PART I. NMR STUDIES OF P-INVERSION IN AND
CONFORMATIONAL ANALYSIS OF CIS- AND
TRANS-4-TERT-BUTYL-1-PHENYL-
PHOSPHORINANES
PART II. CONFORMATIONAL ANALYSIS OF SELECTED 4-PHOSPHORINANONES AND DERIVATIVES
By
GARY DUNCAN MACDONELLBachelor of ScienceNew Mexico State UniversityLas Cruces, New Mexico1973
Master of Science
Oklahoma State University
Stillwater, Oklahoma1975
Submitted to the Faculty of the Graduate Collegeof the Oklahoma State University
in partial fulfillment of the requirements
for the Degree ofDOCTOR OF PHILOSOPHYMay, 1978

PART I. NMR STUDIES OF P-INVERSION AND

 CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-1-PHENYL-PHOSPHORINANES
PART II. CONFORMATIONAL ANALYSIS OF SELECTED
4-PHOSPHORINANONES AND DERIVATIVES

Thesis Approved:

I express my sincere gratitude to Dr. K. Darre11 Berlin for his guidance and friendship throughout the course of this work. A special thank you is due Dr. Otis C. Dermer for his helpful comments and proofreading the manuscript. I am indebted to the members of Dr. Berlin's research group for their aid and companionship.

Thanks are due to the Chemistry Department at Oklahoma State University, the United States Public Health Service, The Dow Chemical Company, and the Continental Oil Company for financial support.

I thank Professor Dick van der Helm, at The University of Oklahoma, for his expertise in obtaining the X-ray data for this work and Mr . Stan Sigle for his help in obtaining the NMR data.

Thanks are due the entire support staff of the Chemistry Department at the Oklahoma State University for allowing this work to progress as smoothly as possible. A special thank you is due Mrs. Dolores Behrens for typing this manuscript.

Grateful appreciation is extended to the National Science Foundation for financial support to attend the NATO Advanced Study Institute on "Advances in NMR: The Less Receptive Nuclei" in Altavilla Milicia, Sicily, from September 5-18, 1976.

Finally, I thank my parents, James M. and Rita F. Kilkenny, for all their love and understanding.

TABLE OF CONTENTS

Page
INTRODUCTION. xiv
Part
I. NMR Studies of P-Inversion in and Conformational Analysis of cis- and trans-4-tert-Butyl-1-phenyl- phosphorinanes 1
II. Conformational Analysis of Selected 4-Phosphorinanones and Derivatives. 91

TABLE OF CONTENTS
Chapter Page
PART I. NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-1-PHENYL- PHOSPHORINANES
I. HISTORICAL 2
Pyramidal Inversion 2
Pyramidal Inversion vs Ring Reversal 5
Stereochemistry of Phosphorinanes. 7
Experimental Methods for the Determination of Thermodynamic Parameters 14
Errors in the Determination of Thermodynamic
Parameters 16
II. RESULTS AND DISCUSSION. 18
III. EXPERIMENTAL 66
General Data 66
Starting Materials 66
Preparation of 1,5-Dibromo-3-tert-butylpen- tane (40) from 4-tert-Butylpyridine (41) 66
Preparation of 40 from 4-tert-Butylcyclo- hexanone (43) 68
Preparation of 40 from 3-tert-Butyl-1,5- pentanediol (46) 69
Preparation of 4-tert-Buty1-1,1-dipheny1- phosphorinanium Bromide (47) 70
Preparation of cis- and trans-4-tert-Buty1- 1 -phenylphosphorinane 1 -0xides, (39a) and (39b) 71
Separation of cis- and trans-4-tert-Butyl- 1-phenylphosphorinane 1-Oxides, (39a) and (39b). 71
Preparation of cis- and trans-4-tert-Butyl-
31 1-phenylphosphorinanes (38a) and (38b) 72
${ }^{31}$ P NMR Spectral Measurements. 73
Preparation of trans-1-Benzyl-4-tert-butyl- 1-phenylphosphorinanium Bromide (48) 73
Chapter Page
Structure Determination of trans-4-tert-Butyl- 1-phenylphosphoriane 1-Oxide 74
BIBLIOGRAPHY 87
PART II. CONFORMATIONAL ANALYSIS OF SELECTED 4-PHOSPHORINANONES AND DERIVATIVES
I. HISTORICAL 92
Phosphorinanones-Preparations, Reactions, Properties 92
Stereochemistry and Energetics of Six-Membered P-Ring Systems 107
II. RESULTS AND DISCUSSION. 116
${ }^{13}$ C Spectral Parameters 123
Infrared Spectral Data 129
${ }^{1} \mathrm{H}$ NMR Spectral Data 129
31_{P} NMR Spectral Data. 132
Lithium Aluminum Hydride Reduction of 11a. 133
Suggestions for Further Work 142
III. EXPERIMENTAL 144
General Data 144
Starting Materials 144
Preparation of 2,2,6,6-Tetramethy1-1-pheny1 4-phosphorinanone (11a) 145
Preparation of 2,2,6,6-Tetramethy1-1-pheny1- 4-phosphorinanone 1-Oxide (11b) 146
Preparation of 2,2,6,6-Tetramethy1-1-pheny1- 4-phosphorinanone 1 -Sulfide (11c). 146
Preparation of 1,2,2,6,6-Pentamethyl-1-pheny1- 4-phosphorinanonium Iodide (11d) 147
Preparation of 1-Ethy1-2,2,6,6-tetramethy1- 1-pheny1-4-phosphorinanonium Iodide (11e). 147
Preparation of 1-Benzy1-2,2,6,6-tetramethy1-1- phenyl-4-phosphorinanonium Bromide (11f) 148
Preparation of Bis (hydroxymethy1)pheny1phosphine 148
Preparation of 1,2,6-Triphenyl-4-phos- phorinanone (41a). 149
Preparation of $1,2,6$-Tripheny1-4-phosphorinanone 1 -Oxides (41b and 41b'). 150
Chapter Page
Preparation of 1,2,6-Tripheny1-4-
phosphorinanone 1-Sulfide (41c') 151
Preparation of $2,2,6,6$-Tetramethy1-1- pheny1-4-phosphorinano1 (63a) 151
Preparation of $2,2,6,6-$ Tetramethy1-1-pheny1-
4-phosphorinano1 1-0xide (63b) 152
Preparation of 2,2,6,6-tetramethyl-1-phenyl- 153
Preparation of 1 -Benzy1-2,2,6,6-tetramethy1-
1-pheny1-4-phosphorinanolium Bromide (63d) 154
Preparation of 4-tert-Butyl-2,2,6,6-tetramethyl-
1-pheny1-4-phosphorinano1 1-0xide (64) 155
BIBLIOGRAPHY 184

LIST OF TABLES

Table Page
PART I. NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-1-PHENYL- PHOSPHORINANES
I. Torsion Angles (${ }^{\circ}$) 13
II. Torsion Angles (${ }^{0}$) 13
III. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 417 K (Tria1 1) 25
IV. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 417 K (Trial 2) 26
V. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 437 K (Trial 1) 27
VI. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 437 K (Trial 2) 28
VII. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 437 K (Trial 3) 29
VIII. Rate Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 454 K (Trial 1) 30
IX. Barrier $\left(\Delta G^{*}\right)$ to Pyramidal Inversion in $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$. 35
X. Equilibrium Data for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ 38
XI. ${ }^{31}$ P Chemical Shifts. 39
XII. ${ }^{13}$ C NMR Parameters: Chemical Shifts $\left({ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}\right.$ Coupling Constants) 42
XIII. Torsion Angles for 39b 49
XIV. Positional Parameters $\left(\mathrm{x} 10^{4}\right.$) and Anisotropic Tempera- ture Factors (x 104) for P, C, and 0 Atoms 52
XV. Positional Parameters ($\mathrm{x} 10^{3}$) and Isotropic Tempera- ture Factor (A^{2}) for Hydrogen Atoms 53
Table Page
XVI. Observed and Calculated Structure Factor Amplitudes for $39 b$. 54
PART II. CONFORMATIONAL ANALYSIS OF SELECTED 4-PHOSPHORINANONES AND DERIVATIVES
I. pK Values of Selected Phosphines 106
II. ${ }^{13}$ C NMR Chemical Shifts $\left({ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}\right.$ Coupling Constants) for Substituted 4-Phosphorinanones $11 \mathrm{a}-\mathrm{f}$ and 41a-c, 117
III. Spectral Data for Substituted 4-Phosphorinanones 11a-f and 41a-c 119
IV. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts $\left({ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}\right.$ Coupling Constants) for Substituted 4-Phosphorinanols $63 a-d$ and 64 134
V. Spectral Data for Substituted 4-Phosphorinanols (63a-d and 64 135

LIST OF FIGURES

Figure

Page

PART I. NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND
 TRANS-4-TERT-BUTYL-1-PHENYLPHOSPHORINANES

${ }^{31}$ P NMR spectra of $39 \mathrm{a} \rightleftharpoons 39 \mathrm{~b}$ at 417 K as a function
of time. .
2. ${ }^{1}{ }_{\mathrm{H} \text { NMR spectra of tert-butyl signal in } 38 \mathrm{a}}^{\text {at } 437 \mathrm{~K} \text { as a function of time }} 38 \mathrm{~b}$
3. 1_{H} NMR spectra of tert-butyl signal in $38 \mathrm{a}=38 \mathrm{~b}$ at 454 K as a function of time 33
4. Stereoview of a single molecule of 39b 47
5. Numbering scheme, bond angles, and bond distances for 39 b . 58

LIST OF PLATES

Plate Page
PART I. NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-1-PHENYL- PHOSPHORINANES
I. ${ }^{1} \mathrm{H}$ NMR Spectrum of cis-4-tert-Butyl-1-phenylphos- phorinane (38a) 77
II. $\quad{ }^{31} \mathrm{P}$ NMR Spectrum of $38 \mathrm{a}\left(\mathrm{DCCl}_{3}\right)$ 78
III. ${ }^{1}{ }_{H}$ NMR Spectrum of trans-4-tert-Buty1-1-pheny1- phosphorinane (38b). 79
IV. ${ }^{31} \mathrm{P}$ NMR Spectrum of $38 \mathrm{~b}\left(\mathrm{DCC1}_{3}\right)$ 80
V. 1_{H} NMR Spectrum of cis-4-tert-Buty1-1-pheny1- phosphorinane 1-Oxide (39a). 81
VI. ${ }^{31}$ P NMR Spectrum of 39 a in ODCB. 82
VII. IR Spectrum of cis-4-tert-Butyl-1-pheny1phosphorinane 1-Oxide (39a), KBr Pe1let. 83
VIII. $\quad 1_{H}$ NMR Spectrum of trans-4-tert-Buty1-1-phenylphos- phorinane 1-Oxide (39b). 84
IX. $\quad 31_{\mathrm{P}}$ NMR Spectrum of 39 b in ODCB. 85
X. IR Spectrum of trans-4-tert-Butyl-1-phenylphos- phorinane 1-Oxide (39b), KBr Pellet 86
PART II. CONFORMATIONAL ANALYSIS OF SELECTED4-PHOSPHORINANONES AND DERIVATIVES
I. 1_{H} NMR Spectrum of $2,2,6,6$-Tetramethy1-1-pheny1-4- phosphorinanone (11a). 157
II. IR Spectrum of 1la, KBr Pellet 158
III. $1_{\text {H NMR }}$ Spectrum of $2,2,6,6$-Tetramethy1-1-pheny1-4- phosphorinanone 1-0xide (11b). 159
IV. IR Spectrum of 11 b , KBr Pe11et 160
V. $1_{\text {H NMR }}$ Spectrum of 2,2,6,6-Tetramethy1-1-pheny1-4- phosphorinanone 1-Sulfide (11c). 161
VI. IR Spectrum of 11c, KBr Pellet 162
VII. ${ }^{1}{ }_{H}$ NMR Spectrum of $1,2,2,6,6$-Pentamethy1-1-pheny1-4- phosphorinanonium Iodide (11d)
VIII. IR Spectrum of 11d, KBr Pellet 162
IX. $\quad 1_{H}$ NMR Spectrum of 1-Ethy1-2,2,6,6-tetramethy1-1-pheny1-4- phosphorinanonium Iodide (11e) 165
X. IR Spectrum 11e, KBr Pellet 166
XI. 1_{H} NMR Spectrum of 1-Benzy1-2,2,6,6-tetramethy1-1- pheny1-4-phosphorinanonium Bromide (11f) 167
XII. IR Spectrum of $11 \mathrm{f}, \mathrm{KBr}$ Pellet 168
XIII. 1_{H} NMR Spectrum of $1,2,6$-Tripheny1-4-phosphorinanone (41a and 41a') 169
XIV. IR Spectrum of 41a and 41a', KBr Pellet. 170
XV. 1_{H} NMR Spectrum of 1,2,6-Triphenyl-4-phosphorinanone 1-0xide (41b and 41b') 171
XVI. IR Spectrum of 41b and 41b', KBr Pellet. 172
xVII. 1_{H} NMR Spectrum of $1,2,6$-Tripheny1-4-phosphorinanone 1-Sulfide (41c') 173
XVIII. IR Spectrum of 41c', KBr Pellet. 174
XIX. 1_{H} NMR Spectrum of $2,2,6,6$-Tetramethy1-1-pheny1-4- phosphorinanol (63a) 175
XX. 1_{H} NMR Spectrum of $2,2,6,6$-Tetramethyl-1-pheny1-4- phosphorinanol 1-Oxide (63b) 176
XXI. IR Spectrum of 63b, KBr Pellet 177
P1ate Page
XXII. 1_{H} NMR Spectrum of $2,2,6,6$-Tetramethyl-1-pheny1-4- phosphorinanol 1-Sulfide (63c) 178
XXIII. IR Spectrum of $63 \mathrm{c}, \mathrm{KBr}$ Pe11et 179
XVIV. ${ }^{1} \mathrm{H}$ NMR Spectrum of 1-Benzy1-2,2,6,6-tetramethy1-1- phenyl-4-phosphorinanolium Bromide (63d) 180
XXV. IR Spectrum of 63d, KBr Pellet 181
XXVI. $\quad^{1} \mathrm{H}$ NMR Spectrum of 4-tert-Buty1-2,2,6,6-tetramethy1-1- phenyl-4-phosphorinano1 1-Oxide (64) 182
XXVII. IR Spectrum of 64, KBr Pellet. 183

INTRODUCTION

Owing to the difference in the primary objectives of the two investigations recorded herein, this dissertation has been divided into two parts. Each is complete and independent of the other, containing its own Historical section, Results and Discussion, Experimental section and Bibliography.

PART I

NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-
 1-PHENYLPHOSPHORINANES

CHAPTER I

HISTORICAL

Pyramidal Inversion

Pyramidal inversion is the process whereby an atom bonded to three groups (pyramidal geometry) and possessing an unshared pair of electrons undergoes an inversion of configuration. An example of pyramidal inversion is indicated in the process of $1 \underset{\sim}{\square}$. The atom undergoing

inversion passes through a transition state in which the bonds to the groups x, y, and z are near sp^{2} in character and the lone pair is often pure p. The subject of pyramidal inversion has been discussed particularly in two reviews 26,51 and the determination of the barrier height for pyramidal inversion has been experimentally determined in several cases where $A=N, P$, and As. $8,19,28,29$ The discussion to follow will consider the effects of steric strain (also angular strain)
and electronic delocalization on the barrier to pyramidal inversion. Substitution of a large group on a pyramidal center sometimes results in steric repulsion between the nonbonded groups. This repulsive force destabilizes the pyramidal ground state relative to the less sterically crowded transition state and consequently lowers the inversion barrier. ${ }^{26,51}$ An example of barrier height reduction for pyramidal inversion in a phosphorus system with large steric forces around the central atom was exhibited with phosphetanes 3 and 4.8^{8} Phosphetane 3 underwent on1y ca. 5% inversion after heating at $162{ }^{\circ} \mathrm{C}$ for

3

4
four days, while inversion $\left(\Delta \mathrm{H}^{*}=\right.$ ca. $\left.28 \mathrm{kcal} / \mathrm{mole} ; \Delta \mathrm{G}^{*} \approx 31.5 \mathrm{kcal} / \mathrm{mole}\right)$ in 4 was monitored from $118^{\circ} \mathrm{C}$ to $157^{\circ} \mathrm{C}$.

The effect of angular strain (a decrease in ground state bond angles about the pyramidal atom) is illustrated with the following examples. The barrier to inversion in 1-methylaziridine (5) is

5

6

Z
$19 \mathrm{kcal} / \mathrm{mole} .^{19}$ That for 1-methylpyrrolidine (6) is $8 \mathrm{kcal} / \mathrm{mole},{ }^{30}$ and that for 1 -methylazepane (7) is $7.0 \mathrm{kcal} / \mathrm{mole} .{ }^{30}$ Therefore, as the endocyclic $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angle increases from $60^{\circ} \rightarrow 109^{\circ} \rightarrow 112^{\circ}$, the inversion barrier decreases.

Delocalization of the lone pair at the pyramidal center into an attached π system should lower the inversion barrier by geometrically flattening the ground state pyramid. Such a situation has been investigated for a number of aryl-substituted phosphines. ${ }^{1}$ The barrier to pyramidal inversion ($29.7 \mathrm{kcal} / \mathrm{mole}$) for methylpheny1(2-naphthy1)phosphine (8) is ca. $3 \mathrm{kcal} / \mathrm{mole}$ lower than that of methylphenyl-

$\stackrel{8}{\sim}$

9

10
(2-propeny1)phosphine (9) (32.8 kcal/mole) which in turn is ca. 3 $\mathrm{kcal} / \mathrm{mole}$ lower than that of cyclohexylmethylpropylphosphine (10) (35.6 kcal/mole). ${ }^{1}$ Furthermore the barrier height in 2-methyl-5-phenyl-1-isopropylphosphole (11) ${ }^{10}$ is only $16 \mathrm{kcal} / \mathrm{mole}$ indicating

II
that there is effective delocalization of the lone pair of electrons on phosphorus into the π ring system. Also repulsive interactions between the 1-isopropyl group and the 2 -methy1 and 5-phenyl groups may contribute to the low barrier to inversion in 11.

Pyramidal Inversion vs Ring Reversal

Early in the study of conformational analysis it was recognized that in selected six-membered ring systems both inversion at an atomic center and ring reversal may occur. An example of this phenomenon is

illustrated above. If the functionality R is NMR active (such as ${ }^{1} H,{ }^{19}$, or ${ }^{31} \mathrm{P}$), a lone signal should occur for the timeaveraged population of 12 a and 12 b at elevated temperatures. Upon cooling the mixture, either pyramidal inversion or ring reversal may be sufficiently slow on the NMR time scale to permit observation of two signals for R. However, it is often difficult to differentiate pyramidal inversion from ring reversal with only a variable-temperature NMR study.

It was concluded from an NMR study ${ }^{32}$ of 1-chloropiperidine (13) and 1-chloropyrrolidine (14) that a cooled ($\mathrm{T}<-40^{\circ} \mathrm{C}$) solution ($\mathrm{H}_{2} \mathrm{CCl}_{2}$)

13

14
of $13-\underline{3}, \underline{3}, \underline{5}, \underline{5}-d_{4}$ gave only one $A B$ pattern for the α-protons. However, upon cooling a solution of 14 below $-80^{\circ} \mathrm{C}$, a similar lone $A B$ pattern was observed. Complete line-shape analysis of the two systems revealed very close Arrhenius activation energies for nitrogen inversion for 13 $(15.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole})$ and $14(13.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole})$. This indicated that in 13 inversion of N could not be ruled out (14 was considered incapable of ring reversal).

A similar problem was encountered in the conformational analysis of hexahydro-1,3,5-trimethy1-1,3,5-triazine (HTMT) (15). ${ }^{20}$ In the course of a low temperature ${ }^{1}{ }_{H}$ NMR study of HTMT, an AB quartet at $\delta 6.854$ and a single line at $\delta 7.763$ appeared for the methylene and
methyl protons, respectively. It was argued that a chair form in

which the three methyl groups were all equatorial was the only conformer present to an appreciable extent. To account for these observations, it was concluded that ring reversal occurs simultaneously with pyramidal inversion at one or two nitrogen atoms and that this was preceded or followed by a fast pyramidal inversion of the other nitrogen atoms(s). ${ }^{20}$ The above example is not without ambiguities in the arguments and suggests that caution must be taken in conformational analysis of six-membered ring systems in which both ring reversal and pyramidal inversion may occur at similar rates.

Stereochemistry of Phosphorinanes

The phosphorinane ring system $\underset{\sim}{16}$ possesses unique features which contribute to the developing interest in these phosphorus heterocycles but are not found in the piperidine family 17. ${ }^{27}$ Certain inherent structural differences of 16 from 17 more readily permit dynamic studies with the phosphorus analog (e.g. thermodynamic data for the barrier to pyramidal inversion). ${ }^{26,51}$ The main differences are: 1) size of the heteroatom (van der Waals radius, $N, 1.5{ }_{\mathrm{A}}^{\mathrm{A}}$ vs $\left.\mathrm{P}, 1.9 \mathrm{O}_{\mathrm{A}}\right)^{45}$; 2) empty d orbitals present in phosphorus; 3) C-P bond longer (ca. $1.83 \stackrel{\mathrm{O}}{\mathrm{A}})^{7}$ than $\mathrm{C}-\mathrm{N}$ bond ($1.47 \mathrm{O}_{\mathrm{A}}$); ${ }^{45}$ and 4) C-P-C endocyc1ic bond angle smaller than $\mathrm{C}-\mathrm{N}-\mathrm{C}$ Angle (98° vs 108°). ${ }^{27,45}$ These differences, coupled with ${ }^{31} \mathrm{P}$ which possesses a spin of $1 / 2$, and no electric

quadrupole moment allow investigations of structural parameters in the phosphorinane system 16 which are more difficultly accessible in the nitrogen analogs even via DNMR methods.

18

Phosphorinane 18, prepared by several methods, $4,31,33,59$ one of which is illustrated, apparently exists with the proton axially oriented. ${ }^{31,33}$ At $-50^{\circ} \mathrm{C}$, one-half of the $\mathrm{P}-\mathrm{H}$ resonance consists of a triplet of triplets due to $J_{a a}$ and $J_{a e}$ (the other half is under the ring protons resonance, $1_{J_{\mathrm{PH}}}=\underline{\text { ca. }} 200 \mathrm{~Hz}$). Computer simulation (LAOCN3) of the observed spectra gave $J_{a a}=12 \mathrm{~Hz}$ and $J_{a e}=2.5 \mathrm{~Hz} .31,33$ Similarly it was determined that phosphorinane 1-sulfide 19^{31} and the corresponding methiodide 20^{31} possesses axially oriented $\mathrm{P}-\mathrm{H}$ bonds.

19

20

However, the experimental evidence in support of the configuration at phosphorus in 20 was somewhat ambiguous. ${ }^{31}$

Quin and co-workers ${ }^{13,14}$ have determined the barriers (ΔG^{*}) to ring reversal in 1-methylphosphorinane (21), 1-ethylphosphorinane (22), 1-isopropylphosphorinane (23), and 1-phenylphosphorinane (24) by low temperature ${ }^{1}{ }_{H}$ and ${ }^{31}{ }_{P}$ NMR analyses. Lowering the temperature of solutions (vinyl chloride, tetramethylethylene) of these phosphines resulted in the appearance of two signals in the ${ }^{31} \mathrm{P}$ spectrum. The low-field signal was assigned to the conformer with an equatorial P substituent. Accordingly, $\Delta G^{*}{ }_{T_{C}} \quad\left(T_{C}=\right.$ coalescence temperature)

$\mathrm{CH}_{3} \sim \mathrm{P}$

21

22

$\underset{23}{\mathrm{CH}_{3}-\mathrm{CH} \sim \mathrm{P}}$

for ring reversal was calculated to be $8.7 \mathrm{kcal} / \mathrm{mole}\left(\mathrm{T}_{\mathrm{c}}=186 \mathrm{~K}\right.$) for 21, $8.4 \mathrm{kcal} / \mathrm{mole}\left(\mathrm{T}_{\mathrm{c}}=177 \mathrm{~K}\right)$ for $22,8.6 \mathrm{kcal} / \mathrm{mole} \cdot\left(\mathrm{T}_{\mathrm{c}}=169 \mathrm{~K}\right)$ for 23 , and $9.3 \mathrm{kcal} / \mathrm{mole}\left(\mathrm{T}_{\mathrm{c}}=208 \mathrm{~K}\right)$ for 24 . 14 The above values for $\Delta \mathrm{G}^{*}$ were obtained using the equation $k_{c}=\pi \Delta \nu / \sqrt{2}{ }^{46}$ [where $\Delta \nu$ is the peak separation at the lower temperature limit] and the Eyring equation. The validity of the above method for calculating $\Delta G^{*}{ }_{T}$ rests on the accuracy of the temperature measurement since a variation of $\pm 2^{\circ} \mathrm{C}$ yields a variance in ΔG^{*} of ca. $0.1-0.2 \mathrm{kcal} / \mathrm{mole} .{ }^{25}$ Also errors of 25% in the value of the rate constants at the coalescence temperature yield a variation in ΔG^{*} of ca. $0.1 \mathrm{kcal} / \mathrm{mole} .{ }^{25}$
${ }^{31}{ }_{P}$ NMR analysis of the low temperature ($T<T_{c}$) spectra of $21-24$ gave equilibrium constants which favored the equatorial P substituent. ${ }^{14}$ However, extrapolation to room temperature of plots of $\log _{\mathrm{eq}}$ vs $1 / \mathrm{T}$ showed the predominance of the axial conformer for 21,22 , and 24. ${ }^{14}$

The use of ${ }^{13} \mathrm{C}$ NMR spectroscopy in the conformational analysis of phosphorinanes has received considerable attention. ${ }^{12,15,49}$ of particular importance is the relationship between the ${ }^{2} J_{31_{P-}}{ }^{13} \mathrm{C}$ at $\mathrm{C}(3,5)$ and the disposition of the lone pair of electrons on phosphorus. ${ }^{15}$

A large dihedral angle between the lone pair of electrons and $C(3,5)$,
such as in 25 (axial-R), results in a small (ca. 0-1 Hz)

(axial - R)

(equatorial - R)
${ }^{2} J_{31_{P}-13}$ value. Subsequent use was made of the above relationship in the assignment of configuration of P for $21-24$ and for 1 -tartbutylphosphorinane (26) ${ }^{12}$ based on the coupling constants for 27 and

26

27a

$27 b$

27b with known absolute configuration. ${ }^{15,44}$
Sulfurization of unbiased phosphorinanes has been shown to produce configurations at P with axial sulfur. ${ }^{12}$ Phosphorinanes $21-24$ and 26 were sulfurize in boiling benzene, a process known to proceed with
retention of configuration. ${ }^{35}$ That the configurational isomer with axial sulfur resulted was based upon the shielded signals for $C(3,5)$ in the ${ }^{13} \mathrm{C}$ spectra in comparison to the ${ }^{13} \mathrm{C}$ chemical shifts of $\mathrm{C}(3,5)$ in phosphorinanol 1-sulfides of known stereochemical configuration. 49 Fortunately, X-ray crystallographic data have been collected for 1-phenyl-4-phosphorinanone (28), 42 4,4-dimethoxy-1-phenylphosphorinane (29), ${ }^{43}$ trans-4-tert-butyl-1-methy1-4-phosphorinanol (27a), ${ }^{44}$ epimeric

28

29

30

1-methy1-4-phosphorinano1 1-sulfides 30,31 , and 32,49 and cis- and trans-1,4-dimethyl-4-phosphorinano1 1-sulfides 33 and 34.49

The phosphorinanes with axial P substituents (nonsulfides), 27a, 28, and 29, possess slightly flattened chair conformations. ${ }^{42-44}$ The
ring torsion angles for $27 \mathrm{a}, 28$, and 29 are presented in Table I. A listing of the endocyclic torsion angles for sulfides $30,31,32,33$, and 34 is given in Table II. 49

TABLE I
TORSION ANGLES (${ }^{\circ}$)

	$27 a$	28	29
$C(6)-P(1)-C(2)-C(3)$	45.3	-44.3	45.2
$P(1)-C(2)-C(3)-C(4)$	57.7	49.8	57.1
$C(2)-C(3)-C(4)-C(5)$	59.7	-53.0	61.5

TABLE II
TORSION ANGLES (${ }^{\circ}$)

| | 30 | 31 | 32 | 33 | 34 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $C(6)-P(1)-C(2)-C(3)$ | 45 | 50 | 44 | 45 | 52 |
| $P(1)-C(2)-C(3)-C(4)$ | 56 | 59 | 55 | 56 | 59 |
| $C(2)-C(3)-C(4)-C(5)$ | 64 | 63 | 62 | 61 | 60 |

It is interesting to note that in all cases (phosphines and phosphine sulfides) when the alkyl group was axially oriented (27a, 28, 29, 30, 32, and 33), the $P(1)-C(2)$ torsion angle was ca. 45°. In contrast, when sulfur was axially oriented (31 and 34), the P(1)-C(2) torsion angle was ca. 51°. 42-44,49 This may be accounted for by the repulsive forces (electronic) between axial sulfur and the $C(3,5)$ axial hydrogens. This argument was supported by the increased shielding in the ${ }^{13} \mathrm{C}$ NMR spectra at $C(3,5)$ when sulfur was axial compared to that when methy1 was axial (154.7 ppm for 33 vs 155.5 ppm for 34). ${ }^{49}$

Experimental Methods for the Determination

of Thermodynamic Parameters

Dynamic Nuc1ear Magnetic Resonance (DNMR)

The theory and application of DNMR to intramolecular rate processes has received considerable attention in the last decade. $3,23,26,51,54-56$ Only two uses of DNMR will be discussed herein, that for the study of pyramidal atomic inversion and for the study of ring reversal in sixmembered rings.

