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PREFACE 

Since the relativistic harmonic oscillator Hamiltonian has no solu

tions, an approximate model of an oscillator in a magnetic field has 

been developed. The exact solutions of this Hamiltonian are used in 

time-dependent perturbation theory to study magnetoemission from white 

dwarfs. 

The fractional circular polarization as a function of wavelength 

was found to agree in the low temperature limit with that predicted by 

existing non-relativistic theory. This, however, does not agree with 

experimental observations in the infrared region. The inclusion of more 

and more excited states appears to tend to quench one of the polarization 

components. Therefore, the source of the disagreement between theory 

and experiment must be sought elsewhere than in a collection of charged 

harmonic oscillators interacting with a magnetic field. Thus, while the 

mechanism responsible for the circular polarization discovered over a 

wide range of wavelengths is not understood and there is still disagree

ment between theory ~nd observations, there appears to be evidence for 

the existence of strong magnetic fields in white dwarfs just as in 

neutron stars. 
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CHAPTER I 

INTRODUCTION 

There exists a great deal of knowledge about white dwarfs--proper 

motion, cluster membership, structure, and evolution (1). On one 

matter of astrophysical interest, however, research and observational 

interest has been fairly recent. As far as high central density is 

concerned, a white dwarf is almost similar to a neutron star. Although 

there is some question about the upper limit to the mass of a neutron 

star, it has long been recognized that after all the thermonuclear 

sources of energy for the central material of a massive star have been 

exhausted, following an inverse 8-decay type of reaction, a condensed 

neutron core would be formed (2,3,4). Following the original suggestion 

of Gamow and Landau, Oppenheimer and Volkoff (5) were the first to 

establish the gravitational equilibrium of such a neutron star using 

the equation of state for a cold Fermi gas and general relativity. 

Interest in neutron stars has exploded after the discovery of 

pulsars (6,7,8,9) which are now strongly suspected to be rotating neu-

tron stars. The point of interest for this work is that the spectra of 

radio emission from these stars point to the existence of strong surface 

. 13 15 1 . f h 1 magnetJ.c fields on the order of 10 G - 10 G resu tJ.ng rom t e co -

lapse of conventional stellar fields. Conductivity of stellar matter 

is said to be so slight that the decay time for the magnetic field ex-

ceeds the collapse time which is probably on the order of a few seconds. 

1 



It is estimated that in a neutron star, the radius of which is a few 

kilometers, the field strength increases as l/R2 during the gravita-

. 16 
tional contraction so that fields as high as 10 G can be expected. 

2 

This has stimulated interest in stellar magnetic fields in general. In 

the solar system, for instance, the Earth, Sun, and Jupiter are the 

only objects known to possess magnetic fields. Polarized radio emis-

sions have led astrophysicists to believe that the magnetosphere 

around Jupiter is considerably stronger than that of the Earth (10). 

Of particular interest is magnetoemission from white dwarfs. Per-

haps the easiest way to detect strong magnetic fields would be to look 

for Zeeman splitting in the star's discrete emission spectrum as has 

been done in the case of the Sun's magnetic field. This has not, how-

ever, been possible in the case of white dwarfs whose spectra are 

diffuse and somewhat continuous. Kemp, et. al. (11) observed circularly 

. 0 
polarized light from the white dwarf Grw+70 8247 in 1970. Since that 

time partially polarized light has been detected in the radiation from 

nine other white dwarfs (12). Kemp (13), and later Chanmugam and co-

workers (14,15), assumed that the circular polarization is due to strong 

magnetic fields in the white dwarfs and used a non-relativistic charged 

oscillator model to study this magnetoemission. Their theory predicts 

circular polarization proportional to the wavelength \, but the results 

of their calculations are not in complete agreement with observations. 

There are two shortcomings in their theory. Although the oscillators 

are electrons, which are fermions, the intrinsic magnetic moment is 

ignored and relativistic effects, which persist in such circumstances, 

are also neglected. The purpose of this work is to determine if com-

pleting their model by evaluating the contributions of these two effects 



------

can bring the theory into better agreement with observations. One 

method of including spin effects would be to add a spin-interaction 

term to the Schroedinger Hamiltonian. However, this would still be 

inadequate. It is well-known that both relativity and spin effects 

are built into a Dirac Hamiltonian. The difficult problem is to find 

3 

a relativistic oscillator model because it is well-known that the Dirac 

equation with an isotropic harmonic oscillator potential has no 

solution. 

It has, however, been possible to develop an equivalent Dirac 

model with exact solutions which render it possible to make up the 

inadequacies in the Kemp-COR theory in the study of magnetoemission 

from white dwarfs. 



CHAPTER II 

MAGNETOEMISSION AND WHITE DWARFS 

Magnetoernission 

Magnetoernission relates to the emission of light from any thermal 

source in a magnetic field. Kemp, Swedlund, and Evans (16) reported in 

1970 the experimental detection of spectrally diffuse circular polari

zation of light from various incandescent bodies in a magnetic field 

even though the emission spectrum is continuous and extends over a wide 

range of frequencies. Their experiments consisted of placing various 

thermal light sources in a laboratory magnetic field and looking for 

partial circular polarization in light emitted along the field direc

tion. They studied emission from incandescent metals (gold, platinum, 

and copper), solid insulators and an oxyacetylene flame at temperatures 

ranging from l000°C to l500°C. Detection was at wavelengths ranging 

from near infrared to the visible region. A fractional circular polar

ization of electronic origin was detected. A typical numerical value 

for this fraction is about l0-5 in the neighborhood of a wavelength of 

1.5 \.liD in a magnetic field of 25 kG. Wh.ile the model proposed by Kemp 

and others to explain this will be discussed in a later chapter, a com

parison with similar processes, Zeeman effect and synchrotron radiation 

in particular, will bring out the distinguishing characteristics of 

rnagnetoemission. 

The Zeeman effect (17) essentially relates to a discrete spectrum 

4 
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and can be understood classically in terms of the Larmor frequecy (or 

Zeeman frequency) of the precessional motion of a rotating charged par

ticle in a uniform magnetic field. It is well-known that the Zeeman 

components are circularly polarized when viewed along the direction of 

the magnetic field and linearly polarized perpendicular to the field. 

Quantum mechanically this effect is understood in terms of radiation 

selection rules governing the change in azimuthal quantum number of a 

one particle quantum mechanical central field system. The essential 

quantum mechanical features of the Zeeman effect are also useful in the 

study of magnetoemission. 

In the case of radiation from an accelerating point charge, the 

radiation intensity and polarization can be related to the classical 

trajectory dynamics of the particle (18, 19, 20). If the velocity of 

the particle is not too great compared to the speed of light, the rad

iation has a sin2e angular dependence, 8 being the angle between the 

direction of the particle's acceleration and the direction of observa

tion, and the total power radiated varies as the square of the 

acceleration. For a circulating charge the radiation is polarized in 

the plane of the orbit. The radiation emitted by a relativistic parti

cle subject to arbitrary accelerations is equivalent to that of a 

particle moving instantaneously at constant speed in an appropriate 

circular path. The radiation is concentrated in a narrow cone of 

vertical angle 

(2-l) 

and is seen by the observer as a pulse of radiation analogous to the 

beam swept by a searchlight. The radiation is strongly, though not 

completely, polarized in the plane of motion. For periodic circular 
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motion of the charge the spectrum is discrete, consisting of the fre-

quency of circular motion and a few harmonics thereof. In the more 

general case it is spread over a wider range of frequencies. In the 

case of circular orbits the radiation is called cyclotron radiation if 

the velocity is non-relati'iristic and synchrotron radiation if the velo-

city is ultra-relativistic (V ~c). These orbits can be due to magnetic 

fields as in the case of the synchrotron radiation from the Crab nebula 

or from Jupiter. 

In the case of magnetoemission the point of interest is that pho-

tons of both left- and right-handed circular polarization are emitted 

and the fractional difference in the observed intensities between these 

two types is found to be simply related to their frequencies as well as 

the magnetic field. Thus, whereas in the case of a discrete atomic 

spectrum, the experimentally observed Zeeman splittings lead to a mea-

surement of -the magnetic field, in the case of a continuous thermal 

radiation, the fractional circular polarization can lead to an estimate 

of the magnetic fields. 

Experimental Observations of White Dwarfs 

White dwarfs· (1) are stellar objects with large masses, small 

radii, and low luminosities. The ma~ses are comparable to the mass of 

the sun while the radii are comparable to the radius of the Earth. As 

a result of this combination, white dwarfs are extremely dense, typical

ly of densities approximately 107 gm/cm3• One theory of formation (21) 

of white dwarfs is that after the central reserves of nuclear fuel are 

used up, the star collapses into a degenerate ball consisting mostly of 

- 7 
helium with a central temperature of 10 °K (22). The corresponding 
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mean thermal energy per particle is rv kT ~ 1o3 ·ev. Since this is much 

greater than 79 eV, the ionization energy of helium (23), almost all of 

the helium is ionized. Order of magnitude calculations (22) for the 

Fermi momentum and Fermi energy show that these are comparable to the 

2 
momentum me and energy me of an electron; therefore, the motions of the 

particles are largely relativistic. The collapsing of a star can also 

be used to explain the existence of large magnetic fields in white 

dwarfs (24) . If flux is conserved, then the magnetic field will be much 

greater after collapse than before. For instance, a main-sequence star 

has radius R "-' R0 ~ 6 x 108 m and B0 "-' 103 G. If it collapses to a star 

with radius R "-' Re ~ 6 x 106 m, then by conservation of flux the mag

netic field of the collapsed star will be 

(2-2) 

As can be seen from this calculation, the magnetic field of a white 

dwarf depends on its original size and magnetic field and on its col-

lapsed size. 

The first experimental observation of circular polarization in the 

optical emission from white dwarfs is probably due to Angel and 

Landstreet (24). In order to detect circularly polarized light being 

emitted from white dwarfs, they made a photoelectric polarimeter. 

Figure 1 shows a schematic diagram of the polarimeter. 

Light passing through the aperture and collimating lens falls on 

the electro-optical crystal. The axis of the crystal is set so that 

an electric field applied in one direction causes right circularly po-

larized light to become linearly polarized along one axis of the 

Wollaston prism and left circularly polarized light to become linearly 



polarized along another axis of the prism. Reversing the direction of 

the electric field results in the reversal of the sense of circularly 

polarized light becoming linearly polarized along the two axes. The 

8 

two diverging beams pass through separate filters which isolate the de

sired wavelength (if the filters are identical) or wavelengths (if the 

filters are different). Each photomultiplier tube is connected to two 

scalars, one sensitive when the electric field is in one direction and 

the other sensitive when the electric field is reversed. _Thus the po

larization is determined by the difference in counting rates detected 

by the two scalars. The switching device for the electric field is a 

crystal clock which switches polarity every one millisecond. The counts 

were usually printed every 10 seconds. 

Several white dwarfs were observed, but none had a fractional 

circular polarization as large as± 1% •. 

Angel and Landstreet, along with Kemp and Swedlund (11), detected 

circular polarization in light coming from the white dwarf, Grw+70°8247. 

Preliminary measurements taken using a system adapted from the one Kemp 

used in his laboratory magnetoemission experiments were verified using 

a polarimeter similar to the one shown in Figure 1. The fractional 

circular polarization was found to vary from about l% for A ~ 3500 ~ to 

slightly more than 3% for A ~ 6500 ~-

Angel and Landstreet (25) made further, more detailed observations 

of the circularly polarized light coming from Grw+70°8247 and a further 

search for other white dwarfs emitting circularly polarized light. The 

observed dependence of circular polarization on wavelength is given in 

Table I and shown in Figure 2. 

The search for other circularly polarized white dwarfs was 
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TABLE I 

CIRCULAR POLARIZATION OF Grw+70°8247 
IN THE VISIBLE REGION 

q(%) 

3300 - .75 ± .14 

3500 -1.54 ± .06 

3800 -3.14 ± .16 

4150 -3.68 ± .11 

4600 -3.58 ± .17 

5400 -3.13 ± .19 

6400 -3.18 ± .18 

7600 -2.42 ± . 38 

10 
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unfruitful, the largest fractional circular polarization being less than 

l.t'l, .in other cases. 

Kemp and Swedlund (26) used a photoelastic polarimeter similar to 

the one used in their laboratory experiments to determine the circular 

polarization of Grw+70°8247 in the infrared region. Table II gives the 

results of their observations. 

TABLE II 

CIRCULAR POLARIZATION OF Grw+70°8247 
IN THE INFRARED REGION 

q (%) 

11500 -8.5± .3 

12500 -15 ± 2 

Kemp and others proposed that this observed fractional circular 

polarization from white dwarfs is due to magnetoemission. Discussions 

of their theory, its partial disagreement with obs.ervation, and the 

results of improving their theory appear in later chapters. 



CHAPTER III 

NON-RELATIVISTIC THEORY OF MAGNETOEMISSION 

Classical Description of Circularly Polarized 

Electromagnetic Waves 

Since the experimental observations. relate to circular polariza-

tion, it is useful to review the classical theory of polarized electro-

magnetic waves. A basic feature of Maxwell's equations for the electro-

magnetic field is the existence of traveling wave solutions in free 

space which represent the transport of energy from one point to another. 

In the absence of sources, Maxwell's equations are (in MKS units) 

-+ -+ 
\I . E 

-+ -+ 
\I . B 

-+ -+ 
\I X E 

-+ -+ 
\I >< B = 

There exist solutions of the form 

and 

-+-+ 
E(r,t) 

0, 

= o, 

-+ 
3B 
at I and 

13 

(3-1) 

( 3-2) 

( 3-3) 

(3-4) 

(3-5) 
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++ 
B(r,t.) (3-6) 

+ + 
where £ 1 and £ 2 are two constant real unit vectors while E0 and B0 are 

complex amplitudes which are constant in space and time. The divergence 

++ 
equations require that £•k 

. ++ + + o and £•k = 0 which implies that E and B 

+ 
are both perpendicular to the direction of propagation k, giving the 

+ + 
. + k X £1 

familiar transverse wave. The curl equations require that £ 2 = k 

+ + + 
and B = E /c. 

0 0 
This shows that £1 ,£2 , and k form a set of orthogonal 

+ + 
vectors and that E and B are in phase and in constant ratio. This plane 

wave is said to be linearly polarized with polarization vector~ 

In order to describe a general state of polarization, another 

linearly polarized wave is needed which is independent of the first. 

Two such linearly independent solutions are: 

= 

= 

+ + 
k X El 

ck 

+ + 
k X E2 

ck 

(3-7) 

(3-8) 

and (3-9) 

(3-10) 

+ 
A general solution for a plane wave propagating in the direction k is 

+ + 
given by a linear combination of E1 and E2 : 

(3-11) 
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The amplitudes E 1 and E 2 can be expressed as E = Eo e ia. and E = g;_ e i 8 
1 . 1 2 2 

o o ia. i8 
where E1 and E2 are real while e and e are phase factors. Differ-

ent types of polarization result from different relationships between a. 

0 0 
and 8 and between E1 and E2• · For elliptic polarization in the +z direc-

tion O~o. - 8.$271" and ~, ~ ~ 0 so that 

-+-+ 
E(r,t) = 

-+-+ 
i(k•r-wt) 

e (3-12) 

One special case of elliptic polarization is linear polarization where 

. '8 
o.-8 = ±n'IT (thus e~o. = e~ ) , so that 

-+-+ 
E(r,t) 

•. -+ -+ 
~ (k•r-wt) 

e 
ia. 

e (3-13) 

The magnitude of t(;,t) is given,by E = ~(~) 2 + (~) 2 and the direc

tion is 8 = tan -l (Ff_/~) relative to ~1 • A second special case is 
2 1 

circular polarization where 8-o. 

. ia.) d. n ±~e an 1!,-.--
1 

,0 E2 so that 

-+-+ 
E(r,t) 

• -+ -+ 
~(k•r-wt) 

e 
ia. 

e (3-14) 

Since it is a simple matter to adjust the coordinat~ system so that 

ia. 
o.=O, the phase factor e can be set equal to one. This simplification 

results in 

• • -+ -+ 
-+ -+ 
E (r,t) 

e 
-+ o -+ ._0 ~s ~(k•r-wt) = (£ 1E1 + £ 2E'2 e ) e for elliptic pol~rization, (3-15) 

• -+ -+ 
-+ -+ -+ 0 -+ 0 ~ (k•r-wt) 
Ez.(r,t) ( t:lE 1 + t:2E 2) e for linear polarization, (3-16) 

.-+-+ 
-+ -+ -+ 

~ 
~ (k·r-wt) E (r,t) (E:l ± it:2) e c 

for circular polarization.(3-17) 
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-+ -+ 
As can be seen by the polarization vector in E (r,t), the direction of 

c 

the electric vector rotates in a plane perpendicular to the direction of 

' -+k f -+ A -+ A -+k k A -+ • -+ - A + • A propagat1.on . I E 1 = x, E 2 = y, and = z , then E:l ± 1.- E 2 - x- 1.- y. 

The + refers to counterclockwise rotation (right circular polarization) 

while the - refers to clockwise rotation (left circular polarization) . 

The description of the electromagnetic field in terms of electric 

and magnetic field vectors is not, however, suited to the quantum 

mechanical description of charged particles interacting with the field. 

For this purpose the vector potential and scalar potential description 

is more appropriate. In pure radiative interactions the scalar potential 

is zero and the radiation is generally characterized by a vector poten-

-+ -+ 
tial A. Assuming plane wave radiation, the most general form for A is 

-+ 

-+ 
A ( 3-18) 

where E: is the unit polarization vector. The phase velocities can be 

found by considering waves with constant phase and taking the time deri-

vative of the phase: 

-+-+ 
kor 1= wt constant (3-19) 

so that 

d -+-+ - d d 
dt (k or) + dt (wt) dt (constant) · . ( 3-20) 

Then 

-+ -+ dr -
k 0 dt + w 0 ( 3-21) 

so that 



or 

++ 
k·v 
k 

vk 

= 
w 

± k 

± w/k 

+ + 
where vk is the component of v in the k direction. 

+ 

17 

(3-22) 

(3-23) 

. + + 
-z..(k•r-w~ 

Therefore, e 

corresponds to a wave traveling in the +k direction or away from the 
,++ 

.. 1. 1 --z..(k•r-wt) 
source. Slml ar y, e corresponds to a wave traveling in the 

+ 
-k directio~·or toward the source. Since the case of interest is light 

• + "+ . 

· · th h b t' only the e-z..(k•r-wt) term wl'll be con-emlSSlon ra er t an a sorp lon, 

sidered. As will be seen later_, this is the term giving rise to emission 

for energy conservation consideration. 

++ 
The field associated with the radiation is described by f(r,t) 

+ . ++ . 
'- a A/d t. The physical electric field E (r It) is just the 

-++ 
real part of f(r,t): 

++ 
E(r,t) 

+ 
The real part of A is 

therefore 

+ + 
E (r, t) 

+ + 
Re (-a A/at) -a {Re CA) } 1 at . 

+ 
Re(A) 

+ + 
~(A + A*) 

.++ 
~ (~e 1.- (k • r-wt) 

0 

+ 

(3-24) 

(3-24) 

(3-25) 



-+-+ 
The magnitude of E(r,t}, E, is used to evaluate A : 

0 

-+ -+ 
For circular polarization, E"E 

~ 
v' E*·E . 

