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CHAPTER I 

INTRODUCTION 

The influence of large-scale engineering projects on the biosphere 

has created a need for the management of ecosystems. Therefore. many 

aspects of the fields of systems analysis and ecology have been inte­

grated and synthesized, resulting in systems ecology. a viable science 

of ecosystem design and management. Among the principles emerging from 

this "biosociation" (Patten, 1971. p. xiv) is the unfoldment of state 

models for environmental systems. This development has paralleled the 

use of compartment models for biological systems in general (Mohler, 

1974). Practical applications of such systems methods are a potential 

mechanism for guiding management and analyses of environmental impact, 

provided that sampling and identification methods are developed to 

satisfy the modeling demands. 

Laboratory and field microecosystems have definite boundaries and 

can be manipulated and replicated, producing useful models for the 

dynamical behavior of natural ecological systems (Odum, 1971, p. 20). 

The synthesis of research in biological modeling (microcosms) and 

mathematical modeling, with particular emphasis on the simulation and 

prediction of the behavior of ecological processes in response to 

natural and perturbed environmental conditions, is progressing to a high 

degree of sophistication. Systems analysis and mathematical modeling 

of biological processes introduce diverse research problems on a scale 

1 



not generally encountered in engineering and physical science. Funda­

mental principles must therefore be provided for systems ecology. 

2 

The construction of a model for an ecological process requires a 

theory for sampling ecological variables as a function of time, the 

ultimate objective being identification of the state model which relates 

ecosystem structure and function. Methods of systems identification for 

compartment models exist, including schemes presented by Halfon (1974 

and 1975), Leary and Skog (1972), Milanese and Molino (1974), and 

Cobelli and Romanin-Jacur (1976), but their application is limited 

because of the absence of a general sampling theory to guide data 

collection. The basic principle of state identification is discussed 

in detail by Lee (1964) and Sherif and Wu (1974). There are also 

specific theories of sampling designed for system identification, which 

for the most part rely on the Nyquist theory, including a sampling 

strategy considered by Ng and Goodwin (1976) based upon the design 

methods of Mehra (1974). 

With the advent of the modern high-speed digital computer, many 

engineering systems have become discretized in both time and magnitude. 

Examples include satellite and space probe telemetry and communication 

systems and the telephone networks which link central offices. With 

such data acquisition and information processing systems it is almost 

impossible to sample too rapidly. Unlike these engineering problems, 

the sampling period is not generally the only limiting factor in the 

analysis of ecosystems. In other words, it is possible to sample 

ecological structure both too slowly and too rapidly. It is not 

sufficient, as with many engineering systems, to merely fix the sampling 

frequency according to the Nyquist rate and then decide the arithmetic 



precision of the sample quantization based upon required accuracy or 

fidelity criteria. For ecological systems the Nyquist rate is rarely 

known~ a priori, and furthermore the sampling frequency can be shown to 

be dependent upon the sample quantization. 

3 

Based upon the specific identification scheme presented by Lee 

(1964), an associated sampling theory has been developed which can be 

extended for the implementation of specialized, and perhaps more 

effedive 9 identification schemes (see Astrom and Eykhoff, 1971; Nieman, 

Fisher and Seborg, 1971; and Bellman and Astrom, 1970). 

The sampling theory yields a priori computable bounds for which the 

sampling period may be determined for data collection. These upper and 

lower bounds for time invariant systems are shown to be dependent upon 

the arithmetic precision of the samples, the dimension of the ecosystem, 

and some intuitive bounds on the system dynamics, i.e., the entity 

turnover. 

Chapter II presents a review of the literature pertaining to the 

problem to be discussed in this thesis. 1he concepts of systems 

ecology and model formulation are explored~ stressing the need for the 

study of functional change in relation to ecosystem structure. Chap­

ter III contains a discussion of the algorithm selected for the deter­

mination of compartmental rate ~oefficients for the input-output tracer 

analysis of biological systemse The algorithm is based upon a single~ 

dose tracer input and a new deterministic sampling theory for data 

acquisition, both of which are presented in Chapter IV. 

A tie between theory and experiment is given in Chapter V wherein 

the conditions for structural identifiability of a compartmental system 

are developed. Chapter VI concerns the design of a system for the 
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tracer technique of constant infusion. 

Several examples illustrating the use of the identification scheme, 

the sampling theory, and the conditions for identifiability are con­

sidered in Chapter VII; and in Chapter VIII, the conclusions and recom­

mendations for future areas of research are provided. The computer code 

which implements the identification algorithm is described in the 

Appendix. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

Introduction 

The discipline of systems ecology has led to the discovery of 

several general principles which express certain aspects of the behavior 

of an ecosystem. This chapter contains a review of previous research 

which aids in understanding the basic concepts of this study. The 

literature reviewed concerns the modeling of ecosystem structure and 

function, including the assumptions which underlie the models and their 

implications. The postulation of a basic formulation is presented, with 

major emphasis placed upon the analysis of tracer input-output experi­

ments applied to microcosms. The first section pursues the development 

of the literature concerning ecological systems analysis. This is 

followed by sections which detail the major principles of ecosystem 

structure and function, compartment modeling, and tracer analysis. 

History 

The word "system" refers to an organized collection of components 

interacting and functioning as a whole 5 which is, in some sense, purpose 

or goal directedo The concept of state-space analysis of a system is 

recognized in fields where the time behavior of a physical process is 

of interest. One such discipline is modern ecology, the basic unit of 

5 
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study being the ecosystem. The ecosystem concept has received consider­

able theoretical and experimental attention since 1940, although its 

development extends back to the 19th century. Systems ecology is a new 

approach in which state-space concepts may be utilized in describing and. 

analyzing interrelations which emerge at the ecosystem level. The 

ultimate objective of systems ecology is the development of a science of 

ecosystem ··~Lgn, synthests ,. and management. Probably the earliest 

actual applications of the idea of simulating the dynamics of ecosystems 

on computers were those of J. s. Olson (1965). G. MQ Van Dyne, J. s. 

Olson, and B. C. Patten organized one of the first training programs in 

systems ecology in the 1960's at the Oak Ridge National Laboratory and 

the University of Tennessee where they formulated radioactive tracer 

studies of physiological systems (Patten, 1966). These pionee¥s to­

gether with K. E. F. Watt (1966, 1968), in resource management, c. s .. 

Holling (1966), who studied population dynamics, and H. T. Odum (1960), 

by conducting energy flow research, revolutionized the field of ecology 

by providing a vital link with engineering systems analysis procedures. 

Successful analysis of a dynamic system proceeds from a model which 

represents the essential aspects of a system under study and can b~ 

validated by comparison of the simulated response to the response of 

the physical reality. Models may be phenomenological, empirical, or 

analytical depending on their purpose, the available techniques that 

can be used, and the amount and quality of available knowledge. For 

many years laboratory ecosystems, including microcosms and con,trolled 

seminatural or artificial systems on a small scale, have served as 

useful models for the dynamic behavior of natural ecological systems. 

Coupling these biological models (microcosms) to mathematical models 



and systems analysis, with the ultimate objective being to simulate and 

predict the behavior of ecosystems in response to natural and perturbed 

environmental conditions, provides an integrated guide for the measure­

ment of structure and function of ecological processes. 

7 

A diversity of mathematical models exists for ecosystemso Non­

linear differential equations of the form of Volterra-Lotka are used to 

represent interacting populations, Markov processes and finite state 

models describe ecological succession, input-output models borrowed from 

economics give equilibrium constraints, and compartment models prescribe 

the dynamics of mass and energy balance. Compartment models, originally 

arising in biology, are viewed by many ecologists as playing a pivotal 

role in ecosystem analysis. The fundamental step in compartment model 

development involves conceptually separating the system into a number 

of distinct, interconnected, homogeneous and uniform components which 

are assumed to have distinguishable kinetics of transformation or energy 

transfer. The concepts of microcosms, tracer analysis, and compartment 

models are not unrelated. Atkins (1969) traces the origins of compart­

ment modeling in tracer studies to the work of Hevesey (1923) who 

demonstrated the uptake and loss process of lead ions in plant roots. 

The first applications of compartment analysis to animals, involving the 

metabolism of ~adioactive bismuth in rabbits, were also made by Hevesey 

(Christiansen, Hevesey, and Lomholt~ 1924)o For his pioneering research 

in this area, George de Hevesey was awarded the Nobel Prize for 

Chemistry in 1943. 

The term compartment was first used by Sheppard (1948). A great 

deal of literature on the general structural properties of compartmental 

models and tracer analysis have been published, in«::luding Sheppard and 



Householder (1951), Hearon (1963), and Berman and Schoenfeld (1956). 

The fundamental aspects of ecosystem compartment modeling practiced 

today are presented by Patten (1971) in his 11 Primer for Ecological 

Modeling and Simulation." 
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The early applications of compartment modeling were primarily con­

fined to tracer studies of biochemical and physiological systems. 

Although the compartment analysis approach to studying ecological 

systems is sometimes traced back to the early work of Kostitzin (1935), 

it was much later when the high-precision measurement methods employing 

radioactive tracers were used in compartment analyses of laboratory 

microcosms. The experiments by Whittaker (1961) dealing with radio­

phosphorus in aquarium microcosms and the analysis of radioactive cesium 

kinetics in terrestrial microcosms by Patten and Witkamp (1967) repre­

sent classic studies. With the tracer studies conducted at Oak Ridge 

National Laboratory, ecologists became more cognizant of the insight 

that systems analysis offers when applied to ecology; and its popularity 

increased. 

In October, 1966, the United States International Biological Pro­

gram (IBP) recognized a need for the development of models for large­

scale~ natural systems which are now referred to as Biomes. With the 

advent of these Biome studies, research shifted from microcosms and 

basic ecological processes to the analysis and mathematical modeling of 

these highly interconnected natural ecosystems. A framework was 

created requiring a holistic, systematic approach functioning both 

between and within Biomes (Neuhold, 1975). Perhaps the first attempt 

at a total ecosystem model, including the feedback of nutrients through 

a detritus food chain, was the model formulated for the Grassland Biome 
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study. Using the data base established for the shortgrass prairie eco­

system, Bledsoe et al. (1971) constructed the nonlinear model called 

PWNEE which was not totally acceptable as a useful simulation tool. A 

more successful model called LINEAR followed shortly through the efforts 

of Patten (l972a) and a team of ecologists from the University of 

Georgia. Innis (1975, 1978) desc~ibes in detail the development and 

implementation of the third total ecosystems model (ELM), which evolved 

from its predecessors. The multivolume work edited by Patten (1971, 

1972b, 1975a, 1976), the paper by Weigert (1974), and the Alta Confer­

ence proceedings edited by Levin (1974) all survey other modeling 

efforts of both small- and large-scale environmental systems. Unfor­

tunately, a detailed document of the modeling synthesis is not yet 

available, the best description being given in Patten (1975a). Thus, 

with this ineXhaustive survey of research in systems ecology, mathe­

matical modeling of natural ecosystems is observed to have matured of 

late into an area of biological modeling which in some sense is quite 

separate from that of tracer analysis or physiological kinetics. 

Application of the substantial advances in the mathematical model­

ing of ecological systems to the analysis of microcosms is considered in 

this study. A new theory for the measurement of structure and the 

determination of function using tracer analysis is presented. It is 

hoped that the theory can be extended to future applications in the 

sampling, measurement, and analysis of large-scale natural ecosystems. 

Ecosystem Structure and Function 

In an address to the Ecological Society of Japan, E. P. Odum (1962) 

defines ecology as the study of ecosystem structure and function. 
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Ecological structure is divided into the composition of the biotic 

community, the quantity and distribution of the abiotic materials, and 

the gradient of environmental conditionso Ecological function depends 

on the throughput of energy flow, the rate of material or nutrient 

cycling, and biological regulation and reaction to regulation. Struc­

ture is therefore implicitly a static concept; whereas function is 

dynamic, being dependent upon time as a variable. However, both struc­

ture and function are ultimately time dependent because of environmental 

forcing functions which are time varyingo 

In the beginning stages of ecological research, ecologists were 

content with a descriptive approach, leading from a mere species list 

to more mathematical realizations of species diversity involving, for 

example, Shannon's formulae Emphasis on the function of an ecosystem, 

dealing with studies ranging from production to community metabolism to 

total energy budgets, matured later. The search for a bridge for the 

existing gap between these two schools of ecology has dominated much of 

the recent ecosystem research. 

In modern ecology, the concept of the ecosystem as the basic unit 

of study has led to the discovery of several general principles which 

express certain aspects of the behavior of natural systems. These 

principles are for the most part based upon models for structure and 

function of the ecosystem. Odum (1971, p. 17) gives the best known 

model as 

throughput = turnover x content. (2.1) 

This model defines ecological function to be linearly proportional to 

ecological structure, with the constant of proportionality equal to 



turnover. In steady-state systems, turnover equals the reciprocal of 

the time required for throughput to completely replace compartmental 

COntento 
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When properly applied, Equation (2.1) provides a powerful tool for 

ecosystem analysis. The basic study of functional change in ecological 

systems is related to the idea of ecological stability, a fundamental 

principle of ecosystem analysiso Stability is not one concept, but 

many, all meaning the ecosystem is well behaved in some sense. For 

quite some time researchers believed ecological stability to be directly 

correlated with the structural concept of diversity (Odum, 1971, p. 148), 

but the exact relationship proved to be elusive (Woodwell and Smith, 

1969). Using one commonly accepted definition of ecological stability 

based upon the choice of pathways for throughput (MacArthur, 1955), 

Rutledge~ Basore~ and Mulholland (1976) developed from first principles 

of information theory a new index for stability. This index relates 

stability to the diversity of throughput, an initial measure of the un­

certainty (choice) of the sources for ecosystem throughput, minus the 

un~ertainty resolved by knowledge of the pathways for throughput, i.e., 

the food web structureo The diversity of throughput is measured by the 

Shannon formula, and the resolved uncertainty is equated to the average 

mutual informationo Using (2ol) to compute the diversity of throughput 

in terms of the diversity of content, Rutledge's model provides a use­

ful relationship between stability and diversity. 

Compartment Models 

Another example of the application of Equation (2.1) is exemplified 

by the compartment modeling principle, a useful technique when depicting 



12 

mass or energy transfer in biological systems. A compartment model is 

defined by considering the component parts of an ecosystem representing 

the various biological or geophysical aspects as lumped entities, i.e., 

the compartments, which are able to receive and distribute energy, 

biomass, or materials and which accumulate these quantities at a rate 

proportional to the net balance of inflows and outflowso It is assumed 

that the compartments are homogeneous with instantaneous mixing, each 

acting as a storage element for the quantities flowing into and out of 

it. When a conservation of matter or energy law is applied to the 

system, a rate equation is obtained for each compartment. Although non-

linear and time-varying functions more accurately describe nature, the 

assumption of linearity is often a good approximation to real systems, 

providing valuable insight into the more complex nonlinear system 

through the local application of linear systems analysis. If the com-

partmental outflows are constrained to be linearly proportional to the 

amount of stored matter or energy in the donor (or source) compartment, 

then the so-called linear donor controlled model results. This type of 

compartment model represents the ecological condition of ultimate 

resource limitation (Patten, 1975b). The mathematical model is realized 

by the following expression ~ 

n, 
~ • L ai· xj- aii xi+ ui (i = 1, • o • , n), 

i j=l J 

where there are n compartments in the ecosystem, the prime notation 

indicates summation for all j ~ i, aij is the rate coefficient for 

transfer from compartment j to compartment i, xi represents the content 

of compartment i and xi its time rate of change, ui expresses any 

possible exogenous inputs to compartment i, and 
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(2. 3) 

where a0 i indicates a transfer from compartment i out of the ecosystem 

to the environment, i.e., the exogenous turnover. 

The compartment model described by (2o2) has the properties of 

a1 j ~ 0 fori~ j, aii > 0, and ui ~ 0, from which it can·be proven that 

initially positive compartmental contents, x1 (o) > 0 (i = 1, ••• , n), 

implies positive contents for all future time, xi(t) > 0 (i = 1, •. 0 j 

n) for all t ~ 0 (Mulholland and Keener, 1974). It can also be shown 

that aii represents the turnover for compartment i, or 

aii • 1/Ti (i • 1, • • • , n) , {2.4) 

where Ti is the turnover time for compartment i. There are essen,tially 

two interpretations of turnover involving either steady-state or tran-

sient ecosystem operating conditions. 

In steady-state each compartment in the ecosystem is balanced with 

respect to inputs and outputs, and the content of each compartment is 

constanto Hence, ii • 0 for all t, and from (2.3) 

n, 
aii xi~ ~ aij xj + ui. 

j=l 
{2.5) 

In Equation (2.5), the right side of the equality expresses total influx 

to compartment i as the sum of the exogenous input (ui) and endogenous 

inputs (summation). In steady-state, compartmental input equals output 

which in turn both equal throughput. Denoting throughput by zi, (2~5) 

becomes 

{2.6) 
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which is clearly the same as (2.1) when a11 is interpreted as the co~ 

partmental turnover. 

