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CHAPTER I 

INTRODUCTION 

Background and Need for Study 

In recent years the number of studies which attempt comparisons 

of treatments effects without adequate randomization has increased 

rapidly, particularly in disciplines and areas of research involving 

human populations. The term "observational" has been employed to 

denote this type of investigation which can be somewhat vaguely des-

cribed as a nonexperiment. Perhaps one of the clearest discussions of 

this type of investigation was that presented by Cochran (1965) who 

suggested two main distinguishing characteristics: 

1. The objective is the investigation of possible cause-effect 
relationships. 

2. This is implemented by the comparison of groups subject to 
different "treatments" which were preassigned in a nonrandom 
manner (p. 234). 

Following Cochran's suggested characteristics (1965), the term 

"observational study", as employed in this thesis, will denote that 

type of study which is concerned with investigating relationships 

among characteristics of human populations, after the manner of an 

experiment, but comparing groups among which the "treatments" are not 

randomly assigned. 

Without random assignment to insure homogeneity of groups, 

statistical tools employed in the design and analysis of experiments 
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to reduce variation were somewhat naturally adapted to the removal of 

bias. Two principal questions to be considered in designing observa-

tional studies, as noted by McKinlay (1975), are: 

(i) What criteria should be used in determining the most important 
sources of bias in a comparison of two variables? 

(ii) Which method, or combination of methods, will most effectively 
remove such bias from the comparison? This question of 
effectiveness contains two related considerations--the number 
of covariables included and the proportion of bias eliminated 
for any given set of covariables (p. 512). 

Cochran (1953) did briefly consider the first question, on the 

selection of covariables in relation to the multiple correlation co-

efficient. In comparing pair-matching with independent samples, the 

reduction in variation of a response variable due to matching is 

( 1 - R2 ) when several independent covariables are considered (here R 

is the multiple correlation coefficient). As this reduction is not 

substantial for R < 0.5, Cochran suggested that selection of covariables 

be based on the size of the individual correlation coefficients, matching 

on those with r > 0.3. This simple rule of thumb leads to the obvious 
yx -

violation of the independence among the covariables which is assumed in 

his paper. 

In considering the second question, the outstanding tool among 

available techniques which have been so employed is pair-matching. 

McKinlay (1975) noted two important reasons for the almost universal 

adoption of this tool: 

(i) as a technique for eliminating unwanted effects it is con
ceptually easy for the statistically unsophisticated researcher 
to comprehend; and (ii) pair-matching is applicable as a method 
regardless of the types, or distributions of variables being 
considered (p. 504). 

However, the disadvantages of pair-matching and the inability of 

pair-matching to remove all bias have been pointed out by Thorndike 



(1942), McNemar (1940), Billewicz (1965), Cochran (1953), and many 

others. McKinlay (1975) also concluded that pair-matching will not be 

the optimal choice, as the loss of potential information will not be 

offset by any commensurate increase in either efficiency or effective

ness in removing bias. 

A growing awareness of the problems associated with pair-matching 

has led to a search for other methods to remove bias from two study 

groups. Various methods have been developed and discussed. Most of 

these studies have been concerned with the effects of a single in

dependent variable acting on a single study variable. 

A review of the literature shows that while a variety of statisti

cal tools are applicable to the collection and analysis of observa

tional data, the emphasis on the comparisons of the statistical methods 

has been on the efficiency of the methods, in terms of precision. 

Only very recently has attention been focused on the effectiveness of 

these methods in reducing bias (the unwanted effects of concomitant 

variation) which is a principal concern in observational studies. 

Within the rapidly expanding field of observational research, the 

need to develop new methods for design and analysis of observational 

studies in various situations would seem paramount. With this goal 

in mind, this thesis is intended to develop a method, or combination 

of methods, which will more effectively remove the bias from the 

estimate of the treatment comparison of two groups. We will consider 

the case where the response variable has a quadratic relation with 

a single continuous covariable. The study of the quadratic relation 

may indicate which method will be more effective in reducing bias in 

si tua·tions where the response variable and the continuous covariable 

3 



are nonlinearly (or nearly quadratically) related. This thesis also 

presen1:s two methods of reducing the bias in observational studies with 

two covariables. These methods consist of the combination of t.rans

formation and stratification. For example, these methods may be used 

to reduce bias for two normally distributed covariables. We consider 

the situation where the covariables have the same covariance matrix, 

but have different means. 

Organization of This Thesis 

The organization of this thesis is as follows. The literature 

pertaining to the methods to remove bias is reviewed in Chapter II. 

In Chapter III, randomization analysis for a single covariable is 

studied. In Chapter IV, we use the combination of stratification and 

covariance adjustment for the treatment effect. A Monte Carlo study 

is presented. Extension of the stratification to two covariables, and 

different methods of transformations combining with stratification is 

discussed in Chapter V. The thesis is then briefly summarized in 

Chapter VI. 

4 



CHAPTER II 

LITERATURE REVIEW 

Methods to Remove Bias 

Most of the following discussion will be confined to studies in 

which we compare two populations, which will be called the experimental 

population and the control population. We shall suppose that we cannot 

create the experimental population, but must take it as we find it. In 

the comparison of the two populations, pair-matching is perhaps the most 

popular technique to remove bias in an observational study. Each member 

of the experimental sample is taken in turn, and a partner is sought 

from the control population which has the same values as the experimental 

member (within defined limits) for each of the covariables. Emphasis 

in the observational studies has increasingly been given to the investi

gation of multivariate sources of variation rather than simply being 

restricted to the removal of bias from the comparison in groups for a 

single covariable. Consequently, various problems have been enc~untered 

by using the pair-matching technique in the field of observational 

studies. 

McKinlay (1975) found that, for samples of equal size and an 

equivalent number of matching categories of a qualitative response, 

only 50 percent of the maximum matches could be expected in pair

matching and that even with a reduction in matching categories, the 
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number of pairs could never be expected to reach the maximum number of 

pairs as he concluded. For unequal samples, it was noted that a ratio 

of at least 1:5 would be needed in most instances to obtain a near maxi

mum number of pairs, provided that the smaller sample size exceeded the 

number of matching categories. 

Rubin (1973) compared directly the effectiveness of pair-matching 

and covariance analysis in removing bias from a quantitative response. 

He concluded that pair-matching was not preferable to the use of in

dependent samples. His conclusion is consistent with the findings of 

McKinlay, although the latter is concerned with a qualitative response. 

This awareness of the problems with pair-matching has led to a search 

for other alternatives which will effectively reduce the bias in the 

observational studies and will not suffer as many problems as pair

matching does. 

An early suggestion for the use of regression analysis rather than 

pair-matching was made by Peters (1941) , whose primary aim was to avoid 

the loss of "unmatchables". He calculated an expected value, using 

regression coefficients estimated from a control group. This method 

was in essence a covariance analysis employing regression coefficients 

estimated from the control group only. 

When dealing with the problems associated with observational work 

in epidemiological research, Greenberg (1953) found that the combination 

of balancing (equating covariable means) and covariance analysis yielded 

the most precise estimate among pair-matching and analysis of covari-

ance. 

Belson (1956) also used covariance analysis with estimates of the 

regression coefficients from the control group as a possible solution 



to the problem of non-parallel regression. 

ill1other popular alternative to pair-matching is the method of 

stratification (stratified matching). In this method, the distribution 

of the covariables is divided into c subclasses. For each group of 

subjects, the mean value of the response is calculated separately 

within each subclass. Then a weighted mean of these subclass means is 

calculated for each group, using the same weights for every group. The 

actual weights employed depend on the judgment of the investigator. 

Cox (1957) considered the optimum grouping of a population on a 

continuous variable. For a normal distribution, the percentage of 

information retained by dividing the distribution into three groups was 

about 80%, increasing to between 90% and 95% for six groupings. More

over, there was little difference in the corresponding percentages for 

optimal and equal strata. The implication for stratifying on quantita

tive covariates is that between three and six divisions should be 

sufficient in most cases, at least for those distributions which were 

near normal. 

Stratified matching, which is more expeditious than pair-matching, 

is superior to pair-matching in removing bias and maximizing precision 

7 

as the initial bias is increased. Although the covariance analysis gives 

greater gains in removing the bias than stratification when the response 

variable is linearly related to the covariable, as noted by Cochran (1968) 

and Billewicz (1965), when the response variable has a curvilinear re

lation with the covariable the stratified matching should be preferred. 

From these findings, it would be worthwhile to further explore and 

study the method of stratification, especially when the means of the 

covariables are different. Also if pair-matching is difficult to 
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accomplish, we should use the stratification method. 