-+ -+ -+ -+ 
E*•E = 0 and E*"E = l. Then 

18 

( 3-27} 

E = wA ;/2 so that A = 12 E/w. The form of the vector potential that 
0 . 0 

-+ -+ 
will be used is A1 = Re(A) or 

.-+-+ 
-+ E {-+-z.(k•r-wt) 
Al = 12w Ee 

.-+-+ 
-+ --z.(k•r-wt)} +.E*e ( 3-28) 

If this is a suitable form, it must satisfy the condition V x it1 = B. 
Using the vector identity 

-+ ·-+-+ -+ -+ 
\1 X {.f(r)} = f(r) {\1 XV}+ {'Vf(r)} XV (3-29) 

the curl of A1 becomes 

-+ -+ v X A 
l 

E -iwt -+ -+ ik·; iwt -+ -+ e-ik•;} 
-- {e V x E e + e V x E* ( 3-30) /2 w 

or 

-+ -+ v X A 
l 

.-+-+ 
{-+ -z. (k•r-wt) 

X Ee 
. -+ -+ 

-+ --z.(k•r-wt) 
E*e · } 

-+ 
From the expression for E, 

.-+-+ 
-+ -z.(k•r-wt) 
Ee 

so that 

.-+-+ 
-+ -'l- (k•r-wt) 

-E*e 

-+-+ 
-+ -+ k•E 
\/XA = 

l w 

-+ 
2E 2Ew 

= iwA = iwh E 
0 

-+ 
B 

( 3-31) 

( 3-32) 

(3-33) 
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+ + 
Thus since ~ x A1 B, the expression for A1 is acceptable for describ~ 

ing the vector potential associated with radiation. 

If the wavelength of the radiation is long compared to the spatial 

extent of the electron orbits, then 

A + 
++ 
k·r 

k•r = --"' 0 
A. 

(3-34) 

.+ + 
±t.k•r 

so that e "'1. This is the familiar dipole approximation. The vee-

tor potential can now be written as 

E + -iwt + iwt 
-- (e:e + e:*e ) . hw (3-35) 

+ 
If circular polarization is considered, then the unit vector e: can be 

written as (x±iy)j/2 where the + and - refer to right and left circu-

lar polarization, respectively. The final approximate form for the 

vector potential is now 

E A • A -iwt A • A iwt 
-=- { (x±t.y) e + (x±t.y) e } 
12w 

(3-36) 

Semi-Classical Model of Kemp 

Let P (w) and P (w) be the intensities of right and left circularly 
+ 

polarized light of angular frequency w emitted in magnetoemission. Then 

q (w) 

P (w) - P (w) 
+. 

P (w) + P (w) + . 
(3-37) 

defines the fractional circular polarization as a function of the fre-

quency and the theory to be discussed is to interpret an observed 

approximate -~/w dependence of q,~ being the Zeeman frequency of an 
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electron. Kemp (13) has proposed a magnetoemission theory using a 

"gray-body" model. Such a body at equilibrium temperature has constant 

spectral absorptivity and emissivity (both ~ 1) and the radiation in-

tensity curve is identical with the form of Planck's law: 

P(w) (3-38) 

Following the general ideas of Planck, Kemp assumed for the 

radiating system a collection of charged isotropic harmonic oscillators 

of all possible frequencies in a uniform magnetic field in the +z direc-

tion and made a semi-quantum mechanical estimate of fractional circular 

polarization. 

+ 
For the uniform magnetic field B 

-+ -+ -+ 

ox:+ o.Y + Bz the gauge 

A -~ r x B is used. The interacting magnetic field is given in the 
0 

dipole approximation by 

E A oA -iwt 
- 0- (x±'Z-y) e 
hw 

(3-39) 

where E is the electric field and w is the angular frequency of the 
0 

plane wave assumed to be either right circularly (+) or left circularly 

(-) polarized. The non-relativistic Hamiltonian for the interaction 

with a plane wave is then 

H 
l + + 

2m (p - qAO 

where q is the charge of the oscillator (for electrons, q -e 

-1.6 x 10 -l9 C). The magnetic term 

(3-40) 
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e + + 
- p•A 
m o 

eB L 
2m z rtL 

z 
(3-41) 

symmetrically splits the levels. The interaction term is 

( 3-42) 

+ 2 
to order I A1 1 . 

3 -f'tw/kT 
In the quantum limit, ~w>>kT so that P(w)~Aw e 

In the low temperature approximation, significant radiation is assumed 

to come only from transitions from the first excited state to the 

ground state. For a given frequency w, emitted radiation comes from two 

sets of oscillators from among the collection of oscillators--oscilla-

tors with natural frequency w+rl and oscillators with natural frequency 

w-rt. Figure 3 shows the transitions and the handedness of the polariza-

tion of the emitted radiation with Q = eB/(2m). For the transition 

Am£ = +l (m~ = -1 to m~ = O) the polarization is right-handed; that is, 

the electric vector rotates from +x to +y. For the transition ~~ = -1 

(m£ = +1 to m~ = 0) the polarization is left-handed; that is, the 

electric vector rotates from +X to -y. These directions are relative 

to an observer looking along the +z-axis toward the origin of the co-

ordinate system. 

According to Fermi's Golden Rule, the power p(w) radiated by a sys-

tern making a transition from state li> to state If> is proportional to 

the square of the matrix element of the operator associated with the 

interaction causing the transition. In this case the interaction Hamil-

tonian HI± is the interaction term mentioned above and 

(3-43) 
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Gray-body Distribution 

N 
N 



23 

Kemp estimates that the power p±(w) associated with right and left cir

cular polarization is proportional to (w±Q)-1 • Since the radiation in~ 

tensity P±(w) is proportional to p±(w), the fractional polarization 

q(w) can be ascertained by 

P (w) - P (w) -1 -1 
q ( w ) = -=:---+-:--::------..,;::--:--:- a: ( w+ :\2 ) ( w-f2) 

P (w) + P (w1 -1 -1 
+ (w+:\2) + (w-Q) w 

( 3-44) = 

Thus for electrons, the radiation is left circularly polarized. 

As can be seen by comparing this expression with experimental re-

sults, Kemp's prediction based on a gray-body model is true only in a 

very general sense and the simple dependence of q(w) on -Q/w breaks 

down at infrared and other frequencies of the continuous radiation. 

Kemp also estimated the fractional polarization classically using 

free electrons interacting with a magnetic field. He shows that the 

power radiated is given by 

p±(w) a: 

(w ± 

4 
w 

(3-45) 

where Q' = 2Q and T is the mean intercollision interval. Then to first 

order, the fractional polarization is 

q(w) = 2:12' 1 + 2w2-r 2 

W l + W21"2 
(3-46) 

For the case of optical frequency emission from a dilute ionized 

gas, luT > > 1 which leads to 

q(w) "' - 8Q/w . (3-47) 
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This result agrees with the gray-body fractional polarization except for 

a factor of 8. 

Kemp (27) has suggested that perhaps the steplike feature in the 

fractional polarization is secondary to the first order gray-body result. 

In Figure 4 is shown the relationship between the observed polariza-

7 
tions and Kemp's prediction for amagnetic field of 2.0 x 10 G. 

Quantum Mechanical Model of COR 

Since Kemp's calculations were only estimates, Chanmugam, 

O'Connell, and Rajagopal (14,15) (referred to as COR I and COR II) re-

considered the gray-body model of Kemp in a more appropriate quantum 

mechanical light. The Hamiltonian for an isotropic harmonic oscillator 

is 

H = l (-+2 2 2 2) p +mwr> 2m o ( 3-48) 

where w is the natural frequency of the oscillator. If the particie 
0 

(in this case an electron) is placed in a magnetic field and also 

allowed to interact with the electromagnetic field in emission, the 

-+ -+ -+ -+ 
momentum p is replaced by p - qA0 - qA1 where q is the charge on the 

-+ 
oscillator, A is the vector potential associated with the magnetic 

0 

-+ 
field and A1 is the vector potential associated with the radiation. A 

cylindrical coordinate system with the magnetic field in the +z direc-

tion is suited to study this problem because of the preferred direction 

along which the magnetic field is oriented. 
-+ 

Then A 
0 

-+ -+ 
-1.:! r x B and 

-+ - -iwt A • A r.::-
A1 = E0 e (x ± ~y)/(v2 w). With these substitutions and with q = -e 

(electrons) the Hamiltonian can be written as the sum of the oscillator 

energy and an interaction term: H = H + HI+ where 
0 -
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( 3-49) 

(3-50) 

2 
with w 

c 
2 2 

w + Q and ~ = eB/(2m). With the Hamiltonian in cylindrical 
0 

coordinates, the eigenvalue equation becomes 

'11 2 d 2 l . d l 
{- 2m (- + - - + 2· 

dp 2 p dp p 

L 2 2 2 •z. d L 2 2 } "mw0 (p + z ) - &nrl d~ + "m~ p - E ~ 

Separating the variables, let 

~pm n 
Q, z 

0 (3-51) 

(3-52) 

where )l lmQ,I; then the above equation can be separated lnto two equa-

tions: 

d 2 1 d 1 d 2 2 2 2m {-+--d +----acp +. (E -fz.rtm 0 )}F (p} 1J (~) =0(3-53) 
dp2 P P P2 d~2 ft2 Pl-1 ~ Pl-1 m£ 

and 

2 
where a 

0 

2 
mw ;~, a = mw /ft, 1l {~) 

o c c mQ, 

0 

and E = E 
Pl-1 

+ E n z 

(3-54) 
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As d€~rived in Chapter V, the solutions and eigenval ucs of these differ-

enti~l equations are 

F (p) 
Pll 

2 2 
= N exp(-a z /2) H (a z) 

n2 o n2 o 

E = nw (n + ~) n o z z 

(3-56) 

(3-57) 

(3-58) 

where the 1F1's are confluent hypergeometric functions and the Hn 's 
z 

are Hermite polynomials. The normalization constants are given by 

(3-59) 
. 2 

f(p+l){T(ll+l)} 

and 

(3-60) 

Then the energy is just 

E = 1iw (2p + J.l +_1} + 1i0mn + 1iw (n + ~) • a ~ o z (3-61) 

The ~·s form an orthonormal set 

1 ~pm n ~p' m' n' d-r = 
R, z R, z 

(3-62) 
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Thus if the energy spectrum is written as 

E ( 3-63) 

the motion along the z direction is unaffected while in the x-y plane, 

the essential effect of the B field is to modify the natural frequency 

of the oscillator by w -+ w , the latter becoming an exact modification 
0 c 

as Q -+ w . 
c 

The Schroedinger equation for the isotropic harmonic oscillator 

can be solved exactly in Cartesian coordinates, in spherical polar co-

ordinates as well as in cylindrical coordinates (27). From the view-

point of symmetry (group theory) the solutions are basis functions of 

the irreducible representations of equivalent groups {SU(3)--spherical 

polar, SU(l) x SU(l) x SU(l)--Cartesian, etc.} In his theory of dia-

magnetism of metals, Landau (29) first showed that the non-relativistic 

quantum mechanical motion of a free charged particle in a uniform mag-

netic field is such that the motion parallel to the field is unaffected 
I 

while in the transverse direction it simulates a harmonic odcillator 

with the appropriate cyclotron frequency. It is interesting to note 

that Landau's observation is valid even if it is not a free particle. 

In COR I (14) low temperatures were assumed; therefore, only 

_transitions from the lowest excited states to the ground state were 

considered. The wave functions and energies for the ground state and 

the first two excited states are 

\j!ooo 

E 
000 

-3/4 a a if 
c 0 

ftw + l.dtw 
c 0 

e 

2 2 
-a p /2 c 

e 

2 2 
-a z /2 

0 

(3-64) 



ljiOlO 
a a TI- 3/ 4 (a p) 

c 0 c 

2 2 
-acp /2 i¢ 

e e 

2fzw + ~1iw + nn 
c 0 

lji0-10 
a a TI- 3/ 4 (a p) 

c 0 c 

2~w + ~nw - nn. 
c 0 

e 

2 2 
-a z /2 

0 

e 

2 2 
-a z /2 

0 
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(3-65) 

(3-66) 

The matrix elements of HI+ and HI- involve matrix elements of px3 py 3 

Since the solutions are in cylindrical coordinates, p 3 p 3 
X. y 

X3 and y must also be in cylindrical coordinates: 

-ift(cos d sin ¢ d cp -.- dcp> ' dp p 
( 3-67) 

-in (sin cp d cos cp d 
-+ d¢)' dp p 

(3-68) 

X p cos cp, and (3-69) 

y p sin cp • (3-70) 

With the above wave functions a straightforward three-dimensional inte-

gration shows that the desired matrix elements are evaluated to be 

imw 
(_!1._) 

~ 
<OOO!p !O±lO> 

c 
= 

' X 2 mw (3-71) 
c 

mw 
(_!}__) 

~ 
<ooolp lo±lO> ± c 

' y 2 mw 
c 

(3-72) 



<000 I X I 0±10> 

<oool yJo±lO> 

Then the matrix elements of Hit are: 

<oooiHI+io-10> 

and 

~ 
~ ( J!:._) and 

mw ' 
e 

!, 
± J,i (..!L) 

mw c 

ieE !.:! 
<oooiHI_Io+lO> = o (___!L) (w +~~) • 

- /2 w mwe e 

30 

( 3-73) 

(3-74) 

( 3-75) 

(3-76) 

The w in each denominator is the frequency associated with the emitted 

radiation. For the transition E010 to E000 , w ~ we + n and for the 

transition E0 _10 to E000 , w = we-~· When considering radiation of a 

certain frequency, w must be the ~arne in both cases. This implies that 

the trasnitions come from two different oscillators with different 

natural frequencies. The fractional polarization of emitted light can 

be found by 

q(w) ( 3-77) 

where P ± a: I <fiH I± I i> 12 . With we = w+~ for HI+ and we w-n for HI-' 

the squares of the matrix elements become 

m (w+n) 
(3-78) 

and 
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(3-79) 

Then the fractional polarization is found to be 

q(w) = - n;w . (3-80) 

As before, this is left:-handed for electrons. 

Although this exact low temperature result agrees with Kemp's esti-

mate to all orders in B, it does not agree well with observations as was 

shown in Figure 4. It was thought that extending the result to include 

higher excitations in the transitions (higher temperatures) might improve 

agreement between theory and experiment. 

From the viewpoint of equilibrium statistical mechanics, the inclu-

sion of higher temperatures essentially meant that the populations of 

all energy levels would be considered (15). The occupation number <n> 

of a state in a system obeying Maxwell-Boltzmann statistics is 

<n> 
-(E-!l)/kT 

e . (3-81) 

If E >> J.l, then 

<n> = 
-E/kT -BE 

e = e (3-82) 

where S = 1/(kT). Defining n+ and n as n+ p + (J.l + m~)/2 and 

n = p + (Jl - m£)/2, a state vector can be denoted by In: n' n~>, then 

the occupation number of that state is given by 

<n '> = exp{-S1Z[(w +Q) (n' + ~) + (w - n) (n' + ~) + w (n + ~>]}. (3-83) a + a - o z 

The total number of states is found by 



z = I 
n n n + - z 

exp{ -sn[ (w +Q) (n +~) + (w -m (n +lz) + w (n +lz) J}. 
a + . a o z 
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(3-84) 

Then the probability P(n',n',n') that the state In' n' n'> is occupied + - z + z 

is <n'>/Z or 

P (n' rt' n ') = +' -' z 

exp{ -Mi[ (w H~) (n '+~) + (w -m (n '+~) + w (n +~)]} a + · a - o z 

n+n n - z 

exp{-S~[(w +Q) (n +lz) + (w -Q) (n +~) + w (n +lz>]} 
a + a - o z 

(3-85) 

For right circular polarization the Hamiltonian is (in terms of A and 

where X= -eE0 exp(-iwt) cn;m)lz and the matrix element of HI+ is 

= 

The intensity of radiation is found by 

I+(w) = 1iw l: l: 
n+n n n 'n 'n' - z +- z 

P(n',n',n'>l<n n nIH ln'n'n'>l 2 • 
+ - z + - z I+ + - z 

(3-86) 

(3-88) 

Since only downward transitions are considered, the second term in the 

matrix element is dropped. Then 
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<n n n IH in' n' n 1> + 2 u + z 

X 
L ti (n , n ') (tJJ 
~ :J z (! 

( 3-89) 

s 1) ( n + 1) l, 6 ( n , n ' - 1) 6 ( n +, n ~) 6 ( ul - w c + &'2) . 
WtJ.l 

a 

The delta term o (w - w + Q) indicates that w = w - &'2. This term can-
e c 

eels with the w in the denominator leaving the square of the matrix 

element as 

2 
l<n n n !HI ln'n'n'>l + - z + + - z 

Now the intensity of the radiation becomes 

fiw 

= 

2 

w n+n n a - z 

In the sum over n;, n', n~ the only surviving term is for n; = n+, 

n' = n + 1, and n' = n z z 

or 

= 

Thus 

I 
n n n + - z 

P(n ,n +l,n ) (n +1) 
+ - z -

I exp{-e~[<w +&'2) (n +~) c + 
+ (w -Q) (n + 

a -
l) 
2 

+ w (n +~).]} 
0 z 

hwX2 n+n_nz 
w L exp{-eh[Cw +n> (n +~) + (w -Q) (n + l) + w (n +~>]} c a + a - 2 0 z 

n+n n - z 

(n 

(3-91) 

(3-92) 

(3-93) 

+1) 

Remembering that w = w - Q and simplifying the summations, the intensity 
a 



can be written as 

where 

= 

~ (n + l) exp{-Shw(n_ + %)} 

exp{-Shw(n_ + ~)} L: n 

For left circular polarization 

X {w <A -At) +~<A +At) 
~ c + + -
ww c 

and 

<n n n IH In' n' n'> + z I- + - z 

3.4 

(3-94) 

(3-95) 

(3-96) 

(3-97) 

XLo(n,n'){(w +n}(n +l)~o(n+,n+'-l)o(n,n')o(w-w -~) 
~ z z c + c ww c 

Again considering only downward transitions and simplifying the summa-

tions results in 

I (w) 
w - ~ 

(3-98) 

where 

s = (3-99) 
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Since the sums over n and n take on the same range of integers, 0 to 
+ 

oo, the expressions for S+ and s are equal. As shown in Appendix c, it 

is possible to evaluate S and S in closed form. However, for the 
+ 

following calculation this is not necessary. 

The fractional polarization is found by 

q(w) = (3-100) 

so that 

- Qjw . (3-101) 

Since this exact solution for all temperatures is the same as the 

low temperature result as well as Kemp's first order result, it is 

apparent that the source of the discrepancy between theory and experi-

ment must be looked for elsewhere. 



