistic. The collapsing of a star can also
be used to explain the existence of large magnetic fields in white
dwarfs (24). If flux is conserved, then the magnetic field will be much

gréater after collapse than before. For instance, a main-sequence star

has radius R v @3 6 X lO8 m and BO 3 lO3 G. If it collapses to a star
with radius R %_ﬂa = 6 X 106 m, then by conservation of flux the mag-—

netic field of the collapsed star will be

B, = Boﬁé/ﬁé; 10° B - 107 . (2-2)
As can be seen from this calculétion, the magnetic field of a white
dwarf depends on its original size and magnetic field and on its col-
lapsed size. |

The first experimental observation of circular polarization in the
optical emission from white dwarfs is probably due to Angel and
Landstreet (24). In order to detect circularly polarized light being
emitted from white dwarfs, they made a photoelectric polarimeter.
Figure 1 shows a schematic diagram of the polarimeter.

Light‘passing through the aperture and collimating lens falls on
the electro-optical crystal. The axis of the crystal is set so that.
an electric field applied in one direcﬁion causes right circularly po-
larized light to becdme linearly polarized along one axis of the

Wollaston prism and left circularly polarized light to become linearly



polarized alonyg another axis of the prism. Reversing the direction of
the electric field‘results in the reversal of the sense of circularly
polarized light becoming linearly polarized along the two axes. The
two diverging beams pass through separate filters which isolate the de-
sired wavelength (if the filters are identical) or wavelengths (if the
filters are‘different). Each photomultiplier tube is connected to two
scalars, one sensitive when the electric field is in one direction and -
the other sensitive when the electric field is reversed. _Thus the po-
larization is determined by the difference in counting rates detected
by the two scalars. The switching device for the electric field is a
crystal clockbwhich switches polarity every one millisecond. The counts
were usually printed every 10 secohds.

Several white dwarfs were observed, but none had a fractional
vcircular polarizatioh as large as t l%;

Angel and Landstreet, along‘with Kemp and Swedlﬁnd (11), detected
circular polarization in light coming from the white dwarf, Grw+70°8247.
Preiiminary measurements takeﬁ using a system adapted from the one Kemp
used in his laboratory magnetoemission experiments were verified using
a polarimeter similar to the one showc in Figure 1. The fractional
circuiar polarization was found to vary from about 1% for A = 3500 % to
slightly more than 3% for A = 6500 2.

Angel and Landstreet (25) hade further, more detailedkaservations
of the circularly polarized iight coming from Grw+70°8247 and a further
search for other white dwarfs emitting circularly polarized light. The
observed dependence of circular polarization on wavelength is given in
Table I and shown in Figure 2.

The search for other circularly polarized white dwarfs was
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TABLE I

CIRCULAR POLARIZATION OF er+7008247
IN THE VISIBLE REGION

A () . q (%)

3300 - .75 t .14
3500 ‘ -1.54 + .06
3800 | 314+ .16
4150  -3.68 £ .11
4600 -3.58 + .17
5400 -3.13 + .19
6400 | -3.18 + .18
7600 | -2.42 *+ .38




Circular Polarization (%)

3000 4000 5000 6000 ' 7000 8000
r ()

. . . . . o .
Figure 2. Observed Fractional Circular Polarization of Grw+70 8247 in
the Visible Region
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unfruitful, the largest fractional circular polarization being less than
44 in other cases.

Kemp and Swedlund (26) used a photoelastic polarimeter similar to
the one used in their laboratory experiments to determine the circular
pélarization of Grw+70°8247 in the infrared region. Table II gives the

results of their observations.

TABLE IT

CIRCULAR POLARIZATION OF er+7008247
IN THE INFRARED REGION

A (R) q(%)
11500 - 8.5+ .3
12500 -15 + 2

Kemp and others proposed that this observed fractional circular
polarization from white dwarfs is due to magnetoemission. Discussions
of their theory, its partial disagreement with observation, and the

results of improving their theory appear in later chapters.



CHAPTER IIT
NON-RELATIVISTIC THEORY OF MAGNETOEMISSION

Classical Description of Circularly Polarized

Electromagnetic Waves

Since the experimental observations relate to circular‘polariza—
tion, it is useful to review the classical theory of polarized electro-
magnetic waves. A basic feature of Maxwell's equations for the electro—
magnetic field is the existence of traveling wave solutions in free
space which represent the transport of energy from one point to another.

In the absence of sources, Maxwell's equations are (in MKS units)

-> > ) '
V+«E = 0, (3-1)
> >
Ve+«B = 0, (3-2)
> > a%
VXE = - SE and (3-3)
> > lSE :
VXxB = 5 . (3-4)
. eyt
There exist solutions of the form
. > >
1 (kr-wt -
E(;,t) - glEOe (ker-wl) . (3-5)

and

13
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B(r,t) = 2230 (3-6)

‘ > >
where El and 82 are two constant real unit vectors while Eb and BO are

complex amplitudes which are constant in space and time. The divergence

3 . > > > > . . . > ->
equations require that €*k = O and €*k = O which implies that E and B

' >
are both perpendicular to the direction of propagation k, giving+the+

: k X €
s . . > 1
familiar transverse wave. The curl equations require that e =

2 k

-> >
and Bo = Eo/c. This shows that € , and k form a set of orthogonal

>
1752
vectors and that E and B are in phase and in constant ratio. This plane
wave is said to be linearly polarized with polarization vector. |

Iﬁ order to describe a general state of polarization; another

linearly polarized wave is needed which is independent of the first.

Two such linearly independent solutions are:

-> - ‘(K 7 +)
7 (kex-wg)
= . =7
El ElEZe ’ (3 )
> >
N k x E,
= — 3-8
By pra . (3-8)
> i (ke 2-wt)
- cr-w
E2 = EZEZe , and | (3-9).
> > _
3. B (3-10)
B, = ek '
A general solution for a plane wave propagating in the direction f is
. . . > >
given by a linear combination of El and E2:
> - -> -> ’Z:(K r Z(;) (3 ll)
cr-u ' -
E(xr,t) = (EIEZ + £2E2)e ‘
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The amplitudes E’Z and Eé can be expressed as EZ = E?’eﬂa and Eé = Eg 'efl’B

O . * T e !
where E] and E; are real while eta and e7v“'B are phase factors. Differ-

ent types of polarization result from different relationships between o

o) o
and B and between E] and Eg.' For elliptic polarization in the +z direc-
tion 0<o - B<£2m and Ei, E; >0 so that
> > > > . B '(i pa t)
E(r,t) = ( Eoeﬂu + e Eoe" ) e’ r-w (3-12)

One special case of elliptic polarization is linear polarization where

‘o .
a-8 = 1 (thus et = ezB), so that

. > . :
BEe) = (glE’? + 2 E0) & (ker-wt) o (3-13)

2 .
The magnitude of E(;,t) is given by F = /QE?)Z + (Eg) and the direc-

. . -1 . > - .
tion is O = tan - (E;/Ei) relative to El. A second special case is

.8 10 *7m/2
= e e =

circular polarization where B-a = * (n + %)m (thus e

tiela) and Ei = Eg so that

% £y 1
. *r—w 10
€ e e (3-14)
Since it is a simple matter to adjust the coordinate system so that
Z0,
a=0, the phase factor e can be set equal to one. This simplification

results in

, . >
> > > > 7 1{k*r-wt :
Ee(r,t)’= (elEi + €2Eg e 8) e ( wt) for elliptic polarization, (3-15)
> > > 0 > 1 (K-T-wt)

.r—

EZ(r,t) = (elEZ +_€2Eg) e w for linear polarization, (3-16)
> > . > . . .
Ec(r,t) _ (Zl + Z€2) Eg et(k-r—wt) for circular polarization. (3-17)
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>
As can be seen by the polarization vector in Ec(r,t), the direction of
the electric vector rotates in a plane perpendicular to the direction of
>

~ > a > . PN PN
= y,and k = k2, then el + 2 82 = Xt 17 9.

, > -> R
propagation k. If el = X, €

2
The + refers to counterclockwise rotation (right circular polarization)
while the - refers to clockwise rotation (left circular polarization).'
The description of the electromagnetic¢ field in terms of electric
and magnetic field vectors is not, however, suited to the quantum
mechanical description of charged particles interacting with the field.
For this purpose the vector potential and scalar potential description
is more appropriate. 1In pure radiative interactions the scalar potential
is zero and the radiation is generally characterized by a vector poten-
. + ] ‘ ] » + .
tial A. Assuming plane wave radiation, the most general form for A is
. > > . > > .
> 2(ker-wt) -2 (k*r-wt)
e + e }

A = 4¢f
o

(3-18)

-5
where € is the unit polarization vector. The phase velocities can be
found by considering waves with constant phase and taking the time deri-

vative of the phase:

Kr ¥ ot = constant (3-19)
so that
é%.(ﬁ.?) I é% (wt) = é% (constant) . (3-20)
Then
x - fi Fw = o (3-21)

so that
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}—:—»
A w -
—zf- = =+ % (3-22)
or
vy = + w/k ' (3-23)
.o >
1(ker-wd

- . ->

where vk is the component of v in the k direction. Therefore, e
corresponds to a wave traveling in the +k direction or away from the

e .

. -2 (ke r-wt) : . .

source. Similarly, e corresponds to a wave traveling in the
+
-k direction or toward the source. Since the case of interest is light

 (KF-wt)
t £ term will be con-

emission rather than absorption, only the e
sidered. As will be seen léterj this is the term giving rise to emission
for energy conservation consideration.
‘ . . v . . . 3 —-). —+
The field associated with the radiation is described by g (r,?)

E(r e . .- . > > Lo
where C(r,t) = = 3A/t. The physical electric field E(r,t) is just the

. >
real part of E(r,?):

> > > >
E(r,t) = Re(-0A/3t) = -3{Re(B)}/3t . (3-24)

>
The real part of A is

> - -
Re (A) (A + A¥*)

> LK T-wt) 4
(2" BEut) (3-24)

> i(ﬁ P t)
+ €% e rw }

14

therefore

> > > i(ker-wt > -1 (K-T-wt
E(r,t) = fwd {ee” 7" Vo ZaemtRrxmwi)y (3-25)
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> > S
The magnitude of E(r,%), E, is used to evaluate AO:

> > ' 5 >
E = |E(x,t)] = VE*E . (3-27)
. . . > > > > > >
For circular polarization, €+€ = e€*+*e = O and €*+e = 1. Then

E = onﬁ/E so that AO = /E-E/w. The form of the vector potential that

>
will be used is A

I

R (X)
1 e or

> E > i(ker-wt) . >, -i(k-r-wt)
A, == {ce WLy Eee rwby (3-28)
1 V2w
. . : ) L. > > >
If this is a suitable form, it must satisfy the condition V X Al = B,
Using the vector identity
-> = - ) > - :
Vx {f(x)} = fe)y{vxv}+ {Vpx)} xv _ (3-29)
the curl of Kl becomes
> > E iwt = > iker iwt = _ > Ker
Vxa = ——{e T x?¢ "™ 4" T x ex &Y (3-30)
1 /2w
or
> o 3E o> > i(ker-wt) >, -1(Krr-wt)
: cr-w - *r-w :
VXA = k x {ee ' - g*e . 3-31
1T Toe | : (33
..+
From the expression for E,
§ : >
> L(ker-wt) -, -i(ker-wt) _ 2E 2By _ V2 E _
ce -c*e = = = —— = 27 (3-32)
A w2 E T
so that
> > K-E K B
VXA, = = == = B. . (3-33)
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> -> ->
Thus since 3 x Al = B, the expression for Al is acceptable for describ-
ing the vector potential associated with radiation.
If the wavelength of the radiation is long compared to the spatial

extent of the electron orbits, then

> > ﬁ-
ker = x = 0 (3-34)
+7k =
so that e"z rﬁl. This is the familiar dipole approximation. The vec-

tor potential can now be written as

) . (3-35)

& " ->
If circular polarization is considered, then the unit vector € can be
written as (ﬁii§)//§ where the + and - refer to right and left circu-
lar polarization, respectively. The final approximate form for the

vector potential is now

E ol eay —TWE aLonl TwE
= — {(XXiYy)e + (xxiy)e '}
1+ V2 w . :

(3536)

>y
]

Semi-Classical Model of Kemp

Let P+(w)‘and P (w) be the intensities of right and left circularly

polarized light of angular frequency w emitted in magnetoemission. Then

P (w) - P_(w)

q (w) (3-37)

P (w) + P (w
L@ +P_()
defines the fractional circular polarization as a function of the fre-
quency and the theory to be discussed is to interpret an observed

approximate -Q/w dependence of g, being the Zeeman frequency of an
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electron. Kemp (13) has proposed a magnetoémission theory using a
"gray-body" model. Such a body at equilibrium temperature has constant
spectral absorptivity and emissivity (both * 1) and the radiation in-

tensity curve is identical with the form of Planck's law:

Aw3

eﬁw/kT'_ 1 '

P(w) (3-38)
Following the general ideas of Planck, Kemp assumed for the
radiating system a collection of charged isotropic harmonic oscillators
of all possible frequencies in a uniform magnetié field in the +2 direc-
tion and made a semi-quantum mechanical estimate of fractional circular
'polarization.
For the uniform magnetic field B = Ox + O§ + Bz the gauge
K' = -k ; X E is used. The interacting.magnetic field is given in the

o

dipole approximation by

E’ s
0 (xtiy)e Twt (3-39)

2 =
1+ V2w
where Eo is the electric field and w is the angular frequency of the
plane wave assumed to be either right circularly (+) or left circularly
(=) polarized. The non-relativistic Hamiltonian for the interaction

with a plane wave is then

1 - -> - 2 2
H = o (p - qA_ - qut) + Ykr (3-40)
where g is the charge of the oscillator (for electrons, ¢ = -¢ =

19

4.6 x 10 C). The magnetic term
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> eB
Ao = om Lz = QLZ (3-41)

Ji®
@+

symmetrically splits the levels. The interaction term is

(p-a A A ) | 3-42
Prhy, A A, (3-42)

3

-fw/kT

> 3
to order |A In the quantum limit, %w>>kT so that P(w)=Aw” e

I2
11 -
In the low temperature approximation, significant radiation is assumed
to come only from transitions from the first excited state to the

ground state. For a given frequency w, emitted radiation comes from two
sets of oscillators from among the collection of oscillators—-oscilla-
tors with natural frequency w+fl and oscillators with natural frequency
w-2. Figure 3 shows the transitions and the handedness of the polariza—
tion of<the emitted radiationlwith Q = eB/(2m). For the transition

Aml = +1 (m2 = -1 to ml ; 0) the polarization is right-handed; that is,

the electric vector rotates from +x to +y. 'For the transition Am% = -1

(m2 = +1 to m, = O) the polarization is left-handed; that is, the

L
electric vector rotates from +x to -y. These directions are relative
to an observer 1ookingvalong the +z-axis toward_the origin of the co-
ordinate system.

