STUDY OF BASE PLATES FOR AXIALLY LOADED COLUMNS

By
HUSSAM MOHAMED FAHMY GHANEM
Bachelor of Science University of Alexandria Alexandria, Egypt 1971
Master of Science
Oklahoma State University Stillwater, Oklahoma 1974

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
December, 1978

$$
\begin{aligned}
& \text { Thesis } \\
& \text { 1978D } \\
& 6411 \mathrm{~s} \\
& \text { Cop. } 2
\end{aligned}
$$

STUDY OF BASE PLATES FOR AXIALLY LOADED COLUMNS

Thesis Approved:

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to the members of my committee: Dr. John P. Lloyd, who served as my major adviser, for his valuable guidance and suggestions throughout this study; Dr. William P. Dawkins, for his helpful assistance and advisement; and Dr. Allen E. Kelly and Dr. Richard L. Lowery, for their sound instructions.

I would like to thank Dr. James V. Parcher and Dr. John W. Harvey for their invaluable assistance. I am grateful to Ms. Charlene Fries for her efforts in typing my disseration.

Finally, I am deeply indebted to my parents for their early guidance, sacrifices, support, and encouragement. My special thanks to my wife, Amina, for her patience, understanding, and support.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
1.1 General 1
1.2 Scope 2
II. HISTORICAL AND LITERATURE REVIEW 4
2.1 Bearing Capacity of Concrete 4
2.2 Stress-Strain Response and Strength of Concrete 7
2.3 Nonlinear Finite Element Analysis of Structures 9
III. FINITE ELEMENT IDEALIZATION 14
3.1 General 14
3.2 Material Behavior 15
3.3 Elemental Stiffness Matrices 20
IV. METHOD OF SOLUTION 32
4.1 General 32
4.2 Nonlinear Solution 33
4.3 Constitutive Laws of Incremental Plasticity 36
4.4 Evaluation of Excessive Stresses 40
4.5 Outline of Computational Steps 42
V. ANALYTICAL RESULTS 46
5.1 General 46
5.2 Example Solutions 46
5.3 Circular Base Plate System 47
5.4 Variables Influencing a Circular Base Plate System 60
VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 64
6.1 Summary 64
6.2 Conclusions and Recommendations 65
A SELECTED BIBLIOGRAPHY 66
Chapter Page
APPENDIX A - EXPERIMENTAL INVESTIGATION 73
APPENDIX B - INPUT/OUTPUT INFORMATION 83
APPENDIX C - COMPUTER PROGRAM LISTING 89

LIST OF TABLES

Table Page
I. Outline of Base Plate Specimens 74
II. Tensile Properties of Plates 76
III. Results of Circular Base Plate Specimens 82
Figure Page

1. Comparison of Measured and Computed Strengths for Series B and D 6
2. Biaxial Strength of Concrete 17
3. Idealized Stress-Strain Curve for Concrete 18
4. Idealized Stress-Strain Curve for Steel 21
5. Parasitic Shear Stresses Induced in a Linear Element Under Bending Mode 24
6. Linear Rectangular Element 26
7. Bond-Link Element 30
8. Incremental-Iterative Procedure 35
9. Flow Chart for Computational Steps 44
10. Thick Cylinder Pressure-Displacement Curve 48
11. The Distribution of Radial, Hoop, and Axial Stresses When the Radius of the Plastic Zone is 1.5a 49
12. Finite Element Idealization of Circular Base Plate System 51
13. Load-Deformation Curve, Base Plate Cl 52
14. Load-Deformation Curve, Base Plate C2 53
15. Load-Deformation Curve, Base Plate C3 54
16. Load-Deformation Curve, Base Plate C4 55
17. Load-Deformation Curve, Base Plate C5 56
18. Load-Deformation Curve, Base Plate C6 57
19. Load-Deformation Curve, Base Plate C7 58
20. Load-Deformation Curve, Base Plate C8 59
21. Influence of Compressive Strength of Concrete on Ultimate Load 61
22. Influence of Yield Strength of Steel on Ultimate Load 61
23. Influence of Plate Thickness on Ultimate Load 62
24. Influence of Plate Diameter on Ultimate Load 62
25. Loading Apparatus for Circular Plates 75
26. Typical Stress-Strain Curve for Concrete 77
27. Typical Stress-Strain Curve for Steel 78
28. Loading Arrangement for Circular Plates 80
29. Circular Base Plate System at Failure 81