Comparison of Different Methods 

In comparing two populations, where one is the experimental 

population and the other the control population, matching of the experi-

mental and control samples with respect to the covariables can be 

accomplished in a number of ways. Conceptually, the simplest method 

is the method of pairing. It is difficult to discuss the effective-

ness of pairing in realistic terms. The advantages of pairing and of 

covariance analysis are usually demonstrated by means of a linear 

regression model. 

Let y denote the variable by which the effects of the experimental 

factor are measured, and x denote the covariable. The model assumes y 

has a linear regression on x with the same slope in each population. 

The equations are as follows: 

Experimental population y 1 (1.1) 

Control population y 2 = t + Bx + e 
2 2 2 

(1. 2) 

The variables x and e are independently distributed; the deviations 

e 1 , e 2 have zero means in both populations and constant variance a~. 

Further, it is assumed that the means u 1 , u 2 of x in the two populations 

are equal and that t 1 - t 2 represents the true effect of the experi-

mental factor, i.e., we do not have unsuspected biases. 

With this model, the precision given by paired samples can be 

compared with that given by independent random samples drawn from the 

two populations. The effect of the experimental factor will be esti-

mated by the difference (y1 - y2 ) between the means of the two samples 

in either method. For independent samples, each of size n, the 



variance vi of (y1 

v. 
1. 

9 

(l. 3) 

Here we assume for simplicity that a is the same in both populations. 
y 

On the other hand, with samples paired on x the variance V of 
p 

(1.4) 

From (1.1), assuming that p is the correlation coefficient between 

y and x, we obtain 

v 
p 

Comparison of (1.5) with (1.3) shows that pairing has higher 

precision. If pairing is accomplished for several x-variables, all 

(l. 5) 

linearly related to y, the variance of V 
p 

2 2 is - CJ 
n Y 

(l-R2), where R is 

the multiple correlation coefficient between y and x. 

If, instead of pairing, we draw random samples of size n from 

each population and adjust the sample mean by covariance, then, on 

- -
the average, the variance V of (y1 - y 2 ) , the adjusted mean difference 

a a a 

for the covariables, given by Cochran (1953), is 

v = 
a n 

2 l } (l. 6) 
2(n-2) 

when the means u 1 , u 2 of the covariables are the same. 

Pairing requires that data on the values of the covariables in 

the control population be readily accessible; this may not be the case. 

One disadvantage is the time spent in constructing the pairs. When 

the means u1 , u 2 of x in the two populations are different, some 

difficulty may be experienced in finding control partners for the 

experimental sample. With the covariance method the corresponding 
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variance, when the means u 1 , u 2 of x in the two populations are 

different, may be shown to be approximately 

l v 
a 2(n-2) 

+ 
n(ul - u2)2 

4(n-2) c2 } (l. 7) 

X 

assuming x is normally distributed with the same variance in each 

population. 

In comparing pair-Inatching and covaria~ce analysis, Billewicz 

(1965) noted that the effectiveness of pair-matching appeared to de-

crease considerably in comparison to covariance adjustments for a 

quantitative response, as (i) the correlation between the covariate 

and response variable increased, and (ii) sample size decreased, given 

that regressions were parallel and linear. 

Cochran (1968) analytically derived the bias removal and variance 

reduct-ion for stratified matching by assuming the distribution of the 

covariable to be normal. The proportion of the initial bias that is 

removed is approximately 

c 
)~ 

i=l 
M.(f. 1 -£.). 

l l- l 
(l. 8) 

In this expression, f. 1 and f. are the ordinates of the density 
l- l 

f(x) at the boundaries xi-l and xi of the ith subclass, and Mi is the 

mean value of x in the ith subclass, i 1, 2, ... , c, assuming that 

the initial bias is small. 

When x has the same distribution f(x) in the two groups and the 

- -
regression of y on x is linear, the variance V of (y - y ) after 

s 1 2 

the adjustment by stratification is 



2 2 { 1 (l-g)p2 } v (J 
s n y 

Here 
c (}~ 

g = 
.El pi l is the proportion of crr I p. 
l.= l 

X 

0~ is the variance of x within the ith subclass. 
l 

11 

(1. 9) 

the population and 

For the normal distribution, N(O,l), 1- g =EM. (f. 1 - f.). This 
l l- l 

- -
is the proportional reduction in the variance of x1 - x2 due to ad-

justment by stratification and is also the proportional reduction in 

bias. 



CHAPTER III 

RANDOMIZATION ANALYSIS 

Univariate with Parallel Slope 

To realize the function of pair-matching, we first perform the 

pairing of the units so that within each pair the covariables have the 

same value. After pairing is completed, treatments are applied at 

random to units within each pair. Following the derivation of the 

analysis of randomized experiments by Kempthorne (1973), we postulate 

the existence of a real (unknown) number Y. "k which represents the true 
J.] 

response if the ith unit in the jth pair is subjected to treatment k, 

where i, k = 1,2, and j = 1,2, ... , N. Further, we assume that Y 

is linearly related to a covariable X with the true relation being 

~ = tk + ax ... 
J.] 

In general, we are able to observe only a subset of the Y. "k and 
J.] 

hence our inferences will be influenced by additional variabilities. 

The function of randomization is to control, in a statistical sense, 

these additional variabilities, and to enable us to obtain valid esti-

mates of the treatment effects. 

In order to write an explicit model for the Y. "k in terms of the 
J.] 

parameters of interest it is useful to introduce some additional 

definitions and notations. 

following properties: 

k Let d .. be a random variable with the 
1] 

12 
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k 
d .. = 1 if treatment k is applied to the ith unit in the jth pair 

l.J 

0 otherwise 

P { d~ . = 1 } = ~ for any i , j , k 
l.J 

Given that 

k 
1, then 

k 
for all i d .. - d. I' = 0 

l] l. J 
k 

and 
kl 

independent if d .. d. I 'I are 
l.J l J 

Given that 

f. il kl 
and d .. = 

l.J 

j f. j I for any 

d~. = 1, P { d~:. = 1} = 1 fori f. i 1 , k f. k 1 • 

l.J l. J 

0 for all k f. kl 

i, • I 

l. ' k, kl 

These properties are an expression of the fact that we randomize the 

positions of the treatments in each pair separately and, of course, 

that a treatment occurs on only one subject within a pair and that any 

subject receives only one treatment. 

Now let us examine the estimates of treatment effects. Random 

assignment of treatments implies that 

Thus 

k 
L: d .. y. 'k = 
i l] l.J 

k 
l: d.. (tk + Bx .. ) • 
i l.J lJ 

k 
Sx .. , since 

k 
yjk = tk + L:d .. d .. 

i l.J l.J l.J 

E (y - Y.2) = tl - t2. .1 

is one when i k, and 

Therefore Y.l - y. 2 is an unbiased estimate of the treatment effect. 

The function of pair-matching can be understood by considering 

the variance of the estimate of the treatment effect which is 

v = rp l: ( xl . - x2 . ) 2 • 
. J J 
J 

If we have successfully matched the covariable for each pair, 

the variance V should be very small. rp 

The analysis of variance is given in Table I. 

(3 .1) 



Due to 

Pairs 

Treatments 

Remainder 

Total 

PMS* 28 2 
--1 L. N- . 

J 
N - (tl 'l'MS* = 2 

~ L: RMS* 
N jk 

TABLE I 

ANALYSIS OF VARIANCE 
PAIR-MATCHING AND 

PARALLEL 

Sum of Squares 

L: (y. - y )2 
jk J. 

2: (y .k - y )2 
jk 

L: (yjk - y, - y + y 
jk J • .k 

L: (y jk - y ) 2 
jk 

(x 
. j 

X )2 

2 sz I: -- t ) + - X 

)2 

. ) 2 
2 N jk (xkj • J 

(xkj 
- 2 - X • ) • 

• J 

14 

Expectation of 
Mean Square 

PMS* 

TMS* 

RMS* 

From Table I, the treatment effect can be tested by using TMS/RMS; 

the distribution of the covariable may be ignored. However, if one is 

interested in finding the power of the test, distributional properties 

of the covariable x should be assumed. 

Instead of using the pair-matching procedure, a balancing ("mean" 

matching) may be performed prior to the random assignment of the 

treatments applied to the groups which are well matched on the basis 

of their covariable means. 



The random variable d~. has the following properties: 
1] 

d~. 1 if treatment k occurs on the jth unit in the ith group 
1] 

0 otherwise 

{ k 
1 } !.:! for i, j' k p d .. = = every 

1] 

{ k 
1 

kl 
1 } 1 if i • I k kl and j ~ jl p d .. = d, I 'I = = = 1 ' = 

1] 1 J 

0 otherwise. 