A classic example of the use of DNMR in the case of pyramidal atomic inversion has been presented recently. 34 1,1,2,2-Tetraiso-propy1-1,2-dipheny1disilane (35) was cleaved with lithium to yield

$$
\mathrm{C}_{6} \mathrm{H}_{5}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{SiSi}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2} \mathrm{C}_{6} \mathrm{H}_{5} \xrightarrow{2 \mathrm{Li}} 2 \mathrm{C}_{6} \mathrm{H}_{5}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{SiLi}
$$

35
36
pheny1-di-isopropylsilyllithium (36). At $35^{\circ} \mathrm{C}$ in several solvents (hexamethylphosphoramide, diglyme, tetrahydrofuran- ${\underset{8}{8}}$, 1,2-dimethoxyethane, benzene- d_{6} or 1,4 -dioxane), the ${ }^{1}{ }_{H}$ NMR spectrum of 36
consisted of two nonequivalent methyl signals, indicative of slow inversion at silicon. Heating a solution (diglyme) of 36 to $185^{\circ} \mathrm{C}$ revealed no change in the ${ }^{1}{ }_{H}$ NMR spectrum of the nonequivalent methyl groups. Based on those observations, it was concluded that the barrier to pyramidal inversion at silicon in 36 was greater than ca. $24 \mathrm{kcal} / \mathrm{mole}{ }^{34}$

Cyclohexane has probably been the most widely studied molecule for ring reversal. ${ }^{3,23}$ The room temperature ${ }^{1}{ }_{H}$ NMR spectrum of cyclohexane consists of a single line. Lowering the temperature to ca. $-70^{\circ} \mathrm{C}$ results in two equally intense signals in the proton spectrum. The downfield signal has been assigned to the protons equatorially oriented and the upfield signal to the protons axially oriented. Several methods (e.g. line-shape analysis) have yielded barriers $\left(\Delta G^{*}\right)$ to ring reversal of ca. $10 \mathrm{kcal} / \mathrm{mole} .^{3,23}$

Infrared and Microwave Spectroscopy

The use of infrared and microwave spectroscopy for the determination of intromolecular rate processes (i.e. pyramidal inversion) has been particularly effective for simple amines. ${ }^{26,51}$ As the studies of processes utilizing these techniques have been discussed in detail, these topics may be referred to e1sewhere. 26,51

Classical Kinetics

Classical kinetics has been employed for the determination of the barrier to pyramidal atomic inversion in several instances. $1,8,11,34$ The application of classical kinetics is limited to compounds which invert over an accessible temperature range at a convenient rate. Also
the invertomers must be distinguishable as enantiomers or diastereomers and obtainable as a nonequilibrium mixture for best results.

The barrier to pyramidal atomic inversion may be obtained from the Arrhenius equation (Eq. 1)

$$
\begin{equation*}
\mathrm{k}=A e^{-\mathrm{E}_{\mathrm{a}} / R T} \tag{Eq.1}
\end{equation*}
$$

where k is the rate constant at temperature T, A is the frequency factor, and E_{a} is the Arrhenius activation energy. Similarly the Eyring equation (Eq. 2)

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}} \tag{Eq.2}
\end{equation*}
$$

may be employed where k is the rate constant at temperature T in K, k_{B} is the Boltzmann constant (1.38×10^{-16} erg $K^{-1} \mathrm{~mole}^{-1}$), h is Planck's constant ($6.63 \times 10^{-27} \mathrm{erg} \mathrm{sec}$), and $\Delta \mathrm{G}^{*}$ is the Gibbs free energy difference between ground state and transition state.

Errors in the Determination of Thermodynamic Parameters

Only the errors associated with the determination of thermodynamic parameters via classical kinetics will be discussed here. Since the calculation of the first order rate constant (Eq. 3) is directly dependent upon the

$$
\begin{equation*}
\mathrm{kt}=\ln \frac{[\mathrm{A}]}{[\mathrm{B}]} \tag{Eq.3}
\end{equation*}
$$

concentration of two species (A and B) at time t, methods to determine those concentrations accurately are extremely important. In utilizing NMR for the determination of the concentration of two distinguishable species (A and B), one relies on the integrated intensity of two or
more signals. It follows that the method(s) of integration must be reliable and reproducible. Triangulation, planimetry, cutting and weighing, and digital integration all possess strong and weak points and should be used in conjunction where possible. However, it should be realized that an error in the rate constant of 25% yields an error of only $0.1 \mathrm{kcal} / \mathrm{mole}$ in $\Delta \mathrm{G}^{*} .25$

Another parameter most difficult to control in NMR analyses is that of temperature. If the data accumulation is performed while the NMR spectrometer is operating at a temperature other than ambient, one must be capable of controlling and monitoring that temperature accurately. It is best with current VT accessories on NMR spectrometers to calibrate the temperature readout device over the entire temperature range to be used. This is easily done by observing the chemical shifts in a standard compound as a function of temperature (e.g. methanol, ethylene glycol). 57 Direct thermometer (or thermocouple) readings before and after sampling and the incorporation of a temperature-sensing device in the sample are other applicable techniques. It is important to realize that if the temperature monitored is near 300 K a variance of $\pm 2 \mathrm{~K}$ results in ca. 1% variation in $\Delta G *{ }^{25}$

RESULTS AND DISCUSSION

The chemistry of phosphorinanes is a very active area, and there recently appeared in the literature the preparation and tentative stereochemical assignment of cis- and trans-4-tert-butyl-1-methy1phosphorinane (37a and 37b, respectively) and cis- and trans-4-tert-butyl-1-phenylphosphorinane (38 a and 38 b , respectively). 39

380

38b

The work in this thesis presents NMR studies which have provided thermodynamic data $\left(\Delta G^{*}\right.$ and $\left.\Delta G^{\circ}\right)$ for the pyramidal inversion involving 38a \Longleftarrow 38b. In addition, analyses of the ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra of phosphines 38 a and 38 b and their corresponding oxides 39 a and 39 b have also been recorded. All data support the original stereochemical
assignments. ${ }^{39}$ tallographic analysis of oxide 39 b which also supports the original structural assignments for the phosphines 38 a and 38 b ,

The preparation of phosphines 38 a and 38 b have been reported previously ${ }^{39}$ but will be discussed here to familarize the reader with the synthetic procedure. The basic starting material for the phosphines was 1,5-dibromo-3-tert-butylpentane (40). Several methods $24,47,52$ have been employed and these will be discussed on the basis of ease and reproducibility. The earliest procedure ${ }^{24}$ involved utilization of 4-tert-butylpyridine (41). 4-tert-Butylpyridine (41) was catalytically reduced over platinum oxide to give, presumably, a piperidine (not isolated). Benzoylation of this product with benzoyl chloride gave the amide 42 in 90% yield. Cleavage of the amide 42 was effected (von Braun reaction) with PBr_{3} and Br_{2} to yield, after the appropriate work-up, 40 (40\%). The major problems involved in the above procedure are the expense of the platinum oxide catalyst and pyridine 41 and the modest reproducibility of the von Braun cleavage owing to the number of product transfers involved and final steam distillation of dibromide 40 .

The second method ${ }^{52}$ employed 4-tert-butylcyclohexane (43) as the starting material. Lactonization of ketone 43 was performed

$\xrightarrow[3.48 \% \mathrm{HBr}]{\text { 2. } \mathrm{H}_{2} \mathrm{O}}$
40

44

45
with perbenzoic acid followed by fractional distillation to give the lactone 44 (reported yield 100%). 52 Cleavage of the lactone 44 with $48 \% \mathrm{HBr}-\mathrm{KBr}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave bromo acid 45 (83%). The final brominationdecarboxylation (Hunsdiecker reaction) process utilized $\mathrm{HgO}-\mathrm{Br}_{2}$ instead of the usual silver salt $-\mathrm{Br}_{2}$ to give dibromide $\underbrace{40}$ (61\%) after steam distillation. This method is attractive on the basis of simplicity; however, other workers ${ }^{39}$ have been unable to reproduce the reported yields.

The third method began with 3-tert-buty1-1,5-pentanediol (46).

46

The diol 46 was brominated with dibromotriphenylphosphorane (from triphenylphosphine and Br_{2}). Hydrolysis and separation of the organic phase followed by vacuum distillation gave 40 (39\%). This method appears most attractive on the basis of ease of reactions; however, the number of reaction steps (8) to prepare 46 makes the overall procedure less attractive.

With a method developed by Märkl, $36,39,40$ the dibromo compound 40 was cyclized (37\%) to 4-tert-butyl-1,1-diphenylphosphorinanium bromide (47) with tetraphenyldiphosphine in boiling 1,2-dichlorobenzene (ODCB). The reaction is believed to proceed via nucleophilic displacement of Br^{-}by the phosphine with concomitant $\mathrm{P}-\mathrm{P}$ bond cleavage to

yield a tertiary phosphine. A second nucleophilic displacement of Br^{-}by the phosphine gave the cyclic salt 47. Since diphenylphosphinous bromide is a side product in the reaction, its role as reagent in the cyclization process has been studied ${ }^{40}$ and found to be insignificant.

Base cleavage of the salt 47 gave a mixture of phosphine oxides

$$
47 \xrightarrow[\Delta]{\text { IN KOH }} \quad 39 a+39 b
$$

39a and $39 \mathrm{~b} .{ }^{39}$ The composition of the product mixture was rationalized on the basis of product-resembling transition states which tend to favor the diequatorially substituted oxide 39b. 39

Oxides 39 and 39 b were separated via preparative thick-layer chromatography on silica gel plates with acetone as eluent. ${ }^{39}$ The separated oxides $\left[39 \mathrm{a}: \mathrm{R}_{\mathrm{f}}=0.24 ; 39 \mathrm{~b}: \mathrm{R}_{\mathrm{f}}=0.94\right]$ were extracted (Soxhlet) with methanol, and the resulting extracts were then vacuum distilled (Kugelrohr) after rotary evaporation of the solvent.

Preparation of the phosphines 38 and 38 b as accomplished by reduction with phenylsilane of the corresponding oxides 39 a and 39 b .39

This type of reduction of phosphine oxides is known to proceed stereospecifically with retention of configuration. ${ }^{38}$ Freshly distilled

phosphines 38 a or 38 b were then used directly in the kinetic expertments (discussion to follow).

A simple experiment to check the structure assignments previously reported was conducted with oxide 39 b. ${ }^{39}$ oxide 39 b was reduced with phenylsilane ${ }^{38}$ to the corresponding phosphine 38 b . Quaternization

of phosphine 38 with benzyl bromide in ODCB at room temperature gave salt 48 (22%) whose physical and spectral properties were identical to those reported previously. ${ }^{39}$

Few reports have appeared ${ }^{8,10}$ on the barrier $\left(\Delta G^{*}\right)$ to pyramidal atomic inversion in cyclic organophosphorus compounds. It was the intent of this work to determine the barrier (ΔG^{*}) to inversion at phosphorus in phosphorinanes 38 a and 38 b . The procedure consisted of dissolving the phosphine 38 a or 38 b in ODCB at a specified temperature which was maintained at either 417,437 , or 454 K by the appropriate selection of an external boiling liquids [1,1,2,2-tetrach1oroethane bp 417 K ; 1,3,5-trimethylbenzene, bp 437 K ; ODCB, bp 454 K$].$ Periodically, an aliquot of the phosphine solution was withdrawn and quenched by placement in a cold NMR tube. The ${ }^{1}{ }_{H}$ or ${ }^{31}$ P NMR spectrum was then recorded. The composition of the phosphine mixture was determined by integration of the well separated tert-butyl singlets in the ${ }^{1}{ }_{H}$ NMR spectrum or the distinct ${ }^{31} \mathrm{P}$ signals in the ${ }^{31} \mathrm{P}$ NMR spectrum. Data so collected are presented in Tables III-VIII and displayed in Figures 1-3.

The determination of the barrier $\left(\Delta G^{*}\right)$ to pyramidal inversion at phosphorus in $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ was by a least-squares fit of the mixture composition data. Data collected up to ca. 10-hr reaction time were used as some decomposition of the phosphines 38a or 38b took place after ca. 10 hr at these elevated temperatures. Also, little change in the mole fraction of 38 a or 38 b was noticed after ca. 10 hr of reaction time; thus it was assumed that the equilibrium mixture for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ had been formed. The rate constants so obtained from the least-squares plot of the change in concnetration of 38a (or 38b) with time were averaged for each temperature and subsequently employed in the Eyring equation. ${ }^{25}$ A sample calculation of ΔG^{*} at 437 K follows:

TABLE III

RATE DATA FOR $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ AT 417 K (TRIAL 1)

Mole Fraction

Time (hr)	$\underline{38 \mathrm{a}}$	$\underline{38 \mathrm{~b}}$
0	1.00	0.00
2	0.942	0.058
6	0.783	0.217
19	0.517	0.483

TABLE IV
RATE DATA FOR $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ AT 417 K (TRIAL 2)

Time (hr)	Mole Fraction	
	38 a	38 b
0	1.00	0.00
3.25	0.901	0.098
6.75	0.834	0.166
10.25	0.748	0.252
17.50	0.544	0.456
71.75	0.410	0.589

TABLE V

RATE DATA FOR 38a $\rightleftharpoons 38 \mathrm{~b}$ AT 437 K (TRIAL 1)

Time (hr) Mole Fraction		
0	38 a	38 b
1.25	0.394	0.606
2.17	$(0.417) *$	$(0.583) *$
4.17	0.339	0.661
10.17	0.314	0.686
13.17	0.265	0.735
	0.297	0.703

* Least reliable point.

TABLE VI

RATE DATA FOR 38a $\rightleftharpoons 38 \mathrm{~b}$ AT 437 K (TRIAL 2)

Mole Fraction

Time (hr)	38 a	38 b
0	1.00	0.00
1.08	0.829	0.171
2	0.763	0.237
4	0.521	0.479
11.1	0.571	0.429
21.42	0.475	0.525

TABLE VII
RATE DATA FOR 38a $\rightleftharpoons 38 \mathrm{~b}$ AT 437 K (TRIAL 3)

Mo1e Fraction

Time (hr)
38a 38

0	0.00	1.00
1	0.061	0.939
2	0.098	0.900
3	0.164	0.836
5	0.229	0.771
11	0.227	0.773
24	0.428	0.572
48	0.474	0.526
72	0.492	0.508

TABLE VIII
RATE DATA FOR $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ AT 454 K (TRIAL 1)

Time (hr)	Mole Fraction	
	38 a	38 b
0	0.602	0.398
1.17	0.561	0.439
3.5	0.392	0.608
8.08	0.331	0.669
17.00	0.311	0.689

$\overline{\mathrm{A}}$

Figure 2. ${ }^{1}{ }_{H}$ NMR spectra of tert-butyl signal in $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 437 K as a function of time: A) $\left.38 \mathrm{~b}, \mathrm{t} \mathrm{o}_{\mathrm{o}}+1 \mathrm{hr} ; \mathrm{B}\right) \mathrm{t}_{\mathrm{o}}+$
$2 \mathrm{hr} ; \mathrm{C}) \mathrm{t}+3 \mathrm{hr}{ }^{\mathrm{D}) \mathrm{t}}+5 \mathrm{hr}$. 2 hr ; C) $\mathrm{t}_{\mathrm{o}}+3 \mathrm{hr}$; $\left.{ }^{\mathrm{O}} \mathrm{D}\right) \mathrm{t}_{\mathrm{o}}+5 \mathrm{hr}$. ${ }^{\circ}$

Average k for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 437 K

$$
\begin{aligned}
& \mathrm{k}=0.0339 \mathrm{hr}^{-1}=9.42 \times 10^{-6} \mathrm{sec}^{-1} \\
& \mathrm{k}=\frac{\mathrm{k}_{\mathrm{B}}^{\mathrm{T}}}{\mathrm{~h}} \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}} \\
& 9.42 \times 10^{-6} \mathrm{sec}^{-1}=\left(2.08 \times 10^{10} \mathrm{sec}^{-1} \mathrm{~K}^{-1}\right)(437 \mathrm{~K}) \mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}} \\
& 1.04 \times 10^{-18}=\mathrm{e}^{-\Delta \mathrm{G}^{*} / \mathrm{RT}} \\
& -41.4=-\mathrm{G}^{*} /\left(1.98 \mathrm{cal}^{-1} \mathrm{~mole}^{-1}\right)(437 \mathrm{~K}) \\
& \Delta G^{*}=35.9 \mathrm{kcal} \mathrm{~mole} \mathrm{~m}^{-1}
\end{aligned}
$$

The barriers ($\Delta \mathrm{G}^{*}$) to pyramidal inversion at 417 and 454 K were determined in like manner and are given in Table IX.

The barrier $\left(\Delta G^{*}\right)$ for inversion in $38 \mathrm{a} \Longrightarrow 38 \mathrm{~b}$ compares to the reported value of ca. 36 kcal mole ${ }^{-1}$ for 3 -methyl-1-phenylphospholane (49) ${ }^{10}$ and is ca. 4 kcal mole e^{-1} higher than that for a number of dialkylphenylphosphines. ${ }^{1}$ It is interesting to note that $1,2,2,3,4,-$ hexamethy1phosphetane (50), ${ }^{8}$ 1, 3-dimethylphospholane (51), ${ }^{37}$ and 1-methyl-4-phosphorinanol (52) ${ }^{50}$ failed to invert after heating at $162{ }^{\circ} \mathrm{C}$

49
$\operatorname{BARRIER}\left(\Delta \mathrm{G}^{*}\right)$ TO PYRAMIDAL INVERSION IN $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$

for 4 days, $150^{\circ} \mathrm{C}$ for 3 days, and $170^{\circ} \mathrm{C}$ for 18 days, respectively.
Therefore that $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ undergoes pyramidal inversion constitutes the first report of a phosphorinane to do so.

From the observations that 49 and 38 (38) undergo inversion at phosphorus while 50, 51, and 52 do not at approximately the same temperatures, it is reasonable to conclude that the phenyl group on P must influence the development of the transition state in 38a (or 38b) and 49 in a significant manner. It seems likely that there is a decrease in the barrier to pyramidal inversion when a phenyl group is attached to P due to $(p-p) \pi$ overlap in the transition state. An illustration of this possible effect is given in 53.

53

As stated previously, equilibrium data (mixture composition-mole fraction) were collected for $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at the three different temperatures (417, 437, and 454 K). Data used in the calculation of ΔG° at the three different temperatures are presented in Table X. The equilibrium constants are in favor of the diequatorially substituted phosphine 38b. Values for ΔG^{0} were then calculated from

$$
-\Delta G^{O}=R T \ln K_{e q}
$$

TABLE X

$T(K)$	$K_{e q}$	$\Delta G^{o}\left(k c a l\right.$ mole $\left.{ }^{-1}\right)$
417	1.44	-0.30
437	1.38	-0.28
454	1.21	-0.17

In all cases the diequatorially substituted phosphine 38 b was favored, which agrees with a report ${ }^{11}$ for 4-tert-butyl-1-methylthianium perchlorate (54), where the equatorial S-methyl group was favored by $0.275 \mathrm{kcal} \mathrm{mole} \mathrm{e}^{-1}\left(\Delta \mathrm{G}^{\mathrm{o}}\right)$ at $100^{\circ} \mathrm{C}$.

54
The ${ }^{31} \mathrm{P}$ NMR chemical shifts for $38 \mathrm{a}, ~ 38 \mathrm{~b}, 39 \mathrm{a}$, and 39 b have been recorded in Table XI. The ${ }^{31} \mathrm{P}$ NMR data revealed an unusual difference between phosphorinanes 38 and 38 b and structurally similar phosphorinanols 27a and 27b reported previously. ${ }^{50}$ Chemical shifts of -32.92 and -38.62 ppm (upfield from external reference $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) were observed for 38 and 38 b , respectively, whereas ${ }^{31} \mathrm{P}$ shifts of -67.3 and -57.7 ppm were recorded for 27 a and 27 b , respectively. That the ${ }^{31}{ }_{\mathrm{P}}$

$31_{\mathrm{P}}:-67.3 \mathrm{ppm}$
$27 a$

$27 b$
chemical shifts for 38 a and 38 b were assigned correctly was based on the ${ }^{13}$ C NMR data (discussion to follow) as well as on a single crystal X-ray crystallographic analysis of oxide 39 b (discussion to follow). The latter was reduced with phenylsilane ${ }^{38}$ to 38 b . A similar observation concerning ${ }^{31} \mathrm{P}$ NMR shifts has recently been made for cis- and trans-2-pheny1-2-oxo-5-tert-buty1-1,3,2,-dithiaphosphorinones 55 a and $55 \mathrm{~b} .{ }^{41}$ These workers suggested that the reversal ${ }^{14}$ in ${ }^{31} \mathrm{P}$ chemical shifts may be due to a predominance of a twist conformer

TABLE XI

$$
{ }^{31} \text { P CHEMICAL SHIFTS }{ }^{a}
$$

Cpd.	$\delta^{b}(\mathrm{ppm})$
38 a	-32.92
38 bab	-38.62
39 b	+29.99
	+28.19

${ }^{\text {a }}$ Shifts are $\pm 0.02 \mathrm{ppm}$. Shifts determined on ca. 200 mg samples in 2 ml ODCB. ${ }^{\mathrm{b}}$ Chemical shifts relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. Minus sign indicates shifts upfield from the external standard.

31

$P:+47.3 \mathrm{ppm}$ 55b

for 55 a in solution. Similarly, the small ${ }^{13} \mathrm{C}$ shift differences [between $C(2,6)$ and $C(3,5)$, discussion to follow] of $\Delta \delta-0.23$ in 38a and $\Delta \delta-2.55 \mathrm{ppm}$ in 39 a may be the result of a distorted chair or twist conformation since the same atoms in 27a (with known absolute configuration) displayed a ${ }^{13} \mathrm{C}$ chemical shift difference of $\Delta \delta+6.06 .{ }^{15}$ We conclude that the anomalous ${ }^{31} \mathrm{P}$ chemical shift data for 38 a , 38 b , 39a, and 39b may result from a geometric deformation of a chair conformation in both 38 and 39 a. Also in support of this argument, molecular models (Courtauld) indicate a severe steric interaction between the π orbital of the phenyl group (or ortho hydrogen) with the axial protons at $C(3,5)$ of the phosphorinane ring when phenyl was axial. This interaction could be relieved to some extent in a distorted chair or twist conformation (such as 56) for 38a and 39a. Therefore, we suggest that assignment of configuration at phosphorus in phosphorinones based on ${ }^{31} \mathrm{P}$ NMR data alone should be done with marked caution.

The ${ }^{13} \mathrm{C}$ NMR chemical shifts and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constants for phosphines 38 a and 38 b and the corresponding oxides 39 a and 39 b are given in Table XII. Shifts for $\mathrm{C}(2,6)$ in 38 a and 38 b reflect a steric compression effect for axial substituents compared to that in cyclohexanes. ${ }^{9}$ A1so the ${ }^{13} \mathrm{C}$ shifts for $\mathrm{C}(2,6)$ in 38 a and 38 b reflect the same steric compression effect found for $27 a$ and $27 b$, which have the P substituent in a fixed arrangement of known stereochemical configuration. ${ }^{15}$ A decrease in the ${ }^{13}$ C chemical shift from 25.55 ppm (38b) to 21.55 ppm (38a) was noted in interchanging the position of the lone pair of electrons on phosphorus with a phenyl group (group changed from the equatorial to the axial position with the resultant change in chemical shift being a result of a steric compression effect ${ }^{9}$). This $\Delta \delta$ of -3.60 ppm is smaller than that found by interchanging the lone pair and methyl group ($\Delta \delta-5.8 \mathrm{ppm}^{15}$) in 27 a to give 27b. However, the ${ }^{13} \mathrm{C}$ spectra for 38 a and 38 b were taken in $\mathrm{DCC1}_{3}$ and $\mathrm{H}_{2} \mathrm{CCL}_{2}$ for 27 a and 27b; thus the difference in $\Delta \delta$ could be due to solvent effects. ${ }^{2}$ It remains speculative that this difference (-3.6 vs -5.8 ppm) was due to a steric effect (phenyl vs methyl) since there also exists some uncertainty in the actual geometry about the phosphorus atoms (particularly in 38a) in solution.

The ${ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}$ coupling constant $\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}\right)$ for $\mathrm{P}-\mathrm{C}(2,6)$ in 38 a (11.5 Hz) was essentially the same for $27 \mathrm{a}(12 \mathrm{~Hz})$ and similar to that found for $1_{J_{\mathrm{PC}}}[\mathrm{P}-\mathrm{C}(2,6)]$ in $38 \mathrm{~b}(8.9 \mathrm{~Hz})$ and $27 \mathrm{~b}(10 \mathrm{~Hz})$. This suggests the electronic factors affecting ${ }^{1} \mathrm{~J}_{\mathrm{PC}}[\mathrm{P}-\mathrm{C}(2,6)]$ in these two compounds do not differ markedly.

The ${ }^{13}$ C chemical shifts for $C(3,5)$ were apparently indicative of the orientation of the substituent on phosphorus in phosphines 27a and

TABLE XII
${ }^{13}$ C NMR PARAMETERS: CHEMICAL SHIFTS ${ }^{\mathrm{a}}\left({ }^{31} \mathrm{P}-{ }^{13} \mathrm{C} \text { COUPLING CONSTANTS }\right)^{\mathrm{b}}$

Carbon (s)	Compounds			
	$38 a$	$38 b$	39a	$39 b$
2,6	21.55 (11.6)	25.55 (8.9)	27.58(64.8)	28.69(64.2)
3,5	21.32 (s)	24.86(5.1)	25.03(3.8)	22.37(5.8)
4	47.98 (s)	48.48 (s)	48.06 (s)	49.03(s)
7	31.82 (s)	31.93(s)	32.72 (s)	33.03 (s)
8,9,10	26.17 (s)	26.70(s)	27.64 (s)	27.48(8)
11	137.34(19.4)	140.60(15.6)	130.06(75.0)	133.31 (94.9)
12,16	128.82(11.9)	129.40(15.6)	129.63(8.9)	129.95(9.0)
13,15	126.99 (s)	126.98(7.6)	128.79(11.1)	128.35(11.1)
14	124.98(s)	126.64 (s)	129.45 (s)	131.42 (s)

${ }^{\mathrm{a}}$ Shifts are $\pm 0.03 \mathrm{ppm}$ downfield from internal TMS. ${ }^{\mathrm{b}}$ Coupling constants are $\pm 0.7 \mathrm{~Hz} ; \mathrm{s}=$ singlet. ${ }^{\mathrm{C}}$ See Figure 5 for numbering of positions.