Under transient operating conditions, compartment i is assumed to 

be isolated from the rest of the ecosystem, so that (2.2) becomes 

{2.7) 

Note that both exogenous and endogenous inputs to compartment i are now 

zero. The solution of (2o7) is 

(2.8) 

where Xf(O) is the compartment content at t ~ 0, and aii is given by 

(2.4). Equation (2.8) prescribes the compartment content at timet m Ti 

to be 36o8 percent of the initial valueo The turnover time Ti also 

prescribes the half-life T0 of the contents of the isolated compartment 

to be 

(2.9) 

Tracers 

The steady-state and transient conditions described often do not 

represent natural ecological phenomena involving the throughput and 

content of energy, biomass, or material. Therefore, in order to study 

the kinetics of the system it is necessary to label the material flows 

in the ecosystem with radioactive isotopes. In compartmental analysis 

these labels are called tracers, and to be useful they must be easily 

detected by an observer. A tracer may be either radioactive or stable. 

Ideally, these tracers (1) should be metabolically indistinguishable· 
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from the mother substance~ (2) must be small enough so that the system 

under observation will not be perturbed, and (3) must be uniformly dis­

tributed throughout the tracee (Atkins, 1969, p. 15). Various aspects 

of the tracer method are presented by Sheppard (1962), Jacquez (1972), 

Resigno and Beck (1972), and Shipley and Clark (1972). 

Equation (2.2) is taken as the material balance equation for the 

label (tracer). The basic assumption is that (2.2) holds equally for 

the material as for its label so that the rate coefficients (aij) of 

material transfers are identical. This implies that the material and 

its isotope label are ecologically equivalent. 

Mathematically, the use of isotope labels corresponds to a linear­

izing assumption mainly because the superimposed isotope levels are 

generally small in magnitude when compared to the material transfers 

within the ecosystem. Thus, even though the ecosystem structure and 

function are known to obey a steady-state nonlinear relationship, the 

introduction of the isotope represents a perturbation for which the 

linear approximation (2.2) holds true (Patten, 1975b). 

Through the use of radioactive tracers, experiments can be de­

signed to measure the rate coefficients of (2.2) given time series data 

for the compartment contents and inputs. Compartment content plus the 

associated rate coefficients determine m~te~ial transfers as defined by 

the assumed model for ecosystem structure and function (2ol), or 

equivalently (2.2). 

Shipley and Clark (1972) describe two methods of analysis using 

radioactive tracers, the single dose method and the constant-infusion 

methodo The single=dose method is usually applied through the instanta­

eous introduction of tracer into each of the n compartments of the 



biological system. This generates n solutions of (2.2) which depend 

only upon the initial conditions (each single dose) because all 
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exogenous inputs are zero after the abrupt introduction of tracer. 

Exponential functions are then fitted to the measured time series data 

for the compartmental contents. The coefficients and exponents of these 

functions are used to compute the rate constants of (2.2). For the 

constant-infusion method, tracer is introduced, in turn, into each of 

the n compartments at a constant rate until a steady-state is reached 

as indicated by constant radioactivity in all compartments. This gives 

n equations resembling (2.5) in which all xj (j a 1, . . . ' n) have 

been measured. The n2 rate coefficients aij (i, j • 1, ••• , n) are 

then determined by n2 algebraic equations. 

Ecosystem experiments differ from the tracer methods of physiology 

and biochemistry in that it is not always possible to introduce tracer 

directly into all compartments within the system. Indeed, natural 

inputs to ecosystems are typically limited to one or two compartments. 

This fact requires the development of different experimental design and 

sampling methods for ecosystem analysis. A consideration of these 

methods constitutes the subject of this study. 

Summary 

The preceding review has covered a small fraction of the total 

literature concerning the development of mathematical modele as quanti­

tative and qualitative tools with which to study ecoayatema, A 

universal algorithm ia desired which will relate ecoayatem atructure to 

ecosystem function for the evaluation of laboratory ayatems uaed .. 

models of nature, The modeling principles and theoretical technique• 
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reviewed in this chapter provide a foundation for the development of 

such an identification scheme and its associated sampling theory. The 

description of tracer methods available for the acquisition of 

laboratory data is meant to form a basis for an experimental design for 

the proposed model identification and sampling schemes. 



CHAPTER III 

STATE IDENTIFICATION METHODS 

Introduction 

The problem of determining the function of an ecosystem from time 

series measurements of its structure has become known as a system 

identification problem. This chapter describes a computational strat­

egy which has been used in this research. for the identification of com­

partmental rate coefficients for the tracer analysis of biological 

systems. The algorithm is restricted to those systems whose processes 

may be characterized by one or more linear first-order ordinary differ­

ential equations. 

Special inputs rather than those of normal operation are necessary 

for the off-line identification of tracer analysis. These input sig­

nals are reviewed, and basic experimental designs which coexist with 

theoretical techniques of data collection and identification are 

presentedo In the remainder of the chapter, identification schemes are 

proposed for specific system structures with either a single-dose or a 

constant-infusion tracer input. 

Input Signals for Identification 

The determination of a model relating structure and function of an 

ecosystem from experimental time series observations of the 1tate is 

18 
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known as system identification. It includes the estimation of system 

parameters for both observable and unobservable components within the 

biological systeme One of the fundamental problems of system identifi-

cation is whether or not the parameters can be determined uniquely (Lee, 

1964). If unique estimates cannot be obtained (the system is not 

identifiable), then the experimental procedures should be altered. 

Determination of structure from function results from an input-output 

tracer experiment. The different identification schemes that are avail-

able can be classified according to the basic elements of the problem 

and the input signals, the earliest methods being those based on fre-

quency, step, and impulse responses. Special inputs rather than those 

of normal operation are necessary for these schemes, so the techniques 

are termed off-line identification and therefore apply only to linear 

stationary processes where input/output relations which hold for one 

set of inputs are good for all inputs (Graupe, 1972). 

For the purposes of tracer analysis the local model is a linear 
.. 

donor controlled biological compartment model defined by 

(3.1) 

where the state .!. is an n-dimensional vector of the compartmental con-

tents, the coefficient matrix! • (aij) is an ordered array of the com­

partmental rate coefficients, the input ~defines the ecosystem inputs 

as an ~dimensional vector, and the input connection matrix ! • (bij) ia 

of n row1 and m columns with entry bij equal to one if input uj enters 

compartment i, if not, the entry is zero. 

In (3.1), the inputs~ and their entry into the eco1y1tem compart-

menta, the! matrix, are known. The solution of the identification 
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problem for (3.1) requires a method to determine the entries in !, con­

taining the rate coefficients, given sufficient measurements of the 

state ,!_o 

The use of sinusoidal or random (white noise) inputs for identifi­

cation involves the frequency domain technique of spectral analysis to 

obtain system parameters. Sinusoidal, as well as random, inputs are 

difficult, if not impossible to implement for tracer laboratory experi­

ments as performed on biological and ecological systemso 

The frequency-response identification requires sine-wave inputs 

having variable frequencies. The sinusoidal inputs require experimental 

means of generating sine-wave input disturbances and varying the fre­

quency over a rangl!c-of interest. 

Perhaps the simplest input signal to apply is the step input. A 

step input is given by 

u(t) • { 01 
for t < 0 

for t ~ Oo 
(3.2) 

The ideal step forcing function consists of a zero-duratio~ rise-time 

which is impossible in practice, so all practical step inputs are 

approximations in which the error is negligible if the initial rise­

time is of a duration much shorter than the period of highest frequency. 

of interest in the identification (Graupe, 1972). The transient or 

f.ree response of the system after the input is then observed to deter­

mine certain unknown parameters. Other system parameter• can be found 

from the steady-state response obtained as t + •. 

The impulse-response identification scheme follows cloaely the 

identification of linear processes by means of their step reaponse. 
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This method is defined by Nieman, Fisher, and Sebcrg (1971) as the 

response of the system output variable to a Dirac delta function input, 

i.eo, an input pulse of height hand duration 1/h in the limit ash 

tends to infinity. Obviously, delta functions cannot be realized be-

cause of their infinite amplitude, but an experimental approximation is 

made by using input pulses of finite width and unit area. An impulse 

response has the same nature as a system's free, transient response 

when excited by some equivalent initial condition. The Dirac delta 

function has a uniform frequency content and hence will excite all the 

system modes, making it an ideal function for system identification. 

The possibility of finding a unique solution to the identification 

problem depends not only on the input signal, but also on the structure 

of the system. The identifiability of the model structure of (3.1) as 

discussed by Bellman and Astrom (1970) requires the assumption that the 

system is observable and controllable in the sense of Kalman. Also 

assuming the system to be initially at rest, that is, x(O) • 0, the 

input-output relation is then uniquely given by the impulse response. 

A more meaningful discussion of the identifiability, controllability, 

and observability of the compartment structure under discussion will be 

pursued subsequently. 

Single Dose and Constant Infusion Experiments 

The use of radioactive tracers in compartmental studies provides 

two types of experimental design for the identification problem when 

inputs to all n compartments are available, i.e., when! • l• the n•th 

order identity matrix, in the system model given by 

• 
x • Ax+ Bu. - - - (3. 3) 
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In the biological literature, these two experiments are known as the 

single~dose (slug} method and the constant-infusion (continuous} method 

(Shipley and Clark, 1972}, while in system theory these methods corres-

pond to transient and steady-state analysis respectively. Interprets-

tion of the two techniques with respect to toxic transfers leads to 

assessment of acute and chronic toxicity. In fact 9 the mathematical 

details of the constant infusion method are directly applicable to con-

tinuous bioassay tests. 

The single-dose method requires that an instantaneous induction of 

tracer be delivered sequentially to each of the n compartments of the 

biological system, resulting in n transient responses of the system 

which depend only upon the initial conditions because all exogenous 

inputs are zero after the rapid introduction of tracer. This method 

simulates an impulse input function (Schwarz and Friedland, 1965, 

p. 120). Therefore, Equation (3.1} becomes 

(3.4} 

since ~ • 0 for all time t > o. The solution of (3.4} is 

,!.(t} - !(t) ,!.(0) (3.5) 

where ! • ('ij) is the n x n state transition matrix, shown by the 

method of successive approximations (Picard's Method) to be given by the 

matrix exponential: 

!(t) -
At 

e- • 

The single-dose method is moat easily described by writing out the 

matrix product defined by (3.5) for each of then compartments: 
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n 
xi(t) • L hj(t) xj(o), (i • 1, o o o, n)o (3o7) 

j•l 

Since a single dose of tracer is injected at t • 0 into only one com-

partment (k) per experiment and it is assumed that the tracer mixes 

homogeneously and instantaneously, the resulting situation is described 

mathematically by the following conditions: 

for j .II k 

for j "" k 

where the single dose of tracer to compartment k is normalized to unity. 

Incorporating the conditions of (3o8) into (3o7) yields 

since all terms in the summation are zero except j • k. 

When a single dose of tracer is applied to compartment k, the time 

series of compartmental contents, Xi(t) for i • 1, o • o • n, define the 

n entries in the k-th column of the ! matrix. If a single dose of 

tracer is then successively applied to the other (n - 1) compartments 

in the biological system, the remaining (n - 1) columns of ! can be 

identified. This requires an interpretation of (3.9) for k • 1, • • • • 
n. The identification scheme results in time series data for each ~ij 

entry in the ! matrixo Relating these data for the n2 entries in ! to 

closed form mathematical relationships requires the further identifica­

t.ion of the coefficients and exponents of the exponential functions 

known to comprise each entryo These coefficients and exponents can be 

identified by various techniques, including graphical methoda (curve 

peeling) and computer techniques based upon slope and intercept 
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measurements of the compartmental time series data (Shipley and Clark, 

1972). As a result, the rate coefficients for the transfer of the 

tracer between compartments can be calculated. These coefficients will 

then define the! matrix of (3.4). 

Tite entries in the ~ matrix have been presented as continuous time 

functions. However, discrete time series samples of compartment tracer 

levels are usually obtained as the experimental results. Thus, in order 

to use these discrete data for identifying the coefficients of the ! 

matrix, a sampling theory is needed. A unified sampling theory and 

identification algorithm for tracer analysis is discussed in detail 

later. This sampling theory also applies to the implementation of the 

single dose-method. 

The second method, known as the constant-infusion method, involves 

a continuous input of tracer to each of then compartments, in turn, at 

a constant rate until the system is observed to be in steady-state as 

indicated by constant radioactivity in all compartments. For open 

systems, steady-states are observed when input equals output over non­

zero time intervals. 

The constant-infusion method is based upon the steady-state anal­

ysis of the linear non-homogeneous system described by (3ol) where! • 1, 

the identity matrix. Consider the typical case where labeled material 

is infused into compartment k at a constant rate and no other inputs to 

the system are allowed. In mathematical terms, this situation is des­

cribed by Equation (3.3) where 

(3.10) 

and !k is the column vector of all zeros except the k-th entry which is 
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unity. In terms of the components of the input wector ~' {3ol0) is 

expressed as 

for all j .; k 
(Joll) 

for j ""' k~ 

where the infusion rate of the k-th compartment has been normalized to 

unityo After the input of (3.10) has been applied to the model (3o3), 

the system is allowed to reach steady-state as indicated by x • 0, which 

is an asymptotic condition with increasing timeo Equation (3o3) then 

becomes 

Q ... ~ + ~ (3.12) 

where ~ is the ste~dy-state response to the input £k• The quantity of 

tracer stored in each compartment in steady-state, described by ~' can 

be measured by standard radiological methods. Thus, (3.12) gives n 

equations in the n2 unknown entries in !o The experiment is now re-

peated (n - 1) times, so that (3.12) is obtained fork • 1, ~ •• , n. 

The result is n2 independent equations to determine all n2 entries in 

the ! matrix. These equations are linearly independent because the set 

of inputs ~l• • • o , £n provide an algebraic basis for the solution 

space. 

The constant inputs of the constant-infusion method result in a 

system steady-state generated by n experiments giving n measured ~d 

distinct steady-states. Hence, experimental design ia concerned with 

ensemble samples of steady-states rather than time samples of transient 

states. It should be noted that this corresponds tc a steady-state 

step input response for identification. 
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Basic Experiments 

The use of radioactive tracers is prone to varying experimental 

procedures, especially with the advent of highly sophisticated instru­

ments and new radioisotopeso P~actical experiments must be designed to 

coexist with developed theo~eti~al techniqueso The Environmental Pro­

te~tion Agency Environmental Research Lab~ratory (Athens~ Georgia) (Hill~ 

1977) has developed three basic experiments to assess the environmental 

impact on aquatic microcosms of toxic material inputs o As shown in 

Table I~ the first test input represents a slug of toxic material, the 

second considers a constant chronic input level of toxin, and the third 

forms the superposition of the aforementioned experiments o The micro·­

cosm responses to the three basic inputs are also shown in Table Io The 

toxic slug of part (a) elicits a transient response with initial con­

dition x0 , and the constant input level of part (b) gives rise to a 

steady-state defined by xs• By assuming a linear model for the micro­

cosm system, part (c) of Table I illustrates the resultant super­

position principleo It should be noted that the basic microcosm 

experiments contain information regarding the validity of the linear 

modeling assumption. For linear models, the microcosm responses to the 

inputs of Table I, parts (a) and (b), should sum to give the response 

to the input of part (c). If this superposition is in fact true, the 

single-dose method (the input of part (a)) can be effectively used to 

identify the numerical model for the microcosm. Therefore, the validity 

of the linear state model (3.1) should be clear from the outcomes of 

the basic experiments of Table I. Generally 1 a local linear model can 

be identified for small perturbations (x0 is emall compared to Xg) 
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TABLE I 

BASIC MICROCOSM EXPERIMENTS 

i 

-
Input Respli>nse 
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caused by impulse inputs at a given system loading defined by u0 • A 

local model defined in this way will be dependent upon the system 

loading. 
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Also in Table I, two new experiments are.proposed for linear model 

identification using tracers or toxic material flows as microcosm inputs. 

These inputs, based upon step functions, have been designed for ease of 

application in the laboratory and mathematical convenience for system 

identification. Indeed, as will be shown in the next chapter, these 

basic experimental inputs lead to a sampling theory which is essential 

to the successful application of standard identification schemes. This 

result, in turn, prescribes an experimental design for the a priori 

determination of the period for data collection in the laborato~. 

It is desirable to establish an equivalence between the basic 

e~eriments of Table I. For xs 1 • x0 , the responses of parts (a) and 

(d) are the same for t > T. This results in a relationship between the 

strength of the toxic slug input and the level u1• Fort> T, the 

model of (3.1) is applied to part (a): 

and part (d): 

,a£(T) • X -o 

3£(T) • .!al• 

(3.13) 

(3.14) 

For mathematical simplicity consider the tracer analysis assumption that 

all compartments have input pathways. Assume! • lin (3.1) and apply 
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n unit impulse inputs, so that 

(3.15) 

where ~ is an n x 1 vector given by 

n 

~= ~ £.r· 
i=l 

(3.16) 

Integrating through the state discontinuity at t a T: 

T+ T+ 
X dt .., I ~ dt + f ~ O{t)dt (3.17) 

T- T-

yields 

(3.18) 

However, it is noted that _x(t+) = x and x(T-) • 0 so that -o -

(3.19) 

Now from (3.1), ~1 is obtained when x • Q: 

x • -A-1 u (3.20) 
-sl - -

where ~ is an n x 1 with n-components to be prescribed. Then for the 

response equivalence, 15.s 1 • .!a implies 

-e • -A-1 u - _, (3,21) 

yielding 

(3.22) 

State identification using the basic experiment of part (d), which 

describes the impulse response, assumes a global linear model for the 
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microcosm. lo1hile gl.obal linearity is an attractive mathematical assump­

tion, it may be unreasonable in a biological sense. However, regardless 

of the applicability of the basic experiment of part (d) to the model 

identification problem, the experiment is useful as a laboratory test 

for estimating the time necessary for the return to a natural steady­

state of microcosms for which toxic inputs have been totally removed. 