CHAPTER IV 

RELATIVISTIC QUANTUM MECHANICS 

OF CHARGED PARTICLES 

IN MAGNETIC FIELDS 

The Klein Paradox 

The first thing that suggests itself in the development of a rela-

tivistic analogue of the Kemp-Cor theory is to try adding an isotropic 

harmonic oscillator potential to the free particle Dirac Hamiltonian 

and then put this in a uniform magnetic field. Unfortunately, Dirac 

Hamiltonians with unbounded power law central field potentials like r 2 

are subject to the well-known 'Klein Paradox' (30), and therefore this 

approach is unworkable. The free particle Dirac equation admits solu-

tions corresponding to positive energy states as well as negative energy 

states. These solutions are eigenstates of energy and momentum just as 

in the Schroedinger theory. In the construction of a suitable wave-

packet to describe the position localization of a particle (in the sense 

of the uncertainty principle), it turns out that positive as well as 

negative energy solutions are needed. The inclusion of negative energy 

solutions, however, is necessary only when the electron is to be local-

ized to distances less than its Compton wavelength, which is on the 

-3 0 
order of 10 A. Thus in most expe~imental situations this poses no 

real problem. The radius of the first Bohr orbit of the hydrogen atom 

is at least one thousand times this distance. A steeply rising or 

36 
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unbounded potential does lead to ambiguous, if not meaningless, conse-

quences as shown by Klein. If a particle were passing through a barrier 

of this kind, a negative transmitted current and a reflected current 

exceeding the incident flux would result. In the case of bound states 

either the energy becomes imaginary or the momentum and velocity of the 

particle become mutually perpendicular. The solutions become oscilla-

tory up to infinity with large unattenuated amplitudes. It is on 

account of these unsatisfactory features that one looks for an approxi-

mate Hamiltonian that has the desired non-relativistic behavior and, at 

the same time, is Lorentz invariant to the same degree of approximation 

as, say, the Hamiltonian with the Coulomb potential. The model proposed 

in this work has these properties and exact solutions besides. 

Relativistic Free Particle in a Magnetic Field 

From the nature of the Dirac equation (Appendix A) it is apparent 

that there are probably only a few cases which have exact solutions. 

One such case is that of a free particle in an indefinitely extending 

uniform magnetic field. This problem was first solved by Rabi (31) and 

has since been discussed by several authors and put most elegantly by 

Johnson and Lippmann (32,33). In view of the fact that the work in 

Chapter V is done in cylindrical coordinates, a short derivation of the 

solutions in cylindrical coordinates is given here. The Johnson-

Lippmann wave functions, rather incomplete in their work, then tie up 

nicely with those of the model in this work. 

The free particle Hamiltonian is 

H (4-l) 

The Hamiltonian for a particle of charge -e in a magnetic field can be 
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obtained from the free particle Hamiltonian by making the substitution 

-+ -+ -+ -+ 
p -+ p + eA where A is the vector potential associated with the magnetic 

-+ 
field. By choosing B 

"' -+ -+ -+ Bz and A = -~ r x B, the Hamiltonian becomes 

H 

or 

H = 

then the eigenvalue equation can be written as usual 

Let IJI' 
[ ¢0

1 l ' then in matrix form 

= 

[ 

2 m c + E 

-+ 0-+ -+ 
ca• (p + eA) 

[ -+ -+ -+ 
ca• (p + eA)¢1 

0. 

-+ -+ -+ 
ca • (p + eA) 

2 -m c + E 
0 

l . 
Equation (4-4) requires that 

2 [ -+ -+ -+ ]2 E) (m0 c + E) + ca· (p + eA) }¢1 

or 

In cylindrical coordinates this becomes 

. {4-2) 

{4-3) 

(H+E) ljl I' 

(4-4) 

(4-5) 

0 (4-6) 

0. (4-7) 
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{ 2 4 2 2 2 d2 1 d 1 d2 
m c - E + c [ -fl (- + --+ ---) 

0 dp2 p dp p2 d<jJ2 

d2 
(4-8) 

2 2 2 2im Q 
d ft2 + m Q P - -2]}01 = 0. 

0 0 d<P dz 

As will be shown in Chapter V, the solutions of the radial and angular 

part are F (p) ~S(rp). The normalized functions are 
Pll ll 

and 

F (p) 
Pll 

1 i11S<P -- e 
ili 

(4-9) 

(4-10) 

where 1F1 is a confluent hypergeometric function, Npll is a normalization 

± 1 is the sign of m£. 

The solutions of the z portion are 

u I 

Pz 
e 
ip'z/'Fl z 

m 
where p' is the eigenvalue of p . z z 

-+ s 
The eigenfunctions of cr are x~ 

(m8 ± ~), so the two-component function 01 is 

.m 
s F (p) 4> 8 <<P> u <z> x1 . 

Pll ll. Pz '1 

(4-11) 

(4-12) 

For S = + 1 and m 
s 

+ ~, the normalized four-component wave function 

is 
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2 
F (E + m c ) cp u I 

0 Pl1 11 Pz 

'¥+,0 1 0 
= 

1 
hE(E+m c 2 ) 

(4-13) 
0 cpl F cp u I z Pl1 11 Pz 

2icA.8 1ti (p+l1+l) F cp 
f.l+l 

u I p,l1+1 Pz 

with energy 

E (4-14) 

It is interesting to note that the particle in the magnetic field 

simulates a linear two-dimensional harmonic oscillator with frequency 

r2 = eB/(2m0 ) in a plane perpendicular to the magnetic field while the 

motion parallel to the field is unaffected. This was first pointed out 

by Landau (29) for the case of a non-relativistic charged particle in a 

uniform magnetic field. 

Defining position operators x and y 
-o -o 

X _!__y_ 
X -o 2 2m r2 

0 

and 

li_+ Px 
ij_o = , 

2 2m r2 
0 

it is ea. sily shown that for the above Hamiltonian, [x , H] = 0 and -o 

(4-15) 

(4-16) 

[~0 , H] = 0. Therefore x and y are constants of motion and the posi--o -o 

tion (x0 , y0 ) can be thought of as the center of the orbit of the 



particle in a plane perpendicular to the direction of the magnetic 

field. It is of interest to note that there is an infinite number of 

possibilities for the location of (x , y ) in this plane. 
0 0 
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CHAPTER V 

RELATIVISTIC THEORY OF MAGNETOEMISSION 

Model Hamiltonian and Solutions 

The proposed approximate Hamiltonian for the model of a charged 

relativistic harmonic oscillator in a magnetic field of magnitude B in 

the +z direction is 

where :\ 2 
c 

H 

m w , 
0 c m w , w 

0 0 c = w + n, n 
0 

[ 1 0 l and . n. 2 
0 -1 I 

(5-1) 

Although the p.'s 
'Z-

are mathematically isomorphic with the Pauli matrices a., the p's and 
1., 

o's commute in Dirac theory. In the Hamiltonian, the direct product 

representation is used; that is, the Dirac operators are written as 

a. = p1 ®a .. The suitability of this for magnetoemission will be dis---z. 'Z-

cussed later. With o/ written in two-component form o/ 

eigenvalue ~quation (H - E)~ 0 can be written as 
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2 
me -wJ -E 

0 0 z 

-+-+ 2 +' 2 co•p + CA (xo -yo ) · ~CA z 
C y X 0 

-+ -+ 2 
co•p + CA (xo -yo ) 

C y X 

2 
-m c - w J - E 

0 0 z 

which leads to the following set of simultaneous equations: 

2 -+ -+ 2 2 
{m c - (E + w J )}~1 + {co•p + CA (xo -yo) - icA0z}~2 0 0 Z C y X 

and 

Eliminating ~2 results in the defining equation for ~1 : 

0 

{[ -+-+ 2 . 2 ][ -+-+ 2 . 2 J co•p + CA (xo -yo ) - ~CA z co•p + CA (xo -yo ) + ~cA z 
C y X 0 C y X 0 

Then ~2 is found from 

co•p 
{ 

-+ -+ 2 
+ CA (xo -yo ) + 

C y X 
2 

(E+w J ) + m c 
0 z 0 
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0 (5-2) 

(5-3) 

(5-5) 

(5-6) 

This corresponds to the 'helicity-eigenstates' derivation of the solu-

tions of the Dirac free particle Hamiltonian. Simplification of the 

equation for ~l gives 

Remembering that J z 
-+ -+ 

(L + S) = L + S z z z 

cylindrical coordinates p, ~' z becomes 

(5-7) 

L + ~flO , this equation in z z 
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2 2 d2 l d l a2 
{ -ft c (-2 + - - + - --) 

dp p dp p 2 d~ 2 

2 2 d2 2 2 d 
1'1. c · - - 2i~c A 

d;/ () d~ 

(5-8) 

0. 

m s 
The variables can be separated by letting ¢ 1 = F (p) <P S (~) Un (z) X~ 

Pll l1 z 

where ll = lm~l and S is the sign of m~; that is, S = +1 if mi > 0 and 

S = -1 if mi < 0. The individual functions in ¢1 satisfy the following 

set of equations: 

and 

f, 2 2 d2 1 d _l d2 ) 2 2 2 2} - fz c (--2 + - - + + c m w p F <P S 
dp P dp P2 d~2 o c Pll ll 

2 m 
{c fz(2m w + m w )o }xL8 

0 c 0 0 z -:2 

u 
n z 

m 
E2 8 

m X~ . 
8 

(5-9) 

(5-10) 

(5-11) 

(5-12) 

c 2h>. 2 2 c2~L\ 2 2 
With K = = m c fzw and K = m c fzw c' Equation (5-12) 

0 0 0 0 c c 0 

becomes 

m 
E2 

m 
(2K + K ) 

8 8 (5-13) 0 X~ X~ . c 0 z m 
8 

Since m can be either +~ or -~, let ~ ( ~) and 
-l.:i 

[ ~ J ; then X~ X~ = s 

(5-14) 
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Therefore 

(4K + 2K )m • 
c 0 8 

(5-15) 

Let ~,8 = (2rr)-~ eillScf>, then dd~ ~,8 -- • S ~ h f · ~~ ~ ~~ ~ll ~llS sot at rom Equat1on 

(5-10), 

2K ]lS. 
c 

In Equation (5-11) the variable can be changed by letting s 

a = lm w /~. Then the differential equation becomes 
0 0 0 

E2 
n 2 

(-2 - s ) } U ( s) = 0 • 
K n 

0 z 

(5-16) 

a z where 
0 

(5-17) 

With E2 /K n o z 
2n + 1 where n ~ 0, this equation has solutions (34) z z 

u <s> n z 

2 
exp(-s /2) H (s) 

n z 
(5-18) 

where H (s) is the Hermite polynomial of order n . In terms of z the 
n · z z 

normalized solutions can be written as 

where 

U (z) 
n z 

Solving for E2 gives 
n z 

N 
n z 

2 2 
exp(-a z /2) H (a z) 

o n o 

K (2n + 1) • 
0 z 

z 
(5-19) 

(5-20) 

(5-21) 
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Since it has already been shown that ~~S 
~ . s 

(2rr)- e~~ ~. the term 

2 
- ~ ~~S' and Equation (5-9) simplifies to an equation involv-

ing only F (p): 
p~ 

2 2 d2 1 d Jl 2 2 2. 2 2 { -'PL c (- + - - - · -) + c m w p } F 
dp2 P dp P2 o c Pll 

F 
p~ 

(5-22) 

By changing the variable to ~ 
2 2 = a. p c 

2 
(m w /~)p , the differential 

0 c 

equation can be written as 

Now let 

2 
{4~ L + 4 a 

d~2 d~ 

F (~) = exp(-~/2) ~~12 f(~), 
Pll 

then the differential equation defining f(~) is 

0. 

0. 

By comparing this to the confluent hypergeometric equation (34) 

x y"(xl + {e - x) y' {x) - a y(xl 0, 

the following identifications can be made: 

X 

y(xl 

Jl + 1, 

(5-23) 

(5-24) 

(5-25) 

(5-26) 

(5-27) 

(5-28) 

(5-29) 



and 

a = 
jl + 1 

2 

The solutions to Equation (5-26) are the confluent hypergeometric 

functions 

= 1 + ~~ + a(a+l) x2 + 
c. 1! c.(c.+l) 2! 
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(5-30) 

(5-31) 

In this solution c. cannot be zero or a negative integer. However, if a 

should be zero or a negative integer, the series terminates and 

1F1 (a,c.;x) becomes a polynomial. From Equation (5-29), c.> 1 since 

]1 > 0. In Equation (5-30) let a = -p where p ~ 0, then E2 becomes 
Pll 

(5-32) 

The functions f(~) in Equation (5-24) can now be written as 1F1C-p,]l+l;~) 

so that in terms of p the normalized solutions of Equation (5-22) are 

where 

N = 
Pll 

2 
2a r (p+Jl+l) 

a 
2 r (p+l) {r ()l+l)} 

From the energy term in the Hamiltonian 

2 
{E + ~w (JlS + m )} ¢1 . 

0 s 

Now the energy can be found from 

(5-33) 

(5-34) 

(5-35) 



2 2 + E2 
E + El-1S n 

Pl-1 z 

so that 

2 2 + (m c ) 
0 

= 
2 

{E + Jtw (j..!S + m ) } 
0 s 

/ m 2 c 4 + K { 4p + 2 ( 1 +S) l-1 + 4m + 2 } + K ( 2n + 2m + 1) • 
0 c s 0 z s 

To find ¢2 return to the equation defining it in terms of ~1 : 

~2 
{ 

-+ -+ 
co•p + cA 2 (xo -yo) + icA~Z} 

C y X 2 ~1. 
(E+w J ) + m c 

0 z 0 

With the operator in cylindrical coordinates, the equation becomes 

c {[-ifi cos¢ L +sin¢ (ifi L- A2p)]o 
E ' 2 d¢ p dcp C X + m c 

where 

To simplify this 

~ ( ~) -~ 
and X~ = X~ 

therefore 

0 

E' E + w J 
0 z 

expression consider 

= 
[ ~ ) I 

then 

Also since n. )Ul 

m 
s 

oxx~ 

F 
Pl-1 

E + 1'1-w ( j..!S + m ) • 
0 s 

m 
the effects of s 

0. on X~ . 
~ 

-m m -m 
s s 

2im8x~ 
s 

X~ o X y 

u 
n z 

m s 
X~ I 

If 

and 
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(5-36) 

(5-37) 

(5-38) 

(5-39) 

(5-40) 

(5-41) 
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-m i2m ~ d ~s~ 2 
{ e 8 [h drJ - 2m (-- + Acr) ] F 

/ II 2 I /l (.) [J~ 
If> U X 8 

pS n., ~ '• + m r! 
0 

d 2 
+ (2hm --d - A Z) F ~1.1S U s z o Pl.l n z 

There are four possible combinations of S and m 
s 

,, 

m 
X~ s}. 

since s = ±1 and 

m = ±~. The functions F 1 ct> S 1 and U obey the ladder operator 
s Pl.l 1.1 · n 

relations: 

{h<L + H.> + 
dp p 

{I'L (4.._ - H.) + A 2p}F = 
dp p c Pll 

{ d )1 
~(--- -) 

dp p 

z 

for mQ, > 0 1 

-2A nrp F 1 1 c p- 1)1+ 
for m Q, .::_ 0 1 

(5-43) 

(5-44) 

(5-45) 

for mQ, < 0; (5-46) 

f.fi d 
dz 

::\ hnn u 1 , 
o z n -z 

= -A0 12~(nz+l) Un +l" 
z 

For S = +1 (with mQ, ~ 0) and m8 = +~1 

and 

~2 

~1 = F 
Pll 

u 
n z 

---1-- {2icA lh<p + 1.1 + 1) F ~ U . -~ 
2 c p 1 1.1+ .. 1 1.1+l n X~ E• + m c z 

0 

(5-47) 

(5-48) 

(5-49) 

(5-50) 

(5-51) 
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Applying the above relations, ~2 becomes 

~2 
1 

{2ict.. lh(p + ll + 1) F <P u -~ 

E' 2 c p,]l+l ]l+l n X~ 
+ m c z 

0 (5-52) 

x~}. + ict.. hh (n + 1) F <P u 
0 z Pll jl n +l z 

Let It' 
±~ 

then with the matrix definition of x~ , It' can be writ-

ten as (unnormalized) 

(E' + 
2 

F <P u m c ) 
0 Pll jl n z 

0 

'¥+,0 1 (5-53) 
1 

E' 
2 

+ m c 
ict.. h"ft (n +1) F <P un +1 0 

0 z Pll jl z 

2ict.. l"ft (p+Jl+l) F <P 
]l+l 

u 
c p,]l+l n z 

where the subscript is an index and the superscript designates the 

allowed values of m£. Similar calculations for the other cases result 

in: 

for s -1 and m +~, 
2 s (E' + m c ) F <P u 

0 Pll -jl n z 

0 

'¥1 
'1 

(5-54) 
2 

E' + m c 
ict.. 1211 (n +1) F <P u 0 

0 z Pll -jl n +l z 

-2ict.. lh (p+l) F <P 
-(]l-1) u 

c p+l,]l-1 n z 



for S +1 and m 
s 

+ 
'¥2 

for S = -1 and m 
s 

'1'-,o = 2 
E' 

1 
2 

E' + m c 
0 

1 
2 

+ m c 
0 
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0 

(E' 2 
F ~ u + m c ) 

0 p11 11 n z (5-55) 

-2ic"A Itt (p+11) F iP 
11-1. 

u 
a p,11-l n z 

ia"A I2Kn F ~ u 
0 z P11 11 n -l 

z 

0 

(E' 2 
F ~ u + m c ) 

0 P11 -11 n z (5-56) 

2ic"A ./FiP F 1 1 iP u 
- (11+1) c p- ,f.!+ n z 

iaA. hrm F ~ u o z p11 -11 n -l 
z 

In the original set of equations involving ¢1 and ¢2, ¢2 was arbi

trarily eliminated first. This is tantamount to choosing ¢1 as the 

large component. If, on the other hand, ¢2 is chosen as the large com-

ponent, ¢ 1 can be eliminated .first resulting in 

{[ ~ ~ 2 . 2 ][ ~ ~ 2 . 2 J co•p + cA. (xo -yo ) + ~cit z co•p + cit (xo -yo ) - ~cit z a y X 0 C y X 0 

(5-57) 
2 2 2' 

+ (m c ) - (E+w J ) }¢2 = 0. 
0 0 z 

Then ¢1 is found from 

¢1 {
c6·p + c"A 2 (xo .-yo ) - ic~t 2 z}. 
--------~c--~y--~x ______ ~o- ¢ 

2 2. 
(E+w J ) - m c 

0 z 0 

(5-58) 
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Simplification of the equation for ¢ 2 gives 

(5-59) 

m 
8 This equation has the same solutions as Equation (5-7), F ~~SUn X~, 

p~ z 

but the expression for the energy is slightly different from Equation 

(5-37): 

E -1iw ( ~s + m ) + 
0 8 (5-60) 

1m2c 4 +K {4p+2(l+S)~+4m +2}+K (2n -2m +l). 
0 c 8 0 z s 

The equation defining ¢ 1 , Equation (5-58), is similar to Equation 

2 
(5-6), the difference being the sign of the z term and them c term. 

0 

As before the operator in Equation (5-59) can be simplified so that 

i2m ~ d Sh 2 -m 
{ e 8 [~ - - 2m (L_ + A. p)] F ~ U X 8 

2 dp s p c p~ ~s n ~ E' + m c z 

-&c 

0 

m 
(5-61) 

x~8}. 