27b. ${ }^{15}$ The ${ }^{13} \mathrm{C}$ chemical shift for $\mathrm{C}(3,5)$ in $38 \mathrm{a}(21.32 \mathrm{ppm})$ was at higher field as compared to that in 38 b (24.86 ppm), which reflected the axial orientation of the phenyl group in 38a. The ${ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}$ coupling constants (${ }^{2} \mathrm{~J}_{\mathrm{PC}}$) of 0 Hz for 38 a and 5.1 Hz for 38 b are also similar to those reported for $27 \mathrm{a}(0 \mathrm{~Hz})$ and $27 \mathrm{~b}(7.5 \mathrm{~Hz}) .^{15}$ As discussed for 27 a and 27 b , these ${ }^{2} \mathrm{~J}_{\mathrm{PC}}$ values are representative of the disposition of the substituent on phosphorus, i.e., the larger coupling constant (${ }^{2} \mathrm{~J}_{\mathrm{PC}}$) corresponds to the conformer where the dihedral angle (α) between the lone pair of electrons on phosphorus and the $C(3)$ [or $\mathrm{C}(5)$] atom is small (see structure 57). ${ }^{15}$ Also carbon atoms 4, 7, and $8(9,10)$ in 38 a and 38 b had very similar ${ }^{13} \mathrm{C}$ chemical shifts, probably relfecting minor geometric differences around C(4) in solution.

(equatorial phenyl, 38 b)

$$
57
$$

The ${ }^{13}$ C chemical shifts for the carbon atoms in the phenyl group in 38 a and 38 b were suggestive of the disposition of that group. For example, in 38a with axial phenyl, C(11) should be shielded compared to $C(11)$ in 38 bith equatorial phenyl. This was indeed the case and $\mathrm{C}(11)$ in 38 a had $\mathrm{a}^{13} \mathrm{C}$ shift of 137.3 ppm compared to a value of 140.6 ppm in 38 b . However, the ${ }^{13} \mathrm{C}$ signal for $\mathrm{C}(11)$ in 38 b was nearly the
same (140.6 vs 141.3 ppm) as that for the same carbon in 1 -pheny1phosphorinane (24)..18 This similarity could have arisen from a solventinduced shift ${ }^{2}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ vs DCCl_{3} for 38 b$)$ since the axial preference of several exocyclic P substituents in phosphorinanes has been well documented. ${ }^{27}$ The ${ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}$ coupling constant (${ }^{1} \mathrm{~J}_{\mathrm{PC}}$) for $\mathrm{C}(11)$ in 38 a was 19.1 Hz compared to 15.6 Hz for $\mathrm{C}(11)$ in 38 b . This reduction in the coupling constant in 38 b (presumably becoming less negative ${ }^{18}$) may have been due to a relief in steric strain about phosphorus with equatorial phenyl as compared to 38 a with axial pheny1. The same observation was made for $\mathrm{C}(12,16)$ in 38 b , i.e., ${ }^{2} \mathrm{~J}_{\mathrm{PC}}$ increased with a decrease in steric strain at phosphorus $\left[^{2} \mathrm{~J}_{\mathrm{PC}}(38 \mathrm{~b})=15.6 \mathrm{~Hz}\right.$ vs ${ }^{2} \mathrm{~J}_{\mathrm{PC}}(\underset{\sim}{38})=$ 11.9 Hz]. The above conclusions were based on the assumption that $1_{J_{P C}}$ was negative and ${ }^{2} J_{P C}$ was positive utilizing data reported for similar compounds. ${ }^{18}$

Phosphine oxides 38 a and 39 b gave quite interesting ${ }^{13} \mathrm{C}$ NMR results, further delineating the geometric configuration about phosphorus. The ${ }^{13}$ C chemical shifts for $C(2,6)$ in 39 a appeared upfield at $27.58 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=64.8 \mathrm{~Hz}\right.$) compared to the same carbon atoms at $28.69 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=64.2 \mathrm{~Hz}\right)$ in 39 b . This small shift difference probably reflects the steric comperession associated with axial phenyl in 39a. ${ }^{9}$

It was interesting to note that atoms $C(3,5)$ in 39 (equatorial pheny1) were more shielded (22.37 vs 25.03 ppm) than $\mathrm{C}(3,5)$ in 39 a (axial phenyl). These data compare favorably to those reported earlier concerning increased shielding at the γ-carbon (γ to oxygen) (" γ-shielding") caused by the change triethylphosphine \rightarrow triethylphosphine oxide 17 and γ-shielding accompanying sulfurization of phosphines. ${ }^{48}$

Again carbon atoms 4, 7 , and $8(9,10)$ were quite similar in both 39 a and 39b, suggesting that the geometric and electronic environments about these atoms were similar.

The striking feature found in the ${ }^{13} \mathrm{C}$ NMR spectra of the phenyl carbons $[11,12(16), 13(15)$, and 14] of oxides 39 a and 39 b was the dramatic difference at $C(11)$ in terms of both ${ }^{13} \mathrm{C}$ chemical shift and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constant. The ${ }^{13} \mathrm{C}$ chemical shift for $\mathrm{C}(11)$ in 39 b of 133.31 ppm was close to the ${ }^{13} \mathrm{C}$ shift for the comparable carbon (134.29 ppm) in simple 1-phenylphosphorinane 1 -oxide (58) ${ }^{18}$, and

58

the ${ }^{1} J_{\text {PC }}$ values were similarly close (94.9 Hz in ${ }^{39 \mathrm{~b}}$ vs 92.6 Hz in 58), both in DCCl_{3}. This similarity was suggestive of prefential axial orientation of the oxygen atom in 58, an observation reported earlier with similarly substituted phosphorinane 1-sulfides. ${ }^{12}$

However, the higher field signal for $\mathrm{C}(11)$ in 39 (130.06 vs 133.31 ppm in 39 b) and the smaller ${ }^{1} \mathrm{~J}_{\mathrm{PC}}$ value of 75.0 Hz (vs 94.9 Hz for 39 b more nearly resembled the same parameters found in dibutylphenylphosphine oxide (59) and 2,2-dimethyl-1-phenylphosphetane 1-oxide (60). ${ }^{18}$ Consequently, that the ${ }^{13} \mathrm{C}$ chemical shift for $\mathrm{C}(11)$ in 39 a and the corresponding ${ }^{1}{ }_{J_{P C}}$ value were only the result of steric factors seems questionable. Interestingly, a small upfield ${ }^{13}$ C
shift was observed for $\mathrm{C}(14)$ in 39a compared to $\mathrm{C}(14)$ in 39b (129.45 vs $131.42 \mathrm{ppm}, \Delta \delta-1.97)$.

A single crystal X-ray crystallographic analysis of oxide 39 b further supported the ${ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ NMR data for phosphines 38 a and 38 b and oxides 39 a and 39 b discussed previously. A stereoview of a single molecule of 39 b is shown in Figure 4, and the numbering scheme, bond distances, and bond angles are shown in Figure 5. The phosphorinane oxide 39 b exists in a chair conformation as can be seen from the torsion angles reported in Table XIII. The tert-butyl and phenyl groups are in equatorial positions with the tert-butyl group staggered with respect to its attachment to the phosphorinane ring. With the exception of the phenyl group, oxide 39 b possesses a pseudo mirror plane passing through atoms $P(1), C(4), C(7), C(9), C(11)$ and $O(1)$. The dihedral ang1e between the pseudo mirror plane and the plane defined by the atoms of the phenyl group is 20.1°. Alternatively, this can be viewed as a rotation of the phenyl group about the $P(1)-C(11)$ bond away from the pseudo mirror plane resulting in a torsion angle $\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$ of 19.8°; the related torsion angles as reported in Table XIII.

The rotation ($\simeq 20^{\circ}$) of the phenyl group is a result of two close intramolecular contacts. The rotation cannot easily be less than 20°

Figure 4. Stereoview of a single molecule of $39 b$.

Figure 5. Numbering scheme, bond angles, and bond distances for 39 b .

Abstract

because of a contact between $O(1)$ and $H[C(12)]$ of 2.63 A and cannot be greater than 20° because of a contact between $H[C(6)]$ and $H[C(16)]$ of $2.19{ }^{\circ}$. These contacts result in a high rotational barrier for the pheny1 group, and thus produce the observed conformation.

TABLE XIII
TORSION ANGLES FOR 39b

Angle	$\phi\left(^{0}\right)$	Angle	$\phi\left({ }^{\mathrm{o}}\right)$
P(1)C(2)C(3)C(4)	61.9	$0(1) P(1) \mathrm{C}(11) \mathrm{C}(12)$	19.8
$C(2) \mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5)$	-62.4	$\mathrm{C}(2) \mathrm{P}(1) \mathrm{C}(11) \mathrm{C}(12)$	-106.7
$\mathrm{C}(3) \mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6)$	63.6	$\mathrm{C}(6) \mathrm{P}(1) \mathrm{C}(11) \mathrm{C}(12)$	147.0
$\mathrm{C}(4) \mathrm{C}(5) \mathrm{C}(6) \mathrm{P}(1)$	-63.8	$0(1) \mathrm{P}(1) \mathrm{C}(11) \mathrm{C}(16)$	-161.6
$\mathrm{C}(5) \mathrm{C}(6) \mathrm{P}(1) \mathrm{C}(2)$	55.3	$\mathrm{C}(2) \mathrm{P}(1) \mathrm{C}(11) \mathrm{C}(16)$	71.9
$\mathrm{C}(6) \mathrm{P}(1) \mathrm{C}(2) \mathrm{C}(3)$	-54.7	$\mathrm{C}(6) \mathrm{P}(1) \mathrm{C}(11) \mathrm{C}(16)$	-34.4

When the chair conformation in oxide 39 b was compared to the chair conformations in 1-pheny1-4-phosphorinanone (28) ${ }^{42}$, 4,4-dimethoxy-1phenylphosphorinane (29) $)^{43}$, trans-4-tert-butyl-1-methyl-4-phosphorinanol (27a) ${ }^{44}$, and 4-substituted epimeric 1-methy1-4-phosphorinanol 1-sulfides ${ }^{49}$ (all with axially oriented alky1 or aryl substituents on phosphorus), it was observed that the magnitudes of all torsion angles were larger for the present structure 39 b . The difference is ca. 10° for the $P(1)-C(2)$ type, 5° for the $C(2)-C(3)$ type, and 2^{o} for the
$C(3)-C(4)$ type, indicating that the chair conformations for those phosphorinane structures are flattened with respect to the phosphorinane oxide ring in 39b. However, the average torsion angles in equatorial substituted sulfides 31 and 34^{49} are only slightly smaller than those

31

in $39 b$ which conceivably results from the presence of sulfur with a larger van der Waals' radius of 1.85 A compared to oxygen with a radius of 1.40 A. 45 In addition, the average endocyclic bond angles at a ring C atom in $39 b$ was 3° smaller than the average of the previously reported values for the phosphorinane ring systems. Also the endocyclic bond angle at the P atom was 2° larger. These observations are accountable on the basis of an equatorial phenyl group and the hydridization at phosphorus. The hybridization change on P is probably the main factor for resultant shortening of the $P-C$ bond distances in $39 b$ by $0.03-0.05$ A compared to the comparable bond in 4,4-dimethoxy-1-phenylphosphorinane (29) ${ }^{43}$ and 1-pheny1-4-phosphorinanone (28)..42 The observation that the $P(1)-C(11)\left(\mathrm{sp}^{2}\right)$ bond length of $1.805(2) \stackrel{\circ}{\mathrm{A}}$ in 39 b was greater than two reported ${ }^{21,61} \mathrm{P}-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ bond lengths [average of 1.793 A A] is somewhat unusual. Comparison of the $P(1)-C(11)$ bond length in $39 b$ with that in the salts reported ${ }^{21,61}$ may not be entirely legitimate since the angles around P exhibit about 1% variation. Nevertheless, the $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{P}$ distance compared well with average value of 1.80 A reported for the $\mathrm{P}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond length for a large number of compounds. ${ }^{6}$ Many factors influence
the P-C bond length, e.g., hybridization, charge, valency, and steric factors, resulting in wide variations for these distances in P-C heterocycles; accordingly more observations seem necessary to correlate these factors with bond length.

The electronegativity of the substituents attached to phosphorus influence the $\mathrm{P} \rightarrow 0$ bond length. The value of $1.483 \mathrm{~A}^{\circ}$ in 39 b is considered normal and can be compared to a value of 1.48 A determined by electron diffraction of trimethylphosphine oxide. ${ }^{60}$ The value of $1.483{ }^{\circ} \mathrm{A}$ for $\mathrm{P} \rightarrow 0$ bond length in 39 b is somewhat larger than the average value of $1.462 \AA^{\circ}$ reported ${ }^{6}$ for many compounds having highly electronegative atoms attached to the phosphorus atom.

The average C-C (phenyl) bond length was $1.379{ }^{\circ} \mathrm{A}$, which is only an apparent shortening due to thermal motion, and can be correlated with the distance of the bonding atoms from the center of the molecule. A calculation of intermolecular distances based on final parameters for 39b revealed no unusually short contacts (see Tables XIV and XV). Table XVI contains a listing of observed and calculated structure factor amplitudes.

TABLE XIV

POSITIONAL PARAMETERS ($\mathrm{x} 10^{4}$) AND ANISOTROPIC TEMPERATURE FACTORS ($\mathrm{x} 10^{4}$) FOR P, C, AND 0 ATOMS; ANISOTROPIC THERMAL FACTORS ARE OF THE FORM EXP $\left[-2 \pi^{2}\left(U_{11} \mathrm{~h}^{2} \mathrm{a}^{* 2}+\right.\right.$
$\left.\left.\mathrm{U}_{22} \mathrm{k}^{2} \mathrm{~b}^{*} 2+\mathrm{U}_{331^{2} \mathrm{c}^{*} 2}+2 \mathrm{U}_{12} \mathrm{hka}^{*} \mathrm{~b}^{*}+2 \mathrm{U}_{13 \mathrm{hla}} \mathrm{c}^{*}+2 \mathrm{U}_{23} \mathrm{klb} \mathrm{c}^{*}{ }^{*}\right)\right]$;
ESTIMATED STANDARD DEVIATION FOR THE LAST DIGIT
are given in parentheses

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
P (1)	668.1(4)	1095.8(9)	1329.9 (3)	421(2)	332 (2)	384 (2)	-21(2)	86 (2)	14 (3)
O(1)	488(1)	-1387(2)	1288(1)	626 (9)	352 (8)	671(11)	-56(7)	123(8)	3(8)
C(2)	44 (2)	2635 (4)	546 (1)	477 (11)	456 (12)	386 (11)	-2 (9)	117 (8	20(9)
C(3)	-1178(2)	2629 (4)	422 (1)	462 (11)	501 (13)	393(11)	1(10)	72 (8)	7 (9)
C(4)	-1562 (2)	3787 (4)	1023(1)	432 (10)	374 (11)	484 (11)	-14 (9)	113(8)	16 (10)
C(5)	-1135(2)	2490(4)	1719(1)	515 (12)	479 (13)	429 (11)	-35 (10)	164(9)	12 (9)
C (6)	93(2)	2533(4)	1960(1)	496 (11)	506 (13)	373(11)	-42(10)	105 (9)	32 (9)
C(7)	-2795 (2)	4201 (4)	844(1)	485 (12)	493(13)	652 (14)	36 (10	149 (10)	-6(12)
C(8)	-3125 (2)	5610(5)	167 (2)	724 (17)	970(23)	754 (18)	327 (17)	132 (14)	189 (17)
C(9)	-3432 (2)	2007 (5)	756 (2)	482 (13)	659 (17)	1259 (27)	-87(13)	138(15)	-121(19)
C(10)	-3076 (2)	5598(5)	1440(2)	674 (16)	725(18)	832 (20)	144 (14)	293(14)	-53(15)
C(11)	2074(2)	1809 (4)	1527 (1)	449 (10)	437 (11)	404 (11)	4(9)	61 (8)	48 (9)
C(12)	2790 (2)	207 (4)	1403(1)	531 (13)	588 (15)	690(14)	63(11)	129 (11)	38 (13)
C(13)	3876 (2)	688(5)	1536 (2)	496 (13)	865 (21)	973(22)	134 (14)	188(14)	120(18)
C (14)	4252 (2)	2757 (5)	1803(2)	446 (13)	913(21)	883(20)	-72(14)	34 (13)	251 (17)
C(15)	3552 (2)	4358(5)	1926 (2)	567 (14)	696(18)	886 (20)	-157(13)	16 (13)	26(16)
C (16)	2465 (2)	3905 (4)	1784 (1)	522 (13)	545 (14)	723(16)	-58(12)	99 (11)	-23(13)

TABLE XV

POSITIONAL PARAMETERS ($\mathrm{x} 10^{3}$) AND ISOTROPIC TEMPERATURE
FACTOR (\AA^{2}) FOR HYDROGEN ATOMS: ESTIMATED
STANDARD DEVIATION FOR THE LAST digit is given in parentheses

Atom	y		z	Biso
H(C2)1	$29(1)$	$417(3)$	$64(1)$	$3.6(4)$
H(C2)2	$28(1)$	$204(3)$	$12(1)$	$3.6(5)$
H(C3)1	$-149(2)$	$340(4)$	$-4(1)$	$4.9(5)$
H(C3)2	$-144(1)$	$95(3)$	$37(1)$	$3.9(4)$
H(C4)1	$-119(2)$	$533(3)$	$109(1)$	$3.7(5)$
H(C5)1	$-144(2)$	$312(4)$	$211(1)$	$4.6(5)$
H(C5)2	$-140(2)$	$87(4)$	$166(1)$	$5.1(5)$
H(C6)1	$36(2)$	$415(4)$	$199(1)$	$4.6(5)$
H(C6)2	$32(2)$	$179(4)$	$243(1)$	$5.3) 6)$
H(C8)1	$-395(2)$	$618(5)$	$6(2)$	$8.6(8)$
H(C8)2	$-310(2)$	$475(4)$	$-24(2)$	$7.8(7)$
H(C8)3	$-269(3)$	$704(6)$	$19(2)$	$12.0(10)$
H(C9)1	$-332(2)$	$117(4)$	$36(1)$	$7.7(7)$
H(C9)2	$-330(2)$	$106(5)$	$120(2)$	$9.1(8)$
H(C9)3	$-426(2)$	$230(4)$	$63(1)$	$6.9(7)$
H(C10)1	$387(2)$	$594(4)$	$130(1)$	$7.2(7)$
H(C10)2	$-299(2)$	$467(4)$	$188(2)$	$7.5(7)$
H(C10)3	$-264(2)$	$712(5)$	$154(1)$	$7.8(7)$
H(C12)	$251(2)$	$-134(4)$	$124(1)$	$5.2(5)$
H(C13)	$435(2)$	$-37(5)$	$141(2)$	$8.3(8)$
H(C14)	$499(2)$	$306(4)$	$188(1)$	$6.5(6)$
H(C15)	$380(2)$	$589(5)$	$214(2)$	$9.3(8)$
H(C16)	$195(2)$	$498(4)$	$186(1)$	$6.0(6)$

TABLE XVI
OBSERVED AND CALCULATED STRUCTURE FACTOR AMPLITUDES FOR 39b

$$
\begin{aligned}
\mathrm{F}_{\mathrm{o}}= & \text { Observed Structure Amplitude } \\
\mathrm{F}_{\mathrm{c}}= & \text { Calculated Structure Amplitude } \\
\mathrm{h}, \mathrm{k}, 1= & \text { general indices (identify each } \\
& \text { different direction of X-ray } \\
& \text { radiation) }
\end{aligned}
$$

TABLE XVI (Continued)

TABLE XVI (Continued)

 12
$3 *$
7

TABLE XVI (Continued)

[^0]

TABLE XVI（Continued）

$$
\begin{aligned}
& \text { OルNにNロ\&Nんロm } \\
& \begin{array}{c}
F C \\
5 \\
-4 * \\
5 \\
-4 * \\
-6 \\
3 \\
1 * \\
7 \\
7 \\
-4 \\
=6 \\
3 \\
-3 \\
6 \\
-7 \\
-5 \\
3 * \\
3 \\
6 \\
5 \\
\hline
\end{array}
\end{aligned}
$$

CHAPTER III

EXPERIMENTAL

General Data

Melting points were obtained on a Thomas-Hoover melting point apparatus and are uncorrected. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31_{P}}$ NMR data were obtained on a Varian XL-100 (15) NMR spectrometer equipped with a Nicolet TT-100 PFT accessory operating at 100.1 MHz with tetramethy1silane (TMS) as internal standard for ${ }^{1}{ }^{1} \mathrm{H}$ NMR, at 25.2 MHz with TMS as internal standard for ${ }^{13} \mathrm{C}$ NMR, and at 40.5 MHz with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard for ${ }^{31} \mathrm{P}$ NMR. Infrared spectral data were obtained on a Beckmann IR-5A unit. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tennessee.

Starting Materials

Reagents (commercially available) were purified before use as necessary. Solvents used were reagent grade and were dried over sodium where required.

> Preparation of 1,5-Dibromo-3-tert-butylpentane (40) from 4-tert-Butylpyridine (41)

To 48.9 g (0.362 mole) of pyridine 41 (Aldrich Chemical Company, Inc.) dissolved in 60 ml of 6 N HCl was added 2 g of $85 \% \mathrm{PtO}_{2}$. The mixture was hydrogenated on a Parr hydrogenation apparatus at 55 psig
and ca. $60^{\circ} \mathrm{C}$ until hydrogen uptake ceased. A small amount of white solid had formed during the hydrogenation, and this was dissolved in $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was filtered and transferred to a $1-l, 3-$ necked, round-bottom flask fitted with a mechanical stirrer and addition funnel. The stirred mixture was cooled to $0^{\circ} \mathrm{C}$ (ice) and 75 g (1.87 mole) of NaOH pellets were then added all at once. After stirring for 0.5 hr , benzoyl chloride ($50.7 \mathrm{~g}, 0.362 \mathrm{~mole}$) was added dropwise over a 1-hr period. The reaction mixture was stirred overnight, and the resulting solid was filtered and washed $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Air drying of the solid followed by vacuum drying gave 81.26 g (82%) of 1-benzoy1-4-tert-butylpiperidine (42) which was used in the next step.

Phosphorus tribromide ($45 \mathrm{~g}, 0.166 \mathrm{~mole}$) was added dropwise to 40 g (0.163 mole) of amide 42 over a $45-\mathrm{min}$ period. After stirring for 2 hr , the mixture was cooled (ice) to $0^{\circ} \mathrm{C}$ and $41 \mathrm{~g}(0.256 \mathrm{~mole})$ of Br_{2} was added dropwise over a $45-$ min period. The resultant dark oil was allowed to stand for two days. Distillation of the oil at 20 mm up to $150^{\circ} \mathrm{C}$ gave a distillate $(\approx 50 \mathrm{ml})$ which was poured onto 100 ml of ice. The hydrolyzed mixture was stirred for 1 hr and then extracted with $3 \times 50-\mathrm{ml}$ portions of HCCl_{3}. The HCCl_{3} was removed (rotary evaporation), and to the residual oil was added 75 ml of $48 \% \mathrm{HBr}$. The solution was then boiled for 3 hr followed by steam distillation until no oil formed in the condenser. The distillate was extracted with petroleum ether ($\approx 300 \mathrm{ml}$) and the extracts were combined and dried $\left(\mathrm{CaCl}_{2}\right)$. Filtration and removal of the petroleum ether (rotary evaporation) gave an oil which was distilled under reduced pressure to yield $8.68 \mathrm{~g}(18.6 \%)$ of $40, \mathrm{bp} 94-96^{\circ} \mathrm{C} / 0.6 \mathrm{~mm}\left[1 \mathrm{it}{ }^{24} \mathrm{bp} 87-88^{\circ} \mathrm{C} / 0.7 \mathrm{~mm}\right]$.

Preparation of 40 from 4-tertButylcyclohexanone (43) ${ }^{52}$

Ketone 43 (25 g, 0.162 mole, Columbia Organic Chemicals Co., Inc., m.p. $47-49^{\circ} \mathrm{C}$) and 85% m-chloroperbenzoic acid ($36.25 \mathrm{~g}, 0.18 \mathrm{~mole}$, Aldrich Chemical Company, Inc., m.p. $92-94^{\circ} \mathrm{C}$ dec) were added to 500 ml of 1,2-dich1oroethane (DCE) in a 1-l, round-bottom flask fitted with a magnetic stirrer, condenser, and CaCl_{2} drying tube. After the exothermic reaction had subsided, the mixture was boiled for 6 hr and cooled. A solid had formed upon cooling which was filtered out and washed with 50 ml of DCE. The filtrate was shaken with 200 ml of saturated aqueous NaHCO_{3} and the aqueous phase separated. The organic phase was washed with 200 ml of $\mathrm{H}_{2} \mathrm{O}$ and subsequently separated. Solvent removal (rotary evaporation) gave an oil which was steam distilled until no odor of unreacted 42 was present in the distillate. The residue was extracted with $3 \times 100 \mathrm{ml}$ portions of ether and then the extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of the ether by rotary evaporation gave 17.0 g (61\%) of 5-tert-butyl-2-oxepanone (44) which was used as such in the next step.

Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(18 \mathrm{ml})$ was slowly added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $\mathrm{KBr}(6 \mathrm{~g})$ and $48 \% \mathrm{HBr}(93 \mathrm{ml})$ in a $500-\mathrm{ml}$, 3 -necked, roundbottom flask to which was attached an immersion thermometer, magnetic stirrer, and condenser. Lactone 44 ($17.0 \mathrm{~g}, 0.1 \mathrm{~mole}$) was then added, and the reaction mixture was stirred at room temperature for 12 hr and then heated at $100^{\circ} \mathrm{C}$ for 12 hr . The dark brown solution allowed to cool 250 ml of $\mathrm{H}_{2} \mathrm{O}$ was then added. The solution was extracted with $4 \times 200-\mathrm{ml}$ portions of ether which were then combined and dried
$\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of the ether by rotary evaporation gave an oil which was distilled at reduced pressure to yield 19.5 g (78\%) of 6-bromo-4-tert-butylhexanoic acid (45), bp $140^{\circ} \mathrm{C} / 0.3 \mathrm{~mm}$ [1it ${ }^{52}$ bp $133-143^{\circ} \mathrm{C} / 4 \mathrm{~mm}$].

Mercuric oxide ($15 \mathrm{~g}, 0.07$ mole) was placed in a $500-\mathrm{ml}$, 3-necked, round-bottom flask fitted with a mechanical stirrer, addition funnel, Soxhlet extractor (containing 50 g of Linde 3 A molecular sieve), condenser, and N_{2} inlet. The Hg 0 was covered with 50 ml of fresh1y distilled $\mathrm{CCl}_{4}\left(\right.$ from CaCl_{2}) and dried via extracting of any residual water with CCl_{4} which was passed through molecular sieve (Linde 3A) for 1 hr . Acid $45(22 \mathrm{~g}, 0.088 \mathrm{~mole})$ and $\mathrm{Br}_{2}(17.5 \mathrm{~g}, 0.11 \mathrm{~mole})$ in 50 ml of CCl_{4} were added dropwise to the boiling reaction mixture over a $2-\mathrm{hr}$ period. After the addition was complete, boiling was continued for 1 hr and the flask was allowed to cool. The molecular sieve was washed with 50 ml of CCl_{4} and the reaction mixture, pl us washings, were filtered and washed with $2 \times 100 \mathrm{ml}$ of $2 \% \mathrm{NaOH}$ and 100 ml of $\mathrm{H}_{2} \mathrm{O}$. Drying (CaCl_{2}) of the organic solution followed by evaporation of the CCl_{4} (rotary evaporation) gave a residual oil which was vacuum distilled to give 14.74 g (56\%) of 1,5 -dibromo-3-tert-butylpentane (40), bp $83-93^{\circ} \mathrm{C} / 0.15 \mathrm{~mm}\left[1 \mathrm{it}^{52} \mathrm{bp} 87-88^{\circ} \mathrm{C} / 0.7 \mathrm{~mm}\right]$.