The results of mean-matching are: 

This is the same as in pair-matching. The variance of Y.l- y_ 2 is 

15 

v = 
rm L: xl. -

. J 
(3.2) 

J 

To decide whether pair-matching or mean-matching should be used, 

we may compare the equations (3.1) and (3.2), given that the relation 

between y and x is linear and parallel in the two groups. In general, 

it is easier to apply the mean-matching procedure than pair-matching. 

After ordering the data x(l)' x( 2), ... , x( 2N), one may choose x(l) 

and x( 2N) for one group and choose x( 2 ) and x( 2N-l) for the other group, 

continuing this procedure until all the data are used. This procedure 

guarantees that one always can make the value in equation (3.2) smaller 

than that in equation (3.1). One disadvantage is that mean-matching 

depends on the model assumed. If the model assumed is a true model 

then mean-matching is preferable. 

Univariate with Unequal Slopes 

We now formulate a model in which additivity does not hold. We 

may write 
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and examine the effect of pair-matching for this model. The random 

procedure used for pair-matching is identical to that when we assume that 

the model is additive. Random assignment of treatment k to unit i in 

the jth pair gives the results 

k 
r. d .. y. "k = tk 
i l.] l.J 

+ 
k 

E d .. Bk X ..• 
i l.J l.] 

It is instructive to examine that expectation of the usual estimates 

if this is the true model. We have 

- -E (y - y ) = t 1 - t 2 .1 .2 + 

The variance of the mean difference (y.l 

V' 
rp E 

j 

( 3. 3) 

(3. 4) 

In this analysis, the observed mean of a treatment estimates the mean 

response we would obtain had all the experimental units been subjected 

to that treatment. One obvious function in pair-matching is to in-

crease the precision as we can see from equation (3.4) 

Now let us examine the usual analysis of variance which is given 

in Table II. Under the null hypothesis that the treatments have identi-

cal effects on all units, we may use TMS/RMS to test the treatment 

effect. It should be noted that we are considering the estimation 

problem. The analysis of variance given in Table II is entirely 

irrelevant from the point of view of the testing of the hypothesis that 

there are no treatment effects, for we have obtained the expectations 

over the population of possible experiments that we could have obtained. 

As regards the testing of the hypothesis, we shall obtain one experi-

ment only, and we shall apply the randomization test procedure to that 

one experiment. This test procedure would consist of superimposing all 
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the possible randomizations on the set of yields we would obtain in 

the particular experiment and evaluating some criterion for each 

randomization. If this criterion is in the critical region, we reject 

the hypothesis that there are no treatment effects. 

Due to 

Pairs 

Treatments 

Remainder 

TABLE II 

ANALYSIS OF VARIANCE 
PAIR-MATCHING AND 

NONPARALLEL 

Sum of Squares 

L: (y. - y )2 
jk J. 

E (y .k - y }2 
jk 

L: (yjk - y, - y + y jk J· .k 
}2 

PMS* (f\ + (32)2 l: (x )2 (S -
. j 

- X + l 
2(N-l) j 8N 

(Sl + N }2 TMS* = - {t - t2 + ((3 - (32) X. • + 2 1 l 
8N 

Expectation of 
Mean Square 

PMS* 

TMS* 

RMS* 

(3 )2 
(xlj -2 l: 

j 

62)2 l: (xlj -
j 

(S - (3 )2 
l: (x }2 (Sl + S2)2 

(xlj RMS* = 1 2 X + l: -
.j 

2(N-l) j 8N j 

x2j) 
2 

x2j) 
2 

2 
x2j} • 

If the treatment effects are not additive, comparisons of the 

observed means will be of value to the experimenter, because they 
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give estimates of treatment differences over a well-defined population. 

In obf;ervational studies, we are interested in estimating the mean 

response we would have obtained had all the experimental units been 

subjected to that treatment. Consequently, the quantity to be esti-

mated should be 

when the treatment is non-additive for a fixed population. 

To estimate the treatment effect in this case, we first estimate 

the slope from either group one or group two, depending on which group 

more nearly represents the whole population on the basis of the co-

variables. Let B be estimated from group one as follows: 

L: 
(xlj xl )yl · -f\ j . ~ (3. 5) 

L: - ) 2 
(xlj - xl. j 

The treatment effect is estimated by 

t' - t' 
'l 2 

{3. 6) 

The expectation of t' - t' is 
l 2 

E (t' - t') = 
l 2 + ( 3. 7) 

The quantity t]_ - t' 
2 

is an unbiased estimate of the treatment effect 

if x2 . is the population mean of the covariable x. 

The purpose of this chapter is to shed some light on the esti-

mation problem when the response surfaces are nonparallel in the 

observational studies. For illustrative purposes, we use the example 

given by Wang, Novick, Isaacs, and Ozenne (1977). In that example, 

they examined the effectiveness of compensatory education as compared 

to a standard treatment. 
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rr.he random assignment of individual students cannot be accomplished 

because of the disruption of school routine and burden of cost involved. 

Thus for all practical purposes, it is necessary to work with two intact 

classes, one of which is thought to be well below some desired level of 

functioning, possibly because of disadvantages homes, neighborhoods, or 

school environment, the other is a normal class. Then the special 

treatment is assigned to the disadvantaged class and the other to 

control. In this case, we would expect to observe a larger difference 

in the post-test scores (y) from the two treatments for those students 

with higher pretest scores (x) than for those students with lower 

pretest scores if the compensatory education is effective in a fixed 

period. This means that the students with higher pretest scores should 

benefit more from the compensatory education than those with lower 

scores. Consequently, the effectiveness of compensatory education 

for these fixed set of students is estimated by 

cy. 1 - f\ xl. l - <Y. 2 - r\ x2 . l . 

This seems to be very reasonable if the means of the initial scores 

are identical. In order to provide a sound basis for explanation in 

this study, the best approach is to carefully match groups with their 

respective pretest means. 

'J,he above analyses suggest a reasonable method to estimate the 

treatment effect when the treatment effects are nonadditive in the 

comparison of two groups in the observational studies. 



CHAPTER IV 

STRATIFICATION AND COVARIANCE ADJUSTMENT 

IN REMOVING BIAS 

Univariate Stratification 

We will present the results obtained by Cochran (1968) using 

stratification on a single covariable at the beginning of this 

chapter; these results will be referred to throughout this chapter 

and the later chapters. 

Let u(x) represent the population regression of y on x. If 

y1 ., y2 . are random responses from the two populations, the model is 
J J . 

Ylj tl + u(xlj) + elj' 

(4.1) 

where elj' e2 j are random residuals with zero means in the respective 

populations. The quantity to be estimated is (t1 - t 2). For the 

unadjusted means of y in the two groups, it follows that 

where 

the marginal density functions of x of the two populations. Hence 

if no adjustment is made, the initial bias due to x is u1 . - u2 .. 

In the stratification, the distribution of x in group one is 

divided into two, three, or more subclasses. For each group of 
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subjects, the mean value of y is calculated separately within each 

subclass. Then a weighted mean of these subclass means is calculated 

for each group, using the same weights for every group. 

In the ith subclass, let the boundaries of x be x. 1 and x. and 
~- ~ 

let the sample means of y be -i and -i The -i -i in Yl. Y2: expectation of y1 - y2 

the ith subclass is 

-i -i 
) E (yl. - y = tl - t2 + uli - u2i 2. 

where 

~i= u(x) fk(x)dx I fk(x)dx, k=l,2. 

After adjustment, the remaining bias due to x is 

E - -. w. (u1 . - u 2 . ) , 
~ ~ 1 1 

where w. is the weight assigned to subclass i. 
1 

The percent reductions in the bias of xl. - x2. were calculated 

by Cochran using simulation for the case in which f 1 (x) is the normal 

distribution N(u,o2), f 2 (x) is N(O,cr2), and the regression is linear. 

In this simulation, the boundary points for population one were chosen 

such that the proportions of the population subclasses were the same. 

Thus equal weights were used. For u/o = 1, 0.5, 0.25 and for two, 

three, four, five, and six subclasses, the percent reductions in the 

- -bias of x1 . - x2 • are shown in Table III. 

Table III indicates that for initial biases which are not too 

large (u/o < 0.5), the percent bias removed may be almost independent 

of the value of u/o. 

Based on the above observations, Cochran obtained the results 

by an analytical approach in which u/o is assumed small. 