The basic experiment of part (e) of Table I is analogous to the 

superposition of impulse and constant inputs for part (c). This basic 

experiment involves the transition between two microcosm steady-states 

defined by xs 1 and xs2 defined by the inputs u1 and u2 , respectively. 

The transition is mathematically accomplished by a step function, while 

in the laboratory the transition is easily obtained by instantaneously 

changing the pump infusion rate driving the microcosm. By setting 

x0 • xsl' as before, and xs2 • xs, it is clear that for t > T the 

experi~nts of part (c) and part (e) are the same. Input equivalence 

can be obtained by using the method previously employed for the global 

transition to the zero state, giving 

.!!1 • -~&. (3.23) 

(3.24) 

which is obtained for A • lin (3.1). 

The basic experiment of part (e) has been designed as an identifi­

cation technique for local l.inear models. Linearity can be tested in 

the laboratory by observing response superposition as a reault of adding 

two microcoam inputs. 

Aa previoualy noted, the basic experiments of parts (d) and (e) 
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have been designed for ease of application in the labo~atory and to aid 

in the development of a sampling theory. It turns out that under 

cert;:ain c:ondi~ions these basic experiments also avoid the problem in 

tracer an~lysis of having input access to each compartment. However, 

the equivalence between the inputs of Table I is essential in eliminat-

. ing the so-called precursor problem. In Figure 1 an example of a two­

compartment model with a single-dose input into the pre~ursor compart­

ment is shown in part (a) along with the input and compartment response 

plots tn paJ;t (b). 

The precursor problem deals with the impossibility of estimating 

the maximum value (Xro) of the response of compartment x~ to the impulse 

input to compartment x1• In order to develop an effective laboratory 

data collection strategy, it is necessary to have known rules for 

amplitude and time descretization. Because Xm is unknown before the 

experiment is completed, it is very difficult in ordinary tracer anal­

ysis to develop a rule for amplitude quantization. Given a sample 

tJeriod, data on microcosm structure is collected at discrete times; and 

the values of these data are quantized by the finite arithmetic pre­

cision of the measuring instruments. However, the quanti2:ation of time 

and amplitude are not sequential processes; they are in fact related to 

one a~other. This gives rise to the commonly used laboratory procedure 

for single-dose experiments of taking microcosm samples very rapidly 

•t first until ~2 reaches its maximum and then more slowly to accommo­

dat• the compartmental dynamics inherent in the free ~esponae. The 

asynchronou. sampling procedure described is difficult to analyze, 

particularly when the propagation of measurement errors through the 

identification algorithm is required. A periodic sampling aeheme would 
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be more desirable. 

The basic experiments (d) and (e) of Table I eliminatt'! the pre(Cur= 

sor problem. This follows fr!.'}m the fact that transitions between 

steady-states in compartmental systems are monotonic and bounded by the 

initial and final states (Thron, 1972'). Therefore, the amplitude 

quantization process is well defined~ and a periodic sampling strategy 

is possible. The data c;ollection, sampli.ng theocy, and model identifi-

cation algorithms using the basic experiments of Table I are discussed 

in more detail in the sequel. 

Di.rect Method 

The mathematical model given by (3.1) is presumed to be the local 

model of a biological system where any possible exogenous inputs, such 

as introduction of tracer, and their entry into one or mote of the com-

part:ments, the! matri:x, are known. The solution of the identification 

pll"oblem for (3.1) requires a method to determine the entires in ~·' con-

taining the rate coefficients, given sufficient measurements of the 

state ~· The tracer method of biochemistry and physiology provides a 

solution of the identification problem when inputs to all n compartments 

are avai.lable, i.e., when.~ • 1~ the n-th order identHy matrix, but 

for a typical ecosystem model where pathways to certain t-ompartments are 

inaccessible, i.e., m < n, the tracer method cannot be fully employed. 

Consider the following experiment in which a constant: (known) in-

put is applied to the ecosystem modeled by (:3.1). Aftet· sufficient 

• tiutc has elapsed, a steady-state is observed, a~::~ :lndJca~ted by 1i..,. Q.. 

Denote this steady-,etate by the vectors lS.s, wh~.ch is th~ ~oluttcm of 

.Q. ... A!s + !.':!· (3.25) 
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In the experiment under discussion, the input is assumed to be a con-

stant rate of infusion of labeled material. It is also assumed the 

steady-state can be measured using standard radiological methods. On a 

new time scale, the experiment is re-started at time t • 0 by removing 

all inputs to the ecosystem. Thus, before t = 0 the system is in 

steady-state ,!_(0) ""~' while for t > 0 the state of the system is 

governed by the solution of 

(3.26) 

because ~ = Q for t > 0. The labeled contents of the compartments of 

the ecosystem start at t • 0 with values determined by ~ and decrease 

exponentially as t becomes large as all the labeled material flushes 

from the system along the pathways for material transfer (see Table I). 

It is assumed the input ~ which generates the steady-state ~ can 

be chosen so that x does not lie in a proper subspace of the n--s 

dimensional state space of solutions of (3.1). This assumption is 

satisfied by sys~ems (3.1) which are completely controllable, that is, 

systems capable of being driven by inputs to any state in state space. 

Johnson (1976) shows that open system~ are generally controllable if 

the matrix of the intercompartmental rate coefficients (which exclude 

environmental transfers) is of rank n-1. 

Despite the fact the state of the system, under the experimental 

conditions described, is governed by the differential equation (3.26), 

the problem is basically one of algebra. This is because the solution 

of (3.26) is prescribed by 

!,(t) • !(t)!,(O) (3.27) 
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where the matrix exponential is denoted by the n x n matrix 

At 
~(t) = e- (3.28) 

and called the state transition matrix. Thus, any future state ~(t) at 

t > 0 is defined by the initial state ~(0) through the transformation 

!(t) defined by (3.28). 

Consider (3.27) with t = T, for which 

(3.29) 

Now let t = 2•, giving 

(3.30) 

Thus, .for any positive integer i, it is clear that 

~_(:t-r) -~.!!,[(i-lh] (i•l, 2,. ,, .), (3.31) 

where .t • !(-r) and (3.27) with t • iT is the solution of this difference 

equaUon. 

A continuous record of the state ~(t) is not required in order to 

determine!, which through (3.28) gives !• Since! is an n x n constant 

matrix, constraint equations numbering n2 are required to prescribe the 

ent:ri.as in this me•trix. The problem reduces to finding ! from a finite 

number of dis crete and regularly spaced samples of the state, given at 

tin~s t • 0, T, 2t, ••• , kt where t is the sample period. Substitu-

tion of these state samples into (17) gives 

,!.(t) • ! .!,(0) 

.!,(2t) • ..!,.!,('!.') 
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(3.32) 

~ (k 'r) = ! ~[ (k - lh ] . 

This linear algebraic system contains n2 unknowns (all ~ij entries of !) 

and k independent vector equations of n components each, for a total of 

kn equations. Fork < n no unique solution of (3.32) exists, and the 

system is overdetermined fork > n. Thus, k = n or (n + 1) discrete 

samples of the state are necessary and sufficient to determine !· And, 

from (3.28) 

A ,.. (1/t) 1n ~. - . - (3.33) 

which identifies the rate coefficient matrix. 

It is possible to re-write system (3.32) in the following more 

standard algebraic form 

(3.34) 

where Al is an n x k matrix formed by columns from the first k state 

samples, 

!1. {~(0), ~(-r), ••• t .!,[(k- l)t]}, (3.35) 

and x2 is similarly obtained from the next k state samples delayed by 

one aample period, 

~ • {.!,(t), x(2t), • • • , x(kt)}. (3,36) 

For k • n in (3.34) the solution for! is obtained by inverting the 
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matrix x1• This assumes n li.nearly independent state samples which is 

indeed the case when the ecosystem model defined by (3.26) applies. 

Thus, the identification problem is solved by 

(3. 37) 

under these stated conditions. 

It is mathematically necessary and sufficient to make (n + 1) dis-

crete state measurements in order to solve for !· At least (n + 1) 

measurements are required for a unique solution. However, on occasion 

it may be desirable to obtain more than (n + 1) state samples. For 

example, when significant experimental error is suspected in the state 

data, it may be of use to increase the dimension of the data set beyond 

(n + 1). Under these conditions k > n, and there are more equations 

than unknowns in (3.32). A Gaussian least squares estimate for the 

solution of (3.34) can then be obtained by multiplying (on the right) 

T by the matrix transpose of x1 , denoted by x1 • This results in 

The model identified by the solution of (3.38) is then given by 

(3.39) 

This model produces a minimum in the error defined as the square of the 

difference between predicted state values and measured state values on 

the time interval t • 0 to t • kt (Lee, 1964), 

It should be noted that some care is required in the application of 

(3.33) to ecosystem analysis. The identification scheme discussed is 

unconstrained with respect to the entries in the! matrix, that is, 
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(2.3) does not constrain the columns of the identified matrix. Also, 

(3.1) is an approximate linear relationship, which is not generally 

viewed as being universally applicable to ecosystem analysis (Bledsoe, 

1976). Thus, transfer matrices with confused ecological meaning are 

possible as outcomes of the computation defined by (3.33). However, the 

ecological validity of the identified ! matrix always can be judged by 

whether or not the constraint (2.3) holds. The problems associated with 

unconstrained identification are known (Halfon, 1974), and constrained 

identification methods which for the most part overcome these problems 

exist (e.g., Halfon, 1975). Indeed, the single-dose and constant­

infusion methods of biochemistry and physiology (Shipley and Clark, 

1972) a.re both constrained by (2.3). The obvious disadvantage of the 

constrained identification methods is that they force all ecosystems to 

obey (3.1). A detailed comparison of the applicability of the con­

strained versus unconstrained identification methods to ecosystem anal­

ysis is not available. However, both methods are hampered by the lack 

of a suitable sampling theory, which is the subject of the next chapter. 

The proposed technique for the analysis of compartmental flows has 

been based upon complete time series measurements of the state which 

lead to direct identification of the transfers. An indirect identifica­

tion scheme is proposed in the following section for the determination 

of the ~ matrix from knowledge of the accumulation of the state in com­

partments external to the biological system. 

Indirect Method 

An identification algorithm is desired for the case wherein a 

tracer element is superimposed, diffuses through a closed biological 
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system, and eventually amasses in given compartments. Time series 

measurements of only the accumulative entities are proposed to indi-

:rectly identify the unknown rate coefficients of the system. The local 

biologi.c.al model of (2o2) is incorporated, and by designating the system 

of Figure 2 to describe the post-experimental data, the linear dynamic 

observer yielding a system identification technique is given by 

,i(t) = K ~(t) (3.40) 

where ~(t) i.s an n-dimensional vector of the compartmental states and 

. . • , kn} defines an n ~ n diagonal matrix of the n rate 

"oefficients describing the transfers to the compartments in which 

tracer is accumulating as defi.ned by the n-dimensional vector I.• Inte-

grating (3. 40) gi.ves its solution as 

(3.41) 

where A ~ (a1j) is the n x n matrix of rate coefficients defined by 

(2.2) and (2.3), ~(t) ~eAt as defined in (3.28), ~is the n-th order 

identity matrix, and ~(0) is the nominal measurement of the state ~(t). 

Note that there is assumed to be no tracer in the output compartments 

initially, i.e., .x.(O) • .Q.. 

1~e total amount of tracer accumulated in the observer system state 

.,I.(t) will. be defined by 

(3.42) 

since the matrix exponential of (3.41) vanishes as t ~~when maximum 

accumulation is complete. Thus, any future state of the observer at 

t > 0 is prescribed by 
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y(t) = !S, A-l !(t) ,!_(0) + I,(oo) • (3.43) 

Consider (3.43) with t ~ <, for which 

.Y.,(t) • K A-1 ! ~(0) + y_(ao), (3.44) 

where !_(t) • !• Now let t • 2t, giving 

.Y.,(2t) • K A-1 ! ~(t) + .Y.,(ao) (3.45) 

Likewise, for any positive integer i, 

y(it) •! A-1 ! ~[ (i - l)T] + y_(w) (i • 1, 2, • 0 .) • (3.46) 

Given a finite number of discrete, regularly sampled measurements 

of the state at times t = 0, T, 2t, ••• kT, a linear algebraic system 

is formulated as follows: 

y(-r) • ! f;.-1 ! ,!(0) + I.,(co) 

(3. 47) 

Designating the n x k matrix formed by the first k observer state 

samples as ! 1 and similarly obtaining ! 2 from the next k measurements 

of the observer states delayed by one sample period, there results 

!l - {.!,(t)' ,!.(2-r)' • • • ' ,!.(kt)} (3.48) 

and 
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~ • {.!,(2T), .!_(3T), , • , , z[(k + l)T]} (3.49) 

where ~(iT) • y(iT) - ~(m), 

Recalling the system of equations developed for direct identifica-

tion of the rate coefficients, it is clear that 

and similarly, 

However, assuming the existence of the inverse of the observation 

matrix K, 

implies that 

This results in 

Y Y • K ~ K-l • .-oe -1 - "":"' -

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3,54) 

'rhus the matrix of rate coefficients identified by the measurements of 

y(k ) is 

(3.55) 

obtained by solving the identification problem without sampling the 

states of the system. Again, it is necessary and sufficient to make 

(n + l) discrete measurements for a unique solution of Equation (3,55), 
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Equation (3.55) not only identifies the !' matrix from observer 

measurements only, but the scheme also identifies the! matrix of the 

biological system. The entries in the !' matrix are 

(i, j "" 1, • • • , n) (3.56) 

where a1j is the i-th row and j-th column entry in ! and ki is the i-th 

diagonal entry in li_. Furthermore, since ki is a transfer from the 

sys te:m to the observer, this term has been previously defined as a0 i :tn 

(2 0 3). 
I 

Note that aij • aij" Thus, (2.2) and (3.56) provide (n2 + n) 

constraints for the same number of unknowns from which the ! matrix 

entries can be obtained. 

When applicable, the obvious advantage of indirect identification 

derives from the ability to ~ompute transfers within a biological system 

from external measurements. Applications of this method include the 

analysis of organisms in which an introduced (labeled) substance is 

metabolized, and the substance plus metabolites accumulate in closed 

pools. 

Approximation Method 

The proposed identification schemes are based upon a discrete-time 

model for ecosystem structure wh:lch is used. to compute ! which is 

defined by (3.28). The expression (3.33) relates the matrix! to the 

unknown coefficien~ matrix A, describing the material transfers between 

compartments. The solution of (3.33) requires knowledge of the step 

size t and the computation of the natural logarithm of the matrix !• 

Noting that 
k 

(At) /kl' (3. 57) 
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it is evident that the use of finite precision arithmetic affects the 

termination of the above infinite series representation for ! and !· 

Consider the case where T is chosen small enough to eliminate terms of 

k > 2 within the finite precision of the arithmetic, then from (3.57), 

(3.58) 

This prescribes 

A • (t - I) 1 (3. 59) - - - "[" 

as an approximation of the exact relationship given by (3.33). The con-

ditions on t for this representation are discussed in the sequel. 

Constant Infusion 

The proposed techniques for the determination of biological 

function based upon a finite number of measurements of structure 

utilize the single-dose method of tracer input. Constant infusion of 

tracer into a single compartment yields only n independent equations, 

thereby generally requiring n separate experiments for a unique solution 

to the identification problem. Hence, experimental design is concerned 

with ensemble samples of steady-states. Assuming an n-compartment 

system with the infusion rate normalized to unity, (3.12) becomes 

(3.60) 

Repeating the experiment (n - 1) times so that results are obtain~d for 

K ~ 1, ••• , n yields n2 linearly independent equations of the form 

!! • -l (3.61) 

where 
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and 

Solving for the unknown matrix of rate coefficients, one observes 

from (3~61) that 

A= -x-1 (3.62) 

if and only if A is the matrix of coefficients of an open system, i.e., 

! is invertible. 

For the tracer analysis problem only infusion into single compart­

ments leading to n sequential experiments, 

~ • !K, k • 1, • • • , n. (3.63) 

is considered. However, it may be desirable to infuse tracer into more 

than one compartment for certain experiments, wherein 

~ • ~· k • 1, ••• , n. (3.64) 

des~ribes the n experiments for which corresponding steady-states are 

measured. Equation (3.61) then becomes 

(3.65) 

and if the inputs {uk} span the state space and the system is open, then 

(3.66) 

When inputs into all compartments are not possible, then the 
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question of identifiability arises. This question has been investigated 

for the single-dose method (Bellman and Astrom, 1970). but remains open 

for constant infusion. 

With respect to constant levels of chronic toxicity and continuous 

bioassay methods for laboratory ecosystems 9 it would be of use to deter­

mine how the statistical errors in the ensemble samples propagate 

through the identification algorithm to the entries of the resultant 

modal transfer matrix. Sharp (1977) has propagated errors in the ! 

matrix given errors of the observed states. 

Summary 

This chapter has dealt with a linear model relating biological 

structure and function. The results are ideally suited to the tracer 

analysis of compartmental systems wherein the tracer element represents 

a small perturbation superimposed upon the material flows withi~ the 

system. Implementation of the identification algorithms are founded 

upon the basic experiments which have been characterized by such tracer 

inputs. 