According to Fermi's Golden Rule, the power p(w) radiated by a sys-
tem making a transition from staté 1> to stéte |f5 is proportional to
the square of the.matrix eiement of the operator associated with the

interaction causing the transition. In this case the interaction Hamil-

tonian A + is the interaction term mentioned above and

I

.12 .12 '
pw « |<fli 22" = |<flp-A, +ea Al (3-43)
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Figure 3. Fiist Excited State to Ground State Transitions and Polarization

Handedness of Two of the Isotropic Harmonic Oscillators in the
Gray-body Distribution '
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Kemp estimates that the power p+(w)vassociated with right and left cir-
. . . . -1 . s s .

cular polarization is proportional to (w*xf) ~. Since the radiation in--

tensity P+(w) is proportional to p, (w), the fractional polarization

g (w) can be ascertained by

1
1

P+(w) - P_(m)

—l -
_ () " = (w=R)
W =5 W+ 2w

) - (3-44)
(w+8) +  (w=-)

1]

w

Thus for electrons, the radiation is left circularly polarized.
As can be seen by comparing this expression with experimental re-

sults, Kempfs prediction based on a gray-body model is true only in a

very general sense and the simple dependence of g(w) on -Q/w breaks

down at infrared and other frequencies of the continuous radiation.
Kemp also estimated the fractional polarization classically using

free electrons interacting with a magnetic field. He shows that the

powér radiated is given by

4
p, (0) = — 5 (3-45)
- (w2 {1 + (wzx Q") T7}

where Q' = 20 and T is the mean intercollision interval. Then to first

ordexr, the fractional polarization is

2 2
' +

gw) = - 29 1 2w T ]  (3-46)

w 1+ szz

For the case of optical frequency emission from a dilute ionized

gas, wt>>1 which leads to

qlw) = - 8Q/w . (3-47)
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This result agrees with the gray-body fractional polarization except for
a factor of 8.

Kemp k27) has suggested that perhaps the steplike feature in the
fractiopal polarization is secondary to the first order gray-body result.
In Figure 4 .is shown the relationship between the observed polafiza—

. .. , . 7
tions and Kemp's prediction for a magnetic field of 2.0 x 10 G.
Quantum Mechanical Model of COR

Since Kemp's calculations were only estimates, Chanmugam,
O'Connell, and Rajagopall(l4,15) (referred to as COR I énd COR II) re-
considered the gray-body model of Kemp in a more apprbpriate quantum
mechanical light. The Hamiltonian for ah isotropic harmonic oscillator

is

1 =2 222
H = — +mwr : 3-48
o (p w, ) | ( )
where w, is the natural frequency of the oscillator. If the particle
(in this case an electron) is placed in a magnetic field and also
allowed to interact with the electromagnetic field in emission, the
- -> -> > . '
momentum p is replaced by p - qu - qu where g is the charge on the
N
oscillator, AO is the vector potential associated with the magnetic
> v
field and Al is the vector potential associated with the radiation. A

cylindrical coordinate system with the magnetic field in the +z direc-

tion is suited to study this problem because of the preferred direction

-> -> ->
along which the magnetic field is oriented. Then AO = -% r x B and
-> -3 —i(ﬂt A o N . . . L
A, = boe (x * zy)/(/? w). With these substitutions and with g = -e

(electrons) the Hamiltonian can be written as the sum of the oscillator

energy and an interaction term: H = Ho + HI+ where
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1,2 2 22 2 2 1,2 222
H == {px + py tmw, (@7 +y )} o+ Eﬁ'{pz +m woz-} + 0L, (3-49)

and

Rj .

g . |
_ o l . . . -0t _
i = 7o G by ¥ ip) * 00 £ gy le 50

2 2 2
with wc = wo + £ and Q = eB/(2m). With the Hamiltonian in cylindrical

coordinates, the eigenvalue equation becomes

A 4 141 4. &
{— '2—’; (——2—+ _ZZ—+ —2 ‘——5+ ——5) +
do® PP 5% d4” ds
i (p2 + 22) - iFQ é%—+ 0% - B}y = o (3-51)
Separating the variables, let
1 = F (p) @ (¢) U (3) (3-52)
pm,n. i m, n, .

; then the above equation can be separated into two equa-

where ! ='!m2l,
tions:
@l rd 1 d 22 am Loy (p) ©  (4) = 0(3-53)
dpz p dp p2 d¢2 e ﬁ2 pH ) pH m,
and
d2 22 2m
{-—5-— a z” + = E }U =o0 (3-54)
dz 7° "y Mg
2 2 mg ¢
where a_ = mwo/ﬁ, a = mwc/ﬁ, ®m2(¢) = e , and F = Epu + Enz.
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As derived in Chapter Vv, the solutions and eigenvalucs of these differ-

ential equations are

- _ 22 2 2.1/2 5 22
Fpu(p) = Npu e,xp(’ucp /2) (o p") JFJ (=2p, w+l; o p”) (3-55)
Epu = ﬁwc(zp'+ u+l) + ﬁﬂmz (3-56)
U (g = N (222 B (o) (3-57)
” = I, exp(-a z /2) n aOZ
2 3 2
Enz = ﬁwo(nz + k) (3-58)

where the _F

7 l's_are confluent hypergeometric functions and the Hn 's

3

are Hermite polynomials. The normalization constants are given by

2air(p+u+l)

pu I (p+1) {T (u+1) }
and
%
an = nz . . (3-60)
2 °I(n,+1) Vi

Then the energy is just

E = ﬁwc(2p+ u+1l) + 'ﬁS?mz + ﬁwo(nz + %) . (3-61)
The ¥'s form an orthonormal set

S oyx Vor ot rdt = & § 8 (3-62
pmznz p ml nz pp’ () mi nzn; !
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Thus if the energy spectrum is written as

: 2
E = %wc(2p + U+ o) m

Lt + Tw (n + %), (3-63)
the motion along the 2 direction is unaffected while in the x-y plane,
the essential effect of the B field is to modify the natural frequency
of the oscillator by w, d wé, the latter becoming an exact modificagion
as Q mc.'

The Schroedinger equation for the isotropic harmonic oscillator
can be solved exactly in Cartesian coordinates; in spherical polar co-
ordinates as well as in cylindrical coordinates (27). From the view-
point of symmetry (group theory) the solutions are basis functions of
the irreducible representations of equivalent groups {SU(3)--spherical
polar, SU(1) x SU(1) x SU(1)--Cartesian, etc.} In his theory of dia-
magnetism of metals, Landau (29) first showed that the non—relétivisfic
quantum mechanical motion of a free chargedbparticle in a uniform mag-
netic fiéld is such that the motion parallel to the field is unaffected
while in the transverse direction it simulates a harmonic oééillator
with the appropriate cyclotron fiequency. It is interesting to note
that Landau's observation is valid even if it is not a free particle.

In COR I (14) low temperatures were aésumed; therefore, only
.transitions from the lowest excited states to the ground state were
considered. The wave functions and energies for the ground state and
the first two excited states ére

22 2.2
- 2 -
acp / aoz /2

U = oo ﬂ_3/4 e e

000 ¢ o

fes]
il

000 ﬁwc + %ﬁwo | (3-64)



_22 5 —a2

) =qa o ﬂ—3/4 (a p) e %/ ei¢ ©

010 c o cp . ¢
EOlO = Zﬁwc + %ﬁwo + A0

2 2

¥ = o qa ﬂ_3/4 (¢ p) P /2 -4

0-10 ¢ o cp € €
By_jo = 2hu, + Mo - 7.

The matrix elements of HI+ and H involve matrix

I-

x, and y. Since the solutions are in cylindrical

Z, and y must also be in cylindrical coordinates:

d sin ¢ d.

p, = -1%i(cos ¢ 35’_ 5 d¢)'
e d  cos ¢ d
py = -i¥i(sin ¢ o + e

&
il

p cos ¢, and

p sin ¢ .

N
Il
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z2/2
(3-65)
2 2
-aoz /2

(3-66)

elements of pr py,

coordinates, px, P s

Y

(3-67)
(3-68)

(3-69)

(3-70)

With the above wave functions a straightforward three-dimensional inte-

gration shows that the desired matrix elements are evaluated to be

imwc -
<OOO]px[OilO> = -5 (=)
C
" 7 *
<000|p, |ox10> = = (=)
Yy 2 mwc

r (3_71)

’ (3-72)
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5 «
<000| z|0t10> = 1,(;7%—) , and (3-73)
c
e
<000| y|otio> = S R (3-74)
c
Then the matrix elements of HI are:
ieE'o ¥ %
<ooo|HI+lo—1o> = -75—(5(’7‘*? (w =) (3-75)
and
. ’I:QEO % Y
<ooo|HI_|o+1o> = -m(m“wc) (0 +Q) . (3-76)

The w in each denominator is the frequency associated with the emitted

ation. . _ +
radiation For the transition EOlO to EOOO’vw : wc Q and for the

ansition E = w _-Q. ideri iation of

transition 0-10 to EOOO’ w @c When considering radiation of a
certain frequency, w must be the same in both cases. This implies that
the trasnitions come from two different escillators with different

natural frequencies. The fractional polarization of emitted light can

be found by

P - P

4 -

p -P
+

q(w) (3-77)

» .12 e ' -
where Pt |<leIi[$>| . With w, = w+ for HI+ and w, =W 2 for HI—'

the squares of the matrix elements become

,
|<ooolHI+[o—1o>| = e (3-78)

and
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. 2
, 5 e Eih
< + = T -
|<000|a,_|o 10> | Y (3-79)
Then the fractional polarization is found to be
glw) = - Q/w . (3-80)

As before, this is left-handed for electrons.

Althougﬁ this exact low temperature resultvagfees with Keﬁp's esti-
mate to all érders in B, it does not agree well with observations as was'
shown in Figure 4. It was thought that extending thé result to include
higher excitations in the transitions (higher temperatures) might imprdve
agreement between theory and experiment.

From the viewpoint of equilibrium statistical mechanics, the inclu-
sion of higher temperatures essentially meant that the populations of
all energy levels would be considered (15). The occupation number <n>

of a state in a system obeying Maxwell-Boltzmann statistics is

e—(E—u)/kT. (3-81)

<n>
If £ >> u, then

n> = e—E/kT = e_BE (3-82)
where B = 1/(kT). Defining n, and n_asn, = p+ (u + ml)/z and
n_ = p+ (u-m)/2, a state vector can be denoted by ]nl n' n;>, then

the occupation number of that state is given by

n'> = exp{-BAl (0w, + Q) (n] + ) + (- (n! + %) + o (1 + W]} (3-83)

The total number of states is found by
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(3-84)

7 = 5 exp{-BA[ (w #2) (1, +}) + (b -Q) (n_+}) + w (n +4) 1}

n n

+ ="z
Then the probability P(n',n:,n;) that the state [n+ n' n!> is occupied

is <n'>/Z or
(3-85)

P"I 14 14
(n+,n_,nz)

exp{-BaL (b +Q) (n)+}) + (u,-0) (n)+%) + w_(n +4) ]}

;

exp{-BA[ (w +2) (n,+%) + (0 -Q) (n_+k) + u_(n_+4) ]}

n
+ -z

n
For right circular polarization the Hamiltonian is (in terms of A and

A+ such that AIA+ =n,)

. X i U
Hp, = 5 {u,(A_ - A) - e@_+AD] (3-86)
- W
where X = -eEoexp(-iwt)(ﬁ/M) and the matrix element of HI+ is
Pt oty =
<n+ n_ nzIH ln+ ﬂ_ nz> |
| (3-87)

—% m ) {w, - Q) (n_ + D% s ' - 1) §(n,m) 8w~ u, + Q)
C‘

- (w + m)n;2 6(n+ n+ +1) 6(n_,m_) S(w + w, + Q)}

The intensity of radiation is found by

2
I (w) =tw ) Y Pm'.m'.m)|<mnn |H_ |n'm'n's|”, (3-88)
+ T LA L + -8
nnn nn'n
+ =g g :

Since only downward transitions are considered, the second term in the

matrix element is dropped. Then
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<n, n_ nz]HI+|n; n! nl> =

(3~-89)
wﬁg 8(n_,n")(w = Q)(n + l)12
: 538 ¢ -
W

-

; r N ! -
6(n_,n_ 1) 6(n+,n+) §(w mc + Q).

The delta term §(w - mc + Q) indicates that w = mc - €. This term can-

cels with the w in the denominator leaving the square of the matrix

element as

w

c

< ”_”3|H1+|”;”:”é>|2 =

[] r_ 4 -
n (n_+l) 6(nz,nz) 6(n_,n_ 1) 6(n+,n+). (3-90)

Now the intensity of the radiation becomes

I (w) =
* (3-91)
2 ) ) pnl,n',m!y (n+1) 8§(n_,n!) §(n n'-1) sn!,nl).
fw Toann utntal +'7-""g - 2"z == + 7+
e + -2 + -2

In the sum over nl, n', n; the only surviving term is for n' =n ,

+ +
n''=n +1, and n! = n_. Thus
- - 2 2
2
I+ (w) = ﬁL " 7% ., P(n+,7’l_+l,nz) (n_+l) | (3-92)
“e + - 3
or
I+((1)) =
(3-93)
3
. 2 g ., exp{'Bﬁ[(wc+Q)(n++%) + (wc-ﬂ)(n_+ )+ wo(nz+%)]} (n_+1)
h(.l)x + - Z .
v 1
o 5 ) exp{-B[ (u_+0) (n,+%) + (0_~2) (n_+ ) + u_(n_+})]}
+-"z

Remembering that w = w, - Q and simplifying the summations, the intensity
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can be written as

th25+ ,

LW o= v - (3-94)

where

I (n_+ 1) exp{—Bﬂw(n_ + g?}

5, = — . (3-95)
z exp{—Bﬁw(n_ + 5?} '

For left circular polarization

a)
]

X t t |
‘“g‘{wc(A+ -AD) + QA +A) (3-96)
wwc

apd

<n, n_mn B |n)n! nl> =

(3-97)

E Sn,,n' - 1) G(n_,nl) S(w - w, - 2)

. .
8 (ny,ml) {(wc ) (n, + 1) Lo

X
b
ww
¢}

S e - RS 1) S(m) S(wtw - 2 }
e - T +' 7+ e :

Again considering only downward transitions and simplifying the summa-

tions results in

I (0 = ——= (3-98)

where

3
%+ (n, + 1) exp{-Bﬁw(n+ + 5)}
s = 1 ) (3-99)
% exp{—Bhw(n+ + 50}
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Since the sums over n+ and n_ take on the same range of integers, 0 to
©, the expressions for S+ and S_ a;e equal. As shown in Appenaix c, it
is possible to evaluate S+ and S_ in closed form. Howevef, for the
following calculation this is not necessary.