TABLE III 

PERCENT REDUCTIONS IN BIAS 

LINEAR REGRESSION, 

X NORMAL 

Number of Subclasses 

u/a 2 3 4 5 6 

1 61.8 78.2 85.3 89.1 91.5 

0.5 63.2 79.1 85.9 89.6 91.8 

0.25 63.6 79.3 86.0 89.7 91.9 

Let f(x) depend on a parameter u that has a nonzero value in 

population one and is zero in population two. For the adjustments, 

the range of x is divided into c subclasses by division points x0 , 

• • • ' X • c 
In the ith subclass let P. (u) denote the proportion 

l. 
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of the population one and M. (u) the mean value of x. The weights used 
l. 

may be the P. (0), the P. (u) or a combination of the two. Since u 
l. l. 

tends to zero in his approach, these different choices of weights 

become identical. Here the P. (0) are used. 
l. 

If M(u) denotes the overall mean of x, the initial bias, M(u) -

M (0) may be written as 

c 
l: {P. (u)M. (u) - P. (O)M. (O)} 

i=l l. l. l. l. 



u 
c 
l: 

i==l 
{P. 

l. 
d.Mi + 

du 

dP. 
l. 

du 
} u 

dM 
du 

assuming u small, where the derivatives are taken at u 

adjustment, the bias remaining is 

P. (0) {M. (u) 
l 1 

M. (0)} -
l. 

u 
c 
2.: 

i==l 
P. 

l. 

elM. 
1 

du 

0. After 

Consequently, the proportion of the initial bias that is removed is 

approximately 

c 
l: 

i=l 

dP. 
M. 

1 

1 

du I 
dM 

du 

The utility of this expression depends, of course, on whether the 

functions that enter into (4.4) are easily found analytically. If 

£1 (x) = f(x-u), f 2 (x) = f(x), the denominator of (4.4) becomes one, 

since the initial bias in (4.2) is u. Further, 

P. (u) 
1 

so that at u 

dP. 
l. 

du 

f(x-u)dx Jx 1. -u ( f x)dx, 

:::: 0, 

f(x. 1>- f(x.). 
I.- 1 

Finally, the proportional reduction in bias becomes 

c 
E 

i=l 
M. {f(x. 1)- f(x.)} 

1 1- 1 

Further, Cochran showed that when the covariable has a normal 

distribution N(O,l), the proportional reduction in the variance of 

x1 • - x2 _ due to adjustment by stratification is equal to the pro-

portional reduction in bias. 
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(4. 2) 

(4. 3) 

(4. 4) 

(4.5) 
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Estimate of the Treatment Effect 

Cochran (1953) concluded that if the regression is nonlinear the 

precision of the covariance analysis will be decreased unless the 

presence of nonlinearity is recognized in the covariance analysis and 

we go to the trouble of fitting the appropriate type of regression 

curve. Stratification analysis may be considered as an alternative to 

covariance analysis. In the stratification, we may encounter the 

difficulty of not enough observations falling in certain subclassesi 

especially when there are too many subclasses. For example, if there 

are n. observations in the ith subclass from group one, one may not 
l. 

be able to obtain the same number n. of observations in the ith 
l. 

subclass from group two to reduce the bias in the means of the co-

variables in the two groups. 

Based on the consideration of removing the bias effectively, 

without too many subclasses, as well as the consideration of detect-

ing the nonlinear trend in the response curve, we combine the stratifi-

cation and covariance analysis to reduce the bias. This method requires 

fewer subclasses and should be able to remove nearly all the bias when 

the response curves in the two groups are parallel. If there are not 

too many subclasses, it should be easier to obtain the same number 

of observations in each subclass to reduce the bias in the means of 

the covariables in the two groups, especially when the means of the 

covariables are different. 

For a random sample of size N from group one, the range of the 

covariable x is partitioned into c subclasses such that there are n. 
J 

observations in the jth subclass. Group two is constrained to have 



n. observations in this subclass also. For any observation from the 
J 

ith group, we assume the model in (4.1). 

Based on the assumption of a linear model u(x .. ) = Sx .. , the 
l.J l.J 

most common estimate of S comes from fitting the parallel linear 

response surface model by least squares. The Sp is calculated as 

L: (X .. - x. y .. s = l.J l.. l.J p ij 
L: - )2 
ij (x .. - x. 

l.J l.. 

The treatment effect is estimated by 
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'l'his method is the standard approach of the analysis of covariance 

for two groups, when we have random samples. The estimate is unbiased 

under the assumption u(x .. ) = Sx ... The variance of this estimate is 
l.J l.J 

the same as that in (1.7). In general, the expectation of t 1 - t 2 

given the x .. is 
l.J 

E(t1 - t2) = tl 

L: 
ij 
L: 
ij 

tl 

- t2 + 

(x .. 
l.J 

(x .. 
l.J 

- t2 

u(x2. <xl. 
- ) u(xl. ) - ) - - x2. 

-- X. ) u (x .. ) 
l.. l.J 

- )2 - X. 
l.. 

+ bias. 

With this combination of stratification and analysis of co-

variance, we calculate (3h within each subclass. For xhij and yhij 

in the hth subclass from the ith group, the estimate of the linear 

coefficient sh is 

L: 
S = ij (xhij 
h 

- X. . )yh .. hl.. l.J 

L: - 2 
ij (~ij- xhi.> 

(4.6) 

(4.7) 
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The treatment effect is calculated by using a weighted average of the 

adjusted mean differences, namely 

I 
h 

(4. 8) 

where wh = nh/n. 

The expectation of the treatment effect (TES) from (4.8) for 

given x is 

E(TES) = t - t. + B 1 2 , (4.9) 

where I 
xh. )uh .. ~ . . (xh .. -

{~1. (~1. 
- ) l J l.J l.. l.J } E - uh2. - - xh2. . 

B 
h 

N 
I )2 -

.. (xh .. - xhi. l.J l] 

The bias B in (4.9) should be expected to be smaller than the bias 

in (4.6) if u(x .. ) ~ Sx ..• When u(x .. ) = Sx .. , TES is an unbiased 
lJ l.J l.J l.J 

estimate of the treatment effect. The variance of TES is approximately 

V (TES) 
a2 (l-p2) 

{ h 1 I N(uil-ui2)2 
} (4.10) 

- y 1 + + --
N 2(N-h) h i 4(N-h) a2 

l. 

where o~ is the variance of the covariable x in the ith subclass for 
l. 

ni = N/h and uik is the mean of x in ith class from kth group. When N 

is large (4.10) is nearly equal to (1.7), the variance of the adjusted 

mean difference. The precision in (4.10) is slightly lower than the 

usual covariance analysis if the model is linear. However, if the 

regression is nonlinear (4.10) should be smaller than (1.7). 

Monte Carlo Investigation 

When dealing with finite matched samples, the expectations 

required to calculate the reductions in bias are analytically in-

tractable. Hence, we will turn to Monte Carlo methods in order to 
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obtain numerical values for reduction in bias of the different estimates 

in nonlinear situations. 

Cochran (1968) investigated three non-normal distributions 

<x 2 , t, and beta) in stratification; he concluded that the percent 

reductions in bias differ only trivially from those for the normal 

distribution. We will assume that in group i, x- N(u., cr 2), i = 1,2. 
1 

A quadratic relation between y and x may be representative of the non-

linear situation. The true relation between y and X is y .. t. + 
1] 1 

(x .. - 0.1) 2 where tl = 4 and t2 = 2 in this investigation. We 
1] 

choose u2 = u1 - 0.5 under the consideration that when u/cr is less 

than 0.5 the percent bias removed may be almost independent of the 

value u/cr. The values of u1 used in this investigation are 0.5 (0.3) 

2.6; the sample sizes are 10, 20, 50, and 100 for each pair of u. 's. 
1 

With respect to stratification, we use two subclasses. The sample of 

size n from group one is generated by the subroutine GAUSS of the 

normal generator from the IMSL package of subroutines. The division 

-points are -oo, x1 _, +oo. In each subclass, we have n. observations in 
J 

the jth subclass for group one after stratification. A random sample 

of n. is generated for the second group accordingly. They values are 
J 

2 
generated according to the true relation y,. = t. + (x .. - 0.1) plus 

1] 1 1] 

the standard normal deviate generated from the same subroutine. For 

the combination of stratification and covariance adjustment (SCA), we 

calculate the pooled estimate of the slope within each subclass; the 

treatment effect is adjusted accordingly. The overall treatment 

effect is the weighted average of the adjusted treatment effects 

from each subclass. Table IV gives Monte Carlo values of the percent 

reductions in bias after two types of adjustment; covariance adjustment 
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(CA) and combination of s.tratification and covariance adjustment (SCA). 

ul 

(u2 

0.5 

0.8 

1.1 

1.4 

1.7 

2.0 

2.3 

2.6 

u1 - 0.5) 

TABLE IV 

PERCENT REDUCTIONS IN BIAS ru~TER ADJUSTMENT 
BY COVARIANCE AND COMBINATION OF 

STRATIFICATION AND COVARIANCE 
EQUAL SAMPLE SIZE IN 

SUBCLASS 

n=lO n=20 n=50 n=lOO 

CA SCA CA SCA CA SCA CA 

74.0 88.7 62.0 91.3 76.0 91.3 66.0 

97.3 91.8 91.8 96.7 Bl.8 99.6 99.6 

84.0 91.9 87.2 98.3 92.0 99.2 92.3 

99.0 97.1 89.8 98.8 95.6 99.5 94.5 

94.1 98.0 93.9 97.7 99.5 99.9 99.8 

98.5 99.9 98.7 99.1 95.0 99.6 99.8 

96.3 97.1 96.9 99.4 98.7 99.7 99.2 

97.0 98.3 97.0 99.3 96.0 99.9 98.4 

CA - Covariance Adjustment 

SCA 

97.3 

99.8 

99.7 

99.8 

99.8 

99.8 

99.7 

99.6 

SCA - Combination of Stratification and Covariance Adjustment 

x .. - N(u., 1) 
l.J l. 