NOMENCLATURE

a	radius		
\{a\}	derivative of stress invariants		
[B]	strain matrix		
C_{1}, C_{2}, C_{3}	constants dependent on failure criteria		
[D]	material property matrix in elastic range		
$\left[D_{b}\right]$	property matrix of a bond-link element		
[Dep$]$	elasto-plastic material property matrix		
$\left[D_{p}\right]$	plastic material property matrix		
$\left[D_{1}\right],\left[D_{2}\right]$	partitioned property matrices		
E	modulus of elasticity		
$\mathrm{f}_{\mathrm{c}}^{\prime}$	ultimate compressive strength of concrete		
F	yield surface		
\{F\}	force vector		
\{ $\Delta \mathrm{F}\}$	load increment vector		
$\left\\|F_{i}\right\\|$	norm to applied load vector		
G	shear modulus		
H	parameter equal to the slope of uniaxial stress equivalent plastic strain curve		
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$	stress invariants		
k	yield stress in pure shear		
k_{1}, k_{2}	constants		
K_{h}	stiffness coefficient of a bond-link element in horizontal direction		

stiffness coefficient of a bond-link element in the vertical direction
stiffness matrix
normal to yield surface
shape function for node \mathbf{i}
matrix of shape function
shape function derivative with respect to r
shape function derivative with respect to z
unbalanced force vector
vector of force intensity
plastic potential
factors for correcting stress increments
cylindrical coordinates
residual load vector
norm to residual force vector
deviatoric stresses
convergence factor
displacement in r or x direction
displacement field
vector of nodal displacements
ith generalized displacement increment
displacement in y or z direction
rectangular coordinates
ratio of biaxial strength to uniaxial strength of concrete
shear strain in rectangular coordinates
plastic incremental shear strain in cylindrical coordinates
uniaxial strain

ε_{p}	plastic strain
$\bar{\varepsilon}_{\mathrm{p}}$	equivalent uniaxial plastic strain
$\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}$	strains in the rectangular coordinates
$\varepsilon_{r}, \varepsilon_{z}, \varepsilon_{\theta}$	strains in the cylindrical coordinates
$\{\varepsilon\}$	strain vector
$\{\Delta \varepsilon\}$	incremental strain vector
$\mathrm{d} \varepsilon_{r}^{\mathrm{p}}, \mathrm{d} \varepsilon_{z}^{\mathrm{p}}, \mathrm{d} \varepsilon_{\theta}^{\mathrm{p}}$	plastic incremental strain in cylindrical coordinates
$\varepsilon^{\text {y }}$ d	yield strain
Δ_{r}, Δ_{z}	relative displacement in horizontal and vertical directions between a bond-link element node
K	hardening parameter
v	Poisson's ratio
ξ, η	local natural coordinates
II	total potential energy
σ	uniaxial stress
$\bar{\sigma}$	invariant for failure criteria
${ }^{\prime} \mathrm{m}$	octahedral normal stress or invariant for failure criteria
$\sigma_{x}, \sigma_{y}, \sigma_{z}$	stresses in rectangular coordinates
$\sigma_{r}, \sigma_{z}, \sigma_{0}$	stresses in cylindrical coordinates
$\sigma_{1}, \sigma_{2}, \sigma_{3}$	principal stresses
$\sigma_{y d}$	yield stress
$\{\sigma\}$	stress vector
$\left\{\sigma_{e x}\right\}$	excessive stress vector
τ	shear stress
${ }^{\tau}$ oct	octahedral shear stress
${ }^{\tau} r z$	shear stress in cylindrical coordinates

${ }^{\tau} x y,{ }^{\tau} x z,{ }^{\tau} y z$	shear stresses in rectangular coordinates
	invariant for failure criteria

CHAPTER I

INTRODUCTION

1.1 General

The design procedure recommended by the American Institute of Steel Construction (1) assumes that the bearing pressure under a base plate is of uniform intensity. A permissible bearing stress related to the ratio of the loaded area to the surface area of concrete limits the minimum dimensions of the base plate. The column load is assumed to be uniformly distributed over an effective area which is approximately equal to the depth times the width of the column section. The plate thickness is determined by considering the portions of the plates which extend beyond the effective column area to act as cantilevers; the plate thickness is chosen to limit the flexural stresses at specified critical sections.