The two basic tracer inputs from which discrete measurements of 

the system state may be obtained, i.e., single dose and constant 

infusi.on, led to separate identification strategies. For identification 

resulting from single-dose inputs, periodic data is obtained directly 

from the transient response of a single experiment on a biological 

system or from measurements of the response to the input of an asso­

da.t:ed observer system. A constant infusion of tracer gives an ensemble 

of steady-states from which the system may be identified. 



A computer code implementing the single-dose identification tech­

nique is found in the Appendix. The limiting capabilities of both 

approaches to parameter identification are discussed in subsequent 

chapters. 
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CHAPTER IV 

SAMPLING THEORY 

Introduction 

Thia chapter ia concerned with experimental design and limitations 

of the model identification theory. Problema of precision and accuracy 

of the state samples are of prime concern. Because the periodic samples 

are obtained from radioloaical meaaurement instruments, these data are 

of finite arithmetic precision. tn other worda, each sample Jl(kt) ia a 

number rounded to a fixed number of decimal places. This roundoff error 

affects the sample period t, or the rapidity with which th• ecoayatem 

is aampled, aa required for identification. The aample period is aleo 

affected by the maximum and minimum compartmental turnover• within the 
', ' 

ecosystem. These turnovers indicate the extent of the ecosystem dynamic 

behavior, hence their relationship to the sample period is clear, In 

that which followa, the relationahips between the dynamic ranae of co~ 

partmental turnover•• the finite arithmetic preci1ion of 1tate aamples, 

and the sample period are explored. Theee relation1hip1 are to be uaed 

as a auide for choolina the ,proper sample period for the s~lution of the 

identification problem. 

The compartment model identification •chama• diacua11d in the 

previoua chapter were ~a1ed upon a di1crete data 1et. The11 data are 

di1crete in both time and maanitude. ror eco1oaical 1y1temt it i1 not 
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sufficient, as with many engineering systems, to first decide the 

sample period according to the Nyquist rate {Carlson, 1975, p. 298) and 

then decide the arithmetic precision of the sample quantization based 

upon required accuracy or fidelity criteriae Before testing an ecolog­

ical system, the bandwidth or Nyquist rate is rarely known. Therefore, 

a non-Nyquist sampling theory would be extremely useful for model 

identification. 

Amplitude Bounds 

Before discussing the non-Nyquist sampling theory, it is necessary 

to compute bounds on the magnitude of compartmental content variations 

in response to input perturbations. The inputs designed for model 

identification involve only transitions between system steady-states. 

That is, the non-Nyquist sampling theory will be developed exclusively 

for the basi~ e~periments described in Table I. It will be shown that 

compartmental transitions between steady-states are monotonic, with 

exponential bounds depending on the maximum compartmental turnover and 

th.e minimum exogenous compartmental turnover. These bounds on compart­

mental variations determine how the finite arithmetic precision of the 

samples affects the amplitude quantization, which is an important first 

step toward computing the. sample period for data collection, 

The state transition matrix of (3.6) is given by 

!(t) • .'h !(t) 1.-l (4.1) 

where 

! (t) • .A t (4. 2) 
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and ~ is an invertible n x n matrix of the eigenvectors of !, and ! is 

a diagonal n x n matrix of the eigenvalues, so that 

(4.3) 

The n eigenvalues of ! are defined as the roots of the polynomial 

(4.4) 

These eigenvalues, which describe the ecosystem dynamics, are related to 

the compartmental turnovers. This relationship, in part, follows from 

a theorem by the Russian mathematician Gerschgorin: The eigenvalues Al, 

• , An of the matrix! • (aij) lie in one of the circular regions of 

the complex A-plane described by 

n 
1>- + ajjl .':. L' laijl ~ (j "'"1, • • • , n). 

i•l 

The right side of (4.5) is the sum of the absolute values of all 

the entries in the j-th column of A except the principal diagonal entry, 

Let 

(4.6) 

Then, (4.5) is the closed circular region in the A-plane of radius rj 

and center -ajj• It should be noted that the theorem is also true for 

row sums (Wilf, 1962, p. 39). 

In the development of the sampling scheme, it is assumed that the 

eigenvalues of the ! matrix are real. This assumption simplifies the 

analysis of the sampling problem. For example, the controllability of 

the continuous system (3.1) with real eigenvalues implies the control­

lability o~ the discrete system (3.32) regardless of the sample period 
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value T (Kalman, 1963). A theorem by Frobenius (1912) for irreducible 

nonnegative matrices provides insight into the nature of the matrices of 

compartment models (Emanuel, 1978). 

Definition 4.1 (Gantmacher, 1959) 

The n x n matrix A • (aij) is said to be reducible if and only if 

there is a permutation of the indices which reduces it to the form 

A = [: : J (4, 7) 

where ~ and ~ are square matrices of order less than n. Otherwise the 

matrix A is called irreducible. 

Definition 4.2 (Lancaster, 1969) 

A matrix ! is said to be nonnegative if and only if no element of 

A is negative. 

Theorem 4cl (Frobenius, 1912) 

An irreducible nonnegative matrix A • (aij) always has a positive 

cnaracteristic number r, which is a simple root of the characteristic 

equation. The moduli of all the other characteristic numbers are at 

most r. A characteristic vector A with positive coordinates corresponds 

to the "dominant" characteristic number r. 

In order to apply the above theorem to matrices of ecological 

systems, define an n x n matrix D as follows '-
(4. 8) 
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where 1 is an n-th order i.dentity matrix and 

l • max laiil, i ~ 1, ••• , n. 

Then Q is nonnegative, Q is reducible if and only if! is reducible, and 

the eigenvalues ui of ~ are related to those of A by 

(4.10) 

Hence, from (4.10) and Gerschgorin's theorem, if! is irreducible, then 

there is at least one real, simple, least-negative eigenvalue which is 

dominant~ The other roots may or may not be real. Sufficient condi-

tions for the eigenvalues of A to be real have been presented by Gold-

berg (1956) and Hearon (1963) and are discussed in detail by Thron 

(1972), Smith (1971), and Funderlic (1971). 

Theurem 4.2 (Hearon) 

If an n x n matrix~ • (aij) is sign-symmetric and satisfies any 

~of the following properties, then it is similar to a symmetric 

matrix and hence all its roots are real: 

(a) There exist positive numbers s 1, s2 , ••• , sn such that 

aij sj • aji si. 

(b) The graph of ! has no cycles involving three or more nodes. 

(c) For each subset {11, i 2 , ••• , ik} of {1, ••• , n}, k ~ n, 

ai i ai i • • • ai i ai i • ai i ai i • • • ai i • 1 2 2 3 k-l k k 1 l k k k-1 2 1 

Theorem 4.3 (Goldberg) 

If a matrix~ • (aij) is such that aij aji ~ 0 and property (c) of 

Theorem 4.2 is satisfied, then all roots are real. 
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A discussion of the physical meaning of these properties applied to 

compartmental models is provided by Funderlic (1971)~ Property (a) 

states that fluxes in the two directions between compartments are equal. 

No indirect feedback may exist in order to satisfy property (b), and 

property (c) implies that for each cycle in the graph of the system the 

reverse cycle exists and has the same product. 

Shipley and Clark (1972) and Atkins (1969) along with many other 

aut.hor.s of books on the tracer method accept the conditions for real 

eigenvalues as not being unusual. 

The ! matrices of ecosystems described by (2.2) are column diag-

onally dominant, that is, ajj > 0 and 

n 
I aj j I ~ r' I ai .1 .. r j (j = 1, • • • , n) • 

i•l J 
(4. lla) 

Let 

oj • I ajj I - rj (j • 1, ••• , n). (4.llb) 

Then, oj ~ 0 defines the distance between the j-th Gerschgorin circle 

and the Im {A} axis of the A-plane as shown in Figure 3. These circles 

lie in the left-half of the A-plane. This follows from the fact that 

-ajj (the center of the circle) is a negative real number which is in 

magnitude greater than or equal to the radius rjo 

If oj • 0, for all j • l, ••• , n, then the ecosystem is closed 

with respect to the material flows defined. Under this condition, all 

Gersch gorin circles intersect >. • 0, the A-matrix is singular, and 

hence the set of eigenvalues includes zero. Very few model ecosystems, 

even laboratory microcosms, are truly closed. Therefore, at least one 

of the terms oj will be assumed to be nonzero, which implies the 
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w 

A. = u + jw PLANE 

Figure 3. The j-th Gersc::hg~rin Circle Pletteci in the Cemplex Plane 
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solution of (3.26) is a bounded function of time and ~(t) + Q, as t + ~, 

because all the eigenvalues of A are negative real numbers (Hearon, 

1963). That is, Equation (3.26) is asymptotically stable. This enables 

the set of distinct eigenvalues of A to be ordered and bounded as 

follows: 

(4.llc) 

The eigenvalue bounds are 

and 

(4.1le) 

which are clear from Figure 3. 

Definition 4.1 

The Taxi-cab norm of the vector ~, as denoted by 1 ~ 1, measures 

the distance between the origin and any point in n-dimensional state-

space by computing 

(4.12) 

Theorem 4ol (Mulholland and Keener, 1974) 

Consider the system (2.2) written as 

(4.13) 

for i • 1, ••• • n, where 
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(4.14) 

and a1j ~ 0 and u1 ~ 0 for all i and j. If xt<t) is a solution of this 

system with xi(O) > 0 for each i ~ 1, e 0 $ , n, then x1 (t) > 0 for all 

t > o. 

Proof 

Suppose for some i • 1, ••• , nand t > 0, x1(t) • 0. Then there 

exists a point t 0 > 0 such that for all 1 = 1, ••• , n xi(t) > 0 on 

the interval [O,t0 ) and 

(4.15) 

for some i • 1, 2, ••• , n. Then for each i and tin [O,t0 ), 

(4.16) 

Then, on the interval [O,t0 ), for each i, 

a t 
d/dt[e ii xi(t)] ~ 0 (4.17) 

and 

(4ol8) 

By the continuity of xi(t), 

(4.19) 

thus contradicting (4.15). This contradiction completes the proof of 

the theorem. 

It should be noted that Theorem 4.1 with xi(O) < 0 implies 



~(t) < 0 fori • 1, ••• , nand all t ~ 0. The more ecologically 

realistic case of positive solutions of (4.13) means the Taxi-cab norm 

is easily computed by summing the state components: 

n 
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l.!.l = 2 xk (4.20) 
k•l 

It is useful to be able to denote vectors with all nonnegative (or non-

positive) entries. 

Definition 4.2 

A vector with nonnegative (nonpositive) components will be denoted 

by.!.~ 0 (x ~ 0), while positive (negative) vectors will be given by 

.!. > 0 (x < 0). 

Theorem 4.2 (Thron, 1972) 

When a compartment model initially in a steady-state ~1 > 0 with 

an input ~1 ~ 0 responds to a negative step function perturbation, which 

leads to a new input~ ~ 0 (~1-~ > 0) and new steady-state x82 ~ O, 

then the transition to the final steady-state is monotonic. 

Proof 

Assume the negative step perturbation occurs at t • T0 as shown in 

Figure 2. For t ~ T0 (4.13) can be written as 

(4.21) 

with initial condition 

(4. 22) 
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The stability of (4.21) (Mulholland and Keener, 1974) implies 

(4. 23) 

as t ~ ~0 Now, differentiate (4.21) to give 

(4.24) 

where~~ k· The initial condition for (4.24) is given by (4.21): 

(4.25) 

Since the step-perturbation is negative with u2 - ~1 < 0, the initial 

condition is negative: ~(T0 ) < 0. Thus, by Theorem 4.1, the solution 

of (4.24) is negative (y(t) < 0 for all t ~ T0 ); and since! is a 

stable matrix, y_ + Q.. Thus, the vector 1i decreases monotonically from 

~1 to ~2· See Figure 2 • 

.Th._eorem 4. 3 

Starting at an initial steady-state determined by the input ~1 , 

the solution of (4.13) is bounded in norm by 

(4.26) 

when the input is removed. 

Proof 

Let the input be removed at t • 0 and note that the solution of 

(4.13) starting at 

x(O) • x • -A-lu > 0 
- -sl - -1 

(4. 27) 
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converges monotonically to the zero steady-state. Summing the index i 

in (4.18) for i • 1, • . . , n yields 

(4.28) 

and since ~(0) > 0, 

(4.29) 

which gives the lower bound in terms of the maximum compartmental turn-

over. Now, sum equations represented by (4.13) for i • 1, ••• , n: 

(4.30) 

Equations (4311) and (4.30) give 

(4.31) 

and by repeating the steps in the proof of Theorem 4.1, there results 

(4.32) 

which gives the upper bound on the state in terms of the minimum 

exogenous turnover. This completes the proof of the theorem. 

Direct and Indirect Methods 

The col~ection of time series data for each compartment in the 

ecosyst$m takes place in two distinct steps, in which first time and 

then amplitude are quantized, The samples of the state are obtained 

only at discrete times, These samples are periodically spaced apart by 

t time units giving a data base defined by {~(0), ~(t), , •• , 

x[(k + l)t]}, It has been shown the minimum data base for solution of 
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the identification problem is (n + 1) state samples or k • n. Next, 

the finite precision with which the measurements of state are made must 

be accounted for in terms of a mathematical relationship. The assump-

tion is that ~(t) and its samples are fixed point numbers which are less 

than or equal to one. These samples, arising from radiological measure-

ment equipment, are data with no more than a fixed number of digits to 

the right of the decimal point. Let 10-d, where d is a positive integer, 

be the smallest number in the data set. Then, the quantizing operation 

on the samples is described by the function y • f(x) as plotted in 

Figure 4, or by the relations: 

y - 0 for 0 ~ x < 10-d 

for 10-d ~ x < 2xl0-d 

y • 2xlo-d for 2xl0-d < x < 3xl0-d 

etc. 

These quantized samples assume a pure truncation scheme for the finite· 

precision arithmetic. Depending upon theineasurement equipment used, 

other arithmetic schemes may be necessaryo For example, it is common 

to round 0.478554 to either 0.4786 or 0.4785 as a four-place number 

depending upon whether or not the last digit is even (or odd). The 

roundoff error for such a scheme is lEI ~ 0.5 x 10-d, while the proposed 

i h i f 0 ~ lEI < 10-d. Si h 1 truncat on sc eme g ves an error o nee t e aamp es 

are positive numbers, the pure truncation scheme was selected for 

reasons of symmetry to represent the quantizer. 

The relationship between the sample period, the quantization of the 

samples, and eigenvalue bounds is of interest. As has been pointed out, 
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it is possible for the sample period to be too small. This results in 

~(t) and ~(t + t) having the same numerical value when both are 

truncated to d digits. Since (4~32) gives an upper bound for ~(t), a 

measure of the minimum sampling time, denoted by T-, is given by 

or solving for the min.imum sampling period yields 
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(4.34) 

The state samples are theref~re independen.t if T > T-, but an upper 

bound on T also exists. If • is chosen large enough that the last 

sample(s) in the data set are truncated to zero by the quantizer, then 

the data set is incomplete and the identification problem cannot be 

solvede Thus, the maximum sample period, denoted by T+, must be such 

that the (n + 1)-th sample is at least equal to the smallest number in 

the finite precision arithmetic, that is, 

(4.35) 

Equation (4.29) gives a lower bound for ~(t); thus, the maximum sample 

period is easily computed from 

(4.36) 

which results in 

(4. 37) 

As an example of the application of these equations, consider a 

three-compartment system with eigenvalue bounds of a • 190 and 6 • 2. 
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Suppose samples of the state of this system can be made with four-place 

precision, so d • 4. Then, from (4.34) and (4o37) T- • 5 x 10-5 and 

t+ • 0.012 are obtained. 

A bl h i f i h i Of ~+ and ~ reasona e c o ce or T s t e geometr c mean • • , or 

which for this example gives T = 0.00089. A more practical choice is 

obtained by rounding T to 0.001. 

Equation (4.38) gives a relationship for choosing the sampling 

period for the identification problem which is valid as long as T- < -r+, 

or 

(4.39) 

The eigenvalue bounds (o and a) and the number of ecosystem compartments 

(n) are fixed constants, hence a computation yielding -r- > T+ implies 

the precision of the measurements is too low to solve the identification 

problem. This computation can be made prior to the collection of data, 

thus validating the sampling program. For the example under considers-

tion, (4o39) holds for all integers d ~ 3. Therefore, radiological 

measurement equipment with at least three-place accuracy for fixed-point 

numbers is required for sampling the state of this example system. 

In order to compute the bounds t+ and T- for the sample period -r, 

it is necessary to know the eigenvalue bounds a and 6. However, 

computations of these bounds using (4.10) and (4.11) requires knowledge 

of the entries in !, which are unknown. 

Based upon intuition, experience, or isolated laboratory experi-

menta, ecologists tend to know the turnovers for the species present in 



an ecosystem. Such knowledge is at least accurate to an order of 

magnitude. Thus, a relationship between the turnovers and the eigen­

values would enable the computation of the eigenvalue bounds, and in 

tum determine 1:+ and -r-. 

Consider again the compartment model defined by (4.13} where the 

turnover time Ti, given by (2o4) is written as 
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Ti • 1/aii (i = 1, o •• , n}, (4.40) 

from the ecologically unrealistic assumption that no coupling exists 

between the n compartments of the ecosystem, the eigenvalues can be 

shown to equal the compartment turnovers. Let the solution of (4.13) 

under these conditions be written as 

(4.41) 

The eigenvalues are Ai • Ti-l for i = 1, • • • ' n. For this case the 

Gerschgorin circles are degenerate, with all radii equal zero, con­

sisting of the n points given by Ti-l for i • 1, ••• , n. 