W;th Ill -- [ ¢¢12] Again there are four possible combinations of S and m • ~ r 
8 

and with the help of the ladder operator relations given previously, 

the possible 'l''s are: 



for S = +1 and ms 

for S -1 and m 
8 

-
'1'3 

E' 

for S +l·and ms 

+ 
'1'4 

for S -1 and m 
8 

-,0 
'1'4 

E' 

1 
2 

E' - m c 
0 

+~, 

1 
2 

- m c 
0 

-~, 

1 
2 

E' - m c 
0 

-1:!, 

l 
2 

- m c 
0 
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(5-62) 

0 

-icA.ohnnz FPil <t>_ll u n -l 
z 

<I> u -2icA. l'f1 (p+l) 
Fp+l, 11-1 - (IJ.-1) nz 

(5-63) 
c 

2) 
F <I> u (E' - m c 

n 0 Pll -11 
z 

0 

<I> u - 2ic A. lfL (p+IJ.) Fp, Il-l Il-l n c 
z 

-icA.ol2h(nz+l) FPil <I> un +1 
(5-64) 11 z 

0 

2 
F <I> u (E' - m c ) 

Pll 11 nz 0 

2icA.13/fiP Fp-1,11+1 <I> 
-(IJ.+l) 

u 
nz 

F <I> u -icA.0 htt (n2 +1) 
Pll -11 n +l 

(5-65) z . 
0 

2 
FPil <I> u (E' - m c ) 

-11 n 0 
z 



54 

To determine the energy associated with each wave function, put the 

appropriate values for S and m into the general energy expression 
8 

corresponding to the wave function. 

A general wave function with quantum numbers p, ~' S, n will be z 

referred to as ~(p~Sn ) or in Dirac notation IP ~ S n >. 
z z 

Normalization constants must be calculated for all the wave func~ 

tions. 2 
As an example for a wave function containing the term E' + m c , 

0 

. Ill+, 0 cons1der r 1 . Let 

(5-66) 

+,o N where ~lN is the normalized wave function and is the normalization 

constant. Since by definition 

1, (5-67) 

then 

(E' 2 -2 { 2 2 f F* ~* U* F ~ u pdpd<j>dz + m c ) (E' + m c ) 
0 0 p~ fl n Pfl fl n z z 

2 2 f pdpd<J>dz + 2c A ft(n +1) F* ~* U* F ~ u 
0 z Pf.l ~ n +1 p~ ··~ n +1 z 2 (5-68) 

2 2 f F* F pdpd<j>dz} N2. + 4c A ft (p+~+l) <P* U* ~ u c p,f.!+l. f.!+l n p,f.!+l f.l+l n 
2 z 

The functions F , <P , and U are already normalized so that the above 
Pfl fl n 

2 

equation simplifies to 

For \f'+,O 
1 ~ 

2 2 
(E' + m C ) + K (4p + 4f.l + 4) + K (2n + 2) ________ o _________ c ___________________ o __ ~z~---- = N2. 

2 2 
(E' + m c ) 

0 

(5-69) 



El E + ~w (~ + ~) = ~2a4 + K (4p + 4~ + 4) + K (2n + 2) 
o o a o z 

so that 

K (4p + 4~ + 4) + K (2n + 2) c 0 z 

With this substitution, 

= 
2 

2E 1 /(E 1 + m c). 
0 

Then the coefficient of the spinor will be 

2 -1:1 
{ 2E 1 (E 1 + m a ) } 

0 
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(5-70) 

(5-71) 

(5-72) 

(5-73) 

2 
A similar calculatio~ for the other ~~s containing the term E 1 + m c 

0 

gives the same result. 

so that 

2 For the ~ 1 S containing E1 - m a , 
0 

= 

(5-74) 

(5-75) 

Table III summarizes the normalization coefficients and the correspond-

ing energy eigenvalues of all the eight wave functions elaborated 

earlier. In referring to a wave function with quantum numbers p~Sn , z 

S will still be +1 or -1 to indicate whether the appropriate ~i is 

+ -
~. or I¥ •• 

1- 1-

An alternate method of solving the eigenvalue equation will be 

briefly indicated here. The Hamiltonian can be written in 4 x 4 matrix 

form: 



H == 

2 
m c -w (L +~h) 

0 0 z 

0 

. '2 cp +1-CII. z z 0 

0 

2 m c -w (L -~1'!) 
0 0 z 

c (p -ip ) 
X y 

• 2 • 
-1-CA (x-1-y) 

c 

. '2 cp -1-c11. z 
z 0 

c (p +ip ) 
X y 

• 2 . +-z..c:\ (X+1-y) 
c 

2 
-m c -w (L +Vz) 

0 0 z 

c (p -ip ) 
X y 

• 2 • --z..c:\ (x--z..y) 
c 

• 2 -cp -1-c:\ z z 0 

0 
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(5-76) 

c (p +ip ) 
X y 

. 2 -cp +-z..c:\ z z 0 
0 

2 -m c -w (L -~fz) 
0 0 z 

+icl.2 (x+iy) 
c 

Let H1 = H + w J and E 1 == E + w J . Then from Dirac theory 
0 z 0 z 

H 12 ~~ == E 12~~ so that 

(HI - E I) (HI + E I)~ I = 0. (5-77) 

If ~ = (H 1 + E 1 ) ~', then the eigenvalue problem can be written in the 

usual manner since H 1 - E 1 == H - E: 

(H - E) If' 0. (5-78) 

From Chapter III the solutions of the non-relativistic harmonic 

oscillator in a magnetic field and in cylindrical coordinates are 

If the index of ~ is changed to ~S where ~ = 

and Sis the sign of mt (±1), then these solutions can be used to 

lm I !I. 
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generate the exact solutions of this Hamiltonian. Each ~~ is a four-
1.-

. . h F "' U . h . th . . d component column matr1x w1t ~ S 1n t e 1.- pos1t1on an zeroes 
PJ.l J.l nz 

elsewhere. 

The components of the matrix in Equation (5-76) in cylindrical 

coordinates are: 

c(p ip ) ± 
X y 

2 m c 
0 

. 2 
± 1.-CA (X c ± iy) 

. 2 cp ± 1.-CA Z z 0 

- w (L 
0 z ± ~1i) 

2 m c 
0 

·~ d L-1:. w 0 ( -1.-n dcp ± -:~n) • 

2 
;>.. p}, (5-79) 
c 

(5-80) 

(5-81) 

The wave functions are then found by ~. (H' + E I)~~ where 
1.- 1.-

F <P ].18 u 0 
PJ.l n 

z 

0 F <PJ.lS u 
~· ~· 

PJ.l n 
1 2 z 

0 0 

0 0 

(5-82) 

0 0 

0 0 

~· 3 '~'4 

F <P u 0 
PJ.l ].1$ n 

z 

0 F <PJ.lS Unz PJ.l 

The functions F , <PJ.lS' and u obey the ladder operator relations given 
PJ.l n 

z 

earlier. The wave functions thus obtained are identical to the ones 
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previously found. The energies are obtained from (H - E)~ 0 and are 

also found to be identical to those listed in Table III. 

A computer program has been written to calculate the energy levels 

for any given magnetic field and oscillator natural frequency. Table IV 

lists the first 20 levels (relative to the rest energy of the electron) 

and quantum numbers of the corresponding wave functions for a magnetic 

field of B = 1 x 107 G and an oscillator with natural frequency 

w = 3.77 X 1015 Hz. For this value of B, ~ hQ = .05788 eV and for 
0 

w , E = hw = 2.480 eV. As is to be expected, the energies in each 
0 0 0 

solid-lined block of the first few levels differ by ~ 2.48 eV orE . 
0 

Also, within each solid-line block the first energies in each dashed-

line block differ by ~ .11578 eV or 2EB. 

A more detailed description of the program and more energy levels 

are given in Appendix D. Also given are energy levels for several other 

natural frequencies and magnetic fields. 

Non-Relativistic Limits 

In the non-relativistic limit the momentum of the particle is small 

compared to me, and it is well-known that the Dirac theory goes into the 

Pauli spin theory in this limit. Foldy and Wouthuysen (35) have dis-

cussed the relation between these two theories and the difficulties 

encountered when trying to go from Dirac theory to Pauli theory. They 

also give a systematic and rigorous method whereby the proper non-

relativistic Hamiltonian can be Qbtained from the Dirac Hamiltonian to 

the desired degree of approximation. Before applying their theory to 

the Hamiltonian in Equation (5-l), a brief review of their theory is 

in order. 



TABLE III 

NORMALIZATION COEFFICIENTS AND ENERGY EIGENVALUES 

ljl Coefficient E' E 

+,0 
{ 2E' (E' 2 r~ E + f!.w ( ll + ~) -1iw ( ].l + ~) In 2 4 + 4K (p+)l+1) (n + 1) ljl1 + m c ) + m c + 21<' 

0 0 0 0 c 0 z 

ljl1 {2E' (E' 2 r~ E + fiw (-jl + ~) -'liw (-jl + ~) 
fm2 4 

+ 4K ( p+l ) 2K (n + 1) + m c ) + m c + 
0 0 0 0 c 0 z 

+ 
{2E' (E' 2 r~ E + 1iw ( ll - ~) -'liw ( ll - ~) k?c 4 ( p+].l ) ( ljl2 + m c ) + + 4K + 2K n 

0 0 0 0 c 0 z 

'¥-,0 {2E' (E' 2 r~ E + hw (-jl - ~) -1iw ( -jl - ~) 
k,2 4 + 4K ( ) 2K ( + m c ) · + m c p + n 

2 0 0 0 0 c 0 z 

fm2 4 +,0 
{ 2E' (E' 2 r~ E + 1iw 0( ll + ~) -'hw ( ].l + ~) + 4K (p+)l+1) 2K ( '¥3 - m c ) + m c + n 

0 0 0 c 0 z 

fm2 4 
ljl3 {2E' (E' 2 r~ E + 'liw (-jl + ~) -1iw (-jl. + ~) + 4K ( p+l ) 2K ( - m c ) + m c + n 

0 0 0 0 c 0 z 

'¥+ { 2E' (E' 2 r~ E + fiw ( ll - ~) -1iw 0( - m c ) 
4 0 0 

fm2 4 
j.l - ~) + 4K ( p+j.l ) 2K (n + 1) + m c + 

0 c 0 z 

ljl-,0 
{2E' (E' 2 r~ E + 'liw (-jl - ~) -1iw (-:-)1 - ~) 

fm2 4 
+ 4K ( ) 2K (n + 1) - m c ) + m c p + 

4 0 0 0 0 c 0 z 
iJl 
1.0 



60 

TABLE. IV 

ENERGY EIGENVALUES AND QUANTUM NUMBERS 

l¥1 \~ ljlj l¥4 
E (eV) 

2 

p ]l s n p ]l s n p )1 s n p )1 s n 
z z z z 

1. 239727 0 0 -1 0 

3.719175 0 0 -1 0 0 0 -1 0 
3.719181 0 1 -1 0 

------------- -------------- -------------- -------------- -------------
3.834923 0 1 +1 0 0 0 +1 a· 

6.198611 0 0 -1 2 0 0 -1 1 
6.198629 0 1 -1 1 0 1 .:.1 0 
6.198635 0 2 -1 0 

------------- -------------- -------------- -------------- -------------
6.314346 0 0 +1 0 0 l +1 1 0 0 +1 0 0 1 +1 0 
6. 314377 1 0 -1 0 

------------- -------------- -------------- -------------- -------------
6.430068 0 2 +1 0 0 1 +1 0 

8.678035 0 0 -1 3 0 0 -1 2 
8.678065 0 1 -1 2 0 1 -1 1 
8.678083 0 2 -1 1 0 2 -1 0 
8.678089 0 3 -1 0 

------------- -------------- -------------- -------------- -------------
8.793757 0 0 +1 1 0 1 +1 2 0 0 +1 2 0 1 +1 1 
8.793800 0 1 -1 0 1 0 -1 1 0 1 -1 1 1 0 -1 0 
8.793831 1 1 -1 0 0 2 -1 0 

------------- -------------- -------------- --------------- -------------
8.909467 0 l +1 0 0 2 +1 1 0 1 +1 1 0 2 +1 0 
8.909522 1 1 +1 0 1 0 +1 0 

------------- -------------- -------------- -------------- -------------
9.025162 0 3 +1 0 0 2 +1 0 



Any relativistic Hamiltonian can be written in the form 

H 
2 

Sm a + E + 0 
0 
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(5-83) 

where E is an even operator and 0 is an odd operator, both of which may 

be time-dependent. An odd operator is one which commutes with S and 

couples the large and small components in the solutions of the Dirac 

equation. An even operator commutes with S and does not couple the 

large and small components. It is assumed that the highest order of 

2 2 0 
m a in E and 0 (m a ) • If S is a Hermitian operator, the transforma-

o 0 

tion 

1¥' iS"' e r, H' 

leaves HI¥ = i(a~¥;at) in the form H'l¥' i(al¥'/at). Consider the 

Hermitian operator 

s i sO· 
2 

2m a 
0 

(5-84) 

(5-85) 

As a result of the canonical transformation generated by this operator, 

the Hamiltonian in the new representation can be written as an expansion 

2 -1 in powers of (m a ) : 
0 

H' = 

= 
as . 1 as i 2 1 as 

H + U + -z- [ S, H + 2 at] + 2! [S, [S , H + 3 at]] + ... 

For a Hamiltonian in the form of Equation (5-83) apd with terms no 

2 -1 : 2 -2 
higher in (m a ) t~an <m a ) , H' becomes 

0 0 

(5-86) 
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2 
+ E + B 02 - l ao 

H' 13m c 
2 2 2 [O,[O,E] + a;J 

0 2m c 8 (m c ) 
0 0 (5-87) 

l ao s [O,E] - l 3 
2 a;+ 2 3(m c 2 ) 2 

0 + ••• 
2m c 2m c 

0 0 0 

Remembering that the product of two odd operators is an even operator, 

it can be seen that all odd operators of order (m c 2 ) 0 have been removed 
0 

from the Hamiltonian. 2 -1 
Operators of order (m c ) and higher can be 

0 

removed by successive transformations, the transformation operator at 

each step being 

s -iS l 
2 (odd terms in Hamiltonian of lowest order in ----2). (5-88) 

2m c m c 
0 0 

After two more such transformations, the non-relativistic limit, correct 

2 -1 
to order (m c ) , is 

0 

= Bm0 c 2 + E + 13 
2 a2 - 1

2 {[O,[O,E]] + i[O,O]}. 
2m c 8(m c ) 2 

0 0 

(5-89) 

This process can be carried out indefinitely, resulting in an infinite. 

. . ( 2 ) -l h' h . l f f dd power serl.es l.n m c w l.c l.S complete y ree o o operators. 
0 

h h h f f . l . l . iS . T ey s ow t at or a ree partl.c e Harnl. tonl.an e can be wrl.tten 

in closed form which completely removes the odd operators, whereas when 

there is a field, the S has to be constructed afresh for each degree of 

:·; 

approximation removing the odd operators to that degree of approximation. 

Real insight can be gained into the structure of the relativistic 

model of Equation (5-l) by studying the non-relativistic limit of the 

Hamiltonian, its solutions as well as its energy eigenvalues. As dis-

cussed earlier, if the charged oscillator is allowed to interact with 

radiation, this effect is accounted for by the substitution 



where 

-+ -+ -+ 
p -+ p + eA1 ± 

-iwt 
e 
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(5-90) 

(5-91) 

is the vector potential associated with the radiation field. The rela-

tivistic Hamiltonian for the equivalent oscillator is 

+ {-
eA 2 

0 " -+ 
- -- z• (r 

m 
0 

(5-92) 

It will first be established that in Equation (5-89) the commutators 

and double commutators vanish. Remembering that 

[a. 1a.] = a.a. +a .a.= 2io. ·1 
~ J + ~ J J ~ ~J 

[L ·1X .] 
~ J 

the following relations are easily arrived at: 

(5-93) 

(5-94) 

(5-95) 

( 5-96) 

[ -+ -+ J o .J. A -+ -+ [-+ -+ J 0 A -+ -+ [-+ -+ J a•p1L = -?--nz· (a x p) 1 a•p 1S = 'tftz• (a x p) 1 a·p 1J = 0; (5-97) z z z 

• [-+ -+ • ]K -iwt ., . ) K -iwt ±1-- a•p,x ± '~--Y e = ±n(a ± 1--a e ; 
X y 

·:~.. -+ -+ -'tn(a•r - a z), z 
";}, -+ -+ 1--n(a•r - a z) z , 

[
A -+ -+ J z•(r x a),J = 0; 

z 

(5-98) 

(5-99) 

(5-100) 

(5-101) 
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(5-102) 

[z,L ] = 0, [z,a ] z z o, [z,J ] 
z 0; (5-103) 

[ A-+-+ J z,z·(r x Al±) = 0; (5-104) 

[a ± ia ,L + S ]Ke-iwt = 
X y Z Z 

~(~ + • )K -iwt 
rt v - 1.-a e · 

X y ' 
(5-105) 

o. (5-106) 

Although the Pauli spin operators a and the Dirac operators p are iso-

morphic in their algebraic structure quantum mechanically, they are 

considered independent in Dirac theory, thus [a~,pj] = 0 for all ~,j. 

Therefore since 

[O,J ] = ~(a ± ia )Ke-iwt 
Z X y 

(5-107) 

and 

(5-108) 

then 

(5-109) 

-iwt . -+ The only explicit time variation in 0 is the e factor ln Al± 

The time differentiation just leads to the multiplicative factor -1.-w, 
0 0 

so 0 commutes with 0 or [0,0] = 0. Therefore what remains to be done 

to obtain the Foldy-Wouthuysen (FW) limit is to evaluate the square of 

the odd operator: 

Noticing that 

[p.,p.] 
.{. j 

2it. .. £..pt.., [p.,p.] 
.{. j r<. r<. .{. j + 26 .. ]..2' .{.j 

(5-110) 

(5-111) 



where Q1 and Q2 are vector operators, 

and 

[ -> -+ ] o·p,z = -ifl.o , z 

straightforward operator algebra leads to 
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(5-112) 

(5-113) 

(5-114) 

2 2-+2 2 2 2 2 2( 2 2 0 c p + 2m c w (L + ho ) + p 3m c hw o + c m w x + y ) + 
0 c z z 0 0 z 0 c 

Then 

2 2 2 
c m z 

0 
K -iwt{ 1 + e e -

m 
0 

<p ± ip > - n <y 
X y 

2 
Bm c 

0 
w (L + ~1io ) 

0 z z 

+ ix)}. 

+ eKe-iwt{.l:_ (p . ) ( ± 1.-p - rl y 
m x y 

+ ix)}. 
0 

(5-115) 

(5-116) 

In the FW theory, the non-relativistic limit is obtained by letting 

B -+ l and p 3 + 1 and subtracting the rest energy from H. Equation 

(5-116) can now be written as 

HNRL -
2 l {r~ 2 2 2 2 + y2)} m c 2m + p + m w (x 

0 y 0 c 
0 

l 
{pz 

2 2 2} + riL + 1iw o (5-117) + -.-. + m w z 2m 0 0 z c z 
0 

K -iwt { l 
(px ± ip ) - Q(y ix)}. + e e - + m y 

0 

This Hamiltonian is precisely the one given in Equations (3-44) and 
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(3-45) except for a spin dependent term. The interaction is precisely 

the one used in Kemp-COR theory. 