Additional experiments to prepare 40 by the above procedure unaccountably resulted in yields of only 10-20\%.

> Preparation of 40 from 3 -tert-Buty1$$
1,5 \text {-pentanediol }(46)^{47}
$$

Diol $46(4.0 \mathrm{~g}, 0.025 \mathrm{~mole})$ and freshly recrystallized (hexane) triphenylphosphine ($13.1 \mathrm{~g}, 0.05 \mathrm{~mole}$) were dissolved in 50 ml of dry

DMF in a 100-ml, 3-necked, round-bottom flask fitted with a magnetic stirrer, addition funnel, condenser, and N_{2} inlet. Bromine (ca. 8 g , 0.05 mole) was added dropwise, under N_{2} (the temperature being maintained below $55^{\circ} \mathrm{C}$) until an orange-yellow color persisted. The reaction mixture was stirred an additional 15 min and was then distilled at 0.5 mm up to $90^{\circ} \mathrm{C}$. The distillate $(\approx 35 \mathrm{ml})$ was poured onto 100 ml of $\mathrm{H}_{2} \mathrm{O}$ and the bottom oily layer separated. The aqueous phase was extracted with $2 \times 75-m 1$ portions of ether and combined with the first layer. Drying $\left(\mathrm{MgSO}_{4}\right)$ of the organic solution followed by filtration and removal of the ether (rotary evaporation) gave an oil which was distilled at reduced pressure to yield $2.7 \mathrm{~g}(39 \%)$ of 40 , bp $93^{\circ} \mathrm{C} / 0.8$ $\mathrm{mm}\left[1 \mathrm{it}{ }^{24} \mathrm{bp} 87-88^{\circ} \mathrm{C} / 0.7 \mathrm{~mm}\right]$.

> Preparation of 4-tert-Butyl-1,1-diphenylphosphorinanium Bromide (47)

To 250 ml of boiling $0 D C B$ in a $500-\mathrm{ml}$, 3-necked, round-bottom flask fitted with a magnetic stirrer, addition funnel, and condenser was added dropwise, over a $1-\mathrm{hr}$ period, under N_{2}, dibromide 40 (7.73 g, 0.027 mole) and tetraphenyldiphosphine $[50 \mathrm{~m} 1,0.27 \mathrm{M}$ in ODCB, 0.0135 mole, Pressure Chemical Company (as a solid)]. After the addition was complete, ca. 150 ml of $O D C B$ was distilled off, under N_{2}, and the reaction mixture was allowed to cool (to room temperature) and to stand overnight. The resultant solid (A) was filtered off and washed with 50 ml of ODCB. Approximately 100 ml more of ODCB was distilled (atmospheric pressure) from the filtrate, and the resulting solution was again allowed to cool and stand overnight. A solid (B) formed which was filtered off and washed with 5 ml of $O D C B$. The solids (A and B) were
combined and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $80^{\circ} \mathrm{C} / 5 \mathrm{~mm}$ to yield 1.95 g (37\%) of 47, $\mathrm{mp}>300^{\circ} \mathrm{C}$ [1it ${ }^{39} \mathrm{mp} 316.5-318.5^{\circ} \mathrm{C}$ dec]. The ${ }^{1}{ }_{\mathrm{H}}$ NMR spectra of 47 thus prepared was identical to that previously reported; ${ }^{39}{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{DCCl}_{3}\right)+41.9 \mathrm{ppm}$.

```
Preparation of cis- and trans-4-tert-Butyl-
1-phenylphosphorinane 1-Oxides,
    (39a) and (39b) \({ }^{39}\)
```

To 38 ml of 1 N KOH was added 30 g (7.7 mmole) of salt 47 . The reaction mixture was boiled 44 hr and allowed to cool. After cooling, 9 KOH pellets (Mallinckrodt-Analytical Reagent; 0.85 g) were added and the mixture was extracted with $6 \times 25-\mathrm{ml}$ portions of HCCl_{3}. The extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. Rotary evaporation of the HCCl_{3} and air drying of the resultant oil gave a solid which was dried in vacuo ($110^{\circ} \mathrm{C} / 5 \mathrm{~mm}$) over $\mathrm{P}_{2} \mathrm{O}_{5}$ to yield 1.76 g (91.4%) of 39 a and 39 b , mp $102-121^{\circ} \mathrm{C}$ [1it ${ }^{39} \mathrm{mp} 131-145^{\circ} \mathrm{C}$]. The composition of the mixture was estimated by integration of the tert-butyl signals in the ${ }^{1}{ }_{H}$ NMR spectrum to contain 39 (34%) and 39 b (66%).

Separation of cis- and trans-4-tert-Buty1-1-phenylphosphorinane 1-Oxides,

$$
(39 a) \text { and }(39 b)^{39}
$$

A mixture (840 mg) of oxides 39 a and 39 b were spotted (acetone solution $\approx 1.5 \mathrm{ml}$) onto two 8 -inch x 8 -inch, 2 -mm-thick silica gel (Brinkmann Silica Gel $60 \mathrm{PF}-254$) plates. The plates were placed in an elution chamber and eluted with reagent-grade acetone. After elution and drying, the plates were developed in an iodine vapor
chamber and the spots were marked (39a: $\mathrm{R}_{\mathrm{f}} 0.24 ; 39 \mathrm{~b}: \mathrm{R}_{\mathrm{f}} 0.94$). After sublimation of the iodine, the spots were scraped and oxides 39a and 39 b were extracted (Soxhlet) separately for 36 hr with methanol. Rotary evaporation of the methanol from the individual samples gave oils for 39a and 39b which were distilled (Kuge1rohr) under reduced pressure to give 39 a (bp $180-190^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}, \mathrm{mp} 110-135^{\circ} \mathrm{C}$) and 39 b (bp $180-190^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}, \mathrm{mp} 158-159^{\circ} \mathrm{C}$) (total recovery: $568 \mathrm{mg}, 67.5 \%$) [1it ${ }^{39}$ 39a $\mathrm{mp} 88.5-95^{\circ} \mathrm{C}$ and $\left.39 \mathrm{~b} \mathrm{mp} 160-161^{\circ} \mathrm{C}\right]$; 39a: $\operatorname{IR}(\mathrm{KBr}) \vee 2925,1428$ $\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1165(\mathrm{P} \rightarrow 0), 1112\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 813,696 \mathrm{~cm}^{-1} ; 1_{\mathrm{H} \text { NMR }}\left(\mathrm{DCC1}_{3}\right)$ $\delta 0.81\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right]$, 0.81-146[m, ring H, 3 H , $1.60-2.80$ [m, ring $\underline{H}, 6 \mathrm{H}], 7.41-7.86$ [ArH, 5 H$] ;{ }^{31} \mathrm{P}$ NMR (ODCB) +30.62 ppm (see Plates V-VII). 39b: $\operatorname{IR}(\mathrm{KBr}) \vee 2925,1435\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1177(\mathrm{P} \rightarrow 0), 1115$ $\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 807,696 \mathrm{~cm}^{-1} ;{ }^{1}{ }_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{DCCl}_{3}\right) \delta 0.94\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right], 0.94-$ 1.36 [m, ring $\underline{H}, 1 \mathrm{H}], 1.46-2.52$ [m, ring $\underline{H}, 8 \mathrm{H}]$, 7.34-7.92 [m, Ar $5 \mathrm{H}]$; ${ }^{31} \mathrm{P}_{\mathrm{P}}$ NMR (ODCB) +28.19 ppm (see Plates VII-X). See Table XII for the ${ }^{13}$ C NMR parameters for 39 a and 39 b .

> Preparation of cis- and trans-4-tert-Buty11-phenylphosphorinanes (38a) and (38b)

In preparation for a typical kinetic experiment ca. 200 mg (0.8 mmole) of oxide 39 a or 39 bas heated on an oil bath with excess (ca. 2 ml) of phenylsilane at $100-110^{\circ} \mathrm{C}$ for 2 hr under N_{2} in a $10-\mathrm{ml}$ round-bottom flask equipped with a magnetic stirrer and condenser. The reaction mixture was allowed to cool and was transferred to a Kuglerohr distillation apparatus under N_{2}. The phosphine 38 a or 39 b was distilled under reduced pressure $(0.1 \mathrm{~mm})$ at $100-120^{\circ} \mathrm{C}$. The distilled phosphine 38 a or 38 b was then dissolved in 10 ml of degassed $O D C B$ and used as
such for the NMR measurements. The ${ }^{1} \mathrm{H}$ NMR spectra of 38 a and 38 b prepared herein were identical to those reported previously (see Plates I-IV). ${ }^{39}$
${ }^{31} \mathrm{P}$ NMR Spectral Measurements

Freshly distilled phosphorinanes 38 a or 38 b were dissolved in 10 ml of degassed $O D C B$ and transferred under N_{2} to a coaxial vessel equipped with a septum inlet to the inner chamber and a ground glass joint to which was attached a condenser and N_{2} inlet. In the outer vessel was placed an appropriate liquid (1,1,2,2-tetrachloroethane, bp $144^{\circ} \mathrm{C}$; $1,3,5$-trimethylbenzene, bp $164^{\circ} \mathrm{C}$; or $\mathrm{ODCB}, \mathrm{bp} 181^{\circ} \mathrm{C}$) and a condenser. The liquids were maintained at their boiling point, which was monitored (thermometer) throughout the experiment. At regular intervals, a $1.5-\mathrm{ml}$ aliquot was withdrawn and placed in the inner tube of a Wilmad $12-m m$ coaxial $N M R$ tube along with a $1-\mathrm{mm}$ sealed capillary of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. In the outer portion of the NMR tube was placed $D_{2} \mathrm{O}$ as the lock source. The ${ }^{31} \mathrm{P}$ spectra were obtained using gated broad-band proton decoupling with a 40 s delay between pulses to minimize effects of a nuclear Overhauser enhancement and unequal relaxation times. The composition of the mixture was then determined by several integrations of the ${ }^{31} \mathrm{P}$ signals for 38 a and 38 b which were then averaged.

Preparation of trans-1-Benzy1-4-tert-butyl-1-phenylphosphorinanium Bromide (48) ${ }^{39}$

Oxide 39 b ($175 \mathrm{mg}, 0.7$ mole) was heated on an oil bath at $100-110^{\circ} \mathrm{C}$ for 3 hr under N_{2} with ca. 1 ml of phenylsilane in a 10-m1,
round-bottom flask equipped with a magnetic stirrer and condenser. The reaction mixture was allowed to cool to room temperature and then distilled (Kuge1rohr) under reduced pressure (0.03 mm) at $1.00-1.10^{\circ} \mathrm{C}$. Phosphine 38 b was then dissolved in 2 ml of ODCB and excess (ca. 1 ml) of benzyl bromide was added. The reaction mixture was allowed to stand at room temperature overnight. The solid that formed was filtered off and washed with 3 ml of benzene. Recrystallization from ethanol/ethy1 acetate (1:1) gave $61 \mathrm{mg}(22 \%)$ of 48 , $\mathrm{mp} 271-272^{\circ} \mathrm{C}\left[1 \mathrm{it}{ }^{39} \mathrm{mp}\right.$ $\left.268-279^{\circ} \mathrm{C}\right]$. The ${ }^{1}{ }_{\mathrm{H}}$ NMR spectrum of 48 prepared herein was identical to that reported previously. ${ }^{39}$

Structure Determination of trans-4-tert-Butyl-
1-phenylphosphoriane 1-Oxide (39b)

Crystals of 39 b were obtained by slow evaporation of a refrigerated solution in acetone and water in a $2: 1$ ratio. The crystal selected for data collection was clear and blocky, having dimensions of 0.138 x $0.121 \times 0.242 \mathrm{~mm}$. The crystal data are: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{PO}$; M. W. $=250.31$; monoclinic; space group $=P 2{ }_{1} / \mathrm{c}$; $\mathrm{a}=12.8680(7) \mathrm{A} \mathrm{A} ; \mathrm{b}=5.9065(3) \mathrm{A} \mathrm{A} ; \mathrm{c}=$ $10.5011(9) \AA \AA^{\circ} ; \quad \beta=104.102(4)^{\circ} ; V=1437.51 \AA^{\circ}{ }^{3} ; Z=4 ; \rho_{c a l c}=1.156$, $\rho_{\text {obs }}=1.152 \mathrm{~g} / \mathrm{cm}^{3}$; nickel-filtered CuK α radiation: $\lambda=1.54051$ ̊ for 2θ data and $\lambda=1.54178 \stackrel{\circ}{\mathrm{~A}}$ for intensity data; all data collected at room temperature, using a Nonius CAD-4 automatic diffractometer. The least-square cell parameters were determined from the $+2 \theta$ and -2θ values of 52 reflections distributed throughout reciprocal space. The observed density was measured by the flotation method using a mixture of toluene and carbon tetrach1oride.

The intensities of all 2960 unique reflections with θ less than 75° were measured using the $\theta-2 \theta$ scan technique. The scan width used was calculated for each reflection by the formula $\Delta \theta=(0.9+(0.09)$ tan θ). A horizontal receiving aperture with variable width (width $(\mathrm{mm})=5+(0.5) \tan \theta)$ and fixed height of 6 mm was positioned 173 mm from the crystal. The maximum scan time used was 60 seconds with $2 / 3$ of the time used for scanning the peak (P), and $1 / 6$ each for each of the low θ (RH) backgrounds. A standard reflection was monitored every 25 reflections, and over the period of data collection, its intensity decreased by 3%. The monitor reflection was used to bring all intensities on a common relative scale. Three reflections were used to check the orientation of the crystal every 100 reflections, and a new orientation matrix was calculated when a deviation larger than 0.1° was observed.

There were 677 reflections whose intensities could not be distinguished from the background. A11 reflections meeting this criterion $\left(I<2(T)^{\frac{1}{2}}\right.$ where $T=P+2(R H+L H)$) were assigned intensities of $T^{\frac{1}{2}}$ for further data analysis. Lorentz, polarization, and absorption corrections ($\mu=15.331 \mathrm{~cm}^{-1}$) were applied to the data. A Gaussian integration was employed to correct for absorption, 5 using 216 sampling points.

The structure was solved by the combined use of MULTAN ${ }^{16}$ and a sharpened Patterson synthesis. The structure was refined using blockdiagonal least-squares calculations. After several cycles of refinement a difference Fourier synthesis revealed the positions of all hydrogen atoms, which were included in the refinement procedure. The
refinement was considered completed when all shifts were less than $1 / 2$ their standard deviations. The final R-value $\left(=\Sigma\left|F_{c}\right||/ \Sigma| k F_{o} \mid\right)$ for al1 2960 reflections was 0.067. Each structure amplitude was assigned an individual weight. 58 The mean values of $\omega_{F} \Delta F^{2}$ calculated for various ranges of $\left|F_{o}\right|$ were constant, thus validating the weighting scheme used (see Table XVI). A final difference Fourier map showed negative peaks of -0.33 and $-0.28 \mathrm{e}^{\mathrm{O}} \mathrm{A}^{-3}$ corresponding to the $\mathrm{P}(1)$ and $0(1)$ positions, respectively. The largest positive peak in the map was
$0.20 \mathrm{eA}^{\mathrm{O}^{-3}}$ at approximately halfway between $P(1)$ and $C(10)$. Atomic scattering factors for $P, 0$, and C atoms were taken from the "International Tables for X-ray Crystallography" ${ }^{22}$ while those for H atoms were taken from Stewart, Davidson and Simpson. 53

PLATE I

Solvent. DCCl_{3}
S.F. . . . 100.1 MHz
F.B. . . . 20 Hz
R.F. . . . 55 dB
S.W. 100 Hz
S.T. . . 250 sec .
S.O. . . . 85770 Hz
S.A. . . . 1.25
Lock. . ${ }^{2}{ }^{H}$

PLATE III

PLATE IV

PLATE V

PLATE VII

IR Spectrum of cis-4-tert-Butyl-1-phenylphosphorinane 1-0xide (39a), KBr Pellet

PLATE VIII

Plate IX

PLATE X

wavenumben cw-

IR Spectrum of trans-4-tert-Buty1-1-pheny1phosphorinane 1-0xide (39b), KBr Pellet

1. Baech1er, R. D. and Mislow, K., J. Am. Chem. Soc., 92, 3090 (1970).
2. Barfield, M. and Johnston, M. D., Jr., Chem. Rev., 73, 53(1973) and references cited therein.
3. Binsch, G., Top. Stereochem., 3, 97 (1968).
4. Braid, M., Ph.D. Dissertation, Temple University, 1962; Diss. Abstr., 23, 434 (1962).
5. Coppens, P., Leiserowitz, L., and Rabinovich, D., Acta Cryst., 18, 1305 (1965).
6. Corbridge, D. E. C., "The Structural Chemistry of Phosphorus," Amsterdam, The Netherlands, 1974, pp. 215-217, 395-396, and references cited therein.
7. Corbridge, D. E. C., loc. cit., p. 394.
8. Cremer, S. E., Chorvat, R. J., Chang, C. W., and Davis, D. W., Tetrahedron Lett., $5799(1968)$.
9. Dalling, K. K. and Grant, D. M., J. Am. Chem. Soc. 89, 6612 (1967).
10. Egan, W., Tang, R., Zon, G., and Mislow, K., J. Am. Chem. Soc., 92, 1442 (1970).
11. Elie1, E. L., Willer, R. L., McPhai1, A. T., and Onan, K. D., J. Am. Chem. Soc. 96, 3021(1974).
12. Featherman, S. I., Lee, S. O., and Quin, L. D., J. Org. Chem., 39, 2899(1974).
13. Featherman, S. I. and Quin, L. D., J. Am. Chem. Soc., 95, 1699 (1973).
14. Featherman, S. I. and Quin, L. D., J. Am. Chem. Soc., 97, 4349 (1975).
15. Featherman, S. I. and Quin, L. D., Tetrahedron Lett., 1955 (1973).
16. Germain, G., Main, P., and Woolfson, M. M., Acta Cryst., A27, 368 (1971).
17. Gray, G. A. a dn Cremer, S. E., J. Org. Chem., 37, 3458(1972).
18. Gray, G. A., Cremer, S. E., and Marsi, K. L., J. Am. Chem. Soc., 98, 2109(1976).
19. Gutowsky, H. S., Ann. N.Y. Acad. Sci., 70, 786 (1958).
20. Gutowsky, H. S. and Temussi, P. A., J. Am. Chem. Soc., 89, 4358(1967).
21. Holdbrook, S. R., Poling, M., van der Helm, D., Chesnut, R. W., Martin, P. R., Durham, N. N., Higgins, M. L., Ber1in, K. D., and Purdum, W. R., Phosphorus, 6 , 15 (1975).
22. "International Tables for X-ray Crystallography," V. III, Kynoch Press, Birmingham, 1962, p. 202.
23. Jackson, L. M. and Cotton, F. A., "Dynamic Nuclear Magnetic Resonance Spectroscopy," Academic Press, New York, N.Y., 1975.
24. Johnson, C. R. and McCants, D., Jr., J. Am. Chem. Soc., 87, 1109 (1965).
25. Kost, D., Car1son, E. H., and Raban, M., Chem. Commun., 656 (1971).
26. Lambert, J. B., Top. Stereochem., 6, 19 (1971).
27. Lambert, J. B. and Featherman, S. I., Chem. Rev., 75, 611(1975).
28. Lambert, J. B. and Jackson, G. F., III, J. Am. Chem. Soc., 90, 1350(1968).
29. Lambert, J. B., Jackson, G. F., III, and Mueller, D. C., J. Am. Chem. Soc., 90, 6401(1968).
30. Lambert, J. B. and Oliver, W. L., Jr., J. Am. Chem. Soc., 91 774 (1969).
31. Lambert, J. B. and Oliver, W. L., Jr., Tetrahedron, 27, 4245 (1971).
32. Lambert, J. B. and Oliver, W. L., Jr., Tetrahedron Lett., 6187 (1968).
33. Lambert, J. B., Oliver, W. L., Jr., and Jackson, G. F., III, Tetrahedron Lett., 2027(1969).
34. Lambert, J. B., Urdaneta-Perez, M., and Sun, H., Chem. Commun., 806(1976).
35. Maier, L., "Organic Phosphorus Compounds," G. M. Kosolapoff and L. Maier (Eds.), Wiley-Interscience, New York, N.Y., 1972, Ch. 7, p. 3, and references cited therein.
36. Märk1, G., Angew. Chem. Int1. Ed. Eng1., 2, 260 (1963).
37. Marsi, K. L., Chem. Commun., 846 (1968).
38. Marsi, K. L., J. Org. Chem., 39, 265 (1974).
39. Marsi, K. L., Jaspersi, J. L., Llort, F. M., and Kanne, D. B., J. Org. Chem., 42, 1306 (1977).
40. Marsi, K. L., Lynch, D. M., and Horner, G. D., J. Heterocycl. Chem., 9, 331 (1972).
41. Maryanoff, B. E. and Hutchins, R. O., J. Org. Chem., 42, 1022 (1977).
42. McPhail, A. T., Breen, J. J., and Quin, L. D., J. Am. Chem. Soc., 93, 2574 (1971).
43. McPhail, A. T., Breen, J. J., Somers, J. H., Stee1e, J. C. H., Jr., and Quin, L. D., Chem. Commun., 1020 (1971)
44. McPhail, A. T., Luhan, P. A., Featherman, S. I., and Quin, L. D., J. Am. Chem. Soc., 94, 2126 (1972).
45. Pauling, L., "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N.Y., 1960, pp. 112, 229, 260.
46. Pople, J. A., Schneider, W. G., and Bernstein, H. J., "High Resolution Nuclear Magnetic Resonance," McGraw Hill, New York, N.Y., 1959, p. 223.
47. Purdum, W. R. and Berlin, K. D., Org. Prep. Proc. Intern., 7, 283(1975).
48. Quin, L. D., Gordon, M. D., and Lee, S. 0., Org. Mag. Res., 6, 503(1974).
49. Quin, L. D., McPhail, A. T., Lee, S. O., and Onan, K. D., Tetrahedron Lett., 3473(1974).
50. Quin, L. D. and Somers, J. H., J. Org. Chem., 37, 1217 (1972).
51. Rauk, A., Allen, L. C., and Mislow, K., Angew. Chem. Intern. Ed. Eng1., 9, 400 (1970).
52. Sakurai, H. and Murakami, M., Org. Prep. Proc. Intern., 5, 1(1973).
53. Stewart, R. F., Davidson, E. R., and Simpson, W. T., J. Chem. Phys., 42, 3175 (1965).
54. Sutherland, I. 0., Ann. Rep. NMR Spectrosc., 4, 71 (1971).
55. Thomas, W. A., Ann. Rep. NMR Spectrosc., 1, 44 (1968).
56. Thomas, W. A., Ann. Rep. NMR Spectrosc., 3, 92 (1970).
57. Van Geet, A. L., Anal. Chem., 42, 679 (1970).
58. van der Helm, D. and Poling, M., J. Am. Chem. Soc., 98, 82 (1976).
59. Wagner, R. I., U. S. Patent 3,086,053 (April 16, 1963); Chem. Abstr., 59 10124d(1963) and U.S. Patent 3,086,056 (April 16, 1963); Chem. Abstr., 60, 559d (1964).
60. Wang, H. K., Forsvaretsforsking Intern. Rapport (Norway), I.R.-K-225, 1960.
61. Wu, K. K. and van der He1m, D., Cryst. Struct. Comm., 6, 143(1977).

PART II

CONFORMATIONAL ANALYSIS OF SELECTED

4-PHOSPHORINANONES AND DERIVATIVES

CHAPTER I

HISTORICAL

Phosphorinanones-Preparations, Reactions, Properties

Phosphorinanones $18,29,33,58 \underset{\sim}{\sim}$ have proven to be a class of organophosphorus compounds in which lively interest has been maintained since their initial synthesis. 60 The classic preparation consisted of a

~

Thorpe condensation of a P-substituted bis(2-cyanoethyl)phosphine 2 followed by hydrolysis of the amino nitrile $\underset{\sim}{3}$ with concomitant decarboxylation to yield the 4 -phosphorinanone 1. 60 Certain phosphorinanones $1\left(\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$ have been characterized through the preparation of the corresponding semicarbazones and methiodides. A later report 54 furnished a modified procedure for the synthesis of phosphorinanone 1 ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$) involving rapid addition of 10 N KOH to the acidic reaction mixture (final step) and ether extraction of the crude phosphorinanone $\underset{\sim}{1}\left(R=C_{6} H_{5}\right)$ after the solution was extremely basic. Combination of the

2

3

$$
\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}
$$

ether extracts followed by an aqueous wash and vacuum distillation gave the desired phosphorinanone $\underset{\sim}{\sim}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in good yield (68\%). 25,54

A related synthetic approach to members of $\underset{\sim}{1}$ was realized when phenylphosphine was condensed with methyl methacrylate to yield bis-(2-methoxycarbonylpropyl)phenylphosphine (4). ${ }^{6}$ Cyclization of phosphine

$\underset{\sim}{4}$ with Na in boiling xylene followed by acidic hydrolysis and decarboxylation of the resulting initial product gave the phosphorinanone $\underset{\sim}{5}(17.8 \%) .^{6}$ Phosphorinanone 5 could be oxidized, sulfurized, or selenized. These derivatives, along with 5 , were subjected to ${ }^{1} \mathrm{H}$ NMR analysis to ascertain if several major conformations existed in solution and to determine the equilibrium concentrations of the most populous conformers. ${ }^{6}$ A second report ${ }^{4}$ has appeared on the preparation of phosphorinanone 5; it included the isolation (albeit crude) of the β-keto ester 6 (51\%).

-
With the intent to prepare phosphasteroids, ${ }^{31}$ phenylphosphine was condensed with cyclohexenyl propenyl ketone 7 to give 3-methyl-2-pheny-2-phosphabicyc1o[4.4.0]decan-5-one (8). The authors suggested a trans configuration for the methy1 and P-pheny1 groups in the corresponding $\underline{\text { P-oxide }}$ based on ${ }^{1}{ }^{H}$ NMR analysis of the downfield shift (0.5 ppm) of the methylene protons on the carbon atom adjacent to the carbonyl group. A comparison was made with the same protons in phosphine 8 in which these protons were less deshielded by the lone pair of electrons on phosphorus. ${ }^{31}$

Support of the above observation with structurally related phosphindolines ${ }^{8} 9$ a and 9 b and phospholanes ${ }^{9} \underset{\sim}{10 \text { a }}$ and $\underset{\sim}{10 b}$ has appeared and suggests that the phosphory1 group ($P \rightarrow 0$) deshields the $C(3)$ methy 1

9a

$10 a$

9 ㅁ

10 b
more than the P-pheny1 function. For 9a the ${ }^{1}{ }_{H}$ NMR signal for the C (3) methyl group appeared at $\delta 1.54$, and that same group in 9 b had a ${ }^{1}{ }_{H}$ NMR resonance at $\delta 1.45 .^{8}$ Similarly, 10 a (with a syn arrangement of $\mathrm{P} \rightarrow 0$ and $C(3)$-methy1) had a ${ }^{1}$ H NMR signal for the $C(3)$-methyl protons at $\delta 1.23$ compared to a ${ }^{1}{ }^{H}$ NMR signal for those same protons in 10 b at $\delta 0.78 .{ }^{8}$

The entire stereochemical relationship rests on the X-ray analysis of cis-1-iodomethy1-1-phenylphospholanium iodide. 23

A second synthetic method for the preparation of 4 -phosphorinanones has utilized a Michael addition of primary phosphines to substituted α, β-unsaturated ketones. ${ }^{4,59}$ An example is illustrated with the preparation of $2,2,6,6$-tetramethyl-1-phenyl-4-phosphorinanone (11). 30 The general utility of the above process for the preparation

of a variety of P -substituted and ring-substituted 4 -phosphorinanones has been discussed in a U.S. patent. ${ }^{59}$

12

Another Thorpe-type condensation has been employed in the synthesis of $1,2,3,4$-tetrahydro-4-oxo-1-phenylphosphinoline (12)..24 Condensation of pheny1phosphonous dichloride with 2-bromopheny1diazonium tetrafluoroborate 13 gave the phosphinous chloride 14 (18.6\%).