The fractional polarization is found by

T _ 7X%s ()™t - (-2 71}
g(w) = T = 3 1 =) (3-100)
+ = FwX®S {(wt) + (w-0) "}
so that
glw) = - Q/w . ’ (3-101)

Since this exact solution for all temperatures is the same as the
low temperature result as well as Kemp's first order result, it is
apparent that the source of the discrepancy between theory and experi-

ment must be looked for elsewhere.



CHAPTER IV

RELATIVISTIC QUANTUM MECHANICS
OF CHARGED PARTICLES

IN MAGNETIC FIELDS
The Klein Paradox

The first thing that suggests itself in the development of a rela-
tiviStié analogue of the Kemp-Cor theory is to try adding an isotropic
harmonic oscillator potential to the free particle Dirac Hamiltonian
and then put this in a uniform magneticvfield. Unfortunately, Dirac
Hamiltonians with unbounded power law central field potentials like P2
are subject to the well-known 'Klein Paradox' (30), and therefore thié
approach is unworkable. . The free particle Dirac equation admits solu-
tions corresponding to positive energy states as well as negative energy
states. These solutions are eigenstates of energy and momentum just as
in the Schroedinger theory. In the construction of a suitable wave-
packet to describe the position localization of a particle (in the sense
of the uncertainty principle), it turns out that positive as well as
negative energy solutions are needed. Tﬁe inclusion .of negative energy .
solutions, however, is necessary only when the electron is to be local-
ized to distances less than its Comptén wavelength, which is on the
order of 10_3 X. Thus in most experimental situations this poses no
real problem. The radius of the first Bohr orbit of the hydrogen atom

is at least one thousand times this distance. A steeply rising or

36
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unbounded potential does lead to ambiguous, if not meaningless, conse-
quences as shown by Klein. If a particle were passing through a barrier
of this kind, a negative transmitted current and a reflected current
exceeding the incident flux would result. 1In thekcase of bound states
either the energy becomés imaginary or the moﬁentum and velocity of the
particle become mutually perpendicular. The solutions become oscilla-
tory up to infinity with large unattenuated amplitudes. It is on
account of these unsatisfactory features that one looks for an approxi-
mate Hamiltonian that has the desired nonérelativistic behavior and, at
the same time, is Lorentz invariant to the same degree‘of approximation
as, say, the Hamiltonian with the Coulomb potential. The model proposed

in this work has these properties and exact solutions besides.
Relativistic Free Particle in a Magnetic Field

From the nature of the Dirac equation (Appéndix A) it is apparent
that there are probably only a few cases which have exact solutions.
One such case ié that of a free particle in an indefinitely extending
uniform magnetic field. This problem was first solved by Rabi (51) and
has since been discussed by several authors and put most elegantly by
Johnson and Lippmann (32,33). 1In view of the fact that the work in
Chapter V is done in cylindrical coordinates,; a short derivation of the
solutions in cylindrical coordinates is given here. The Johnson-
Lippmann wave functions, rather incomplete in their work, then tie up
nicely with those of the model in this work.

The free particle Hamiltonian is

> > 2
H = ep,0°P + meoc . (4-1)

The Hamiltonian for a particle of charge -e¢ in a magnetic field can be
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obtained from the free particle Hamiltonian by making the substitution

-> -> > > )
p > p + eA where A is the vector potential associated with the magnetic

field. By choosing E = Bz and X = =k ? x E, the Hamiltonian becomes
H = c¢p.o+(p + eh) + 2 (4-2)
= cpjo(p +e p4mC
or
H = cp.0°B +cm@p b+ (2 x 3 + pym e’ (4-3)
= ©p,0°p + cm Qp,ze (x o} pymC -
. 2 2 2 2 .
Since H'Y¥' = E¥', (H - E7)¥' = (H-EY({H + E)Y' = 0. Let VY = (H+tE)VY"',

then the eigenvalue équation can be written as usual

(H - E)Y = 0. ‘ ‘ (4-4)
¢l . .
Let ¥' = , then in matrix form
0
v = (H + E)Y'
" 2 > - -> )
me” + E co+ (p + eh) ¢l
- (4-5)
{ co+ (p + eR) -moc2 + F 0

2
(moc + E’)Ql

5 (+ + X)
L co*(p + e ¢l

Equation (4-4) requires that
{(mocz - E) (mocz +B) + [c5- (B + eD]%kg, = o (4-6)
or

24 .2 202 2 2 22 2 2 _ _
{mc™ - E" + ¢ [px R mat (@ +y") + 2mOQLz]}¢l = 0. (4-7)

In cylindrical coordinates this becomes’



39

2 2
{m§c4 - By 02[_h2(gL5_+ 14 +-l§517?
dp pdo p” do
5 (4-8)
+ miﬂzpz - 2im09 d _ 72 é—EJ}¢1 = 0.
dé dza

As will be shown in Chapter V, the solutions of the radial and angular

part are Fpu(p) @us(¢). The normalized functions are

- 292/2
_ B 2 2.u/2 _ 22 ~
Fpu(p) = Npu e (aBp ) ZFZ( p,u+l.§Bp ) (4-9)
and
0 (8 = == WY (4-10)
H Vor

where ZFZ is a confluent hypergeometric function, Npu is a normalization

constant, az = AB/ﬁ = moﬂ/ﬁ, u = Imgf, and § = * 1 is the sign of m

B L°
The solutions of the 3 portion are
ipéz/ﬁ
u, = e (4-11)
Pz
. . - ms
where pé is the eigenvalue of p,- The eigenfunctions of ¢ are Xy,
(mn = + %), so the two-component function ¢l is
. ms )
= F o U (z . : 4-12
¢l J pu(p) uS(¢) Pé ) Xy, ( )

For $ = 4+ 1 and mS = + %, the normalized four-component wave function

is
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E+med) F_ o U, ’
o pu W py
+,0 1 0
\yl = — .
/! 2 (4-13)
2Ev(E+moc ) ep' F 6 U,
Z.PH W P,
chABu/h (p+u+1) Fp,u+l @u+l‘ Upé
\ J

with energy

E = w/mzc4 + dcp(p +u + 1) + czpz':z (4-14)

where k_ =m cth;
B o
It is interesting to note that the particle in the magnetic field
simulates a linear two-dimensional harmonic oscillator with frequency
Q= eB/(2mO) in a plane perpendicular to the magnetic field while the
motion pafallel to the field is unaffected. This was first pointed out
by Landau (29) for the case of a non-relativistic charged particle in a

uniform magnetic field.

Defining position operators @O and yo

p
- - X _ Y -
% T 2 " ma (4-13)
(o]
and
p
= 4 x -
Yo 2 * 2 a (4-16)

it is easily shown that for the above Hamiltonian, [@O, H] = 0 and
[yo, H] = 0. Therefore @0 and yo are constants of motion and the posi-

tion (xo, yo) can be thought of as the center of the orbit of the



particle in a plane perpendicular to the direction of the magnetic’
field. It is of interest to note that there is an infinite number of

possibilities for the location of (xo, yo) in this plane.
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CHAPTER V
RELATIVISTIC THEORY OF MAGNETOEMISSION
Model Hamiltonian and Solutions

The proposed approximate Hamiltonian for the model of aVcharged
relativistic harmonic oscillator in a maghetic field of magnitude B in

the +z direction is

> > 2 A~ > -> 2
= . . +
H cpl®op+cxcpl®z (r x o) cxoz%@lz
2 -
, 2 (5-1)
+moc p3®12_;n-—Jz®ILZ_
o
2 2 0o 1
where Xc =MW, AO = mowo, w, = w, +Q, Q= eB/ZmO, Py = ;
. 1 O
0 -7 1 0 1 0
p, = r P, = rand 1 = . Although the p.'s
2 i 0 3 0 -1 2 0 1 ks

are mathematically isomorphic with the Pauli matrices 0sr the p's and
0's commute in Dirac theory. In the Hamiltonian, the direct product

representation is used; that is, the Dirac operators are written as

gi = pl Q@ Oi' The suitability of this for magnetoemission will be dis-
¢l
cussed later. With ¥ written in two-component form ¥ = & the
2

eigenvalue equation (H - E)¥ = 0 can be written as

42
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c2 J E cg-+ + cxz(x -yo ) - icxzz @
0 %o p e Oy Y9, o

= 0 (5-2)

> > 2 . .2 2
. + - + - - -
cop cxc(xoy yox) zcxoz m.c wOJz E o}

which leads to the following set of simultaneous equations:

2 > > 2 . .2 3 _
{moc - (E + wOJz)}¢l + {co*p + cxc(xcy - yox) - zckoz}¢2 =0 (5-3)
and

{cgog + cxz(xoy - yox) + icka}¢l + {—moc2 - (E + mOJz)}¢2 = 0. (5-4)
Eliminating ¢2 results in the defining equation for ¢l:
{[eo-p + cxi(xcy—yox) - icxgz][cg-; + cki(xoy~yox) + ickiz]
+ (mocz)z - v(E+w0Jz)2}¢l - o. o)
Then ¢2 is found from

> > 2 . L2

co*p + eA _(xo -yo ) + 1cA 3

¢y Vx 0
g, = > ¢l. (5-6)
(E+w J ) + m c
o 3 o

This corresponds to the 'helicity-eigenstates' derivation of the solu-
tions of the Dirac free particle Hamiltonian. Simplification of the

equation for ¢l gives

) 2 2 2.2 2.4, 2 2 2.4 2
. +
{ep™ + 2¢ AcLz +c Ac(x +y) e} Aoz
_ (5-7)
2 2 2 2 2,2
+ + - = 0.
e h(2Ac Ao, = (B +w d )" + (mec”) }¢1 0
Remembering that Jz = (E + g)z = Lz + Sz = Lz + %hcz, this equation in

cylindrical coordinates p, ¢, 2 becomes
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2 2 2
2 .
{-hzcz(d >+ Ld 33-4—5) - 7% 'é—z - Zzhczxi d
dp pdp p~ dd da de
+ 02A4p2 + 02A422 + czﬁ(2A2 + Az)o (5-8)
c o e o'z
. d 2 2.2 B
- [ + wo(—zﬁ T %ﬁoz)] + (mc”) }¢l = 0.
Mg
The variables can be separated by letting¢l = Fpu(p) @uS(¢) Uﬁ;Z) X%
where y = |m2l and S is the sién of mZ; that is, S = +1 if mR > 0 and
S = -1 if m, < 0. The individual functions in ¢l satisfy the following

set of equations:

2 2
{;ﬁ202(4- + i-é— + JE-Q—EQ + czmjwipz F o) g = E2U F y @us , (5-9)
dp pdo o d¢ pu M puop
. 2 d 2 ‘
(-21tc mw, d¢)¢u8 = EuS QuS ’ (5-10)
22 d2 22 2.2 2
(-2 =— + e muw sz =E U , (5-11)
2 o o " n_n
dz a z 'z
and
2 ms 2 ms
{e ?z(ZmOwc + mowo)cz}xli = Em8 Xy, - (5-12)
With k= c2hl2 =m czﬁw and k = czﬁlz =m czﬁw , Equation (5-12)
0] o o o) e e o) e}
becomes
m 5 m8
(2|<c + KO) 9, xli = EmS Xy - (5-13)

. . 1 - 0
Since m_ can be either +% or -%, let x2 [()] and X;ili = {]_J; then

mS mS
0, X, = 2m xS (5-14)
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Thercfore

B2 = (4 + 2¢ )m . (5-15)
m e o s
s
Let ¢ = (2w)_% eiuS¢ then d_ ] = 7uS ¢ so that from Equation
us v ' dé uS us
(5-10),
E2 = 2k _uS (5-16)
R L

In Equation (5-11) the variable can be changed by letting 7 = aoz where

aO = Vmomo/ﬁ. Then the differential equation becomes

2
d2 Enz 2 |
Fz+ -l @ =0 (5-17)
dg o p:

2 .
With En /KO = 2nz + 1 where nz > 0, this equation has solutions (34)
2

_ _2 -
Unéﬁ) = exp(-7 /2) Hn;C) (5-18)

where Hn(c) is the Hermite polynomial of order nz. In terms of z the
ﬁ 2
normalized solutions can be written as

2.2 ’
Un;z) = an exp(—aoz /2) Hn;aoz) ‘ (5-19)

where

n
Noo= /ao/{z zr(nzﬂ)/w?} ] (5-20)

2

Solving for Ei gives
2

2
E = Koxznz +1). (5-21)
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Since it has already been shown that ¢u = (2w)—% eZuS¢, the term

S
—_— QUS = -u2 QUS' and Equation (5-9) simplifies to an equation involv-

i 1y F :
ing only pU(p)

2
{-hzcz(é—g
dp

+ (5-22)

| , |
1d vy, 22 = F
pu Tpu pu

+
2 ¢ mowcp
pdo o
. . 2 2 2 . .
By changing the variable to § = acp = (momc/h)p , the differential

equation can be written as

2
2 . 2 E
{ag £i'——z--+ 4 d__ (52 + EEQ + —QE}F (€) = 0. (5-23)
dg dg £ “e' PH
Now let
P, = et/ &2 ), (5-24)
then the differential equation defining f (&) is'
d° d u+1 fég
fef5+wr1-5 & (= 4Kc>}f(g) = 0. (5-25)

dg dg
By comparing this to the confluent hypergeometric equatioh (34)
X y"(x) + (c‘~ x) y'(x) - a y(x) =0, (5-26)
the following ideétifications can be made:
X =& = a0, (5-27)
ylx) = f<a2p2), (5-28)

c=u+1, v (5-29)
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and
u+1 E;u
a = 5 - 4Kc . (5-30)

The solutions to Equation (5-26) are the confluent hypergeometric

functions

ala+l) gi

_ eyl = a X
ylx] = JFJ(a’c’X) =1+ c 1t cle+l) 21

+ e (5-31)
In this solution ¢ cannot be zero or a negative integer. However, if a

should be zero or a negative integer, the series terminates and

ZFl(a,c;x) becomes a polynomial. From Equation (5-29), ¢ > 1 since

. ‘ 2
u > 0. In Equation (5-30) let a = -p where p > 0, then E’pu becomes

2
E =K (4p + 2u + 2). 5-32
oy c( D u ) ; ( )
The functions f(£) in Equation (5-24) can now be written aleb(—p,u+l;E)

so that in terms of p the normalized solutions of Equation (5-22) are

_ _2 2 2 2.u/2 _ 22 _
Fpu(p) = Npu exp ( a_p /2) (acp ) ZFZ( p,u+l,acp ) (5-33)
where
2 2F( +u+l)
N = agt P (5-34)
pu

I (p+1) {T (u+1) }°

From the energy term in the Hamiltonian

| . d 2. 2
{F + wo(—zh a$-+ %hcz)} ¢l = {E + ﬁwo(us f mS)} ¢l. (5-35)

Now the energy can be found from
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2 2.2 2
+ E° , + En + Eﬁ + (moc ) = {E + hwo(uS + ms)} (5-36)

so that

= - + +
E hwo(uS ms)
(5-37)
V/m204 +k {4p + 2(14S)u + 4m_ + 2} + « (2n_ + 2m_ + 1) .
o e s o 2 s
To find ¢2 return to the equation defining it in terms of ¢, :
cg-; + cxi(xo —ycx) +.icsz
g, = 4 5 g, - (5-38)
(B+w J_) +me
oz o
With the operator in cylindrical coordinates, the equation becomes
e .. d . it d 2
g, = —F {[—zh cos¢ =— + sing (— —=— - A 0)]o
2 i el dé p d¢ e x
° (5-39)
e d in 2 ., d .2
- - - - - + (-1h =— +
+ [~i# sing s cos¢ (p Acp)]oy (=% dz)oz zkoz}¢l
where
' = + = + . -—
E E won E ﬁwo(uS + ms) (5-40)
s
To simplify this expression consider the effects of oi on x12 . If
m -m_ . m -m
|1 =% |0 s _ s s _ . s
xli = [()} and x% = []_], then Oxx% = X% ’ oyx = 27,m$)<;2 , and
m m . , | ms
=2 . Al i =F '
0, Xy, M Xy, so since ¢l Fpu ®u Unz Xy,
g = -uSh B ; (5-41)
de “1 1’

therefore



d ush
dp a

.d .

