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PREFACE 

This thesis originated from a small exploratory study performed 

nearly five years ago in the optometry laboratory at the National 

Aeronautics and Space Administration's Ames Research Center. At the 

time, Hessrs. Randle, lveber, and I had noted that it was relatively 

easy to restrict a person's range of accommodation merely by instructing 

him to "think something11 while, at the same time, have him attempt to 

maintain focus on a target. As time and funds have permitted, we have 

pursued both a description and an explanation of this phenomenon which 

has previously not, to the best of our knowledge, been adequately 

researched. The nature of this thesis is more nearly a grand explora

tory study and will, I hope, serve as a small source of inspiration for 

other accommodation studies which will surely follow as objective 

optometers become more accessible to vision researchers. 

Many generous people and institutions deserve recognition for the 

successful completion of this thesis. The optometry laboratory at the 

NASA/Ames Research Center was made available through my sometimes 

adviser, sometimes colleague, and always friend Robert J. Randle, NASA 

Research Scientist. Equally important for her understanding of 

subjects, computers, optometers, and me is our long-time assistant and 

co-worker, Ms. Donna L. Miller, who, together with fellow Guest Worker 

John S. Bendix, spent many curious and productive hours testing 

subjects. 
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are Dr. Robert F. Stanners and Dr. Larry Hochhaus for their liberal 
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Away from the laboratory and academia, a most generous and loving 

support was provided by my parents, Mr. and Mrs. Vincent F. Malmstrom. 

The love and understanding provided by my wife and, incidentally, 
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element in this entire endeavor. And, although not directly involved, 

my new son, Carl, provided a great deal of encouragement to finish this 

thesis quickly and return to the taxpayer roles. 

This entire study was funded by in-house support from the Man

Vehicle Systems Research Division, NASA/Ames Research Center, Moffett 

Field, Cal;ifornia, and from the Reliability and Haintainability Testing 

Division, USAF/Rome Air Development Center, Griffiss AFB, New York, who 

generously granted me the time to pursue this thesis as an independent 

project. 

iv 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

Non-visual Factors Affecting Accommodation • 
Volitional Control of Accommodation 
Visual Imagery • 
Parasympathetic Activity • 
Sympathetic Activity • 
Tunnel Vision 
Other Considerations • 
Problem and Hypotheses • 
The Search for a Model • 

II. }ffiTHODOLOGY • 

Subjects • 
Apparatus 
Stimuli 
Design • 
Instruction and Procedure 

III. RESULTS AND DISCUSSION 

Static Accommodation Experiment 
Dynamic Accommodation Experiment • 
Secondary Task • 

IV. GENERAL DISCUSSION 

V. SU}~Y AND CONCLUSIONS • 

SELECTED BIBLIOGRAPHY 

.APPENDIX A INSTRUCTIONS 

APPENDIX B ANALYSIS OF VARIANCE TABLES • 

APPENDIX C - DATA TRANSFORMATION PROCEDURES 

v 

• 

Page 

1 

2 
4 
5 
6 
7 
7 
8 

10 
10 

14 

• 14 
14 
15 
17 
20 

26 

27 
35 
60 

66 

70 

73 

77 

81 

104 



Table 

I. 

II. 

III. 

IV. 

v. 

VI. 

VII. 

VIII. 

IX. 

x. 

XI. 

XII. 

XIII. 

XIV. 

LIST OF TABLES 

Mean Base Error Rates per Trial on Secondary Task, 
Days 4 and 5, by Subject • 

Analysis of Variance Summary for Phase 1--Static 
Target--Three Distances ••••• . . . . . 

Analysis of Variance Summary for Phase 1--Static Target--
Three Distances--Seven Time Intervals . . . . . . . . . 

Analysis of Variance Summary for Phase 1--Static Target--
Zero and Three Diopter--Seven Time Intervals • . . . . . 

Analysis of Variance Summary for Phase 2-Static 
Target--Three Distances . .. . . . . • . . . 

Analysis of Variance Summary for Phase 1--Static 
Target--Three Diopter Only . . . . .. . . . . . . . . 

Analysis of Variance Summary for Phase 1--Dynamic 
.Target--Sine Wave Amplitude . . . . . .. . . . . . . . . 

Analysis of Variance Summary for Phase 1--Dynamic 
Target--Sine Wave Phase Lag . . . • . . . . . . . . . . 

Analysis of Variance Summary for Phase 2-·-Dynamic 
Target--Square Wave--Zero-Pulse Track " . . . . • . . . 

Analysis of Variance Summary for Phase 2---Dynamic 
Target--Square Have--Latency . . . . . .. . • . . . . . . 

Analysis of Variance Summary for Phase 2-Dynamic 
Target--Square Wave--Velocity . •· . . . . . . • . 

Analysis of Variance Summary for Phase 3--Dynamic 
Target--Five Days--Zero-Pulse Track .. .. . . . . . . . . 

Analysis of Variance Summary for Phase 3-Dynamic 
Target--Five Days--Latency . . . . . . . . • . 

Analysis of Vadance Summary for Phase 3--Dynamic 
Target--Five Days--Velocity . . . . . . . . . . . . . . 

vi 

Page 

61 

82 

83 

84 

85 

86 

87 

88 

89 

91 

93 

95 

96 

97 



Table Page 

~. Analysis of Variance Summary for Phase 4--Dynamic 
Target--Four Difficulties--Zero-Pulse Track • . . . . . 98 

XVI. Analysis of Variance Summary for Phase 4--Dynamic 
Target--Three Difficulties--Zero-Pulse Track . . . . . . 99 

~II. Analysis of Variance Summary for Phase 4--Dynamic 
Target--Four Difficulties--Latency . . . . . . . . . . . 100 

XVIII. Analysis of Variance Summary for Phase 4--Dynamic 
Target--1bree Difficulties--Latency . . . . . . . • • . 101 

XIX. Analysis of Variance Summary for Phase 4--Dynamic 
Target--Four Difficulties--Velocity . . . . . . . . . . 102 

XX. Analysis of Variance Summary for Phase 4--Dynamic 
Target--TI1ree Difficulties--Velocity . . . . . . . . . . 103 

vii 



LIST OF FIGURES 

Figure Page 

1. Block Schematic of Phases for Static Accommodation 
Experiment . . . . . . . . . . . . . . . . 19 

2. Block Schematic of Phases for Dynamic Accommodation 
Experiment . . . . . . . . . . . . . . . . . . . . 21 

3. Static Accommodation Experiment. Means of Target Distances 
Plotted as a Function of Time Blocks • • • • • • • • • 28 

4. Static Accommodation Experiment. Time Blocks 1 and 2 
Plotted as a Function of Time Intervals and Target 
Distances • • • • • . . . . . . . . . . . . . . . . 

5. Individual Variations in the Resting Position of 
Accomnmdation by Day and by Beginning (Tl) and End (T2) 

29 

of Each Experimental Session • • • • • • • • • 34 

6. Dynamic Accommodation Experiment. Representative Raw Data 
From a Subject (MLM) Tracking the 0.1 Hz. Sine Have, 
Day,. 2 • • • • • • • • • • • • • • • • • • • • 36 

7. Dynamic Accommodation Experiment, Phase 1. Peak-to-Peak 
Amplitude Sine Wave Tracking Responses Plotted as a 
Function of Written and Mental Tasks and Time Blocks 38 

8. 

9. 

Mean Phase Lag Values Plotted as a Function of Target 
Stimulus Frequencies • • • • • • • • . . . . 

Dynamic Accommodation Experiment. Representative Rmv Data 
From a Subject (DS) Tracking the 0. 2 Hz. Square Have, 
Day 5 • • • • • • • • • • • • • • • • • • • • • . . 

10. Mean Zero and Pulse Track Values Plotted as a Function of 

11. 

12. 

Time Blocks • • • • • • • • • • • • • • • • 

Mean Zero and Pulse Track Values Plotted as a Function of 
Target Stimulus Frequencies • • • • • • • • • . . 

Mean Response Latency Values Plotted as a Function of 
Target Frequencies • • • • • • • • • • • • • • • • . . . . 

viii 

40 

42 

44 

45 

47 



Figure Page 

13. Mean Approaching and Receding Velocities Plotted as a 
Function of Target Frequencies • • • • • • • • • • • • 49 

14. 

15. 

Mean and Zero Track Values Plotted as a Function of 
Counting and NX Tasks by Time Blocks • • • • • 

Raw Data From Subject (DS), Instructed to "Ignore the 
Target," Accommodates to the Far Point •••••• 

16. Raw Data From Subject (Hl.M), Instructed to "Ignore the 

. . . . 52 

. . . . 56 

Target," Accommodates to the Near Point • • • • 57 

17. Mean Response Velocities Plotted as a Function of Counting 
and NX Tasks by Time Blocks • • • • • • • • • • • • • • 59 

18. Effects of Practice on Written Secondary Task From Day 4 to 
5. Mean Values of Errors per Trial on Eyes Closed 
(Baseline), Static Target, and Dynamic Target Conditions 62 

19. Static Accommodation Experiment. Subjects' Mean Number of 
Counting Errors per Trial as a Function of Their Mean 
Accommodation Shift From 3 Diopter Steady Track • • • 64 

20. Dynamic Accommodation Experiment. Subjects' Nean Number of 
Counting Errors per Trial as a Function of Their 1:-lean 
Accommodation Shift From the 3 Diopter Pulse Track 65 

21. Sine Wave Analysis. Individual Waveform Stimulus (Input) 
and Response (Output) Values Calibrated by the STATS 
Program for Obtaining Amplitude and Phase Lag • • 106 

22. Square Wave Analysis. Individual Waveform Stimulus (Input) 
and Response (Output) Values Calculated by the STATS 
Program for Obtaining Magnitude, Direction, Latency, 
and Velocity • • • • • • • • • • • • • • • • • • • • • • • 108 

ix 



D 

hz. 

sec. 

Sin 

Sq 

STATS 

OL 

O.OD 

3.0D 

lX 

3X 

7X 

NX 

NOJ.v!ENCLATURE 

diopter (D = meters-1) 

hertz; cycles per second 

second 

sine wave 

square wave 

statistical analysis of time series 

open loop; empty field conditions 

zero diopter; far target; optical infinity 

three diopters; near target; 1/3 meter target 

count backwards by ones 

count backwards by threes 

count backwards by sevens 

ignore the target movement, do not count 

X 



CHAPTER I 

INTRODUCTION 

The extent to which non-visual factors can affect visual accommoda

tion are not well known nor easily studied. The difficulties in study

ing accommodation come both from historical misconceptions and in

adequate objective measures. It has long been known that accommodation 

e~1ibits both reflexive and so-called higher-order responses; it is, 

especially, the higher-order responses which have not been well 

researched. 

Historically, human accommodation has not been easy to observe. 

Buried below the cornea and aqueous humour, the lens and controlling 

zonule and ciliary muscles do not exhibit many changes which can be 

observed both objectively and unobtrusively. Hence, accommodation 

studies have necessarily been made subjectively. It has often been 

necessary to query the subject directly whether an image is in focus, 

for example, with a Badal optometer or a Snellen chart. Thus, it has 

often been impossible to separate the pure accommodation changes from 

the more subjective elements of perception. 

There have been several elegant models of human accommodation as a 

reflexive or servo-model mechanism (Stark and Takahashi, 1965; Carter, 

1962; Troelstra et al., 1964). In essence, most of these models state 

that the primary impetus to accommodation changes is a presence of 

retinal blur which will cause the eye to hunt for an in-focus image. 
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It is, of course, quite plausible that the reflexive portion of accommo

dation may be adequately described by a servo-mechanical model. How

ever, the servo-model is not sufficient for describing all aspects of 

accommodation (Smithline, 1974; Randle, 1975). Campbell and Westheimer 

(1959) expressed doubts, for instance, that accommodation did not 

involve the visual cortex in some way. If it were the case that control 

of accommodation were, in part, influenced by higher processes, then 

accommodation might be described better by whole families of responses, 

each with its own operating characteristics. A reflexive, or servo

model would be only one of these families of responses. 

The scope of this study is limited to ~-visual factors affecting 

accommodation; therefore, discussion of the visual stimulus items which 

are believed to affect the servo-styled response, such as retinal blur 

and chromatic aberrations, must, of necessity, be bypassed. 

Non-visual Factors Affecting Accommodation 

In an early experiment, Olmsted and Morgan (1939) showed that 

exposure to a sudden, sharp stimulus, such as a tap on the nose, was 

accompanied by a brief change in the refractive state of the rabbit's 

eye. The suggestion was, and still is, that the reaction is the result 

of stimulation of the sympathetic nervous system. Further surgical 

experiments on rabbits, both stimulating sympathetic fibers and cutting 

the IIIrd Cranial (parasympathetic fibers) nerve tended to support this 

earlier finding (Morgan, Olmsted, and Watrous, 1940). Pathology also 

forms support for sympathetic action. Loss of sympathetic ganglion in 

the neck (Horner's disease) produces, in addition to constriction of 

the pupil, extreme difficulty in accommodating for distance. Dominance 



of the sympathetic system, as in some forms of Basedow's disease, is 

shown by difficulty in accommodating for near objects (Schober, 1954). 

Conversely, parasympathetic activity causes an opposite accommoda

tion response. For example, direct stimulation of the IIIrd Cranial 

will cause a myopic response, or a shift in refractive power of the 

lens to the near point (Davson, 1972, pp. 403). 

Administration of drugs produce similar effects. Sympathetic 

activating or parasympathetic inhibiting drugs, like atropine or 

cocaine, produce difficulties in accommodating for near objects. Para

sympathetic activating or sympathetic inhibiting drugs, like ergot or 

pilocarpin, produce difficulty for distant accommodation (Schober, 

1954). 

3 

By this time, it should become increasingly clear that negative 

(far) accommodation is not merely the decay of positive (near) accommo

dation. For example, the velocity of the response in the far direction 

is much too rapid to be dependent upon the decay of some parasympathetic 

transmitter substance (Cogan, 1937). Thus, Schober (1954), Toates 

(1972), and others were led to describe the accommodation response as 

an opponent process in which the sympathetic and parasympathetic 

divisions tend to hold each other in equilibrium. 

Furthermore, Schober (1954), mostly on theoretical grounds, pro

posed that the resting position of accommodation was not at the visual 

far point, but at some intermediate balance point between full 

sympathetic and full parasympathetic activation. The theory of 

Helmholtz in the 19th century had set forth the proposal that full 

negative (far) accommodation was a state of extreme relaxation. Bit by 

bit, the theory of Helmholtz is falling into disfavor. Indeed, 
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empirical studies about a phenomenon known variously as "empty field 

myopia," "night myopia," and "instrument myo;?ia," all seem to support an 

intermediate-resting-position hypothesis (Hennessy and Leibowitz, 1971; 

Leibowitz and Owens, 1975). All of these anomalous myopias occur when 

the eye is placed in a field of indeterminate focus, such as darkness, 

fog, or in front of a pinhole aperture. During the first half minute, 

accommodation will slowly drift towards a value of about one diopter 

(D; D = m- 1). The point of focus would then tend to wander slightly 

about this value. Such an intermediate-resting-position of accommoda

tion value is quite in agreement with a "null" region between sympa

thetic and parasympathetic activity. It should also be added that the 

intermediate resting position is considered a behavioral resting posi

tion. Westheimer and Blair (1973) presented evidence from animal 

studies that accommodation assumes a O.OD (infinity) value during 

anesthesia and death. Conversely, an excised lens assumes a thicker, 

or more spherical shape, indicating that, independently, the lens would 

be more adapted to near vision (Davson, 1972, pp. 400). 

Volitional Control of Accommodation 

In the absence of all other depth information (object size, 

brightness, overlap, texture, etc.), the eye is as likely to begin its 

accommodative hunting in the wrong direction as well as the correct 

direction (Campbell and Westheimer, 1959). Therefore, it may be 

properly questioned as to whether the subject has any volitional con

trol over accommodation, or is the control of accommodation purely due 

to a trial-and-error process of eliminating retinal blur? In an 

extended study, Randle (1970) reported that subjects were able to alter 
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their accommodation both in fixed-focus and empty fields after extensive 

feedback training. Part of the feedback training included accommodating 

a specific distance to a specific tone. In this instance, the pure 

tone varied in frequency as a function of the refractive state of the 

subjects' eye; high frequencies were associated with high dioptric 

values (close targets). Later in the experiment, subjects also learned 

the specific task of accommodation to, or near to, infinity, without 

using the tone. In a less elegant experiment, Provine and Enoch (1975) 

demonstrated that four subjects could learn to exhibit as much as 9.0D 

volitional control of accommodation while wearing a soft contact lens. 

In both instances, it was not reported that the subjects knew ~ they 

effected the accommodation changes, but only that they could effect the 

change. Although it may not be clear how volitional control of accommo

dation is effected, it is certainly possible to interfere with this 

process. Randle (personal communication, 1978) cites personal knowledge 

of a subject who, after an altercation with his professor, was unable 

to exercise volitional control of accommodation for an entire day. 