13

15

16

17

18

Reduction of 14 to the secondary phosphine 15 (82%) was accomplished with LiAlH_{4} in ether. Cyanoethylation of 15 in acetic acid gave phosphine 16 (88%) which was condensed with CuCN to give 17 (not isolated). The latter was cyclized to amino nitrile 18 which was hydrolyzed-decarboxylated with conc. HCl and gave keto-phosphine 21 (last step 55\%). Keto-phosphine 12 was characterized as its phenylsemicarbazone, methoperchlorate, and P-oxide. 24

Polyphosphoric acid (PPA) has been used in the cyclization of

19

20

(2-carboxyethy1)(2,4-dimethylpheny1)pheny1phosphine (19) to $1,2,3,4$ -tetrahydro-5,7-dimethyl-4-oxo-1-phenylphosphinoline (20), albeit in "very small yield". ${ }^{24}$ Similarly, PPA proved a successful reagent in the conversion of oxide 21 to 5,10-dihydro-5-oxo-5-phenylacridophosphin-10-one (22), the immediate precursor of phosphine $23^{10,52}$ Removal of phosphoryl oxygen from 22 was accomplished with HSiCl_{3} to give ketophosphine 23 (90\%). ${ }^{10}$

A most striking observation is that the few previously cited procedures for the preparation of 4 -phosphorinanones are all that could

21

22

23
be found in the literature. Possibly the relatively moderate yields of desired product and simple reaction conditions via the Thorpe condensation ${ }^{4,6,24,54,60}$ and Michael addition ${ }^{31,59}$ have resulted in a state of complacency about developing better synthetic methods.

Obviously the most important reactions to date with 4-phosphorinanones $\underset{\sim}{1}$ consist of additions to the carbonyl group and of attack at trivalent phosphorus (e.g., oxidation, sulfurization, and quaternization). A few examples of each will be included in the following discussion.

Concurrently with the preparation of phosphinoline $12,{ }^{24}$ Gallagher and Mann undertook the synthesis of polycyclic carbon-phosphorus (C-P) heterocycles 24 and $25 .^{26}$ Phosphinoline 12 condensed with phenylhydrazine to give the corresponding hydrazone 24. Cyclization of 24 in a

Fischer reaction with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{HCl}$ gave the indole derivative 25 (37\%). ${ }^{26}$ The indicated structure for 25 was supported by a $N-H$ stretch at 3470 cm^{-1} in the infrared spectra. Phosphine 25 was characterized via its methiodide, mp $205-206^{\circ}$ C. 26 Similarly, 12 condensed with 2-aminobenzaldehyde in aqueous NaOH and formed the quinoline derivative 26

(89\%). ${ }^{26}$ The authors indicated that the ${ }^{1}{ }_{H}$ NMR spectrum of 26 was quite complex and could not be simply interpreted. However, the ultraviolet spectrum of 26 (in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) was nearly identical to that of its structurally similar nitrogen analog 27. ${ }^{26}$ Condensation of 12 with isatin in 80% aqueous potassium hydroxide gave the carboxyphosphine 28 (46%). ${ }^{26}$ Preparation of the benzylthiouronium salt of 28 gave two crystalline solids, mp $138.5-139.5^{\circ} \mathrm{C}$ and $\mathrm{mp} 212.5-213.5^{\circ} \mathrm{C} .{ }^{26}$ No rationale was

given for this observation; however, the salts could differ in their configuration at phosphorus.

Interestingly, piperidonium chloride 29 and ketone 30 gave the novel Δ^{3}-thiazoline derivative $31[61 \%(X=0) ; 41 \%(S=S)]{ }^{3}$ Unfortunately, no spectral data were given for 31 , but the elemental analyses agreed quite well with the calculated values. Likewise, bis-oxide 32 reacted with ketone $30(X=0)$ to give another Δ^{3}-thiazoline $33(34 \%) .^{3}$

33

Attempts in the preparation of potentially aromatic $C-P$ heterocycles has led to the synthesis of a bis-phosphorin 34. 41 Dehydrogenation with SeO_{2} of oxide 35 followed by dimerization (via deoxygenation) with triethyl phosphite gave the bis-oxide 37 (80%). The

1_{H} NMR spectrum of 37 exhibited a doublet at $\delta 3.12\left({ }^{2} \mathrm{~J}_{\mathrm{PCH}}=18.5 \mathrm{~Hz}\right)$ for the benzylic protons and a singlet at $\delta 7.63$ for the vinylic protons. Reduction of oxide 37 with phenylsilane and LiAlH $_{4}$ followed by

chlorination of the product gave the bis-phosphorane 38. Dechlorination of 38 was accomplished with phenylsilane followed by debenzylation at $350^{\circ} \mathrm{C}$ and resulted in $34\left(\mathrm{mp} 236-238^{\circ} \mathrm{C}\right)$. . 41 The 1_{H} NMR spectrum of 34 exhibited a doublet at $\delta 8.23\left({ }^{3}{ }^{\mathrm{J}} \mathrm{PCCH}=5.5 \mathrm{~Hz}\right)$, which supported the aromatic-1ike structure for 34. Similarly, the ultraviolet spectrum of 34 exhibited absorptions at 328 and 280 nm which compared well to those found for 2,2',6,6'-tetrapheny1-4,4'-bipyridy1 (39) at 317 and $246 \mathrm{~nm} .{ }^{41}$

A rather surprising observation was made in the attempted preparation of oximes of 4 -phosphorinanones $1\left(R=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right) .{ }^{44}$ For example, reaction of 1 with hydroxylamine hydrochloride in pyridine did not

$\mathrm{R}=\mathrm{CH}_{3}, \quad \mathrm{C}_{2} \mathrm{H}_{5}$

40
give the simple phosphine oxime but rather the corresponding oxide 40 was isolated $\left(25 \%, \mathrm{R}=\mathrm{CH}_{3} ; 65 \%, \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}\right) .{ }^{44}$ Hydroxylamine was also found to oxidize tertiary phosphines which did not contain a carbonyl group. The authors suggested that the phosphine reduced hydroxylamine
to ammonia; however, no attempts were made to prove this hypothesis. 44
For the most part, chemical and physical properties of 4-phosphorinanones 1 have not been investigated. One report listed pK_{a} values of a few derivatives of 1 ; in general, the cyclic phosphines were less basic than acyclic tertiary phosphines (see Table I). 55,59

To date, only one 4-phosphorinanone 1 , where $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$, has been analyzed by X-ray crystallography. 45,58 Phosphorinanone $1\left(R=C_{6} H_{5}\right)$ exists in a flattened chair conformation with the phenyl group axially oriented. Steric stain between the phenyl group and $H(3,5)$ axial protons may, in part, be relieved by a 0.29 - ${ }^{\circ}$ displacement of the phosphorus atom from the plane defined by the phenyl group carbon atoms. The exocyclic C-P-C bond angle for $\underset{\sim}{1}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ was determined to be ca. 103° which compared remarkably well to the 103° for tripheny1phosphine. ${ }^{16}$ However, the $\mathrm{P}-\mathrm{C}$ (pheny1) bond distance in $1\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$) was $1.838 \AA$ A compared to $1.828 \AA$ A for triphenylphosphine. ${ }^{1 \sigma^{\circ}}$ This increase in bond length may also, in part, relieve the steric crowding about phosphorus in $\underset{\sim}{1}\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$.

Two derivatives of $\underset{\sim}{1}\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ have also been examined in the solid state. ${ }^{57}$ A striking difference is that the oxide and sulfide of $\mathcal{\sim}^{1}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ have the pheny1 group in the equatorial position in the crystal. The $\mathrm{P}-\mathrm{C}$ (pheny1) bond distance for the oxide of $\underset{\sim}{1}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ was determined to be $1.799{ }_{\mathrm{A}}^{\mathrm{A}}$ and $1.802 \mathrm{~A}_{\mathrm{A}}^{\mathrm{O}}$ was found for the $\mathrm{C}-\mathrm{P}$ length in the sulfide of $\underset{\sim}{1}\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$. This shortening of the $\mathrm{P}-\mathrm{C}$ (pheny1) bond length compared to that in the phosphine could result from a reduced electronegativity of phosphorus when oxidized or sulfurized. Also the C-P-C exocyclic bond angle is ca. 5° larger in the oxide and sulfide of $1\left(R=\mathrm{C}_{6} \mathrm{H}_{5}\right)$ than in the phosphine $1\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right) .{ }^{57}$

TABLE I
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ VALUES OF SELECTED PHOSPHINES
Phosphine

Stereochemistry and Energetics of

Six-Membered P-Ring Systems

One of the first observations of geometrical isomerism in six-membered, phosphorus-containing ring compounds was made on 4-ethy1-1-methy1-4-phosphorinanol (42)..51 The reaction of two equivalents of ethylmagnesium bromide with $1\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ gave a mixture of alcohols 42

$\underset{\sim}{2 \mathrm{EtMgBr}}$

in a ratio of 1:1.33. Separation was effected by fractional distillation and both alcohols were identified via the preparation of isomeric benzoperchlorates. 51 Further investigations of alcohols 42 led the same authors to suggest a difference in configuration at P instead of the carbinol carbon. 53 Nearly identical C-O stretching frequencies (1100 and $1105 \mathrm{~cm}^{-1}$) were noted in the infrared spectra of alcohols 42 which suggested identical configurations at $C(4)$. Also, the ${ }^{1}{ }_{H}$ NMR spectra of alcohols 42 exhibited two $\mathrm{P}-\mathrm{CH}_{3}$ doublets at $\delta 0.95\left({ }^{2} \mathrm{~J}_{\mathrm{PCH}}=\right.$ $2.5 \mathrm{~Hz})$ and $\delta 0.91\left({ }^{2} \mathrm{~J}_{\mathrm{PCH}}=3.8 \mathrm{~Hz}\right)$ which supported the assignment of alcohols 42 as differing only in configuration at P^{53}

Recently, ${ }^{13} \mathrm{C}$ NMR analysis for a number of 4-phosphorinanones appeared in the literature. ${ }^{9}$ A small ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constant of 2 Hz was noted for the $\mathrm{C}(3,5)$ carbon atoms in $1\left(\mathrm{R}=\mathrm{CH}_{3}\right)$; this was taken to indicate an appreciable concentration of the phosphine with axial methy1 in HCCl_{3}. This observation was based on previous ${ }^{13} \mathrm{C}$ NMR
assignments ${ }^{22}$ for isomeric 4-tert-buty1-1-methy1-4-phosphorinanols 43 a and 43 b of known ${ }^{21,47}$ stereochemical configuration.

$43 a$

43b

Upon dissolving oxides or sulfides 44 in $\mathrm{H}_{2} \mathrm{O}$, a signal in the ${ }^{13}$ C NMR spectrum appeared at ca. 96 ppm which was suggested to represent

44

$$
\begin{aligned}
& \mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \\
& \mathrm{X}=0, \mathrm{~S}
\end{aligned}
$$

the hydrated C (4) carbon atom as in 45. ${ }^{9}$ The dramatic chemical shift difference (ca. -110 ppm) for the hydrated C(4) carbon atom compared to the nonhydrated $C(4)$ carbon atom was not without precedent. ${ }^{30}$ Also, the carbony1 form 44 and the hydrated form 45 exhibited different signals in the ${ }^{31}$ P NMR spectra and equilibrium compositions could be obtained from $\mathrm{H}_{2} \mathrm{O}$ solutions containing $5-10 \% \mathrm{CH}_{3} \mathrm{OH}$ at $30^{\circ} \mathrm{C} .9$
${ }^{13} \mathrm{C}$ NMR data have also been found useful in the assignment of configuration at phosphorus in derivatives of 1-pheny1-4-phosphorinanone $\left(\underset{\sim}{1}, R=C_{6} H_{5}\right) .{ }^{57} A^{2} J_{\mathrm{PC}(3,5)}$ value of 1.23 Hz for $\underset{\sim}{\sim}\left(R=C_{6} H_{5}\right)$ suggests

$$
\underset{\sim}{1}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right)
$$

a predominance of the 4 -phosphorinanone with axial phenyl in DCCl_{3} in view of the observation that ${ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}=0 \mathrm{~Hz}$ for $43 \mathrm{a} .{ }^{22}$ However, ${ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}$ values of 5.89 Hz and 5.31 Hz were recorded for the oxide 46 and sulfide 47, respectively. This observation was consistent with an

46

47
axial preference for sulfur as noted in other six-membered P-ring systems. ${ }^{20,50}$ Previous work ${ }^{50}$ implied that when sulfur was axially oriented in 1,4-dimethyl-4-phosphorinanol 1-sulfide (48a) there were

489

48b
displayed shielded ${ }^{13}$ C NMR signals for the $C(3,5)$ carbons atoms. Larger ${ }^{31}{ }_{P-}{ }^{13} \mathrm{C}$ coupling constants were also recorded compared to those for similar carbons in 48b.

Little other work has been recorded on conformational analysis of 4-phosphorinanones. However, there is a report on the epimerization and equilibration at carbons $C(3,5)$ in 3,5-dimethy1-1-pheny1-4-phosphorinanone (5) and certain derivatives. ${ }^{6}$ For example, in the synthesis of the sulfide and selenide of $\underset{\sim}{5}$, two configurational isomers were produced. ${ }^{16}$ A chair form was suggested by the authors for the sixmembered ring with both methy1s equatorially disposed (cis). Therefore, the two isomers were considered epimeric at phosphorus. However, only one isomer was isolated after oxidation of 5 with $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in chloroform, but a second component was observed by TLC. No explanation was presented for the difference in reactions $R_{3} P \rightarrow R_{3} P \rightarrow S$ (or $R_{3} P \rightarrow S e$) vs $\mathrm{R}_{3} \mathrm{P} \rightarrow 0 \rightarrow \mathrm{R}_{3} \mathrm{P} \rightarrow 0$.

Equilibration of $\underset{\sim}{\sim} \underset{\sim}{49}, 50$ and $\underset{\sim}{\sim}$ was accomplished by addition

$$
\begin{array}{ll}
\text { 49: } & x=0 \\
\text { 50: } & x=S \\
\text { 51: } & x=S e
\end{array}
$$

of NaOD to $\mathrm{D}_{2} \mathrm{O}$: dioxane solutions. ${ }^{6}$ Deuteration occurred simultaneously at $C(3,5)$, which greatly reduced the complexity of the ${ }^{1} H$ NMR spectra
in the quilibration measurements. Equilibration of 49,50 , and 51 with NaOD gave three signals in the ${ }^{1} \mathrm{H}$ NMR spectra which corresponded to three different conformations. The major component 52 in all three cases ($\mathrm{X}=0, \mathrm{~S}, \mathrm{Se}$) was the configurational isomer with diequatorial methyl groups

52

53

54

$$
X=0, S, S e
$$

(cis) and equatorial phenyl group, followed in concentration by 53 and 54 , respectively. The 4 -phosphorinanone $\underset{\sim}{5}$, after equilibration with NaOD, yielded similar results as did its derivatives 49, 50, and 51. However, the configurational isomer 53 with diequatorial $\mathrm{C}(3,5)$ methyl groups and an axial phenyl group was judged to be of highest concentration in the equilibration mixture. In summary, the authors noted that the substituent on phosphorus in $\underset{\sim}{5}$ (ie. lone pair of electrons, $0, S$, or Se) had little effect on the equilibration data. ${ }^{6}$

Since relatively little information is known concerning the energetics of ring reversal in 4 -phosphorinanones 1 , the brief discussion to follow will be focused on a few nitrogen-, sulfur-, and saturated phosphorus-containing systems. Apparently, the first sixmembered heterocycle to be studied was piperidine (55a \rightleftharpoons 55b). ${ }^{34,36}$ Determination of the barrier $\left(\mathrm{E}_{\mathrm{a}}\right)$ to ring reversal for 55 a 匹 55 b

55b
over the temperature range -50 to $-80^{\circ} \mathrm{C}$ by complete line-shape analysis of the ${ }^{1}{ }_{H}$ NMR spectrum gave $E_{a}=14.5 \pm 0.5 \mathrm{kcal} / \mathrm{mole} .^{36}$ Similar experiments were performed with 1 -methylpiperidine and a value of ca. $14 \mathrm{kcal} / \mathrm{mole}$ was calculated for the barrier $\left(\mathrm{E}_{\mathrm{a}}\right)$ to ring raversal. ${ }^{36}$

Recently, a report ${ }^{2}$ appeared on the determination of the barrier $\left(\Delta G^{*}\right)$ to pyramidal inversion in piperidine. Low-temperature (-100 to $\left.-172{ }^{\circ} \mathrm{C}\right){ }^{13} \mathrm{C}$ NMR analysis of piperidine indicated that below $-142{ }^{\circ} \mathrm{C}$ two distinct ${ }^{13}$ C signals for carbons $C(3,5)$ were apparent. Absolute rate theory provided a value of $6.1 \pm 0.2 \mathrm{kcal} / \mathrm{mole}$ for this barrier to pyramidal inversion on nitrogen. High-resolution (251 MHz) ${ }^{1}{ }_{H} \mathrm{NMR}$ analysis of piperidine at $\mathrm{T}<-150^{\circ} \mathrm{C}$ indicated an equatorial preference for the proton on nitrogen. Observation of a 1:2:1 triplet for the $C(2,6)$ protons in the low-temperature ${ }^{1}{ }_{H}$ NMR spectra supported the
assignment since the axial-equatorial and equatorial-equatorial NH-C $(2,6)$ H coupling constants should be nonresolvable. ${ }^{2}$ The barrier $\left(\Delta G^{*}\right)$ to ring reversal in thiane $56 \mathrm{a} \Longrightarrow 56 \mathrm{~b}$ has been experimentally determined to be ca. $90 \mathrm{kcal} / \mathrm{mole}$ at $-93^{\circ} \mathrm{C} .35,37$

$56 a$

$56 b$

Several P-substituted phosphorinanes 57 have been examined by lowtemperature ${ }^{31} \mathrm{P}$ NMR spectroscopy and the barriers (ΔG^{*}) to ring reversal in these systems were determined. ${ }^{21}$ When $R=\mathrm{CH}_{3}, \Delta \mathrm{G}^{*}$ for

ring reversal was found to be $8.7 \mathrm{kcal} / \mathrm{mole}$ at $-87^{\circ} \mathrm{C}$ (T_{c}). Similarly when $R=\mathrm{C}_{2} \mathrm{H}_{5}, \Delta \mathrm{G}^{*}$ was $8.4 \mathrm{kcal} / \mathrm{mole}$ at $-96^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{c}}\right)$, and, when $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}, \Delta \mathrm{G}{ }^{*}$ was $9.3 \mathrm{kcal} / \mathrm{mole}$ at $-65^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{c}}\right) .{ }^{21}$ It should be noted that the barriers $\left(\Delta G^{*}\right)$ to ring reversal in the phosphorinanes 57 are lower than those of the piperidines which may be due, in part, to the increased size of P vs N and the increased bond length (to minimize
nonbonded repulsive interactions) of $\mathrm{C}-\mathrm{P}$ vs $\mathrm{C}-\mathrm{N}$ (C-P bond length, $1.83 \mathrm{~A}^{\mathrm{o}}{ }^{13}$; C-N bond length $1.47 \mathrm{~A}^{\mathrm{O}}$).

Of particular interest in the conformational analysis of phosphorinanes has been the determination of the configurational preference of an alkyl or aryl group attached to phosphorus. In the majority of cases studied, the P-substituent has preferred an axial position at room temperature. ${ }^{21}$ Support of this is presented in the X-ray crystallographic analysis of 1-pheny1-4-phosphorinanone $\left(\underset{\sim}{1}, R=C_{6} H_{5}\right)^{45}$ and 4,4-dimethoxy-1-phenylphosphorinane (58) $)^{46}$ where the phenyl groups occupy exclusively the axial positions. However, at low temperatures

58
a predominance of the configurational isomer with an equatorially oriented P-substituent was noted for phosphorinanes 57 ($\mathrm{R}=\mathrm{CH}_{3}$, $\mathrm{C}_{2} \mathrm{H}_{5}$, and $\mathrm{C}_{6} \mathrm{H}_{5}$) via a ${ }^{31} \mathrm{P}$ NMR analysis. ${ }^{21}$ The above results suggest there is little energy cost in minor geometric deformations (e.g. puckering, flattening ${ }^{45,46}$) of phosphorinanes when the P-substituent is axially oriented.

59

An axial preference for the proton on phosphorus has been determined for phosphorinane 59 via low-temperature ${ }^{1}{ }_{H}$ NMR spectroscopy. At $-50^{\circ} \mathrm{C}$ the multiplicity of the ${ }^{1} \mathrm{H}$ NMR signal for $\mathrm{P}-\mathrm{H}$ consists of a triplet of triplets with $\mathrm{J}_{\mathrm{HPCH}}^{\mathrm{ax}}, ~=12 \mathrm{~Hz}$ and oriented, the 1_{H} NMR spectra should consist of a quintet since $J_{H P C H} \cong$ $\mathrm{J}_{\mathrm{HPCH}} .38,39$

CHAPTER II

RESULTS AND DISCUSSION

The chemistry and conformation analysis of six-membered cyclic heterocycles containing phosphorus as the heteroatom is an area of active interest. $13,33,58$ Herein we report the synthesis of new derivatives of 11 a and 41 a and conformational analysis, via ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR examination, and configurational preferences of groups which are

11a: $X=P ; G=1$ ne pair
11b: $X=P ; G=0$
11c: $X=P ; G=S$
11d: $\mathrm{X}=\mathrm{P}^{+} ; \mathrm{G}=\mathrm{CH}_{3}, \mathrm{I}^{-}$
11e: $\quad \mathrm{X}=\mathrm{P}^{+} ; \quad \mathrm{r}_{\mathrm{T}}=\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{I}^{-}$
11f: $X=P^{+} ; G=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{Br}^{-}$
attached to phosphorus or are located at $C(2,6)$ and $C(4)$ [See Tables II and III]. A few of the compounds to be discussed have previously

TABLE II
${ }^{13} \mathrm{C}$ NMR CHEMICAL SHIFTS ${ }^{\mathrm{a}}\left({ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C} \text { COUPLING CONSTANTS }\right)^{\mathrm{b}}$ FOR SUBSTITUTED 4-PHOSPHORINANONES 11a-f AND 41a-c

Carbon	Compound						
	$\underline{11 a}$	$11 a^{c}$	11b	$\xrightarrow{11 c}$	$11 \mathrm{~d}^{\mathrm{d}}$	$11 e^{\mathrm{d}}$	$11 f^{\mathrm{d}}$
2,6	35.2 (18.3)	34.9 (19.0)	37.9(60.9)	39.7(25.8)	33.7(40.4)	34.5(37.6)	35.1 (36.8)
3,5	52.9 (3.0)	$52.8(7.8)$	53.6	53.8	50.9	51.7	51.6
4	211.1	208.8	206.4	205.9(6.8)	203.7(7.4)	203.5(7.4)	203.5(6.5)
ax-me	$30.8(44.3)$	30.8 (44.9)	25.7	27.4	25.6	26.8	26.6
eq-me	30.3(4.3)	30.3(2.2)	25.1	26.4	25.6	25.4	25.4
$\mathrm{Ph}-1{ }^{\text {e }}$	135.5(23.5)	135.9(23.6)	128.0(83.9)	127.9(65.6)	115.8(74.2)	114.1(71.4)	115.5(69.2)
$\mathrm{Ph}-2^{\text {e }}$	128.9(29.6)	129.1(18.3)	132.1(16.2)	133.5 (8.3)	133.5 (8.6)	133.9(7.9)	134.9(10.9)
$\mathrm{Ph}-3^{\text {e }}$	128.2(8.7)	128.2(8.7)	128.3	128.4(11.0)	129.6(11.7)	130.0(11.6)	129.8(18.4)
$\mathrm{Ph}-4^{\text {e }}$	128.0	127.8	132.4	131.7(2.8)	134.4(2.9)	134.4(2.4)	134.8
CH_{2}						$7.8(46.0)$	20.9(43.3)
$\begin{gathered} \mathrm{CH}_{3} \\ \mathrm{Bz}^{-1} \end{gathered} \mathrm{f}$					-1.0(48.4)	8.0(6.5)	128.5(30.0)
$\mathrm{Bz}-2^{\text {f }}$							130.0(3.7)
$\mathrm{Bz}-3^{\text {f }}$							129.9
$B z-4{ }^{\text {f }}$							128.7

TABLE II (Continued)

Carbon	Compound						
	41a	$\underline{41 a}^{\prime}$	$41 \mathrm{a}^{\mathrm{c}}$	$41 \mathrm{a}^{\mathrm{c}}$	41b	41b ${ }^{\prime}$	41c'
2,6	36.4 (16.3)	36.4 (16.3)	36.8(17.0)	48.6(14.6)	38.2 (60.4)	46.5(56.6)	51.6(41.8)
	38.9(22.9)	38.9(22.9)	38.9(23.7)	44.8(13.3)	45.0(60.5)	40.5(60.5)	38.0(44.8)
3,5	42.7(2.9)	44.9(13.2)	42.8(2.7)	42.8(2.7)	42.7(4.3)	42.7(4.3)	45.0(2.9)
	46.2(8.1)	48.6(14.0)	46.1(7.9)	46.1(7.9)	45.2(4.7)	45.2(4.7)	43.0(3.0)
4	509.7	207.7(11.5)	207.6	205.5	205.7(2.8)	207.2(6.2)	207.1(5.4)

a All samples were ca. 200 mg in $\mathrm{DCC1}_{3}$ except where noted. Chemical shifts are in ppm ($\mathbf{~} 0.1$) downfield from internal tetramethylsilane (TMS).
b 31 P- ${ }^{13} \mathrm{C}$ coupling constants are in $\mathrm{Hz}(\underline{0} .4)$.
${ }^{\mathrm{C}}$ In hexadeuteriobenzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.
${ }^{d}$ In hexadeuteriodimethyl sulfoxide (DMSO- $_{6}$).
$\mathrm{e}_{\mathrm{Ph}}-1$ signifies the carbon attached to phosphorus, $\mathrm{Ph}-2=$ ortho carbons, $\mathrm{Ph}-3=$ meta carbons, and $\mathrm{Ph}-4=$ para carbon.
$\mathrm{f}_{\mathrm{Bz}-1}$ signifies the carbon attached to the methylene group, $\mathrm{Bz}-2=$ ortho carbons, $\mathrm{Bz}-3=$ meta carbons, and $\mathrm{Bz}-4=$ para carbon.