The non-relativistic limit of the wave functions is determined by 

writing the Dirac equation as a pair of equations coupling the large and 

small components and then eliminating the small component to give a 

second order equation for the large component. Writing ~ in the two-

component form ~ 
[ ~.12]·' ~ the eigenvalue equation (H - E)~ 0 becomes 

2 
m c - w J - E 

0 0 z 
+ + 2 • 2 

ccr·p + CA (xa -ya ) - ~CA z 01 C y X 0 

o. (5-118) 

+ + 2 . 2 
ccr•p + CA (xa -ya ) + ~CA z 

C y X 0 

2 
-m c - w J - E 

0 0 z 

As discussed earlier, the functions 01 and 02 contain the factors eiv8~ 

m 
s 

and x~ where v8 and m3 are quantum numbers so that 

The coupled 

and 

J 0 z 
+ + 

= (L + S) 0 = L 0 + 8 0 z z z 
~(118 + m )0. 

s 

equations for 01 and 02 are now 

{m c 
2 - nw ()18 + m ) - E}0 

0 0 s 1 

+-+ 2 . 2 } + {ccr•p + cA (xa - ya ) - ~CA0Z 02 = 0 c y X 

++ 2 . 2 } {ccr•p + CA (xa - ya ) + ~CA0Z 01 c y X 

+ {-m c 2 
fiw ( )18 + m ) E}02 0. 

0 0 s 

The small component 02 is eliminated by the relationship 

(5-119) 

(5-120) 

(5-121) 
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(5-122) 

which is obtained from the second equation. Letting 

El E + fiw ( ]lS + m ) , 
0 s 

(5-123) 

the second-order equation for ¢1 is 

{ + + 2 . 2 ][ + + 2 . 2 J [ca·p + CA (xa - ya ) - ~CA z ca·p + CA (xa - ya ) + ~CA z 
C y X 0 C y X 0 

2 
+ (E 1 + m c ) (E 1 

0 
0. 

As shown earlier the solutions of this equation are 

¢1 

(5-124) 

(5-125) 

It is easily seen then that for small momenta, ¢2 is smaller than ¢1 

by a factor of V/c: 

(5-126) 

Therefore ~NRL ~ ¢1 or 

~NRL (5-127) 

In the non-relativistic limft then the Dirac wave functions go over into 

the non-relativistic two-component Pauli wave functions. 

The non-relativistic limit of the energy can be found by expanding 

the radical using the expansion for (1 +X)~. If X<< 1, then only the 

first two terms in the expansion need be retained. 



Consider the energy expression given in Equation (5-37) : 

E -hw (]18 + m ) + 
0 s 

/ m 2 c 4 + K { 4p + 2 ( l +8) Jl + 4m + 2 } + K ( 2n + 2m + l) . 
0 c s 0 z s 

The radical can be written as 

R 
K 

m0 c 2 {1 + 2
13

4 [4p + 2(1+8)]1 + 4m8 + 2] 
m c 

0 

+ 
K 

13 (2n + 2m + l) ~ 
2 4 z s 

m c 
0 
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(5-128) 

(5-129) 

= 13 2).2fi. 2 C2A21i 2 
Since K m c 11-w and K = m c hw , X can be written as 

c c 0 c 0 0 0 0 

.fzw 1iw 
X 

c {4p + 2(1+8)f.1 + 4m + 2} 
+ __ c_ (2n + 2m + l). (5-130) 

2 s 2 z s 
m c m c 

0 0 

If the energies 11.w and ~w are small compared to the rest energy, then 
c 0 

R 
2 

~ m c + 11.w {2p + (l+8)f.l +2m + l} + ~w (n + m + ~). 
0 c s 0 z s 

The energy E now becomes 

Since w = w + ~. c 0 

E 
2 

~ m c + ~w {2p + (l+8)f.l + l} 
0 c 

+ hw (n - f.l8 + ~) + hw (2m ) . 
0 z c s 

(5-131) 

(5-132) 

(5-133) 
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If ~S is replaced by m2 and the rest energy excluded, the non-relativis-

tic limit for the energy becomes 

(5-134) 

+ ~w (n + ~) + hw 2m • 
0 z c s 

This is the energy expression given in Equation (3-56) except for a spin 

dependent term corresponding to the spin dependent term of HNRL in 

Equation (5-117). 

Although the model used is an approximate one, the Hamiltonian, 

wave functions, and energies go over to the appropriate Schroedinger 

Hamiltonian, wave functions, and energies in the appropriate non-

relativistic limit. This, along with the fact that the Hamiltonian has 

exact solutions, makes the model relevant aPd well-suited to study 

magnetoemission. 

Rabi Limit 

Since the FW transformation of the relativistic oscillator leads 

to the non-relativistic theory of COR, it is of interest to examine the 

free particle limit of this Hamiltonian, wave functions, and energies. 

These can then be compared to those of the free charged particle in a 

uniform magnetic field as derived by Johnson and Lippmann (32,33) and 

briefly reviewed in Chapter IV. 

The free particle limit is accomplished by letting the oscillator 

frequency w0 go to zero in the Hamiltonian given in Equation (5-l). 

The frequency w is contained in the parameters A2 and A2 since o o a 

m w 
0 0 

and A2 
c 

m (w + m. 
0 0 

When w 
0 

0 and 
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'2 () 
1\ -+m H· With these substitutions the Hamiltonian 

() 0 

H (5-135) 

becomes 

H (5-136) 

This is exactly the Hamiltonian given in Equation (4-3). 

The free particle limit of the wave functions is obtained by let-

ting the bound state solutions in z go over into the free particle plane 

wave solutions. As in the case of ~+,O 1 , 

ic>. 12~(n + 1) U 
o z n z 

ip 1 z/fz 
-+ cp 1e z 

z 
cp 1 U z PI 

z 
(5-137) 

where p 1 is the quantum number associated with the operator p . The z z 

energy expression can be modified by the same substutitions. Then the 

f ' ' Ill+, 0 ' wave unct1on r becomes 

2 
F ~ u I (E + m c ) 

0 Pll ll Pz 

0 

~+,0 1 
= 

1 
hE(E+m c 2 > 

(5-138) 
cpl F ~ u I . 0 z Pll ll Pz 

2ic >.8 lti (p+l.l+ 1) F ~· u 
p,\l+l l.l+l Pz 

and the corresponding energy is 

E (5-139) 
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As seen by comparing Equations (5-138) and (5-139) with Equations (4-13) 

and (4-14), the approximate Hamiltonian and solutions have the proper 

structure in the limit of a free particle in a uniform magnetic field 

(Rabi Limit). 



CHAPTER VI 

SYMMETRY PROPERTIES OF A CHARGED PARTICLE 

IN A UNIFORM MAGNETIC F·IELD 

While proposing a theory of orbital diamagnetism in metals, Landau 

(29) investigated the quantum mechanical motion of a free non-relati-

vistic charged particle in a uniform magnetic field. He showed that the 

motion of the particle in a direction parallel (or antiparallel) to the 

field is unaffected, but the transverse motion corresponds to the motion 

of a two-dimensional linear oscillator. The energy spectrum is thus a 

superposition of continuous energy levels due to the longitudinal motion 

and a discrete set of levels of the quantized linear oscillator. An 

interesting feature of this exactly solvable problem is that the energy 

eigenfunctions reveal the existence of an infinite degeneracy. 

As in classical mechanics the Schroedinger equation for a charged 

-+ 
particle of charge -e in the magnetic field B = Bz can be obtained from 

the free particle equation by making the substitution 

-+ -+ -+ 
p -+ p + eA (6-1) 

-+-+ -+ 
where A(r,t) is the vector potential associated with the field. If A is 

-+ -+ -+ 
chosen as A = -~ r x B, the Hamiltonian can be written as 

H 
l 

2m 
0 

where again m is the rest mass of the particle, Q is the Larmer 
0 
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(6-2) 
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frequency~= eB/(2m ), and L is the quantum mechanical operator asso-
o z 

ciated with the z component of the orbital angular momentum, L z xp -y 

yp . The uniform magnetic field is in the +z direction, and the longix 

tudinal part of the Hamiltonian leading to continuous energy eigenvalues 

is p2/(2m ) . The energy levels can be expressed in terms of the quantum z 0 

munbers that go with eigenfunctions either in Cartesian coordinates or 

in cylindrical coordinates: 

or 

E 
n n mnp 

X y "' Z 

(n +n +l)~+m0~+-1-p• 2 
x y "' 2m z 

0 

(2p + J.l. + 1)~. + mn~ + _1_ p'2 
"' 2m z · 

0 

The unnormalized eigenfunctions in cylindrical coordinates are 

e 
ip'z/ft z 

(6-3) 

(6-4) 

(6-5) 

where 1F1 is a confluent hypergeometric function and a~ = A~/~ = m0~/~. 
The infinite degeneracy can be seen from the fact that when J.l = ~ mQ, 

(i.e., when mQ, < 0), the energy levels become independent of this azi-

muthal quantum munber, and there is an infinite number of eigenfunctions 

for either mQ, = + J.l or mQ, = - ].l, J.l always being positive by definition. 

To understand this infinite degeneracy,·define the 'position' operators 

X !JL X -o 2 2m ~ (6-6) 

0 

and 

y_ + 
Px 

~0 2 2m ~ 
(6-7) 

0 

Using the well-known quantum conditions relating the position and 
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momentum operators in Cartesian coordinates, a straight forward calcu-

lation shows that x and y corrunute with the Hamiltonian and thus are -o -o 

constants of motion. The eigenfunctions of H are also eigenfunctions 

of x and y , and the expectation values of x and y turn out to be 
-o -o -o -o 

the same as the expectation values .of x and y. Therefore, the point 

(x0 , y0 ) can thus be interpreted as the center of the orbit of the par-

ticle in a transverse place, classically speaking. 
2 

Now consider r : -o 

2 r -o 
2 2 

q;o + !!.o (6-8) 

2 . 
If L has the eigenvalue - ~. then r will be positive. Because the z -o 

energy levels are infinitely, degenerate precisely for this choice of 

the azimuthal quantum number, it is readily seen that this is related 

to the infinite number of possibilities of locating the center of the 

orbit in the xy plane. It is corrunon knowledge that this also happens 

in classical mechanics (32). 

To understand the syrrunetry of this Hamiltonian, it can be written 

as a sum of three mutually commuting terms: 

H {-1- (p2 + p2) + .!. m ~l (x2 + y2)} + {~L } + {2ml Pz2} 
2m x y 2 o z 

0 0 
(6-9) 

+ + 

According to Baker (36), H1 has unitary synunetry and belongs to the uni-

tary unimodular group in two dimensions SU(2), exactly as the three 

dimensional isotropic harmonic oscillator belongs to the SU(3}group 

( 37) • The operator L is an infinitesimal generator of the rotation z 

group, generating rotations about the z-axis. It is well known that the 

-+2 
free particle Hamiltonian p /(2m ) has translational .invariance; in this 

0 
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case it is a one dimensional translation. Since the operators conunute, 

the group of this Hamiltonian appears to be 

·su(2J ® T ® 0(1J 
z 

(6-10) 

where T is the translation group and 0(1) is the rotation group in the z 

sense of a Lie group. 

The relativistic free charged particle in a uniform magnetic field 

has been discussed by several writers, most comprehensively by Johnson 

+ 
and Lippmann (32,33). In terms of the Pauli spin operators cr and the 

+ 
Dirac operators p the Hamiltonian for the same choice of gauge for the 

magnetic field is 

H (6-11) 

This has exact bound $tate solutions and the energy spectrum is given by 

E (6-12) 

The eigenfunctions in cylindrical coordinates are Dirac s~ino~s built 

out of 

F (p) e 
Pll 

e 
ip 'zlh z 

(6-13) 

where p is a positive integer. Significantly the energy levels are 

independent of the azimuthal quantum number m£.. This was first noticed 

by Rabi (31), and once again the infinite degeneracy appears. The 

degeneracy is not difficult to explain since the x and y operators · -o -o 

introduced in Equations (6-6) and (6-7) commute with the relativistic 

Hamiltonian as w~ll, and again the point (X , y ) defines a center of 
0 0 

the equivalent classical orbit which can lie anywhere in a plane 
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perpendicular to the uniform magnetic field which is chosen to be in 

the +z direction. 

The Schroedinger equation for an isotropic harmonic oscillator can 

be solved in Cartesian, spherical polar as well as cylindrical coordi-

nates (28). The Hamiltonian of a charged oscillator in a uniform 

magnetic field, with the same. gauge as before for the choice of vector 

potential, is 

{-1- ( 2 2 1 2 2 2 
H = + Py) + -mw (X + y ) } 2m Px 2 0 c 

0 
(6-14) 

1 2 1 2 2 
nL + <2m Pz + 2mwz) + 

0 0 z 
0 

2 
where w c = w2 + n2 and w is the classical ~requency of the oscillator. 

0 0 

The three parts of the Hamiltonian mutually commute, and the solutions 

in separated variables are 

2 
where aa 

2 m w /~, a.0 = m w /~, and the energy levels are o a o o . 

= ~w (2p + ~ + 1) + nnmn + nw (n + ~). c ~ 0 z 

(6-15) 

(6-16) 

It is interesting to note that even when an oscillating charged particle 

is in a magnetic field, provided the field is uniform, the motion paral-

lel to the field is unaffected while in .the transverse plane the oscil-

lations take place with an altered frequency w • Following the earlier 
c 

reasoning, the group of this Hamiltonian appears to be 

SU(2) ® SU(1) @ 0(1) (6-17) 

The quantum mechanics of an equivalent charged relativistic 
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oscillator in a magnetic field is discussed extensively in Chapter V. 

The Hamiltonian is 

H (6-18) 

where w (R) = w + rG. That the energy levels exhibit infinite degeneracy, 
C. 0 

exactly as in the case of a relativistic free particle in a uniform 

magnetic field, is discussed elsewhere. Again 'position operators' can 

be defined which are analogous to Equations (6-6) and (6-7) with the 

· t t d'ff th t th L f ~ over 1'nto ,,,(R) 1mpor an 1 erence a e armor requency " goes ~ 

and 

X -o 

I/._0 

X 

2 

y_+ 
2 

c 

2 (R) 
m w 

(6-19) 

0 c 

2 . (R) 
m w 

0 c 

(6-20) 

These commute with the Hamiltonian in Equation (6-18), and the eigen-

functions of the latter are also eigenfunctions of x and y . Once 
-o -O 

again it turms out that there exists a 'center' of a classical orbit 

which can be identified with a classical mean position of the transverse 

oscillations. There are an infinite number of possibilities for the 

'center' in the transverse plane, and the degeneracy thus appears to 

have a reasonable ori~in. The Dirac operators make the symmetry group 

of the relativistic Hamiltonian complicated and likewise the spinors, 

which are the solutions, make the representations of the appropriate 

symmetry groups even more difficult. Because of the existence of this 

infinite degeneracy, the Hamiltonian had to be slightly improved to 

remove this unsatisfactory feature to be applicable as a model to study 
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magnetoemission from white dwarfs. 

From the viewpoint of its contributing to the magnetic properties 

of materials, it is interesting to note that Landau's observation con

cerning the motion of a free particle in a uniform magnetic field can 

be generalized; even when the particle is in a fbrce field like that of 

the harmonic oscillator, the motion parallel to the applied magnetic 

field is unaffected while transverse to it, the effect of the field is 

to superimpose the cyclotron frequency in an appropriate I!lanner on the 

frequency of the oscillator. 



CHAPTER VII 

APPLICATION OF RELATIVISTIC THEORY 

TO MAGNETOEMISSION 

As discussed in Chapter III, COR used a non-relativistic harmonic 

oscillator in a magnetic field to study.rciagnetoemission from white 

dwarfs. Their result for fractional polarization did not agree well 

with observations. It is well-known that in astrophysical systems the 

motions of charged particles are mostly relativistic and besides, 

classical reasoning points in this direction when charged particles 

spiralling around very high magnetic fields are considered. Furthermore, 

the electron has intrinsic spin and the magnetic moment due to this plays 

a role in its interaction with the electromagnetic field of the plane 

wave. These are not taken into account in the model of Kemp and COR. 

Inclusion of these effects might improve the theoretical result. Spin 

is included implicitly in relativistic quantum mechanics; therefore, the 

model developed in Chapter V is ideally suited for such a study. 

The effect of the charged particles interacting with the electro-

magnetic field is included by m9-king the substitution 

+ .+ + 
p + p + eA1 (7-1) 

+ 
where -e is the charge of the electron and A1 is the vector potential 

associated with the radiation. As shown in Chapter III, a sui table 

+ 
form for A1 describing emission of circularly polarized radiation is 

79 
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K (x ± iy) -iwt 
e (7-2) 

where K = b'/(/2w), E is the magnitude of the electromagnetic field, and 

the + and - refer to right and left circular polarization, respectively. 

However, as in the case of other photon emissions (38) in the relativis-

tic treatment of emission, the dipole approximation needs to be improved 

to at least one higher order to get meaningful results. A Foldy-

Wouthuysen approximation of the charged particle Hamiltonian with the 

interaction term shows, for instance, that part of the relativistic con-

tribution comes from the intrinsic magnetic moment interacting with the 

magnetic field of the radiation; that is, the t•a term. In the dipole 

approximation this gives negligible contribution,and since one of the 

improvements to be made in the Kemp-COR theory is to consider the role 

of the spin of the charged particle, it is found necessary to replace 
.-+ -+ 
~k·r .-+ -+ 

e by (l + -z..k•r) in the vector potential whereas in the non-

relativistic treatment only unity is retained as in the above expression. 

-+ 
With the improved expression for A1 , the Dirac Hamiltonian in Equation 

(5-l) becomes 

-+ -+ -+ 2 ~ -+ -+ 2 
H cp 1 a• (p + eA1±) + CA cpl z• (r x a) + C\jZp 2 

:\2 (7-3) 
2 0 ~ -+ -+ -+ -+ 

+ moe P3 z• {r x (p + eAl±) + S} m 
0 

or 

H (7-4) 

where H is the Hamiltonian in Equation (5-l). The interaction term in 
0 

cylindrical coordinates and in two-component form is 
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. . ( 'k ) .±i¢ 
+1.-w p 1 + 1.- z e 

0 
c(a ± ia ) (1 + ikz> 

X y 

eK (7-5) 

c(cr ± ia ) (1 + ikz) 
X y 

+iw p(l + ikz)e±i¢ 
0 . 

or in four component form 

eK 

and 

eK 

. 'k i¢ -1.-W p(l + 1.- Z)e 
0 

0 

0 

0 

iw p(l + ikz)e-i<t> 
0 

0 

0 

2c(l + ikz) 

0 

-iw p(l + ikz)ei¢ 
0 

2c(l + ikz) 

0 

0 

iw p(l 
-i<t> + ikz)e 

0 

0 

0 

0 

0 

-iw p(l + ikz)ei<t> 
0 

0 

0 

2c(l + ikz) 

iw p(l + ikz)e-i<t> 
0 

0 

(7-6) 

2c (1 + ikz) 

0 

0 

-iw p(l + ikz)ei<t> 
0 

(7-7) 

0 

0 

0 

iw p(l + 
-icp ikz)e 

0 

At low temperatures only transitions from a few low-lying excited 

states to the ground state are important. The wave functions and 

energies can be obtained from the functions discussed in Chapter V by a 

suitable choice of the quantum numbers p, ~·, S, n . The wave function 
z 

and energy for the ground state are 



'¥2(0 0-1 0) 

and 

1 

E' 
0 

~hw 
0 

2 
+ m c 

0. 