Table v gives Monte Carlo values of the expected variance of the 

treatment effects. 

ul 

0.5 

0.8 

1.1 

1.4 

1.7 

2.0 

2.3 

2.6 

TABLE V 

VARIANCES OF TREA'rMENT EFFECTS WITH 
EQUAL SAMPLE SIZE IN SUBCLASS 

n=lO n=20 n=SO 

CA SCA CA SCA CA SCA 

.278 .132 .168 .025 .082 .009 

.356 .082 .138 .034 .086 .010 

.216 .086 .203 .031 .091 .101 

. 327 .067 .196 .032 .089 .Oll 

.301 .097 .141 .035 .071 .010 

.274 .083 .138 .029 .089 .Oll 

.286 .073 .140 .031 .105 .010 

.376 .085 .160 .033 .063 .007 

n=lOO 

CA SCA 

.037 .006 

.033 .006 

.036 .006 

.046 .005 

.034 .006 

.038 .005 

.033 .004 

.042 .005 

In the previous experiment, the subclass sample sizes n. within 
J 

the first group determined the corr0sponding subclass sizes within 

the second group. In the second experiment, samples of size n are 
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generated independently for each group and the combination of 

stratification and covariance adjustment is applied. The results 

for this experiment are given in Tables VI and VII. 

ul 

(u2 = 

0.5 

0.8 

1.1 

1.4 

1.7 

2.0 

2.3 

2.6 

TABLE VI 

PERCENT REDUCTIONS IN BIAS AFTER ADJUSTMENT BY 
COVARIANCE AND COMBINATION OF 

STRATIFICATION AND 
COVARIANCE WITH 

INDEPENDENT 
SAMPLES 

u 1 - 0.5) n=lO n=20 n=50 n=lOO 

CA SCA CA SCA CA SCA CA SCA 

72.7 -10.0 72.7 -132.0 63.3 -126.7 84.0 -153.3 

94.7 57.6 85.6 27.8 92.0 24.4 97.8 15.1 

81.2 69.5 93.6 56.0 93.9 51.2 97.9 50.7 

95.2 81.9 98.9 65.0 96.1 63.4 98.1 61.0 

93.2 87.6 93.6 75.4 98.9 74.1 97.8 71.2 

98.6 9o.9 98.6 79.2 98.3 78.9 99.1 77.0 

98.2 86.3 97.1 82.0 99.4 80.5 99.0 80.7 

94.8 89.6 96.8 82.8 98.2 84.3 99.2 82.8 

CA - Covariance Adjustment. 

SCA - Combination of Stratification and Covariance Adjustment. 

X .. _ N(u., 1) 
l] l 
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ul 

0.5 

0.8 

1.1 

1.4 

1.7 

2.0 

2.3 

2.6 

TABLE VII 

VARIANCES OF TREATMENT EFFECTS WITH 
INDEPENDENT SAMPLES 

n=lO n=20 n=50 

CA SCA CA SCA CA SCA 

.260 .233 .181 .131 .056 .039 

.424 .141 .241 .111 .084 .043 

.377 .168 .141 .107 .074 .049 

.312 .273 .225 .107 .063 .038 

.310 .212 .183 .084 .066 .041 

.363 .217 .116 .097 .071 .039 

.358 .158 .185 .088 .074 .041 

.313 .199 .228 .091 .111 .040 
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n=lOO 

CA SCA 

.034 .018 

.040 .022 

.039 .022 

.038 .029 

.039 .022 

.029 .021 

.034 .024 

.030 .021 

'I'able IV indicates that SCA technique removes nearly all the 

bias when the sample size is larger than 20 and when the subclass 

sample sizes are equal in each group. The precision of this method 

(SCA) is higher than the corresponding precision of the covariance 

analysis (CA) method in both experiments; the experiment when the 

subclass has equal sample size for each group and the experiment 

with random sample for each group. The SCA method is superior to CA 

method in removing the bias even when the sample size is less than 

20. Thus it is recommended that when y has a quadratic relation 

with the covariable x the SCA method should be used. As the 



mean of the covariable increases, the percent reductions in bias 

become nearly equal for the two techniques. This is due to the fact 

that when the mean of the covariable is large, the relation between 

y and x is nearly linear. The result also indicates that when y is 

linearly related to x, the SCA technique with equal subclass sample 

sizes in each group is more effective than the CA method in removing 

the bias due to the covariable. When the mean of the covariable is 

close to 0.1, the CA method is less effective in reducing the bias 

than when the mean of the covariable is far from 0.1. This is due 

to the fact that the relation between y and x is more nonlinearly 

related when u. is close to 0.1. The negative numbers in Table VI 
1 

indicate that the bias is increased after adjustment. It should be 

noted that the SCA method is not recommended when the samples are 

randomly selected unless there are equal subclass sample sizes in 

each group. The conclusion from the above discussion is that the 

SCA method with equal subclass sample sizes in each group is more 

effective in removing the bias than the CA method if the relation 

between y and x is linear or quadratic. 

When the slope is the same in each subclass, other estimates of 

the slope may be preferable. For instance, if the true regression 

coefficients sh are the same in all subclasses, we may use the 

combined estimate 
L: L: 

Sc h ij (xhij 
L: L: 
h ij (xhij 

- xh. ) yh. · 
1. 1] 

- 2 
- xh. ) 

1. 
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and use this common estimate to adjust the treatment effect. However, 

this type of estimate needs further study. As far as we can judge, 

if the regressions are linear and if sh appears to be the same in 

all subclasses, the combined estimate seems to be preferred. 



CHAPTER V 

EXTENSION OF THE STRATIFICATION 

Most of the literature in the past has been concerned with the 

effect of a single stratifying variable. However, the Inultivariate 

situation is more common, with several variables both available and 

desirable for stratification. 

Let x. have a bivariate normal distribution with mean u. and 
-1 ----:1. 

covariance matrix E for group i, i = 1,2. Here we assume that the 

covariables have different mean vectors in the two study groups but 

have the same covariance matrix. Notice that the matching on the 

covariablcs is intended to reduce the bias of some linear combina-

tion of the covariables S'x. For any given matching method, the 

method that reduces the bias in the means of the covariables does not 

necessarily reduce the bias of the linear combination of the means of 

the covariables. For example, let B' = ( 1, 1) , and u' = (1 ,0), 
-1 

u' = (0,1). After some method of matching, say, we observe I = 
-2 ~1* 

( .1, . 1) and I 

~2* = (-.1, - .1) . The initial bias is zero for the 

linear combination of the covariables but the final bias is 0.4. 

Hence, if the covariables are thought to be linearly related to the 

response variable, a method that will guarantee bias reduction is 

desirable. 

33 
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Bivariate Normal with p 0 

Let the model be 

(5 .1) 

Here the e .. have mean zero, constant variance, and are independent 
J.] 

of the covariables. In this model we assume that the response 

variable y in the two groups has the same linear relation with the 

covariables. 

Without loss of generality, we assume that the mean values of the 

covariables x1 , x2 in group one are u1 , u2 and the mean values of 

the covariables x1 , x2 in group two are zeros. A random sample of 

size n is obtained from each group. Without adjustment, the expected 

difference in the sample means of y from equation (5.1) is 

-
E(yl. ) - y = tl - t2 + f\u1 + S2u2. 2. 

(5. 2) 

So the initial bias is f\u1 + S2u2. 

In order to effectively reduce the initial bias we may consider 

an extension of the stratification method. We begin our study with 

a simple case; the covariance matrix is diagonal and x. has a normal 
-J_ 

distribution in each group. The results for the stratification on a 

single variable can be easily extended. 