TABLE III

SPECTRAL DATA FOR SUBSTITUTED 4-PHOSPHORINANONES 11a-f AND 41a-c

Cpd	IR Absorption Spectra in $\mathrm{KBr},{ }^{\text {a }}$ Selected Bands, cm^{-1}	1_{H} NMR Spectral Assignments Chemical Shifts, δb	${ }^{31} \mathrm{P}$ NMR, $\delta^{\text {c }}$
$\stackrel{11 \mathrm{a}}{\sim}$	$\begin{aligned} & 2900,1680,1435,1290, \\ & 1187,478,698 \end{aligned}$	$\begin{aligned} & 0.93\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=11 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.32\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=18 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 2.12\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=14 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=6 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{a}}, 2 \mathrm{H}\right] \\ & 2.93\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=14 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCH}}=2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{e}}, 2 \mathrm{H}\right]\right. \\ & 7.32-7.86[\mathrm{~m}, \text { ArH, } 5 \mathrm{H}] \end{aligned}$	-16.05
$.11 \mathrm{~b}$	$\begin{aligned} & 2940,1700,1442,1176, \\ & 1104,757,713 \end{aligned}$	$\begin{aligned} & 1.19\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=8 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.32\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=7 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 2.61\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=13 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=13 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{a}}, 2 \mathrm{H}\right] \\ & 2.99\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=13 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=13 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{e}}, 2 \mathrm{H}\right] \\ & 7.46-7.64[\mathrm{~m}, \mathrm{ArH}, 3 \mathrm{H}] \\ & 7.82-8.08[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 2 \mathrm{H}] \end{aligned}$	+41.21
$11 \mathrm{c}$	$\begin{aligned} & 2850,1690,1430,1092 \\ & 867,718,697 \end{aligned}$	$\begin{aligned} & 1.14\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.44\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 2.56-3.22\left[\mathrm{~m}\left(\mathrm{~J}_{\mathrm{HCH}}<2 \mathrm{~Hz}\right), \mathrm{CH}_{2}, 4 \mathrm{H}\right] \\ & 7.40-7.68[\mathrm{~m}, \text { ArH, } 3 \mathrm{H}] \\ & 8.12-8.44[\mathrm{~m}, \text { ArH, } 2 \mathrm{H}] \end{aligned}$	+64.42

TABLE III (Continued)

Cpd	IR Absorption Spectra in -1 $\mathrm{KBr},{ }^{\mathrm{a}}$ Selected Bands, cm^{-1}	$1_{\text {H NMR }}$ Spectral Assignments Chemical Shifts, $\delta^{\text {b }}$	$31_{\text {P NMR, }} \delta^{\text {c }}$
$\overbrace{}^{11 \mathrm{~d}}$	$\begin{aligned} & 2850,1700,1435,1206 \\ & 1105,907,748 \end{aligned}$	$\begin{aligned} & 1.18\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.41\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=15 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 2.60\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCH}}=14 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 3 \mathrm{H}\right] \\ & 2.85\left[\mathrm{~d} \text { of }\left(\mathrm{J}_{\mathrm{HCH}}=14 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=14 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{a}}, 2 \mathrm{H}\right] \\ & 3.27\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=14 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=14 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{e}}, 2 \mathrm{H}\right] \\ & 7.27-7.96[\mathrm{~m}, \mathrm{ArH}, 3 \mathrm{H}] \\ & 7.98-8.26[\mathrm{~m}, \mathrm{Ar}, 2 \mathrm{H}, 2 \mathrm{H}] \end{aligned}$	+35.27
$\stackrel{11 e}{\sim}$	$\begin{aligned} & 2850,1710,1435,1195 \\ & 1110,753,697 \end{aligned}$	$\begin{aligned} & 0.84-1.64\left[\mathrm{~m}, \mathrm{CH}_{3}, 3 \mathrm{H}\right] \\ & 1.16\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right) \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.51\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=14 \mathrm{~Hz}\right) \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 2.72\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=16 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right) \mathrm{CH}_{\mathrm{a}}, 2 \mathrm{H}\right] \\ & 3.00-3.50\left[\mathrm{~m}\left(\mathrm{~J}_{\mathrm{HCCH}}=7 \mathrm{~Hz}\right), \mathrm{CH}_{2}, 2 \mathrm{H}\right] \\ & 3.25\left[\mathrm{~d} \text { of } \mathrm{d}\left(\mathrm{~J}_{\mathrm{HCH}}=16 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{PCCH}}=16 \mathrm{~Hz}\right), \mathrm{CH}_{\mathrm{e}}, 2 \mathrm{H}\right] \\ & 7.64-8.28[\mathrm{~m}, \mathrm{ArH}, 5 \mathrm{H}] \end{aligned}$	+37.39

TABLE III (Continued)

Cpd	IR Absorption Spectra in KBr, Selected Bands, cm	$\begin{aligned} & 1_{\text {H NMR Spectral Assignments }} \\ & \text { Chemical Shifts, } \delta^{\mathrm{b}} \end{aligned}$	$31_{\text {P NMR, }} \delta^{\text {c }}$
11f	$\begin{aligned} & 2850,1700,1445,1207 \\ & 1103,843,697 \end{aligned}$		+35.21
$\frac{41 a}{\left(41 a^{\prime}\right)}$	$\begin{aligned} & 2960,1690,1430,1237 \\ & 1138,905,696 \end{aligned}$	$\begin{aligned} & 2.80-3.48\left[\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}\right] \\ & 3.64-4.06[\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H}] \\ & 6.68-6.84[\mathrm{~m}, \mathrm{Ar}, 2 \mathrm{H}] \\ & 6.94-7.40[\mathrm{~m}, \mathrm{Ar}, \mathrm{H}, 13 \mathrm{H}] \end{aligned}$	-6.20 -3.37
$\left(\frac{41 \mathrm{~b}}{41 \mathrm{~b}}\right)$	$\begin{aligned} & 3000,1700,1435,1175 \\ & 1117,847,698 \end{aligned}$	$2.70-3.40[\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H}]$ $3.44-4.08\left[\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right]$ 6.76-6.96[m, ArH, 2 H] 6.98-7.44[m, ArH, 13 H$]$	+32.21 +33.95

TABLE III (Continued)

Cpd	IR Absorption Spectra in ${ }_{-1}$ $\mathrm{KBr},{ }^{\text {a }}$ Selected Bands, cm^{-1}	$1_{\text {H NMR }}$ Spectral Assignments Chemical Shifts, $\delta^{\text {b }}$	$31_{\text {P NMR }}$, $\delta^{\text {c }}$
$\underbrace{41 c^{\prime}}$	3000,1700,1445,1225	$2.74-3.40[\mathrm{~m}, \mathrm{CH}, 2 \mathrm{H}]$	+47.92
	1105,800,694	$2.68-4.40\left[\mathrm{~m}, \mathrm{CH}_{2}, 2 \mathrm{H}\right]$	
		6.76-6.96[m, ArH, 2 H]	
		$7.00-7.46[\mathrm{~m}, \mathrm{ArH}, 13 \mathrm{H}]$	

[^1]been synthesized although there is a void of definitive conclusions for the geometry of these systems in solution. $3,41,43,59$

Slightly modified procedures $3,41,59$ gave $\underline{(1 \text { and }}$ and 41a, the physical properties of which agreed with published values. The syntheses of $11 e-f$ and $41 b-d$ were accomplished via techniques of a similar nature.

${ }^{13}$ C NMR Spectral Parameters

Quite novel ${ }^{13} \mathrm{C}$ chemical shifts and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling values were recorded for $\underbrace{11 a-f}$ and $41 a-c$. Of particular importance were the ${ }^{13} \mathrm{C}$ chemical shifts for $C(3,5)$ [and the related ${ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}$ coupling constants] and the ${ }^{13} \mathrm{C}$ shifts associated with the exocyclic methyl groups located at $C(2,6)$ in 11a-f. It has been stated that the magnitude of ${ }^{2} J_{P C}(3,5)$ for several six-membered phosphorus-containing heterocycles can be employed for the determination of the configuration at phosphorus. ${ }^{9,22}$ For example, the ${ }^{2} J_{P C(3,5)}$ value in 43 a is 0 Hz and for 43 b the ${ }^{2} \mathrm{~J}_{\mathrm{PC}}(3,5)$

value is 7.5 Hz in $\mathrm{H}_{2} \mathrm{CCl}_{2} .{ }^{22}$ For 11 a in DCCl_{3}, a ${ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}$ value of 3.0 Hz was recorded while $\mathrm{a}^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}$ value of 7.8 Hz was found in $C_{6} D_{6}$. Therefore, it might be argued that in DCCl_{3} Ila exists with the P-phenyl group predominately in an axial orientation and in $C_{6} D_{6}$ the opposite is true. However, the ${ }^{2} J_{P C}$ values for the exocyclic methyl
groups at $C(2,6)$ should also be instructive regarding the configuration at phosphorus for the same reasons given above. In contrast, for $11 a$, the ${ }^{2} \mathrm{~J}_{\mathrm{PC}}$ values for the exocyclic methyl groups are quite similar in both $\mathrm{DCC1}_{3}$ (44.3 and 4.3 Hz) and $\mathrm{C}_{6} \mathrm{D}_{6}(44.9$ and 2.2 Hz). Thus, it is difficult to suggest a predominate configuration at phosphorus for 11 a based only on the ${ }^{31} \mathrm{P}^{13} \mathrm{C}$ coupling constants involving $C(3,5)$ or the exocyclic methyl groups at $C(2,6)$.

Courtauld models indicate that a twist conformation such as 60, for the phosphorinanone ring in 11a may be tolerated. If such exists, caution may be necessary in the use of ${ }^{2} J_{P C}$ values to assign

configurational preference at phosphorus in 11a. Also, no ${ }^{31}{ }_{\mathrm{P}-13}{ }^{13}$ coupling was observed for $C(3,5)$ or for the exocyclic methyl carbons at $C(2,6)$ in 11b-f. However, for ketones $1 a-d,{ }^{57}$ the ${ }^{2} J_{P C(3,5)}$ values clearly suggest a predominance of group distributions as shown (in DCCl_{3}) based on work in other related systems. ${ }^{9,22}$
${ }^{13}$ C chemical shifts and ${ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}$ coupling constants (Table I)
for $41 \mathrm{a}-\mathrm{c}$ suggest a trans arrangement of the pheny1 groups at $\mathrm{C}(2,6)$. If the arrangement at $C(2,6)$ was cis, only one ${ }^{13} C$ signal should be observed for $C(2,6)$ and only one signal for $C(3,5)$ since these atoms would presumably be magnetically identical, regardless of the configuration at phosphorus. This, of course, assumes no dissymmetry imposed

$$
\begin{array}{ll}
\text { la: } & X=\text { lone pair; } \mathrm{Y}=\mathrm{C}_{6} \mathrm{H}_{5} \\
\text { lb: } & \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Y}=0 \\
\text { 1c: } & \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Y}=\mathrm{S} \\
\text { 1d: } & \mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{Y}=\mathrm{CH}_{3}, \mathrm{I}^{-}
\end{array}
$$

on the system by a skewed $P-C_{6} H_{5}$ bond. The ${ }^{2} J_{\mathrm{PC}}(3,5)$ values $(2.9$ and 8.1 Hz) for 41a do suggest a predominance of configurational isomer with axial \underline{P}-phenyl. This follows from the observation that the ${ }^{2} J_{P C}(3,5)$ couplings have been shown to be dependent upon the configuration at phosphorus in isomeric 4-tert-buty1-1-pheny1-4-phosphorinanols 43 a and 43 b of known stereochemistry. ${ }^{22}$ It could also be argued that the position for the ${ }^{13} \mathrm{C}$ signal for $\mathrm{C}(2,6)$ at $36.4 \mathrm{ppm}\left({ }^{\mathrm{O}} \mathrm{J}_{\mathrm{PC}(2,6)}\right)=$ 16.3 Hz) in 41 a is due to a carbon atom with an equatorial phenyl group since steric compression between the axial P -phenyl and equatorial phenyl-C $(2,6)$ should shield that carbon compared to the $C(2,6)$ carbon with axial phenyl. Similar arguments concerning shielding at carbon due to a steric compression effect have been noted for cyclohexanes. ${ }^{15}$

It was interesting to note that apparently 41a crystallized in only one form. However, in solution two phosphines with different
${ }^{13} \mathrm{C}$ chemical shifts and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constants, as we11 as two distinct ${ }^{31}$ P NMR signals (Table II), were apparent. Based upon the relative intensity of thw ${ }^{31} \mathrm{P}$ signals, the ratio was $1.00: 1.56$ at $37^{\circ} \mathrm{C}$. We attribute these observations to an equilibrium biased in favor of 41a in solution. In support of the two configurational isomers

$41 a^{\prime}$
being epimeric at phosphorus was the observation of two new signals for $\mathrm{C}(3,5)$ at $44.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}=13.2 \mathrm{~Hz}\right)$ and $48.6 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}=\right.$ 14.0 Hz) and no new ${ }^{13} \mathrm{C}$ signals for $\mathrm{C}(2,6)$. These new $\mathrm{C}(3,5)$ signals for 41a' were deshielded (2.2 and 2.4 ppm$)$ compared to those signals of the major isomer 4la; these facts were in accord with a similar observation for isomeric 4-tert-butyl-1-methyl-4-phosphorinanols 43a and 43b. ${ }^{22}$ Also the larger ${ }^{2} J_{P C}(3,5)$ values support an equatorial P-phenyl group, assuming that a smaller dihedral between the phosphorus lone pair and the $C(3,5)$ carbons corresponds to a larger ${ }^{2} J_{P C}(3,5)$ value. ${ }^{22}$

Oxidation of 41 a (and $41 a^{\prime}$) with $\mathrm{H}_{2} \mathrm{O}_{2}^{27}$ in the cold $\left(0^{\circ} \mathrm{C}\right)$ resulted in formation of apparently two oxides $41 \mathrm{~b} \underset{\sim}{\sim} 41 b^{\prime}$ in a ratio of 1:1.2. This is strong evidence for a dynamic system 41a 41a'. Based on the ${ }^{13} \mathrm{C}$ chemical shifts and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constants for
$C(4)$ in 1 -methy1- and 1-ethy1-4-phosphorinanone 1 -oxides ${ }^{9}$ and 1-phenyl-4-phosphorinanone 1-oxide, ${ }^{57}$ the $\mathrm{C}(4)$ signal at $207.2 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}(4)}=\right.$ 6.2 Hz) was assigned to the configurational isomer (41b') with axial

$\mathrm{P} \rightarrow 0$. It is conceivable that the $\mathrm{C}(2,6)$ signal at $46.5 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}(2,6)}=\right.$ 56.6 Hz) corresponds to the $C(2,6)$ atom with equatorially oriented phenyl and equatorial \underline{P}-phenyl, which results in the most deshielded signal compared to similarly substituted cyclohexanes. ${ }^{15}$ Similarly, the signal at $38.2 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}(2,6)=60.4 \mathrm{ppm}\right)$ could represent the $C(2,6)$ bearing the axial phenyl group in the axial \underline{P}-phenyl isomer. Newman formulas for these arrangements are illustrated in 61 and 62 ; According1y the $C(3,5)$ signal at $45.2 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}(3,5)}=4.7 \mathrm{~Hz}\right)$ should

61

correspond to 41b', with axial phosphory1 oxygen deshielding $C(3,5)$ more than axial phenyl group. ${ }^{9,57}$ Since the signal intensities of ${ }^{13} \mathrm{C}$ resonances at 42.7 and 4.52 ppm in the spectrum of the oxides were equal and since four $C(3,5)$ signals were observed for 41a $\sim 41 a$, it is not possible to determine absolutely whether these two different $C(3,5)$ signals are for the same carbon atoms in different isomers [42.7 ppm for $\mathrm{C}(3,5)$ in 41 b ; 45.2 ppm for $\mathrm{C}(3,5)$ in 41b' or vice versa] or represent two different ${ }^{13} \mathrm{C}$ signals for $C(3,5)$ in 41 b and 41b' which possess identical chemical shifts for the two isomers. Our assessment is that the signals are for different carbon atoms based on analogy with 41a and 41a'.

Sulfurization (in boiling benzene) afforded only one isomeric P-sulfide assigned the structure 41c' (based on previous arguments and similar ${ }^{13} \mathrm{C}$ parameters observed for 1-pheny1-4-phosphorinanone 1-sulfide ${ }^{57}$). The ${ }^{13}$ C signal at $51.6 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}(2,6)}=41.8 \mathrm{~Hz}\right)$ was assigned to the $C(2,6)$ carbon atom bearing an equatorially oriented phenyl group (as per 41b').

$4 C^{\prime}$

Infrared Spectral Data

Infrared $\mathrm{C}=0$ absorptions for $11 \mathrm{a}-\mathrm{f}$ and $41 \mathrm{a}-\mathrm{c}$ occurred between 1680 and $1710 \mathrm{~cm}^{-1}$ in KBr pellets. The $\mathrm{C}=0$ stretching frequencies for the compounds presented herein agreed well with those previously reported for $1 \mathrm{a},\left(1695 \mathrm{~cm}^{-1}\right),{ }^{60}$ 1-ethyl-4-phosphorinanone $\left(1715 \mathrm{~cm}^{-1}\right)^{60}$ and 2-pheny1-3-methy1-2-phosphabicyc1o[4.4.0]decan-5-one (8) ($1700 \mathrm{~cm}^{-1}$), ${ }^{31}$ as well as with the corresponding oxide ($1705 \mathrm{~cm}^{-1}$), methiodide $\left(1710 \mathrm{~cm}^{-1}\right)$, and benzochloride $\left(1720 \mathrm{~cm}^{-1}\right.$). ${ }^{31}$ Infrared absorptions assigned to the P-phenyl bond $\left(1430-1445 \mathrm{~cm}^{-1}\right.$ and $\left.1103-1117 \mathrm{~cm}^{-1}\right)^{56}$ were also clearly in evidence for $11 \mathrm{a}-\mathrm{f}$ and $41 \mathrm{a}-\mathrm{c}$. Absorptions for $P \rightarrow 0$ and $P \rightarrow S$ were also recorded on solids [11b: $P \rightarrow 0$, $1176 \mathrm{~cm}^{-1} ; 41 \mathrm{~b}$ (or $41 \mathrm{~b}^{\prime}$): $\left.\mathrm{P} \rightarrow 0,1175 \mathrm{~cm}^{-1}\right]$. However, only meager information regarding structural features based on $P \rightarrow 0$ and $P \rightarrow S$ infrared absorption has been presented ${ }^{14,56}$ for systems of known configuration and this precluded any conformational assignments in our systems.

1_{H} NMR Spectral Data

The ${ }^{1}{ }^{H}$ NMR data for $11 a-f$ and $41 \mathrm{a}-\mathrm{c}$ could not be obtained in the same solvent, unfortunately, due to the limited solubility of the salts $11 d-f$ in many solvents. Therefore, ${ }^{1}{ }_{H}$ NMR spectra for $11 a-c$ and $41 \mathrm{a}-\mathrm{c}$ were obtained in DCCl_{3} and ${ }^{1} \mathrm{H}$ NMR spectra for $11 \mathrm{~d}-\mathrm{f}$ were obtained in DMSO- $_{6}$. Phosphine 11 gave rise to two CH_{3} doublets in the ${ }^{1}{ }_{\mathrm{H}}$ NMR spectrum at $\delta 0.93\left({ }^{3} \mathrm{~J}_{\mathrm{PCCH}}=11 \mathrm{~Hz}\right)$ and $\delta 1.32\left({ }^{3} \mathrm{~J}_{\mathrm{PCCH}}=\right.$ $18 \mathrm{~Hz})$. Based on the ${ }^{13} \mathrm{C}$ chemical shifts and ${ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}$ coupling constants for the exocyclic methyl carbons in $11 \mathrm{a}\left[30.3 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PCC}}=\right.\right.$
4.34 Hz) and $30.8 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PCC}}=44.30 \mathrm{~Hz}\right)$], one might initially surmise the P-phenyl group to be predominately equatorial for reasons cited previously. However, molecular models (Courtauld) indicate severe steric strain in lla if a chair conformation existed. Such strain could be relieved somewhat if the phosphorinanone ring adopted a twist form as in 60. It is tempting to assign the equatorial methyl carbon at $\mathrm{C}(2,6)$ to the upfield CH_{3} doublet by assuming the \underline{P}-phenyl group is axially oriented. Thus, this could place the equatorial methyl groups in reasonably close proximity to the shrielding cone of the phenyl ring. However, evidence is not totally unequivocal to permit assignment of a conformation to the phosphorinanone ring in solution and a configuration at phosphorus; thus the argument must be considered tentative.

Double resonance experiments (${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$) simplified the ${ }^{1} \mathrm{H}$ NMR spectrum of $11 a$ and clearly indicate an $A_{2} B_{2} X$ pattern for the $H(3,5)$ axial and equatorial protons. Since two different ${ }^{3} J_{\text {PCCH }}$ values were apparent (2 Hz and 6 Hz) for the $\mathrm{H}(3,5)$ protons, it seems reasonable that these values could be assigned to the axial and equatorial protons of the $A_{2} B_{2} X$ pattern. Previous work $5,7,19$ has suggested a "Karplus type" relationship for ${ }^{3} \mathrm{~J}_{\mathrm{PCCH}}$ in phosphonates and phosphonous dihalides. In this relationship, the portion of the $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{X}$ spectrum at highest magnetic field would correspond to the equatorial $H(3,5)$ protons. Also in comparison, replacement of α-protons with methyl groups causes shielding of equatorial protons in cyclohexanes, ${ }^{8}$ which supports our assignments. Therefore, in lla-f (except 11c), the high-field portion of the $A_{2} B_{2} X$ spectrum was tentatively assigned to the equatorial $H(3,5)$ protons.

The ${ }^{1}{ }_{H}$ NMR spectrum of 11 c revealed a multiplet for the protons at $C(3,5)$ between $\delta 2.56-3.22$. Irradiation of the ${ }^{31} \mathrm{P}$ signal caused this multiplet to collapse to a broad $\left(W_{1 / 2}=4 \mathrm{~Hz}\right)$ singlet at $\delta 2.94$. This implies the $\mathrm{H}-\mathrm{H}$ geminal coupling is small for the conformer in DCCl_{3}. Recording the ${ }^{1}{ }_{H}$ NMR spectrum of $\underset{\text { I1c }}{ }$ in acetone \mathbf{d}_{6} revealed a doublet of AB portions, one between $\delta 2.46-2.90$ and the other between δ 3.18-3.44. Irradiation of the ${ }^{31} \mathrm{P}$ signal of 11 c caused the low-field portion to collapse to an $\underline{A B}$ spectrum with ${ }^{2}{ }^{J_{H C H}}=14 \mathrm{~Hz}$ while the high-field portion was an extremely complex multiplet between $\delta 2.46-2.94$. Further analysis revealed ${ }^{3} J_{\mathrm{PCCH}}$ values of 24 Hz and 6 Hz for the high-field and low-field signals, respectively. A rational conclusion would be that the high-field multiplet [equatorial $H(3,5)$ protons], after ${ }^{31} \mathrm{P}$ irradiation, could be the result, in part, of long range ${ }^{1} \mathrm{H}_{-}{ }^{1} \mathrm{H}$ coupling or more likely a preferred solute-solvent orientation particularly in acetone- ${ }_{-6}$.

The ${ }^{1}{ }_{H}$ NMR spectra of $41 a-c$ revealed no immediately apparent $31_{\mathrm{P}-} 1_{\mathrm{H}}$ coupling with both the $\mathrm{H}(2,6)$ and $\mathrm{H}(3,5)$ protons. However, addition of one drop of $40 \% \mathrm{NaOD}$ in $\mathrm{D}_{2} \mathrm{O}$ to a saturated acetone- d_{6} of 41a led to an observation of coupling [${ }^{2} \mathrm{~J}_{\mathrm{PC}(2,6) \mathrm{H}}$] after deuterium exchange for $H(3,5)$. When the reaction mixture had been at room temperature for 19 hr , the ${ }^{1}{ }_{\mathrm{H}}$ NMR spectrum of 41 a exhibited two doublets at $\delta 3.92\left({ }^{2} \mathrm{~J}_{\mathrm{PCH}}=12 \mathrm{~Hz}\right)$ and $\delta 4.09\left({ }^{2} \mathrm{~J}_{\mathrm{PCH}}=6 \mathrm{~Hz}\right)$. Again the assignment of these signals for $H(2,6)$ proton was based on previous work ${ }^{1}$ in which a relationship for the dihedral angle between the phosphorus lone pair and α-protons has been established in simple acyclic and alicyclic systems. Consequently, the upfield doublet with the larger
coupling constant was assigned to the axial protons at $C(2,6)$.
${ }^{31}$ P NMR Spectral Data
${ }^{31} \mathrm{P}$ signals for $11 \mathrm{a-f}$ and $41 \mathrm{a}-\mathrm{c}$ are listed in Table II. The deshielded signal for 11a (-16.05 ppm), compared to 1-pheny1-4phosphorinanone $(-39.3 \mathrm{ppm}),{ }^{54}$ is probably the result of β-deshielding ${ }^{49}$ by the four $C(2,6)$ methyl carbons with each methyl group contributing ca. +6 ppm to the ${ }^{31} \mathrm{P}$ chemical shift. This deshielded signal for 11 a is in accord with similar observations of β-deshielding for a number of phosphorus compounds. ${ }^{49}$ Unfortunately, little ${ }^{31} \mathrm{P}$ NMR data is available on the derivatives of 1-pheny1-4-phosphorinanone to test the validity of the postulate for shielding differences in the other phosphorinanones (11b-f) presented herein. Noticeably, the ${ }^{31} \mathrm{p}$ signals for salts $11 \mathrm{~d}-\mathrm{f}$ occur over a range of ca. 2 ppm , suggesting that the electronic and geometric environments are similar but not identical in 11d-f.

Again, the ${ }^{31} \mathrm{P}$ NMR spectra of $41 \mathrm{a}-\mathrm{c}$ afforded interesting observations. For example, phosphine 41a', based on chemical shifts and relative signal intensities in both the ${ }^{1} H$ and ${ }^{13} C$ spectra, was assigned the downfield ${ }^{31} \mathrm{P}$ signal at -3.37 ppm . This agrees with data for a majority of isomeric six-membered phosphorus-containing ring systems in which the equatorial isomer has the more downfield ${ }^{31} \mathrm{P}$ signal. ${ }^{21}$ Therefore the signals for isomeric oxides are assigned accordingly:

41b: $+32.21 \mathrm{ppm} ; 41 \mathrm{~b}^{\prime}+33.95 \mathrm{ppm}$.
Low-temperature ${ }^{31} \mathrm{P}$ NMR experiments were attempted with 11a. However, cooling a solution $\left(\mathrm{C1}_{3} \mathrm{CF}\right)$ of 11 a to $-140^{\circ} \mathrm{C}$ revealed only one
${ }^{31} \mathrm{P}$ signal. Therefore the barrier $\left(\Delta G^{*}\right)$ to ring reversal in 11 a must be lower than ca. $6 \mathrm{kcal} / \mathrm{mole}$. [The value for ΔG^{*} was determined by assuming that the peak separation at the lower temperature limit would be ca. $100 \mathrm{~Hz}^{21}$ and calculated from:

$$
\begin{gathered}
k_{c}=\Delta \nu \pi / \sqrt{2} \\
\left.k_{c}=\frac{k_{B}{ }^{T}}{h} e^{-\Delta G^{*} / R T}\right] .
\end{gathered}
$$

The validity of the short-form equation for relating k_{c} to Δv has been assessed. ${ }^{32}$

Lithium Aluminum Hydride Reduction of 11a

Reaction of a THF solution of 11 a with LiAlH_{4}, followed by aqueous hydrolysis and the appropriate work-up, has not afforded to date a crystalline material in our hands. $59 \quad{ }^{1} H_{\mathrm{H}} \mathrm{NMR},{ }^{13} \mathrm{C}$ NMR, and ${ }^{31}{ }_{\mathrm{P}}$ NMR data (Tables III and IV) were obtained on the resulting viscous oil 63a which seemingly was only one isomer in solution. This isomer was identified by the broad multiplet at $\delta 3.82-4.24$ for the axial proton on $C(4)$ in the ${ }^{1}{ }_{H}$ NMR spectrum. This supports an alcohol with equatorially oriented hydroxyl group. Also, only two doublets for the protons of the methyl group attached at $C(2,6)$ were apparent, suggestive of only one conformer in solution. Oxidation, sulfurization, and quaternization (benzyl bromide) of 63a afforded isomerically pure products 63b, 63c, and 63d, respectively. Again the isomer formed in each case possessed an equatorial hydroxyl group, based on the broad multiplet for the proton on $C(4)$ in the ${ }^{1}{ }_{H}$ NMR spectrum.