The American Institute of Steel Construction (AISC) specifies that the basic allowable bearing stress for concrete is 35 percent of the compressive strength of concrete (1) (2). The American Concrete Institute specifies that the basic bearing stress is 30 percent of concrete strength (3). Both specifications permit the basic bearing strength to be increases as much as 100 percent where only a portion of the concrete surface is subjected to bearing.

In the event of modest column loads, it is possible to calculate a small plate area which has no overhang beyond the critical section. In such a circumstance the designer has no specified procedure to establish
a suitable plate thickness. The assumption of a uniform distribution of stresses between a base plate and a concrete footing is not true for relatively flexible plates. The factor of safety which results from the use of the method is unknown. These problems demonstrate that the current design procedure is not rational.

A knowledge of the actual behavior of the base plate system in both the elastic and inelastic stages is of fundamental importance for design. The safety of most structures can be correctly assessed if their ultimate load carrying capacity can be predicted analytically. With the recent development of numerical methods in general, and of the finite element method in particular, solutions of complex structural systems are now possible. The application of this displacement method results in a system of linear simultaneous equations which can be solved on digital computers. Nonlinear problems can be solved either by iterations or as a sequence of consecutive linear problems.

1.2 Scope

The objective of this study is to develop a reliable procedure for analyzing circular base plate systems through the entire elastic and inelastic ranges of loading. The proposed procedure can be used to predict the ultimate load carrying capacity and the behavior of the base plate system throughout the load history.

A mathematical model is formulated for the base plate system that reflects the behavior of the steel base plate and the plain concrete footing in the actual system. The analytical study is limited to small deflections and to short time behavior of an axisymmetric base plate system under monotonically increasing static loads. The main emphasis is placed
on the behavior in the inelastic range. An incremental iterative procedure is used for solving the nonlinear problem. After each load increment the forces and deformations are computed. The adequacy of the proposed procedure is illustrated by comparing analytical solutions for some base plate systems with experimental results. A limited parametric study is formed to investigate the major variables which influence the behavior of the base plate system.

CHAPTER II

HISTORICAL AND LITERATURE REVIEW

2.1 Bearing Capacity of Concrete

The problem of applying large loads to limited areas of concrete is one frequently encountered in structural design. Base plates for steel columns resting on concrete footings, anchor plates in post-tensioned concrete structures, and bridge bearings over piers are a few examples of the numerous bearing problems.

Previous investigations (4) through (13) of the bearing capacity of concrete are discussed in detail in Reference (14). In these studies investigators concentrated their attention on a few principal variables influencing the bearing strength of concrete loaded through rigid plates.

The main conclusions of these investigations were as follows:

1. Bearing strength increases continuously for an increase in the ratio of the footing area to the loaded area; for a large ratio any benefit of a further increase is small.
2. Bearing strength is dependent on the depth of the concrete footing.
3. The higher the compressive strength of concrete the lower is the ratio of the bearing strength to the compressive strength of concrete.
4. A footing supported on a compressible bed will have a decreasing strength.
5. Lateral reinforcement in a footing increases the ultimate bearing strength of concrete.
6. Friction on the base of footings does not influence the bearing strength of concrete.