2 m c 
0 
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0 

(7-8) 

0 

0 

(7-9) 

(7-10) 

The matrix elements of the interaction for the first two excited states 

considered by COR are, for instance, <0 0 -1 ojHI+Io 1 -1 0> and 

<0 0 -1 ojHI_Io 1 1 0>. To evaluate any of these matrix elements, the 

wave functions and interaction must be written in matrix form. Then 

the appropriate three-dimensional integrals must be performed. For the 

matrix element of HI+' for instance, 

<o o -1 ojHI+Io 1 -1 o> 
(7-11) 

. . K 2 2 
--z-w e (E' +m c ) (E' +m c ) 2 i¢ 

o 0 0 1- o {f co I 'IT Ico P* iP*U* pe FOliP-lUO pdpd¢dz -co 0 0 00 0 0 

hE0 <E0+m0 c 2> 2Ei- <Ei_ +m0 c 2> 

+ _,"k I co J2.'IT Jco i¢ d d } ,_, F* iP*U* pe z F00 <P0U0 p pd¢ z . 
-oo 0 0 00 0 0 

The U functions are defined in terms of the Hermite polynomials. Inte

grals of the form /_00
00 U~, z U dz are easily evaluated bo be 

z nz 



{ 
I <n +1 l 1 < 2a. l o (n 1 ,n +1) 

z 0 z z I_: U* z u dz nl n 
?. ;~ 

/(n -l)/(2a. ) o (n 1 ,n -1) 
z 0 z z 

The nature of the ~ functions dictates that 

/ 2TI 
~· o n 1 

so the ~ integral is either one or zero. 

c5 (n 1 ,n±l) 

The functions F can be 
Pll 
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(7-12) 

(7-13) 

written in terms of Whittaker functions, and the integrals can be eval-

uated by the method of Laplace transforms (39) . The details of the 

procedure are found in Appendix C. The p integral then is 1~/(m w ) so 
0 c 

that 

<O o -1 oiHI+io 1 -1 o> = -iw eK 
0 

2 2g (E' +m c ) (E' . +m. c ) ?1 0 0 . 1- 0 • 

( 2E ' ) ( 2E ' ) · m w 
0 1- 0 c 

A similar calculation for HI- reveals that 

<o o -1 oiHI_io 1 1 O> 

• K 2 
1-e (E i +m c ) g 

· + 0 Jw (E'+E'.) -~-- 4c/m c2~w } • 
1 o o 1+ m w o c 

;;Eo' <E0'+m c 2 )2E1• (E' +m c 2 ) 0 c 
0 + 1+ 0 

(7-14) 

(7-15) 

Considering the complexity of the expressions for the matrix elements, 

an algebraic calculation of q would obscure the dependence of q on st. 

However, some insight can be gained by considering the low energy or 

non-relativistic expansion of the radicals. As before, expanding the 

radical gives 

E' 
1+ 

2 m c + 21iw • 
0 c 

(7-16) 
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For frequencies in the visible light range and magnetic fields on the 

order 
7 

~w is on the order of few electron volts. of ·la G or less, a c 

Since 2 
.5 

2 » fiw for the w 's in the of interest. m c "' MeV, m c range 
0 0 c c 

With these approximations, the absolute squares of the two matrix 

elements considered are 

~. e2K212 (w - Q) 2 
m w c 

(7-17) 
0 c 

and 

e2K212 2 
"' (w + Q) • m w c 

(7-18) 
0 c 

These are the same as the squares of the non-relativistic matrix elements 

given in Equations (3-75) and. (3-76) and thus lead to the same expression 

for the fractional circular polarization: 

q .-Qjw. 

Looking at Table IV it can be seen, for instance, that for w 
0 

(7-19) 

3.77 x 1015 Hz the transitions Ia 1 -1 0> + Ia a -1 a> and Ia 1 1 a>+ 

Ia 0 -1 0> do not result in the same frequency of light being emitted. 

Therefore~ w in one of the transitions must be adjusted to give the 
0 

same frequency as the other transition. In other words in the distri-

bution of charged oscillators of different frequencies in the assembly 

proper choice has to be made of the oscillators with the appropriate 

frequency. Different oscillators give rise to different radiative 

transitions. 

Extending the Kemp-COR result to include higher excitations in 

transitions (higher temperatures) essentially means that the populations 

of higher energy levels must be considered. The matrix elements for 
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such transitions are given in Tables V and VI. In both tables K = eK, 

N1 and N2 are the normalization coefficients for the initial and final 

state wave functions, respectively, and E1 and E2 are the (E'') 's for the 

initial and final states, respectively. The fractional circular polari-

zation resulting from these transitions is calculated in a manner 

analogous to that used by COR and discussed in Chapter III. A computer 

program has been written to calculate this fractional polarization as a 

function of oscillator frequency w for the non-relativistic result of 
0 

Kemp and COR (QNR) and the relativistic results analogous to COR'sresult 

(QRl), considering a few low-lying states (QR2), and also considering 

several higher states (QR3) . Also calculated is the wavelength of the 

emitted radiation\'. The details of the program and the results for 

various natural frequencies and magnetic fields are given in Appendix E. 

The natural frequency is obtained from the given wavelength A by 

w = 2nc/A. The fractional circular polarization as a function of 
0 

emitted wavelength for a magnetic field of 107 G is summarized in 

Table VII. In the table A is the wavelength of the emitted radiation. 

As seen by comparing QNR with QRl, QR2, and QR3, the low-temperature 

relativistic result is only a slight improvement over Kemp's and COR's 

result in that it is a fraction of a percent closer to experimental 

observations for some wavelengths. However, spin and relativity effects 

become increasingly important as more and more excited levels are 

included in the possible transitions (QR2 and QR3). In fact there 

appears to be a tendency for one of the polarization components to be 

quenched in the limit of very large excitations. 
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TABLE V 

MATRIX ELEMENTS OF HI+ 

<'¥ojEDj'¥-> ojEDjo -iKN2N1 (E1 
2 

+ E1 )w /a <0 0 -1 1 -1 0> + m0 e ) (E2 2 2 0 e 

<'¥ojEDj'¥-> 1jEDjo -iKN2N1 (E1 
2 

+ E ) w /a = <0 0 -1 1 -1 1> = + m0 e ) (E2 2 2 1 0 e 

<'¥-jEDj'¥-> ojEDjo -iKN2N1 (E1 
2 

+ E1)w /a <o 1 -1 2 -1 0> + m0 e ) (E2 2 2 0 e 

<'i'ojEDj'¥-> 11 ED I 0 
2 !:! + E1 )w /a <0 0 -1 1 -1 0> -KN2N1 (2m0 e nw0 ) (E 2 2 4 0 e 

<'¥ojEDj'¥o> <0 0 +1 ojEDj1 0 -1 0> KN2N1 (4m0e 2~w0 )l.:!(E2 - E1)w /a 
3 2 0 e 

<'¥ojEDj'¥-> = <0 0 +1 OjEDjO 1 -1 0> = -iKN2N1 (E2 - m0 e 2 ) (E2 + E1)w /a 
3 3 0 e 

<'¥~jEDj'¥;> OjEDjO 
2 !:! + E1)w /a = <0 0 -1 1 -1 1> = KN2N1 (2m0 e nw0 ) (E2 0 . e 

<'¥~jEDj'¥~> <O o -1 ojED!o 1 -1 o> -iKN2N1 (E1 
2 

+ E1)w /a = = - m0 e ) (E 2 0 e 

Note: ED = HI . .+ 
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TABLE VI 

MATRIX ELEMENTS OF HI-

o I I o I . 2 ~{ 2 ~ } <~2 9 ~ 1>=<00-11 ei00+10>= ~KN2N1 (2m c ~w ) 2(m c ~w ) w /a +2c(E -E ) 
0 0 0 c 0 c 2 l 

<'1'02 1el'l'+4>=<00-11lelo1+10>= KN2N1 (2m c 21iw )~{<E2 +E1 )w ja -4c(m c2~w )~} 
0 0 0 c . 0 c 

<'1'+3 lei'I'+2>=<00+10ielo2+10>= KN2N1 <sm c2~w >~{<E +E1 )w /a -4c(m c 2'1iw )~} 
0 0 2 0 c 0 c 

<'1'0 1ei'I'+>=<00-10ieloo+lO>= KN2N1{-2<m c 2'1iw >~<E2-m c 2 )w /a 
4 1 0 c 0 0 c 

+2c[<E2-m c 2) (E1+m c2 )-2m c2~w J} 
0 0 0 0 

<'1'4°lei'I'2+>=<00-10ielol+ll>= -KN2. N1 <2m c 21iw )~{<E2 +E1 )w /a -4c(m c 21iw )~} 
. 0 0 0 c 0 c 

0 I I + I I · . 2 ~{ 2 ~ } <'1.'4 e '1.' 3>=<00-10 e 00+11>=-~KN2N1 (4m c nw ) (m c ~w ) w /a +2c(E2-E1 ) 
. 0 0 0 c 0 c 

Note: e = H • I-



2918 

3856 

4777 

5682 

6571 

7444 

8302 

9146 

9975 

10791 

TABLE VII 

FRACTIONAL CIRCULAR POLARIZATION 
AS A FUNCTION OF WAVELENGTH FOR 

A MAGNETIC FIELD OF 107 G 

QNR (%) QR1(%) QR2(%) 

-1.362 -1.361 -34.538 

-1.800 -1.799 -34.923 

-2.230 -2.230 -35.300 

-2.653 -2.652. -35.670 

-3.068 -3.067 -36.032 

-3.475 -3.475 -36.387 

-3.876 -3.876. -36.734 

-4.270 -4.270 -37.075 

-4.657 -4.657 -37.410 

-5.038 -5.038 -37.737 
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QR3(%) 

100.000 

100.000 

99.999 

99.992 

99.971 

99.919 

99.822 

99.663 

99.430 

99.113 



CHAPTER VI II 

SUMMARY AND CONCLUSIONS 

White dwarfs have some things in common with neutron stars which 

are believed to be pulsars (rotating stars) . Th~e surface magnetic fields 

14 
of neutron stars are known to be very high--on the order of 10 Gauss. 

and this raised the question whether such magnetic fields also exist in 

white dwarfs. In the absence of a discrete spectrum information about 

such magnetic fields cannot be obtained for Zeeman splittings. Around 

1970 circularly polarized emission was detected from white dwarfs and 

the observed fractional circular polarization is surmised to be due to 

magnetoemission resulting from the radiative interaction of the charged 

particles with high magnetic fields. Assuming the emission to be due to 

electrons, Kemp, Chanmugam and others analyzed this using time-dependent 

perturbation theory and a non:...relativistic isotropic harmonic oscillator 

model for the electrons. The theory predicts a ;\. dependence of the 

fractional circular polarization in the continuous emission which is in 

basic agreement with observations over a wide wavelength region but not 

all wavelengths. 

In this work the basic inadequacies of the theory of Kemp and 

others are removed by including spin and relativistic effects going 

beyond the dipole approximation. The Dirac equation has no solutions 

for the harmonic oscillator potential because of the Klein paradox; 

hence, a new model was needed. The one developed here is a Dirac 

89 
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Hamiltonian with exact solutions, and at the same time it goes over into 

the Kemp-Chanmugammodel in the well-known Foldy non-relativistic limit. 

The fractional polarization has been calculated using this model and 

time-dependent perturbation theory. Calculations have been made taking 

into account 102-lying excited states (low temperature approximation) as 

well as higher excited levels (all temperatures). Although there is a 

very small percent improvement over the Kemp-Chanmugam results in the 

sense of the numerical q being closer to experiment though very slight, 

it is by no means enough to explain the experiment in full. The inclu-

sion of the quadrupole term in the interaction has not appreciable 

effect. On the other hand when higher and higher excitation temperatures 

are taken into account, there seems to be a tendency for one of the 

circular polarizations to be quenched. Since there is really nothing 

more to be done by way of improving the Kemp model, this means that the 

reason for the discrepancy in the infrared and other regions has to be 

sought somewhere other than in the assembly of charged oscillators in 

interaction with a high magnetic field as a model because with relativi-

zation the model is reasonably·complete. 

There are several possible explanations for the discrepancy between 

theory and observation. 

1) The concept of a uniform magnetic field extending indefinitely 

may be too much of an approximation. 

2) Circular polarization is not the only thing that exists; there 

2 
is for certain linear polarization (25) which varies as A (14,15). 

Although quantum mechanical selection rules do not mix up these two 

polarized emissions, to a large extent the selection rules themselves 

are not independent of the model or multipole emission assumed. 
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neutron stars. 

There is an interesting point about the quantum mechanics of 

relativistic charged particles in uniform magnetic fields usually ignored 

by many. In some cases there is an infinite degeneracy which can be 

traced to the infinite possibilities of the location of the center of 

the classical trajectory of the particle in the transverse plane. For 

this reason the group theory and symmetry .aspects of these Hamiltonians 

have been scrutinized. 
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APPENDIX A 

DIRAC MATRICES 

The Dirac operators a , a , ary, and B satisfy the commutation 
X y "' 

:r:elations 

2 
a. 

" 
B :n., 

[a., a.] = 0, 
" J + 

and 
[a., B] 

" + 
0. 

Dirac (42) originally introduced the stationary state free particle 

equation as 

-+ -+ 2 
(ca•p + Bm c -E)~ 

0 
0. 

(A-1) 

(A-2) 

(A-3) 

(A-4) 

By multiplying this equation on the left with 8 this can also be written 

in the so-called covariant form 

(cy~p 2 
+ m c.)~ 0 

~ 0 
(A-5) 

where 
i Ba.., 4 

B, p 4 = E/c and y 
" 

y 

y~p l 2 3 4 
y pl + y p2 + y p - y p4 

~ 3 
(A-6) 

gives the invariant scalar potential. It is well-known that the sim-

plest set of matrices that can represent the algebra of Dirac operators 

are 4 x 4 matrices. With the choice of 8 as a diagonal matrix, the 

Dirac matrices are customarily chosen as 

95 
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0 0 0 1 

0 0 1 0 
a = (A-7) 

X 
0 1 0 0 

1 0 0 0 

0 0 0 -1-

0 0 i 0 
(1., (A-8) 
y 

0 -i 0 0 

i 0 0 0 

0 0 1 0 

0 0 0 -1 
a (A-9) 

z 
1 0 0 0 

0 -1 0 0 
and 

1 0 0 0 

0 1 0 0 

s = (A-10) 
0 0 -1 0 

0 0 0 -1 

The Dirac equation thus becomes a matrix equation and ~ stands for the 

· four-component spinor 

¢1 

~ 
02 

(A-ll) 

03 

04 

The representation used in the text, well-suited to solving the equation 

by 'helicity' techniques, is to write the above as direct products of 
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Pauli matrices: 

[ 
0 1 l ' [ 

0 -i l ' [ : 0 l ' [ 
l 0 l ; p = p2 p = :n. (A-12) 

1 
1 0 i 0 

3 . 
-1 0 l 

[ 
0 l l ' [ 

0 -i l ' [ 
1 0 l· (J = (J (J (A-13) 

X 
l 0 y i 0 

z 0 -1 

It is easy then to see that 

a. Pl (8) 0 x X 
- Pl0 x (A-14) 

a. Pl (8) a - play (A-15) 
y .Y 

a. = p l (8) a - plcrz ' (A-16) 
z z 

and 

s p3 0 :n. - p 3 . (A-17) 

The Dirac equation for the free particle is then written as 

-+-+ 2 
(cplcr•p + p3moc - E) 'l! 0 (A-18) 

where 

'¥ [ :1,] (A-19) 

1}!1 [ :: l and 1}!2 [ ::]- (A-20) 



APPENDIX B 

EVALUATION OF THE SUM S 

The sum S is defined as 

.s 
I (n+l) exp{y(n+l)} 
n 

I exp{yn} 
n 

where 1n this case y - B~w. The numerator can be written as 

N ~ ~y J (n+l) ey (n+l) dy 

Interchanging the sum over n and the derivative gives 

N d 
E d n 

LI 
dy n 

The sum over n is a geometric 

The numerator then becomes 

N 

(n+l) J e 
y(n+l) 

dy 

y(n+l) ·a Y e -· -(e 
dy 

series, thus 

y -1 
(l - e ) . 

E 
n 

yn) e . 

e-y/(e-y- 1) 2 • 
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(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 
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The denominator is also a geometric series so 

0 = e-y/(e-y- 1)-1 . (B-6) 

The sum S is then 

(B-7) 

or 

(B-8) 



APPENDIX C 

THE kth MOMENT OF F 
p~ 

The solutions of the relativistic Hamiltonian presented in Chapter 

V involve the functions F (p): 
p~ 

F (p) 
p~ 

= 

where 

2 2 2 2 ~x2 2 2 
NP~ exp(-a p /2) (a p ) \ 1F1 (-p,~+l;a P ) 

N 
p~ 

2 
2a r (p+~+l) 

(C-1) 

(C-2) 

2 . . 
a = m0w/~, and 1F1 is a confluent hypergeometric function. In calcu-

lating matrix elements, integrals of the form (with k an integer) 

(C-3) 

are needed. If the variable is changed by S 
2 2 

a p , then the integral 

becomes 

I (C-4) 

In terms of Whittaker functions, the confluent hypergeometric function 

is 

= eS/2 S-(~+1)/2 M (S) 
. 2p+~+l.~ 

(C-5) 

2 , 2 
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p ·p· 

!.:2(\l' - j.l + k) !.:2(\l - j.l 1 + k + 2). 

The kth moment of F then becomes 
Pll 

where 

K 

r{~(ll-ll'+k+2+2j)} 
r (jJ+l+j) 

I r<p+jJ+l)r(p+l) r{~(ll'+ll+k+2)} 
f (p 1 +)J 1 +1) f (p 1 +1) f{ ~ (j.l-j.l 1 +R+2+2p-2p 1 ) } 

The conditions for existence are: 

)l - j.l I + k. + 2 + 2p - 2p I . > 0 , 

jmax ~()J'- j.l + k.), 

and 

p' > p- j. 
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(C-15) 

(C-16) 

(C-17) 

(C-18) 

(C-19) 

(C-20) 

(C-21) 

Fork= 1, the following combinations of p, p 1 , )1, and ll' give non-zero 

integrals: 

1 
a 

lp+)l 0 (p f p I ) 

-lp+1 o(p+l,p'> o<j.l-l,j.i') 

o(j.i+l,\l'). 

(C-22) 

(C-23) 

(C-24) 
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so that 

N s -~ M (S) 
p11 2p+11+l.E. 