2
-h —— D I—s 4+ A 1 [0}
[ e { 0 00)] pu

2 8
* (2hm, = - N 2) F 0 o U . Xy, }.

pu uwS n

There are four possible combinations of S and ms since S = *1 and

S
2
relations:
d ¥, 52 _
{h(dp )+ Acp}Fpu = 2% YR (p+u) Foouer  EoTmy >0,
{h(é—'— Ky AZD}F = -2\ VAp F for <0
do o e pu e p-1l,u+l L=
d _u o2 = —o\ YA (orarl)
{h(dp ) Acp}Fpu = -2) VA (p+u+l) Fyue1 £oTmy 20,
d_,m o2 - o AT ;
{h(dp + p) Acp}Fpu = 2, 7 (p+1) Fp+l,u—l for m, < 0;
2S¢ _ .
e q)uS = q)(].l+l)S'
d .2,
{h ag-+ Aoz}Un = onzhnz Un Y
2 2
d 2
[ i Aoz}Unz = —Ao/zh(nz+l) Unz+l'
For § = +1 (with m > 0) and m, = +,
@ = F ¢ U x%
1 pu u n, Y
and
¢2 = ————}———3-{2ick vAi(p + u + 1) F +1 0 +1 U - x;%
o+ moc c Jo3's H nZ

o T k
+ A A D F 0 Uy i)

)
N jn

m = *%_. The functions F. , & _, and U obey the ladder operator

49

(5-42)

(5-43)
(5-44)>
(5-45)
(5-46)

(5-47)

(5-48)

(5-49)

(5-50)

(5-51)
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Applying the above relations, ¢2 becomes

1 . -3
= — {27{c) Vi + +
2, o o2 {2ic e 1) Fp,u+l ® 41 U”z Xy,
e} (5-52)
+ieN Vohin_ + 1) F o U x%}-
o ¥ pu H n L e
¢l 3
Let ¥ = , then with the matrix definition of x% , ¥ can be writ-
¢2
ten as (unnormalized)
[ E +meHF o U )
o < THR VI 7}
2
‘O
WI'O = ————5——75 (5-53)
]
EY +mye iox VRn A1) F_ & U
o 2 PH U nz+l
27ex v +u+l (0]
Zed VA (p+u+l) Fp,u+l 1 U”z

Y J

where the subscript is an index and the superscript designates the

allowed values of m Similar calculations for the other cases result

.
in:
for S$ = -1 and m, = +%, ) 5 .
(F'" +mec) F ® U
H U n
P
0
WI = 4/1 B ; (5-54)
Bt vme | o VR A F. o U
o z pu  -u nz+l
-27 + ’
LA A F oLy )0 Unz |



51

for S = +1 and m = -k,
8 ( \
0
2
(' + me™) F ® U
+ 1 o puowony
¥ = —_— H (5-55)
2 Fv +m 02 ' :
2 -2iek Yh(p+u) F ) U
e psu=1 u-1. n,
iex V2bm F & U
o 2 pu u nz-l
for S = -1 and m = -%, .
o ( 0
. 2
(E* +me")y F. o U
-,0 1 © pu -u nz
\{,2’ - 5 . (5-56)
E' +me . i
o) 2zckc 7ip Fp-l,u+l ¢-(u+l) U”z
iek Vofn F._ & U
) A
\ /

In the original set of equations involving ¢l and ¢2, ¢2 was arbi-
trarily eliminated first. This is tantamount to choosing ¢l as the
large component. If, on the other hand, ¢2 is chosen as the large com- °

ponent, ¢l can be eliminated first resulting in

- > 2 . 2 Aap > 2 , .2
{[eop + cxc(xoy—ycx) + zckoz][co p + cxc(xoy—yox) tckoz]
, (5-57)
2.2 21
+m e - (B J)) }¢2 = 0.

Then ¢l is found from

> > 2 . 2
co*p + cxe(xo —yom) - zcxoz
g, = 4 > 2, (5-58)
(F+w J ) - mec :
o 3 o
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Simplification of the equation for ¢2 gives

{czpz +2290%0 + At y2) N
e’z e )

(5-59)
2 2 2 2 2,2
+c ﬁ(zxc - Ao, = (B +w )"+ (m e }¢2 = 0.
m
This equation has the same solutions as Equation (5-7), F y @us Un x%s,
2

but the expression for the energy is slightly different from Equation
(5-37):

E = “fiw (uS +m.) +
9 8 (5-60)

/24 -
me” + Kc{4p + 2(1+S)u + 4m8 + 2} + KO(an 2ms +1) .

The equation defining ¢l, Equation (5-58), is similar to Equation
. , , : ' 2
(5-6), the difference being the sign of the 2 term and the moc term.

As before the operator in Equation (5-59) can be simplified so that

. i2m ¢ -m
-ic s d ush 2 8
g, = {e i -2m =+ 2] F 6 U x
1 o mocz dp s p e pu us n, 3
. m (5-61)
s v r e U xS}
s dz o pu  us n, Xy -
gl
Again there are four possible combinations of S and m . With ¥ = &

' 2

and with the help of the ladder operator relations given previously,

the possible ¥'s are:



for S = +1 and my

for S = -1 and m, =

for S = +1 and m,

for S = -1 and m, =

= +;!r

E' -mec

F
pu

-1\ /2—7.171—— ¢ U
o 2 H nz

-1

o}

2ieh 7 (p+u+l) Fp,u+1 u+l U

(E' -mc®) F_ o .U
o py u n
z
0
-ie\ V2hn_ F ¢ u
o 2 pu - nz_l
—2ie\ VA(p+l)
27,c>\c i(p+l) Fp+l,U'l (D-(u-l)
E -me? P o U
) pu - n
z
0

®

~2de VA (p+u) P -1 tu-1 Y

—wxom Fpu % Unz+1

B -me®) F_ o U
0 pu uon

2

2$cXcV%E—Fp_l'u+l Q—(ufl)

-ieh Voh(n +1) F_ & U
0" Tpu Ty il

3

U
n
b4

2

H

U
n
2
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(5-62)

; (5-63)

i (5-64)

. (5-65)
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To determine the energy associated with each wave function, put the
appropriate values for S and ms into the general energy expression
corresponding to the wave function.

A ééheral wave function with quantum numbersyp, u, S, nz will be
referred to as W(puSnZ) or in Dirac notation |p u s n,>-

Normalization constants must be calculated for all ﬁhe wave func-

2

tions. As an example for a wave function containing the term E' + moc ’

+ A
consider Wl’o. Let

+,0

1 +,0
WlN N Wl

(5-66)

+,0 . . , . .
where Wl& is the normalized wave function and N is the normalization

constant. Since by definition

/ (wlN ) * 1N % d4r = 1, (5-67)
then
(E'+%f%—2{m,+mc) fpglq ;ZﬂmQU%%p&ﬂmk
+ 26020 4) Py ¥ U1 Tu % U odpdsdz
(5-68)
+ 402A§ﬁ(p+u+l) / F;,u+l<®;+l U;z Fp,u+l ®u+l Unz odod¢da} = N2,

The functions Fpu, @u, and Un are already normalized so that the above
2

equation simplifies to

(' +m 02)2 + Kk (4p + 4u + 4) + k (2n_ + 2)
0] C Qo 2 - N'. (5—69)

(B' +m 02)2
o

For Y. '
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T A , _
E' =E + ﬁwo(u + k%) = ﬁéoc + Kc(4p + 4u + 4) + KO(ZnZ + 2) (5-70)

so that
K (4p + 4 + 4) + k (2n + 2) = E'% - m e
e'°P H 0z - o)
(5-71)
2 2
= "+ meT)(E -m .
(F m ) ( Oc )
With this substitution,
N2 = 2F'/(E' +mocz). (5-72)
Then the coefficient of the spinor will be
(NGE" + mocz)}-l = {28'(E' + moaz)}';2 (5-73)

L . L 2
A similar calculation for the other Y¥'s containing the term E' + m ¢

gives the same result. For the ¥Y's containing E' - mocz,
NP = 2E' /(B - mocz) (5-74)
so that
- 2 -
{N(E"' - mocz)} L2 {2E" (' - m e )} & : (5-75)

Table III summarizes the normalization coefficients and the correspond-
ing energy eigenvalues of all the eight wave functions elabofated
earlier. 1In referring to a wave function with quantum numbers puSnz,
S wi;l still be +1 or -1 to indicate whether the appropriate Wi,is
Wz or'W;.

An alternate method of solving the eigenvalue equation will be
briefly indicate@ here. The Hamiltonian can be written in 4 x 4 matrix

form:
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2
' A
> > 2 A > -> 2 2 o
H = cplc p + ckcplz (r x g) + ckozpz + moc Py - JZ
© (5-76)
2 , .2 . 3
[ m e —wO(LZ+%h) 0 cpz-tckoz C(px tpy)
. L2 .
—wckc(x—iy)
0 2o (L -%)  elp +ip) ~cp ~ien’z
' moc _wo( 2 px py pz (o}

+ick§(x+iy)

.02 . 2 ‘
cp+ich 3 c(px—ﬁpy) -m ¢ —wO(LZ+%ﬁ) 0

. .2 ,
—zcxc(x-zy)

s . .2 2
c(px+zpy) -cp +ich 2 0 -m ¢ —mo(Lz—%ﬁ)

+ielz(x+iy)
e
Let H' = H +.wOJz and F' = F + won. Then from Dirac theory
2 2 )
H''¥' = F'"¥Y' so that
2 2
(' - E'")¥' = (HA' -FE')YH' + E")YY' = 0. (5-77)

If ¥ = (H' + E')Y', then the eigenvalue problem can be written in the

usual manner since A' - E' = H - E:
(H - E)YY = 0. , (5-78)

From Chapter III the solutions of the non-relativistic harmonic
oscillator in a magnetic field and in cylindrical coordinates are

Fpu(p) @m(¢) Un(z); If the index of ¢ is changed to uS where u = Im
% 2

)|

and S is the sign of m_,2 (*l1), then these solutions can be used to

9, '
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generate the exact solutions of this Hamiltonian. Each W% is a four-

. . . .th I
component column matrix with FPU QUS Un in the 7 position and zeroes
2

elsewhere.
The components of the matrix in Equation (5-76) in cylindrical

coordinates are:

. . .2 . . té., d 1d., _ .2
+ + + = - = = == , (57
elp,, 7,py) ied (@ * Ty) ice {h(dp S dp) F Al (579)
. .2 . d 2
+ = - = + -
cp, * 7,c>\0z ie (- 7zt xoz), (5-80)
m 02 ~-w (L £t = m e? - w_ (~Zh é-—i 7). (5-81)
o o'z 2] o dé
The wave functions are then found by Wi = (H' + E')W% where
(F o s U ) ( o )
pu WS n,
0 Fpu QHS Un
1= ’ ¥y = B
0 0
O J \ O J
(5-82)
f O N\ r O 3
0 0
yroo= , yroo=
F o]
pu us U 0
2
L 0 L Fpl—l q)LlS Unz )

The functions Fpu' @uS, and Un obey the ladder operator relations given
2

earlier. The wave functions thus obtained are identical to the ones
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previously found. The energies are obtained from (H - E)Y = 0 and are
also found to be identical to those listed in Table III.

A computer program has been written to calculate the energy levels
for any given magnetic field and oscillator natural frequency. Table IV
lists the first 20 levels {(relative to the rest eﬁergy of the electron)
and quantum numbers of the corresponding wave functions for a magnetic
field of B = 1 x 107 G and an oscillator with natural frequency

15

w, = 3.77 x 107" Hz. For this value of B, EB = A0 = .05788 eV and for

w Eo = hwo = 2.480 eV. As is to be’expectedf the energies in each
solid-lined block of the first few levels differ by = 2.48 eV or Eo'
Also, within each solid~line block the first energies in each dashed-
line block differ by = .11578 eV or 2EB.

A more detailed description of the program and more energy levels

are given in Appendix D. Also given are energy levels for several other

natural frequencies and magnetic fields.
Non-Relativistic Limits

In the non-relativistic limit the momentum of the particle is small
compared to me, and it is well~known that the Dirac theory goes into the
Pauli spin theory in this limit. Foldy and Wouthuysen (35) have dis-
cussed the relation between these two theories and the difficulties
encountered when trying to go from Dirac theory to Pauli theory. They
also give a systematic and rigorous method whereby the proper non-
relativistic Hamiltonian can be ¢btained from.the Dirac Hamiltonian to
the desired degree of approximation. Before applying their theory to
the Hamiltonian in Equation (5-1), a brief review of their theory is

in order.