From (4.6) the Gerschgorin circle radii ware clearly determined by 

the pattern and amount of coupling between ecosystem compartments. The 

Gerschgorin circle centers are equal to the diagonal elements of A, 
which regardless of intercompartmental coupling equal the turnovers as 

defined by (4.40). Since all the Gerschgorin circles are known to lie 

in the left-half of the A-plane, the center magnitude must be greater 

than or equal the center radius: 

(4.42) 

For each circle j • 1, ••• , n. Let T0-1 be the maximum turnover, 
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then it is clear that all eigenvalues of the system lie in the circle of 

center and radius T0 - 1• Hence 2T0-l ~a and -2T0-l ~ A1 < A2 < • o • < 

An < 0. Using T0 = 1 as an estimate for a in (4.37) yields 

Given the number of compartments in the ecosystem, the maximum turnover, 

and the precision with which the measurements of the system state are to 

be made, (4o 43) prescribes the maximum sample period._ 

The minimum sample period is not easily computed without the eigen-

value bound of (4.11). Fortunately, it is the maximum sample period 

bound which is the more important extremal. Assuming sufficient arith­

metic precision of the state samples to prescribe t- < T+, it is merely 

necessary to choose T ~ T+ in order to solve the identification problem. 

Exact knowledge of T- is of little use when d is large enough. 

Earlier the solution of the identification problem was explained to 

begin with an experiment which initially places the ecosystem in steady-

state. The observation of this steady-state is obtained by noting 
0 

xi • 0 for all i • 1, o •• , n, or by the condition 

.Q. • f:. lSs + ! .!! 0 (4.44) 

If both observations are made, sufficient data exist to determine the 

steady-state condition and ~j for each compartment. In other words, 

these data determine the compartmental losses £0 j and steady levels ij, 

so that Oj • f0 j/xj for j • 1, ••• , no The value ~ is then deter­

mined by (4.10) which in turn prescribes T- through (4.34). The 

measurement of xj in steady-state is required to determine xj(O), the 

first sample for compartment j, thus the additional measurement of foj 
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enables the computation of t-, which may be worth the additional effort 

in certain cases. 

Approximation Method 

The approximation method of identification is based upon the con-

vergence of the exponential series (3.57) for which t is chosen small 

enough to eliminate terms of k that are greater than or equal to some 

positive integer m within the finite precision arithmetic. 

Definition 4.3 

The norm of a vector ~ is equal to zero within the finite precision 

a~ithmetic, denoted by 

lxl 0 

"" 0 (4.45) 

if and only if 

(4.46) 

where 10~d is the smallest number of arithmetic accuracy. 

Consider the series (3.57) written as 

! • .J. + !_T + ~ (4.47) 

where ~ is the remainder term defined by 

At' k k . 
~ • e- f:. T /ki, 0 ~ t' ~ t (4.48) 

and k is some positive integer greater than one. It is desired to find 

the value of d such that 

(4.49) 
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Eq~ating the remainder term to zero within the finite precision arith-

metic will result in an approximation of Equation (4.47). 

Definition 4. 4 

If the elements of an n~th order matrix! are real numbers, the 

norm of ~ is denoted by IAI and is defined by the sum of the Taxi-cab 

no1rms aj "" :r j + I ajj I of the column vectors of !, j "" 1, • • • , n. 

Setting 

and letting T ~ T , defined by (4.34) as 

one obtains 

Now from Definition 4.1, the norms of column vectors of A may be 

computed by 

n 
aj "" l' aij, j "" 1, • • • , n 

i•l 

(4.50) 

(4.52) 

(4.53) 

f 
the maximum aj being the lower eigenvalue bound a of the matrix ! ~see 

Equation 4.10)). The norm of! may therefore be represented by 

l!l "" na. (4.54) 

Then (4.52) may be written as 

(4.55) 
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and using the fact that 

(4.56) 

Equation (4.55) becomes 

Letting T' • T • T-, and solving ford, one obtains 

(4.58) 

-d But the value of (naolO ) is sufficiently large for the exponential 

term to be approximated by unity, resulting in 

(4.59) 

For k • 2, this result gives a bound on the arithmetic precision 

required for approximating (4.47) by 

(4,60) 

where Equation (4.60) prescribes the approximation (3,59) of the exact 

relationship between the matrix of coefficients A• the state transition 

matrix ~~ and the sample period t. 

For the preceding example, with n • 3, a • 190, and 6 • 2, the 

inequality of (4.59) yields d > 4o6 (or d • 5) in order to approximate 

the state transition matrix by two terms in the exponential series as 

in (4.60). 

The use of the algorithm for the single-dose method of 



identification has been based upon the new deterministic theory of 

sampling presented in this chaptero_ Bounds were given on the sample 

period for data collection which depend upon the arithmetic precision 

of the data, the dimension of the ecosystem, and its maximum turnover. 

The application of the sampling theory is primarily intended for 

laboratory ecosystems, although the results may be extended to natural 

systemso 
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CHAPTER V 

IDENTIFIABILITY 

Introduction 

Before implementation of the identification algorithm, conditions 

should be investigated that will ensure the uniqueness of a numerical 

estimation of the associated parameters. A priori knowledge of which 

and/or how many parameters of the flow matri~ ! can be determined by 

means of the chosen input-output experiment is termed identifiability 

(Cobelli, 1976). If the internal couplings cannot be uniquely deter­

mined, changes in the mathematical model structure or the experiment 

itself must be modified. Therefore, an identifiability analysis may be 

considered as a necessary step preceding identification. 

Often, identification is derived from numerical values of a few 

known parameters and is reduced to a problem of state estimation in 

which it is natural to deal with identifiability in a probabilistic 

manner. Identifiability in such stochastic systems may be defined by 

the existence of an estimator (Tse, 1973, 1978) or by the uniqueness of 

the probability distribution function (Bowden, 1973). A survey of 

similar investigations is provided by Reid (1977). In the study of 

biological systems, identification often depends upon a priori knowledge 

of the model structure (at least order); and it is appropriate to use a 

deterministic canonical system approach to the determinati~n of .. model 
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paramete~so Othe~ approaches to the problem include parametrization 

(Glover» 1974) and parameter sensitivity analysis (Reid~ 1977), which 

are both closely related to transfer function methods. 

An explicit discussion of the problem of structural identifiability 

in the frequency domain is given by Bellman and Astrom (1970) where they 

propose the use of the transfer function to investigate identifiability. 

Consider the system 

x<t> = A2f.<t> + ! E.<t> (S.la) 

I,(t) ... f. ,!_(t) (S.lb)' 

which is the linear compartment model defined by (3ol) with a single-

dose input ~(t)» where ~(t) is an ~vector of measurements of the state 

~, and £ is a p x n connectivity matrix of the form 

(5. 2) 

and 

n 
l cij • 1 

j•l 

for all i • 1, o o • , p. Let !(s) be the Laplace transform of ~(t) and 

U(s) that of u(t)o Then - -
!(s) • Q(s) !!,(s) (So3) 

where Q(s) is the transfer matrix given by 

Q.(s) • f(s.!, - JJ-1 ! (5o4) 

and 1 is the n-th order identity matrix. The problem of identifying the 
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flow matrix ! from the experimental data may be reduced to that of 

identifying the coefficients of the transfer matrix, each coefficient , 

being a combination of the elements of !o Therefore, the ! matrix is 

identifiable when this nonlinear system of equations has a unique 

solution. 

Lin and Yu (1977) considered the single input and single output 

special ~ase of (5.1) in canonical form, where! is the companion matrix 

asso~iated with the characteristic polynomial 

(5. 5) 

and 

(5o6) 

!T "" [0 0 • o o 1] (5.~) 

This leads to a scalar input/output formulation for (5o3) in which G(s) 

contains 2n unknown parameters (n poles, n-1 zeros, and a gain factor). 

The identification of these parameters is demonstrated by a time series 

analysis of the output variable given by 

~~t ~nt 
y(t) • y 1 e + .• Q + Yn e 

A numerical algorithm called Prony's method (Hildebrand, 1974) is 

applied to y(t) in order to resolve the parameters ).i and yi of the 

exponential curve fit. The ).i and Yi parameters are then shown to 

uniquely determine the 2~ unknown parameters of G(s)o 

The precise definition of identifiability provided by Bellman and 

Astrom (1970) is equivalent to saying that the pa~ameters of ! are 
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identifiable only if any change in the values of the coefficients causes 

a change in the measured quantities .2_(t) o Thus, a necessary condition 

fer identifiability is that a system be controllable and observable in 

the sense of Kalman (1963)o 

Definition 5.1 

A linear system is said to be completely state controllable if for 

any initial state at t 0 it can be driven to any other state in the state 

space at t .., T. 

Definition 5.2 

A linear system is said to be completely output controllable if it 

is possible to drive any initial output at t 0 to any final output in a 

finite time intervale 

Definition 5. 3 

A linear system is said to be completely observable if for every 

initial time t 0 and some finite time T1 , t 0 ~ t ~ T1 every initial 

state at t 0 can be determined from the knowledge of the output on 

t 0 !, t ~ T. 

Rigorous treatments on the properties of controllability and 

observability can be found in system theory literature (Kalman, 1963; 

Luenberger, l9p3; Lee, 1964; Ogata, 1967; and Chen, 1970). In the 

following, these properties will be considered as they apply to the 

previously discussed methods of identification for compartmental modelso 
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Direct Method 

Assume that a single dose of tracer may be directly inserted via 

special routes into system compartments and that tracer behavior can be 

experimentally monitored in specified compartments when the system is 

switched to a tracer-free environment. The controllability and observa-

bility of such a system has been explicitly discussed by Bellman and 

Astrom (1970) and Johnson (1976). 

A system described by (5.1) is controllable if and only if the 

~olumn vectors of the n x nm test matrix 

0 • : An-1 ]!] (5. 8) 
0 

span the n~dimensional space on which ~(t) is defined. In other words, 

~must be of rank n if the system is to be controllable (Kalman, 1963). 

Definition 5.4 

A system is open (closed) when there is some (no) exchange of 

material from the system either to the environment or to another 

subsystem. 

Using the properties of the controllability matrix lc• Johnson 

(1976) shows that closed systems are uncontrollable regardless of their 

structure. Open systems are also examined and are found to be control-

lable, in general, if the matrix flow matrix!. is of rank n or (n - 1) 
I 

and at least one flow between the system and its environment is 

controlled. Necessary conditions for complete controllability can also 

be derived from physical reas9ning. Cobelli and Romanin-Jacur (1976) 

adopt a structural point of view by relating controllability and 
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observability of compartmental systems to their experimental designo A 

system is shown to be completely controllable only if there exists at 

least one path from some input to every compartment. In addition, it 

should be noted that the specification of bounds on the controlled 

elements implies that a system otherwise completely controllable must 

now have a restricted range of controllability in state spaceo 

The concept of observability of a dynamic system is associated with 

the processing of data obtained from measurements on the system. 

Analagous to the test for controllability, Kalman (1963) has shown that 

a linear, time-invariant system defined by (Sol) is observable if and 

only if the n x np matrix 

0 0 • 

is of rank n. If there is only one output (p • 1), then a necessary and 

sufficient condition for observability is that Eo be non-singular. The 

test for observability may be applied to compartmental models by utiliz-

ing techniques that were employed when discussing controllability. 

Upon inspection of the definition of observability, it is clear that 

observability does not depend upon the controlled input matrix, but 

rather on the output matrix. A linear compartment model, in the struc­

tural sense, is completely observable if at least one output is reach­

able from every compartment. It is also necessary that no outputs be 

associated with only the state variables which form one or more traps, 

all influencing the same outputs (Cobelli and Romanin-Jacur, 1976). 

Definition 5.5 

A subsystem of compartments which receives input from the remainder 
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of the system, but has no transfers out of the subsystem from any of its 

compartments~ is called a trapo A trap may also be called a closed 

S\Ulbsystem. 

It is important to mention that the conditions given for control­

lability and observability are not sufficient; that is~ the preceding 

conditions neither guarantee the identifiability of !:_, nor are the 

elements of ! in the uncon~rollable and u.mobservable part of the system 

necessarily unidentifiable. Counter-examples which clarify these points 

a~e considered by Distefano (1977). Bellman and Astrom (1970) emphasize 

the difficulty of the problem of identifiability; and since that time, 

only necessary conditions have been related in the literature. Cobelli 

s.nd Romanin-Jacur (1976) give criteria for sufficient conditions, but a 

cl~se study (Delforge, 1977) shows by counter-example that the proposed 

criteria are necessary, but not sufficiento The problem reduces to a 

recurring mathematical question which asks how many solutions a set of 

nonlinear equations has. 

Let ! be unidentifiable. Then it may be possible to formulate an 

experiment to show that a subset of compartmental levels can be control­

lable even when the system fails to meet controllability and observa­

bility requirements (Johnson, 1976). For example, consider a system in 

which certain states are, for biological reasons, not acc~ssible and 

their evalu~tion, according to the structural identifiability tests, 

not possible. If a feasible experimental condition can be obtained by 

adding a new input, thereby yielding necessary conditions, the system 

may be considered identifiable (Milanese, 1976)~ Also, it has been 

suggested that the simplest way to deal with a multicompartment system 

is to ignore closed subsystems if possible, because any or all of the 
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tr~ps can be deleted without altering the behavior of the rest of the 

system (Thron, 1972). In general, this is possible with regard to 

measurements on compartments of completely open subsystems; and most 

systems utilizing the direct method for identification of the ! matrix 

would fall into this categoryo However, certain observations, such as 

the kinetics of urinary excretion, require the use of an indirect 

measurement; and hence the accumulation pools may not be excluded. 

Necessary conditions for identifiability are therefore derived for the 

indirect algorithm. 

Indirect Method 

The necessary conditions given for controllability and observa-

bility of a system for the direct identification algorithm imply that 

any modeling of a real system with one or more compartments acting as 

stores for the system may not be identifiable. With the indirect 

scheme, the observer states ~ form a set of flows disjoint from the 

internal couplings, each accumulation compartment being a singular trapo 

In this section, criteria are investigated for controllability and 

observability related to compartmental structure of a system having t 

accumulation pools (1 ~ n) from which all observations are to be made. 

The local model of (3.1) is again incorporated along with the linear 

observer of (3o40)o By rewriting the system as 

(So lOa) 

·~· 

the total system behavior may be explored~ Now define the measurement 

vector z as follows: -
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~ ... [0 11 r ~] 0 (5 .lOb) 

L.Y. 

Measurements are to be taken from each of the 1 observer stateso The 

system described by (5.10) is controllable if and only if the 

partitioned matrix 

0 

spans the (t + n) state space on which the system is defined, where the 

two t x nm submatrices 11 and £2 are called the upper and lower parti-

tions, respectively, of the controllability matrixo Now if !ic is of 

rank t + n, then ! 1 and P~ must both be of full ranko Note that the 

upper partition of the controllability matrix is the same test matrix as 

that for the direct method (see (So8))o Thus, as with the direct 

method, if there is no path from any input to compartment i, then the 

i-th row of the controllability matrix is identically null, as no input 

enters compartment io Next consider the lower partition of the matrix 

tico If, in addition to the aforementioned condition, there is no 

accumulation compartment that can be reached from a given compartment i, 

then every element of the i-th row of the controllability matrix is null 

as no pool is influenced by the state variable associated with the i-th 

compartment. 

For a clearer understanding of the observer portion of the con­

trollability matrix, consider the dynamic states ~ to be continuous 

observations rather than accumulation poolso Then from Kalman (1963) 
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and the definition of output controllability~ the system is said to be 

c~mpletely output controllable i,f and only if the composite matrix 

•'If' 
[KB • KA • KA2 • • •• KAn•lB • D] P • _o__]!e_l!,o o o ~ ._ _ 

-oc .• o o 
(5.12) 

is of the same rank as the row order. of !,, where Q is the connectivity 

matrix which constitutes direct transmission from~ to z in Equation 

(SolO). The existence of a direct input into any accumulation pool is 

not assumed to exist, that is, Q '"" Q. In fact, if the same compartment 

is available for insertion and observation of tr.acer ® identification 

requires that the associated flow matrix be irreducible (Smith, 1976); 

whereas the flow matrix for the indiretet identification sche1ue is 

reducible. Thus, tracer must be injected into the internal system~ 

and not into the observer ~· If the rank of the 1 x nm matrix 

P • [0 • KB • KAB • KA2B • o o o o KAn=2B] :!:..:2, _(!)_o_o~-o o~ _ 

is of rank t, then the rank of the 1 x nm matrix £oc given by (5.12) is 

necessarily t. Notice that state controllability is neither necessary 

nor sufficient for output controllability. 

The discussion of indirect controllability to this point has relied 

upon the knowledge of the rank of lie which is not customarily known 

when discussing identifiability. Conditions must be placed upon the 

submatrices t 1 and ~ such that the indirect controllability matrix will 

be of rank t + n, giving a necessary condition for identifiability. 