This subject, otherwise, was a most reliable performer both prior to 

and after the incident. Whether this subject's difficulty was because 

of a sympathetic or parasympathetic inhibition is, however, entirely 

speculative. 

Visual Imagery 

It has been hypothesized that "thinking nearu and "thinking far" 

would be sufficient impetus to effect the volitional control of accotmno

dation. However, the role of imagery has had a history of contradictory 

evidence. Westheimer (1957) reported that two sUbjects instructed to 
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"think near" and "think far" in an empty field were only able to effect 

a small (less than O. SD) and transient (unspecified) change in accommoda

tion. Later, Cornsweet and Crane (1973) reported that the imagery 

technique was not useful in altering accommodation; and Provine and 

Enoch (1975) reported ambiguous results. In 1976, Malmstrom and Randle 

reported that subjects could effect significant and appropriate changes 

in accommodation (about O.SD) by "thinking near" and "thinking far," 

but only about an empty-field l.OD resting state of accommodation. 

Apparently, there is some component of volitional control, namely 

imagery, which can be useful in altering accommodation in a desired 

direction; but the effect is so small that its usefulness may be of 

questionable value in locating actual targets. 

Parasympathetic Activity 

The "experimental" evidence on the presumably parasympathetic 

activity ~f accommodation is, more correctly, a listing of anecdotes 

and clinical observations. Westheimer (1957) probably has the only 

personally documented case of two subjects who were intentionally in

sulted while being observed in empty field conditions. In this study, 

both subjects experienced an increase in myopia of over l•OD with 

residual effects lasting for over five minutes. Skeffington (1957) 

also reported a study where subjects who read progressively more 

difficult material also showed an increase in accommodation values. 

Nevertheless, if the increase was in the positive direction, it might 

more correctly reflect a negative attitude (parasympathetic response) 

to the material being presented rather than a general (sympathetic) 

· arousal response. 



Sympathetic Activity 

Olmsted, in addition to his experiments with·animals (cf. Olmsted 

an:d Morgan, 1939) had also noted a strong dioptric change in the 

"direction of hypermetropia" (the far direction) in humans who were 

exposed to electric shocks, horns, and pistol shots (Olmsted, 1944). 

Cogan (1937) cited the case of a student who, nearing the time for a 

final examination, was unable to effect near accommodation. A more 

recent study by Randle, Roscoe, and Pettit (in preparation) examined 

7 

20 commercial airline pilots over about a six-week period. In this 

study, the pilots were required to make several decisions during a 

simulated night landing task while viewing the display through various 

magnifications of the landing field. Results revealed an unexpected 

significant main effect; the importance of the decision influenced the 

accommodative state, always towards the visual far point. Presumably. 

all the above cited cases would indicate that a far accommodative shift 

would be due to a general increased sympathetic arousal. It should also 

be quite obvious that this sort of response has not been well documented. 

Tunnel Vision 

In 1975, Malmstrom, Randle, and Weber had observed that subjects 

instructed to perform a secondary backwards counting task during a 

dynamic accommodation experiment produced an apparent "clipping" or 

shortening of their total accommodation range. At the time, it was 

thought that this restricted accommodation range might be a third

dimensional analogue to the well-documented perceptual "tunnel vision" 

response to mental loading (Leibowitz, 1973; Ikeda and Takeuchi, 1975; 
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Leibowitz and Appelle, 1969; Mackworth, 1965). It has been known for 

some time that the physical environmental conditions, such as body 

position, positive-g acceleration, or hypoxia can cause a decreased 

retinal blood supply, and, hence, tunnel vision (e.g., Gillingham and 

McNaughton, 1977). Curiously, there do not seem to be any physiological 

models which describe the mental loading tunnel vision. That is, other 

than some passing reference to a "central processing deficit," the 

discussion seems to avoid whether the narrowing of the visual field 

could be primarily sympathetic or parasympathetic in origin, or a 

combination of both. 

Other Considerations 

It is obvious that there are probably distinct parallels between 

accommodative and pupillary responses (Hess and Polt, 1960; Hess and 

Polt, 1964) when used as a measure of interest, attitude, and cognitive 

loading. Although it may be an oversimplified case, parasympathetic 

activity is taken to be the primary pupillary contraction controller, 

and sympathetic activity is taken to be the dilation pupillary con

troller (Lowenstein and Lowenfeld, 1950). The fact that the pupillary, 

accommodative, and oculomotor responses are closely allied can be seen 

in the well-known ~ reflex. The near reflex consists of an 

associated pupillary contraction, accommodation increase, and ocular 

convergence (all mediated by N III) when the visual system looks at a 

near object. Lest it be thought that all three responses are dependent 

upon each other, it should be stressed that any one of the responses 

can be made to act independently under special conditions. Drugs such 

as atropine will paralyze both the pupillary and accommodation response; 
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phenylephrine (Neo-synephrine) will dilate the pupil but leave accommo

dation and convergence virtually unchanged (Sabin. and Ogle, 1958). 

Similarly, it is possible to use prisms to "fool" the visual system into 

positive accommodation and pupillary constriction while convergence 

rema:h1s at infinity (parallel) (Toates, 1972). Clark, Randle, and 

Stew1:11~t (1975) reported a vestibular-ocular accommodation reflex in man 

which does not affect the pupillary response appreciably. Although the 

pupillary response was not measured in this experiment, a large 

pupillary response would render the optometer signals unreadable. 

(Th:l.a was an equipment limitation.) 

Nevertheless, it would seem that, under normal circumstances, 

accom111odation might be an indicator equally as sensitive to attitude 

and interest as the pupillary response. To date, this possibility has 

not b~en investigated, although the evidence suggesting a parallel 

activity is tantalizing. Hess and Polt (1960, 1964) in two landmark 

papers describing effects of interest and mental loading on the 

pupillary response, claimed that accommodation was not a factor in 

their. experiments; no accommodation measurements were made, as they 

assumed only distance cues affect accommodation. The assumption of 

these authors, while certainly not fatal to their discovery, may have 

been bypassing another indicator of the effects of information process

ing on the visual system. For example, Kahneman and Beatty (1966) 

found that differing fixation points produced different baseline values 

for the pupillary response; subjects focusing at larger distances 

produced relatively larger pupillary responses. 
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Problem and Hypotheses 

To date, the literature describing the effects of non-visual 

factors affecting visual accommodation has been mostly confined to a 

scattering of animal studies, clinical observations, and anecdotes. A 

review paper discussing the non-visual effects on visual accommodation 

by Randle (1975) stresses that non-visual factors should no longer be 

ignored. Furthermore, recent availability of sophisticated monitoring 

equipment allows for the study of the dypamic responses of accommodation 

to its total environment. Neither the physical world nor the mental 

state of the subject is motionless; yet, most studies about accommoda

tion totally ignore the issue of dynamics. 

The Search for a Model 

The original paper by Malmstrom, Randle, and Weber (1975) is the 

starting point for the present study. It was observed during a dynamic 

accommodation tracking task that a shortened range of tracking ability 

resulted from the introduction of a concurrent backwards counting task. 

It appeared that the range of tracking ability was impaired, but the 

effect was especially prevalent as the target approached the near point. 

Because of the exploratory nature of the original study, however, 

certain questions were never answered. 

It was originally suggested that such a clipping of accommodation 

peaks pointed to a diversion of central attentional processing capacity 

from the primary task; hence, there was the possible source of cortical 

mediation of the accommodation process. Such a diversion of central 

processing capacity would tend to support a Capacity Model of 
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information processing proposed by Kahnemann (1973). In this model, 

it is assumed that almost any conscious activity places demands on the 

available capacity, and concurrent activities which require attention 

tend to interfere with one another. The Capacity Model would suggest 

the following effects on accommodation during a concurrent mental task: 

(1) Both the near and far points would tend to be clipped, 

assuming that both positive and negative accommodation require 

central processing capacity. 

(2) Over an extended period of practice or familiarity, the range 

of accommodation would return to normal; increased familiarity 

with the same accommodation and concurrent mental task would 

lessen the demands on central capacity. 

(3) A more difficult concurrent mental task would create an even 

more restricted range of accommodation because of the increased 

demand on capacity. 

An alternative hypothesis is that the clipping of accommodation 

peaks is an indicator of a general model of sympathetic arousal, not 

unlike the pupillary response. In this instance, the accommodation 

response could be viewed as an autonomic response, more an indicator of 

the mental state of the subject than as a processing deficiency. The 

Sympathetic Model would suggest the following effects on accommodation 

during a concurrent mental task: 

(1) The accommodation shift would be in the negative (far) 

direction during the concurrent task. 

(2) Over an extended period of practice or familiarity, the range 

of accommodation would remain shifted to the far point. Some 

degree of habituation might occur, tending to return the range 
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of accommodation to the original value; however, the accommoda

tion far shift which is indicative of concurrent mental 

activity would not be subject to learning effects. 

(3) Similar to the pupillary response, more severe demands of the 

secondary task would be reflected in greater arousal; hence, 

there would be a greater accommodative shift to the far 

direction. 

(4) During empty-field conditions, the accommodative shift to the 

far direction would be exaggerated, to the extent that empty

field equilibrium would not retard accommodation. 

(5) The time required for the accommodation range to return to 

normal from the far shift would be proportional to the amount 

of general sympathetic arousal. That is, recovery might not 

be instantaneous, but would require several seconds. 

Finally, there is a third hypothesis that the clipping of accommoda

tion peaks is an indicator of a general parasympathetic arousal model. 

Such a model would suggest more of an attitude change towards the 

secondary task and would incorporate many of the predictions of the 

Sympathetic Arousal Model. The Parasympathetic Arousal Model would 

suggest the following effects on accommodation during a concurrent 

mental task: 

(1) The accommodation shift would be in the positive (near) 

direction during the concurrent task. 

(2) TI1e accommodation range would tend to increase or decrease as 

the subject altered his attitude towards the tasks. However, 

as an indicator of autonomic parasympathetic arousal, the near 

accommodation shift would not show learning effects, although 



some degree of habituation might occur. 

(3) Similar to the pupillary response, che more severe degree of 

arousal, the more severe the accommodative shift to the near 

direction. 

(4) During empty-field conditions, the accommodative shift to the 

near direction would be exaggerated to the extent that empty

field equilibrium would not retard accommodation. 
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(5) The time required for the accommodation range to return to 

normal from the near shift would be proportional to the amount 

of general parasympathetic arousal. That is, recovery might 

not be instantaneous, but would require several seconds. 

It is obvious that many of the predictions are not exclusive of a 

specific hypothesis. However, the critical dependent variables which 

ought to support one hypothesis over another are the Direction and 

Magnitude of the accommodation shift and the effects of learning over 

Days. As will be seen, there are certain "bonus" dependent variables, 

Phase Lag, Latency, and Velocity of accommodation. Although these 

variables are not mentioned directly in the original hypotheses, the 

particular analyses and computer programs the data were subjected to 

made it possible to analyze and discuss these variables, too. Because 

Phase Lag, Latency, and Velocity of accommodation were not central to 

the issues brought forth in this study, they should be treated as items 

of exploratory interest. It is hoped that the treatment of these items 

will serve as impetus for others to continue further research in a 

largely unknown area. 



CHAPTER II 

METHODOLOGY 

Subjects 

The subjects for this study were four adult males ranging in age 

from twenty-one to twenty-three years. These four subjects were 

screened from a pool of sixteen volunteers on the basis of their 

ability to track targets reliably on the optometer focus stimulator 

(Crane and Cornsweet, 1970). All subjects had normal vision as measured 

by the Bausch and Lomb orthorater, and the age requirement was to insure 

that all subjects had a wide range of accommodation. All subjects were 

paid $3 per hour for participating in five consecutive daily sessions 

which lasted about two hours each. 

Apparatus 

All measurements were taken with the Cornsweet and Crane (1970) 

objective optometer at the NASA/Ames Research Center and built under 

contract by Stanford Research Institute. The optometer is an infrared, 

continuously nulling (servocontrolled) device based on the familiar 

Scheiner principle (ref. Davson, 1972, pp. 397). A retinally reflected 

rectangular aperture is made to fall on a splitfield photosensor. A 

difference in focus between the optometer and the subject's eye results 

in a lateral displacement (motion) of the rectangle and on the 
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photosensor from which an error signal of appropriate sign and magnitude 

is developed. This error signal drives a small high-speed servo on the 

optometer to a new position that nulls the error signal and, thus, the 

difference in focus. For full details of the operation of the opto

meter, the reader is directed to Cornsweet and Crane (1970). 

The subject's head was held in place by a hot-wax molded bite-board 

affixed to the optometer chassis. Hence, any intelligible conversation 

by the subject was impossible unless he first pulled away from the 

optometer. 

Stimuli 

All subjects were presented a black "X" target. subtending a visual 

angle of 2.9 degrees. The target was presented under both Static 

(steady fixed-focus) and Dynamic (cyclical changing-focus) conditions. 

The Static target was presented at diopter setting of O.OD (zero 

diopters), 3.0D (three diopters), and 01 (open loop or empty-field) 

conditions. During the 01 conditions, a selsyn-operated 0.3 mm. aperture 

was dropped into place at a plane in the optical system such that it 

was imaged in the plane of the entrance pupil of the subject's eye. 

Concurrently, the "X" target background brightness was increased to 

maintain constant target illumination. The eye's entrance pupil thus 

became 0.3 mm., a condition which increased the depth of field to an 

extent that the target was always in clear focus. Retinal blur and 

blur changes were now absent, and accommodation was not required. This 

was called the "open loop" mode and is analogous to empty-field viewing 

in that accommodation is independent of the stimulus field. The effect 

is identical to the aperture used in a pinhole camera; each image, 



regardless of its apparent distance, is in clear focus. This pinhole 

clarity of focus, however, is achieved at a cost of a limited field of 

view. 

16 

The Dynamic target was presented at speeds of 0.1, 0.2, and 0.4 hz. 

(hertz, cycles per second), both as a Sine wave and as a Square wave. 

All Dynamic targets ranged continuously back and forth through an 

apparent optical distance of O.OD (infinity) and 3.0D (1/3 meter); how

ever, the focus stimulator is designed so that the target did not vary 

in either size or brightness, so these factors could not be used as 

distance cues. The focus stimulator is based on the principle of the 

Badal optometer, which maintains targets at constant size and bright

ness. For further details on the Badal optometer, the reader is 

directed to Ogle (1961). 

The focal change of the target and subsequent accommodation re

sponses of the subject was fed continuously onto a Brush chart recorder 

and concurrently into magnetic tape for digital conversion on a PDP-12 

computer. Analog-to-digital conversion was accomplished at a sampling 

of 20 data points per second. Thus, each 30-second period of data con

sisted of 600 data points. The analysis of optometer digital data was 

accomplished using an in-house "STATS" (Statistical Analysis of Time 

Series) computer program at the Ames Research Center. Appendix C, 

which is reproduced from Randle (1972) presents the specific procedures 

used in the data conversion. Figures 21 and 22, also listed in 

Appendix C, show a schematic of the parameters measured in this study. 

Sine wave analysis included two parameters: Amplitude gain and Phase 

Lag. Square wave analysis included seven parameters: zero tracking 

level, near target tracking level (Pulse), response Magnitude, and 



Latency and response Velocity for both receding and approaching 

targets. 

Design 
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Overall, the series of experiments was divided into two separate 

parts of equal importance, Static and Dynamic accommodation experiments. 

Both Static and Dynamic acco~~odation experiments were run concurrently 

over a five-day period. Every trial of each experiment, whether Static 

or Dynamic, was divided into four Time Blocks, a base (T1) 30 sec. of 

target tracking, 30 sec. of target tracking plus a paced backwards 

counting task (T2), and two more consecutive 30 sec. periods of rebase 

or recovery (T3 and T4). Keeping the target in focus, or tracking, was 

considered the Primary task; counting backwards was considered the 

Secondary task. 

Static Accommodation Experiment 

Because the Static accommodation experiment is, perhaps, the 

simplest to follow, this is where the study will begin. TI1e Static 

experiment was divided into two separate phases. Phase 1 was a design 

of three target Distances (O.OD, 3.0D, OL) x five Days x four Time 

Blocks. The purpose of Phase 1 was to determine the effect of a single 

counting task on the ability of a subject to maintain focus on a 

stationary target. During this phase, the subjects were required to 

perform a Secondary task counting backwards by ones (lX) only. 

Distances were presented in random order. 

Phase 2 was performed on days 4 and 5 only, and its purpose was to 

determine the effects of varying the Difficulty of the Secondary task 
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on the subject's ability to maintain focus on a stationary target. The 

design was three target Distances (O.OD, 3.0D, OL~ x two Days x three 

levels of Secondary task Difficulty (lX, 3X, 7X) x four Time Blocks. 

Figure 1 shows a schematic of the presentation of different phases of 

the Static accommodation experiments. 

Dynamic Accommodation E~eriment 

The Dynamic accommodation experiment was divided into two target 

stimulus categories, Sine and Square waves. There were four distinct 

Phases to the Dynamic accommodation experiment. The first two Phases 

varied only in the type of target stimuli presented, Sine and Square. 