TABLE III

NORMALIZATION COEFFICIENTS AND ENERGY

EIGENVALUES

¥ Coefficient E' E

ytr0 {2E" (E" +m cz)}—% E+ 7w (u+) -fw (p + %) 42 Yy (p+u+l) + 2« _(n_ + 1)
1 o o o o e o 2

' [2E"(E* +m cz)}'li E + hw (-u + %) A (-p + %) meet & ac ( p+l ) + 2k (n_ + 1)
1 o 0 0 o c o 3

+ 2.9 2 4 '

¥, {2E" (" + m_c ) } E E + hmo( u o= %) -ﬁwo( U= %) m_c 4 (pru) + 2c_( 7n, )
-,0 2 41— 2 4

¥, {2E"(E" + m ¢ ) } % E o+ (-u = %) “hw_(-u = %) m ac,( p )+ 2 ( n, )
,0 2.1~ 2 4

w; {2E' (& - m e ) } & E o+ fw (u+ %) P (u o+ %) m’ 4k (prutl) + 2¢ ( 7 )
- 2. 4- 2 4 :

¥y {28V (& - m_c ) } 5 E + ﬁwo(—u + %) —‘ftwo(—u + %) m, e (p+l ) + 2¢ ( n )

2.4- 2 4

‘PZ {2E" (&' - m e ) } 5 E + ﬁwo( b - %) -hwo( u o= %) m 4k ( p+u ) + 2|<0(nz + 1)
-,0 2. 1- 2 4

¥, {2E" (" - m e )} : E + ﬁwo(—u - %) —'hwo(—.-u - %) m, e, p )+ 2c (n + 1)

69



TABLE IV

ENERGY EIGENVALUES AND QUANTUM NUMBERS

60

¥, b4 Y. Yy
E (ev) -t 2 3 4
S
puSs nz pusSn pus nz pu nz

1.239727 00-10
3.719175 00-10 00-10
3.719181 01-10 .

————————————— T——_————_—_—_—_“__———_—--_—_——T—_-—__—_____-—+_———____-——_—
3.834923 01410 00+l 0
6.198611 00 -12 00-11
6.198629 01-11 01-10
6.198635 02-10
6.314346 00+l 0 01+l1 00 +1 0 01+l 0
6.314377 10-10

______________________________ L e e e e o e e o i e e e e e e e o e o e e e e
6.430068 02+10 01+l 0
8.678035 00-13 00 -1 2
8.678065 01-12 01-11
8.678083 02-11 02-10
8.678089 03-10

e e e e e o e oo o e e e e e e e S S RSt
8.793757 00 +1 1 011l +1 2 0 0 +1 2 Q l1 +1 1
8.793800 01-10 1 0-11 01 -11 l10-10
8.793831 l11-10 02-10

————————————— -1-—-———————--————-L———.—————————_—--—_————————————JF——————————_——
8.909467 01 +10 02411 01+11 02+l 0
8.909522 i 11+10 1 0+1 O
9.025162 r 03+l 0 02+1 0
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Any relativistic Hamiltonian can be written in the form
2 .
H = Bmoc +E+0 (5-83)

where E is an even operator and 0 is an odd operator, both of‘which may
be time—depeﬁdent. An odd operator is one which commutes with B and
couples the large and small components in the solutions of the Dirac
equation. An even operator commutes with B and does not couple the
large and small components. It is assumed that the highest order of
mocz in £ and 0 (moaz)o. If S is a Hermitian operator, the transforma-
tion

yro= Sy, H' = S e - e (3700 (5-84)
leaves HY = 7(3¥/3%) in ;he.form H'Y' = £(3¥'/3%). Consider the

Hermitian operator

s = -~ 0. ~ (5-85)
ZmOc

As a result of the canonical transformation generated by this operator,

the Hamiltonian in the new representation can be written as an expansion

in powers of (mocz)—l:
g o= o g et s 1" e 0
' 5 (5-86)
O Loy, i L3Sy, ...
= H+ 7t z[S, H + 5 3H * 71 [S, [S, H * 3 at]] +

For a Hamiltonian in the form of Equation (5-83) and with terms no

. . 2. -1 | ¢ 2 =2
higher in (moc ) than (moc ) ~, H' becomes
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B = Bmel+E+—B 02— 1 _r0,00,8] + 2
fo) 2 2.2 3t
2m e 8(m c”)
© © (5-87)
1 50 8 1 3
- — 4 [0,E] - ————= 0" + «--
2m 02 ot 2m 02 3(m 02)2
] : (o] o]

Remembering that the product of two odd operators is an even operator,

. 2.0

it can be seen that all odd operators of order (moc )  have been removed
. . 2, - .

from the Hamiltonian. Operators of order (moc ) 1 and higher can be

removed by successive transformations, the transformation operator at

each step being

S = —£82 (odd terms in Hamiltonian of lowest order in 12). (5-88)
2?710@ . moc

After two more such transformations, the non-relativistic limit, correct

td order (mocz)_l, is

Hyp = 8m e’ + £+ —E— 0% - —2=—{[0,[0,E]] + i[0,0]}.  (5-89)
2moc 8(moc ) A
This process can be carried out indefinitely, resulting in an infinitg.-
power series in (mocz)_—l which is éompletely free of odd operators.

They show that for a free particlé Hamiltonian eis can be written
in closed form which compleﬁely removés the odd operétors, whereas when
there is a field, the S has to be constructed afresh for each degree of
approximation removing the odd operators tb that degree of approximation.

Real.insight-can be gained into the structure of the relativistic
model of Equation (5-1) by studying the non-relativistic limit of the
Hamiltonian, its solutions as well as its energy eigenvalues. As dis-

cussed earlier, if the charged oscillator is allowed to interact with

radiation, this effect is accounted for by the substitution
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> > - y
p>p +eA _ (5-90)
where
-Twt

=d ~ oA . -
A, = K(x £ 2y) e (5-91)

is the vector potential associated with the radiation field. The rela-

tivistic Hamiltonian for the equivalent oscillator is

B, = {co o-p + en%0 2+ (F x 3) + ex’p.z + ecp 9k }
g~ 6P OTP T CALy 9 T erp, 019°% 4
Ai exg . N 5
+ {— E;-Jz - E;— z*(r X Ali)} +~p3moc (5-92)

2
= 0+ E + pym_c

It will first be established that in Equation (5-89) the commutators

and double commutators vanish. Remembering that

[Gi'cj] = 00 = 00 = Zisijkoh’ ' (5-93)
[oi,oj]+ E‘cicj + 00, = Ziéij’ (5-94)
[Li’xj] = iheijhxh' (5-95)
[Lifpj] = iheijkpk, ' (5-96)

the following relations are easily arrived at:

[G?E,LZ] = <ihz-(5 % D), [S-S,sz] = {hz+ (0 % D), [S-E,JZ] = 0; (5-97)

[G+D, 27 (¥ x Zli)]‘= ii[g°g,xftiy]Ke—lwt = th(o  * icy)Ke-lwt; (5-98)
[2- G x 0),1.] = -th(a-% - 0.2), (5-99)
[2:z x 6),5,] = AT - o 2), (5-100)

[z+(F x 3),Jz] = 0; ' (5-101)
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[2+(F x 0),2+ (¢ x Kl+)] = 0; (5-102)

[z,LZ] = 0, [z,cz] = 0, [z,Jz] = 0; (5-103)

[2,2¢(r x Kli)] = 0; ' (5-104)

[g.xli’Jz] = [Ox + icy,LZ + SZ]Ke_iwt = ﬁ(ox * ioy)Ke—ﬂwt; (5-105)
> > ~ > > ] B

[o-Ali,Z°(r x a,,)] =o. (5-106)

Although the Pauli spin operators o and the Dirac operators p are iso-
morphic in their algebraic structure quantum mechanically, they are
considered independent in Dirac theory, thus [Oi'pj] = 0 for all 4,4.

Therefore since

[O’Jz] = ﬁ(ox * icy)Ke_iwt (5-107)
and
[0,2+ (% x Zli)] = tfi(o ¢ icy)Ke—iwt,v (5-108)
then ‘
| [O,JZ + 2-(? x Kli)] = 0. (5-109)

-, : >
The only explicit time variation in 0 is the e twt factor in Al+'

The time differentiation just leads to the multiplicative factor -iuw,
so 0 commutes with 0 or [0,0] = 0. Therefore what remains to be done
to obtain the Foldy-Wouthuysen (FW) limit is to evaluate the square of

the odd operator:
2 > > 2 ~ > -> 2 > > 2
= . + . -+ ) . -—
0 {cplo p cxcplz (r x a) ckop2z + ecp. 0 Alt} (5-110)
Noticing that

[pi'pf] = 2$Eijkpk' [pi'pf]+ = ZGLJRZ' (5-111)
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G0)) GGy =9 -0, + 25 x L (5-112)
where Ql and Qé are vector operators,

[0:p,2] = ~iho_, (5-113)
and

[Gep,2e(z x 0)] =27 +a (5-114)
14 + z z'

straightforward operator algebra leads to

2 22 2 2 2.2 2, 2 2
0" =cp + m e wc(Lz + hcz) + pgmc hwooz +etmw (x7 +y ) +
(5-115)
222 -twty 1l . .
cm 2" + eKe {r70— (D, * zpy) - Qy 7 ix)}.
Then
H = Bm 02 - w (L + %ho )
NRL o oz z
2
r_ 2, 2 2 2.2
+ s{2m0 *w (L, + ho) + %o P o+ mws @+ yT) + m wz
s (5-1106)
+ eKe iwt{;L*(px + ipy) -y F i }.

o

In the FW theory, the non-relativistic limit is obtained by letting
B > 1 and Py + 1 and subtracting the rest energy from H. Equation

(5-116) can now be written as

" - 02 _ 1 { 2 + 2 + m2 2(x2 + 2)}
NRL o - m Py T Py ove Y
1 2 22
+ 2m0'{pz +mwz b+ L, + fw o, (5-117)
-twt( 1l . .
+ eKe U (P, i) = 2y ¥ i2) }.

o

This Hamiltonian is precisely the one given in Equations (3-44) and
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(3-45) except for a spin dependent term. The interaction is precisely
the one used in Kemp-COR theory.

The non-relativistic limit of the wave functions is determined by
writing the Dirac equation as a pair of equations coupling the large and
small components and then eliminating the small component to give a

second order equation for the large component. Writing ¥ in the two-

@
component form V¥ = ¢l , the eigenvalue equation (4 - E)¥ = 0 becomes
2
2 > > 2 , L2
-— — E . + - —-—
moc won Cco*p cxc(xoy ygx) 1cxoz ¢l
= 0.(5~118)
> > 2 . L2 2
. + - + - - -
coep ckc(xoy yox) zckoz m e won E ¢2
ZuS¢

As discussed earlier, the functions ¢l and ¢2 contain the factors e
m

and x s where uS and m_ are quantum numbers so that
L , s

Jd=(L+8) &=1 S @ = AWS 5
z¢ = (L )Z¢ = z¢ + z¢ = 7 (uS + m3)¢. (5-119)

The coupled equations for ¢l and ¢2 are now

2
{moc - ﬁmo(uS + ms) - E}¢l
(5-120)
> > 2 . L2
+ {co°p + cxc(xoy - ycx) - ickoz}¢2 =0
and
> > 2 .2
{co*p + cxc(xoy - yo) + zcxoz}¢l
(5-121)
2
+ {—moc - ﬁwo(uS + ms) - E}¢2 = 0.

The small component ¢2 is eliminated by the relationship
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> > 2 . .2
co*p + ¢\ (xo -Yyo ) + zckoz '
8, = 4= 51 8, (5-122)
E+%w (S +m) +me
o) s o

which is obtained from the second equation. Letting
E' = E + hwo(us + ms), (5-123)

the second-order equation for ¢l is

> > 2 ' .2 > > 2 . .2
. - - [ - +
{[co-p + cxc(xoy yo,) zcxoz][cc p + cxc(xcy yox) zcxoz]

(5-124)
F (E +mcD)E -meD)lg, = o.
o o] 1
As shown earlier the solutions of this equation are
ms
= F . 5-125
¢l pu(p) @us(¢) Un(z) Xy, ( )

3

It is easily seen then that for small momenta, @, is smaller than ¢l

2
by a factor of v/c:

¢2 ~ o (v/e) ¢l. (5-126)
Therefore WNRL = ¢l or
m

y = 8

wep = Fou %us Uﬁz Xy - (5-127)

In the non-relativistic limit then the Dirac wave functions go over into
the non-relativistic two-component Pauli wave functions.
The non-relativistic limit of the energy can be found by expanding
%

the radical using the expansion for (1 + Xx) . If X << 1, then only the

first two terms in the expansion need be retained.
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Consider the energy expression given in Equation (5-37):

= - + +
E hwo(uS ms)
(5-128)
//mzc4 +k {4p + 2(1+S)u + 4m_ + 2} + k_(2n_ + 2m_ + 1).
o) e s 0z s
The radical can be written as
2 Kc
R = me” {1+ [4p + 2(1+S)u + am_ + 2]
] 2 4 : 8
m-e
© (5-129)
K
e 5
+ > 4 (an + 2ms + 1) °.
m_c

. 2 2.2 2 .
Since k= czxzh =mecHw and «k = A =mecHhw , X can be written as
e c o) e o o o o v ‘

Aw hwc
X = ‘; {ap + 2(1+8)u + am_ + 2} +

m ¢ s m c

(o] (o]

(2n + 2m + 1). (5-130)
2 s
If the energies hwc and ﬁwo are small compared to the rest energy, then
2
> + + (1+ + + + +m + . 5-131
R m e ﬁwc{Zp (1+5)u + 2m 1} »ﬁwo(nz st ( )

The energy £ now becomes
2
E = me’ + hwc{zp + (1+S)u + 1}
(5-132)
+ hwo(nz - uS + %) + ﬁmc(ZmS).

Since wc =w_ + 2,

7w (uS) = Fws_ (uS) = AOuS. (5-133)
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If uS is replaced by m, and the rest energy excluded, the non-relativis-

2

tic limit for the energy becomes

2 5
E___ - G hmc(zp + p + 1) + hﬂmg
(5-134)

+ 7w (n + %) + hw 2m .
o'z c s

This is the energy expression given in Equation (3-56) except for a spin
dependent term cérrespoﬁding to the spin dependent term of HNRL in
Equation (5-117).

Although the model used is an approximate one, the Hamiltonian,
wave functions, and energies go over to the appropriate Schroedinger
Hamiltonian, wave functions, and energies in the appropriate non-
relativiétic limit. This, along with the fact that the Hamiltonian has

‘exact solutions, makes the model relevant ard well-suited to study

magnetoemission.
Rabi Limit

Since the FW transformation of the relativistic oscillator leads
to the non-relativistic theory of COR, it is of interest to examine the
free particle limit of this Hamiltonian, wave functions, and energies.
These can then be compared to those of the free charged particle in a
uniform magnetic field as derived by Johnson and Lippmann (32,33) and
briefly reviewed in Chapter.IV.