~i = (u1 ,u2 ) and ~2 = (0,0) and assume the covariance matrix in group 

one and group two are the same. The range of x1 , the first co-

variable in group one, is partitioned into c subclasses with the 

division points x10 ,x11 , •.. ,x1c and range of x2 , the second co-

variable in group one, is divided into h subclasses in the same way 



with 1.:he division points x20 , x21 , .. ·, x2h · 

We shall need a set of notations which we define below: 

p .. (O) 
l.J -

The equations in (5.3) give the proportion in the (i,j)th cell for 

group one and group two. 

The above are the marginal densities of x1 , x2 in the ith group. 

M .. (u1 ) = Mi (ul) = l 
f i xlfl(xl)dxl l.J 

Pi (ul) 

M .. (u2 ) = Mj(u2) = l f x2f 2 (x2 )dx2 l.J 
Pj(u2 ) 

j 

M .. (01 ) Ml (01) = 1 f x1f 2 (x1 )dx1 l.J 
pi (Ol) 

i 

M .. (02) = Mi (02) 1 f x2f 2 (x2 ) dx2 l.J Pj(02) 
j 
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(5.3) 

(5. 4) 

(5.5) 

The equations in (5. 5) are the means of the covariables xl,x2 in the 

(i,j)th cell in each group. 

a?. (u1 ) 1 f. 
2 

f(x1)dx1 - {Mi (ul)} 
2 2 = xl = (Jli l.J 

Pi (ul) 
l. 

o?.<u2) 1 f. 2 
f(x2)dx2 - {Mj(u2)} 

2 2 = x2 = (J2j 1] 
Pj(u2 ) J (5.6) 

where oii and o~j are the variances for the first and second covariables 

in the (i,j)th cell for each group. 

In the study of a single covariable, we know that the precent 

bias removed due to stratification is almost independent of the value 
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u/CJ when it is less than 0.5. So we may assume that u.~ 0.5 for every 
l. 

i. For the adjustment, let p .. (0) be the weights used. The initial 
l.J -

bias may be written as 
c 

f\u1 + S2u2 = 81 .r.l l.== {pi (ul)Mi (ul) p. (O)M. (0)} 
l. l. 

c 
+ B .r.l {pj(u2 )Mj(u2 ) - p, (O)M. (0)} 

2 J= . J J 
h 

{ dM. dp. - Slul i:h p, l. M. 1. } 
l. -- + l. 

du1 du1 
h 

{ dM, dp, 
+ S2u2 .l:l p, __]_ + M. ---=-.1 } (5. 7) 

J= J du J du2 2 

assuming u1 , u2 small, where the derivatives are taken at u1 = 0, 

u2 = 0. After adjustment, the bias remaining is approximately 
c 

dM. 
h 

dM. 
Slul ;Ll p, l. + B2u2 ,l:l p, __]_ ].= l. -- J= J du1 du2 

(5. 8) 

which is the same result as in (4.3). The generalization of the result 

in (4.5), the approximate proportional reduction in bias, becomes 

where 

SlulRl + S2u2R2 

Slul + S2u2 

c 
Rl = .l:lM. 

J.= l. 

R = 
2 

h 
.l:lM. J= J 

(5. 9) 

Expression (5.9) is a weighted average of proportional reduction 

in bias. The reduction in bias depends on the weights S1u1 and S2u2 

as well as the sign of the weights. The adjustment may increase the 

bias. For example, let s1u1 = 1, S2u2 = -2 and R1 = 0.4, R2 = 0.9; 

then the approximate proportional reduction in bias in (5.9) is -1.4, 

that is, the bias is increased by 40% due to the adjustment, although 
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we have reduced the proportion of the bias in the second covariable 

by 90%. In order to ensure that the adjustment will not increase the 

bias, expression (5.9) may give us some indication as how we should do 

the stratification. One obvious solution to this is to make R1 R2 . 

Then the proportion of reduction in bias is equal to the common 

proportion reduced in bias in each covariable. This suggests that, 

whenever possible, we should make the proportional reduction in bias 

for each covariable as nearly equal as possible. In some situations, 

other methods of stratification may be preferred, e.g., when the 

S.u~s are known. In practice, we do not have the knowledge about 
1 1 

S.u .. The conclusions from (5.9) are: 
l 1 

(1) the proportional reduction' 

in bias for each covariable should be the same, and (2) to satisfy 

the condition in (1), one way to accomplish it is to have the same 

number of subclasses for each covariable as well as to have the 

division points the same standardized distance from their respective 

means. 

Effect of the Adjustment 

If independent sampies are drawn from the two groups, with no 

adjustment, the variance of Yl. - Y2 . Of this, a part, 

2(pi +p~)cr~/n, is due to variations in x and a part, 2(1-pf-

p~)o~/n, is due to other sources of variability. Here p1 and p2 are 

the correlation coefficients between y and x1 and y and x2 respectively. 

With stratified matching on 

x. is 2Lp.o?./n. 
]. . J l.J 

J 

X.' 
]. 

the average value of the variance of 

The effect of stratified matching is therefore that the contri-

bution of variations in x to V(y1 • - ¥2 .> is reduced from 
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2 (p2 
1 

+p2)a2/n 
2 y 

= 2(13202 
1 1 

+ s2a2)/n to 
2 2 

2o 2 c 2 h 2 
{p2 .El 

p.ol. _:}_02. } _ _][_ ~ ~ p2 .Ll 1 ~= a2 + 0¥--- (5 .10) 
n 2 J= 1 2 

Here cr 2 
lj and a~j are the variances of xl and x2 in the (i,j)th cell, 

and 
,, 

and a2 a'· 
l 2 

are the variances of xl, 

If we let g 1 

to reduce V(yl. - y 2 _) from 2o~/n to 

2a2 
J {l-pi(l-gl) - p~(l-g2)}. 

n 

x2. 

(5.11) 

When R1 = R2 , the proportional reduction in variance is equal to 

R.. '!'hough this equivalence of the proportional reduction in variance 
1. 

and bias appears to hold only for the normal distribution, it gives 

some indication about the reduction in variance due to stratification 

for other distributions which do not differ too much from the 

normal distribution. 

Bivariate Normal with p ~ 0 

As mentioned earlier, the selection of covariables should be based 

on the size of the individual correlation coefficients between the 

response variable y and the covariable x. Cochran suggested to match 

on those covariables where r > 0.3. Thus we should study the 
yx 

situation when the covariables are correlated and have a linear relation 

with y. The results derived in the previous section are based on the 

assumption that the covariables are uncorrelated. A natural way to 

consider the stratification on the covariables which are correlated 

is to transform the covariables to be uncorrelated. This type of 

transformation requires the knowledge of the structure of the 
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covariance matrix. However, this knowledge will not, in general, be 

available. A more practical assumption on the knowledge of r, the 

ratio of the variances of the covariables, seems not unrealistic in 

many observational studies. For example, the ratio of the variances 

of weight and height of the human beings is less variable than the 

variances of weight or height. The sources to obtain the information 

about the ratio of the variances are: (1) past surveys of similar 

variables, (2) a pilot study may be conducted prior to the study, 

and (3) use the ratio of the ranges as an estimate. Thus we propose 

a method that transforms the correlated covariables into uncorrelated 

ones and, hence, independent under normal assumption, assuming that 

we know r, the ratio of the variances of the covariables. Stratifi-

cation is performed on these transformed independent covariables (STI). 

For a given r, the ratio of the variances of the covariables 

x1 , x2 , we may consider a matrix 

p = 1 

V2_: l 
V2" 

then 

-~ l 
v2 

-1 
where p is the inverse matrix of P. 