Definition 5. 6 

A system is said to be reduced controllable if and only if the rank 

of the matrix !k where 
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0 0 0 0 k 
P • [B • AB o A2B o •• o o A =ls] 
~- ~ - -- - ~ ~ 0 0 0 0 

is n for k < no The smallest possible integer k for which Ek is of rank 

n will be called the reduced order. Sufficient conditions for the con-

trollability matrix ~c to be of the desired rank followG 

Definition 5~ 7 

Two m x n matrices are defined to be equivalent if and only if one 

may be transformed into the other by non-singular elementary row and 

~~lumn transformations. If A and ! are equivalent, we write 

(50 15) 

Theorem 5. 1 

A system given by (5ol) in which measurements are obtained from 1 

accumulation pools is controllable if the test matrix !ic (5.11) of the 

system is such that 
""· 

(i) The upper partition ~l is a reduced controllability matrix ~ 

with 2k < n - 1, where n is the rank of ! and k is the reduced 

order of the controllability matrix; and 

(ii) KAkP is of rank 1. 
-~ 

Proof: Rewrite the indirect controllability matrix as 

!tc• 

0 

~ 0 • 0 • o k+ 1 • o •• ·~-1 B ] .A B ••• ,. - - - -
gk•lB : !Ak! o • o • : !S!n-2! 

• 
• • • • • 
• 

(5.16) 

Now if the matrix 11 is reduced controllable, then lk is of rank n where 
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0 0 0 k ] p,_ • []! o !!!, o o o o • A B o 
...... 0 0 0--~ 

Since lit is of rank n, then EJ. is of rank n and 

E 
E,l ... [.!. : Q] (5 .18) 

• 

where ! is the n-th order identity matrixo Next multiply the matrix !k 
k by ~ , yielding 

: KA2kB] 
0 Q 0 0 . -- (5ol9) 

' If 2k < n - 1, then 2k is at most n - 2 so that if ~ is of rank ~. then 

(5o20) 

is of rank ~o (Recall that the rank of a product is less than or equal 
II 

to the rank of either matrix. Therefore, the matrix Ek is at most of 

rank R.o) Notice that ~ C$tl be rewritten as 

• 
P .. [0 • _KB • 
"""2. - 0 

0 0 0 

o II 

• 0 •• ~] (5o21) 

' and if ~ is of rank n, then 

P ! [0: I'] (5o22) 
~ - -• 

where l' is the t-th order identity matrixo Therefore, 

(5.23) 

where£' ia an (n + R.) x (n + R.) identity matrix. Thus, the indirect 

controllability matrix ~c is of rank (n + t) which is a necessary and 

sufficient condition for controllabilityo 
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TWo special cases of the indirect controllability matrix are to be 

inwestigated. 

Case 1. If ! and Y. are non-singular, then the matrix .f.tc is of 

rank 1 + n. This result follows because ~c can be regularly parti­

tioned into a triangular block matrix 

E [! .Q. ] p.i = -•C 
0 KB --

(5.24) 

which is non-singular if and only if each diagonal box is non-singular 

(Parker and Eaves, 1960). 

Case 2. If K is the n x n accumulative flow matrix of (5.10) -
which is used in the indirect algorithm, ! is non-singular because all 

flows are on the diagonal. Now if the matrix ! is multiplied on either 

side by a non-singular matrix, the product has the same rank of !o 

That is, the rank of !SA is n. k 
It follows that the rank of ~ is n and 

if fk is of rank n, then !Aklk is of rank n. In Theorem (5.1), the 

matrix~~ had to be of the rank of !• Therefore, in the special 

case where there is an accumulation pool for each compartment, this 

condition is automatically satisfiedo 

Theorem 5.2 

For indirect identification, there must be at least two inputs to 

the compartmental system. 

Proof: The number of accumulation pools within a system is 

assumed to be less than or equal to the number of compartments in the 

. I 
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system. That is, t ~no In addition, the number of rows in lie must 

be at most equal to the number of compartments n times the number of 

inputs m, or 

R. + n ~ nm. 

Now divide both sides of (5.19) by n, yielding 

! + 1 < m, 
n -

but since R. < n, then ! < 1 and unless R. = 0 (which is the direct - n-

method), m < 2 because there can be no partial inputs. 

Measurements of the accumulation pools are to be obtained for 

identification of the system of equations (SolO). In order for the 

system to be observable in the sense of Kalman (1963), it is necessary 

and sufficient that the test matrix 

[
E_3 ] [.Q. : KT : r.. .. - . . --•o , 
!t. l·Q· 

o e 

AT¥} : • • • : !Tn-2!?] 

.Q. • • • • • .Q. 
• 

(5. 27) 

is of rank n + 1 where l' is the 1-th order identity matrix. Note that 

if the submatrix f.s is of rank n, then 

[.Q. 11 (5. 28) 

where 1 is the n-th order identity matrix and hence, 

(5.29) 

giving an equivalent (n + t) x (n + R.) identity matrix. Thus, for ~0 

to be of the desired rank, ~ must be of rank n. By considering the 
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~t~tes ~ as continuous observations of the internal states ~' the 

ne~essary conditions presented by Cobelli and Romanin=Jacur (1976) for 

obserwability for the direct algorithm may be applied to the indirect 

schemeo In the structural sense~ ~he indire~t model is ~ompletely 

~beeJr'\V&llble if at least one flOtW to an accumulation compartment is 

~e~~hable from every internal ~ompa~tmento In addition, no a~cumulative 

fl©ws may be associated with only the internal state variables which 

f~~ID ~ne or m~re traps, all influen~ing the same poclo 

Combined Dire~t=Indirect 

Applications of the dire~t and indi.rect algodthms may tend to 

@~e~lap in certain systemso An introduced (labeled) substance may 

mett<ll!b~lize and accumulatep along with its metabolites, in one or more 

pools and also be directly measurable as an output f~om compartments 

within the system itself. In another system, the outputs available for 

dat~ ~ollection might be the sum of observations from a compartment and 

it2 a~~umulation pool. 

The method in which the observations are made is not involved in 

~©Jlllitl:rollability whi~h is concerned with the flow of the inputs, so the 

indire~t controllability conditions suffice for the combined measurement 

il;:el(;;hniqueQ 

Observability of the two types of combined systems will be dis­

cussed in this section. Requirements for observability are straight­

forws.lt'do First consider the system of (SolO) where the measurement 

vect~r is of the form 

(5o30) 
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Meas~rements are to be collected from both system compartments and 

a~C~e:umulation pools. The system is observable if and only if the test 

matrix 

fui"" 
[ ~: cT : tlcT : • :. 

.. 

• ~.,...TT• 
• '--Jt·x.)n-lcT • 0 K~ A K -..n. • . 0 0 0 0 0 

~....., -~ 

is of rank p + 1 where I is an 1-th order identity matrix. Define the 

upper partition to be 

' . 
~i '"' [.Q. : E.s • ~ l (5.32) 

and notice that P5 is the observability matrix fo for the direct 

algorithm, while ~ is the observability matrix P~0 for the indirect 

scheme for identification. The system is completely observable if the 

conditions for direct observability are satisfied because !s would be 

of rank p, making the system 

p ! [.!.' .Q. ~] 
~i 0 .!. .Q. 

(5.33) 

of rank p where.!.' and.!. are p-th order and t-th order identity matrices, 

respectively. Also, if there are as many (or more) accumulation pools 

as directly measurable states (p), and the conditions for indirect 

observability hold, then the system is of the form 

P ! [!' .Q. !s] 
~i 0 I 0 - --

(5.34) 

and the desired rank is obtained, In addition, if the two test matrices 
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(direct and indirect) combine to form a matrix !7 of rank p, the system 

be~omes 

[ Q Xs ] E [l' .Q.J !cti - ... 
!. Q Q l 

(5.35) 

and the necessary and sufficient conditions for identifiability are 

fulfilled. 

Consider next a system which has as its output the sum of observa-

tionso In this combined case, the measurement vector for the system is 

(5.36) 

.end the system is said to be observable in the sense of Kalman (1963) 

only if the test matrix 

T • • Ps • [C • ATcT 
~ - 0 ---

• • 0 • 0 • 

(So 37) 

is of rank p. Thus, system is observable if the sum of observability 

matrices for the direct and indirect algorithms is of rank p. However, 

two matrices of different orders cannot be added, so in order for the 

test matrix '£.s to be defined, the number of direct ob~ervations,. p, must 

equal the number of accumulation pools, t. 

Summary 

This chapter has shown how the concepts of observability and con-

trollability can be used as necessary conditions for the structural 

identifiability of a system. For the direct method of identification 



discussed in Chapter III, closed systems are uncontrollable for any 

system. Observability and controllability conditions for open systems 

as discussed by Cobelli and Romanin-Jacur (1976) have been reviewed. 
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The necessary conditions for direct identifiability have also been shown 

to be applicable to the indirect identification scheme of Chapter IIIo 

By formulating the problem of controllability of the accumulation pools 

as one of output controllability, additional conditions for indirect 

controllability have been derived by using the Kalman test matrixo 

Finally, structural identifiability conditions have been considered for 

systems in which the indirect and direct schemes overlap. 



CHAPTER VI 

CONSTANT INFUSION 

Introduction 

A constant.infusion input has occasionally been used in order to 

label compartments to a high specific activity. The constant influx of 

tracer was probably first incorporated by Hevesey and Hahn (1940) to 
. . 

obtain high concentrations of 32P-phosphate in plasma. Hevesey and 

Hahn, however, were not interested in analyzing the data to determine 

model parameters. Constant infusion is also used w~en there are prob-

lems with incomplete and non-instantaneous mixing within compartments, 

usually due to spacial heterogeneities. Shipley and Clark (1972) 

present textbook cases in which the method and its usage are discussed. 

Assuming that the chronic infusion of tracer does not disturb the 

behavior of the recipient compartments, then the constant input level 

of Table I, part (b), gives rise to a steady-state defined by~· 

The constant infusion method as discussed in Chapter III is based 

upon the compartment model defined by (3.1) as 

0 

.! +b.!+ !Y.· (6.1) 

Linearly independent inputs generate an ensemble of linearly independent 

steady-state samples of the system state .! from which the coefficients 

of the matrix of rate coefficients may be determined. 
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Constant Infusion Identifiability 

When in steady-state, the system of (6.1) can be described by 

.Q. = Ax + Bu. (6.2) 

Recall that ~ is an n-vector of compartmental states, ~ is an m-vector 

of specified inputs, and B is ann x m matrix where 

and 
n r bi. = lo 

i=l J 

Let .:!:!,1 , u2 , • • . , Em span Rm. Assuming that the compartmental system 

i h A- .. 1 xi h s open so t at e sts, t en ~1 , x2 , ••• , ~ span at most an m-

dimensional subspace of Rn where 

A ~ = -ll ~ k ,.. 1 , • • • , m. (6. 3) 

Now set 

-B ~ • ~ k • 1, •• ~ , m (6.4) 

which results in 

(6.5) 

where the n x m matrices 

.! - [.!,p 1i2 ' • • • , .!m 1 (6.6) 

and 

li • [!,p !.2' • 0 • ' !.ml (6. 7) 
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are both of rank m. Taking the transpose of each side of Equation (6.5) 

gives 

(6. 8) 

Next define the n-vector ak to be the k-th column of !T such that 

(6.9) 

The vectors~ define the unknown system parameters, i.e., the rate 

coefficients of the compartment model. Thus, 

T X ~ = !k k ~ 1, • • • , n (6.10) 

where ~ is the m-vector of the k-th column of 

(6.11) 

where 

(6.12) 

and rank (!~ • m. It should be noted that the vectors .!k and .!k· of 

(6.10) are completely determined by the compartmental inputs. That is, 

~ represents the k-th row of ! giving endogenous inputs to the compart­

ment, and~ defines the possibility of an exogenous input to compart­

ment k. 

Identifiability related to the system structure for a multi-input/ 

multi-output system where all states can be measured directly is to be 

considered first. The system is structurally identifiable when the 

number of paramet.ers that can be. estimated is not smaller than the 

number of unknown system parameters in the algebraic equation (6.5). 
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Only compartment models which are open to their environment are 

considered in this chapter because closed systems with constant rate 

inputs accumulate material at a constant rate, never reaching steady-

state. This condition does not prohibit the closure of an individual 

compartment or groups of compartments as long as they do not form a de-

coupled subsystem. The !-matrix for an open system is characterized by 

a nonzero determinant. This result implies that in the special case 

when the inputs~ (k • 1, ••• , n) span Rn, the resultant steady­

states ~ (k ~ 1, ••• , n) also span Rn and !-1 exists. Hence, the 

matrix equation (6.5) can be solved by multiplying on the right by x- 1 , 

giving! • ~-1 • Input access to every compartment in the system and 

the ability to measure all compartmental steady-states then imply 

structural identifiability. These sufficient conditions are only rarely 

met in practice, requiring for biochemical systems the organic synthesis 

of tracer material for all chemical species present in the system. For 

ecological systems, only a few natural input pathways to the system 

exist with many compartments being essentially inaccessible. Therefore, 

the remainder of this chapter concerns the development of conditions 

which relate identifiability to system structure with restricted co~ 

partmental access. 

Theorem 6.1 

A compartmental system is identifiable only if there exists at 

least one path from some constant input to every compartment. 
' 

Proof: By contradiction, if there is no path from any input to 

one or more compartments, then for all k, Equation (6.3) can be 
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partitioned as 

(6.13) 

Hence, the following relationships arise: 

(6 .14) 

and 

A3 x. = 0.-
- ---K2 -

(6.15) 

But A= 1 exists, that is, there are no closed subsyst~ms; and the vector 
-3 

~ is identically null. Thus, regardless of the values of the elements 
2 

comprising A3 , the model parameters contained in ! 3 and ! 2 cannot be 

identified by solving equations of the form (6.10). Thus, structural 

identifiability depends on the ability inputs to reach every compartment. 

Theorem 6.2 

A system is identifiable by the constant infusion method only if 

at least one outlet to the environment is reachable from every compart-

ment along any path. 

Proof: By contradiction, if no system outlets can be reached from 

compartment m, then this compartment and all compartments coupled to it 

continuously accumulate material without reaching a steady-state. This, 

of course, prohibits identification using (6.5). 

The preceding concepts of structural identifiability based upon the 

data derived from constant infusion experiments parallel those already 

known for the single-dose method (see Chapter V). However, the solution 
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of the identification problem of a constant input applied to a system is 

further constrained by the static nature of the resultant steady~stateo 

Indeed, as will be shown, the dynamic systems concept of observability 

plays no role in solving this algebraic problemo 

Theorem 6.3 

For m exogenous inputs ~ to an identifiable compartmental system. 

there can be at most (m-1) endogenous inputs to any single compartment k. 

Proof: For m inputs into a system, Equation (6.10) produces m 

independent equations in the n unknown parameters of !ko But at most m 

v.mknowns can be determined from the solution of m independent equations o 

Re~all that the k-th entry in the n-vector !k represents the turnover 

of the k-th compartment. If the compartment turnover is to be esti-

mated, then at most m - 1 of the endogenous inputs to the k-th compart-

ment (the remaining entries in !k) can be identified. Thus, form in-

puts to a system, there can be at most m - 1 endogenous inputs to a 

single compartment. 

The (n - m) compartments K without exogenous inputs produce m 

dependent equations of the form 

- 0 - (6.16) 

where~ is defined as in (6.10). Therefore, (n- m) additional 

equations are needed for the solution of (6.5). The necessary equations 

may be obtained from each of the (n - m) compartments ~ in one of the 

following ways: 

1. Turnover of ~ must be known from an independent measurement 
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of a priori knowledge of the compartmental turnover, giving the 

K-th entry in~· 

2. Flow out of the compartment to the environment must be deter-

mined for an open compartment. 

3. A closed compartment offers an additional independent equation 

given by the null column sum 

(6.17) 

where aiK (i • 1, ••• , n) define the components of ~· 

Consider the three-compartment system of Figure 5 which gives an 

A=matrix of unknown system parameters of the form 

(6 .18) 

Assume the two exogenous inputs u1 and u2 drive the system to a steady-

state, resulting in the following equation of the form of (6.12): 

0 au 0 al3 xl 1 0 

[ :: J 0 ... a21 8 22 0 X2 + 0 1 (6.19) 

0 0 832 a33 X3 0 0 

Performing m • 2 experiments with two linearly independent constant 

inputs generates the ensemble of steady-states given by (6,5) as 

a 11 o 

. - (6.20) 

0 0 0 



I~ , 
.. xl ·- x2 .. x3 I - -

·~ 

Figure 5. Hypethetical Three-Celllf>artment System 
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Taking the transpose of each side yields 

[xll x21 x31] all a21 0 ["11 u21 :] X12 X22 X32 0 a22 a32 = - ul2 u22 (6.21) 

a13 0 aaa 

which is the matrix form of the following three sets of equations in the 

six unknown rate coefficients: 

xu au + x31 a13 = -uu } x12 all + x32 al3 .. -u12 
(6.22) 

for the first column of A, 

xu a21 + x21 a22 = -u21 } x12 a21 + x22 a22 • -u22 
(6. 23) 

for the second column, and 

x21 a32 + X31 a33 • 0 } x22 a32 + X32 a33 • 0 
(6.24) 

for the third column. The system may be tested for identifiability by 

inspecting the necessary conditions provided in this section. There is 

a path from some input to every compartment; and one outlet to the 

environment is reachable from every compartment, thus satisfying 

Theorems 6 .1 and 6. 2. The system has two exogenous inputs and at most 

one (m - 1) endogenous input to a single compa~tment. Notice that the 

sets of equations (6.22) and (6.23) have a unique solution if and only 

if 
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; 0 and .; o. (6.25) 

Furthermore, Equation (6.24) has a nontrivial solution if and only if 

= o. (6.26) 

These conditions are required for identifiability and are obtained when 

the X-matrix of steady-states has row rank of m = 2, and the individual 

state vectors can lie anywhere in the m-dimensional subspace of the 

state space Rn. A sufficient condition for these constraints on the!­

matrix of steady-states is provided by the controllability of (!, ]). 