The free particle limit is accomplished by letting the oscillator
frequency wO go to zero in the Hamiltonian given in Equation (5-1).

, . . 2 2 .
The frequency wo is contained in the parameters AO and Ac since

2
AZ =m w_ and Az = Az +A2 =m (w + ). Whenw -0, A_ > 0 and
o oo c 1o} B o 0 [0) o]
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2

Ac -+ mOQ. With these substitutions the Hamiltonian
2
. A
H = cp.0B + cr2p. 2+(2 x0) + ex’ap. +mep. - 24 (5-135)
1 c 1l o 2 0] 3 mo 2
becomes
H = T v emap e (X x D) +mel (5-136)
= cplc P cmo plz r o Oc Py

This is exactly the Hamiltonian given in Equation (4-3).
The free particle limit of the wave functions is obtained by let-

ting the bound state solutions in 2 go over into the free particle plane

wave solutions. As in the case of WI'O,
. ipéz/ﬁ '
‘en VY + ! = ¢p'lU 5-137
zcko 2ﬁ(nz l) Un > opge P, pé (5-137)

3

where pé is the quantum number associated with the operator pz. The
energy expression can be modified by the same substutitions. Then the

. . +,0 .
wave function ¥ '~ becomes

(E +m 02)_F o U,
o pv o w P,
‘ 0]
S S ,
1 T < , (5-138)
2E (E+m c7) ep!' F o U,
L 2$?ABVﬁ(p+U+l).Fp,u+l ®u+l sz |

and the corresponding energy is

2.4 2,2 _
E = kaoc + 4KB‘P + u + ;) tep) - (5-139)
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As seen by comparing Equations (5-138) and (5-139) with Equations (4-13)
and (4-14), the approximate Hamiltonian and solutions have the proper
structure in the limit of a free particle in a uniform magnetic field

(Rabi Limit).



CHAPTER VI

' SYMMETRY PROPERTIES OF A CHARGED PARTICLE

IN A UNIFORM MAGNETIC FIELD

While proposing a theory of orbital diamagnetism in metals, Landau
(29) investigated the quantum mechanical motion of a free non-relati-
vistic charged particle in‘a unifbrm magnetic field. He showed that the
motion o% the particle in a direction parallel (or antiparallgl) to the
field is ﬁnaffected, but the transverse motion corresponds to the motion
of.a two~-dimensional linear oscillator. The energy spectrum is thus a
superposition of continuous enefgy levels due to the longitudinal motion
and a discrete set of levels of the quantized linear oscillator. An
interesting feature of this exactly solvable problem is that tﬁe energy
eigenfunctions reveal the existence of an infinite degeneracy.

As in classical mechanics the Séhroedingér equation for a charged
particle of charge -e in the magnetic field E = B2 can be obtained from

the free particle equation by making the substitution
> : i
p>p + eK : (6-1)

> > ‘ ' >
where A(r,t) is the vector potential associated with the field. If A is

chosen as X = -k ; X E, the Hamiltonian can be written as
1 2 2 2 2 2 2
H = — + + + Q + + Q 6-2
2m0 (px py pz) %mo (xv y) Lz ( )
where again mo is the rest mass of the particle, @ is the Larmor

72
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frequency Q = eB/(ZmO), and Lz is the quantum mechanical operator asso-
ciated with the 2 component of the orbital angular momehtum, Lz = xpy.—
ypx. The uniform magneﬁic field is in the +2 direction, énd the longi-

tudinal part of the Hamiltonian leading to continuous energy eigenvalues
is pi/(2m0). The energy levels can be expressed in terms of the quéntum

numbers that go with eigenfunctions either in Cartesian coordinates or

in cylindrical coordinates:

1 2
E = (n_ +n +1)Q+mQ+—p!' (6-3)
nxnymgpz x Y & 2m0 b4
or
E = (ptu+t )0 Ima + = pr? | (6-4)
pum,n,, p T . 2 2m0 z °

The unnormalized eigenfunctions in cylindrical coordinates are

im£¢ ipéz/ﬁ

_ 22 2 2, 1/2 22 _
Y = exp(-agp /2) (agp™) S (epiutliage”) e e (6-5)
. o . . 2
where ]F] is a confluent hypergeometric function and a; = XB/ﬁ = moﬂ/ﬁ.
The infinite degeneracy can be seen from the fact that when u = = m

2

(i.e., when m, < 0), the energy levels become independent of this azi-

)

muthal quantum number, and there is an infinite number of eigenfunctions

for either m, = + y or m

} g = T Moo always being positive by definition.

To understand this infinite degeneracy, define the 'position' operators

p
= X _ Y -
~0 2 2m Q (6-6)
o
and
p
. 4 Y -
Yo = 27 2m 2 (e=7)

Using the well-known quantum conditions relating the position and
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momentum operators in Cartesian coordinates, a straight forward calcu-
lation shows that @0 and go commute with the Hamiltonian andvthus are
constants of motioﬂ. The eigenfunctions of H aré'also eigenfunctioné
of @O and qo' and the expectation values of %0 and qo turn out to be
the same as the expectation values of x and y. Therefore, the point
(xO, yo) can thus be interpreted as the center of the orbit of the par-

<

. . . . . 2
ticle in a transverse place, classically speaking. Now consider ro:

r = X +y = H - L. (6-8)

If Lz has the eigenvalue - yu, then gi will be positive. Becaﬁse the
energy levels are infinitely degeneréte precisely for this choice of
the azimuthal quantum number, it is readily seen that this is related
to the infinite number of possibilities of locating the center ofAthe
orbit in the xy plane. It is common knowledge that this also happens
in classical mechanics (32).

To.understand the symmetry of this Hamiltonian, it can be written

as a sum of three mutually commuting terms:

.1 .2 2 1 2 2 2 12
H {2m0 (px + py) +5mQt (@ 4y )} + {QLZ} + {Zm 2 }
(6-9)
= H] + H2 + Hg.

According to Baker (36), H, has unitary symmetry and belongs to the uni-

1
tary unimodular group in two dimensions SU(2), exactly as the three
dimensional isotropic harmonic oscillator belongs to the SU(3) group
(37) . The operator Lz is an infinitesimal generator of the rotation

group, generating rotations about the z-axis. It is well known that the

> . .
free particle Hamiltonian p2/(2m0) has translational .invariance; in this
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case it is a one dimensional translation. Since the operators commute,

the group of this Hamiltonian appears to be
sUz) ® T, ® 0(1) (6-10)

where Tzlis the tranélation group and O(i) is the rotation group in the
sense of a Lie group.

The relativistic free charged particie in a uﬁiform magnetic field
has been discussed by several writers, most comprehensively by Johnson
and Lippmann (32,33). In terms of the Pauli spin operators g and the
Dirac>operat§rs Z the Hamiltonian for the same choice of gauée for the

magnetic field is

2
H = cpl moc . (6-11)

&> > + Q0. 2 (+ » 4) +
ap + om Qp z(r x o .93

This has exact bound state solutions and the energy spectrum is given by

E = //m§c4 + 4m0é2h9p + czpéz . (6-12)

The eigenfunctions in cylindrical coordinates are Dirac spinors built

out of
-Tud ipz'z/*h
Fpu(p) e e (6-13)

where p is a positive integer. 'Significantly the energy levels are
independent of the azimuthal quantuﬁ number ml- This was first noticed
by Rabi (31), and once again the infinite degeneracy appears. The
degeneracy is not diffiéuit to explain since the @0 and QO operators
introduced in Equations (6—6; and (é-?) éommute with the relativistic
Hamiltonian as Wéll, and again‘the point (xo, yo) définés.a center of

f

the equivalent classical orbit which can lie anywhere in a plane



76

perpendicular to the ugiform magnetic field which is chosen to be in
the +3 direction.

The Schroedinger equation for an isotropic harmonic oscillator can
be solved in.Cartesian, spherical polar as well as cylindrical coordi-
nates (2é). The Hamiltonian of a charged oscillator in a uniform
magnetic field, with the same gauge as before for the choice of vector

potential, is

_ ool 2 20 .1 2 2 2
H = {2m0 (px + py) +Smw (x4 y )}
(6-14)
1 2 1 2.2
* (2m pz * 2 mowoz ) f QLZ

2 .
where wz =w, + @ and w, is the classical frequency of the oscillator.
The three parts of the Hamiltonian mutually commute, and the solutions

in separated variables are

Fpu(occp) @médu) Un;aoz) : " (6-15)

2 2
where uc = mowc/h, a = mowo/ﬁ, and the energy levels are

Epmgﬂz = ﬁwc(zp + 0+ 1) + ﬁszmz + ﬁwo(nz + %), (6-16)

It is interesting to note that even when an oscillating charged particie
is in a magnetic field, providéd the field is uniform, the motion paral-
lel to the field is unaffected while in the transverse plane the oscil-
lations take place with an altered frequency wc. Following Fhe earlier

reasoning, the group of this Hamiltonian appears to be
sur2) ® sSu(1) @ 0(1) (6-17)

The quantum mechanics of an equivalent charged relativistic
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oscillator in a magnetic field is discussed extensively in Chapter V.

The Hamiltonian is

. > > (R) ~ > > 2
= . + . + -+ -
H cplo o) emw, P2 (r x g) cmowopzz ‘ meOe (6-18)
where wéR)==w0 + Q. Thét the energy levels exhibit infinite degeneracy,

exactly as in the case of a relativistic free particle in a uniform
magnetic field, is discussed elsewhere. Again 'position operators' can
be defined which are analogous to Equations (6-6) and (6-7) with the

(R) |

important difference that the Larmor frequency { goes over into w,

p - :
. £ _ Zz _
L, T 2 (R) (6-19)
2m w
o C
and ’
p
- Y, X
Yy = + . (6-20)
L0 2 o w(R)
o C

These commute with the Hamiltonian in Equation (6-18), and the eigen-
functions of the latter are alsb eigenfﬁnctioﬁs of %0 and go' Once
again it turms out that there exists a ;center' of a classical orbit
which can be identified with a claséical mean positioﬁ of the transverse
oscillations. Thére.are an infinite number of possibilities for the
'center' in the transverse plane, and the degeneracy thus appears to
have a reasonable origin. The Dirac operators make the symmetry group
of the relativistic Hamiltonian compiicated and likewise the spinors,
which are the solutions, make the representations of the appropriate
symmetry groups eveﬁ more difficult. Because of the existence of this
infinite degeneracy, the Hamiltonian had to bé slightly improved to

remove this unsatisfactory feature to be applicable as a model to study
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magnetoemission from white awarfs;

From the viewpoint of its contributing to the magnetic properties
of materials; it is interesting to note that Landau;s observation con-
cerning the motion of a free parﬁicle in a uniform magnefic field can
be generalized; even when the particle is%in a force field 1like that of
the harmonic oscillator, the motion parallel to the applied magnetic
field is unaffected while transvérse to it, the effect of the field is
to superimpose the cyclotron frequency in an appropriate manner on the

frequency of the oscillator.



- CHAPTER VII

APPLICATION OF RELATIVISTIC THEORY

TO MAGNETOEMISSION

As discussed in Chapter III, COR used a non-relativistic harmonic
oscillator in a magnetic fiéld to studyfmagﬁetoemission from white
dwarfs. Their result for fractional polarization did not agree well
with observations. It is well—kﬁown that in astrophysical systems the
motiohs of charged particles are mostly relativistic and bésides,
classical reasoning points in this direction when charged particles
spiralling around very high magnetic fields are considered. Furthermore,
the electron has intrinsic‘épin ana the magnetic moment due to this plays
a role in its interaction with‘the electromagnetic field of the plane
wave. These are not taken into accouﬁt in the model of Kemp and COR.
Inclusion of these effects might improve the theoretical result. Spin
is 'included implicitly in.relativistic quantum mechanics; therefdre; the
model developed in Chapter V is ideélly éuitéd for such a studi.

The effect of the éhafged particles interacting with the electro-
ﬁagnetic field is included By making the substitution

> > - ’
p>p + eAl (7-1)

i

: >
where -2 is the charge of the electron and A

1 is the vector potential

associated with the radiation. As shown in Chapter III, a suitable

+ . Il 3
form for Al describing emission of circularly polarized radiation is

1

79
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A = K (x + iy e tut (7-2)

where K = £/(/2w), E is the magnitude of the electromagnetic field, and
the + and - refer to right and left circular polarization, resbectively.
However, as in the case of other photon emissions (38) in the relativis-
tic treatment of emission, the dipole approximation needs to be improved
to at least one higher order to getbmeaningful results. A Foldy-
Wouthuysen approximation of the charged particle Hamiltonian with the
interaction term shbWs, for instance, that part of the relativistic con-
tribution comes from the intrinsic magnetic moment interacting with the
magnetic field of the radiation; that is, the K~ﬁ term. In the dipole
approximation this gives negligible contribhtion,aﬁd since one of the
improvemeﬁts to be made in the Kemp-COR theory is to consider the role
‘of the spin of the'chatged particle, it is found necessary to replace

->

r

B
1k~ R . .
e by (1 + 2k+r) in the vector potential whereas in the non-

relativistic treatment only unity is retained as in the above expression.