Hawkins (15) investigated the bearing strength of concrete loaded thorugh flexible plates; the effects of the thickness and yield strength of the plate, the strength of the concrete, and the ratio of the loaded area to total area of the plate were considered. Test results showed that the ultimate bearing capacity for flexible plates increased linearly with the plate thickness, whereas for semi-flexible plates the rate of increase of the ultimate bearing capacity was continuous until a maximum value is reached corresponding to the capacity of rigid plates. Hawkins observed that the first indication of impending collapse was the formation of short vertical cracks on the sides of the specimens, and for flexible plates there was an almost solid core surrounded by a cone of crushed concrete. He developed expressions to predict the ultimate bearing load for flexible and semi-flexible plates based on the yield line theory. He also developed an expression for determining the thickness of rigid plates. Figure 1 compares the experimental and the computed strengths of test series B and D. The curve represents the proposed theoretical results. It is linear over the range for which the plate is flexible. At the end of the semi-flexible range, the ultimate load increases significantly for an increase in the plate thickness until a limiting value is reached which represents the strength of rigid plates. Experimental results showed that the bearing capacity for flexible plates increased in a direct proportion to the concrete strength raised to 0.7 power and the square root of the yield stress of the bearing plate.

Figure 1. Comparison of Measured and Computed Strengths for Series B and D (From Reference (15))

2.2 Stress-Strain Response and Strength of Concrete

In many experimental investigations concrete has been subjected to complex states of stress. Most of the available information about the behavior of concrete under load has been obtained from static uniaxial compression or tensile tests. Popovics (16) reviewed the stress-strain relationship for concrete subject to uniaxial loading. He discussed the available empirical formulas for describing the stress-strain behavior of concrete.

Concrete specimens subject to any state of stress can support up to 60 percent of the ultimate load before any major internal structural changes occur. Under low states of stress most deformations are linear and recoverable. According to Griffith's theory (17) at the end of the linear range the presence of micro-cracks and stress concentrations result in the slow propagation of micro-cracks of unstable length. Under steady sustained load the slow crack propagation will continue as the excess strain energy is dissipated in the formation of new surface until a stage is reached where the stressed material is in equilibrium with the external loading system. The system will become unstable if the load is increased and severe cracks will start to propagate. Newman (18) defined the load stage at which more severe cracking begins as "discontinuity."

Investigators (19) through (23) have attempted to analyze structural and interparticle models of concrete to explain the mechanism and modes of failure. Although the failure of concrete has been the subject of much research, there is still no universal theory of failure for concrete. Several investigators (24) through (35) attempted to develop theories of failure for concrete under complex states of stress. These studies are summarized and discussed in Reference (14).

Bresler and Pister (24) suggested a criterion relating the octahedral shear stress to the octahedral normal stress at failure in the form

$$
\begin{equation*}
\tau_{o c t}=f\left(\sigma_{m}\right) \tag{2.1}
\end{equation*}
$$

where
$\tau_{\text {oct }}=$ octahedral shear stress; and
$\sigma_{m}=$ octahedral normal stress.
The octahedral stresses have been widely used for expressing the failure of concrete subjected to multiaxial stresses. Kupfer et al. (31) obtained a failure envelope based on their extensive tests on concrete under a biaxial state of stresses which can be expressed in octahedral shear stresses.

Mills and Zimmerman (36) observed two distinct types of failure in their study of the compressive strength of concrete under multiaxial loading conditions. There was a difference in the compressive strength of concrete between the type I test where $\sigma_{1}>\sigma_{2}=\sigma_{3}$ and the type II test where $\sigma_{1}=\sigma_{2}>\sigma_{3}$. They developed a criterion for failure of concrete based on the results of their tests in which they used octahedral stresses. The two types of failure may be a result of the difference in testing procedure and loading sequence as discussed by Pandit (37). The test results were presented in the form

$$
\begin{equation*}
\sigma_{1}=f_{c}^{\prime}+k_{1} \sigma_{2}+k_{2} \sigma_{3} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{1}, \sigma_{2}, \sigma_{3} & =\text { principal stresses } ; \\
f_{c}^{\prime} & =\text { uniaxial compressive strength of concrete; and } \\
k_{1}, k_{2} & =\text { constants } .
\end{aligned}
$$

Mills and Zimmerman pointed out that they do not propose this form for multiaxial compressive strength of concrete because of the limited test data available.