Equations (6.22), (6.23), and (6.24) can provide £,ive independent 

equations in the six unknown entries in the !-matrix. Thus, with this 

example, it is clear that knowledge of the turnover a33 of compartment 3, 

or the exogenous flow (a33 + a 13 )x3 from compartment 3, provide the 

identification of the systems model. It is also clear that closure of 

compartment 3 gives 

(6.27) 

which along with (6.22) and (6.23) and one equation drawn from (6.24), 

defines six independent equations in the six unknown entries in !• 

If the compartment(s) without an exogenous input is (are) not 

closed, it may be difficult, if not impossible, to identify the compart­

ment model from steady-state measurements alone. In such cases, it may 

be useful to define the maximum identifiable sub-model of the system. 

The identifiable sub-model parameter matrix Amax consists of all 
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transfers associated only with compartments which are either closed or 

have exogenous inputs. The dimension of the sub-model being (m + c) 

where c is equal to the number of compartments without an input or a 

flow to the environment. For example, consider the system of Figure 5 

with an additional flow from compartment 3 to the environment& The 

matrix of rate, coefficients for maximum identifiable sub-model is 

(6. 28) 

The identifiability of this sub-model depends only on the measurement 

of steady-states. In order to identify the full system model, an 

experimental design which incorporates material flow measurements must 

be implemented. 

As a practical matter, it is often true that the closure of a com­

partment indicates its inaccessibility with respect to exogenous inputs~ 

Thus, the case when (m +c) • n is important in the applications of the 

theory of structural identifiability. For this case the following 

theorem gives sufficient conditions for identifiability. 

Theorem 6.4 

An open compartment model with m inputs is identifiable provided: 

1. The pair (!, !) is controllable. 

2. A maximum of (m - 1) endogenous inputs enter each of the m 

compartments. 

3. The (n - m) compartments without exogenous inputs .are closed. 

Proof: Because ~' !) is controllable, the row rank of !T is m, 

tonin
Typewritten Text
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and 

xT !k c !k k = 1, 2, ••• , m (6.29) 

has a unique solution for the m2 unknowns in the n-vectors !k• Also, 

the controllability of (!, B) along with the fact that ! is open 

implies that 

T .! .!tt+m=.Q. k= 1, 2, 0 •• 'c (6.30) 

where c = n - m, gives c(m - 1) equations in em unknowns. These results 

follow from the fact that controllability implies an input to (6.1) can 

produce an arbitrary steady-state which is not constrained to lie in a 

proper sub-space of Rn. Also, since A is open without closed proper 

subsystems, the resultant coefficient matrix (see (6.24)) of (6.30) is 

of rank (m- 1). So, Equations (6.29) and (6.30) give 

m2 + c(m - 1) = mn - c (6. 31) 

independent equations in nm unknowns. However, c compartments are 

closed, yielding c independent equations for the columns of !• Thus, 

the solution of the resultant set of mn linearly independent equations 

gives the desired nm rate coefficients comprising the a-matrix. 

Now consider the case in which some states cannot be measured 

directly. It will be shown by example that it is impossible to identify 

all unknown parameters unless there is access to every compartment, 

Assume that measurements can be taken only from compartments 1 and 2 of 

Figure 5. The ensemble measurement matdx X. may be given by 

(6.32) 

where£ is defined by (5.2), res~lting in 



[::: ::: J -[ : : : ] 
xu xl2 

x21 x22 

x31 x32 

100 

(6.33) 

substituting the measured values Y into the system of (6.20) gives the 

system 

Yn au + X31 a13 = -un 

Yn a21 + y21 a22 = -u21 

Y21 a32 + x31 a33 = 0 (6. 34) 

Y12 all + x32 a13 = -u12 

yl2 a21 + y22 a22 = -u22 

with the additional equation a13 + a33 = 0 provided by (6.24). Notice 

that the result is a set of six linearly independent equations with 

eight unknowns since the values of x31 and x32 cannot be measured. 

Although the parameters associated with compartments which are 

immeasurable cannot be estimated, again, a maximum sub-model can be 

identified. The identifiable sub-model flow matrix is composed of those 

parameters associated onli with those compartments which can be measured 

directly and satisfy conditions given when all states are measurable. 

Thus, for Figure 5, the maximum identifiable sub-model flow matrix ~ax 

is that of (6.25). 

Summary 

Controllability of the system (6.1) allows the exogenous inputs to 

produce arbitrary steady-state values anywhere in state space resulting 

in sufficient, but not necessary, conditions for the structural 
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identifiability of the system when direct measurements can be obtained 

from every compartment. There is, however, no need to investigate the 

observability of the system as this concept plays no role in solving the 

problems of constant infusion identifiability. 

Although the conclusions on identifiability for the constant­

infusion method are somewhat limited by system structure and the lack 

of necessary conditions, it should be pointed out that the prevalent 

notion th~t "identification of dynamic parameters on the basis of 

measurements is only possible if the measurements are taken when the 

system is in a transient state" (Graupe, 1976, p. 7) is erroneous; 

because indeed, complete sets of parameters can be identified when the 

system is in steady-state under conditions which are often·met in 

practice. 



CHAPTER VII 

EXAMPLES 

Introduction 

The identification algorithm and its associated sampling strategy 

are suited to a wide variety of identification problems in biological 

and ecological systems. In order to illustrate the use of the identifi­

cation scheme, its implementation as a computer algorithm, the developed 

sampling theory, and the concepts of identifiability, several elementary 

examples of both laboratory and natural ecosystems are considered. 

Some sample problems are from the literature and others have been 

specially selected to exhibit the variety of forms in which the problems 

may be posed and the capabilities of the material given in the fore­

going chapters. 

Direct Method 

Serving as a first example is the analysis by Rescigno and Segre 

(1962) of the work by Barnum and Huseby (1950) on the kinetics of in­

organic phosphorus and pentose nucleic phosphorus in the liver nuclei 

of mice injected with radiophosphorus. Figure 6 indi,cates transfer 

(a21 ) between inorganic phosphorus (x1) and pentose nucleic phosphorus 

(x2) which Rescigno and Segre compute as 0.1 per hr. They also compute 

the turnover a22 to be 0.5 per hr. Using the published time series 

102 
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specific activity data in the identification scheme of Equation (3. 37), 

values of a21 • 0.11 per hr. and a22 = 0.33 per hr. are obtained. These 

calculations represent differences of 10 percent between transfers (a21 ) 

and 34 percent for the turnovers (a22)o The rather large discrepancy is 

probably due to a precursor compartment missing from the experimental 

data (Barnum and Huseby, 1950). It may be that identification with 

(3o 37) is more sensitive to the missin-g precursor, which is probably 

extracellular inorganic phosphorus, than the scheme employed by Rescigno 

and Segre. The missing precursor would have little effect on the 

transfer a21 as indicated. 

For another example which provides a better agreement between 

identification schemes, recall the work of Welch, Adatepe, and Potchen 

(1965) on technetium kinetics in humans. Figure 7 gives the compart-

mental model under consideration. Welch and his colleagues produce 

a12 • 1. 7 per hr., a21 • l.47 per hr., and a01 • 0.9 per hre for the 

model rate coefficients, while Equation (3.37) gives the! matrix of 

the following system: 

(7 .1) 

which gives a12 • 1.66 per hr., a21 • lo46 per hr., and a01 • 0.16 per 

hro for a maximum difference of under 16 percent. Actually, with this 

example, the two turnovers a11 and a22 exhibit discrepanci~s of under 

five percent. 
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Figure 7. Analysis of Technetium Kinetics 
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Indirect Method 

Next consider the study of Nelson and O'Reilly (1960) on the 

kinetics of sulfisoxazole acetylation and excretion in humans. This 

research provides an example of the utility of the indirect method of 

transfer rate identification by studying the urinary excretion of the 

sulfa-drug (x1) and its metabolite (x2 ) following the administration of 

a single d9se to man. Using observer time series data of the 

accumulated free drug (Y 1) and the collected acetylated drug (Y2), the 

identification algorithm of (3.55) produced the compartment model of 

Figure 8, the behavior of which is determined by a system with the 

following ! matrix: 

! = [-0.13 -0.003] 

0.05 -0.8 

Nelson and O'Reilly determined the rate_coefficients by graphical 

analyses and obtained comparative values of a11 • -0.108 per hr., 

(7 .2) 

a21 • 0.21 per hr., and a22 • -0.76 per hr. which are in relative 

agreement with the rate coefficients calculated f~~m (3.55). Note that 

based upon theoretical srounds a12 • 0, which is verified by the 

corresponding (identified) transfer coefficient -0.003. 

Sampling Theory 

As an elementary illustration of the identification algorithm with 

emphasis on the sampling theory, consider the recent study of phosphorus 

kinetics in freshwater microcosms provided by Sebetich (1975). This 

research concerns t~e transfer of radiophosphorus among lake water, 
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diatom~ snail and sand compartments. Using a standard technique 

pioneered by Patten and Witkamp (1967), the analog computer is employed 

to identify the transfer rates and to simulate the dynamic behavior of 

microcosms of varying complexity. The single and combined effects of 

diatoms, snails, and sand on the movement of radiophosphorus through 

the system are noted. 

Sebetich presents time series data of radiophosphorus concentra­

tions within each compartment of the microcosm system. These data are 

compared with analog computer simulations of a mathematical model of 

fixed structure and free parameters corresponding to the transfer rates 

of radiophosphorus. By manipulating the free model parameters, a fit 

between the computer simulations and the time series data is obtaine·d 

by trial and error. It is this approximate identification scheme which 

the results of this paper propose to replaceo 

Table II gives the maximum turnover, the corresponding turnover 

time, and the maximum sample period, assuming precision d • 3, for the 

seven microcosm systems considered by Sebetich. Because the microcosms 

are presumed to be closed systems, no minimum sample period is computed. 

Consider the system in which diatoms (Nitzschia palea) take up phos­

phorus from lake water. Three samples spaced at intervals of twenty­

five hours (maximum) are sufficient to prescribe the compartment model 

for the system. Data presented by Sebetich (1975) is variously spaced 

from one hour to twenty-f.ive hour intervals. On a time scale of fifty 

hours with a sample period (t) of ten hours, samples were extracted 

from these data; and several associated compartment modele were con­

structed using (3. 37). ·.The best of these three-point models indicated 

a mean square error of 0.0574 when used to reproduce the entire fifty-



TABLE II 

COMPUTED SAMPLING TIMES FOR THE COMPARTMENTAL 
RADIOPHOSPHORUS IN MICROCOSMS OF VARYING 

COMPLEXITY (SEBETICH, 1975) 

Compartments To -1 (hr •- X} T0 (hit'o) 

Water-diatom 0.0689 14.5 

Water-snail 0.0043 233 

Water-sand 0.0633 15.8 

Water-diato~snail 0.0379 26.4 

Water-diatom-sand 0.1000 10.0 

Water-snail-sand 0.0611 16.4 

Water-diatom-snail-sand 0.1035 9.66 

109 

T+(hi'o) 

25.06 

401.61 

27.28 

30.38 

11.51 

18.84 

8.34 
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hour data set. The Gaussian least squares algorithm of (3.39) was used 

next to construct a compartment model from all six data points on the 

fifty-hour time scale. The mean square error incurred by this model in 

reproducing the data base was 0.0043, a significant, but expected, 

improvement in accuracy. 

The identification algorithm of (3.39) produced the following six-

point compartment model: 

0 
(7. 3) 

x2 = 0.052xl - O.Ol6x2 

Sebetich (1975) does not present details of the transfers produced by 

the analog computer identification scheme, but he does give values for 

the turnovers of 0.069 and 0.018 for the diatoms and water, respectively, 

which should be compared with 0.063 and 0.016 as obtained from (7.3). 

It is int~resting to note that the model of (7.3) is not closed with 

respect to the phoipbpJ;~ transfers. This is not unexpected mainly 

because a more accurate model for the uptake of phosphorus by algae 

includes dissolved inorganic, organic, and dissolved organic phosphorus 

compartments (e. g., Watt and Hayes, 1963), as shown in Figure 9. 

Because the model of (7.3) is not closed with respect to material 

transfers, it is clear that the algorithm of (3. 39) has again identified 

a missing compartment. With reference to Figure 9, dissolved organic 

phosphorus is probably the missing compartment, thus indicating that an 

essential transfer from algae back to water has not been modeled. 

In order to illustrate the sensitivity of the identification scheme 

with respect to the sample period, a hypothetical ecosystem, first 
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described by Smith (1970), is considered. The system consists of three 

compartments: water (x1), an aquatic plant population (x2), and an 

herbivore population (x3). Figure 10 shows these compartments along 

with the material balance, assumed to be phosphorus. The only input 

(ul) is the phosphorus contained in the water flowing through the 

system. The ou.tputs are phosphorus from the water and herbivore com-

partments. The compartment model describes the steady-state model 

,resulting from an input of u1 = 100 mg. P/dayo From the data presented 

by Smith, the rate coefficients can be computed, resulting in 

(7 .4) 

as a characterization of the ecosystem. The ,A-matrix is thus given by 

-16 5 5 

14 0 (7 .5) 

0 90 -14 

which has eigenvalues 

>. 1 • -6.1630 

>.2 • -23.9367 (7. 6) 

>. 3 • -.94.9002. 

The following simulation experiment is performed. Starting from 

the steady-state given by x1 • 95, x2 • 1.4, and x3 • 9, the model of 
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(1.4) is solved with zero input using the IBM simulation language CSMP. 

From the simulation output, samples of the state are gathered with four­

place accuracy. The measurements may then be used to reconstruct the 

model of (7. 4) using the computer program in the Appendix. 

From (7.4), the Gerschgorin circle can be plotted and a= 190 and 

6 ~ 2 is computed. Thus, T- = 5 x 10-s and T+ = 0.012 are obtained from 

(4.34) and (4.37), respectively. From simulation results with a sample 

period on the time scale 0.005 ~ T ~ 0.02. the eigenvalues of the model 

are predicted to well within one percent accuracy. However, a model on 

the time scale T ~ 0.03 is in significant error. For a sample period 

less than 0.005, the model errors are suddenly very large, indicating 

that the identification algorithm is very sensitive to the lower bound. 

In fact, in this case, the lower bound is somewhat inaccurate and should 

be refined. A reasonable choice for the sample period is obtained by 

rounding 1: close to the upper bound r+. 

Table III provides a survey of computed sampling times for various 

aquatic and terrestrial microcosms based upon an assumed three-place 

decimal precision for measured data. It should be noted that with the 

exception of Azotobacter the maximum sample period r+ is less than the 

reciprocal of the maximum turnover T0 - 1 • Thus, without the detailed 

information necessary to employ (4.43) for the computation oft+, a 

rough estimate for the sample period is provided by T0 • 

The sampli.ng theory developed for implementing the identification 

algorithm presented in this paper is based upon the analysis of labora­

tory ecosystems. The basic idea is that such systems are isolated from 

the cyclic environmental inputs present in nature. As a first step in 

ecosystem modeling, the cyclic behavior of environmental parameters is 



Ecosystem 
(type) 

Artificial pond 

Aquarium 

Aquariwn 

Sea water 

Lake water 

Azotobacter cultures 

Terrestrial microcosm 

Liriodendroo forest 

Terrestrial microcosm 

TABLE III 

COMPUTED SAMPLING TIMES FOR ELEMENTAL DYNAMICS WITHIN 
SELECTED LABORATORY ECOSYSTEMS 

Element T -1 T '[+ 
0 0 Transferred (hours- 1) (hours) (hours) 

32p 0.091 10.99 4.74 

32p 0.200 5.00 3.45 

32p 0.104 9.66 8.34 

32p 0.17 5.87 6.76 

32p 0.24 4.17 3.60 

15N 0.0128 77.9 89.9 

134es 0.0313 31.9 22.1 

137es 0.00185 540 311 

137Cs 0.00967 103 71.5 

Reference 

Whittaker (1961) 

Whittaker (1961) 

Sebetich (1975) 

Watt and Hayes (1963) 

Lean (1973) 

Visser et al. (1973) 

Patten and Witkamp (1967) 

Olson (1965) 

Witkamp and Frank (1970) 
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often ignored in favor of analysis with average inputs. This results in 

open systems with time invariant relationships between structure and 

function which have as linear approximations models of the form con­

sidered in (3.1). For such systems the sampling theory developed in 

this paper has application to the design of field experiments. Table IV 

provides a comparison of sample periods for terrestrial (old fields and 

forests) and aquatic (lakes and springs) natural systems. From the 

maximum turnovers, number of compartments, and an arithmetic precision 

of three decimal places, the maximum sample period for each system is 

presented. Also, except for the Frains Lake and Liriodendron forest 

studies, which represent closed material cycles, the minimum sample 

periods are computed. The sample period T of Table IV is taken as the 

geometric mean of T+ and T- according to (4.~8). The rain forest data 

provided by H. T. Odum (1970) presents a problem with d • 3, in that 

T+ < T-. This problem arises because the model includes a microbe 

compartment with an extremely high turnover typical of tropical rain 

forests. This is a severe limitation on the experimental procedure 

requiring four-place data precision (d = 4) for which a sample period 

of T ~ 0.002 yr. results. Table IV is based in part upon data provided 

by O'Neill (1971). 