(C-6) 

2 1 2 

where N is defined as in Equation (C-2). The integral then can be 
p11 

written as 

I J F sk12 F ds 
P11 pI 11 I = 

(C-7) 

= N N I 1 F' s-1 M sk12 M I I I ds. 
p11 p 11 .o 2p+]l+l.E. 2p +11 +1 11 

2 I 2 2 ;2 

th 
In general the l moment of two Whittaker functions is (39) 

(C-8) 

where 

-a. ~c. - k. 
1., 1., 1., 

(C-9) 

\\ l + 1 + ~(C2 - c1 > 1 (C-10) 

v2 f + 2 + ~(c1 - C2), (C-11) 

and 

[~] n! 
r! (n-r)! 

. (C-12) 

Using these definitions, the following identifications can be made: 

~ (2p + ]l + 1) = ~ ( 2p I + ]l 1 + 1) (C-13) 

]l + 1 . 11 1 + 1 (C-14) 



APPENDIX D 

PROGRAM TO CALCULATE ENERGY LEVELS 

This program calculates the energy levels of a relativistic charged 

harmonic oscillator. The energy expressions given in Equations (3-37) 

and (3-60) can be combined into a single expression: 

E 

where 

-1z.w (Nl) + / m c 2 {m c 2 + 11-w (N2) + 1iw (N3*2)} 
0 0 0 c 0 

N2 

Nl ].IS + m , 
s 

4p + 2 (l +S) ll + 4m + 2, s 

N3*2 2n ± 2m .+ 1. 
z s 

(D-1) 

(D-2) 

(D-3) 

(D-4) 

As noted in the program and with N3 = N3*2/2, there are (N3 + l) (N3 + 2)/2 

energy levels associated with each value of N3. 
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1 

2 
3 
4 
5 
6 
7 

8 
9 

~JOB TIME=10,PAGES=20 

c 
c 
c 

c c c 
c 

c c 
c 
c 
c 
c 
c 
c 
c 
c 

REAL*8 Q,C~PI,HBAREV,RM,RMEV,B 1 LAMBDAfWO,WB,WC, 
1 EO,EO,EC,N1l,Nl2,N2,N3l,N32,EtV,DSQR 

PHYSICAL QUANTITIES 

0 = 1. 6 0 20- 19 c = 2.998D+08 
PI = 3. 1416 
R M = 9 • 1 08 D-31 
RMEV = RM*C*C/Q 
HBAREV = 6.625D-34/(2.*PI*Q) 

READ NUMBER OF COMBINATIONS OF MAGNETIC FIELD 
AND WAVELENGTHS TO BE CONSIDERED 

READ(5,900) NSETS 
900 FORMAT (I 5) 

READ MAGNETIC FIELD (IN GAUSS}, 
WAVELENGTH CIN ANGSTROMS), AND 
BEGINNING AND ENDING N3. 
NOTE: 2*N3 IS THE COEFFICIENT OF 
HBAR*DMEGAO UNDER THE RADICAL. 
ALSO, THERE ARE (N3+1) fi\J3+2)/2 
ENERGY LEVELS ASSOCIATED WITH 
EACH VALUE OF N3. 

10 DO 1000 ISET=l,NSETS 
11 READ(5,905) BGtLAM,N3I,N3F 
12 905 FORMAT{ElQ.2,3110) 
13 B = BG*l.E-04 
14 LAMBDA= FLOATlLAM)*l.E-10 

15 
16 
17 
18 
19 
20 

c 
C CALCULATE FREQUENCIES AND ASSOCIATED ENERGIES 
c 

c 

WO = 2.*PI*C/LAMBDA 
WB = O*B/C2.*RMI 
we = wo + wa 
EO = HBAREV*WO 
EB = HBA REV*WB 
EC = HBAREV*WC 

C CALCULATE ENERGY LEVELS 
c 

2 3 N3 I P 1 = N3 I + 1 
2 4 N 3 F P 1 = N3 F + 1 
25 DO 300 N=N31Pl,N3FP1 
26 Nll = -.5 
27 N2 = O. 
28 N3 = N - 1 
29 !MAX = N3*2 + 1 



~~ 
32 
33 
34 

35 
36 

37 
38 
39 
40 
41 

42 
43 
44 
45 
46 

47 
48 
49 

50 

51 
52 

53 
'>4 

c 

c 

c 

c 

~St 2 ~0 tAAk•!Mtx,z 
Nl2 = Nll 
N32 = N3l 
JMAX = (IMAX- 1)/2 + 1 

DO 100 J=l,JMAX 
EEV = -EO*Nl2 + DSQRT(RMEV*(RMEV + EC*N2 + 

l EO*N32))- RMEV 
WRITE(6,920l Nl2tN2,N32,EEV 

920 FORMATl3X,3Fl0.2,D25.10) 
N32 = N32 - 2. 
Nl2 = Nl2 - l. 

100 CONTINUE 

N2 = N2 + 4. 
Nll = Nll + 1. 
WRITE(6,925) 

925 FORMAT(' ') 
200 CONTINUE 

WRITE(6,930) 
930 FORMAT(!) 
300 CONTINUE 

1000 CONTINUE 
c 

c 
WR I T E ( 6 , 9.3 5 ) 

935 FORMAT(lHl,///1 

STOP 
END 

SENTRY 
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B = 0.100000E 08 G 

EO = 0.24800 01 EV 

Nl N2 

-0.50 o.oo 

-0.50 o.oo 
-1.50 o.oo 

0.50 4.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 

0.50 4.00 
-0.50 4.00 

1.50 8.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 

o.so 4.00 
-0.50 4.00 
-1.50 4.00 

1.50 8.oo 
0.50 o.oo 

2.50 12.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 
-4.50 o.oo 

0.50 4.00 
-0.50 4.00 
-1.50 4.00 
-2.50 4.00 

1.50 8.oo 
0.50 8.00 

-0.50 8.oo 

2.50 12.00 
1.50 12.00 

3.50 16.00 

LAMBDA = 5000 A 

EB = 0.57880-01 EV 

N3*2 

o.oo 

2.00 
-o.oo 

o.oo 

4.00 
2.00 

-o.oo 

2.00 
-o.oo 

o.oo 

6.00 
4.00 
2.00 

-o.oo 

4.00 
2.00 

-o.oo 

2.00 
-o.oo 

o. 00 

s.oo 
6. 00 
4.00 
z.oo 

-o.oo 

6.00 
4. 00 
2.00 

-o.oo 

4.00 
2.00 

-o.oo 

2.00 
-o.oo 

o.oo 
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RM = 0.51100 06 EV 

EC = 0.25380 01 EV 

E(EV) 

0.12398097570 01 

0.37194232550 01 
0.37194292710 01 

0.38351703360 01 

0.61990247210 01 
0.61990427690 01 
0.61990487850 01 

0.63147592080 01 
0. 631478985 00 01 

0.64304805140 01 

0.86786141550 01 
o. 86 7864423 50 01 
0.86786622830 01 
0.86786682990 01 

0.87943360490 01 
O. 8794378 72 3D 01 
0.87944093640 01 

o. 891004476 20 01 
0.89101000290 01 

0.90257402940 01 

0 • 111 5 81 9 15 60 02 
o. 11158233670 02 
0.11158263750 02 
O.l115B281800 02 
0.11158287810 02 

0.11273900860 02 
0.11273955560 02 
o. 11273998240 02 
0 • 11 2 7 40 2 8 8 80 02 

o. H 33~5969go 8~ O. 3 6642 D 
0.11389719540 02 

0.11505279920 02 
0.11505359810 02 

0.11620949680 02 



107. 

-0.50 o.oo 10.00 0.13637756930 02 
-1.50 o.oo 8.oo 0.13637811070 02 
-2.50 o.oo 6. 00 0.13637853180 02 
-3.50 o.oo 4.00 0.13637883260 02 
-4.50 o.oo 2.00 0.13637901310 02 
-5.50 o.oo -o.oo 0.13637907330 02 

0.50 4.00 a.oo 0.13753'•53640 02 
-0.50 4.00 6.00 0.13753520370 02 
-1.50 4.00 4.00 0.13753575080 02 
-2.50 4.00 2.00 0.13753617750 02 
-3.50 4.00 -o.oo 0.13753&48390 02 

1.50 8.oo 6.00 0.13869137160 02 
0.50 8.oo 4.00 0.13869216490 02 

-0.50 8.oo 2.00 0.13869283790 02 
-1.50 8.00 -o.oo 0.13869339060 02 

2.50 12.00 4.00 0.13984807510 02 
1.50 12.00 2.00 0.13984899430 02 
0.50 12.00 -o.oo 0.13984979320 02 

3.50 16.00 2.00 O.l41001t6467D 02 
2.50 16.00 -o.oo 0.14100569190 02 

4.50 20.00 o.oo 0.14216108660 02 



B = 0.100000E 08 G LAMBDA = 6000 A 

EO= 0.20660 01 EV EB = 0.57880-01 EV 

N1 N2 Nl*2 

-0.50 o.oo o. 00 

-0.50 o.oo 2.00 
-1.50 o.oo -o.oo 

o.so 4.00 o.oo 

-0.50 o.oo 4.00 
-1.50 o.oo z.oo 
-2.50 o.oo -o.oo 

0.50 4.00 2.00 
-0.50 4.00 -o.oo 

1.50 a.oo o.oo 

-0.50 o.oo 6.00 
-1.50 o.oo 4.00 
-2.50 o.oo 2.00 
-3.50 o.oo -o. oo 

0.50 4.00 4.00 
-0.50 4.00 2.00 
-1.50 4.00 -o.oo 

1.50 8.oo 2. 00 
0.50 8.00 -o.oo 

2.50 12.00 o.oo 

-0.50 o.oo 8.00 
-1.50 o.oo 6.00 
-2.50 o.oo 4.00 
-3.50 o.oo 2.00 
-4.50 o.oo -o.oo 

0.50 4.00 6.00 
-0.50 4.00 4.00 
-1.50 4.00 2.00 
-2.50 4.00 -o.oo 

b:~8 ~:88 ~:88 
-o.5o a.oo -o.oo 

2.50 12.00 2.00 
1.50 12.00 -o.oo 

3.50 16.00 o.oo 
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~M = 0.51100 06 EV 

EC = 0.21240 01 EV 

E lEV) 

0.10331747390 01 

0.30995200390 01 
0.30995242160 01 

0.32152728220 01 

0.51658569830 01 
0.51658695160 01 
0.51658736940 01 

0.52816009420 01 
0.52816222990 01 

o. 53973355830 01 

0.72321855710 01 
0.72322064600 01 
0.72322189940 01 
0.72322231720 01 

0.73479207070 01 
0.73479504200 01 
0.73479717770 01 

0.74636465250 01 
0.74636850610 01 

0.75793630260 01 

0.92985058050 01 
0.92985350490 01 
0.92985559380 01 
0.92985684720 01 
0.92985726490 01 

0.94142321170 01 
0.94142701850 01 
0.94142998970 01 
0.94143212540 01 

8:~~~~~~~b~~8 8l 
0.95300345390 01 

0.96456567890 01 
0.96457125030 01 

0.97613551490 01 



B = O.lOOOOOE 08 G 

EO= 0.17710 01 EV 

Nl N2 

-0.50 o.oo 

-0.50 o.oo 
-1.50 o.oo 

0.50 4.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 

0.50 4.00 
-0.50 4.00 

1. 50 8.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 

o.~o 4.00 
-0.50 4.00 
-1.50 4.00 

1.50 8.00 
0.50 8.oo 

2. 50 12.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 
-4.50 o.oo 

0.50 4.00 
-o.so 4.00 
-1.50 4.00 
-2.50 4.00 

b:~8 B:88 
-0.50 8.oo 

2.50 12.00 
1. 50 12.00 

3.50 16.00 

LAMBDA = 7000 A 
EB = 0.57~80-01 EV 

N3*2 

o.oo 

2.00 
-o.oo 

o.oo 

tt.oo 
2.00 

-o.oo 

z.oo 
-0.00 

o.oo 

6.00 
4.00 
2. 00 

-o.oo 

tt.oo 
2.00 

-o.oo 

2.00 
-o.oo 

o.oo 

a.oo 
6.00 
4.00 
2.00 

-o.oo 

6.00 
4.00 
2. 00 

-o.oo 

~:88 
-o.oo 

2. 00 
-o.oo 

o.oo 
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RM = 0.51100 06 EV 
EC = 0.18290 01 EV 

ElEV) 

0.88557838350 00 

0.26567320810 01 
0.26567351510 01 

0.27724883230 01 

0.44278796400 01 
0.44278888480 01 
0.44278919180 01 

0.45436293420 01 
0.45436450900 01 

0.46593720760 01 

0.61990210600 01 
0.61990364070 01 
0.61990456150 01 
o. 61990486850 01 

0.63147642220 01 
0.63147861090 01 
0.63148018570 01 

0.64305004160 01 
0.64305288430 01 

0.65462296440 Ol 

0.79701563410 01 
0.79701778270 01 
o. 79701931740 01 
0.79702023820 01 
0.79702054520 01 

0.80858929630 01 
0.80859209890 01 
0.80859428760 01 
0.80859586240 01 

8:~~8lt~~t~~B 8t 
0.82016856100 01 

0.83173453060 01 
0.83173864110 01 

0. 843 30610260 01 



B = O.lOOOOOE 07 G 

EO = 0.24800 01 EV 

Nl N2 

-0.50 o.oo 

-0.50 o.oo 
-1.50 o.oo 

0.50 4.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 

0.50 4.00 
-0.50 4.00 

1.50 a.oo 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 

0.50 4.00 
-0.50 4.00 
-1.50 4.00 

1.50 8.00 
o.so 8.oo 

2.50 12.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 
-4.50 o.oo 

0.50 4.00 
-0.50 4.00 
-1.50 4.00 
-2.50 4.00 

b.so a:ss .so 
-0.50 8.oo 

2.50 12.00 
1.50 12.00 

3.50 16.00 

LAMBO~ = 5000 A 

EB = 0.57880-02 EV 

N3*2 

o.oo 

2.00 
-o.oo 

o.oo 

lt.OO 
2. 00 

-o.oo 

2.00 
-o.oo 

o.oo 

6.00 
4.00 
2.00 

-o. oo 

4.00 
2.00 

-o.oo 

2.00 
-o.oo 

o.oo 

a.oo 
6.00 
4.00 
2.00 

-o.oo 

6.00 
lt.OO 
2.00 

-o.oo 

4.00 
2.00 

-o. oo 

2.00 
-o.oo 

o.oo 

110 

RM = 0.51100 Ob EV 

EC = 0.24850 01 EV 

E(EV) 

0. 12 398097570 01 

o. 37194232550 01 
0.37194292710 01 

0.37309817210 01 

0.619902lt721D 01 
0.61990427690 01 
o. 6199048 78 50 01 

0.62105710990 01 
0.62106012350 01 

0.62221053330 01 

0.86786llt1550 01 
0.86786442350 01 
0.86786622830 01 
0.86786682990 01 

0.86901484450 01 
0.86901906130 01 
0.86902207490 01 

0.87016705910 01 
0. 8 7 01 72 4 84 70 01 

o. 87131805930 01 

0.11158191560 02 
o. 111582336 70 02 
0.11158263750 02 
0 • 111 58 2 8 18 00 02 
0.11158287810 02 

0.11169713760 02 
0.11169767960 02 
0.11169810130 02 
0.11169840260 02 

8·11f8f2238~D 0~ .11 8 2901 D 0 
0.11181344360 02 

0.11192721730 02 
0.11192800110 02 

0.11204207500 02 



B = 0.100000E 09 G 

EO = 0.24800 01 EV 

N1 N2 

-0.50 o.oo 

-0.50 o.oo 
-1.50 0~00 

0.50 4.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 

0.50 4.00 
-0.50 4.00 

1.50 8.oo 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 

0.50 4.00 
-0.50 4.00 
-1.50 4.00 

1.50 8.00 
0.50 a.oo 

2.50 12.00 

-0.50 o.oo 
-1.50 o.oo 
-2.50 o.oo 
-3.50 o.oo 
-4.50 o.oo 

0.50 4.00 
-0.50 4.00 
-1.50 4.00 
-2.50 4.00 

1.50 8.00 
0.50 8.00 

-0.50 8.00 

2.50 12.00 
1.50 12 .oo 

3.50 16 .oo 

LAMBDA = 5000 A 

EB = 0.57880 00 EV 

N3*2 

o.oo 

2.00 
-o.oo 

o.oo 

4. 00 
2.00 

-o.oo 

2. 00 
-o.oo 

o.oo 

b.OO 
4.00 
2.00 

-o.oo 

4.00 z.oo 
-o.oo 

z.oo 
-o.oo 

o.oo 

8.00 
6.00 
4-.00 
2.00 

-o.oo 

6.00 
4.00 
2.00 

-o.oo 

4.og 
2.0 

-o.oo 

2. 00 
-o.oo 

o.oo 

111 

RM = ~.51100 06 EV 

EC = 0.30580 01 EV 

ElEV) 

0.12398097570 01 

0.37194232550 Ol 
0.37194292710 01 

0.48770553180 01 

0.61990247210 01 
0.61990427690 01 
0.61990487850 01 

0.73566391350 01 
o. 73566748320 01 

o. 851422 766 00 01 

0.86786141550 01 
0. 867864423 50 01 
0.86786622830 01 
0.86786682990 01 

0.98362109200 01 
0.98362586490 01 
0.98362943460 01 

0.10993781800 02 
0.10993847170 02 

0.12151326790 02 

0.11158191560 02 
0. 1115 82 3 36 70 02 
0.11158263750 02 
0.11158281800 02 
0 • 111 5 82 8 7 8 l D 02 

0.12315770670 02 
0.12315830430 02 
0.12315878160 02 
0.12315913860 02 

8:l~4Jj!~rj~8 s~ 
0.13473466690 02 

0.14630851240 02 
0.146309463 OD 02 

0.15788352700 02 



APPENDIX E 

PROGRAM TO CALCULATE FRACTIONAL 

CIRCULAR POLARIZATION 

This program calculates the non-relativistic and relativistic frac

tional circular polarization q discussed in Chapter VII. QNR is the 

non-relativistic result obtained by both Kemp and COR. QRl, QR2, and 

QR3 are relativistic results obtained in this work. QRl is the low 

temperature result analogous to QNR. QR2 is the result of including a 

few low-lying states, and QR3 is the result of including several higher 

states. The method for including more than the low temperature transi

tions is discussed in Chapter III. 
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1 

2 

3 
4 
5 

6 
7 
8 
9 

10 
11 
12 
13 

1 '• 
15 

lJOB TIME=lO,PAGES=20 

c 
c c 
c c 

c 
c c 

c 
c 
c 
c 

c 

REAL*B OtC,Pt,HBAREV,RM,RMEV,B,LAMBOA, 
1 WO,WB,WL,EO,EB,EC,ECPR,WOPR,EOPRtWCPR, 
2 ALFAC,ALFCPR,NPSQ,NMSQ,X,QNR,OSQKT, 
3 EPRl,EPR21,EPR22,EPR3,EPR41,EPR42,EPR43, 
4 EPR5l,EPR52,EPR6,ROOTO,ROOTCtRTOPR,RTCPR, 
5 MEMC13) tMEP(8t ,NM( 13) ,NP(8ltEM(l3t,EP(8), 
6 E(6),D(6),KT,EN,Z,DEXP,DFLOAT, 
7 IP, IM,TU,QPOL, IPLUS,IMINUS 

ARITHMETIC ST~TEMENT FUNCTIONS FOR 
CALCULATING ENERGY, NORMALIZATION FACTORS, 
AND FRACTIONAL POLARIZATION 

ENCN1,N2,N3) = -EO*DFLOATlN1)/2. • 
l DSQRTCRMEV*CRMEV • 4.*EC*OFLOAT(N2) + 
2 2.*EO*DFLOAHN3))) - RMEV 

NPSQ(X) = 1./C2.*X*lX+RMEV)J 
NMSQ(Xl = 1./(2.*X*CX-RMEV)) 
QPOL(IPLUS,lMlNUSt ~ (IPLUS- IMINUS)/(IPLUS + 

l IMINUS)*lOO. 