The purpose of Phase 1 and Phase 2 was to determine the effects of a 

constant Secondary task on the ability of the subject to maintain focus 

on a variety of target stimulus Frequencies. Although the Secondary 

task remained constant (i.e., count backwards by ones), the method of 

response w.as varied; the subject responded either by writing his 

answers or counted mentally. The overall design of Phase 1 was three 

Frequencies (0.1 hz., 0.2 hz., 0.4 hz.) x two Secondary task responses 

(lX mental count, lX written count) x three Days x four Time Blocks. 

Phase 2 was similar to Phase 1, except that a Square (pulsed) wave 

was used; the design was three Frequencies (0.1 hz., 0.2 hz., 0.4 hz.) x 

two Secondary task responses (lX mental count, lX written count) x 

three Days x four Time Blocks. 

Phase 3 consisted only of a 0.2 hz. Square wave stimulus tracked 

over a five-day period. The 0.2 hz. Square wave was selected because 

pilot work had shown it to be the most likely response waveform to show 

Secondary task effects. The sole purpose of Phase 3 was to determine 
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the effects of practice on the tracking response by the Secondary 

task. 
' 

Phase 4 was conducted on Days 4 and 5 only and consisted of a 0.2 

hz. Square wave stimulus presented with three Difficulty levels (lX, 

3X, 7X). (There was a fourth category of Difficulty, NX. NX refers to 

a special condition in which the subject did not count and was in-

structed instead to ignore the target. The NX condition was presented 

only at the end of the experimental session and was for exploratory 

purposes only.) The overall purpose of Phase 4 was to determine the 

effects of varying the Secondary task while holding the Primary task 

constant. The design of Phase 4 was three Difficulty levels (lX, 3X, 

7X) x two Days x four Time Blocks; only one Frequency (0.2 hz.) was 

used. Difficulty levels were presented in random order. Figure 2 

shows a schematic of the presentation of different Phases of the Dynamic 

experiment. 

Instruction and Procedure 

Each subject was instructed that this was an experiment designed 

to measure his ability to perform two concurrent tasks. The first task 

was that he was to maintain focus on an "X" target which might or might 

not be continuously changing focus. The second task was a paced count-

ing backwards task, either writing his responses on a tablet placed by 

his writing arm or to count backwards in his head. The subject was 

advised that he should treat each task of equal importance and that 

neither should be considered more important than the other. 

Although the experiment was conducted over five consecutive days, 

the subjects were present for an additional initial day of screening 
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and practice of both tracking targets and counting backwards. Thus, 

each subject began actual trials on a Tuesday and,continued through 

Friday. After a weekend break of two days, the subject completed the 

experiment on a Monday. 
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At no time during the course of the experiment was the subject 

informed of the apparent distance of the "X" target, but only that he 

should try to hold it in focus. Also, the subjects were given no feed

back whether they had done well or poorly on either the Primary or 

Secondary experiment until after the sixth day. All subjects completed 

the Static accommodation experiment each day before proceeding to the 

Dynamic accommodation experiment. 

Static Accommodation Experiment 

During Phase 1 of the Static accommodation experiment, each subject 

was informed that he should maintain steady track on either the O.OD, 

3.0D, or the OL target as it was presented. At the end of the first 

30 sec., the subject was instructed, "Write backwards by ones, start 

at ••• (random three-digit number)." At this point, a randomly 

selected three-digit number was repeated to the subject, and the subject 

began a paced counting task writing one count (but two digits) every 

two seconds. The task was paced by the Brush recorder timer which 

served as a metronome. The timer made an audible tick once every sec

ond. For example, if the experimenter said, "One-hundred and seventy

~'" the timer was started when the experimenter said "one." At that 

instant, the subject wrote "7" during the first second and "1" during 

the second second, "7" during the third second, and "O" during the 

fourth second, "6" during the fifth second, and "9" during the sixth 



second, and so on. At the end of the 30 sec. task period, the subject 

was directed, "Stop counting, continue track~ng." At this point, the 

subject continued tracking the target without counting for the next 

minute, until the end of the trial. During the OL Static conditions, 

the subject was first given one minute of viewing the target in OL 

conditions on the assumption that preaccommodation to an empty field 

would wash out any residual "biological hysteresis" (Randle, 1975; 

Roscoe and Benel, 1978). At the end of this first minute of pre

accommodation, the actual OL trial was begun. 
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During Days 4 and 5, there were additions of three Secondary tasks 

of counting backwards by threes, one for each of the O.OD, 3.0D, and OL 

tasks; there were also additions of three Secondary tasks of counting 

backwards by sevens, one for each of the O.OD, 3.0D, and OL tasks. 

Pxnamic Accommodation Experiment 

At this point, the subject was presented the Dynamic accommodation 

experiment. For the first three days, the subject was presented the 

"X" target always changing in focus between O.OD and 3.0D. The twelve 

possible conditions (written/mental x 0.1 hz./0.2 hz./0.4 hz. x sine 

wave/square wave) were presented in random order. The subject was then 

instructed to track the target for 30 sec. until the task portion of 

the trial. For the written task, the subject was instructed, "Write 

backwards by ones; start at ••• (random three-digit number)." For 

the mental task, the subject was instructed, "In your head, count back

wards by ones; start at • • • (random three-digit number)." At the 

completion of the 30 sec. task portion of the trial, the subject was 

directed, "Stop counting; continue tracking." For the written task, no 
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further Secondary task response was necessary. However, for the mental 

task, the subject was required to remember t;e final number he had 

calculated and to repeat it to the experimenter after the final rebase 

period. (Verbal responses to the experimenter were impossible during 

the trials because the subject was affixed to a bite-board.) 

During days 4 and 5 (Phase 4), the subject was presented with only 

the 0.2 hz. square wave target; however, in this Phase the task diffi

culty was varied to include counting backwards by threes (3X) and 

sevens (7X). There was also the addition of a special task of ignoring 

the target and not counting (NX) which was presented at the completion 

of the lX, 3X, and 7X tasks. The subjects were not informed of the 

impending change in the Secondary task Difficulty to preclude the 

possibility that they would be spending the previous night practicing 

counting backwards by threes and sevens. All Secondary tasks during 

Phase 4 were written. All three Difficulties (lX, 3X, and 7X) were 

presented in random order. 

Again, as for the Static experiment, during the first Time Block 

(T1) of 30 sec., the subject was instructed to "Track the target." For 

the second Time Block (T2), the subject was instructed, "Write backwards 

by ••• (ones, threes, or sevens); start at ••• (random three-digit 

number)." 

There was a fourth Difficulty condition during which the subject 

was instructed to "Ignore the target; do not count," (NX) which was ·· 

included for exploratory purposes. This special NX condition was in

cluded only at the completion of the lX, 3X, and 7X trials. 

At the completion of the sixth day, each subject was given a 

thorough debriefing concerning his performance and compared to others 



who had performed in the same or similar experiments. Verbatim 

Instructions to the Subject may be found in Appendix A. 
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CHAPTER III 

RESULTS AND DISCUSSION 

The results of this study are divided into numerous and separate 

analyses of variance, both for the separate experiments, Static and 

Dynamic, and for the various dependent variables observed during the 

Dynamic accommodation experiment. The dependent variables observed in 

the Static experiment were Nagnitude and Direction of shift (measured 

in diopters). For the Dynamic Square wave experiments (Phases 2, 3, 

and 4), the dependent variables were Nagnitude and Direction of shift 

(measured in diopters), approaching and receding Latency (measured in 

sees.), and approaching and receding Velocity (measured in diopters per 

sec.). For the Dynamic Sine wave experiment (Phase 1), the dependent 

variables measured were Amplitude gain (measured in diopters) and Phase 

Lag (measured in sees.). It was not considered appropriate to compare 

the somewhat analogous dependent variables of the Sine and Square wave 

experiments such as Amplitude with Nagnitude or Phase Lag with Latency. 

The justification for this decision is that the Sinewave accomrnocation 

response is considered a smooth or pursuit type of response, unlike a 

jumpwise adjustment to a pulsed (Square wave) target. For a review of 

the dependent variables, the reader is again directed to Figures 21 and 

22, Appendix c. 
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Static Accommodation Experiment 

Phase 1. (Days 1 Through 5) 

Cell means for target Distance as a function of Time Blocks are 

plotted in Figure 3. An analysis of variance for Phase 1 shows a 

significant main effect for the target Distance (O.OD, 3.0D, 01), 

L(2,6) = 15.557, ~ < 0.01. There was also a significant interaction 

effect (towards the far direction) for Time Blocks (1 through 4) x 

target Distance, F(6,18) = 3.727, ~ < 0.02. (The complete analysis of 

variance summary table is presented as Table II, Appendix B.) 
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It was also desired to look more closely at any possible dynamic 

effects on static accommodation over time. Therefore, an analysis of 

variance was performed for a second-by-second examination of the differ

ences between Time Blocks 1 and 2. For the purposes of this analysis, 

each original Time Block was subdivided into seven separate Time 

Intervals to represent each successive five seconds of both the Base 

and Task Time Blocks. Each interval is actually a mean of five data 

points to include the time 2.5 sec. before to 2.5 sec. after the 

Interval. This procedure was used to smooth out any momentary fluctua

tions such as eye blinks and the 2-3 cycle per second accommodation 

oscillations. 

Cell means of Time Blocks 1 and 2 as a function of target Distance 

and Time Intervals are plotted in Figure 4. It should be noted that 

there is an apparent "gap" between the end of the Time Block 1 (Track 

Only) and the beginning of the Time Block 2 (Track + Count) conditions. 

This gap is, of course, the five-second interval \>lhere the subject was 

receiving the instructions, "Write backwards by ones, start at • • • 
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(random three-digit number)." Analysis of variance for the two con

secutive Time Blocks reveals a significant main effect for Target 

Distance, F(2,6) = 12.988, £ < 0.01. There is also a single interaction 

effect for Time Blocks 1 and 2 (Base, Task) x Target Distance, !(2,6) = 

6.798, ~ < 0.05. (The analysis of variance summary table is presented 

in Appendix B, Table III.) Again, because the variance of the OL con

dition was quite large, a separate analysis of variance using only the 

target Distances of O.OD and 3.0D was performed. This analysis of 

variance shows significant main effects for Time Blocks 1 and 2, 

K(l,3) = 36.107, ~ < 0.01, and for target Distance (O.OD, 3.0D), 

F(l,3) = 304.116, ~ < 0.001. There were also n1o other significant 

three-way interaction effects, Time Intervals (1 through 7) x Time 

Blocks (1 and 2) x target Distance, F(6,18) = 4.531, ~ < 0.01; the 

second three-way interaction revealed significant effects for the Time 

Intervals (1 through 7) x Days (1 through 5) x target Distance, 

F(24,72) = 2.312, ~ < 0.01. (The analysis of variance summary table is 

presented as Table IV, Appendix B.) 

As might be expected, Static accommodation experiments show strong 

significant main effects for the target Distance variables. This main 

effect, however, is a trivial indicator that when a target is set at a 

particular distance, the eye tends to remain focused on it. In fact, 

ill, experiments (either Static or Dynamic) with the concomitant Phases 

showed this main effect of Distance. Therefore, because this main 

effect is both trivial and expected, it will not be commented upon 

further. 

The single interaction effect of Time Blocks x Distance is the 

first indicator that the concurrent mental task is accompanied by a 
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significant shift away from the near point; furthermore, it appears that 

tqe recovery may not be instantaneous. In s0me instances, it took as 

long as the full minute of the two rebase periods for the subject to 

bring his accommodation to the original near point after cessation of 

the Secondary task. The function labeled "3 DIOPTER TARGET" in Fig-

ure 3 illustrates that during the rebase period T3, accommodation has 

not recovered to the original T1 value. 

?hase 2. (Days 4 and 5) 

For Phase 2, days 4 and 5, there was a single significant main 

effect for target Distance, K(2,6) = 17.9181, R < 0.005. Since, again, 

the variance of the OL condition was large, a separate analysis of 

variance was performed using only the target Distance of 3.0D. For 

this analysis of variance, there was a significant main effect of Time 

Blocks, F(3,9) = 4.195, R < 0.05. The expected significant main effect 

of levels of Secondary task Difficulty did not occur, although, as be

fore, the accommodation shift in the far direction appeared during the 

T2 Time Block. Because of the overall negative nature of the results 

during Phase 2 of the Static accommodation experiment, no figure is 

sho~m. (Complete analysis of variance summary tables for Phase 2, 

using the three Distance conditions [Table V] and the single 3.0D 

target Distance [Table VI] are presented in Appendix B.) 

As indicated in Table V, Phase 2 results did not immediately 

indicate any difference between Time Blocks. The most likely reason 

for this negative finding was the large variance around the OL (Open 

Loop) conditions. Again, as in Phase 1, a separate analysis of 

variance for only the Target Distance of 3.0D did indicate a significant 
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shift towards the far point with its subsequent slow recovery time. 

There was an unexpected negative finding, however; the Difficulty of 

the Task (lX, 3X, 7X) did not induce any greater significant shift than 

had been encountered than with the original lX task. 

The separate analysis of variance using only Time Blocks 1 and 2 

divided into subsequent Time Intervals 1 through 7 (0 through 30 sees.) 

reveals a similar two-way interaction of Time Blocks (1 and 2) x Target 

Distance (see Figure 4). Again dropping the OL condition with its 

large variance from the analysis of variance yields an Intervals x Time 

Blocks x Distance significant interaction effect. 

Hence, there are several curious and unexpected findings associated 

with this experiment. First, although it might be expected that the 

largest accommodation shifts would occur when the eye is at the 

theorized 11 resting position" (i.e., an eye not driven by focus require

ments) of about l.OD, this is, in fact, not the case. At this point, 

about all that can be said of empty field (OL) accommodation shifts is 

that there are large individual differences and that the "apparent11 

interaction by any OL conditions (as in Figure 4) should probably be 

discounted until further extended experimentation can be done. As 

Roscoe and Benel (1978) have stressed, long-term effects of empty 

fields (1 minute or longer) on accommodation have not been well studied. 

The fact that subjects were preaccommodated to OL conditions for at 

least one minute before the experiment was started may well have induced 

a "hunting" procedure noted in Roscoe Benel' s (1978) paper. Thus far, 

the only reliable empty-field effects found on accommodation have been 

short-term (1 minute or less) ones of volitional control (Randle, 1975), 

visual imagery (Malmstrom and Randle, 1976), and a vestibular-ocular 
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accommodation reflex (Clark, Randle, and Stewart, 1975). 

The explanation as to why this rather signif~cant accommodation 

shift should only be apparent during the presentation of a fixed-focus 

(near) target is, as yet, unclear. Certainly, it would be understand

able that such a far shift would not be expected to occur during 

presentation of a O.OD (far) target because of certain boundary effects; 

that is, the eye is physically incapable of accommodating beyond its 

far point. 

Common sense might suggest that presentation of a fixed-focus 

target would cause accommodation to "anchor" itself to that target, not 

unlike a visual capture phenomenon. This is certainly not the case, 

for if there is a visual capture tending to focus to the near target, 

there is an equally powerful opposing force tending to push accommoda

tion towards the far point. 

It must be stressed that, although large individual differences 

in the so-called resting position of accommodation have been reported 

(Leibowitz and Owens, 1975), these differences have not been well 

examined. Figure 5 shows the large individual variations in the mean 

accommodation resting position calculated at both the beginning and end 

of the experimental session and over the five-day period for Phase 1. 

As can be seen, from this study day-to-day and even task-to-task 

variations are observed, making this phenomenon even more fertile 

ground for speculation. Therefore, the apparent trend of extended 

empty field responses shown in both Figures 3 and 4 should probably be 

disregarded. 

The interaction effect of Target Distance (OD, 3D) x Time Blocks x 

Time Intervals, using only the OD and 3D Target Distances (see Table VI, 
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Appendix B), indicates, first, that the far accommodation shift effects 

are only compounded over time. That is, the longer the counting task 

continues, the more severe the shift. Second, the "gap" of about 0.2D 

between the 3.0D (near) conditions of the end of Time Block 1 and the 

beginning of Time Block 2 (see Figure 4) suggests an information 11 load

ing11 response. That is, the five-second interval where the subject is 

passively receiving instructions to count backwards is sufficient to 

initiate a far accommodation shift. Hence, there is a distinct possi

bility that nearly any information processing, even a passive monitoring 

of instructions, could be expected to start an accommodation shift in 

motion. 

The original impetus for observing a small number of subjects over 

a long (five-day) period was to assess the possibility that the accommo

dation shift during the Secondary Task might be amenable to learning 

effects. That is, if the subject were to become adapted to both the 

Primary and Secondary Tasks, one could expect the accommodation shift 

to disappear. Although there was some significant improvement, for 

example, on the performance of the Secondary Task from Days 4 to 5 

(e.g., see Figure 18), there was no such lessening of the accommodation 

shift to the far direction by days of practice for Phase 1 or Phase 2. 

Most of the improvement in performance lies with the Secondary Task and 

not the Primary Task. 