Because of the interactive nature of ecosystems, the turnover of 

species within a system differs from the observed for isolated species. 

Observations of ecological systems depend upon these interactions; how­

ever, the system dynamics can be estimated from the isolated species 

behavior. Referring to (4.43), which estimates the sample period, the 

term T0 - 1 defines the turnover of the fastest species (with respect to 

turnover time) in the system, n is a measure of the ecosystem size and 
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Ecosystem 
(type) 

OLD FIELD 

Grazing food chain 
a 

b 

Arthropod food 
chain 

a 

b 

Vegetation 
a 

·b 

TABLE IV 

COMPUTED SAMPLING TIMES FOR ECOSYSTEM ENERGY 
OR BIOMASS DYNAMICS 

T -1 
0 

(1/yr.) 

0.131E3 

0.215E3 

0.879E-2 
0,321E-,2 

0.848E-3 

0.556E-4 

1: 

(yr.) 

0,273E-2 

0.422E-3 

Reference 

Golley (1960) 

Pearson (1964) 

Henhinich (1967) 
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0.220E3 

0,155E3 

0.523E-2 

0,742E-2 

0.217E-3 

0.256E-4 

O.l07E-2 

0,436E-3 Van Hook et al. (1970) 

0,902El 

0.416El 

0.957E-l 

0,207EO 

o. 391E-2 

0, 391E-2 

0.193E-l 

0.285E-l 

Golley (1960) 

Kelly et al. (1969 

---------------------------------· -----------
AQUATIC 

Cedar Bog Lalte 
Lalte Mendota 
Lago Pond 

Frains Lake 
Silver Springs 
Cone Spring 
Root Spring 

FOREST 

Post oak-blackjack 

M:l.xed deciduous 
Oak-pine 
Rain Forest 

Liriodend£on forest 

0 .138El 
O,l67El 
0.370E3 

O.l30E4 
0,210E3 
0. 351E3 
O.l38E3 

0.302E2 

0.811E2 
0,437EO 
0.380E3 

0,646E2 

0.834EO 
0,517EO 
0.104E-2 

0,440E-3 
0,329E-2 
0.620E-3 
0,250E-2 

O,l43E-l 

0.266E-2 
0,263El 
0,130E-2 

0,200E-2 

----------------------------~ 

0.269E-2 
0.142E-2 
O.lOOE-2 

0.48E-3 
O.SSOE-3 
O. SSOE-3 

O.lOOE-1 

0.200E-2 
0,127E-l 
0.210E-l 

0.474E-l 
0. 377E-l 
0.102E-2 

0.440E-3 
O.l25E-2 
O.SSOE-3 
O.l20E-2 

O.l20E-l 

0.230E-2 
0,183EO 

Q.200E-2 

Lindeman (1942) 
Lindeman (1942) 
Emanuel and Mulholland 
(19 75) 
Sa1Jnders (1971) 
Odum (1957) 
Tilly (1968) 
Teal (1957) 

Johnson and Risser 
(1974) 
Satchell (1971) 
l-loodwell (1970) 
Odum (1970) 

Shug3rt et al. (1976) 
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hence all its possible interactions, and d gives the precision with 

which measurements can be madeo Since the sample period is inversely 

proportional to n, the interactive nature of the ecosystem is clearo 

The problem of extremely small sample periods required for very large 

ecosystems can be to a certain extent compensated for by increasing the 

precision of the measuring instruments; but fundamental limits on the 

precision exist, necessitating simultaneous measurement and analysis 

within subsystems of lower dimension. It should be noted that Smith 

(1975), using similar concepts including the characterization of fast 

and slow turnovers, argues for theoretical relationships between evolu­

tion and ~cosystem science. Thus, the sampling theory presented pro­

vides a potential tie between theory and experiment at the ecosystem 

level. 

The application of the sampling theory developed in this paper to 

natural systems as depicted in Table IV may shed new light on the study 

of ecosystem development. The value for the sample period provides a 

single number as a measure for the dynamics of the structure and func­

tion relationship at a particular stage of ecological succession. Some 

knowledge of the successional stage for each system in Table IV is 

required for such comparison. This represents a study unto itself 

beyond the intent of this thesis. However, it should be noted that the 

sample period depends upon the maximum turnover which is believed to be 

correlated with the stages of ecosystem development (Odum, 1971, p. 252). 

This correlation is evident in the experimental data produced by 

Whittaker (1961) on the transfer of radiophosphorus within aquaria. 

Table V summarized Whittaker's data to show that in the developmental 

stages ecosystems require more rapid sampling techniques, while in the 



mature stage the system structure and function are such that a longer 

sample period will suffice. 

TABLE V 

COMPUTED SAMPLING TIMES FOR THE COMPARTMENTAL 
RADIOPHOSPHORUS TRANSFER IN AQUARIA 

(WHITTAKER~ 1961) 
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Time Period T -1 (hrso -l) T0 (hrs.) t+ (hrs.} Following Inoculation 0 

Initial (0-7 hrs.) 0.313 3.19 2.21 

Intermediate (7-63 hrs.) 0.0855 11.7 8.08 

Final (S-46 days) 0.0091 109.9 75.9 . 

Single Dose Identifiability 

The controllability, observability, and structural identifiability 

properties provided by Cobelli and Romanin-Jacur (1976) may be analyzed 

by studying the Bilirubin compartment model of Figure lle 

The compartments are tissue unconjugated (x1) and conjugated (x2 ) 

bilirubin; plasma unconjugated (x3) and conjugated (x4) bilirubin; 

liver unconjugated (x5 ) and conjugated (x6) bilirubin; and bile con­

jugated bilirubin (x7). The tracer experiment consists of the injection 

of tracer into the plasma compartment, x3• Thus, the necessary con-

dition for controllability is satisfied because the input can be traced 
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to every compartmento For the system to satisfy the necessary con­

ditions for observability, however, one must have access to at least the 

~ile (x7) and either tissue or plasma conjugated (x2 or x4) bilirubin. 

Otherwise, a new model structure should be adopted assuring at least one 

output reachable from every compartment. Again note that the conditions 

for controllability and observability are not sufficient for 

identifiability. 

Constant Infusion Identifiability 

The need for identification of flow rate parameters of a steady­

state system arose from an evaluation of models describing volatile 

fatty acid (VFA) interconversion and production in the rumen of steers 

(Sharp, 1977). Due to non-inst~taneous and incomplete mixing within 

the rumen, the constant-infusion method of tracer administration was 

the method of choice. The compartment diagram of ruminal VFA metabolism 

is presented in Figure 12. The VFA isotopes, 14c acetate, butyrate, 

and propionate were to be infused into the rumen with samples:being 

available from each of the system compartments. Sharp was unable to 

identify the flow from the valerate compartment to the propionate co~ 

partment by conventional biochemical methods due to the design of the 

experiments. 

Notice that there are three inputs and at most two endogenous 

flows to each compartment, and at least one outlet is reachable from 

every compartment. Also, measurements are available from every com­

partment. Hence, if the system is controllable, it is structurally 

identifiable; and all VFA flows may be estimated using the proposed 

constant-infusion method of parameter identificationc 
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Summary 

Numerous applications were chosen to exemplify the potential use 

of the developed identification and sampling schemes. The examples 

presented were of the simplest possible types. It should be emphasized 

that the proposed strategies not only apply to these examples, but to 

problems with greater complexity. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

An algorithm for the measu~ement of ecosystem structure designed 

for the purpose of computing ecosystem function has been described and 

implemented in this thesis. The general methodology and capabilities 

of the strategies discussed were exhibited by solving several laboratory 

problems. 

The problem of determining the ecosystem function from observations 

of the compartmental states has become known as system identificationo 

Using inputs familiar to the method of tracer analysis, basic experi­

ments were suggested for ease in the laboratoryo An identification 

algorithm, first proposed by Lee (1964), has been derived for systems 

in which spatial homogeneity may be assumed. A modification of the 

technique was then applied to systems with accumulation poolso For 

systems with spatial inhomogeneities, a continuous input of tracer is 

shown to result in an ensemble of steady-states from which the system 

parameters may be identified. 

Application of the single-dose identification scheme was shown to 

be dependent upon the sampling period used in data collectiono This 

sampling period which may be calculated before experiments are begun 

depends upon the arithmetic precision of the data, the dimension of the 

ecosystem, and its maximum turnovero 
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One of the fundamental questions of identification is whether or 

not the parameters in the system model can be uniquely estimated. Con­

ditions for structural identifiability for single-dose tracer experi­

ments have been evaluated in Chapter V, and constant-infusion identifi= 

ability is considered in Chapter VI. 

Finally, the general methodology and capabilities of the proposed 

identification and sampling strategies are exhibited by solving several 

elementary example problems. 

It is felt that the identification algorithms and sampling theory 

discussed have considerable unexploited potential for use in a variety 

of environmental problems. Although the experiments have been designed 

primarily for laboratory systems, extension of these results to natural 

ecosystems may be considered. Several topics for further research will 

be discussed in the next section. 

Recommendations for Further Research 

Within the analytical framework established by this thesis, several 

additional areas of research arise for the application of the proposed 

identification and sampling schemes to the study of laboratory eco­

system structure and function. The problems are for the most part 

concerned with statistical error analysis, the central theme being 

clearly aimed at discovering how the sample period effects the errors 

in the !-matrix of (3.1). 

The sampling theory has been based upon deterministic concepts of 

system theory, and the development of the identification algorithm for 

modeling ecosystem structure and function assumes the existence of 

error-free samples. The bounds produced for the sample period result 
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fr~m the finite precision with which measurements can be made on an 

ecosystem, with no consideration given to the arithmetic errors which 

result from roundoff or truncation. Therefore, the successful applica­

tion of the proposed theory to experimental design critically depends 

upon the statistical analysis of the measurement and arithmetic errors 

which are inherent in the analysis. It is suggested that the linear 

compartment model of (3.1) be modified to include the effects of these 

errors treated as a stochastic process. The inclusion of measurement 

errors and their simultaneous propagation in the identification algo­

rithm define an error analysis for determining the entries in the !­

matrix of (3.1). 

An analysis of the errors which come about as the result of 

quantizing the state samples would be useful in establishing bounds on 

the accuracy of the identification scheme. This error analysis could 

be based upon the upper and lower amplitude bounds derived in Chapter IV 

where the exponential terms are assumed to be fixed-point numbers, each 

with an error assumed to be a uniformly distributed random variable 

according to the bounds. Thus, the truncation errors of the samples 

could be related to quantization errors for each exponential modeo 

Finally, when all measurement and arithmetic errors have been 

accounted for, bounds on the deviation of the assumed linear model from 

the true nonlinear system behavior may be obtained. 

The linear donor controlled model of (3ol) is presented as a local 

representation which describes the relationship between ecosystem 

structure and function. As discussed by Patten (1975), such linear 

models are valid for small perturbations lying within a neighborhood 

of the steady-stateo The responses forced by largely different inputs 
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lead to gross changes in system behavioro That is, global models of 

ecosystem structure and function are nonlinearo This fact has been 

pointed out by Mulholland and Keener (1974) and Thornton and Mulholland 

(1974). Smith (1970) gives an example of the construction of nonlinear 

models as an attempt at a global representation. Smith runs a hypo­

thetical ecosystem at different rates of phosphorus inflow (u1 = 25, 

100, 200, and 400 mg./day) and observes the six compartmental transfers 

and three storages after steady-state is achieved. All quantities are 

noted to increase with increasing inflow, but not linearly. The next 

step is a study of the acquired data leading to hypotheses for the 

construction of the dependence of compartmental transfers upon storages. 

The resultant correlations provide a nonlinear model for ecosystem 

structure and function. Presumably the compartmental transfers observed 

by Smith are to be directly measured under the varying inflow conditionso 

The following scheme for measuring these transfers and obtaining a 

global (nonlinear) model is proposed for study. For each ecosystem in= 

flow condition, assume that a linear model holds in some local neighbor~ 

hood of steady-state. Identify this linear model using the techniques 

discussed in this thesis. This allows the determination of ecosystem 

function from measurements of structure for the specific inflow con~ 

dition. By repeating this process for each system input, a table of 

compartmental transfers and storages can be constructed from varying 

input data. Smith's method for deriving ecosystem hypotheses can then 

be applied to the development of a global (nonlinear) ecosystem model. 

Because of the interactive nature of ecosystems, the turnover of 

species within a system differs from that observed for isolated species. 

Observations of ecological systems depend on these interactions; 
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however, the system dynamics can be estim.ated from the isolated species 

behaviora Since the sample period is inversely proportional to the 

measure of ecosystem size, the interactive nature of the ecosystem is 

clear. The problem of extremely small sample periods required for large 

systems can be to a certain extent compensated for by increasing the 

precision of the measuring instrumentso However, fundamental limits on 

precision exist, necessitating simultaneous measurement and analysis 

within subsystems of lower dimension. 

Finally, it has been shown that upper and lower bounds on the 

sample period can be expressed which provide a means for determining a 

periodic data collection before system identification begins. The 

measurement scheme was conceived to operate on a fixed commensurate time 

scale. For ecological systems in which the precalculated minimum and 

maximum sampling periods are widely separated, however, it may be 

possible to utilize incommensurate sampling by interlacing multiple 

fixed sample periods, the ratio of the different periods being non­

integers. This strategy would be equivalent to the familiar engineering 

sampling technique of sampling rapidly at the beginning and more slowly 

near the end of the transient responseo 
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COMPUTER ALGORITHM 

A digital computer user package implementing the foregoing single­

dose identification algorithm has been developed. Programmed in stand­

ard Fortran, the code which implements the identification algorithm is 

available in two forms, batch and interactive, both of which run 

efficiently on a standard IBM 370 operating systemo The code is inde­

pendent of any special library routines, and as such is completely 

transportable to any IBM System/360 or System/370 series computero The 

interactive program can be implemented on any IBM System/370 time share 

operating systemo 

The software consists of a main program and one subroutine, EIVECT~ 

the flow diagrams of which are shown in Figures 13 and 14. 

The program begins by reading the number N of compartments in the 

biological system being analyzed, the number K of measurements obtained 

from a single experiment, and the pre-calculated sample period To Two 

flags are then set which indicate row or column data input and printing 

options, respectively. The program then moves immediately to a loop 

that reads and stores the sample data array in matrix form, ioeo, !(t)o 

Since N + 1 discrete measurements of the state are necessary and 

sufficient for the determination of the state transition matrix !, the 

program terminates for K < N + 1. If K = N + 1, two matrices of 

coefficients, ! 1 and~' are formed from theN + 1 state samples as 

described by (3.35) and (3.36). The solution for the state transition 

matrix~ is acquired by inverting matrix ! 1 of (3.35). Gaussian 

elimination with partial pivoting on a matrix scale is used. Upon 

computing the N x N matrix subroutine EIVECT is called for the 



READ: 

I I = I+ 1 

N, K,X(t) 

1=0 
L=K-N 

STOP 

X 1= X(I), X(I+ l),· .. ,X(I+N)} 

~2 = X(II),X(II+l),- .. ,X(II+N) :. 

-1 
<P = x2 x 1 

I = I + 1 
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Figure 13. Flew ~iagram fer Main Pregram ef the Identification Algerithm 



EIVECT 

READ: 
T 

PRINT: 
<P 

PRINT: 

W· l 
T· lJ 

i = l, .. ·,N 
i,j = 1, .. ·,N 

A.. = ( ln w. ) I T' 
l l 

PRINT: 

A.i i = 1, · · · , N 

A·· = 0 lJ 

. Aii = A.i 
A= T A T-1 

PRINT: 
A 

Figure 14. Flew ~iagram f~r Subreutine EIVECT 
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identification of the matrix of rate coefficients !• The indices I and 

L of the main flow diagram are utilized in the formation of a loop in 

which several A matrices may be computed for a comparative analysis if 

K>N+l. 

Subroutine EIVECT solves (3.37) for the matrix of transfer con­

stants !· The EISPACK (IBM/360 version (Smith et al., 1976)) is utilized 

to obtain the eigenvalues wi ( i = 1, Q • • , N) and the eigenvectors 

of !• The EISPACK uses QR transformation and decomposition, an explana­

tion of which is given by Wilkinson (1965) and Wilkinson and Reinsch 

(1971) 0 

The matrix! can be reduced to a diagonal matrix gin. which the 

eigenvalues wi (i = 1, • . . , N) of ! appear on the diagonalo The 

eigenvalues Ai (i = 1, ••• , N) of ! are determined by 

(A.l) 

and the reduced diagonal form A of the matrix of transfers ! is formed. 

The matrix of rate coefficients is readily identified by 

(A. 2) 

where 1 is a similarity transformation having the eigenvalues of ! as 

its column vectors. Equation (A.2) is solved successively for the 

columns of AT, again using Gaussian elimination. Note that the column 

vectors must be linearly independent for the existence of T- 1• This 

follows from the assumption that the eigenvalue~ of ~ are distinct. 

It should be mentioned that EIVECT derives the complex matrix ! 

for a real matrix ! using the complex principal value natural logarithm 

in (A. 1). Also, all manipulations are in double precision. 
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