PHYSICAL QUANTITIES 

Q = 1.602D-19 
c = 2.998D+08 
PI = 3.1416 
TU = 2. 
RM = 9.108D-31 
RMEV = RM*C*C/0 
HBAREV = 6.6250-34/(2.*PI*0) 
KT = 1.38D-23*1.20+04/Q 

READ THE NUMBER OF MAGNETIC FIELDS 
TO BE CONSIDERED 
READ ( 5, 9 00) NB 

900 FORMAT{ 15) 

16 DO 1000 L=l,NB 
c 
C READ THE MAGNETIC FIELD CIN GAUSS) A~D THE 
C NUMBER OF WAVELENGTHS TO BE CONSIDERED 
c 

17 READ(5,905) BG,NLAMS 
18 905 FORMATtE10.2,15) 

c 
19 WRITE(6,990) 
20 990 FORMAT(lHU 

21 
22 
23 

c 
B = BG* l.E-04 
WA = O*BI(2.*R"U 
EB = HBAREV*WB 
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26 

27 
28 

29 
30 
31 
32 
33 

34 
35 
36 
37 
38 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

49 
50 
51 

52 

53 

54 

55 

56 

57 

58 

59 
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~ FOR EACH WAVELENGTH (IN ANGSTROMS) TO BE READ, 
C CALCULATE THE NATURAL FREQUENCY, THE MODIFIED 
C FREQUENCY, AND THE CORRESPONDING ENERGIES, 
C MATRIX ELEMENTS, AND FRACTIONAL POLARIZATION 
c 
c 

c c c 

c 

c 
c 
c 

c 
c 
c 

c 

DO 1000 ILAM=1,NLAMS 

READC5,910) LAM 
910 FORMATCI5) 

FREQUENCIES AND CORRESPONDING ENERGIES 

LAMBDA= FLOATCLAMj*l.E-10 
WO = 2.*PI*C/LAMBDA 
we = wo + ws 
EO = HBAREV*WO 
EC = H8A REV*WC 

EOPR = ENC2,l,O) 
WOPR = £0PR/HBAREV 
LAMPR = 2.*PI*C/WOPR*l.D+l0 + .5 
ECPR = EOPR + EB 
WCPR = ECPR/HBAREV 

EPRIME'S USED IN M~TRIX ELEMENTS 

EPRl = R MEV 
EPR21 = OSQRT(RMEV*(RMEV + 2.*EDPRt) 
E PR2 2 = RME \1 
EPR3 = OSQRT(RMEV*lRMEV + 4.*EC)l 
EPR41 = DSQRT(RMEV*lRMEV + 4.*EDPR)) 
EPR42 = DSORT(RMEV*(RMEV + 2.*EDPR)) 
EPR43 = RMEV 
EPR51 = OSQRTCRMEV*CRMEV + 4.*EC + 2.*ED)J 
EPR52 = DSORTIRMEV*(RMEV + 4.*ECPR)) 
EPR6 = DSQRTlRMEV*CRMEV + B.*ECJt 

MATRIX ELEMENTS FO~ H-

ALFAC = DSQRT(RM*WC/CHBAREV*Q)) 
ROOTO = DSORHRMEV*EO) 
ROOTC = DSORTCRMEV*EC) 

MEMl U 
1 

MEMt 2) 
l 

ME M ( 3. 
l 

ME M( 4) 
1 

ME M{ 5) 
1 

ME MC 6) 
1 

ME M( 7l 
1 

ME M ( 8) 
1 

= lDSQRTlTUl*lEPR3+RMEV)*((EPR3+ 
EPR6)~WO/ALFAC-2.*C*ROOTC.)**2 

=(-2.*WO*ROOTC*(2.*EPR3+EPR6+RMEV)/ALFAC+ 
2.*C*IEPR3+RMEVI*lEPR6-RMEV)l**2 = IDSQRT(TUI*ROOT0*2•*WO*ROOTC/ALFAC~ 
2.*C*(EPR2l-EPR51))**2 

= ((EPRl+RMEV)*((EPRl+EPR3)*WO/ALFAC-
4. *C*R OOTC t I **2 

=((EPR2l+RMEV)*((EPR2l+EPR5l)*WO/ALFAC-
4.*C*ROOTC)) **2 
(-2.*WO*ROOTC*(EPRL+RMEV)/ALFAC+ 
2.*C*{EPRl+RMEVl*lEPR3-RMEV)l**2 

= (DSQRTCTU)*ROOTO*CCEPR21+ 
EPR5l)*WO/ALFAC-4.*C*ROOTC))**2 

= ( 2.*DSQRT(TU)*ROOTO*((EPR3+ 
EPR6)tWO/ALFAC-4.*C*ROOTC))**2 
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60 MEMt9) = ~CiPR~-RMtYJ*!~O*CEPR3+EPR6)/ALFAC-1 · • c• oar * 
61 MEM(lQ) = C-2.*ROOTC*WO*CEPR21-RMEV)/ALFAC+ 

1 2.*C~((EPR21-RMEV)*{EPR5l+RMEV)-
2 2.*ROOTO*ROOT0))**2 

62 MEM( ll) = (0SQRTITUl*ROOTO*((EPR21+ 
1 EPR51)*WO/ALFAC-4.*C*ROOTC)l**2 

63 MEM( 12.) = C2.*ROOTO*CWO*ROOTC/ALFAC+ 
1 2.*C*CEPR21-EPR51)))**2 

64 ME M( 13) = ((EPR2l·RMEVl*CCEPR2l+EPR5ll*WO/ALFA:-
1 4.*C~ROOT0))**2 

c c NORMALIZATION FACTORS 
c 

65 NM( 11 = NP SQ( E PR3 l*NPSQCEPR6 
66 NMI 2) = NP$0(EPR3 ) *NMSOI EPR6 ) 
67 NM( 3) = NPSQ(EPR2l)*NPSQ(EPR51) 
68 NM( 4) = NPSQCEPR1 l*NPSQ(EPR3 l 
69 NM( 5) = NP$0(EPR2ll*NPSQfEPR51) 
70 NM( 6) = NPSQ(EPRl )*NMSO EPR3 , 
71 NM( 7) = NPSQ(EPR2ll*~MSQCEPR51) 72 NM( 8) = NMSQCEPR3 l*NPSQ(EPR6 ) 
73 NM{ 9) = NMSQ( E PR3 l*NMSQCEPR6 ) 
74 NM(l0) = NMSQCEPR2l)*NPSOCEPR51) 
75 NMUl) = NMSQ(EPR2l)*NPSOCEPR51) 
76 NM (12) = NMSOCEPR2l)*NMSOCEPR51) 
77 NM ( 13) = NMSQ(EPR21)*NMSQ(EPR51) 

c 
c MATRIX ELEMENTS FOR H+ 
c 

78 ALFCPR = DSQRT(RM*WCPR/(HBAREV*Q)) 
79 RTOPR = DSQRTCRMEV*EOPR) 
80 RTCPR = OSQRT(RMEV*ECPRl 

c 
81 ME P{ 1) = C(EPR22+RMEVl*WOPR*tEPRl+ 

1 EPR221/ALFCPR)**2 
82 ME Pt 2) = ((EPR42+RMEV)*WOPR*(EPR21+ 

1 EPR42)/ALFCPR)**2 
83 ME P( 3) = ((EPR43+RMEV)*WOPR*DSQRT(TU)*lEPR22+ 

1 EPR43)/ALFCPRl**2 
84 ME P( 4! = lDSQRTfTU)*RTOPR*lEPR21+ 

1 EPR42)*WOPR/ALFCPR}**2 
85 ME P ( 5) = (2.*RTCPR*(EPR3-EPR52l*WOPR/ALFCPR•**2 
86 ME P( 6) = ((EPR~-RMEVl*CEPR3+ 

1 EPR52)*WOPR/ALFCPR~**2 
87 MEPt7) = (DSQRT(TU)*RTOPR*CEPR21+ 

1 EPR42l*WOPR/ALFCPR)**2 
88 MEP( 8) = ((EPRZ2-RMEV)*(EPR21+ 

1 EPR42)*WOIALFCPR)**2 
c c NORMALIZATION FACTORS 
c 

89 NP( u = NPSOlEPRl )*NPSQ(EPR22) 
90 NP( 2) = NPSQCEPR2li*NPSQ(EPR42) 
91 NP( 3) = NPSQ(EPR221*NPSQ(EPR43) 
92 NP( 4) = NPSQ(EPR2l)*NMSQCEPR42) 
93 NP( 5) = NMSQ(E PR3 )*NPSQ(EPR52) 
94 NP( 6) = NMSQ{ E PR3 )*NMSQ(EPR52) 
95 NP( n = NMSQ(EPR2l)*NPSQ(EPR42) 
96 NP( 8) = NMSQ(EPR211*NMSQIEPR42) 
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113 
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118 
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1.35 

E 
c c 

c 
c c 

c 
c 
c 
c 

c 

c 
c c 

c 
c 
c 
c 
c 

c 

ENERGIES FOR A FEW LOW-LYING STATES 
AND SEVERAL HIGHER STATES 
E ( U = EN( -1, 0, 0) 
EC 2) = ENC-1,0, 2) 
El 3) = EN( 1,4-, Ot 
E(4) = EN(-3,0,2J 
E( St = ENC 1,4, 2) 
EC6) = ENC 3,8, 0) 

DEGENERACIES OF THE ENERGY LEVELS 

0(11 = 1. 
0(2) = 3. 
0(31 = 2. 
0(4-J = 5. 
0(51.: 6. 
0(6) = z. 
ENERGIES OF UPPER LEVELS OF 
TRANSITIONS CONSIDERED 

EM( U = E(6) 
EM( 2) = EC61 
EM( 3) = E(5) 
EM( 4) = El3) 
EM( 5) = Et5t 
EM( 6) = EC3) 
EMC 7) = EC5) 
EMC 8) = E(6) 
EMC 9) = EC6) 
EMC10) = E(5) 
EMHU = E(5) 
EMC 12) = E( 5) 
EMtl3) = EC5) 

EP(l) = E(2) 
EP(2) = E(4) 
EP(3) = E(4) 
EP C 4) = EC 4 l 
EP(5) = E(5) 
EP(6) = E(5) 
EP(7) = E(4) 
EP(8) = E{4) 
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FRACTIONAL POLARIZ~TION ANALOGOUS TO COR'S WORK 

IP = MEPCU*NP( U 
IM = MEM(4)*NM(4) 

ORl = OPOL(IP,IM) 

FRACTIONAL POL~RIZATION CONSIDERING 
A FEW LOW-LYING STATES 

I P = ME P C U *NP ( U 
lM = MEM(4)*NM(4) ~ MEM(6)*NM(6) 

OR2 = QPOL{ IP,IM) 



E FRACTIONAL POLARIZATION CONSIDERING 
C SEVERAL HIGHER STATES 
c 

136 l = o.o 
137 DO 10 1=1,6 
138 l = l + D(ll*DEXP(-E(IJ/KT) 
139 10 CONTINUE 

c 
140 IP = 0.0 
141 DO 20 I= 1,8 
142 IP = IP + MEP(I)*NP(I)*DEXP(-EPlU/KTJIZ 
143 20 CONTINUE 

144 
145 
146 

147 
148 

149 

150 

c 
IM = 0.0 
DO 30 I= 1,13 
IM = IM + MEM(II*N~(l)*DEXPC-EM(IJ/KT)/Z 

c 
30 CONTINUE 

QR3 = QPOL(lP,lM) 
c 
C FRACTIONAL POLARIZATION ACCORDING TO 
C KEMP'S AND CDR'S NON-RELATIVISTIC THEORY 
c 
c 

c 

QNR = -WB/(WO • 2.*WBl*lOO. 

WRITE(6,920) LAM,EO,EC,EOPR,LAMPR, 
1 QNR,QR1,QR2,QR3 

151 920 FORMAT(20X,I8,3F8.3,!8,4F10.3/) 
152 1000 CONTINUE 

153 

154 
15 r; 

c 
c 

$ENTRY 

WR IT E ( 6, 99 0 ) 

STOP 
END 
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B = 0.10,)0[ 07 G EB = 0.578SD-J2 EV RM = 0.5110) 06 EV 

LAM( A J EO(EII) EC(EV) ET(:;V) LAM'(~) QNR t %) QR 1(%) QR2(%) QR3( ~) 

3000 4.13 3 4.138 4.144 2992 -0.140 -0.138 -33.456 1 OO.JOO 

3500 3.542 3.548 3.554 3489 -0.163 -0.162 -33.477 100.000 

4000 3.1JO 3.105 3.111 3985 -0.186 -0.185 -33.498 100.000 

4500 2.755 2.761 2.767 4481 -J.209 -0.206 -33.518 100. () 00 

5000 2 .. 480 2.485 2.491 4977 -0.2 32 -0.232 -33.539 99.998 

5500 2.254 2.260 2.266 5472 -0.255 -0.255 -33.560 99.995 

6000 2.0&6 2.072 2.078 5967 -0.279 -0.278 -33.580 99.989 

6500 1. 907 1.913 1.919 6461 -0.302 -0.301 -33.601 99.977 

7000 l. 771 1.777 1. 783 6955 -0.325 -0.324 -33.621 99.958 

7500 1.653 1.659 1.665 7448 -0.348 -0.347 -33.&42 99.928 

8000 1. 550 1. 556 1.561 7941 -o. 311 -0.370 -33.662 99.885 

8500 1.459 1.464 1.470 8433 -0.394 -0.393 -33.682 99.825 

9000 1.378 1.383 1.389 8925 -J.417 -0.416 -33.703 99.747 

9500 1.305 1.311 l. 317 9417 -0.440 -0.439 -33.723 99.646 

10000 1.2~0 1.246 1.251 9908 -0.463 -0.462 -33.744 99.521 

10500 1.181 1.187 1.192 10398 -0.485 -0.485 -33.764 99.37) 

11000 1.12 7 1.133 1.139 10888 -0.508 -0.508 -33.784 99.190 

11500 1.078 1.084 1.090 11378 -0.531 -0.531 -33.804 98.981 

12000 1. 03 3 1.039 1.045 11867 -0.554 -0.554 -33.825 98.740 I-' 
I-' 
co 



B = 0.101JE 08 G EB = 0.5733)-01 EV RM = 0.51100 06 EV 

LAM( A) EO(EV) EC(EV) ET(EV) LAM' tAt QNR ( %) QR 1 ") QR2(~) QR3ft) 

3000 4.13 3 4.191 4.248 2918 -1.362 -1.361 -34.538 100.000 

3500 3.542 3.600 3.6 58 3389 -1.582 -1.5.81 -34.732 100 .ooo 
4000 3.100 3.157 3c2l5 3856 -1.800 -1.799 -3 4. 923 1 ao.ooo 
4500 2.755 2.Rl3 2.871 4319 -2.016 -2.015 -35.113 100.000 

5000 2.480 2.538 2.595 4777 -2.230 -2.230 -35.300 99.999 

5500 2.254 2.312 2.370 5231 -2.442 -2.442 -35.486 99.997 

6000 2.066 2.124 2.182 5682 -2.653 -2.652 -35.670 99.992 

6500 1. 90 7 1.965 2.023 6128 -2.861 -2.860 -35.852 99.984 

7000 1. 771 1.829 1.881 6571 -3.068 -3.067 -36.032 99.971 

7500 1.653 1.711 1. 769 7009 -3.272 -3.272 -36.210 99.9 50 

8000 1. 550 1.608 1.666 7444 -3.475 -3.475 -36.387 99.919 

8500 1.459 1.516 1. 574 7875 -3.677 -3.676 -36.561 99.377 

9000 1.378 1.435 1.493 8302 -3.876 -3.876 -36.734 99.822 

9500 1.30 5 1.363 1. 421 13726 -4.074 -4.074 -36.906 99.7 51 

10000 1. 240 1.298 1.356 9146 -4.270 -4.270 -37.075 99.663 

10500 1.18 1 1.239 l. 29 7 9563 -4.464 -4.464 -37.243 99.5 56 

11000 1.127 1.185 1.243 9975 -4.657 -4.657 -37.410 99.430 

11500 1.07 8 1.136 1.194 10385 -4.848 -4.848 -37.574 99.2 82 

12000 1.033 1.091 1.149 10791 -5.038 -5.038 -37.737 99.113 ...... 
...... 
\.0 



B = 0.1000E 09 G EB ·- 0.5783D 00 EV RM = 1).51100 06 EV 

LAM( A) EOtEV) EC ( E V l ET(EV) LAM'{!\) QNR{%) QR 1( %) QR2(%) QR3( %) 

3000 4.133 4.712 5.290 2344 -10.941 -10.940 -42.716 100.000 

3500 3.542 4.121 4.700 2639 -12.316 -12.315 -43.848 100.000 

4000 3.100 3.678 4.257 2912 -13.597 -13.596 -44.894 100.00:) 

4500 2.755 3.334 3.913 3169 -14.793 -14.793 -45.864 1 oo. 000 

5000 2.43 0 3.058 3.637 3409 -15.914 -15.913 -46.76& 100.000 

5500 2.254 2.833 3.412 3634 -16.965 -16.965 -47.606 100 .ooo 
6000 2.066 2.645 3.224 3846 -17.954 -17.953 -48.391 100.000 

6500 1.90 7 2.486 3.)65 4'J45 -18.885 -18.884 -49.125 100.000 

7000 1. 7 7 1 2.350 2.929 4233 -19.763 -19.763 -49.815 99.999 

7500 1.653 2.232 2.811 4411 -20.594 -20.593 -50.462 99.999 

8000 1. 55 0 2.129 2.707 4579 -21.379 -21.379 -51.073 99.996 

8500 1.459 2. 037 2.616 4739 -22.124 -22.124 -51.648 99.997 

9000 1.37 8 1.956 2.~35 4890 -22.832 -22.831 -52.192 99.996 

9500 1. 30 5 1.884 2.463 5034 -23.504 -23.503 -52.707 99.994 

10000 1.240 1. 819 2.397 5171 -24.143 -24.143 -53.195 99.992 

10500 1. 13 1 1.760 2.338 5302 -24.753 -24.753 -53.659 99.989 

11000 1.12 7 1. 706 2. 285 5426 -25.334 -25.334 -54.099 99.986 

11500 1. 07 8 1.657 2.236 5545 -25.890 -25.889 -54.518 99.982 

12000 1.033 1. 612 2.191 5659 -26.421 -26.420 -54.917 99.978 
1-' 
I\) 

0 
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