Dynamic Accommodation Experiment 

Phase 1. Sine Wave Tracking Response 

Amplitude. Figure 6 is a reproduction of actual data obtained on 
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Day 2 from subject MU1. The particular task was a Secondary lX back

wards counting task (Hental) and a Primary 0.1 hz. Sine Wave 
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tracking task. The data pictured are typical for this sort of task, 

showing a suppression of peak responses during the Secondary task (Time 

Block T2), with a particular accommodation shift to the far (O.OD) 

point. Cell means for the Peak-to-Peak Amplitude responses as a 

function of Time Blocks and Task are plotted on Figure 7. Analysis of 

variance for Amplitude shows a significant main effect for Time Blocks 

to the far direction f(3,9) = 5.711, ~ < 0.02. There is also a single 

two-way interaction effect for Time Blocks x Task (Mental-Written), 

f(3,9) = 4.817, ~ < 0.05. (Tile complete analysis of variance summary 

is shown as Table VII, Appendix B.) 

During performance of the Secondary Task, there is a very charac

teristic decrease in Amplitude, whether the Task is mental or written 

counting. In this instance, the mental task tended to show the smallest 

effect relative to the base and rebase periods (see Figure 7). This 

smaller effect appears to parallel a similar pupillary response experi

ment by Kahneman, Peavler, and Onuska (1968) in which subjects were 

required to either respond verbally or only think of answers to a con

current mental task. In Kahneman, Peavler, and Onuska (1968), greater 

pupillary dilation was found for the verbal than for the mental 

response. Accommodation or pupillary response differences would imply 

that there is a certain amount of output interference by the method of 

response; however, it should not be overlooked that the main effect of 

differences between Time Blocks applies for the mental as well as the 

written task. It also appears that recovery from the accommodation 

shift is slower after the mental task. This sluggishness in recovery 
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could well be due to the fact that the subject is mentally retaining 

his answer until the end of the T4 Time Block, whereas during the 

written counting Task, the subject has already written his final answer 

at the end of T2 Time Block and has no further need to retain the 

answer. Perhaps a better method of determining whether retaining an 

answer in short-term memory would induce an accommodation shift to the 

far direction would have been to have the subject write down his single 

answer at the conclusion of the T2 (mental Task) Time Block. 

Phase Lag. Figure 8 depicts cell means of Phase Lag, shown in 

both sees. and degrees, as a function of the stimulus Frequency. An 

analysis of variance for Phase Lag (measured only in sees. (time units)) 

shows a single main effect for Frequency (0.1 hz., 0.2 hz., 0.4 hz.) of 

the moving target stimulus, F(2,6) = 24.239, R < 0.0025. (Appendix B, 

Table VIII shows the complete summary table.) 

The shift in Phase Lag appears to be solely due to the speed of 

the moving target and is unaffected by the Secondary task interference. 

Thus, it would appear that, for this experiment, the time required for 

the initiation of an accommodation response on a target which changes 

focus smoothly is primarily reflexive and not volitional. This should 

not be construed as lack of support for the experiment of Randle and 

Murphy (1974) who found a definite and steady decrease in Phase Lag over 

a seven-day period. Their experiment included over five times the 

number of observations. For the purposes of the present experiment, 

there was no evidence that Phase Lag improves with practice. It should 

also be noted that there was a similar negative finding for Latency 

during Phase 2. (Latency with the Square wave response might be 
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considered analogous to Phase Lag with the Sine wave response.) 

There is an apparent anomaly when Phase Lag is viewed first in 

time units of seconds and then in physical distance of degrees. The 

process of converting Phase Lag seconds to degrees reveals that, 

although the amount of time the subject lags behind a target actually 

decreases as the Frequency of the moving target is stepped up, the 

physical distance the subject lags behind the target increases. There 
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_is also a possibility the (timewise) decrease in Phase Lag as Frequency 
~ 

is increased may be a compensatory accommodative mechanism to keep 

tracking from falling too far behind the stimulus movement. 

Phase 2. Square Wave Tracking Response 

A more parsimonious description of the Magnitude and Direction of 

the Square wave tracking response will be used from this point on, 

except when noted. Because both the Near (Pulse Track) and Far (Zero 

Track) responses could be included in the same analysis of variance, 

the Magnitude dependent variable will appear as differences between the 

Zero and Pulse Track. It also follows that differences, or changes in 

Magnitude, will appear as interaction effects with the Zero-Pulse Track 

variable. Therefore, these interaction effects are indications of 

Direction accommodation shifts. 

Figure 9 is a reproduction of actual data obtained on Day 5 from 

subject DS. The particular task was a Secondary 7X backwards counting 

task (written) and a Primary 0.2 hz. Square wave tracking task. The 

data pictured are typical for this sort of task, showing a suppression 

of tracking responses during the Secondary task (Time Block T2), with a 

particular accommodation shift to the Zero Track (far point). 



N 

~ 
£-
~·--

~ 
~--

START 
TRACK 

0 
START 
COUNT (?X) 

-Tl- u -T2-

··· - ;-s?& q, -·-

"\1- . -"'('"' 

~--.:~""t:c.:~n.\1' ...... ; "'·'·· -~.---~~-·····.n,,,,., 

STOP 
COUNT, 
CONTINUE 
TRACK (1) 

D -T;-

-<~ 

···-~ ------
~~ 
"' " 

CONTINUE 
TRACK (2) u -T4-

"'" 
OD 

i5' 

Figure 9. Dynamic Accommodation Experiment. Representative Raw Data From a Subject (DS) Tracking 
the 0.2 Hz. Square Wave, Day 5 

.;:-. 
N 



43 

Magritude and Direction. Cell means of the Zero-Pulse Track values, 

p+otted as a function of Time Blocks, are shown in Figure 10. Also, the 

cell means of the Zero-Pulse Track values, plotted as a function of the 

target stimulus Frequencies, are shown in Figure 11. The analysis of 

variance for the Hagnitude and Direction variables shows a significant 

main effect for differences between Zero and Pulse Track, F(l,3) = 

108.242, E < 0.0025. There are also two related two-way interaction 

effects; one for Time Blocks x Zero-Pulse Track, !(3,9) = 7.163, ~ < 

0.01, and the other for stimulus Frequency x Zero-Pulse Track, K(2,6) = 

144.367, ~ < 0.001. (The analysis of variance summary table is 

presented in Appendix B as Table IX.) Again, it should be noted in the 

analysis of variance, that differences bebveen the Zero and Pulse Track 

functions are, of course, the Magnitudes; and the variations in these 

magnitudes are the Directions of the shift. 

Similar to the findings for a Static target, there also appears to 

be a relinquishing of focus on the Pulse (3.0D) Track as it moves near. 

The Zero Track appears relatively unaffected (see Figure 10). Thus, 

although it appears that the eye is tracking targets well at the far 

point, it is almost as if a boundary has been established during per

formance of the Secondary task, beyond which the accommodative system 

will not venture. One might, perhaps, understand the eye losing focus 

on a static target as it remains near during a Secondary task on the 

grounds of a reduced processing capacity; however, during the Dynamic 

accommodation Phases, the eye is obviously maintaining track as the 

target moves at the far and intermediate ranges, only to lose it as it 

moves in close. The eye then appears to wait for the target to emerge 

from its near extreme before reacquiring it. The raw data recordings 
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presented in Figures 6 and 9 bear out this point. Also, as there are 

no indications that the magnitude of accommodation recovers with trial 

days, the lack of a learning effect is interpreted as indication that 

the reduced accommodation magnitude is both an involuntary and inherent 

effect. It is not overcome by practice. 

Although the accommodation shift can be, in part, determined by 

the nature of the Secondary task, such a shift does not appear to 

follow an intermediate-resting-state of accommodation model (the shift 

observed here is only one-sided). The nature of the response to the 

Primary task may well follow such a model. It will be noted that there 

was a substantial two-way interaction effect of Target Frequency x Zero

Pulse Track (see Figure 11). It would, thus, appear from the trend of 

this figure that if the target were cycling fast enough between a near 

and far point so that the accommodative system could not track the 

target, the eye might well settle for the intermediate value of these 

extremes of the target movement. 

Latency. Cell means for Latency as a function of stimulus Fre

quency are plotted in Figure 12. An analysis of variance for Latency 

shows a significant main effect only for stimulus Frequency, F(2,6) = 

18.886, ~ < 0.005. There is also a single two-way interaction effect 

for Time Blocks x Days (1 through 3), F(6,18) = 4.778, R < 0.005. (TI1e 

analysis of variance summary table can be seen in Appendix B, Table X.) 

Variations in Latency appear mostly due to changes in the Primary 

Task target stimulus Frequency rather than any addition of or changes 

in a Secondary Task. There was an observed two-way interaction effect 

of Time Blocks x Days; however, for this effect it must be stated that 
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on two of the three days, Latency was shorter during the T2 (Secondary 

T~sk) period, rather than longer as might be expected if the subject 

were attending to two equally important tasks. Hence, this Time 

Blocks x Days interaction is not supportive of any particular neuro

logical or attentional model. 
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yelocity. Cell means for Velocity in diopters/sec. as a function 

of target Frequency are plotted in Figure 13. An analysis of variance 

for velocity shows a significant two-way interaction effect for stimulus 

Frequency x Direction (Approaching-Receding), f(2,6) = 5.782, ~ < o.os. 

There is also a single three-way interaction for Time Blocks x Days (1 

through 3) x Task (Mental-Written), F(6,18) = 2.470. In addition, 

there are two four-way interaction effects of Time Blocks x Days x 

Task x Frequency, F(l2,36) = 2.100, ~ < 0.05, and for Time Blocks x 

Days x Task x Target Direction, F(6,18) = 2.988, ~ < 0.05. The complete 

analysis of variance summary for Phase 2 Velocity is found in Appendix B 

as Table XI. 

The question of whether accommodation on an approaching or receding 

target is faster still remains unanswered. Contrary to Randle and 

Murphy (1974), this study appears to show that the velocity of accommo

Gation for these subjects was faster on approaching targets. However, 

at low speeds (0.1 hz.), the difference in velocity was negligible (see 

Figure 13). The only conclusion which can be made about the velocity 

of accommodation is that it is subject to a wide variety of individual 

differences and may vary from day to day and task to task. Under the 

conditions of both this study and Randle and Murphy (1974), individual· 

differences may make the velocity of accommodation the least predictable 
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of all the dependent variables. 

Phase 3. 0.2 Hz. Sguare Wave (Days 1 to 2) 

An analysis of variance for the 0. 2hz. target tracked over five 

consecutive days shows only a single main effect for the Zero-Pulse 

Track dependent variable, F(l,3) = 85.152, ~ < 0.005. There were no 

other significant effects noted for either :t-1agnitude, Direction, 

Latency, nor Velocity. Analysis of variance summary tables for the 

Zero-Pulse Track, Latency, and Velocity can be found in Appendix B, 

Tables XII, XIII, and XIV, respectively. 

The central purpose of this phase of the experiment was to deter

mine the effects of practice on the suspected accommodation shift, 
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using a single, well-observed target frequency. The 0.2 hz. Square wave 

was chosen because previous pilot studies had shown it to be one of the 

more reliable waveforms which would show the accommodation shift. It 

is noteworthy that the critical main effect of Days (1 through 5) did 

not reach an acceptable level of significance, nor were there any 

interaction effects which would implicate changes in Latency or 

Velocity by Days. It should also be noted that the accommodation far 

shift, which has been appearing significant with regularity in the 

previous experiments, also failed to show an acceptable level of 

significance. However, this lack of significance is not considered 

particularly disappointing, as it could be mostly attributed to a 

drastically reduced amount of data and degrees of freedom from other 

Phases (see Chapter II, Figure 2, for the Block Schematic of Phases). 

Even with the reduced degrees of freedom, the Time Blocks x Zero-Pulse 

· Track interaction came remarkably close to meeting an acceptable 
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significance level (see also Appendix B, Table XII). 

Phase 4. Difficulty of the Secondary Task 

Data analysis from Phase 4 was broken into ~o distinct comparisons 

using analysis of variance. The first comparison was made with four 

Difficulty levels of the Secondary Task (lX, 3X, 7X, and NX). Because 

the NX (do not count, ignore the target) special condition was only 

administered at the end of the experimental session and because it 

could not truly be called a counting task, another comparison was made 

using only the three Difficulty levels (lX, 3X, 7X) of the Secondary 

task. Analyses used comparing the NX Difficulty level are presented 

for informational purposes only. 

Magnitude and Direction. Cell means of the three collapsed 

Difficulty levels (lX, 3X, 7X) and the NX level plotted as a function 

of Zero-Pulse Track and Time Blocks are shown in Figure 14. For the 

four Difficulty Levels there is a single main effect for the Zero-Pulse 

Track, !(1,3) = 53.75, ~ < 0.005. There is a single ~o-way inter

action for Time Blocks x Zero-Pulse Track, f(3,9) = 35.80, ~ < 0.0005; 

and there is a single three-way interaction effect of Time Blocks x 

Zero-Pulse Track x Difficulty levels (lX, 3X, 7X, NX), F(9,27) = 4.804, 

~ < 0.001. (The analysis of variance summary table is presented in 

Appendix B as Table XV. ) 

An analysis of variance for the same model using only three 

Difficulty Levels (lX, 3X, 7X) shows a significant main effect for the 

Zero-Pulse Track, f_(l,3) = 56.655, ~ < 0.005, and an additional two-way 

interaction of Time Blocks x Zero-Pulse Track effect, !(3,9) = 8.506, 
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£ < 0.01. (The analysis of variru1ce summary table is shown in Appendix 

B, Table XVI.) 

The central purpose of Phase 4 was to discover whether the degree 

of Difficulty of the Secondary task would affect the amount of accommo

dation far shift. To examine this possibility further, Phase 4 must be 

looked at both with and without the inclusion of the NX (ignore the 

target; do not count) task. Comparisons of the NX task to the other 

varying Difficulty Level tasks (lX, 3X, 7X) were to determine whether 

the two types of tasks showed similar task-related accommodation shifts. 

If the accommodation shifts were similar, it could be concluded that a 

concurrent mental task, indeed, caused the eye to "ignore" the moving 

target. Such a similarity of shift would, therefore, support a Capacity 

Model of information processing. 

The results for the analysis of variance including only the three 

Difficulty levels (lX, 3X, 7X) showed only effects for the Magnitude and 

Direction of shift. There was no indication that the varying degree of 

difficulty made any difference in the amount of shift observed. This 

was an unexpected finding. Although this negative result could be 

described as disappointing, there are several possibilities to explain 

such a lack of significance. Obviously, the lack of observations in 

Phase 4 could have been a major factor. A more likely explanation, 

however, lies in the manner of subject selection. The subjects were 

selected on two major criteria. First, they had exceptionally good 

vision and accommodative ability; and second, they had well above the 

average education and intelligence. Therefore, it is quite possible 

that this experiment might have been limited to subjects less likely to 

show increased accommodation shifts to a, perhaps, rather boring and 
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uncreative Secondary task. Certainly, previous pilot studies have shrn~n 

subjects to exhibit larger shifts with increasingly more difficult 

Secondary tasks. TI1e experiment by Randle, Roscoe, and Petitt (in 

preparation) showed increasingly greater accommodation shifts by 

commercial airline pilots when performing critical decisions on a 

simulated night landing task. Moreover, in Randle, Roscoe, and Petitt's 

experiment, the decision was intimately related to the visual task; in 

the present study, conceivably, the subjects could elect to forgo either 

the Secondary or Primary task without any immediate penalty (e.g., a 

crash landing). In the simulated landing experiment, the nature of the 

Secondary task would appear to be somewhat more challenging than a 

backwards counting task. A larger sample of subjects more representa

tive of the general population or else a task more in line with the 

abilities of the subjects should tend to show a greater accommodation 

far shift as the difficulty of the task is increased. Of course, there 

exists the possibility that the accommodation far shift is an all-or- · 

nothing phenomena, but this possibility does not fit well either with 

previous pilot studies nor with the nature of the pupillary response. 

The analysis of variance for the four Difficulty levels (lX, 3X, 

7X, NX) of Secondary task shows effects for Magnitude and Direction of 

the accommodation shift and for the four Difficulty levels. However, 

in comparison to the three Difficulty level analysis, there is evidence 

that the NX task accounts for most of the variance in the effect of the 

degree of Difficulty. Figure 14 indicates that the magnitude of 

accommodation during the NX Secondary task is much less. In addition, 

the indicated direction of the accommodation shift is misleading. The 

mean between the NX Zero and Pulse track T2 values appears to be about 
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1.0 diopter, and this NX condition would appear to be settling towards 

a resting position of 1.0 diopter. But an eAamination of the actual 

raw data reveals this is not the case. Three of the subjects, when 

instructed to "ignore the target," let their accommodation slip to the 

far side of the target movement. Figure 15 shows subject DS, day 5, 

who ignored the target in this typical manner. It can also be seen 

that there is also some involuntary tracking of the target while the 

subject is "ignoring" the target. Indeed, there is also a reduced 

velocity of accommodation to about 3.0D/sec. during this T2 period, but 

it does not, as might be expected, fall to zero. 