Let x~ have a bivariate normal distribution with mean u! and 
-1 -1 

covariance matrix~ for each i. Here ~i = (u1 ,u2), ~2 = (0,0), and 

~ has the form 



Since r is known, E will have the form 

a~ r r vir p J 
Vrp l 

The model given in (5 .l) may be written as 

where 

and 

yij = t. + 8'x .. + e .. 
l. - --J..] l.J 

t. + 8'P-1Px .. + e .. 
l. - -1.] l.J 

= t. + alzlij + CI.2Z2ij + e .. 
l. l.J 

al (~81 + 82)/~ 

C/.2 (~ 81 + 82>!\)2 

+ x2 .. ;y-2 
l.J 

Consequently, z~ will have a bivariate normal distribution 
--J.. 

z 
-1 

~2 

MVN2 + p 

o)a~ l 
1-p 

After the transformation, we stratify on the z1 .. , z2 .. such 
l.J l.J 
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(5.12) 

(5.13) 

that we have the same number of subclasses for each covariable. The 

division points used in the stratifications of z1 .. and z 2 .. are 
J_J l.J 
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chosen so that they are nearly same standardized distance from their 

respective means. The results derived from the previous section when 

p = 0 follow except that the sample sizes in each cell from each group 

may not be equal. However, the difference of the sample size from 

each group in the (i,j)th cell should be very small when p is less 

than 0.2. When p is large, stratification on the transformed co-

variables may encounter empty cells more often than the original 

covariables. In this case, we may reduce the number of cells in the 

stratification. If r, the ratio of the variances of the covariables, 

is unknown and is estimated from the sample variances with sample 

size n, the expected value of r is approximately 
2 

E (S~) 2 S2) E (S~) V(S~) E ( ~) Cov(s1 , 
2 + -2 E(S~) {E(S~)} 2 {E(S~)} 3 s2 

a2 2p2a2 
2 n-1 1 1 + a2 

(n-1 2) 2 
X 

a2 n 1 n --a 
2 n 2 

{_E__ } 3 a2 { n z} 
3 

2 
(n-1) 1 (n-1) a2 04 

n 2 

= a2;a2 {1 -
2n (l-p 2) 

1 2 2 (n-1) 

When the sample size is large the estimate r should be very close to 

One of the major factors which affects the bias reduction in the 

model (5.1) is the size of the linear coefficients S1 , S2 . Transfor

mation of the covariables to be uncorre1ated is intended to make the 

two-way stratification easier to handle in bias reduction. In partie-

ular, we may use the results obtained in the adjustment of a single 

covariable when the S.u. 's are known. For example, the percent 
l. l. 
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reduction in bias for a univariate x having normal distribution 

ranges over 63, 79, 86, 89, 92 for two to six subclasses when the 

original bias u/cr is less than 0.5. If s1u1 = 2, S2u2 = -1 and we 

use 5 or 6 subclasses for the first. covariable, then we should use 

3 or 4 subclasses for the second covariable whenever it is possible. 

In this way, we can reduce nearly ~~1 the bias. Without knowing the 

S. u. 's, transforming the covaria:blL..j to be independent still does not 
1. 1. 

guarantee that the resulting stratification will reduce the bias. 

Thus other types of transformation should he considered. 

'!'he second proposed transformation is based on large sample sizes. 

With large sample sizes, one should be able to estimate u1 , u2 with 

high precision. For given u1 , u2 (or estimate of the means), let 

d =~u~ + 2 
u2 , and the transformation matrix Q be 

Q ~ [ "1 u2 ] 

-u2 ul 

We have 

Q1 Q = QQ 1 = I the identity matrix. 

The model in (5.1) can be written as 

y. . = t. + (3 1 Q 1 Qx. . + e .. 
1.] 1. - -1.] l] 

with 

yl ((3lul + (32u2)/d, y2 (-Slu2 +(32ul)/d, 

and 

z = (xlul + x2u2)/d, z = (-u x + u1x2)/d. 
1 2 2 1 

The transformed variables z 1 and z2 have means d and zero in group one 
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and zeros in group two. The main characteristic of this type of 

transformation is to change the contribution to the original bias 

from two variables to a single variate. After the transformation, 

the covariance matrix QIQ' is 

1 

Since all the bias comes from the first variable after transfor-

mation, the way to reduce the bias is simplified. The covariance 

matrix QIQ' indicates that if the magnitudes of u 1 , u 2 and 0i, 0~ 

are the same, the two-way stratification after transformation can be 

simplified to the case of one-way stratification, ignorning the fact 

that the original 012 is not zero. The implication from the above 

observation is that whenever the standardized means from the original 

variables have equal or nearly equal magni ttides we should transform 

the covariables. When u./0 < 0.5, the transformed covariables are 
l 

nearly uncorrelated. We should expect that when u./0 < 0.5 the two
l 

way stratification on the transformed variables will reduce nearly all 

the bias for 3x3 subclasses. 

Honte Carlo Investigation 

Monte Carlo methods are employed in this study. We assume that 

y, x 1 , x 2 have a joint normal distribution in both groups. The 

following set of parameters are used in the model (5.1): 

t. treatment effect in the ith group, 
l 

u. mean of the covariable x., u. = 0 for the covariable x. 
l l l l 

in the second group, 



B. 
1 

G y 

0. 
1 

p 

p, 
1 

2 
R 

and e .. 
1] 

= coefficient of x. in model (5.1), 
1 

= 

= 

standard deviation of y, 

standard deviation of the covariable x., 
1 

correlation coefficient between x1 and x2 , 

correlation coefficient between y and x., 
1 

= multiple correlation coefficient of y and x., 
1 

N(O,l) 

The conditional distribution of y has a normal distribution with the 

following restrictions: 

2 (p2 +p2 - 2pplp2} I (l -p 2)< 1 R = 1 2 

02 l 
y I (l - R2) 

~\ = 0Y(pl -pp ) I 01 (1 -p2) 
2 

0y(p2 -pp ) I 
2 

B2 = 02 (1 -p ) 
1 

l - p 2:-2p 1p2 and 1 + p 2:2plp2. 

For values of p, we choose -0.2, -0.3, and -0.5, and 01, 02 are 

chosen to be one. With Bl = -1.4 and B2 -1.8, we have 

02 (3202 + (3202 + 2Blf32p01G2 + 1, 
y 1 1 2 2 

6.2 + 5.04p. 
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The Table VIII will summarize the values of the parameters for given p. 

All the values selected are based on the consideration of the 

previous discussions except pl = -0.26 (pi should be greater than 0.3) 

which was selected so that we can see how it would affect the strati-

fication on the transformed covariables. The data are generated from 

the IBM subroutine GGNRM and GGNRMl with sample sizes n = 50, 100, 

200. We investigate three types of two-way stratification on the same 



p 

-0.2 

-0.3 

-0.5 

set of data: 

a2 
y 

5.19 

4.69 

3.68 

TABLE VIII 

VALUES OF THE PARAMETERS 
FOR GIVEN p 

pl p2 

-0.457 -0.667 

-0.397 -0.637 

-0.26 -0.573 

R2 

0.807 

0.787 

0.728 

(1) Regular two-way stratification (RTS), (2) Trans-

formation to independence followed by two-way stratification (TIS) , 
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and (3) Transformation of the bias to one variable followed by two-way 

stratification (TOS). In the case of one-way stratification, the 

proportional bias reduction is approximately 80% for three subclasses. 

Cochran (1968) also suggested that it will be sufficient to use three 

to six subclasses in most cases. Here we use three subclasses on 

each covariable for a total of nine (3x3) cells. The boundary 

points are chosen x. ± 0.44 s.d. (sample standard deviation). In 
1. 

this investigation, the samples are generated independently with 

equal sample sizes for a given pair of u1 , u2 . Thus the sample size 

in the (i,j)th cell may be different in two groups. 

Tables IX and X indicate that: (1) The percent reduction in 

bias is usually between 60% and 80% if we use the regular two-way 

stratification (RTS). The percent reductions in bias decreases as 



n = 50 

n = 100 

n = 200 

n = 50 

n = 100 

n = 200 

n = 50 

n = 100 

n = 200 

TABLE IX 

PERCENT REDUCTIONS IN BIAS ON 
BIVARIATE NORMAL DUE TO 

STRATIFICATION 

u = 
1 

0.25 

p = -0.2 

RTS TIS TOS 

64.4 89.4 86.2 

70.4 88.8 64.5 

84.6 91.4 77.3 

u = -0.5 
1 

85.5 80.9 

77.0 66.4 

74.3 78.5 

83.1 

68.7 

75.6 

u 1 = 0.25 

74.3 82.3 

74.9 81.6 

75.9 80.0 

79.6 

79.3 

79.8 

u = 
2 

-0.25 

p -0.3 

RTS TIS TOS 

72.0 81.3 67.8 

74.2 71.3 67.1 

84.4 72.8 72.6 

u 2 = 0.25 

57.6 82.6 75.4 

68.0 81.0 71.1 

68.5 80.6 72.4 

0.25 

73.4 79.0 77.2 

73.5 78.1 78.8 

74.2 78.5 79.3 

p 

RTS 

59.2 

60.1 

53.2 

64.1 

66.3 

62.8 

61.7 

60.9 

70.6 

= -0.5 

TIS TOS 

64.5 74.3 

78.6 64.5 

80.1 79.8 

85.1 76.2 

79.5 78.9 

77.2 75.3 

80.7 75.9 

79.7 73.4 

78.2 75.4 
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n = 50 

n = 100 

n = 200 

n = 50 

n = 100 

n = 200 

n = 50 

n = 100 

n = 200 

TABLE X 

EXPECTED VARIANCES IN BIAS DUE TO 
STRATIFICATION ON BIVARIATE 

NORMAL 

u = 
l 

0.25 

p = -0.2 

RTS TIS TOS 

.072 .045 .043 

.021 .018 .022 

.Oll .009 .010 

u 1 = -0.5 

. 055 . 044 

.030 .016 

.010 .010 

.040 .046 

.023 .020 

.013 .010 

.061 

.024 

.010 

0.25 

.063 

.015 

.010 

u = 2 
-0.25 

p -0.3 

RTS TIS TOS 

.048 .041 .039 

.018 .019 .017 

.010 .009 .008 

u 2 = 0.25 

.054 .038 .032 

.026 .015 .017 

.009 .009 .007 

0.25 

.037 .031 .043 

.013 .018 .015 

.010 .008 .010 

p 

RTS 

.023 

.013 

.006 

.023 

.Oll 

.005 

.018 

.010 

.012 

-0.5 

TIS TOS 

.009 .015 

.005 .008 

.003 .007 

.016 .019 

.007 .009 

.003 .004 

. 014 . 017 

.007 .008 

.003 .005 
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p's increase. In some cases the proportional bias reductions decrease 

as the sample sizes increase. This is due ·to the fact that 1\ f. B2 . 