With the improved expression for Xl' the Dirac Hamiltonian in Equation
(5-1) becomes
> > > 2 A > -> 2
= . + + . X g +
H | p, 0 (p eAlt) ckcplz (r ) cxozpz |
A2 . (7-3)
2 o ~ -> > : > :
+mepy - o= z+{r x (p + eAli) + s}
[
or
> > ~ -> ->
= + . - . X 7-4
H HO ecplo Ali ewoz (r‘ Ali) { )

where HO is the Hamiltonian in Equation (5-1). The interaction term in

cylindrical coordinates and in two-component form is
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Fw p (1 + ikzye t® clo, + i0,) (1 + ikz)
H.. = ek ‘ ' ' | (7-5)

clo * 126 ) (1 + 1kz) Fw p(l + ikz)eti¢
x Ty 0 -

or in four component form

H, = | | | )
. T ' ,
—tw p (1 + ikz)e 0 0 2¢(1 + tka)
. . )
0 —twop(l + 1kz)e 0 : : 0
eK .
' . . . ¢
0 2¢(1 + k=) —1w0p(1,+ tkz)e » 0
.- . ¢
0 0 0 —tw p (1 + ikz)e 7|
and
HI— =. | : ’ (7—7)
(. , -1¢ :
zwop(l + 1kz)e 0 0 0 \
. _ -1¢ .
.0 . zwop(l + tkz)e. 2¢(1 + 1Kkz) 0
eK '
0 0 | imop(l + ikzyet? 0
| . v . . -4
| 2c(l + 1kz) 0 ‘ 0 Tw p (Ll + tkz)e )

At low temperatures only trahsitions from a few 1ow—lyipg excited
‘'states to the ground state are importan;. The wave functions and
energies can be obtéined froﬁ the functions discussed in Chapter V by a
suitabie cﬁoice of the quantum numbers p, u', S,_nz. The wave function

and energy for the ground state are
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1 (Ey +me % Foo % U5 |,  (7-8)

Wz(q 0 -1 0)

E. = Xhw +m 02, (7-9)
o) 10,
and

E. = mc . ' (7-10)
0 o _

The matrix elements of the interaction.for the first two excited states
considered by COR are, for instance, <O 0 -1 O]H |O 1 -1 0> and
<0 0 -1 O[HI_IO 1 1 0>. To evaluate any of these matrix elements, the
wave functions and interaction must be written in matrix form.i Then
the appropriate three-dimensional integrals must be performed. For the
matrix element of HI+' for instance,
<0 0 -1 0|HI+|O 1-10> =
(7-11)
. 2 2
_@moeK(E6+moc )(Ei_+moc ) w  pom oo )
- *** 2
o 5 > Ul fo F50%070 Pe " Fo120¥ pdpded
ll+ oY na ] l+
Eowoméaﬂ%fwbj%c)

¢

+ 1k f f2w f F60®3U5 pe '3 FOO o pdpd¢dz}

The U functions are defined in terms of the Hermite polynomials. Inte-

grals of the form fj; U;, 3 Un dz are easily evaluated to be
' 3
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) , /(nz+l)/(2a0) é(nz,nz+l)
[T ux, 2z U dn = . (7-12)
- n n .
_/(nz—l)/(zao) §(nym,-1)

A a4

The nature of the ¢ functions dictates that
+7 . '
jz“ o* & o dp = §(n',ntl) (7-13)
o n 7

so the ¢ inﬁegral is eithér one or zexro. The funcfions Fpu can be
written in tefms of Whittaker functions, and the integrals can be eval-
uated by the method of Laplace.transforms (39). The details of the
procedure ére found in Appendix C; The p integral then ié /%773§;Q;T so
that

2 2
<00-10[f,lo1-10> = —iweK//(Eo“”oc VB me) SR (g-19)
© (2B3) (28] ) o

o c

A similar calculation for HI— reveals that

<00-10[#,_[0110> =

. 2
1eK(E! +m e7)
. {u_ (Ey+E] ) / - 4oV ¢, (7-15)
C

f > 0 1+
T [}
E (E +m 6] )2El+(El +m c)

Considering the compiekity of the expressions for the matrix elements,
an algebraic calculationlof q woﬁld obscure the dependence of g on Q.
However, some insight can be gained by considering the low energy or

non-relativistic expansion of the radicals. As before, expanding the

radical gives

E! = V@ cz(m 02 + 45w ) = m c2 + 27w . (7-16)
1+ (o) 10) Is] o) ]
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_ For frequencies in the visible light range and magnetic fields on the
order of'lO7 G or less, hmc is on the order of a few electron volts.
Since mocz ~ .5 Mev, mocz >> hmc for the wc's in the range of interest.
With these approximations, the absolute squares of the two matrix

elements considered are

2,2
- 2 . eKn ;% (7=
<0 0 -1 0|HI+|O 1-10> = S (w, - ) (7-17)
o cC
and
: 2,2
~ K 2 '
<00 -10|H_|01 10> 2, ekn (w +@)°. . (7-18)
- I- » mw, e .

These are the same as the squares of the non-relativistic matrix elements
given in Equations (3-75) and. (3-76) and thus lead to the same expression

for the fractional circular polarization:
g = -2/w. ' (7-19)

Looking at.Table IV it can be seen, for instance, that for wo =

3.77 X 1015 Hz the transitions |0 1 -1 0> > [0 0 -1 0> and [0 11 0>~
00 -1 O>.do not result in the same freqﬁency of light being emitted.

Therefore; wo in one of the transitions must be adjusted to give the
same frequency as the other transition. In other words in the distri-
bution of charged oscillators of different frequencies in the assembly
proper choice has to be made of the oscillators with‘the appropriate
frequency. kDifferent oscillators give rise té different radiative
transitions.

Extending the Kemp-COR result to include higher excitatidns in
transitions (higher temperatures) essentially means that the populatiohs

of higher energy levels must be considered. The matrix elements for
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such transitions are given in Tables V and VI. 1In both tables X = ¢K,
Nl and N2 arc the normalization coefficients for the initiel and final
state wave fqnctions, respectively, and El and E2 are the (£')'s for the
initial and final states, respectively. The fractional cirCular polari-
zation reeulting_from these transitions is calculated in a manner
analogous to that used by COR and discussed in Chapter III. A coﬁputer
program has been written to calculate this fractional polarization as a
function of oscillator frequency W, for the non-relativistic result of
Kemp and COR (ONR) and the relativistic results analogous to COR's result
(QOR1), considering a few low-lying states {(QR2), and also consideriﬁg
several higher states (QR3). Also calculated is the wavelength of the
emitted‘radietion A'. The details of the program and the results for
various natural frequencies and magnetic fields are given in Appendix E.
The natural frequency is oetained'from the given wavelength A by
wo = 2me/A. The fractional circular polarization as a iunction of
emitted wavelength for aimagnetic field of lO7 G.is summarized in
Table VII. In the table A is the wavelength of che emitted radiation.
As seen by comparing QNR with ORl, QR2, and QR3, the low-temperature
relativistic result is only a slight improvement over Kemp's and COR's
result in that it is a fraction of a percent closer to experimental
observations for some wavelengths. However, spin aﬁd relativity effects
become increasingly imporfant as more and more excited levels are
included in the possible transitions (QR2 and QR3). 1In fact there
appears to be a tendency for one of the polarization components to be

quenched in the limit of very large excitations.
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TABLE V

I

86

0 1y- S . 2
<w2{e|w2> =<00-10®|0o1-10>= ~iKNN, (B, + m c®) (B, + E))w /o
<‘¥O|e|‘¥—> =<00-11|8|01 -1 1> = -ZKN.N (E. + m 02) (E. + E)w /o
2 2 211 o 2 1" o e
- - . 2

<w2|$lw2> =<01-10[®lo2-10>= ~LRNN () +m c) (B, + E))u /o

<2le|y7> = <0 0 -1 1lelo 1 -1 0> = -KN_N, (2m ¢ VIE. + E)w /a
2 4 21 0 o 2 1" 0o ¢
01,0 ~ 2,k

<w3[e|w2> =<0 0 +1 0|®|1 0 -1 0> = KNN, (4m c“fiw ) *(E, - E)w /o,

<°|@|¥7> = <0 0 +1 0|@|0 1 -1 0> = —KN_N_ (E, - m ¢?)(E. + E)w /o
KR! 2172 o 2 7 "1 e

<¢°|e|¥> = <0 0 -1 0l®|0 1 -1 1> = KN_N, (2m o7 YIHE, + E)w /a
4 2 21 o o 2 1" 0o ¢

<¥°le|¥7> = <0 0 -1 0l@|o 1 -1 0> = ~ZKNN_ (E, - m c?)(E. + E.)uw /o
4%y 2171 " o 2 7 "1 0" e

Note: & = H

I+
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TABLE VI

I

<W;|e|W;>=<01+1ole[02+10>=

. 2 2, %
zKNle/E(E2+mOc ){(E2+El)w0/ac—20(moc ) }

<W;Je|W;>=<01+10|e|01+10>=

2 5 2 :
KNle{—z(mOc hmc) (2B +E +m ¢ )w /o,

2 2,
+2@(E2+moc )(El-moc )}

<wg|elw2>=<oo—11|e|oo+1o>=

. 2 5 2 k
zKN2N1(2moc hwo) {2(moc ﬁmc) wo/ac+20(E2-El)}

<¥J|e|¥}>=<00-10| 6] 01+10>=

: 2 2, %
KN N, (E,+m _c ){(E2+El)wo/ac-4c(moc fw ) *}

<¥>|e|¥}>=<00-11]6]01+11>=

. 2 2, %
zKNle(E2+mOc ){(E2+El)w0/ac—4e(moc hmc) }

<wg|e[w;>=<oo-1ole|oo+1o>=

2, \h 2
KNZNl{-Z(moc fw ) (B +m e w /o

2 2
+2c(E2+moc )(E'l m e )}

<w2|e|w2>=<oof11|e|01+1o>=

2, % 2, i
NN, (2m c“7w ) *{ (E,+E Jw_/a_-ac(m c*Fw ) *}

<¥; |o]¥]>=<00+10|0]02+10>=

2, % 2, %
NN, (8m cFw ) {(E2+El)w0/ac—4c(moc 7w )’}

<¥} || ¥}>=<00+10|e|01+10>=

. 2 2 %
AKNN, (B -m c ){(E2+E1)w0/ac—4c(moe 7w ) *}

<¥] |e]¥T>=<00-10| 0| 00+10>=

2, h 2
KNle{—Z(mOc fiw ) “(E,-m cTw /o

2 2 2
+2e[(E,-m _c®) (E +m c®)-2m c hwo]}

<v2|e|w;>=<oo—1o|9101+11>=

2, % 2, k%
~KNN, (2m_c“7w ) {(E2+El)w0/a¢—4c(moc 7w )}

<v2|e|w;>=<oo-1oIeloo+11>=

. 2 b 2 %
~LRN, N, (am _cFiw ) {(m0¢ 7w ) "w /o +2¢(E,~E.) }

<W2|9|YZ>=<00-1o|elo1+10>=

, 2 2, &
TEN,N, (E,-m c ){(E2+El)w0/ac-4c(moc fw )}

Note: ®© = HI_.



TABLE VII

FRACTIONAL CIRCULAR POLARIZATION
AS A FUNCTION OF WAVELENGTH FOR
A MAGNETIC FIELD OF 107 G

A (R) ONR (%) ORI (%) OR2(%) © QR3(%)
2918 ~1.362 -1.361 -34.538 100.000
3856 - -1.800 ~1.799 -34.923  100.000
4777 —2.230 ~2.230 -35.300  99.999
5682 ~2.653 -2.652.  -35.670 99.992
6571 -3.068 -3.067 - 436.032 99.971
7444 -3.475 ~3.475 -36.387 99.919
8302 -3.876 -3.876  -36.734 99.822
9146 ~4.270 -4.270 -37.075 99.663

9975 -4.657 -4.657 -37.410 99.430

10791 -5.038 -5.038 -37.737 99.113




CHAPTER VIII
SUMMARY AND CONCLUSIONS

Wﬁite dwarfs have some thiﬁgs in common with neutron stars which
are believed to be pulsars (rotating étars). The suffacé magnetic fields
of neutron stars.are known to be very higﬁ——on the order of lOl4 Gauss
and this raised the question whether such magnetic fields also exist.in
white dwarfs. In the absence of a discrete gpectrum information about
such magnetic fields cannot be obﬁained for Zeeman splittihgs. Around
1970 circularly polarized emission was detected from white dwarfs and
the observed fractional circular polarization is surmised to be due to
magnetoemission resultihg from the radiative interaction of the charged
particles with high magnetic fields. Assuminé the emiésion to be due to
eléctrons, Kemp, Chanmugam and othefs analyzéd this using time-dependent
perturbation theory and a non-relativistic isotropic harmonic oscillator
model for the electrons. The theory‘predicts a A dependence of the
fractional circular polarization in the continuous emission which is in
basic agreement with observations over a wide waveléngth region but not
all wavelengtﬁs.

In this work the basic inadequacies of the theory of Kemp and
others are removed by including spin and relativistic effects going
beyond the dipole approximation. The Dirac equation has no solutions
for the harmonic oscillator potential because‘of the Klein paradox;

hence, a new model was needed. The one developed here is a Dirac

89
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Hamiltonian with exact solutions, and at the same time it goes over into
the Kemp-Chanmugam model in the well-known Foldy non-relativistic limit.
The fractional polarization has been calculated using £his model and
time—dépendent perturbation theory.b Calculations have been made taking
into account 102-lying excited states (low temperature approximation) as
well as higher excited levels (all temperatures). Although there is a
very small percént improvement over the Kemp-Chanmugam results in the
sense of ﬁhe numerical g being closer to experiment though very élight,
it is by no means enough to explain the experiment in full. The inclu-
sion of the.quadrupole term in the interacﬁion has not appreciable
effect. On the other hand when higher and higher excitation temperatures
are taken -into account, there seems to bé a tendency for bne of the
circular polafizatibns to be queﬁched. Since there is really nothing
more to be done by way of improving the Kemp modél, this means that the
reason for the discrepancy in the infrared and other regions has to be
sought somewhere other than in the assembly of charged oscillators in
interaction with a high magnetic field as a model because with relativi-
zation the model is reasonably-éomplete.

There are several possible explanations for the discrepancy between
Itheory'and observation.

1) The concept of a uniform magnetic field extending indefinitely
may be tob much of an approximation.

2) Circular polarization is not the only thing that exists; there
isvfor certain linear polarization (25) which varies as AZ kl4,15).
Although quantum meéhanical selection rules do not mix up these two
polarized emissions, to a large e#tent the selection rules themselves

are not independent of the model or multipole emission assumed.
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3) The source of polarization may not be solely due to gray-body
magnetoemission from optically thin objects. There might be other
effects like synchrotron radiation if the magnetic field envelops the
white dwarf like the magﬁetosphere surrounding Jupiter. The one thing
~that can be confidently said to be a common denominator to all these
effects is perhaps the presence of an intense magnetic field.

4) Shipman (40) and others are of ﬁhe opiﬁion that the atmosphere
is more transparent in éne sense of circular polarization than in the
other; the emergent flux in the two senses of polarization effectiVely
comes from differeﬁt layers in tﬁe atmosphere. 

'5) 1In several waveiength regions the observations themselves are
not unambiguous (26,41); in some cases the errors of observations héppen
to be nontrivial.

Thus wﬁile the mechanism responsible for the strong circular
poiarization discovered over a very wide wavelength range‘is not under-
stood and there still exist§ disagreement, one thing does appear to be
certain. There are very high magnetic fields in white dwarfs just as in
neutron stars.