The other subject, curiously, when instructed to "ignore the 

target," shifted his accommodation to a point inside the target move

ment. Figure 16 shows subject HLM "ignoring" the target movement on 

day 4. Again, it can be seen that there is still some residual, in

voluntary tracking of the target, even though the subject believes he 

is ignoring the focus stimulator changes. Incidentally, the near 

accommodation shift during an NX task, while unusual, is by no means 

unique. It has been observed in other pilot subjects. 

The implications of a non-uniform accommodation shift while ignor

ing a target are several. First, it is suggested that the direction a 

subject shifts his accommodation from in order to ignore a target is 

largely arbitrary, so long as the shift occurs in a manner that the eye 

is focused off the target. Second, it has long been assumed that when 

a person "lets his mind go blank," accommodation necessarily slips to a 

resting position, long assumed to be the far point (Singer, 1974). 

Still others would suggest that this slippage of accommodation might 

move to a value around l.OD or the individual resting position of 
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accommodation. The data presented here supports neither position. In 

actuality, MLH's empty field resting position was calculated to be 

around -0.8D (see Figure 5). 

Latency. An analysis of variance for the four Difficulty levels 

(lX, 3X, 7X, NX) shows a single two-way interaction effect of Days (4 

and 5) x four Difficulty levels, F(3,9) = 6.183, ~ < 0.025. (The 

summary table for the four Difficulty level analysis of variance can 

be found in Appendix B, Table XVII.) The analysis of variance for the 

three Difficulty levels yields a similar two-way interaction effect, 

F(2,6) = 9.565, ~ < 0.025. (This summary table for the analysis of 

variance is in Appendix B, Table XVIII.) 

This interaction would suggest that the Difficulty levels, as 

measured by any Latency differences, were indistinguishable on day 4; 

but on day 5 the differences were again significant. 
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Velo~ity. Cell means for the three collapsed Difficulty levels 

(lX, 3X, 7X) and for the single NX task are shown in Figure 17. An 

analysis of variance for the four Difficulty levels of Secondary task 

shows only a single two-way interaction effect for the four Difficulty 

levels x Time Blocks F(9,27) = 2.407, ~ < 0.05. (The analysis of 

variance summary table can be found in Appendix B, Table XIX.) Analysis 

of variance for the three Difficulty levels of Secondary task reveals 

no significant effects whatever. (The summary table for this analysis 

of variance table is presented as Table XX, Appendix B.) 

Comparisons of the four- and three-Difficulty levels of Secondary 

task reveals a substantial difference between the velocity of accommoda

tion when a subject is both intentionally tracking and ignoring a 
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target changing in focus. However, the velocity of accommodation does 

not drop off to zero while the target is being ignored but merely slows 

to around 3.0D/sec. Inspection of the raw data shmvn in Figures 15 and 

16 should reveal that there is a definite cyclical pattern of target 

tracking during the Tz Time Block. The Fourier transform used in data 

reduction (see Appendix C) confirms this statement. 

Secondary Task 

A separate descriptive analysis of errors on tl1e Secondary Task 

(backwards counting) was also tabulated. Different methods of scoring 

errors between the written and mental tasks were, of course, necessary. 

Whereas it was possible to recheck every counting step in the written 

task, only a final number, or solution, to the mental task was available 

to the experimenter at the end of each trial. The error on the mental 

counting task was merely the arithmetic difference between the number 

the subject arrived at and the number he should have arrived at. Base 

rates for mental bacl<Wards IX counting task were zero; all base rates 

were arrived at by having the subject count backwards with his eyes 

closed. A table of the base error rates by subject for the written 

tasks, days 4 and 5, are listed in Table I. 

Although it appeared initially that during Phase 1 and Phase 2 that 

the error rates for the written task were about half that of the mental 

task, when both tasks are scored on the same criteria~, arithmetic 

deviation from the final "correct" number, the error deviations became 

more nearly equal. That is, the error deviation for the written task 

was 1.71 per trial and for the mental task was 2.03 per trial. 



TABLE I 

MEAN BASE ERROR RATES PER TRIAL ON SI;:CONDARY 
TASK, DAYS 4 AND 5, BY SUBJECT 

SUBJECT lX 3X 

DS o.o 0.0 

SQ o.o 4.5 

MLH 0.0 o.o 

RL o.o o.o 

7X 

0.0 

5.5 

3.5 

o.o 

It was previously concluded that practice effects were not 
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observed on the Primary tracking task. However, a descriptive analysis 

of the written task data indicates that there were rather striking 

practice ~ffects on the Secondary counting task from days 4 to 5. 

Furthermore, these practice effects seem to become less pronounced the 

more difficult the nature of the Primary task becomes. Hence, there is 

a rather curious indication that, although the performance on the 

Primary task remains at a relatively constant level over days, perform-

ance on the Secondary task improves. Figure 18 shows the effects of 

practice on the Secondary task over days 4 and 5. The baseline rate is 

the Eyes Closed condition. 

Because the Magnitude of accommodation shift appeared to be the 

most reliable dependent variable which indicated the addition of a 

Secondary task, it was decided to present an abbreviated scatterplot 

showing the subjects' Secondary task performance relative to his 



A 7X 

6.0~ ~ ~ JX. \ 6.0 
~ 1X 

5.01- \ 5.0 

...:! 
< 
l;d 4.0 4.0 4.0 
8 

P:: 
r:r:l 
p.. 

en 
P:: 
0 
P:: 
P:: 
r:r:l 

z 
< 
r:r:l :;;:;: 

I EYES CLOSED STATIC TRACK DYNAMIC TRACK 

J,O J,O J.O 

2.0~ ~ 2.0 2.0 
lill D 

1. Ol-~ 1.0 1.0 

G . G 

o.T , o.o e G o.o 
4 DAY 4 DAY 5 4 DAY 5 

Figure 18. Effects of Practice on Written Secondary Task From Day 4 to 5. 
Mean Values of Errors per Trial on Eyes Closed (Baseline), 
Static Target, and Dynamic Target Conditions 

0'1 
N 



63 

Primary task performance. Figure 19 shows the individuals' average 

errors per trial as a function of average diJpters shift from the 3D 

Static target. Similarly, Figure 20 shows a scatterplot of the 

individuals' average magnitude of accommodation shift during the 0.2 hz. 

Square wave tracking task on days 4 and 5, relative to their average 

error rates per trial. 

Although it may be difficult to draw many firm conclusions about 

data trends from a scattergram containing only four points, the follow

ing statements appear justifiable. For three of the four subjects, it 

appears that the ones who showed the largest accommodation shift also 

performed more poorly on the Secondary task. The exception was subject 

SQ who appeared to have initially done so poorly on the 3X and 7X tasks 

that he gave up all attempts at further counting and appeared to con

centrate only on the Primary tracking task. Examination of his 3X and 

7X calculations revealed that he typically performed only three or 

four subtractions during the time the other subjects performed the 

usual fifteen. In addition, subject SQ showed a smaller accommodation 

shift during the 3X and 7X Secondary tasks, a further indication that 

he had given up attempts to perform the Secondary task. 
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CHAPTER IV 

GENERAL DISCUSSION 

Overall, the findings of this study support neither a Capacity nor 

a Parasympathetic Arousal Hodel. The data do, however, strongly support 

a Sympathetic Arousal Model. It is of peculiar interest that the 

accommodation shift was most clearly seen when the eye was attempting 

to focus on a near target; the far accommodation shift was not observed 

under empty field (01) conditions. The Sympathetic Arousal Model is 

quite in agreement with well-known pupillary dilation responses to 

mental loading (cf. Kahneman, Peavler, and Onuska, 1968). Furthermore, 

since accommodation and pupillary responses have long been known to 

operate quasi-dependently, this finding should not be unexpected. 

An absence of the accommodation shift in the far direction during 

empty-field conditions should not be construed as evidence that no 

changes occurred but only that there may, as yet, be unaccounted-for 

effects during extended empty-field conditions. Certainly, as Roscoe 

and Bene! (1978) have stressed, very little is known about the long-term 

effects of empty-field myopia. Hestheimer (1957) observed a long-term 

rise in empty-field accommodation with the bvo subjects he intentionally 

insulted. (If, indeed, pupillary contraction and positive accommodation 

are indicators of parasympathetic arousal, Westheimer's subjects must 

have found the experience of being insulted a truly distasteful ordeal.) 

Quite possibly, such factors as subjects' attitudes or the involuntary 
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"hunting" behavior of the accommodation system are topics for further 

research. For example, previous pilot work in the optometer laboratory 

using over ten subjects attempted to investigate accommodation responses 

to diverse concepts as "joy," "anger," and "death" in empty-field con

ditions. The subject responses usually produced some magnitude of 

accommodation change, although the direction of the shift was by no 

means predictable. Likewise, the (intentional) utterance of "acciden

tal" obscenities or the intrusion of a sudden, loud noise nearly always 

produced an accommodation shift of unpredictable direction. 

It appears that the addition of a Secondary task establishes an 

accommodation boundary beyond which the eye's near accommodation does 

not venture. This boundary establishes itself whether the target is 

moving or static. Furthermore, extended practice appears to make no 

difference in overcoming the shift. Hence, this finding is interpreted 

as evidence that the accommodation shift in the far direction is a 

neurological indicator of some degree of mental activity and not a 

tradeoff in processing capacity. 

Residual effects from the accommodation shift in the far direction 

seem to last as long as one minute, although most subjects appeared to 

regain their normal range of accommodation within the first 30 seconds. 

Within any particular static accommodation trial, continuation of 

a Secondary task only served to exaggerate the accommodation shift. 

The exact human adaptive value of such a response is unclear. From an 

evolutionary stru1dpoint, it may well be that intense periods of mental 

activity coupled with the necessity to maintain an extended near focus 

(such as in reading or mathematical problem solving) are only very 

recent human endeavors. If it could be shown that, say, extended 



68 

periods of reading and concentration were to involve a constant battle 

of an ongoing accommodation far shift and a recurring attempt to 

eliminate the reti.nal blur from the shift, such an opponent process 

would go a long vmy towards explaining subjective reports of long-term 

reading eye fatigue. In the past, reports of eye fatigue have been 

popularly ascribed to eye-muscle fatigue or even "psychological phenom

ena." Historically, the explanations for eye fatigue have been both 

unsatisfactory and insufficient. 

Overall, Latency, Velocity, and Phase Lag show negative effects as 

functions of the Secondary task. The negative results of Latency and 

Velocity are possible indications that these dependent variru)les are 

more sensitive to variations in the target stimulus motion and distance 

than variations in the nature of the Secondary task. 

It has not been established whether velocity of accommodation for 

an approaching target is faster than velocity for a receding target. 

There are,large individual differences in abilities of velocity of 

accommodation, and it is quite possible that rapidity in approaching 

accommodation velocity could make substantial differences to persons 

requiring highly skilled hand-eye coordination, such as professional 

tennis or baseball players. 

Subjects instructed to "ignore" a target changing in focus did not 

all show the same type of response as when they performed the Secondary 

counting tasks. Thus, it may be concluded that the observed Secondary 

task-related accommodation far shift is not identical to an allocation 

of processing capacity. Again, the Capacity Model is not supported 

insofar as it may be applied to visual accommodation and a Secondary 

task. 
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The observation that incremental accommodation shifts were not 

noted with increasing difficulty of the Secondary task may, in part, be 

attributable to the limited number and type of subject examined for 

this study. The high intelligence and exceptional accommodation control 

of these subjects may have led to a very conservative estimate of the 

eye's sensitivity to mental loading. In the long run, we are optimistic 

that the accommodation response may prove to be every bit as reliable 

an indicator of sympathetic and parasympathetic arousal as the pupillary 

response. 



CHAPTER V 

Sillfi1ARY AND CONCLUSIONS 

The original impetus of this study was to investigate the nature 

of an accommodation range restriction during a concurrent mental back

wards counting task. Of particular interest were the magnitude and 

direction of the shift and the long-term effects of practice on this 

accommodation rru1ge restriction. The preponderance of evidence in this 

study pointed to the conclusion that the addition of a Secondary, con

current mental task resulted in an overall shift of accommodation of 

about 0.3 diopter from a 3.0 diopter (near) target towards the far 

point. Furthermore, this accommodation shift in the far direction was 

strongly ~n agreement with a general Sympathetic Arousal Model, much 

like the well-established pupillary dilation response. 

The nature of the accommodation shift which was attributable to 

the Secondary task appears to have several curious and important 

ramifications: 

(1) The shift to the far direction occurs whether or not the 

target observed is moving or stationary. A concurrent mental 

task appears to establish a boundary within which accommodation 

does not occur. 

(2) The accommodation shift was only observed away from the ·near 

(3 diopter) target and not at all in empty-field conditions. 

Furthermore, the far accommodation shift became more intense 
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the longer the Secondary task continued. 

(3) Recovery of the normal range of accommod~tion, while sometimes 

instantaneous, often took as long as 20 to 40 seconds. Thus, 

it is believed that this long recovery time could be used as 

a measure of the subject's arousal by the Secondary task. 

(4) Subjects were unable to overcome the accommodation shift in 

the far direction, even by five days of practice on both the 

Primary and Secondary task. Hence, it was also concluded that 

this shift in the far direction could be used as an indicator 

of sympathetic arousal. 

(5) The subject responses of accommodative Phase Lag, Latency, and 

Velocity were also observed to vary, but only as a function of 

changes in the Primary task. The addition of the Secondary 

task had little or no effect on Phase Lag, Latency, and 

Velocity. 

(6) Varying the degree of difficulty of the Secondary task did not 

appear to affect the degree of accommodation shift observed. 

This unexpected negative effect may have, in part, been attri

butable to the limited number of observations and the high 

degree of motor coordination of the subjects observed in this 

study. 

The fact that this accommodation shift in the far direction con

sistently showed significant results with such a limited number of 

subjects and observations implies that it is a very reliable and robust 

phenomenon. The shift has occurred, of course, not only for this study, 

but also during numerous pilot studies and experiments whenever some 

measure of a Secondary task was involved. The results of this study, 
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therefore, may have permitted some measure of understanding about the 

origin and nature of the shift. TI1ere is a very real possibility that 

objective measures of accommodation may be as reliable an indicator of 

interest and attitude changes as the well-documented pupillary response. 
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INSTRUCTIONS TO SUBJECTS 

This is an experiment designed to see how well you can do two 
things at one time. He do many things concurrently every day, and we 
do many of them quite well, such as carrying on a conversation and 
driving a car or listening to the radio and typing a letter. Many of 
these things seem quite easy to do at once; however, maybe the first 
time you tried to perform some of these concurrent tasks, it wasn't so 
easy, and maybe it took you just a little more practice than you now 
remember. 

This large piece of machinery with the wires and prisms is called 
an optometer, and what it does is measure the point in space you're 
looking at for any instant. Your entire task with the optometer, for 
today and for the next five days, will be to hold the target in focus 
as best you can; your eye need do nothing else. Sometime the target 
will be changing in focus, and sometimes it will remain steady and not 
change focus. \illatever it does, I' 11 let you know before any experi
mental trial whether it will be changing focus or not • 

78 

.As for the second part of the task, I want to see how well you cari 
count backwards by ones. This may not seem to be a very exciting job, 
but we have good reason to believe that even something as simple as 
this may have effects on your ability to focus on a target. Imagine 
that instead of sitting here in a laboratory looking at an "X" target 
and counting backwards, you're a pilot searching for the end of a run
way in fog and the ground controller is on the aircraft's radio telling 
you to change headings and climb to another altitude. Now, perhaps you 
can see that the problem becomes more interesting. Do you miss seeing 
the end of the runway because you had something else on your mind? 
With this in mind, let's see how well you do at tracking some steady 
and some moving targets. 

[At this point, the subject was given several trials at tracking both 
static and dynamic targets. If he could not perform the task satis
factorily, he was discarded.] 

Now, moving to the second part of the experiment, I'd like to see 
how well you can perform a backwards counting task. By your right arm 
[all subjects were right-handed], there's a pencil and a pad of paper. 
What I'd like you to do is listen to the timer behind you; it ticks 
once every second. I'm going to give you instructions, for example, 
"Hrite backwards by ones, start at three,.-hundred and seventy-six." \llien 
I say "six," I'd like you to start counting backwards at that number, 
seventy-six; do not write the number "three," as it's only there to 
remind you that you won't ever have to do any negative counting. Only 
think about two-digit numbers. On the first tick, write "7 ," and on 
the second tick, write the numeral "6." On the third tick, write the 
numeral "7" again, and on the fourth tick, write the numeral "5," and 
so on. The pacing is really quite easy if you remember to write only 
one digit each second. If you counted backwards for 30 seconds, start
ing at "76," you'd have eventually ended up at the number "61." 
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During all of these counting tasks, what I'll be doing is giving 
you the first thirty seconds of normal target tracking, just as you did 
earlier in the day; however, at the end of the first thirty-second 
period, I' 11 say to count backwards for the next thirty seconds. At 
the end of that thirty-second counting period, I' 11 say~ "Stop count
ing; continue tracking." At that time, just put your pencil down and 
continue tracking the target. Let's try just a fe'.r practice trials of 
your counting backwards on paper with your eyes closed. 