As mentioned earlier, the reduction of the bias in the means of the 

covariables does not necessarily imply the :::-eduction of the bias in 
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the linear combination of the means. We also observe that the 

precision is lower than those of TIS and TOS techniques in most cases. 

In particular, the RTS is not preferred as far as bias reduction is 

concerned when p is larger than 0.3 and the sample size is larger 

than 50. This implies that we should use TIS or TOS technique when 

we estimate the ratio of the variances of the covariables with 

high precision or when we can estimate the biases precisely. (2) The 

transformation to independence (TIS) technique will remove the bias 

nearly equal to 80% in most cases. This is the expected result as we 

concluded from equation (5.9) and Table III. In the univariate 

case, the percent reductions in bias due to stratification for three 

subclasses is approximately 79.3 percent as shown in Table III. If 

the proportional reduction in bias for each covariable is nearly the 

same when the covariates are independent, then the proportion of 

reduction in bias is equal to the common proportion reduced in bias in 

each covariable. Also the precision is slightly higher than the other 

two techniques when we use TIS technique. (3) The equivalence in 

bias reduction between TOS and TIS techniques is due to the fact that 

Ql:Q' is a diagonal matrix after transformation. That is, the trans

formation of the bias to a single variate results the independence 

between the transformed covariables when the magnitudes of the bias 

from each covariable are the same (or nearly the same) . From the 

above observation, the conclusion is that the two-way stratification 

can be simplified to a one-way stratification by using TOS technique 

when u1 /o 1 = u2;o2 and the covariables have a bivariate normal distri

bution. (4) The boundary points used in this study are not the 

optimum boundary points. This choice of the boundary points is based 



on the univariate case with approximately equal sample size in each 

subclass. A discussion of optimum stratification point is given by 

Ghosh (1963). However, the method given in that reference requires 

several stages of iteration. (5) In this study the pairs of means 
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were chosen to represent those cases one is likely to encounter. Other 

possible pairs of the means for the covariables should produce results 

similar to one of the three types discussed. 

From the above results, we may conclude that if it is possible the 

TOS or TIS technique should be applied to the two-way stratification 

whenever the response variable y is thought to be linearly related to 

the covariables. 

If the number of cells is increased, the percent bias reduction 

should be expected to be higher and should be similar to Table III when 

we use TIS or TOS technique; however one may encounter the empty cells 

often. 

Generalization of Multivariate Stratification 

When y is linearly related to the covariables, in the bivariate 

normal case the TOS method is reduced to the case of a single variate 

when the sample size is not too small and when the magnitudes of the 

biases are nearly equal. This will imply that the transformed 

variables are nearly independent under normal assumption. Since in 

the observational studies an investigator generally has some knowledge 

of the biases of the covariables, it seems useful to generalize the 

TOS technique to multivariate normal. In this section we just discuss 

how to choose the Q matrix which will transform the bias from three 

covariables to univariate. The choice of Q matrix is not unique. 
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Let y be linearly related to three covariables x1 , x2 , x3 with bias from 

each covariable being u1 , u2 , u 3 respectively. One way to choose the 

matrix Q is as follows: first transform the bias from x1 and x2 to a 

single variable, say xi, with a matrix Q1 . Then the bias due to x' and 
l 

x3 is transformed to a single variable with the matrix Q2 . Finally 

Q = Q2Q1 • For example, let the original bias vector be u'= (u1 ,u2 ,u3) 

d d ( 2 + 2)~ d ( 2 2 + 2)~ Th an 1 = u1 u2 , 2 = u1 + ui u 3 . en 

Ql 
l 

[ L:: 
0 

dl u2 

J l ul 0 

0 0 l 

for the first transformation. 

1 

Q2 = [ d1:d2 

-u/d2 

0 

0 

for the second transformation. Then 

Q = Q2Ql =[ u1/d1 u2/dl 

u
3
:d

1 l 
-u/dl ul/dl 

-ulu3/dld2 -u2u3/dld2 dl/d2 

is the final transformation matrix and Q~ has the expected value E(Q~) 

= (d2 , 0, 0)'. Consequently, Q~ transforms the bias from three sources 

to that of a single variate. A three-way stratification may follow 

after this transformation. The generalization to the case of more 

than three covariable should present no difficulty. It may be fruit-

ful to investigate the percent reduction in bias for more than three 

covariables. However, in practice, three covariables should explain 
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a high percentage of the variation of the response variable. If more 

than three covariables are needed, the techniques of principal com

ponents analysis may be used for stratification. This technique 

seems particularly attractive with the advent of modern computing 

technology. Little work has been done, however, to investigate the 

efficiency of this technique relative to the standard approaches used 

with stratification variables. 

For large sample sizes, we may consider the transformation of the 

covariables to be independent in the multivariate normal distribution. 

After this transformation the proposed TOS method may be applied. 

This procedure needs further investigation. 



CHAPTER VI 

SUMMARY 

The primary objective of this study was to answer the question 

as to which method, or combination of methods, will be most effective 

in removing the bias from estimates of comparison of treatments in 

observational studies. The randomization analysis presented in 

Chapter III provides a method to estimate the treatment effect when 

there is an interaction between the treatments and the covariables. 

The role played by matching covariables in randomized experiments was 

also discussed. When a completely randomized experiment is feasible 

and interaction between the treatments and the covariables exists, we 

may estimate the linear coefficient from either the control group or 

the treatment group and the treatment effect is adjusted accordingly. 

The group from which the linear coefficient should be estimated may 

be judged on the basis of which group most nearly represents the 

whol population on the basis of the covariable. Whether the inter

action exists or not, matching on the covariables is an important and 

essential step in a randomized experiment, as well as in observational 

studies. 

The combination of stratification and covariance adjustment (SCA) 

method presented in Chapter IV is more effective in removing the bias 

than the covariance adjustment (CA) technique when the subclass 

sample sizes are equal in each group. The simulation shows that the 

52 
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SCA technique removes nearly all the bias when y is linearly (or 

nearly linearly) related to the covariable x as wel.l as when y has a 

quadratic relation with the covariable. As far as we~ can judye, this 

technique is a safer method to use if there is a nonlinear relation

ship between the response variable and the covariable; however, the 

investigator may fail to detect the existence of the nonlinearity. 

The only disadvantage of this technique is the complexity of the 

calaculations. However, if a high percentage of bias reduction is 

required, the gains in the bias reduction should more than compensate 

for the increased complexity of the calculations. 

In Chapter V we proposed the TOS procedure which appears to 

be a very promising technique. It is effective in removing bias 

even when the correlation coefficients between the covariables are 

large provided that the standardized bias in each covariable is nearly 

equal. A simple one way stratification rather than a complex multi

way stratification may be used with the TOS method; we assume that 

the biases of the covariables are known or can be estimated with high 

precision. The TIS technique should be preferred if we have the 

knowledge of the structure of the covariance matrix in the covariables. 

This technique will guarantee the proportional reduction in bias to 

be nearly equal to the common reduction in bias for each covariable. 

In the simulation study, we estimated r, the ratio of the variances 

of the covariables, and applied the TIS procedure by transforming 

the covariables to be independent followed by stratification. The 

simulation study showed that TIS is the most effective technique in 

reducing the bias among the three techniques considered. Thus 



generalization of the TIS technique to the multivariate normal needs 

to be further studied. As noted earlier, the S. 'swill affect the 
l 

bias reductions in the stratification technique. Thus different 

combinations of the regression coefficients should be investigated. 
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Also, it appears worthwhile to investigate the statistical properties 

of these transformation. 
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