TABLE IV
${ }^{13}$ C NMR CHEMICAL SHIFTS ${ }^{\mathrm{a}}\left({ }^{31} \mathrm{P}_{-}{ }^{13} \mathrm{C}\right.$ COUPLING CONSTANTS) ${ }^{\mathrm{b}}$ FOR SUBSTITUTED 4-PHOSPHORINANOLS 63a-d AND 64

Carbon	63 a	63 b	$\underline{63 c}$	$63 d^{c}$	64
2,6	31.9 (16.1)	35.1(61.1)	37.0(43.4)	33.1(28.8)	32.6(61.1)
3,5	$50.9(11.8)$	47.3	46.9	44.9	44.5
4	62.2	64.1(5.9)	64.9(5.1)	62.7(5.8)	76.4 (7.3)
$\mathrm{ax}-\mathrm{CH}_{3}$	32.3(30.2)	26.0(2.2)	28.5	27.2	28.4
eq-CH3	26.3(5.1)	25.0 (1.5)	26.5	26.8	26.5
$\mathrm{Ph}-1{ }^{\text {d }}$	126.9(22.8)	127.2(78.8)	126.0(70.9)	116.1(67.6)	131.1(82.3)
$\mathrm{Ph}-2^{\text {d }}$	128.7(33.7)	122.4(7.5)	134.6(8.3)	134.4(7.4)	131.6(7.4)
$\mathrm{Ph}-3^{\text {d }}$	127.7(20.0)	127.7(10.8)	127.6(11.0)	130.0(8.9)	128.1(10.2)
$\mathrm{Ph}-4^{\text {d }}$	127.6	131.4(2.0)	131.3(3.0)	134.2	130.9(2.8)
CH_{2}				$22.0(41.0)$	
7					39.3
8,9,10					25.2

all samples were ca. 200 mg in DCCl_{3} except where noted. Chemical shifts in ppm (+0.1) downfield from internal tetramethylsilane (TMS).
${ }^{6} 31{ }_{P-}{ }^{13} \mathrm{C}$ coupling constants in $\mathrm{Hz}(+0.4)$.
${ }^{c}$ In hexadeuteriodimethyl sulfoxide $\left(\mathrm{DMSO}_{-} \underline{d}_{6}\right) .{ }^{13} \mathrm{C}$ NMR chemical shifts $\left({ }^{31} \mathrm{P}-{ }^{13} \mathrm{C}\right.$ coupling constants for dibenzyl carbons in 63 d are: $128.2(22.0 \mathrm{~Hz}), 130.0,129.4$, and 128.6 ppm .
${ }^{\mathrm{Ch}} \mathrm{P}$-1 signifies the carbon attached to phosphorus, $\mathrm{Ph}-2=$ ortho carbons, $\mathrm{Ph}-3=$ meta carbons, and $\mathrm{Ph}-4=$ para carbon.

TABLE V

SPECTRAL DATA FOR SUBSTITUTED 4-PHOSPHORINANOLS 63a-d AND 64

Cpd	IR Absorption Spectra in -1 $\mathrm{KBr},{ }^{\text {a }}$ Selected Bonds, cm^{-1}	1_{H} NMR Spectral Assignments, Chemical Shifts, $\delta^{\text {b }}$	${ }^{31} \mathrm{P}$ NMR, $\delta^{\text {c }}$
$63 a$		$\begin{aligned} & 0.68-2.42\left[\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}, \mathrm{OH}, 1 \mathrm{H}\right] \\ & 1.08\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=19 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.36\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=4 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 3.82-4.24[\mathrm{~m}, \mathrm{CH}-\mathrm{O}, 1 \mathrm{H}] \\ & 7.08-8.12[\mathrm{~m}, \mathrm{Ar}, 5 \mathrm{H}, 5 \end{aligned}$	-8.57
$\stackrel{63 \mathrm{~b}}{\sim}$	$\begin{aligned} & 3280,1435,1142,1100, \\ & 1052,754,701 \end{aligned}$	$\begin{aligned} & 1.08\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=13 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.46\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=15 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.64-2.48\left[\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}\right] \\ & 3.80-4.26[\mathrm{~m}, \mathrm{CH}-0,1 \mathrm{H}, \mathrm{OH}, 1 \mathrm{H}] \\ & 7.28-7.64[\mathrm{~m}, \mathrm{ArH}, 3 \mathrm{H}] \\ & 7.72-8.00[\mathrm{~m}, \mathrm{Ar} \underline{H}, 3 \mathrm{H}] \end{aligned}$	+41.59
$\stackrel{63 c}{\sim}$	$\begin{aligned} & 3270,1436,1092,1030 \\ & 746,670 \end{aligned}$	$\begin{aligned} & 1.22\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=17 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.56\left[\mathrm{~d}(\mathrm{~J} \mathrm{PCCH}=14 \mathrm{~Hz}), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.68[\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}] \\ & 1.68-2.62\left[\mathrm{~m}, \mathrm{CH}_{2}, 4 \mathrm{H}\right] \end{aligned}$	+62.53

Cpd	IR Absorption Spectra in $\mathrm{KBr},{ }^{\text {a }}$ Selected Bonds, cm^{-1}	1_{H} NMR Spectral Assignments, Chemical Shifts, δ^{b}	${ }^{31} \mathrm{P}$ NMR, $\delta^{\text {c }}$
$\frac{63 c}{(\text { Con't) }}$		$\begin{aligned} & 3.94-4.32[\mathrm{~m}, \mathrm{CH}-\mathrm{O}, 1 \mathrm{H}] \\ & 7.36-7.62[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 3 \mathrm{H}] \\ & 8.02-8.32[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 2 \mathrm{H}] \end{aligned}$	
63d	$\begin{aligned} & 3220,1428,1103,1046, \\ & 773,754,697 \end{aligned}$	$\begin{aligned} & 1.20\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=15 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.58\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=15 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.96-2.26[\mathrm{~m}, \mathrm{CH}, 4 \mathrm{H}] \\ & 4.00-4.30[\mathrm{~m}, \mathrm{CH}-0,1 \mathrm{H}] \\ & 4.57\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCH}}=14 \mathrm{~Hz}\right), \mathrm{CH}_{2}, 2 \mathrm{H}\right] \\ & 5.16[\mathrm{~d}(\mathrm{~J}=4 \mathrm{~Hz}), \mathrm{OH}, 1 \mathrm{H}] \\ & 7.08-7.40[\mathrm{~m}, \mathrm{ArH}, 5 \mathrm{H}] \\ & 7.60-8.02[\mathrm{~m}, \mathrm{Ar}, 3 \mathrm{H}, 3 \\ & 8.08-8.36[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 2 \mathrm{H}] \end{aligned}$	+34.68
$\underbrace{64}$	$\begin{aligned} & 3320,1442,11501105 \\ & 1070,713,699 \end{aligned}$	$\begin{aligned} & 0.91\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=14 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.06\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right] \\ & 1.58\left[\mathrm{~d}\left(\mathrm{~J}_{\mathrm{PCCH}}=12 \mathrm{~Hz}\right), \mathrm{CH}_{3}, 6 \mathrm{H}\right] \\ & 1.78-2.24[\mathrm{~m}, \mathrm{CH}, \mathrm{CH}-0,5 \mathrm{H}] \\ & 2.12[\mathrm{~s}, \mathrm{OH}, 1 \mathrm{H}] \end{aligned}$	+46.77

TABLE V (Continued)

Cpd	IR Absorption Spectra in-1 $\mathrm{KBr},{ }^{\text {a }}$ Selected Bonds, cm^{-1}	1_{H} NMR Spectral Assignments, Chemical Shifts, δ^{b}	${ }^{31} \mathrm{P}$ NMR, $\delta^{\text {c }}$

$\frac{64}{(C o n ' t)}$	$7.40-7.62[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 3 \mathrm{H}]$
	$7.74-7.98[\mathrm{~m}, \mathrm{Ar} \underline{\mathrm{H}}, 2 \mathrm{H}]$

[^2]
\[

$$
\begin{aligned}
& \text { 63a: } \quad X=\mathrm{C}_{6} \mathrm{H}_{5} ; Y=\text { lone pair } \\
& \text { 63b: } \\
& X=\mathrm{C}_{6} \mathrm{H}_{5} ; Y=0 \\
& \text { 63c: } \\
& X=\mathrm{C}_{6} \mathrm{H}_{5} ; Y=\mathrm{Y} \\
& \text { 63d: } \\
& X=\mathrm{C}_{6} \mathrm{H}_{5} ; Y=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{Br}^{-}
\end{aligned}
$$
\]

Reaction of 11a with tert-butyllithium, followed by oxidation, afforded 64 with the proposed stereochemistry as illustrated. The

64
assignment rests on the shielded ${ }^{13}$ C chemical shifts for 64 (as compared to 63) and the tert-butyl singlet in the ${ }^{1}{ }_{H}$ NMR at $\delta 1.06$ (compared to that of $\delta 0.94$ for trans-4-tert-buty1-1-pheny1phosphorinane 1-oxide whose structure is known with certainty from X -ray crystallographic data ${ }^{40}$).

Support for the assignment of an equatorial $\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}$ in 63 a follows from the ${ }^{13} \mathrm{C}$ NMR data. As previously cited, ${ }^{22}$ the configuration
at phosphorus in certain systems has been assigned from the ${ }^{3}{ }_{J}$ PC(3,5) values. In the case of 64 , the ${ }^{3} \mathrm{~J}_{\mathrm{PC}}(3,5)$ value of 11.79 Hz is even larger than the corresponding value (7.5 Hz) in 4-tert-butyl-1-methyl-4-phosphorinanol (43b) of known configuration. 22 It has been suggested that a small dihedral angle between the phosphorus lone pair and a carbon atom two bonds removed should yield a large ${ }^{2} J_{\text {PCC }}$ value. ${ }^{22}$ The Newman formula for 64 aids in visualizing the effect at $C(3,5)$ with axial orientation of the phosphorus lone pair. These assignments must, however, remain somewhat tentative in view of some uncertainty as to the actual geometry of the precursor (11a) for 63 a .

The infrared spectra of $63 \mathrm{a}-\mathrm{d}$ show strong absorptions at 1030-1052 cm^{-1} for the $C-0$ stretch, indicative of an equatorially oriented hydroxy1 group. ${ }^{11}$ Also, absorptions between $1428-1442 \mathrm{~cm}^{-1}$ and $1092-1105 \mathrm{~cm}^{-1}$ were recorded for $63 \mathrm{~b}-\mathrm{d}$ and 64 and were supportive of the presence of the P--phenyl bond. 56
3^{31} NMR data for $63 a-d$ and 64 are listed in Table V. A value of -8.57 ppm was recorded for 63 a , which differs by +7.48 ppm from its immediate precursor 11a. One rationale may be that the change in hybridization at $C(4)$ in going from 11a $\rightarrow 63 \mathrm{markedy}$ influences the
${ }^{31} \mathrm{P}$ signal for 63 a . However, very little change was noted in the ${ }^{31} \mathrm{P}$ NMR signals for the tetracoordinate derivatives of 63 a ($63 \mathrm{~b}-\mathrm{d}$) compared to the similarly substituted tetracoordinate derivatives of 11a (11b-d). Therefore, it remains difficult to attribute the remarkable differences in the ${ }^{31} \mathrm{P}$ signals for 11 and 63 a to only a change in hybridization at C(4).

Herein, we have attempted to derive useful conformational data from an intensive study of the ${ }^{1} H,{ }^{13} C$, and ${ }^{31} P$ NMR parameters of several 4-phosphorinanones and derivatives. Notabley, there is difficulty in attempting to utilize ${ }^{2} \mathrm{~J}_{\mathrm{PC}}(3,5)$ values for conformational assignment ${ }^{22}$ in 4-phosphorinanones which also possess gem-dimethyl groups at $C(2)$ and $C(6)$. The preferred configuration of phenyl groups attached to $C(2,6)$ in the 4 -phosphorinanones studied appears to be trans on the basis of different ${ }^{13} \mathrm{C}$ NMR signals for all the ring carbon atoms. Finally, a change in hybridization at $C(4)\left[\operatorname{sp}^{2} \rightarrow s p^{3}\right]$ in converting the 4 -phosphorinanones to the corresponding 4-phosphorinanols seems to have a marked influence on the ${ }^{31} \mathrm{P}$ chemical shift in trivalent phosphines. However, many more derivatives should be examined carefully to verify this.

In summary, with the tetramethyl analogs 11 a , cooling to $-140^{\circ} \mathrm{C}$ did not show two ${ }^{31} \mathrm{P}$ peaks. Then, we assume that ring reversal may be found for all members of this family. If a twist conformer exists for the members of 11 , one might not observe two signals for 31_{P} even at low temperature assuming rapid ring adjustment between one or more twist forms which provide a similar environment about P. Whether or not such a theory holds for all members of 11 must await testing. Since the triphenyl-substituted phosphorinanone 41a (41a')
displayed two ${ }^{31} \mathrm{P}$ NMR signals $\left(\mathrm{DCC1}_{3}\right.$ or $\mathrm{C}_{6} \mathrm{D}_{6}$) at room temperature $\left(37^{\circ} \mathrm{C}\right)$, there is implied that a ring reversal process is in operation. This is supported by the isolation of only one product 41a (41a') in high yield (82\%). Of course, a P-inversion could give the same result but such processes have been reported to have ΔG^{*} values usually exceeding $25 \mathrm{kcal} / \mathrm{mole}$ in simple cyclic phosphines [see K. Mislow, Trans. N. Y. Accad. Sci., 35, 227 (1973) and Part I of this thesis]. Oxidation of 41a (41a') gives a mixture (in solution) of oxides but only one oxide 41 b (or 41b') has been isolated to date. Pure oxides 41 b (or 41b') in DCCl_{3} gave two ${ }^{31} \mathrm{P}$ signals, implying a ring reversal. Quite possibly, comparison of the ${ }^{31} \mathrm{P}$ spectrum of the crude oxidation mixture would reveal identical ${ }^{31} \mathrm{P}$ signals as found when 41 b (or 41b') was placed in DCCl_{3}. One can imagine that perhaps the barrier would be high for the ring reversal for converting 65 a or 65 b to the ring reversal

products 65 c and 65 d , respectively, because of severe 2,6 -interactions of axial phenyl groups. We might assume also the P-inversion barrier for $65 \mathrm{a} \underset{\sim}{\longrightarrow}$ would be high. Surprisingly, Courtauld models could only be constructed for 65 b and the phosphorinanone ring appeared slightly twisted. This suggests that preparation of 65 a (and 65b) might require special conditions. Interestingly, only one phosphine

of $1,2,6$-tripheny1-4-phosphorinanone has ever been reported. Our sample (mp $175-176^{\circ} \mathrm{C}$--our 41a) assigned the trans arrangement has been submitted to Professor D. van der Helm at Oklahoma University for X-ray analysis. The same situation persists for oxide 41b (41b') but only ${ }^{31} \mathrm{P}$ signal is available for the sulfide 41 c '. This suggests a steric factor imposed by the S atom may restrict ring reversal but cooling experiments might reveal if ring reversal is fast at room temperature if two signals appeared.

Suggestions for Further Work

In view of the work presented herein, a complete ${ }^{13} \mathrm{C}$ NMR study of ring-substituted 4 -phosphorinanones seems necessary to determine whether ${ }^{2} J_{P C(3,5)}$ values can be used without hesitation in the assignment of the configuration at phosphorus. Of particular interest should be those 4 -phosphorinanones with various alkyl groups attached to phosphorus (e.g., $\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, etc.) and differing in the degree and type of substitution at $C(2)$ and $C(6)$.

An in-depth study via ${ }^{31} P$ NMR of the factors influencing the ${ }^{31} P$ chemical shift of 4 -substituted phosphorinanes with changes in the
hybridization at $C(4)$ and the type of substitutents there attached (e.g. $\mathrm{H}, \mathrm{R}, \mathrm{OH},=\mathrm{C}<,=\mathrm{O},=\mathrm{N}-$, etc.) would be informative. From this study experimental evidence could be derived in support of an electric field effect ${ }^{9}$ associated with the phosphorus atom or geometric contributions to the ${ }^{31} \mathrm{P}$ chemical shift with changes in the conformation of the six-membered ring.

Current interest in the biological activity of organophosphorus heterocycles is attested to by the voluminous amount of reports concerning these compounds. 58 The incorporation of the carbony1 moiety in these heterocycles "opens the door" for a variety of chemical reactions. Annelations, Reformatsky reactions, and condensations, to name a few, could yield heterocyclic products with active functionalities as well as hydrophilic and lipophilic characteristics. Thus, this area of heterocyclic and medicinal chemistry appears boundless and only requires the imagination and persistent efforts of chemists and biochemists.

CHAPTER III

EXPERIMENTAL

General Data

Melting points were obtained on a Thomas-Hoover melting point apparatus and were uncorrected. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data were obtained on a Varian XL-100 (15) NMR spectrometer equipped with a Nicolet TT-100 PFT accessory operating at 100.1 MHz with tetramethy1silant (TMS) as internal standard for ${ }^{1}{ }^{H}$ NMR, at 25.2 MHz with TMS as internal standard for ${ }^{13} \mathrm{C}$ NMR, and at 40.5 MHz with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard for ${ }^{31} \mathrm{P}$ NMR. The ${ }^{13} \mathrm{C}$ NMR spectra were obtained operating in the FT mode utilizing broad-band proton decoupling. The 31_{P} NMR spectra of $11 a-f, 63 a-d$, and 64 were obtained in the $C W$ mode and those of $41 \mathrm{a}-\mathrm{d}$ in the FT mode utilizing broad-band proton decoupling for 41a-d. Infrared spectral data were obtained on a Beckmann IR-5A unit. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tennessee.

Starting Materials

Reagents (commercially available) were purified before use as necessary. Solvents used were reagent grade and were dried over sodium where required.

Preparation of $2,2,6,6$-Tetramethyl-1-pheny1-4-phosphorinanone (11a) ${ }^{59}$

In a $25-\mathrm{ml}$, round-bottom flask equipped with a condenser and N_{2} inlet were placed 3.5 g (0.0254 mole) of 2,6 -dimethylhepta- 2,5 -dien4 -one (City Chemical Corp., bp $196-198^{\circ} \mathrm{C}$) and $2.75 \mathrm{~g}(0.025 \mathrm{~mole})$ of phenylphosphine (Pressure Chemical Company). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 6 hr under N_{2} and allowed to cool to room temperature ($\simeq 1 \mathrm{hr}$). The resulting solid distilled at $105-120^{\circ} \mathrm{C} / 0.3 \mathrm{~mm}$ to give $4.53 \mathrm{~g}(72.5 \%)$ of ketone $11 \mathrm{a}, \mathrm{mp} 91-92^{\circ} \mathrm{C}\left[1 \mathrm{it}^{59} \mathrm{bp} 130-140^{\circ} \mathrm{C} /\right.$ $\left.0.5 \mathrm{~mm}, \mathrm{mp} 91-92^{\circ} \mathrm{C}\right]$.

IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for $\underbrace{11 \text { a are listed in Tables } \text { II }}$ and III. The IR and ${ }^{1}{ }_{H}$ NMR spectra of 11 a are illustrated in Plates I and $I I$, respectively.

The 2,4-dinitrophenylhydrazone of 11a was prepared in the following manner. To a methanol solution (5 ml) of 0.073 g (0.37 mmole) of 2,4-dinitrophenylhydrazine was added 1 ml of $\mathrm{H}_{2} \mathrm{O}$ and 0.5 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Ketone $11 \mathrm{a}(0.091 \mathrm{~g}, 0.37 \mathrm{mmole})$ was then added and the reaction mixture was warmed on a steam bath for 15 min . The reaction mixture was then allowed to cool to room temperature resulting in the formation of a solid. Vacuum filtration of the mixture followed by recrystallization of the solid obtained (twice) from methanol gave 41 mg (26.1\%) of the 2,4 -dinitrophenylhydrazone of 11 a , $\operatorname{mp} 153-154^{\circ} \mathrm{C} . \quad \operatorname{IR}(\mathrm{KBr}) \vee 3280(\mathrm{~N}-\mathrm{H}), 1610(\mathrm{C}=\mathrm{N}), 1580(\mathrm{C}=\mathrm{N}), 1410$ $\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 1335,1137\left(\mathrm{P}-\mathrm{C}_{6} \mathrm{H}_{5}\right), 922,833,743,696 \mathrm{~cm}^{-1}$.

Ana1. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$: $\mathrm{N}, 13.03$; P, 7.23
Found: $N, 12.97 ; ~ P, 7.27$

Preparation of $2,2,6,6$-Tetramethy1-1-pheny1-4-phosphorinanone 1 -Oxide (11b) ${ }^{3}$

Ketone $11 \mathrm{a}(2.48 \mathrm{~g}, 0.01 \mathrm{~mole})$ was dissolved in 25 ml of acetone in a $50-\mathrm{ml}$ round-bottom flask. To the solution was added dropwise, with stirring, 2.6 g (0.02 mole) of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (Mallinckrodt, Analytical Reagent). The reaction mixture was stirred at room temperature for 24 hr and was diluted with 25 ml of satd. aqueous NaCl solution. The diluted reaction mixture was then extracted with 3 x 40 ml of HCCl_{3}. The HCCl_{3} extracts were combined and washed with 25 m 1 of satd. aqueous $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}$ solution. The HCCL_{3} layer was separated and dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was filtered and the HCCl_{3} was removed by rotary evaporation. Dissolution of the resulting oil was achieved with the minimum amount of hot xylene, which was then filtered. When the filtrate was allowed to stand at $0^{\circ} \mathrm{C}$ overnight, white needles formed and were filtered off. The crystals were dried ($\left.\mathrm{P}_{2} \mathrm{O}_{5} ; 100^{\circ} \mathrm{C} / 5 \mathrm{~mm}\right)$ to give $1.4 \mathrm{~g}(53 \%)$ of 11 b , mp $207-208^{\circ} \mathrm{C}\left[1 \mathrm{it}{ }^{3} \mathrm{mp} 212-213^{\circ} \mathrm{C}\right]$. IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 11 b are listed in Tables II and III. The IR and ${ }^{1} \mathrm{H}$ NMR spectra of 11 b are illustrated in Plates III and $I V$, respectively.

Preparation of $2,2,6,6$-Tetramethy1-1-pheny1-4-phosphorinanone 1 -Sulfide (11c) 3,59

Ketone 11a $(2.48 \mathrm{~g}, 0.01$ mole) and sulfur $(0.64 \mathrm{~g}, 0.02 \mathrm{~mole})$ dissolved in 25 ml of benzene were placed in a $50-\mathrm{ml}$, round-bottom flask fitted with a condenser and magnetic stirrer. The reaction mixture was gently boiled for 3 hr and filtered hot. The volume was
reduced to ca. 10 ml (by evaporation on a steam bath) and 10 ml of petroleum ether was added. After the mixture was allowed to stand at $0^{\circ} \mathrm{C}$ overnight, a solid formed and was dried ($\mathrm{P}_{2} \mathrm{O}_{5} ; 110^{\circ} \mathrm{C} / 5 \mathrm{~mm}$) to give 1.98 g of $11 \mathrm{c}(70.5 \%), \mathrm{mp} 129-132^{\circ} \mathrm{C}$. A small portion was recrystallized from methano1, mp $138-139^{\circ} \mathrm{C}$ [$1 \mathrm{it}{ }^{59} \mathrm{mp} 138.5-139^{\circ} \mathrm{C}$].

IR, ${ }^{1}{ }_{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 11 c are 1 isted in Tables II and III. The IR and ${ }^{1}{ }_{H}$ NMR spectra of 11 c are illustrated in Plates V and VI, respectively.

$$
\begin{aligned}
& \text { Preparation of } 1,2,2,6,6 \text {-Pentamethyl-1-pheny1- } \\
& \text { 4-phosphorinanonium Iodide (11d) }
\end{aligned}
$$

Ketone $11 \mathrm{a}(6.0 \mathrm{~g}, 0.0242 \mathrm{~mole})$ and $\mathrm{CH}_{3} \mathrm{I}(7.0 \mathrm{~g}, 00483 \mathrm{moles})$ were dissolved in 35 ml of ether, and the reaction mixture was allowed to stand at $0^{\circ} \mathrm{C}$ with periodic swirling for four days. A resulting solid was filtered and washed with ether to give 6.3 g (65.3%) of 11d. A small portion was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$, mp $229-230^{\circ} \mathrm{C}$ $\left[1 i t^{59} \mathrm{mp} 229-230^{\circ} \mathrm{C}\right.$].

IR, ${ }^{1} H,{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 11 d are 1 isted in Tables II and III. The infrared and ${ }^{1}{ }_{H}$ NMR spectra of $11 d$ are illustrated in Plates VII and VIII, respectively.

> Preparation of 1-Ethy1-2,2,6,6-tetramethy1-
> 1-pheny1-4-phosphorinanonium Iodide (11e)

Ketone 11a ($10 \mathrm{~g}, 0.0403 \mathrm{~mole}$) and ethyl iodide ($7 \mathrm{~g}, 0.045 \mathrm{~mole}$) dissolved in 50 ml of benzene were placed in a $100-\mathrm{ml}$, round-bottom flask fitted with a condenser, magnetic stirrer, and N_{2} inlet. The reaction mixture was gently boiled for 24 hr to give a white solid.

The solid was filtered off, washed with $2 \times 25 \mathrm{ml}$ portions of ether, and air dried to give 11.87 g (73\%) of 11 c , mp 240-243 ${ }^{\circ} \mathrm{C}$. An analytical sample was obtained by recrystallization from $\mathrm{CH}_{3} \mathrm{CN}$, mp. $247^{\circ} \mathrm{C}$ dec.

IR, ${ }^{1} H,{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 11 e are listed in Tables II and III. The IR and ${ }^{1}{ }_{H}$ NMR spectra of 11 e are illustrated in Plates IX and X, respectively.

Ana1. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22}$ IOP: $\mathrm{C}, 50.50 ; \mathrm{H}, 6.48 ; \mathrm{P}, 7.66$.
Found: C, 50.74; H, 6.58; P, 7.09.
Preparation of 1 -Benzyl-2,2,6,6-tetramethyl-1-
pheny1-4-phosphorinanonium Bromide (11f)

Ketone 11a $(2.48 \mathrm{~g}, 0.01 \mathrm{~mole})$ and benzyl bromide $(2.00 \mathrm{~g}$, 0.0117 mole) dissolved in 15 ml of benzene were placed in a $25-\mathrm{ml}$, round-bottom flask fitted with a condenser, magnetic stirrer and N_{2} inlet. The reaction mixture was gently boiled for 12 hr . A resulting solid was filtered out and washed (ether). Recrystallization $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ gave $2.26 \mathrm{~g}(54 \%)$ of 11f, mp $233-235^{\circ} \mathrm{C}$.

IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for $\underbrace{11 \mathrm{f}}$ are listed in Tables II and III. The $I R$ and ${ }^{1}{ }_{H}$ NMR spectra of $11 f$ are illustrated in Plates XI and XII, respectively.

Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrOP}: \mathrm{C}, 6192 ; \mathrm{H}, 6.93 ; \mathrm{P}, 7.60$.
Found: C, 61.85; H, 6.84; P, 7.51.

Preparation of Bis (hydroxymethy1)phenylphosphine ${ }^{28}$

Paraformaldehyde ($5 \mathrm{~g}, 0.166 \mathrm{~mole}$) and phenylphosphine (10 g ,
0.091 mole) were placed in a $50-\mathrm{ml}$, round-bottom flask equipped with a condenser, magnetic stirrer and N_{2} inlet. After the reaction mixture was warmed to $110 \pm 5^{\circ} \mathrm{C}$ (oil bath), it was maintained at that temperature for 4 hr . The reaction mixture was allowed to cool to room temperature ($\sim 1 \mathrm{hr}$) and was then distilled at $105-100^{\circ} \mathrm{C} / 0.3 \mathrm{~mm}$ to give 10.06 g (71%) of bis(hydroxymethy1)phenylphosphine, [1it ${ }^{28}$ bp $93-96^{\circ} \mathrm{C} / 0.1-0.15 \mathrm{~mm}$].