Kostovos and Newman (38) recently identified distinct levels of change in the behavior of concrete when it is subjected to multiaxial states of stress. The onset of localized cracking occurs primarily as a result of breakdown of the concrete matrix. After this stage is reached the concrete exhibits distinctly inelastic properties but can still behave in a stable manner. The onset of continuous cracking occurs mainly as a result of fractures within the matrix, after which the material disrupts in an unstable manner when cracks continue to propagate. They suggested that stresses and strains at the onset of stable fracture propagation form an envelope which may serve as a basis for a lower bound failure criterion. For the onset of unstable fracture propagation, the envelope may be used as a basis for the upper bound failure criterion.

2.3 Nonlinear Finite Element
 Analysis of Structures

The nonlinear analysis of structures was one of the most intractable problems prior to the widespread use of high speed digital computers. There are three categories of nonlinearity: geometric nonlinearity, which arises from nonlinear terms in the kinematic equations; material nonlinearity, which arises from nonlineartieis in the constitutive equations; and combined geometric and material nonlinearity.

Progress in the area of inelastic analysis was accelerated by the simultaneous development of the direct stiffness method by Turner et al. (39) and the principal of the initial strain method developed by Mendelson
and Manson (40). Wilson (41) successfully applied a matrix method to the analysis of materially nonlinear framed structures. Gallagher et al. (42) adapted the method of initial strain to the finite element analysis by calculating an initial force vector. Goldberg and Richard (43) extended the applicability of the finite element method to nonlinear problems. Wilson (44) applied an incremental load procedure to the analysis of nonlinear structures.

Subsequent application of the initial strain method in the area of plane solids were made by Percy et al. (45), Argyris et al. (46), and Jensen et al. (47). The method evaluates the change in the plastic strain to re-evaluate the stress distribution. The same stiffness matrix is utilized throughout the iteration to reduce the computational time.

The Tangent Modulus Method was developed for the analysis of elasticplastic problems. The method makes use of the linearity of the incremented stress-strain laws to assemble a new element stiffness at each stage. The equations for the tangent modulus were developed by Pope (48), Swedlow and Yang (49), and Marcal and King (50).

Felippa (51) investigated the application of refined displacement finite elements to the analysis of linear and nonlinear problems in structural mechanics. Yamada et al. (52) obtained an explicit expression of the incremental stress and strain matrix for Prandt1-Reuss equations. Akyzy and Merwin (53) investigated plane strain indentation for cylindrical identers, and Lee and Kobayashi (54) studied plane strain and axisymmetric flat punch identation into specimens of finite dimensions using the finite element method.

Marcal (55) found many similarities between the initial strain method and the tangent modulus method. He concluded that the constant strain
approach does not converge in the case of elastic-perfectly plastic material problems because of the large plastic strains which occur in these cases.

The initial stress method was developed by Zienkiewicz et al. (56). This method appeared to be suitable for general plastic behavior because it relies on the fact that a unique stress exists for an increment of strain. The total incremental stress-strain relation are used to correct the total value of stress at the end of each increment and the matrix of elastic constants is retained unchanged during the loading history.

The research conducted in the area of nonlinear finite element analysis has continued since these earlier investigations. In general, recent investigations have only refined the initial nonlinear techniques of analysis. Oden (57) has presented a comprehensive review of the nonlinear structural analysis techniques. The principal methods of solution for geometrically nonlinear problems are discussed thoroughly in his paper.

The first application of the finite element method to concrete structures was carried out by Rashid (58) who analyzed prestressed concrete vessels as axisymmetric solids. He used several elements to model the composite structure. Rashid (59) later modified the procedure to include cracks in the concrete and the effects of plastic deformations in the steel. Nago and Scordelis (60) used an elastic linear two-dimensional analysis to determine principal stresses in reinforced concrete beams with predefined crack patterns. Nilson (61) introduced nonlinear material properties and a nonlinear bond-slip relationship into his analysis and used an incremental loading technique.

Corum and Kirshnamuthy (62) investigated a series of models of prestressed reactor vessels using a three-dimensional finite element program
developed by Cornell et al. (63). The structure was modeled by using tetrahedral concrete elements, uniaxial bars, and triangular membrane steel elements. The results from the three-dimensional model were improved compared to those from the two-dimensional analysis, but the computer time was significantly increased.