[After the subject had accomplished the '.rritten counting task, he was 
given a backwards mental counting task.] 

Now that you've accomplished that kind of task, I'd like you to 
try the same kind of counting task, only this time, it'll be in your 
head instead of on paper. If I say to you, "In your head, count back
wards by ones, start at three-hundred and seventy-six," I want you to 
think "7-6, 7-5, 7-4," and so on, one digit each second until I say, 
"Stop counting; continue tracking. 11 Since you won't be able to answer 
what number you arrived at when I say "Stop count:i.ng," just hold the 
number in the back of your mind until you come off the optometer at the 
end of the tracking period. One other thing, it won't do you any good 
to subtract fifteen from each number I give you at the beginning of 
the counting task to get the correct number; because sometimes I' 11 let 
you go for thirty-two or maybe even for as long as forty seconds before 
I say "Stop counting." This is just something extra to keep you 
honest. 

[After the subject had demonstrated proficiency on both the '.rritten and 
mental backwards counting tasks, he was given practice on a concurrent 
0.1 hz. Sine wave tracking task and the backwards writing task. At the 
end of the practice trials, he departed and was instructed to return 
the next day for the first of five experimental sessions.] 

For all Static target tracking tasks, the subject was instructed, 

''Write backwards by ••• (ones, threes, sevens), start 
at • • • (randomly selected three-digit number)." 

For all Dynamic target tracking tasks, the subject was instructed either, 

or 

"Write backwards by • • • (ones, threes, sevens), start 
at • • • (randomly selected three-digit number)." 

"In your head, count backwards by ones, start at ••• 
(randomly se.lected three-digit number)." 

For the Ignore the Target (NX) task, the subject was instructed, 

"Stop tracking," 

and to resume tracking on the target on the NX task, the subject was 



instructed, 

"Resume tracking." 

At the end of the fifth experimental session, the subject was informed 
about his performance. 

That concludes the experiment, and I thank you for your patience. 
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TI1us far, I haven't been able to tell you how well you've done on all 
these tasks, mostly because if you'd been flying a plane, you wouldn't 
have known how well you could be focusing on targets and performing 
concurrent mental tasks, also. What you probably don't know is that 
you actually did quite well in holding focus on the target we gave you. 
For every person we selected to participate in this experiment, we had 
to tell three other persons to go home at the end of the first day; you 
were among a select few who had an exceptionally good accommodation 
response in addition to good eyesight. Now, if you'd like, let's take 
some of this data upstairs and go over it; and I'll be glad to answer 
any questions you have. 
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TABLE II 

ANALYSIS OF VARIANCE SUHHARY FOR PHASE 1-
STATIC TARGET--TIIREE DISTANCES 

Source df MS F 

Subjects (SS) 3 41.9030 

Time Blocks (TI) 3 1.0392 3.5675 
SS TI 9 0.2913 

Days (DA) 4 2.2286 0.5689 
SS DA 12 3.9173 

Distance (DI) 2 169.9724 15.5566 
SS DI 6 10.9261 

TI DA 12 0.0648 1.0970 
SS TI DA 36 0.0591 

TI DI 6 0.4598 3.7272 
SS TI DI 18 0.1234 

DA DI 8 0.4358 0.3611 
SS DA DI 24 1.2067 

TI DA DI 24 0.0790 1.1175 
SS TI DA DI 72 0.0707 

TOTAL 239 
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0.05986 

0.69242 

0.00496 

0. 39182 

0.01382 

o. 93061 

o. 34792 



TABLE III 

ANALYSIS OF VARIANCE SUMHARY FOR PHASE 1-
STATIC TARGET--THREE DISTANCES.:.

SEVEN TIHE INTERVALS 

Source df HS F 

Subjects (SS) 3 61.3866 

Time Intervals (TV) 6 0.0130 0.4191 
SS TV 18 

Time Blocks (TI) 1 4.5585 7. 5571 
SS TI 3 o. 6032 

Days (DA) 4 1.3688 0.2190 
SS DA 12 6.2513 

Distance (DI) 2 508.2229 12.9878 
SS DI 6 39.1309 

TV TI 6 0.0572 1.3902 
SS TV TI 18 0.0411 

TV DA 24 0.0240 0.5140 
SS TV DA 72 0.0467 

TV DI 12 0.0420 1. 9651 
SS TV DI 36 0.0214 

TI DA 4 0.1849 0.5028 
SS TI DA 12 o. 3677 

TI DI 2 2.8104 6.7976 
SS TI DI 6 o. 4134 

DA DI 8 1.6996 0.4396 
SS DA DI 24 3.8668 

TV TI DA 24 0.0475 1.3723 
SS TV TI DA 72 0.0346 

TV TI DI 12 0.0843 1.5306 
SS TV TI DI 36 0.0551 

TV DA DI 48 0.0293 0.9551 
SS TV DA DI 144 0.0306 

TI DA DI 8 0.0696 0.2627 
SS TI DA DI 24 0.2650 

TV TI DA DI 48 0.0253 0.6936 
SS TV TI DA DI 144 0.0365 

TOTAL 839 

83 

P.. 

0.85696 

0.06959 

0.92130 

0.00731 

0.27122 

0.96529 

0.05830 

0.73659 

0.02893 

0.88526 

0.15310 

0.15829 

0.56123 

0.97153 

0.92790 



TABLE IV 

ANALYSIS OF VARIANCE SUNHARY FOR PHASE 1-
STATIC TARGET--ZERO AND THREE DIOPTER-

SEVEN TINE INTERVALS 

Source df MS F 

Subjects (SS) 3 2.6105 

Time Intervals (TV) 6 0.0422 2.2016 
SS TV 18 

Time Blocks (TI) 1 5.4214 36.1065 
SS TI 3 0.1502 

Days (DA) 4 0.9731 1.6671 
SS DA 12 0.5837 

Distance (DI) 1 980.1841 304.1157 
SS DI 3 3.2231 

TV TI 6 0.0041 0.3785 
SS TV TI 18 0.0108 

TV DA 24 0.0192 0.6645 
SS TV DA 72 0.0289 

TV DI 6 0.0085 0.4452 
SS TV DI 18 0.0191 

TI DA 4 0.0769 0.3273 
SS TI DA 12 0.2349 

TI DI 1 4.5935 8.8224 
SS TI DI 3 0.5207 

DA DI 4 0.4025 0.9848 
SS DA DI 12 0.4087 

TV TI DA 24 0.0155 0.8565 
SS TV TI DA 72 0.0181 

TV TI DI 6 0.0656 4.5307 
SS TV TI DA 18 0.0145 

TV DA DI 24 0.0308 2.3117 
SS TV DA DI 72 0.0133 

TI DA DI 4 0.1098 0.5039 
SS TI DA DI 12 0.2180 

TV TI DA DI 24 0.0174 0.7609 
SS TV TI DA DI -11:. 0.0229 

TOT/i.L 559 

84 

.E. 

0.09063 

0.00790 

0.22130 

0.00040 

0.88309 

0.86863 

0.83937 

0.85433 

0.05765 

0.54670 

0.65590 

0.00597 

0.00363 

o. 73583 

o. 77070 



TABLE V 

ANALYSIS OF VARIANCE SUHHARY FOR PHASE 2-
STATIC TARGET--THREE DISTANCES 

Source df MS F 

Subjects (SS) 3 73.4240 

Time Blocks (TI) 3 1.8843 1.6783 
SS TI 9 0.3742 

Days (DA) 1 4.3564 1.5593 
SS DA 3 2.7938 

Distance (DI) 2 157.7266 17.9181 
SS DI 6 8.8027 

Counts (CT) 2 1.1991 0.8040 
SS CT 6 1.4914 

TI DA 3 0.2760 1.4652 
SS TI DA 9 0.1883 

TI DI 6 0.5094 2.1469 
SS TI DI 18 0.2372 

TI CT 6 0.0591 0.8240 
SS TI CT 18 o. 0717 

DA DI 2 0.2427 0.1915 
SS DA DI 6 1.2672 

DA CT 2 0.4672 3.2523 
SS DA CT 6 0.1437 

DI CT 4 0.5069 2.0350 
SS DI CT 12 0.2491 

TI DA DI 6 0.0658 0.5531 
SS TI DA DI 18 0.1190 

TI DA CT 6 0.0846 1.9425 
SS TI DA CT 18 0.0435 

TI DI CT 12 0.0433 0.5587 
SS TI DI CT 36 0.0775 

DA DI CT 4 0.3703 0.5820 
SS DA DI CT 12 0.6362 

TI DA DI CT 12 0.0447 0.4967 
SS TI DA DI CT 36 0.0899 -

TOTAL 287 

85 

0.23995 

0.30069 

0.00367 

0.50680 

0.28798 

0.09748 

0.56700 

0.83076 

0.11025 

0.15294 

0.76268 

0.12827 

0.8600 

0.6831 

0.90296 



TABLE VI 

ANALYSIS OF VARIANCE SUHMARY FOR PI-lASE 1-
STATIC TARGET--THREE DIOPTER ONLY 

Source df MS F 

Subjects (SS) 3 14.1605 

Time Blocks (TI) 3 o. 6130 4.1953 
SS TI 9 0.1461 

Days (DA) 1 o. 4913 2.4507 
SS DA 3 0.2005 

Counts (CT) 2 0.4408 0.8475 
SS CT 6 0.5202 

TI DA 3 0.0860 0.8425 
SS TI DA 9 0.1021 

TI CT 6 0.0398 1.0259 
SS TI CT 18 0.0388 

DA CT 2 0.2871 0.9615 
SS DA CT 6 0.2986 

TI DA CT 6 0.0461 1.6247 
SS TI DA CT 18 0.0283 

TOTAL 95 

86 

0.04071 

o. 21521 

0.52330 

0.50609 

0.44107 

0.56353 

0.1965 7 



TABLE VII 

ANALYSIS OF VARIANCE SU1'1MARY FJR PHASE !-
DYNAMIC TARGET--SINE WAVE AMPLITUDE 

Source df MS F 

Subjects (SS) 3 3.5428 

Time Blocks (TI) 3 0.1523 5.7111 
SS TI 9 0.0267 

Days (DA) 2 0.4444 2.0163 
SS DA 6 0.2204 

Mental-Written (MW) 1 0.1251 1.1368 
SS MW 3 0.1100 

Frequency (HZ) 2 7.3401 4.2144 
SS HZ 6 1. 7417 

TI DA 6 0.0197 1.0437 
SS TI DA 18 0.0189 

TI HW 3 0.0419 4.8174 
SS TI MW 9 0.0087 

TI HZ 6 0.0102 0.9401 
SS TI HZ 18 0.0109 

DA MW 2 o. 0688 . o. 7186 
SS DA MW 6 0.0958 

DA HZ 4 0.0076 0.1126 
SS DA HZ 12 0.0676 

MW HZ 2 1.0976 1.0774 
SS MW HZ 6 1.0187 

TI DA MW 6 0.0100 1. 3999 
SS TI DA MW 18 0.0072 

TI DA HZ 12 0.0107 1.2135 
SS TI DA HZ 36 0.0088 

TI MW HZ 6 0.0095 0.7636 
SS TI MW HZ 18 0.1024 

DA MW HZ 4 0.0225 0.2026 
SS DA MW HZ 12 0.1109 

TI DA MW HZ 12 0.0098 1.1675 
SS TI DA M'i.J' HZ _1§. 0.0084 

TOTAL 287 

87 

.P.. 

0.01817 

0.21360 

0.36581 

0.07177 

0.43099 

0.02866 

0.50817 

0.52780 

o. 97297 

0.39985 

0.26770 

0.31126 

0.60902 

0.93042 

o. 34137 



TABLE VIII 

ANALYSIS OF VARIANCE SUMHARY FJR PHASE 1-
DYNAHIC TARGET--SINE HAVE PHASE LAG 

Source df MS F 

Subjects (SS) 3 0.9056 

Time Blocks (TI) 3 0.0188 0.8941 
SS TI 9 0.0210 

Days (DA) 2 0.0073 0.1800 
SS DA 6 0.0404 

Men tal-Writ ten (MH) 1 0.0093 0.4568 
SS HW 3 0.0203 

Frequency (HZ) 2 1.8564 24.2388 
SS HZ 6 0.0766 

TI DA 6 0.0417 1. 3217 
SS TI DA 18 0.0316 

TI MW 3 0.0145 0.2288 
SS TI MH 9 0.0632 

TI HZ 6 0.0143 0.4822 
SS TI HZ 18 0.0296 

DA MW 2 0.0022 0.0312 
SS DA MW 6 0.0718 

DA HZ 4 0.0573 0.9743 
SS DA HZ 12 0.0588 

MW HZ 2 0.0057 0.1447 
SS MH HZ 6 0.0396 

TI DA MW 6 0.0138 0.6572 
SS TI DA MH 18 0.0210 

TI DA HZ 12 0.0176 0.8141 
SS TI DA HZ 36 0.0216 

TI MW HZ 6 0.0130 0.3413 
SS TI MW HZ 18 0.0380 

DA MW HZ 4 0.0450 0.8298 
SS DA MW HZ 12 0.0543 

TI DA MW HZ 12 0.0165 o. 7212 
SS TI DA MW HZ 36 0.0229 

TOTAL 287 

88 

0.51732 

0.83962 

0.54964 

0.00196 

0.29758 

0.87408 

o. 81368 

0.97037 

0.54164 

0.86771 

0.68609 

0.63547 

0.90551 

0.53269 

o. 72222 



TABLE IX 

ANALYSIS OF VARIANCE SUNMARY FOR PHASE 2-
DYNAMIC TARGET--SQUARE WAVE-~ 

ZERQ-PULSE TRACK 

Source df MS F 

Subjects (S) 3 3.1384 

Time Blocks (TI) 3 o. 5776 1. 6172 
SS TI 9 o. 3571 

Days (DA) 2 4.8842 0.3489 
SS DA 6 13.9981 

Mental-Written (MW) 1 0.9234 0.8231 
SS MW 3 1.1217 

Frequency (HZ) 2 0.5735 0.5401 
SS HZ 6 1.0617 

Zero-Pulse (ZP) 1 458.1348 108.2420 
SS ZP 3 4.2325 

TI DA 6 0.0832 1.0081 
SS TI DA 18 0.0825 

TI MW 3 0.1226 0.8595 
SS TI MW 9 0.1426 

TI HZ 6 0.1180 1.2059 
SS TI HZ 18 0.0978 

TI ZP 3 0.3492 7.1629 
SS TI ZP 9 0.0488 

DA MW 2 0.8999 0.5279 
SS DA MI-l 6 1. 7047 

DA HZ 4 0.3068 0.2168 
SS DA HZ 12 1.4039 

DA ZP 2 0.7622 1. 5993 
SS DA ZP 6 0.4766 

MW HZ 2 0.1368 0.1914 
SS MW HZ 6 0.7148 

HZ ZP 2 12.5729 144.3757 
SS HZ ZP 6 0.0871 

89 

0.25267 

o. 72158 

0.56649 

0.61188 

0.00154 

0.45128 

0.50176 

o. 34774 

0.00960 

0.61825 

0.92154 

0.27745 

0.83081 

0.00011 



90 

TABLE IX (Continued) 

Source df MS F .E. 

TI DA J:.IW 6 0.1365 1. 4101 0.26400 
SS TI DA J:.1W 18 0.0968 

TI DA HZ 12 0.0594 0.8962 0.55924 
SS TI DA HZ 36 0.0663 

TI DA ZP 6 0.0046 0.1657 0.98151 
SS TI DA ZP 18 0.0278 

TI MW HZ 6 0.0627 0.7850 o. 59393 
SS TI MW HZ 18 0.0799 

TI MW ZP 3 0.0910 2. 7711 0.10271 
SS TI MW ZP 9 0.0328 

TI HZ ZP 6 0.0235 0.6474 0.69329 
SS TI HZ ZP 18 0.0363 

DA MW HZ 4 0.5515 2.1650 0.13468 
SS DA MW HZ 12 0.2548 

DA MW ZP 2 0.0468 0.5944 0.58458 
SS DA M\v ZP 6 0.0788 

DA HZ ZP 4 0.1329 0.5762 0.68759 
SS DA HZ ZP 12 0.2306 

MW HZ ZP, 2 0.0605 2.6607 0.14857 
SS 1-IW HZ ZP 6 0.0228 

TI DA Mtv HZ 12 0.0937 1. 8698 0.07288 
SS TI DA J:.1W HZ 36 0.0501 

TI DA M\v ZP 6 0.0093 0.3819 0.88097 
SS TI DA MW ZP 18 0.0242 

TI DA HZ ZP 12 0.0090 0.5413 o. 87274 
SS TI DA HZ ZP 36 0.0166 

TI MW HZ ZP 6 0.0527 1. 839l• 0.14744 
SS TI MW HZ ZP 18 0.0287 

DA MW HZ ZP 4 0.1703 2. 7799 0.07566 
SS DA MW HZ ZP 12 0.0612 

TI DA MW HZ ZP 12 0.0224 0.8647 0.58826 
SS TI DA MW HZ ZP 36 0.0259 

TOTAL 575 



TABLE X 

ANALYSIS OF VARIANCE SUMHARY FOR PHASE 2-
DYNAMIC TARGET--SQUARE WAVE-

LATENCY 

Source df MS F 

Subjects (SS) 3 0.3097 

Time Blocks (TI) 3 0.0124 0.5514 
SS TI 9 0.0225 

Days (DA) 2 0.0318 0.3200 
SS DA 6 0.0241 

Mental-Written (MW) 1 0.0236 1.2442 
SS MW 3 0.0190 

Frequency (HZ) 2 0.3513 18.8855 
SS HZ 6 0.0186 

Direction (DR) 1 0.0429 5.1094 
SS DR 3 0.0084 

TI DA 6 0.0256 4. 7782 
SS TI DA 18 0.0054 

TI MW 3 0.0097 1.7698 
SS TI MW 9 0.0055 

TI HZ 6 0.0157 1. 0996 
SS TI HZ 18 0.0143 

TI DR 3 0.0044 1. 7542 
SS TI DR 9 0.0025 

DA MW 2 0.0179 1. 8337 
SS DA MW 6 0.0098 

DA HZ 4 0.0150 2.1542 
SS DA HZ 12 0.0070 

DA DR 2 0.0049 0.2758 
SS DA DR 6 0.0179 

MW HZ 2 0.0082 1.2014 
SS MW HZ 6 0.0068 

MW DR 1 0.0087 0.4130 
SS MW DR 3 0.0211 

HZ DR 2 0.0142 0.7569 
SS HZ DR 6 0.0188 

91 

.E. 