There is an interesting point about the qUantuﬁ mechanic§ of
relativistic charged particles in uniform magnetic fields usualiy ignored
by many. 1In some cases there is an infinite degeneracy which can be
traced to the infinite possibilities of the location of £he center of
the classical trajectory of the particle in the transverse plane. For
this reason the group theory and symmetry aspects of these Hamiltonians

have been scrutinized.
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APPENDIX A
DIRAC MATRICES

The Dirac operators ax, ay, az, and B satisfy the commutation

relations
o2 :
ui = B - 11-! (A—]—)
[“@' uj]+ =0, (A-2)
and . o
[ai' B ]+ = 0. (a-3)

Dirac (42) originally introduced the stationary state free particle
equation as

(03D + smocz'— E)YY = o. (A-4)

By multiplying this equation on the left with B this can also be written

in the so-called covariant form
(ev'p +mchy = o | (A-5)
Y pu 0

. . .
where Yl = Bui, Yy = B, p4 = F/c and

o 1 2 3 4 |

= + + - A-6
Y'P,TYP YDyt YP3 T YDy (a-6)
gives the invariant scalar potential. It is well-known that the sim-
plest set of matrices that can represent the algebra of Dirac operators
are 4 X 4 matrices. With the choice of § as a diagonal matrix, the

Dirac matrices are customarily chosen as

95



96

o = ) ’ (A_7)

x o 1 o0 o0
1 0 0 0 J
.
o 0 o0 -1
. 0 0 7 0
Ol = 7 (A"'B)
y 0 -2 0 0 '

o = . 7 (A—9)

and

B = . . ‘ (A—].O)

' The Dirac equation thus becomes a matrix equation and ¥ stands for the

' four-component spinor

¥ = . ' (A-11)

The representation used in the text, well-suited to solving the equation

by 'helicity' techniques, is to write the above as direct products of



Pauli matrices:

0 1 0 -% 1 0 1
p, = r P, T r PL T , 1 =
1 1 0 2 1 0 3 0 -1 0
0 1 0 - 1 0
Ox = ’ 0 = r O’Z =
1 0 Y i 0 0 -1

% T P ® % T P1%

ay = 0 ®_Oy = ploy ’

Yy TP ® 9 = P19
and :

B = Py B 1 = Py -

The Dirac equation for the free particle is then written as

It
o

( g o + c2 E)Y
ch p p3m0

. where
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(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)



APPENDIX B
' EVALUATION OF THE SUM S
The sum S is defined as

721 (n+l) explyn+l)}

S =
z
z exp{yn}
where in this case y = - B%Zw. The numerator can be written as
d vy (n+1)
= % = +
N L f (n+l) e dy

Interchanging the sum over #n and the derivative gives

d . Y (n+1) A
= = +
N gL (ntl) [ e dy
_ d yntl) _d v yn
= % e = g (e % e )
The sum over # is a geometric series, thus
z eYn = (1 - eY)_l.
The numerator then becomes
- 4 Y -1 _ Y, Y 2 '
N = v (e 1) = e /(e 1),
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(B-1)

(B-2)

(B-3)

(B~4)

(B-5) -
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The denominator is also a geometric series so

D = 1-en"t = Ve -1t (B-6)
The sum S is then
S = (¥ -nt (B-7)
or
s = (P o)7L (B-8)



APPENDIX C

THE kth MOMENT OF Fpu

The solutions of the relativistic Hamiltonian presented in Chapter

V involve the functions Fpu(p):

_ 22 2 2 up2 22 _
Fpp(p) = Npu exp(-a p /2) (ap) JFJ( poutlia p’) (C-1)
where
| 2012I‘(++1)’
Nooo= —ERr (c-2)
PH F(p+1){T (u+) }°
a2 = mow/h, and ZFZ is a confluent hypergeometric function. In calcu-

lating matrix elements, integrals of the form (with k an integer)
[CF (a®p?) ph F .(azoz):pdp - (C-3)
o pu p'u 4

’ . ' 2
are needed. If the variable is changed by S = a pz, then the integral

becomes

k+2,) -1 [ F () sk/2 p () ds. (c-4)

1 = (20 |
pu p

In terms of Whittaker functioné, the confluent hypergeometric function

is

_ . /2 ~(u+l)/2 _
ZFZ( Prutl;s) e S 9 +u+l.H_(s) (Cc-5)
‘ 2 2
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v o= B -t k) voo= A-ut 4 k+2).

The hth moment of'Fpu then becomes

J‘o Fpu 0 Fp'u' pdp‘ -
% (' =pu+k) : :
K b [%(U'-U+k)]{pp'] r{%(u_ul+k+2+2j)}
; ; : T (u+l+s
j=0 ] - Latath
where
I'(p+u+1) T (p+1) {3 (' +p+k+2) }

T(p'+u'+1)T(p'+1) T'{%(u-u'+k+2+2p-2p")}
The conditions for existence are:
W-u'+R+2+2p-2p', > 0,

jmax = %(U' _u+k)'

and

p' > p - 4.

For kR = 1, the following combinations of p, p', u, ahd u' give

integrals:’
[ Yo+ s(pp")  S(u-1,u")
* N ' ooy
[o Fpu P Fpryr #do = 51 —/p+L 8+L,p") Su-l,u)
| Yptu+l S(p,p") S(u+l,u').
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(C-15)

(C-16)

(c-17)

(C-18)

(C-19)

(C—20)

(C-21)

non—-zero

(C-22)
(C-23)

(C-24)
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so that

2 2 ’
y = 4 = S S C-6
%m(ap ), ﬂm(w l%u M2+u+l (s) ( )'

N
N
e

where N " is defined as in Equation (C-2). The integral then can be

written as

1 = F s F ds
[E, o
(C=7)
B o -1 k/2
= WV j’_o S Mypar w5 Mapraian ut ds.
2 2 2 2
In general the Eth moment of two Whittaker functions is (39)
e g .
[T sT M ds
‘o kl,(cl—l)/Z k2,(C2-l)/2
(C-8)
(_1)al+a2 P(Cl)r(cl+vl)F(C2)F(al+l) ;1 Yl a2 F(v2+j)
‘ F(a2+C2)F(y2—a2+al) j=0 |j al'j r(c, +)
where
-a, = %ci - ki , - (c-9)
= L - -
v, £ + 1 + 1((:2 cl), ‘(C 10)
v, = L4243k, -c), | (C-11)
and
|
ny N -
[r} rln-r)! - (C-12)
Using these definitions, the following identifications can be made:
k, = % +u+1) k2 = L(2p' + yu' + 1) (c-13)
= = ' el
Cl u+ 1 C2 p' + 1 (C~14)



APPENDIX D
PROGRAM TO CALCULATE ENERGY LEVELS

This program calculates the energy levels of a relativistic charged
harmonic oscillator. The energy expressions given in Equations (3-37)

and (3-60) can be combined into a single expression:

i 2 2 »
E = ~hw (N1) + /m c{m e + fiw (N2) + Aw (N3*2)} - (D-1)
o o) 0 e o
where
Nl = uS +ms, o (D-2)
N2 = 4p + 2(1+S)u + 4’mS + 2, ; (D-3)
N3*2 = 2n * 2m + 1. . ) (D-4)
2 s

As noted in the program.and with N3 = N3*2/2, there are (N3 +1) (N3 +2)/2

energy- levels associated with each value of N3.
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APPENDIX E

PROGRAM TO CALCULATE FRACTIONAL

CIRCULAR POLARIZATION

This program calculates the non-relativistic and relativistic frac-
tional circular polarization q discussed in Chapter VII. ONR is the
non-relativistic result obtained by both Kemp and COR. QR1l, QR2, and
QOR3 are relativistic results obtained in this work. QRl is the low
temperature result analogous to QNR. OQR2 is the result of including a
few low-lying states, and QR3 is the result of including several higher
states. The method for including more than the low temperature transi-

tions is discussed in Chapter IITI.
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m Rg S FOR A FEW LOW-LYING STATES
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& FRACTIONAL POLARIZATION CONSIDERING
% SEVERAL HIGHER STATES
Z = 0.0
DO 10 I=1,6
7 = 7 + DEIVRDEXP{-E(I)/KT)
c 10 CONT INUE
: IP = 0.0
DO 20 1=1,8
IP = IP + MEP(I)*NP(I)*DEXP(-EPI{I)/KT)/L
c 20 CONTINUE
IM = 0.0
DO 30 I=1,13 - :
¢ IM = IM + MEMUT)*NM(I)*DEXP{-EMII)/KT)/Z
30 CONT INUE
c QR3 = QPOL{IP,IM)
¢ FRACTIONAL POLARIZATION ACCORDING TO
g KEMP'S AND COR'S NON-RELATIVISTIC THEORY
c QNR = -WB/(WO + 2.%WB)*100.
WRITE{6,920) LAM,EO,EC,EOPR,LAMPR,
c 1 ONRsQRIsQR2,QR3

920 FORMAT(20X,18+3F8.3,18,4F10.3/)
1000 CONT INUE

WRITE(6+990)

STOoP
END

$ENTRY



LAM(A)

3000
3500
4000
4500
5000
5500
6000
65900
7200
75090
8000
8500
3C00
95C0
10000
10500
11000
11500
12000

B = 0.1030E N7 G £B

EO(EV)

4.133
3.542
3,120

2.480
2.254
2.0566
1.907
1.771
1.653
1.550
1.459
1.378
1.305
1.240
1.181
1.127
1.078
1.033

ECLEV)

4.138
3.548
3.105
2.761
2485
24260
2.072
1.913
1.777
1.659
1.556
l.464
1.383
1.311
1.246
1.187
1.133
1.084
1.03¢

ET(ZV)

4.144
3.554
3.111
2.767
2491
2.266
2.078
1.519
1.783
1.665
1.561
1.470
1.389
1.317
1.251
1.192
1.139
1.090
1.045

= 0.,5788D0-32 EV

LAMS(A)

2992
3489
3985
4481
4977
5472
5367
6461
6955
7448
7341
8433
8925
3417
3908
10398
10883
11378
11867

QNK(Z)

-0.140
-0.163
~-0.186
-0.209
-0.232
~0.255
-0.279
-0.302
-0.325
-0.348
-0.371
-0.394
-Je 417
-0.440
-0.463
-2.485
-0.508
-0.531
~0.554

RM = 0.51100 06 EV

QR1{%)

-0.138
-0.162
-0.185
-0.208
~0.232
-0.255
-0.278
-0.301
~-0.32%
~0a347
-0.370
~0.393
-0.416
-0.439
~0.462
-0.485
-0.508
-0.531
~0.554

QR2(3%)

-33.456
~-33.477
-33.498
-33.518
-33.539
-33.5¢60
-33.580
-33.601
-33.621
-33.642
-33.662
-33.682
-33.703
-33.723
-33.744
-33.764
-33,784
-33.804
~33.825

QR3{3)

100.200
100.000
133.000
100.200
99.998
99.995
99.389
99,977
99.958
99.928
39.885
99.825
99.747
99.646
99.521
99.370
39.190
98.981
98.740

81T



LAM{A)

3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000

105060

11000
11500
12C00

B = 0.1000F 08 G EB

EO(EV)

4.133
3.542
3.100
2755
24390
2.25%
2.066
1.907
1.771
1.653
1.550
1.459
1.378
1.305
1.240
1.181
1.127
1.078
1.033

EC{EV]

4.191
3.600
3.157
2.813
2.538
2.312
2.124

1.965

1.829
1.711
1.608
1.516
1.435
1.363
1.298
1.239
1.185
1.136
1.091

ET(EV)

4.248
3.658
3,215
2.871
25595
2.370
2.182
2.023
1.887
1.769
1.666
1.574
1.493
1.421
1.356
1.297
1.243
1.194
1.149

= 0.57833-01 EV

LAMI(A)

2918
3389
3856
4319
4777
5231
5682
6128
6571
7009
1444
7875
8302
817126
9146
9563
9975
10385
10791

QNR { Z)

-1.362
-1.582
-1.800
-2.016
-2.230
~2.442
-2.653
~2.861
-3.068
-3.272
-3.475
-3.677
-3.876
~4.074
-4.,270
~4.464
-4.657
~4,848
-5.038

RM = 0.,5110D 06 EV

QR1(%}

-1.361
-1.581
-1.799
-2.015
-2.230
~2.442
~2.652
-2.860
-3.067
-3.272
-3.475
-3.676
-3.876
-4.074
-4.270
-4.464
~4.657
-4 .8648
-5.038

QR2(%)

-34.538
~34.732
~-34.923
-35.113
-35.300
-35.486

-35.670.

-35.852
-36.032
-36.210
-36.387
-36.561
~36.734
-36.906
-37.075

=37.243

-37.410

-37.574

QR3( %)

'100.000

100.000
100.000
100.000
959.999
99.997
99.992
99.984
99.971
99.950
99.919
99.877
99.822
99,751
99.663
99.556
99.430

99.282

99.113

6TT



LAM{A)

30990
3500
4000
4500
5000
5500
6000
6500
7000
7530
8300
8500
3000
9500
100090
10500
11000
11500
12000

B = 0.1000E 29 G EB

EO(EV)

4.133
34542
3.100
2.755
2.430
2.254
2.066
1.907
1.771
1.653
1.550
1.459

1.378 .

1.305
1.240
1.181
1.127
1.078
1.033

ECLEV]

4.712
4.121
3.678
3.334
3.058
2.833
2.545

2.486

24350
2.232
2.129
2.037
1.956
1.884
1.819
1.760
1.706
1.657
1.612

ET(EV)

5.2990
4.700
4.257
3.913
3.637
3.412
3.224
3.J)65
2.929
2.811
2.737
2.616
2.535
2463
24397
2.338
2.285
2.236
2.191

= 0.5788D 00 EV

LAM®{A)

2344
2638
2912
3169
3409
3634
3846
4345
4233
4411
4579
4739
4890
5034
5171
5302
5426

5545

5659

QNR{Z)

-10.941
-12.316
-13.597
-14.793
-15.914
-16.965
~17.954
-18.885
-19.763
-20.594
-21.379
-22.124
-22.832
-23.504
-24.143
-24.753
-25.334
-25.890
-26.421

RM = 0.5110D 06 EV

QR1{%)

-10.940
-12.315
~13.596
-14.793
-15.913
-16.965
-17.953
-18.884
-19.763
-20.593
-21.379
=22.124
-22.831
~-23.503
-24.143
-24.753
-25.334
-25.889
~26.420

QR2( %)

-42.716
-43.848
~44.894
-45.864
~46.765
-47.606
-48.391
-49.125
-49.815
~50.462
-51.073
-51.648
-52.192
-52.707
-53.195
-53.659
-54.099
-54.518
~54.917

QR3{ %)

100.000
100.000
100.000
100.002
100.000
100.000
100.000
100.000
99.999
99.999
99.998
99.997
99.996
99.99%
99.992
99.989
99.985
99.982
99.978

0z1
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