Preparation of 1,2,6-Tripheny1-4-
phosphorinanone (41a) $\underbrace{41,59}$

Bis(hydroxymethy1)pheny1phosphine ($1.97 \mathrm{~g}, 0.0116$ mole) and dibenzalacetone ($2.70 \mathrm{~g}, 0.0116 \mathrm{moe}, \mathrm{mp} 113^{\mathrm{o}} \mathrm{C}$, City Chemical Corp.) was dissolved in 25 ml of dry pyridine and placed in a $50-\mathrm{ml}$, round-bottom flask equipped with a condenser, magnetic stirrer, and N_{2} inlet. The reaction mixture was gently boiled for 4 hr during which time paraformaldehyde collected in the condenser. After the reaction mixture was allowed to cool to room temperature, pyridine was removed on a rotary evaporator. The resulting orange solid was dissolved in the minimum amount of hot $\mathrm{CH}_{3} \mathrm{CN}$; the solution was filtered and allowed to cool to room temperature during which time pale yellow needles precipitated. After ca. 3 hr , the solid was filtered off and dried to give 3.25 g (82%) of 41a. The yellow solid was stirred with 25 ml of ether, filtered off, and recrystallized from hot $\mathrm{CH}_{3} \mathrm{CN}$ to give pure $41 \mathrm{a}, \mathrm{mp} 175-176^{\circ} \mathrm{C}$, as white needles [$1 \mathrm{it}{ }^{41} \mathrm{mp} 176-177^{\circ} \mathrm{C}$]. IR, ${ }^{1} H,{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 41a are 1isted in Tables II and III. The IR and ${ }^{1}{ }_{H}$ NMR spectra of 41 a are illustrated in Plates XIII and XIV, respectively.

The 2,4-dinitrophenylhydrazone of 41 a was prepared in the following manner. To a methanol solution (5 ml) of 0.05 g (0.252 mmole) of 2,4-dinitrophenylhydrazone was added 1 ml of $\mathrm{H}_{2} \mathrm{O}$ and 0.5 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Ketone $\underbrace{41 \mathrm{a}}(0.05 \mathrm{~g}, 0.15 \mathrm{mmole})$ was then added and the reaction mixture was warmed on a steam bath for 15 min . Cooling to room temperature afforded a solid which was filtered out and dried $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ at $60^{\circ} \mathrm{C} / 5 \mathrm{~mm}$ to yield $66 \mathrm{mg}(91 \%)$ of the 2,4 -dinitrophenylhydrazone of 41a. Recrystallization (ethyl acetate) gave a sample, mp $250^{\circ} \mathrm{C}$ dec. Further attempts (fractional recrystallization, tlc) to purify the 2,4-DNP of 41a were moderately successful as implied from the analysis.

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}$: $\mathrm{N}, 10.68$; P, 5.91.

$$
\text { Found: } N, 10.25 ; \mathrm{P}, 5.80
$$

The semicarbazone of 41 a was prepared (76.3\%) by standard techniques and had $\mathrm{mp} 283-285^{\circ} \mathrm{C}\left[1 \mathrm{it}^{59} \mathrm{mp}>270^{\circ} \mathrm{C}\right]$.

Preparation of $1,2,6$-Tripheny1-4-phosphorinanone
1-0xides (41b and 41b ${ }^{\prime}$)

To phosphine 41a (2.0 g, 5.83 mmole$)$ dissolved in 40 ml of acetone in a $100-\mathrm{ml}$, round-bottom flask equipped with a condenser and magnetic stirrer was added 2.0 g (17.49 mmole) of $30 \mathrm{H}_{2} \mathrm{O}_{2}$ dropwise at $0^{\circ} \mathrm{C}$ (ice bath). After the addition was complete, the reaction mixture was gently boiled for 24 hr . After the mixture cooled to room temperature, 50 ml of satd. aqueous NaCl was added. The mixture was extracted with $2 \times 50 \mathrm{ml}$ of HCCl_{3}; the extracts were combined and washed with a satd. aqueous $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}$ solution and then with $\mathrm{H}_{2} \mathrm{O}$. The HCCL_{3} layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the HCCL_{3} was evaporated by rotary evaporation. The resulting
solid was recrystallized from benzene:ethanol (1:1) to yield 970 mg (46.2%) of 41 b and 41 b , mp $258-259^{\circ} \mathrm{C}$.

IR, ${ }^{1}{ }_{H},{ }^{13} \mathrm{C}$, and ${ }^{31}{ }_{\mathrm{P}}$ NMR data for 41 b is 1isted in Tables II and III. IR and ${ }^{1} H$ NMR spectra of 41 b are illustrated in Plates XV and XVI, respectively.

Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 76.65$; $\mathrm{H}, 5.87$; $\mathrm{P}, 8.59$.
Found: C, 76.59; H, 5.92; P, 8.58.

Preparation of 1,2,6-Tripheny1-4-
phosphorinanone 1-Sulfide (41c')

Ketone 41a ($2.0 \mathrm{~g}, 5.83 \mathrm{mmole}$) and sulfur ($0.2 \mathrm{~g}, 6.25 \mathrm{mmole}$) were dissolved in 25 ml of benzene and placed in a $50-\mathrm{ml}$, round-bottom flask fitted with a condenser, magnetic stirrer and N_{2} inlet. The reaction mixture was gently boiled 4 hr and was then allowed to cool to room temperature. The benzene was removed by rotary evaporation to give a solid which recrystallized from benzene/ethanol (1:1) to yie1d $0.78 \mathrm{~g}(35.6 \%)$ of 41 c , $\mathrm{mp} 235-237^{\circ} \mathrm{C}$.

IR, ${ }^{1}{ }_{H},{ }^{13} \mathrm{C}$, and ${ }^{31}{ }_{\mathrm{P}}$ NMR data for 41 c ' are 1isted in Tables II and III. The IR and ${ }^{1}$ H NMR spectra of $41 c^{\prime}$ are illustrated in Plates XVII and XVIII, respective1y.

> Ana1. Ca1cd. for $\mathrm{C}_{23} \mathrm{H}_{21}$ OPS: $\mathrm{C}, 73.38 ; \mathrm{H}, 5.62 ; \mathrm{P}, 8.23$.
> Found: C, $73.51 ; \mathrm{H}, 5.68 ; \mathrm{P}, 8.14$.

$$
\begin{gathered}
\text { Preparation of } 2,2,6,6 \text {-Tetramethyl-1- } \\
\text { phenyl-4-phosphorinanol (63a) }
\end{gathered}
$$

To a slurry of 0.38 g (0.01 mole) of LiAlH_{4} in 20 ml of dry THF in a $100-\mathrm{ml}$, round-bottom flask equipped with a magnetic stirrer,
condenser, addition funnel and N_{2} inlet was added dropwise over a l-hr period 1.24 g (5 mmole) of 11 a in 25 ml of dry THF. After the addition was complete, the reaction mixture was gently boiled for cooled (ice bath) to $0^{\circ} \mathrm{C}$, and then was hydrolyzed (caution!) slowly with 5 ml of $\mathrm{H}_{2} \mathrm{O}$. The solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the volume was reduced to ca. 10 ml on a rotary evaporator. The remaining solvent was removed at $60^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}$ for 15 min and then at room temperature/ 0.5 mm for 1 hr . The resulting viscous oil was dissolved in 8 ml of $\mathrm{DCC1}_{3}$ under N_{2} and aliquots were withdrawn to obtain the ${ }^{1_{H}},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data presented in Tables $I V$ and V. The ${ }^{1}{ }_{H}$ NMR of $63 a$ is illustrated in Plate XIX.

Preparation of $2,2,6,6$-Tetramethy1-1-pheny1-
 4-phosphorinanol 1-0xide (63b)

Lithium aluminum hydride ($1.52 \mathrm{~g}, 0.04 \mathrm{~mole}$) was added slowly to 100 ml of freshly distilled tetrahydrofuran (distilled from LiAlH ${ }_{4}$ in a $500-\mathrm{ml}$, round-bottom flask equipped with a condenser, addition funnel, mechanical stirrer and N_{2} inlet. Ketone 11a was dissolved in 125 ml of THF and added dropwise (addition time ca. 2 hr) to the LiAlH_{4} slurry. After the addition was complete, the reaction mixture was gently boiled for 3 hr and subsequently cooled to $0^{\circ} \mathrm{C}$ (ice bath). The cooled reaction mixture was hydrolyzed by the dropwise addition (caution!) of H_{2}). The hydrolyzed mixture was extracted with 3 x 100 ml of ether, and the ether layers were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. After the solution was filtered, the ether was removed by rotary evaporation followed by exposure for 15 min to a higher vacuum (0.5 mm). The resulting oil was dissolved in 150 ml of
acetone, and the solution was poured into a $300-\mathrm{ml}$, round-bottom flask equipped with a condenser and magnetic stirrer. The acetone solution was cooled (ice bath) to $0^{\circ} \mathrm{C}$, and 5.0 g (0.044 mole) of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ was added dropwise. After the reaction mixture was allowed to warm to room temperature, it was stirred for 12 hr ; this was followed by a period of 12 hr in which the mixture was boiled gently. When the reaction mixture had cooled to room temperature, 100 ml of satd. aqueous NaCl was added and the mixture was extracted with $3 \times 50 \mathrm{ml}$ portions of HCCl_{3}. The HCCl_{3} extracts were combined, washed with 50 ml of a satd. aqueous $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2}$ solution, and then dried $\left(\mathrm{MgSO}_{4}\right)$. The HCCl_{3} solution was filtered, and the solvent was removed by rotary evaporation to give 4.43 g (83%) of crude 63 b as an oil. Pure 63 b was obtained by trituration of the crude oil with acetone, followed by recrystallization (acetone). An analytical sample of 63 b had a mp $198-200^{\circ} \mathrm{C}$.

IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{31} \mathrm{P}$ NMR data for 63 b are listed in Tables IV and V. The IR and ${ }^{1}$ H NMR spectra of $63 b$ are illustrated in Plates XX and XXI , respectively.

Ana1. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$: $\mathrm{C}, 67.65$; $\mathrm{H}, 8.71$; $\mathrm{P}, 11.63$.
Found: C, 67.92; H, 8.90; P, 11.71.

Preparation of $2,2,6,6$-tetramethyl-1-pheny1-
 4-phosphorinanol 1-Sulfide (63c)

To 0.76 g (0.02 moles) of LiAlH_{4} and 25 ml of dry THF in a 100-m1, round-bottom flask equipped with a condenser, mechanical stirrer, addition funnel, and N_{2} inlet was added dropwise (ca. 2 hr)
ketone 1la (1.24 g, 5 mole) dissolved in 25 ml of dry THF. After the addition was complete, the reaction mixture was gently boiled for 4 hr . The reaction mixture was cooled (ice bath) to $0{ }^{\circ} \mathrm{C}$ and hydrolyzed (caution!) with 5 ml of $\mathrm{H}_{2} \mathrm{O}$. The mixture was then dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. After the filter cake was washed with 50 ml of benzene, 0.16 g (5 mg -atom) of sulfur was added. The reaction mixture was gently boiled for 4 hr and allowed to cool to room temperature. Removal of the solvent by rotary evaporation gave an oil which was dissolved in 2 ml of hot methanol. The hot methanol solution was passed through a Pasteur pipette packed with neutral alumina (ca. 1 g , Brinkmann, Aluminium Oxide 90 active). Solvent was evaporated by rotary evaporation and the resulting oil was covered with 25 ml of petroleum ether (bp $35-60^{\circ} \mathrm{C}$). After standing 48 hr at $0^{\circ} \mathrm{C}$ a white solid formed and was filtered off and air dried to give 0.81 g (57.5\%) of crude $63 \mathrm{c}, \mathrm{mp} 114-123^{\circ} \mathrm{C}$. An analytical sample of 63 c was prepared by recrystallization (hot $\mathrm{CH}_{3} \mathrm{OH}$), mp $142-143^{\circ} \mathrm{C}$.

IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR data for 63 c are listed in Tables IV and V. The IR and ${ }^{1} H$ NMR spectra of 63 c are illustrated in Plates XXII and XXIII, respectively.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{23}$ OPS: $\mathrm{C}, 63.80 ; \mathrm{H}, 8.21$; P, 10.97.
Found: C, 63.90; H, 8.22; P, 10.90.

Preparation of 1-Benzy1-2,2,6,6-tetramethy1-
1-pheny1-4-phosphorinanolium Bromide (63d)

The crude alcohol 63 a prepared from 4.96 g (0.02 mole) of 11 a and $1.52 \mathrm{~g}(0.04 \mathrm{~mole})$ of LiAlH_{4} was used as such to prepare 63 d .

Oily 63 a was dissolved in 50 ml of benzene and placed in a $200-\mathrm{ml}$, round-bottom flask equipped with a magnetic stirrer, condenser, and N_{2} inlet. To this was added 3.42 g (0.02 mole) of benzyl bromide and the reaction mixture was gently boiled for 4 hr . The solvent was removed by rotary evaporation and the resulting oil was covered with 150 ml of ether. This mixture was then boiled for 6 hr , and the solid which formed was removed by vacuum filtration and air dried to give $3.12 \mathrm{~g}(38.5 \%)$ of 63 d . Recrystallization $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ afforded 1.49 g of 63d, mp $260^{\circ} \mathrm{C}$ dec.

IR, ${ }^{1}{ }_{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 63 d are 1 isted in Tables IV and V, also the IR and ${ }^{1}{ }_{H}$ NMR spectra of $\underbrace{63 d}$ are illustrated in Plates XXIV and XXV. A solid sample of 63 d was obtained by repeated recrystallization (methanol:ethyl acetate, $1: 10$), mp $256.5-257.5^{\circ} \mathrm{C}$
but repeated t1c and elemental analysis showed a small impurity.
Ana1. Ca1cd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{BrOP}: \mathrm{C}, 62.71 ; \mathrm{H}, 7.18 ; \mathrm{P}, 7.35$.
Found: C, 63.57; H, 7.47; P, 7.32.

```
Preparation of 4-tert-Buty1-2,2,6,6-tetramethy1-
    1-pheny1-4-phosphorinano1 1-0xide (64)
```

To 43 ml ($0.069 \mathrm{~mole}, 1.6 \mathrm{~m}$ in pentane) of tert-butylithium in a $500-\mathrm{ml}$, round-bottom flask, equipped with an addition funnel, condenser, mechanical stirrer, and N_{2} inlet was added dropwise ketone 11a ($6.7 \mathrm{~g}, 0.027 \mathrm{~mole}$) over a 1 -hr period. After the additon, the reaction mixture was gently boiled 24 hr and was then allowed to cool to $0^{\circ} \mathrm{C}$ (ice). To the cold mixture was slowly added 50 ml of $\mathrm{H}_{2} \mathrm{O}$ (caution!). The organic layer was then separated and the aqueous
layer was extracted with $3 \times 100 \mathrm{ml}$ ether. The organic phases were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The dried solution was filtered and the solvents were removed by rotary evaporation. A resulting oil was distilled (Kugelrohr) under reduced pressure to give 63 g (76.5%) of an oil, bp $140^{\circ} \mathrm{C} / 0.5 \mathrm{~mm}$. The oil was dissolved in 50 ml of acetone to which was slowly added ca. 5 ml of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. After the acetone solution had stirred at room temperature for $12 \mathrm{hr}, 20 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}$ was added. The reaction mixture was extracted with $3 \times 50 \mathrm{ml}$ of HCCl_{3} and the extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and solvent removal (rotary evaporation) gave an oil which, when triturated with acetone, solidified. Recrystallization (acetone) gave pure 64 , mp $201-202^{\circ} \mathrm{C}$.

IR, ${ }^{1} H,{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR data for 64 are listed in Tables IV and V. The IR and ${ }^{1} H$ NMR spectra of 64 are illustrated in Plates XXVI and XXVII, respectively.

Ana1. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 70.78 ; \mathrm{H}, 9.69$; $\mathrm{P}, 9.61$.
Found: C, 71.03; H, 9.92; P, 9.57.

PLATE I

PLATE II

PLATE III

PLATE V

PLATE VI

PLATE VIII

PLATE IX

PLATE XI

${ }^{1}{ }_{H}$ NMR Spectrum of 1-Benzyl-2,2,6,6-tetramethyl-1-pheny1-4-phosphorinanonium Bromide (11f) Solvent. $\mathrm{DMSO}_{-}{ }_{-1} \mathrm{~d}_{6}$
S.F. . . . 100.1 MHz
F.B. . . . 2.0 Hz
R.F. . . . 55 dB
S.W. 1000 Hz
S.T. . . . 250 sec .
S.O. . . . 83701 Hz
S.A. . . . 3.2 Lock. . . ${ }^{1}$

PLATE XIII

$1_{\text {H NMR Spectrum of } 1,2,6-T r i p h e n y 1-4-p h o s p h o r i n a n o n e ~(41 a ~ a n d ~ 41 a ') ~}^{\sim}$)

| Solvent. DCCl_{3} | S.F. . . . 100.1 MHz | F.B. . . . 2.0 Hz | R.F. . . . 60 dB | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S.W. 1000 Hz | S.T. . . . 250 sec | S.O. . . . 83701 Hz | S.A. . . . 5.0 | Lock. . . ${ }_{H}$ |

PLATE XIV

PLATE XV

PLATE XVI

PLATE XVII

PLATE XIX

PLATE XX

PLATE XXIII

PLATE XXIV

PLATE XXVI

PLATE XXVII

BIBLIOGRAPHY

1. Albrand, J. P., Gagnaire, D., Martin, J., and Robert, J. B., Bu11. Soc. Chim. Fr., 40 (1969).
2. Anet, F. A. L. and Yavari, I., J. Am. Chem. Soc., 99, 2794 (1977).
3. Asinger, F., Saus, A., and Michae1, E., Monatsh. Chem., 99, 2794 (1977).
4. Azerbaev, I. N., Butin, B. M., and Bosyakov, Y. G., J. Gen. Chem. USSR, 45, 1696(1975).
5. Benezra, C. and Ourisson, G., Bu11. Soc. Chim. Fr., 1825(1966).
6. Blackburne, I. D., Katritzky, A. R., Read, D. M., Bodalski, R., and Pietrusiewicz, K., J. Chem. Soc., Perkin Trans. II, 1155 (1974) .
7. Bothner-By, A. A. and Cox, R. H., J. Phys. Chem., 73, 1830 (1969).
8. Booth, H., Tetrahedron, 22, 615 (1966).
9. Breen, J. J., Lee, S. O., and Quin, L. D., J. Org. Chem., 40, 2245 (1975) .
10. Chen, K.-C., Ealick, S. E., van der Helm, D., Barycki, J., and Berlin, K. D., J. Org. Chem., 42, 1170(1977); see other references therein.
11. Colthup, N. D., Daly, L. H., and Wiberly, S. E., "Introduction to Infrared and Raman Spectroscopy," Academic Press, New York, 1964, p. 274 and references cited therein.
12. Corbridge, D. E. C., "The Structural Chemistry of Phosphorus," Elsevier, Amsterdam, 1974.
13. Corbridge, D. E. C., "The Structural Chemistry of Phosphorus," Eslevier, Amsterdam, 1974,-p. 394.
14. Corbridge, D. E. C., "Topics in Phosphorus Chemistry," M. Grayson and E. J. Griffith (Eds.), Wiley, New York, 1969, V.6, p. 235.
15. Dalling, D. K. and Grant, D. M., J. Am. Chem. Soc., 89, 6612 (1967).
16. Daly, J. J., J. Chem. Soc., 3799 (1964).
17. El-Deek, M., Macdone11, G. D., Venkataramu, S. D., and Berlin, K. D., J. Org. Chem. 41, 1403(1976).
18. Emsley, J. and Hall, D., "The Chemistry of Phosphorsu," J. Wiley and Sons, New York, 1976.
19. Evelyn, L., Ha11, L. D. Steiner, P. R., and Stokes, D. H., Org. Magn. Res. 5, 141 (1973).
20. Featherman, S. I., Lee, S. O., and Quin, L. D., J. Org. Chem., 39, 2899 (1974) .
21. Featherman, S. I. and Quin, L. D., J. Am. Chem. Soc., 97, 4349 (1975) .
22. Featherman, S. I. and Quin, L. D., Tetrahedron Lett., 1955 (1973).
23. Fitzgerald, A., Smith, G. D., Caughlan, C. N., Marsi, K. L., and Burns, F. B., J. Org. Chem., 41, 1155 (1976).
24. Gallagher, M. J., Kirby, E. C., and Mann, F. G., J. Chem. Soc., 4846 (1963) .
25. Gallagher, M. J. and Mann, F. G., J. Chem. Soc., 5110 (1962).
26. Gallagher, M. J. and Mann, F. G., J. Chem. Soc., 4855 (1966).
27. Oxidation of tertiary phosphines with $\mathrm{H}_{2} \mathrm{O}_{2}$ is known to proceed stereospecifically with retention of configuration at phosphorus: Hays, H. R. and Peterson, D. J., "Organic Phosphorus Compounds," G. M. Kosolapoff and L. Maier (Eds.), Interscience, New York, 1972, V. 3, Ch.6, p. 344 and references cited therein.
28. Hellmann, H., Bader, J., Birkner, H., and Schumacher, O., Justus Liebigs Ann. Chem., 659, 49(1962).
29. Hellwege, D. M. and Berlin, K. D., "Topics in Phosphorus Chemistry," M. Grayson and E. J. Griffith (Eds.), Intescience New York, 1969, V.6, p. 1.
30. Jones, A. J. and Hassan, M. M. A., J. Org. Chem., 37, 2332 (1972).
31. Kashman, Y. and Ronen, H., Tetrahedron, 29, 4275 (1973).
32. Kost, D., Carlson, E. H., and Raban, M., Chem. Commun., 656 (1971).
33. Lambert, J. B. and Featherman, S. I., Chem. Rev., 75, 611(1975).
34. Lambert, J. B. and Keske, R. G., J. Am. Chem. Soc., 88, 620 (1966).
35. Lambert, J. B. and Keske, R. G., J. Org. Chem., 31, 3429 (1966).
36. Lambert, J. B., Keske, R. G., Carhart, R. E., and Jovanovich, A. P., J. Am. Chem. Soc., 89, 2761 (1967).
37. Lambert, J. B., Keske, R. G., and Weary, D. K., J. Am. Chem. Soc., 89, 5921 (1967).
38. Lambert, J. B. and Oliver, W. L., Jr., Tetrahedron, 27, 4245 (1971).
39. Lambert, J. B., Oliver, W. L., Jr., and Jackson, G. F., III, Tetrahedron Lett., 2027 (1969).
40. Macdone11, G. D. and Berlin, K. D., unpublished results.
41. Märkl, G., Fischer, D. E., and Olbrich, H., Tetrahedron Lett., 645 (1970).
42. Märk1, G. and O1brich, H., Angew. Chem., 78, 598(1966).
43. Marsi, K. L., Burns, F. R., and Clark, R. T., J. Org. Chem., 37, 238 (1972).
44. Martz, M. D. and Quin, L. D., J. Org. Chem., 34, 3195 (1969).
45. McPhail, A. T., Breen, J. J., and Quin, L. D., J. Am. Chem. Soc., 93, 2574 (1971). For a summary of X-ray crystallographic data on related systems see: Macdone11, G. D., Master of Science Thesis, Oklahoma State University, Stillwater, Oklahoma, 1976.
46. McPhail, A. T., Breen, J. J., Somers, J. H., Steele, J. C. H., Jr., and Quin, L. D., Chem. Commun., 1020 (1971).
47. McPhai1, A. T., Luhan, P. A., Featherman, S. I., and Quin, L. D., J. Am. Chem. Soc., 94, 2126 (1972).
48. Pauling, L., "The Nature of the Chemical Bond," Cornell University Press, Ithaca, 1960, p. 229.
49. Quin, L. D. and Breen, J. J., Org. Magn. Res., 5, 17(1973).
50. Quin, L. D., McPhail, A. T., Lee, S. O., and Onan, K. D., Tetrahedron Lett., 3473(1974).
51. Quin, L. O. and Shook, H. E., Jr., Tetrahedron Lett., 2193(1963).
52. Segall, Y., Granoth, I., and Kalir, A., Chem. Commun., 501 (1974).
53. Shook, H. E., Jr., and Quin, L. D., J. Am. Chem. Soc., 89, 1841(1966).
54. Snider, T. E., Morris, D. L., Srivastava, K. C., and Berlin, K. D., Org. Syn., 53, 98 (1973).
55. Streuli, C. A., Anal. Chem., 32, 985 (1960).
56. Thomas, L. C., "Interpretation of the Infrared Spectra of Organophosphorus Compounds," Heyden, London, 1974, Ch. 15.
57. Venkataramu, S. D. and Berlin, K. D., unpublished results.
58. Venkataramu, S. D., Macdone11, G. D., Purdum, W. R., E1-Deek, M., and Berlin, K. D., Chem. Rev., 77, 121(1977).
59. We1cher, R. P. and Day, N. E., J. Org. Chem., 27, 1824(1962); U. S. Patent 3, 105,096 (Sept. 24, 1963); Chem. Abstr., 60, 5553d (1964).

vita ${ }^{2}$

Gary Duncan Macdone11

Candidate for the Degree of
Doctor of Philosophy

Thesis: Part I. NMR STUDIES OF P-INVERSION IN AND CONFORMATIONAL ANALYSIS OF CIS- AND TRANS-4-TERT-BUTYL-1PHENYLPHOSPHORINANES

Part II. CONFORMATIONAL ANALYSIS OF SELECTED 4-PHOSPHORINANONES AND DERIVATIVES

Major Field: Chemistry
Biographical:

Personal Data: The author was born in Detroit, Michigan, on August 3, 1951. His parents, James M. and Rita F. Kilkenny, reside in Santa Fe, New Mexico.

Education: The author was graduated from St. Michael's High School, Santa Fe, New Mexico, in 1969. He received the Bachelor of Science degree in Chemistry from New Mexico State University, Las Cruces, New Mexico, in 1973. He received the Master of Science degree in Chemistry from Oklahoma State University, Stillwater, Oklahoma, in 1975. In May, 1978, he completed the requirements for the Doctor of Philosophy degree in Chemistry at Oklahoma State University, Stillwater, Oklahoma.

Professional Experience: The author was a graduate research and teaching assistant from September, 1973 - February, 1978 in the Department of Chemistry at Oklahoma State University. He received a Continental Oil Company Fellowship for January - June, 1976. He received Dow Chemical Company Fellowships for the summers of 1975 and 1977.

Membership in Honorary and Professional Societies: The author is a member of Phi Lambda Upsilon, Sigma Xi, the American Chemical Society, and the American Association for the Advancement of Science.

[^0]: $\begin{array}{r}F 0 \\ 23 \\ 16 \\ 38 \\ 4 \\ 5 \\ 20 \\ 20 \\ 12 \\ 4 \\ 9 \\ 8 \\ 19 \\ 4 \\ 2 \\ 2 \\ 13 \\ 1 \\ 2 \\ 2 \\ 4 \\ 7 \\ 7 \\ 15 \\ 15 \\ \hline \\ \hline\end{array}$

[^1]: ${ }^{\text {a }}$ The spectra were obtained on samples (2 mg) with KBr (200 mg) pellets.
 ${ }^{\mathrm{b}}$ Spectra obtained in DCCl_{3} solution, except $11 \mathrm{~d}-\mathrm{f}$ ($\mathrm{DMSO}-\mathrm{d}_{6}$), of each compound with tetramethylsilane (TMS) as internal standard; peak positions quoted in the case of doublets are measured from the approximate center, and relative peak areas are given as whole numbers.
 ${ }^{\mathrm{C}}$ The spectra were obtained on samples (ca. 200 mg) in DCCl_{3} solution (2 ml), except $11 \mathrm{~d}-\mathrm{f}$ (ca. 200 mg , 2 ml DMSO- d_{6}), with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. A positive sign indicates peak position downfield from standard.

[^2]: $\mathrm{a}_{\text {The }}$ spectra were obtained on samples (2 mg) with KBr (200 mg) pellets.
 ${ }^{\mathrm{b}}$ Spectra obtained in DCCl_{3} solution, except 63 d ($\mathrm{DMSO}-\mathrm{d}_{6}$), of each compound with tetramethylsilane (TMS) as internal standard; peak positions quoted in the case of doublets are measured from the approximate center, and relative peak areas are given as whole numbers.
 ${ }^{c}$ The spectra were obtained on samples (ca. 200 mg) in DCCl_{3} solution (2 ml), except 63 d (ca. 200 mg , 2 ml DMSO $-\mathrm{d}_{6}$), with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. A positive sign indicates peak position downfield from standard.