0.66261 

0.33543 

0.34694 

0.00328 

0.10816 

0.00471 

0.22245 

0.40057 

0.22518 

0.23882 

0.13610 

0.76079 

o. 36505 

0.56808 

0.51184 



92 

TABLE X (Continued) 

Source df MS F J?.. 

TI DA MW 6 0.0054 0.6842 0.66628 
SS TI DA MW 18 0.0080 

TI DA HZ 12 0.0150 1.5425 0.15415 
SS TI DA HZ 36 0.0097 

TI DA DR 6 0.0047 0.3715 0.8875 
SS TI DA DR 18 0.0126 

TI MW HZ 6 0.0051 0.5071 0.79600 
SS TI M\-1 HZ 18 0.0100 

TI MW DR 3 0.0018 0.2653 0.84929 
SS TI MH DR 9 0.0069 

TI HZ DR 6 0.0060 1. 8628 0.14285 
SS TI HZ DR 18 0.0032 

DA MW HZ 4 0.0070 0.9958 0.55190 
SS DA J:-1W HZ 12 0.0070 

DA M\.J DR 2 0.0171 2.42 73 0.16859 
SS DA .tvlW DR 6 0.0070 

DA HZ DR 4 0.0028 0.2093 o. 92672 
SS DA HZ DR 12 0.0135 

MW HZ DR 2 0.0077 2.0520 0.20910 
SS l-1W HZ DR 6 0.0037 

TI DA MW HZ 13 0.0131 1. 4329 0.19621 
SS TI DA MW HZ 36 0.0091 

TI DA MW DR 6 0.0053 0.7670 0.60661 
SS TI DA N:W DR 18 0.0069 

TI DA HZ DR 12 0.0065 0.6173 0.81366 
SS TI DA HZ DR 36 0.0105 

TI MW HZ DR 6 0.0028 0.5365 o. 77479 
SS TI MW HZ DR 18 0.0052 

DA MW HZ DR 4 0.0032 0.5203 0.72479 
SS DA M\.J HZ DR 12 0.0062 

TI DA MW HZ DR 13 0.0061 0.5199 0.88769 
SS TI DA MW HZ DR 36 0.0118 

TOTAL 575 



TABLE XI 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 2-
DYNAMIC TARGET--SQUARE WAVE-~ 

VELOCITY 

Source df MS F 

Subjects (SS) 3 107.6763 

Time Blocks (TI) 3 3.9040 2.7489 
SS TI 9 1. 4202 

Days (DA) 2 5. 2612 3.1211 
SS DA 6 1.6857 

Mental-Written (MW) 1 1.5083 0.9607 
ss }'lW 3 1.5700 

Frequency (HZ) 2 9.8434 2.2156 
SS HZ 6 4.4427 

Direction (DR) 1 7.1425 2.2607 
SS DR 3 3.1595 

TI DA 6 2.2417 1. 515 7 
SS TI DA 18 1.4790 

TI M\.J 3 0.2505 0.1393 
SS TI MW 9 1. 7984 

TI HZ 6 2.8399 2.1636 
SS TI HZ 18 1.3126 

TI DR 3 1.9550 1.3884 
SS TI DR 9 1. 4081 

DA MW 2 2.0860 2.2883 
SS DA MW 6 0.9116 

DA HZ 4 7. 9719 1.6910 
SS DA HZ i2 4.7142 

DA DR 2 0.4107 0.4992 
SS DA DR 6 0.8227 

MW HZ 2 0.3417 0.1213 
SS MW HZ 6 2.8177 

MW DR 1 0.2146 0.8248 
SS MW DR 3 0.2602 

HZ DR 2 5.8054 5.7817 
SS HZ DR 6 1.0041 

TI DA MW 6 2.4695 3.6257 
SS TI DA MW 18 0.6811 

93 

0.10436 

0 .• 11750 

0.59886 

0.18999 

0.22955 

0.22877 

0.93334 

0.09534 

0.30804 

0.18225 

0.21595 

0.63355 

o. 88723 

0.56690 

0.03994 

0.01549 



94 

TABLE XI (Continued) 

Source df MS F .1?. 

TI DA HZ 12 1.5559 1.5548 0.14999 
SS TI DA HZ 36 1.0007 

TI DA DR 6 o. 4713 0.4925 0.80641 
SS TI DA DR 18 0.9570 

TI MW HZ 6 1.1456 1.1632 0.36817 
SS TI MW HZ 18 0.9848 

TI MW DR 3 0.3391 0.2130 0.88480 
SS TI MW DR 9 1.5921 

TI HZ DR 6 0.4404 0.4957 0.80417 
SS TI HZ DR 18 0.8885 

DA MW HZ 4 1.1270 1.1061 o. 39857 
SS DA MW HZ 12 1.0189 

DA MW DR 2 0.5634 0.3066 0.74899 
SS DA MW DR 6 1. 8375 

DA HZ DR 4 0.5731 0.4522 o. 77076 
SS DA HZ DR 12 1.2673 

~1W HZ DR 2 0.1442 0.0462 0.95564 
SS MW HZ DR 6 3.1214 

TI DA MW HZ 12 2.0948 2.0989 0.04256 
SS TI DA J.v!W HZ 36 0.9981 

TI DA MW DR 6 1.0295 2.9982 0.03293 
SS TI DA MW DR 18 0.3345 

TI DA HZ DR 12 0.7185 o. 7222 o. 72133 
SS TI DA HZ DR 36 0.9949 

TI MW HZ DR 4 0.6683 1.2971 0.30762 
SS TI MW HZ DR 18 0.5152 

DA MW HZ DR 4 0.5350 0.6513 0.63901 
SS DA MW HZ DR 12 o. 8214 

TI DA MW HZ DR 12 1. 3293 1.2892 0.26640 
SS TI DA HW HZ DR -1.§.. 1. 0311 

TOTAL 575 



Source 

TABLE XII 

ANALYSIS OF VARIANCE Sill1MARY FOR PHASE 3-
DYNAHIC TARGET--FIVE DAYS-

ZERO-PULSE TRACK 

df MS F 

Subjects (SS) 3 3.3813 

Time Blocks (TI) 3 0.2336 0.8849 
SS TI 9 0.2640 

Days (DA) 4 0.7538 0.5573 
SS DA 12 1.3526 

Zero-Pulse (ZP) 1 137.9212 85.1518 
SS ZP 3 1.6197 

TI DA 12 0.0761 1. 7375 
SS TI DA 36 0.0438 

TI ZP 3 0.1659 3.3018 
SS TI ZP 9 0.0502 

DA ZP 4 0.0500 0.3391 
SS DA ZP 12 0.1474 

TI DA ZP 12 0.0136 0.7626 
SS TI DA ZP ...1§. 0.0178 

TOTAL 159 

95 

0.51322 

0.70013 

0.00217 

0.09907 

0.07120 

0.84667 

0.68380 



TABLE XIII 

ANALYSIS OF VARIANCE SUMHARY FOR PHASE 3-
DYNAMIC TARGET--FIVE DAYS-

LATENCY 

Source df MS F 

Subjects (SS) 3 0.0719 

Time Blocks (TI) 3 0.0018 0.2860 
SS TI 9 

Days (DA) 4 0.0179 1.1898 
SS DA 12 0.0150 

Distance (DI) 1 0.0004 0.0393 
SS DI 3 0.0114 

TI DA 12 0.0084 1.0389 
SS TI DA 36 0.0080 

TI DI 3 0.0030 0.9614 
SS TI DI 9 0.0031 

DA DI 4 0.0087 0.7087 
SS DA DI 12 0.0123 

TI DA DI 12 0.0034 o. 8230 
SS TI DA DI -1&. 0.0041 

TOTAL 159 

96 

0.83513 

0.36458 

0.84838 

0.43702 

0.54636 

0.60325 

o. 62716 



TABLE XIV 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 3-
DYNAMIC TARGET--FIVE DAYS-

VELOCITY 

Source df MS F 

Subjects (SS) 3 46.3845 

Time Blocks (TI) 3 0.8764 0.4950 
SS TI 9 1. 7705 

Days (DA) 4 1. 3798 0.4552 
SS DA 12 3.0314 

Direction (DR) 1 6.9356 7.5359 
SS DR 3 0.9203 

TI DA 12 0.7692 0.7431 
SS TI DA 36 1.0351 

TI DR 3 0.0094 0.0069 
SS TI DR 9 1.3662 

DA DR 4 0.8577 0.9918 
SS TI DR 12 0.8648 

TI DA DR 12 0.5923 0.8115 
SS TI DA DR _1§. o. 7299 

TOTAL 159 

97 

0.69735 

o. 76872 

0.06982 

0.70198 

0.99892 

0.55002 

0.63789 



TABLE XV 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 4-
DYNAMIC TARGET--FOUR DIFFICULTIES-

ZERO-PULSE TRACK 

Source df MS F 

Subjects (SS) 3 6.8184 

Time Blocks (TI) 3 1.1654 2.3699 
SS TI 9 0.4917 

Days (DA) 1 6.8484 8.3920 
SS DA 3 0.8161 

Counts (CT) 3 0.5719 0.2756 
SS CT 9 2.0749 

Zero-Pulse (ZP) 1 185.9524 53.7509 
SS ZP 3 3.4595 

TI DA 3 0.1416 2. 8286 
SS TI DA 9 0.0501 

TI CT 9 0.0536 0.1196 
SS TI CT 27 0.4481 

TI ZP 3 0.7024 35.8196 
SS TI ZP 9 0.0196 

DA CT 3 0.1152 0.2371 
SS DA CT 9 0.4859 

DA ZP 1 0.0346 0.2183 
SS DA ZP 3 0.1585 

CT ZP 3 0.2703 2.0137 
SS CT ZP 9 0.1342 

TI DA CT 9 0.2151 1.6599 
SS TI DA CT 27 0.1296 

TI DA ZP 3 0.0053 0.4268 
SS TI DA ZP 9 0.0124 

TI CT ZP 9 0.1459 4.8039 
SS TI CT ZP 27 0.0304 

DA CT ZP 3 0.0387 0.5470 
SS CA CT ZP 9 0.0708 

TI DA CT ZP 9 0.0121 0.8325 
SS TI DA CT ZP 27 0.0146 

TOTAL 255 

98 

0.13807 

0.06132 

0.84224 

0.00432 

0.09858 

0.99832 

0.00011 

0.86847 

0.67120 

0.18222 

0.14815 

0.74079 

0.00094 

0.66527 

0.59348 



TABLE XVI 

ANALYSIS OF VARIANCE Sl.J"'MMARY FJR Pl1ASE 4-
DYNAMIC TARGET--THREE DIFFICULTIES-

ZERO-PULSE TRACK 

Source df MS F 

Subjects (SS) 3 1.7615 

Time Blocks (TI) 3 0.6801 3.5618 
SS TI 9 0.1909 

Days (DA) 1 6.2114 9.3490 
SS DA 3 0.6644 

Counts (CT) 2 0.7553 1.0575 
SS CT 6 o. 7142 

Zero-Pulse (ZP) 1 147.2556 56.6548 
SS ZP 3 2.5992 

TI DA 3 0.0131 0.1636 
SS TI DA 9 0.0798 

TI CT 6 0.0507 0.7547 
SS TI CT 18 0.0672 

TI ZP 3 0.1758 8.5062 
SS TI ZP 9 0.0207 

DA CT 2 0.0707 0.1518 
SS DA CT 6 0.4657 

DA ZP 1 0.0562 0.3560 
SS DA ZP 3 0.1578 

CT ZP 2 0.1937 2.1776 
SS CT ZP 6 0.0889 

TI DA CT 6 0.0609 0.6485 
SS TI DA CT 18 0.0930 

TI DA ZP 3 0.0059 0.5485 
SS TI DA ZP 9 0.0108 

TI CT ZP 6 0.0107 0.6708 
SS TI CT ZP 18 0.0160 

DA CT ZP 2 0.0466 0.4767 
SS DA CT ZP 6 0.0978 

TI DA CT ZP 6 0.0177 1.5819 
SS TI DA CT ZP 18 0.0112 

TOTAL 191 

99 

0.06008 

0.05362 

0.40586 

0.00399 

0.91769 

0.61534 

0.00582 

0.86197 

0.59428 

0.19421 

0.69252 

0.66434 

0.67616 

0.64590 

0.20908 



TABLE XVII 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 4-
DYNAMIC TARGET--FOUR DIFFICULTIES-

LATENCY 

Source df MS F 

Subjects (SS) 3 0.1159 

Time Blocks (TI) 3 0.0160 3.1503 
SS TI 9 0.0051 

Days (DA) 1 0.0036 0.1795 
SS DA 3 0.0201 

Counts (CT) 3 0.0085 0.2958 
SS CT 9 0.0287 

Direction (DR) 1 0.0172 1.5615 
SS DR 3 0.0110 

TI DA 3 0.0201 1.2168 
SS TI DA 9 0.0165 

TI CT 9 0.0131 1.5124 
SS TI CT 27 0.0087 

TI DR 3 0.0033 0.7001 
SS TI CT 9 0.0047 

DA CT 3 0.0313 6.1833 
SS DA CT 9 0.0051 

DA DR 1 0.0094 3.3362 
SS DA DR 3 0.0028 

CT DR 3 0.0030 0.8173 
SS CT DR 9 0.0037 

TI DA CT 9 0.0056 0.7031 
SS TI DA CT 27 0.0080 

TI DA DR 3 0.0067 1.2931 
SS TI DA DR 9 0.0052 

TI CT DR 9 0.0049 0.9366 
SS TI CT DR 27 0.0052 

DA CT DR 3 0.0022 0.6150 
SS DA CT DR 9 0.0036 

TI DA CT DR 9 0.0024 0.3548 
SS TI DA CT DR 27 0.0068 

TOTAL 255 
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0.07883 

0.69807 

0.82848 

0.30040 

0.35901 

0.19358 

0.57750 

0.01458 

0.16485 

0.51795 

0.70181 

0.33523 

0.51082 

0.64297 

0.94638 



TABLE XVIII 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 4-
DYNAMIC TARGET--TIIREE DIFFICUJ .... TIES-

LATENCY 

Source df MS F 

Subjects (SS) 3 0.1064 

Time Blocks (TI) 3 0.0048 2.5971 
SS TI 9 0.0044 

Days (DA) 1 0.0048 0.1961 
SS DA 3 0.0243 

Counts (CT) 2 0.0127 0.9470 
SS CT 6 0.0134 

Direction (DR) 1 0.0126 1.0736 
SS DR 3 0.0117 

TI DA 3 0.0166 1.3973 
SS TI DA 9 0.0119 

TI CT 6 0.0034 0.4203 
SS TI CT 18 0.0081 

TI DR 3 o·.oon 1.3382 
SS TI DR 9 0.0069 

DA CT 2 0.0464 9.5645 
SS DA CT 6 0.0048 

DA DR 1 0.0072 1. 3012 
SS DA DR 3 0.0055 

CT DR 2 0.0045 1.2430 
SS CT DR 6 0.0036 

TI DA CT 6 0.0056 0.6483 
SS TI DA CT 18 0.0087 

TI DA DR 3 0.0018 0.2760 
SS TI DA DR 9 0.0064 

TI CT DR 6 0.0020 o. 4617 
SS TI CT DR 18 0.0043 

DA CT DR 2 0.0033 1.0230 
SS DA CT DR 6 0.0032 

TI DA CT DR 6 0.0018 0.2201 
SS TI DA CT DR 18 0.0082 

TOTAL 191 
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0.11653 

0.68619 

0.55866 

o. 37780 

0.30562 

0.85613 

0.32202 

0.01416 

0.33764 

0.35428 

0.69268 

0.84199 

0.82802 

0.41652 

0.96422 



TABLE XIX 

ANALYSIS OF VARIANCE S~1ARY FOR PHASE 4-
DYNAMIC TARGET--FOUR DIFFICULTIES-

VELOCITY 

Source df MS F 

Subjects (SS) 3 78.5084 

Time Blocks (TI) 3 6. 3714 3.8117 
SS TI 9 1.6715 

Days (DA) 1 2.9057 1.4065 
SS DA 3 2.0660 

Counts (CT) 3 4.0376 1.5084 
SS CT 9 2.6767 

Direction (DR) 1 0.0094 0.0058 
SS DR 3 1.6211 

TI DA 3 1. 3374 1.0586 
SS TI DA 9 1.2534 

TI CT 9 2. 7145 2.4067 
SS TI CT 27 1.1279 

TI DR 3 2.3798 3.6566 
SS TI DR 9 0.6510 

DA CT 3 0.7366 o. 3770 
SS DA DT 9 1.9540 

DA DR 1 0.0171 0.0584 
SS DA DR 3 0.2923 

CT DR 3 o. 3614 o. 3912 
SS CT DR 9 0.9238 

TI DA CT 9 2.0416 2.0767 
SS TI DA CT 27 0.9831 

TI DA DR 3 0.0831 0.1032 
SS TI DA DR 9 0.8052 

TI CT DR 9 o. 3027 0.2587 
SS TI CT DR 27 1.1703 

DA CT DR 3 o. 6115 0.6203 
SS DA CT DR 9 o. 9858 

TI DA CT DR 9 0.1661 0.1498 
SS TI DA CT DR 27 1.1094 

TOTAL 255 

102 

0.05132 

0.32163 

o. 27739 

0.94260 

0.41478 

0.03726 

0.05659 

o. 77380 

o. 81725 

0.76437 

0.06858 

0.95555 

0.98033 

0.62190 

0.99663 



TABLE XX 

ANALYSIS OF VARIANCE SUMMARY FOR PHASE 4-
DYNAMIC TARGET--TtffiEE DIFFICULTIES-

VELOCITY 

Source df MS F 

Subjects (SS) 3 65.5253 

Time Blocks (TI) 3 0.6908 0.3799 
SS TI 9 1.8184 

Days (DA) 1 4.3612 1.8226 
SS DA 3 2.3929 

Counts (CT) 2 3.1356 2.1803 
SS CT 6 1.4382 

Direction (DR) 1 0.2990 0.3338 
SS DR 3 o. 8958 

TI DA 3 2.3071 1. 7281 
SS TI DA 9 1.3351 

TI CT 6 0.0904 0.0781 
SS TI CT 18 1.1570 

TI DR 3 1.5376 2.2238 
SS TI DR 9 0.6914 

DACT 2 0.3556 0.1810 
SS DA CT 6 1.9646 

DA DR 1 0.2044 3.3842 
SS DA DR 3 0.0604 

CT DR 2 0.1137 0.1022 
SS CT DR 6 1.1129 

TI DA CT 6 2. 4935 2.2579 
SS TI DA CT 18 1.1043 

TI DA DR 3 0.0338 0.0332 
SS TI DA DR 9 1.0200 

TI CT DR 6 0.3955 0.3401 
SS TI CT DR 18 1.1630 

DA CT DR 2 0.2782 0.2925 
SS DA CT DR 6 0.9511 

TI DA CT DR 6 0.2120 0.1937 
SS TI DA CT DR 18 1.0945 

TOTAL 191 
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.E. 

o. 77185 

0.26989 

0.19391 

0.60523 

0.23014 

0.99660 

0.15444 

0.83885 

0.16270 

0.90374 

0.08410 

o. 99105 

0.90624 

0.75841 

0.97339 
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DATA TRANSFORMATION PROCEDURES 

All optometer data was in analog form and needed both digital 

conversion and averaging. Therefore, the Ames Research Center's STATS 

(Statistical Analysis of Time Series) computer program was used. 

Analog-to-digital conversion was accomplished at a sampling of bventy 

points per second; therefore, any individual thirty-second time block 

consisted of a total of 600 data points. 

Sine wave components of Amplitude and Phase Lag were taken for 

each individual waveform. Therefore, for example, a 0.2 hz. Sine wave 

which generated six complete cycles every thirty seconds, there were 

computed six separate Amplitudes and six corresponding Phase Lags. 

These six separate values were averaged into a single Amplitude and 

Phase Lag for each Time Block. Figure 21 shows the individual measure

ment of Amplitude and Phase Lag values from the raw data. The attach

ment "Analysis of Optometer Sinewave Data" is reproduced in its 

entirety from Randle (1973) and is the procedure used by the STATS 

program in data transformation. For this study, paragraph bvo, begin

ning, "In the Circadian Rhythm studies • • • " should be disregarded, 

as, obviously, the input frequencies here are 0.1, 0.2, and 0.4 Hertz. 

Square wave components of Zero Track, Pulse Track, Magnitude, 

Receding Latency, Approaching Latency, Receding Velocity, and Approach

ing Latency were taken for each individual waveform. Likewise, for 

example, a 0.2 hz. Square wave which generated six complete cycles 

every thirty-second time block, there would be computed six separate 

values of Pulse Track, Zero Track, Magnitudes, Receding Latency, 

Approaching Latency, Receding Velocity, and Approaching Latency. Each 



Systems 
-· -: ---+-+ I : ---1--+-----'1---+--+- --+----+---

Figure 21. Sine Wave Analysis. Individual Waveform Stimulus (Input) 
and Response (Output) Values Calibrated by the STATS 
Program for Obtaining Amplitude and Phase Lag 

106 



107 

one of these dependent variables was averaged for a single value within 

any Time Block. Figure 22 shows the individual waveform measurements 

of the components of these dependent variables from raw data. TI1e 

nomenclature is identical to that listed in the attached "Analyais of 

Optometer Square Wave Data," reproduced in its entirety from Randle 

(1973) and is the same procedure used by the STATS program. 



~land. Ohio 
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Figure 22. Square Wave Analysis. Individual Waveform Stimulus (Input) 
and Response (Output) Values Calculated by the STATS 
Program for Obtaining Magnitude, Direction, Latency, and 
Velocity 



109 

AN/\LYS!S OF OPTOMETEl\. SINEW1\VE DATA 

For each stimulus (input) and response (output) pair of sinewave time series, 

the Frequency He sponsc Function is computed to obtain the amplitude gain and 

phase lag of the response with res"pect to the stimulus. The range of data points 

used for the analysis is chosen so that the input frequency of the sinewave is 

equal to one of the harmonics for which the coefficients arc computed. 

In the Circadian Rhythm studies the input frequencies we:re . 3 and . 5 Hertz . 

. The data ranges used were 200, 400, or 800 points so that the funda.J.nental 

frequencies (L\f) were .l, . 05, and . 025 r·espectively. 

The analysis includes the following steps: 

1. The 1nean value is removed for each ti1ne series. 

2. The Fourier coeffi.cients arc computed for the new series. 

3. The Frequency Response Function is computed by dividing the 

response coefficients by the stimulus coefficients 

4. The amplitude and phase representation is com.putcd and printed 

for the stimulus, response, and Frequency Hesponse. 

Note: 

The time series data is scaled so that the units arc diopters. After 

rernoving the n1can value frorn the time series, the range of the stimulus 

is +2. to -2. diopters and the amplitude of the input frequency is 2. 



THE FOURU::R TRANSFORM 

The Fourier Transform is used to obtain the Amplitude and Phase spectra 

of the time series. 

For a time scri~s f(n) with 2N functional values and a samJ?ling interval 

of 4 t, the Fourier transform has the form, 

F(u ) = a - ib 
n n n 

where n is harmonic number and O~n~N 

n = u 
2N D.t ·.n 

~1-J-l 

a. = *-2-0 
l ::.1 

2N-I 

== -k-L a 
n 

l= I 

ZN-1 

b - 1 z_ n -1\1 
l"l 

~N-1 

aN =-k-z 
l"'-1 

f(i) 

f(i)cos 1T ni 
I\r 

f(i)sin 
tTni 
~ 

f(i)cosrri 

frequency 

b = 0 
0 
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The a 1 s and b 1 s correspond to the coefficients for the Finite Fourier series 
n n 

representation of the original time series. The Finite Fourier scricf> is 

composed of the smn s of sine and cosine functions whose frequencies are 

1nultiples' or harmonics of a fundarnental. The fundan1cntal frequency has a 

period of 2~.6,.t (the range of the time domain) and equals ---1-1;. The units arc 
21U~· 

in Hertz if the 4t is in seconds. The highest frequency present is -d,6:'c which 
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corresponds to a period of 2L1t (two sampling intervals). The original time series 

is rq~rcscnted as 
a 

0 
f(k) = -z- + b sin Trnk 

n N 

If polar coordinates arc introduced, such that 

a = r cos en 
n n 

b = r sin Bn 
n n 

Then the Finite Fourier Series has the form 

N-1 
r 

f(k) = 20 + E 

where r 
n 

and 

n= 1 

2 2 1/2 
= (a + b ) 

.n n 

b 
n 

arctan(-) 
a 

n 

r is the am.pli.tude of the nth harmonic. n 

- el'} 

9t'l is the phase of the nth harmonic relative to the fundamental. 

The units of the amplitude are the same as the units of the origina,l time series. 

The phase angles are in degrees. 

The Fourier Transfonn in polar coordinates becomes 

.-i Qh 
F(u ) = r e 

n n 

STATS uses the Fast Fourier transform computational Method as implemented 

by R. C. Singleton. 
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FREQUENCY RESPONSE FUNCTION 

For a linear systcrn the Frequency Response Function shows the amplitude 

gain and the phase lag of output with respect to the input at each frequency. 

The output function, r(t) can be represented as the convolution of an in1pulse 

response function, h(t), with the input function, s(t). 

r(t} = f1(t)S(t-u)du 

Taking the Fourier transform of each function, the relation of convolution 

becomes multiplication in the frequency domain. 

R(f) = H(f)S(f} 

where H(f} is the frequency response function. The equation may be solved 

for H(£}. Using amplitude and phase representation of the transforms 

Thus, 

The Amplitude gain is 

- AR(£) 
AI-l(£) -·A;( F) 

and the phase lag is 

STATS computes the Frequency Response Function by complex division of the 

Fourier coefficients of the output function by the Fourier coefficients of the 

input function. The resulting coefficients are used to compute the arnplitudc 

gain function and the phase lag. 
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ANALYSIS OF OPTOMETER SQUAEE WAVE DATA 

The stirnulus and response for a single· square wave trial arc processed together. 

Calculations are made for individual pulses relating the stimulus and response 

times at corresponding positions of the square wave. The individual pulses 

are detected by examining stin:mlus and response data point by point. The 

onset of the pulse will be referred to as s 1 and r 1 in the stimulus and response 

respectively. Silnilarly, s 2 and r 2 are the attainment of maxin!mn value of 

the pulse; s 3 and r 3 are the start of step-down of the pulse; and s 4 and r 4 

are the attairrinent of the minimum value. 

The following quantities are computed for each pulse and then the average 

(m.ean), the rnaximun1., the n1.inimtm1., and the standard deviation for these 

quantities are calculated. 

T LN Response latency for an approaching stimulus 

'The time fron1. the onset of the pulse in the stimulus to the onset of the 

pulse in the response. s1 is subracted from r 1. 

T LF Response latency for a receding stimulus 

The time difference between the step-down of pulse in the stimulus and 

in the response. s 3 is subtracted from r 3 • 

TRN Response tin1e for an approaching sti1nulus 

The tini.e to Jnakc the same change as the stimulus when the sti1nulus 

1novcs toward the observer, i. c. the tirne difference between the 

attairm1.ent of the maxinnnn value of the pulse in the sti1nulus and response. 

r 1 is subtracted from r 2 . 



T RF Response time to a receding -~timulus 

The tin1e for the subject to n1akc the same change as the sti1nulus when 

the stimulus 1noves away_from the obsc1·ver. r 3 is subtracted from r 4 . 

RA Absolute response level 

The steady state value of eye focus, i.e. the rnagnitude for r 2 • 

SA Absolute stimulus level 

The magnitude for s 2 . 

RMN Response ma!!nitude for approaching stimulus 

The· difference between the hvo successive response levels for an 

approaching stimulus, i.e. the magnitude for r 1 is subtracted from the 

magnitude at r 2 . 

RMF Response ma;?:nitucle for receding stimulus 

114 

The difference between the hvo successive response levels for a receding 

stimulus, i.e. the magnitude for r 4 is subtracted fr01Y1 the rnagnitucle at r 3 . 

SM Stimulus Magnitude 

The difference between the levels of the stimulus, i.e. the magnitude 

at s1 is subtracted from the magnitude at s 2 . 

VRF Response velocity to a receding stimulus 

The re.sponse magnitude for a receding stimulus is divided by the 

response ti1ne, i. c. 
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V RN Response velocity to an :::_pproaching stimulus 

The response magnitude for an approaching stimulus is divided by the 

response time, i.e. 

DSR Difference between absolute stimulus and response levels. 

In addition, the subject's average tracking levels for zero dioptcrs and 

pulse magnitude are calculated and printed. 
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MATI-IEMATICAL METHODS USED IN SQUAI\E WAV.E ANALYSIS 

1. Wild points arc removed from the stimulus and response. 

a. The 1nean and standard deviation are calculated for the 1·aw data 

b. Secondary 1neans and standard deviations arc calculated for all points 

above the m.ean and for all points below the n"lcan. The secondary 

means are pTinted as the average tracking levels for zero diopters 

and the pulse magnitude 

c. Points which arc greater than the upper secondary mean plus one 

corresponding standard deviation or less than the lower secondary 

mean minus one correspoiJCling standard deviation are considered 

wild points. They are set equal to the appropriate secondary mean. 

2. The Response time series is smoothed by taking a moving average over 5 

points. 

3. The first and second order differences are con"lputed for sti1nulus and 

response. 

Lf(n)= f(n)-f(n-r) 

c.t. f ( 11) ~ A -F (h) - 6 .f ( n- r) 

4. The rnean and standard deviation is computed for the first order differences 

of stimulus and response. 

5. A table is constructed fron1 the first and second rliffcrenccs 

a. Pairs of time values bounding an interval where the first order 

differences arc all positive or all negative. 

b. The number of zeroes in the second order differences, and points 

at which zeroes occur for each interval. 
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· 6. '!'he square v;ave pulses in the stirnuJus are detected. 

For each pulse, 

a; Sl and S2 arc detected by locating a set of continguous values in 

the fin;t order differences which are greater than 1. 5 times the 

standard deviation. (The mean is zero.) Sl is set to the first: such 

data point, S2 is set io the last data point. 

b. S3 and S1 aTe detected by locating a set of continguous values 

in the first order differences which are less than -l. 5 times the 

the standard deviation. S3 is set to first and S4 is set to the last such 

·data point. 

c. Checl~ing is done to insure that the approach and retreat of the 

pulse occur in the proper sequence. 

7. The square wave pulses arc detected in the response, using the same criteria 

as described for the stimulus with the following additional restrictions. 

a. Only one standard deviation in the first order differences is used. 

b. For an individual pulse, 

rl>sl' rz>s2' r3>s3' r4>s4' andrl<s4mustbetrue. 

c. If the response time, (r2 - r 1), is greater than one .half the length 

of the pulse, (s 4 - s 1) /2 , then r 2 is taken as the time value where 

the second order difference is zero (an inflection point in the time series) 

d. If the onset of pulse in the response, r 1, occurs before the onset of 

the pulse in the stimulus, s 1, then r 1 is taken as the first time value 

in response which has a second order zero occuring after s 1. 
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c. SirpiJ.arly the retreat of the pu~sc jn tl1e rc,sponsc m.ust follow the 

retreat of pulse in the stimulus. r 3 is taken as the first time value 

in the response which has a second order zero occuring after s 3 . 

f. If the length of the pulse in the response exceeds 1. 5 times the 

length of the pulse in the stimulus the entire pulse is ignored. 

g. If any of the preceeding restrictions can not be satisfied the entire 

pulse is ignored. 

8, The quantities, Response Latency, Response ti1ne, Response magnitude 

Response velocity, described earliel" are calculated for each pulse and stored 

on disk. }.1eans and standard deviations are computed and printed along with 

individual pulse values. 
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ANALYSIS OF OPTOMETER VOLITIONAL DATA 

Standard st<nist!cal computations (mean, standard deviation, maximum, and 

n1in~!":1Um,) \Ve~·c perfonned on the response time series. 

The meaa a::;.d standard deviation computed from the raw data are used to remove 

wild points. The wild points are presumed to be introduced by blinks. Hence, 

points one standard deviation below the mean or two standard deviations above 

the rnean are discarded. 

The mean, sta1idard deviation, maximum and minimum re-calculated for 

the smoothed data. 

The Yalues for both the smoothed and raw data are printed. 
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