In the early nonlinear analysis of concrete structures, the cracking was accounted for by stopping the solution when an element was cracked; then a new cracked structure had to be redefined before resuming the solution.

Franklin (64) advanced the capability of the analytical methods by developing a nonlinear finite element program which accounted for cracking within the finite elements and redistributed the stresses into the system. It was possible to analyze the structural system in one continuous computer program. Incremental loading with iterations within each increment was used to account for the cracking and the nonlinear properties of the material. Reinforced concrete frames with or without infilled shear panels were analyzed using layered frame type elements, quadrilateral plane stress elements and link elements. Cervenka (65) analyzed shearwall panels and compared the analytical results with those of his experimental studies.

Studies of reinforced concrete slabs using the finite element method have been presented by Jofriet and McNiece (66) and by Bell and Elms (67). Cracking in plate bending elements was considered by changing the bending stiffness of the cracked elements. Scanlon (68) has developed a method of incorporating both cracking and the dependent effects of creep and shrinkage in slabs. He used layered rectangular slab elements which can be cracked progressively layer by layer, and assumed that cracks propagate
only parallel to and perpendicular to the orthogonal reinforcements. Hand et al. (69) used a layered finite element to analyze reinforced concrete slabs and shells. Lin (70) investigated the behavior of reinforced concrete slabs and shells in the nonlinear range of loading.

Lassker (71) studied the nonlinear behavior of reinforced concrete beams using the initial strain method and simulated the inelastic behavior by quasi-anisotropic finite elements. Salem (72) analyzed reinforced concrete box culverts under high embankments and planar frames using the initial stress method. He considered bond-slip àction between steel reinforcement and concrete. In the last decade several studies have adapted the finite element technique to the investigation of the behavior of concrete structures. A comprehensive list of references on the subject may be found in a state-of-the-art paper by Scordelis (73).

Phillips and Zienkiewicz (74) recently analyzed reinforced concrete structures using the finite element technique. Tensile cracking, comprehensive strength of concrete, and yield of steel reinforcement were studied. They used isoparametric elements and special elements to simulate reinforcement. The bond-slip between steel and concrete was not considered. Incremental, nonlinear finite element programs were developed which used both variable and constant stiffness methods of solutions. Several realistic concrete structures were analyzed and their solutions were compared with experimental results.

CHAPTER III

FINITE ELEMENT IDEALIZATION

3.1 General

Most analytical investigations of structures have been on isolated structural elements. More recently, it has been recognized that attention needs to be focused on integrated structural systems. The success of analytical solutions depends on the selection of realistic idealizations of both the structural system and the behavior of materials. The recent advances in digital computers and numerical methods, such as the finite element method, provide accurate solutions for many complex problems.

In the finite element analysis of a continuum, the continuous body is represented by an assemblage of discrete elements connected at various nodal points to make up a discretized model of the body. Simple displacement functions can be chosen to approximate the variation of the actual displacement field over each discrete element. A variational principle of mechanics is usually employed to obtain a set of equilibrium equations for each element. Then the equilibrium equations for the entire system are obtained and modified for the given displacement boundary conditions. The overall behavior of the continuum is represented by a set of linear algebraic equations. The process of connecting the elements to form the discretized model is a topological one and is independent of the physical nature of the problem and its linearity or nonlinearity.

In order to achieve a realistic modeling of the base plate system by the finite element method, it is necessary to examine the behavior of the steel plate, the response of the concrete footing and bond-link elements connecting the plate and the footing. One major difficulty in attempting the analysis of concrete structures is the continuous change in the topology which results from cracking of concrete under increasing load. Concrete is a nonhomogeneous material and it is difficult to idealize its actual behavior. Constitutive relationships and failure criteria of concrete under combined stress states are still incomplete.

The difficulties encountered in the analysis of concrete structures and the determination of the material constants were eliminated through the proper idealization of the structure and the material properties. The choice of the material and the structural idealization is governed by the structural system, the required accuracy of results, and method of solution employed.

In the finite element analysis circular base plates and cylindrical footings loaded thorugh circular columns are considered. In the axisymmetric system the vertical and radial components of displacement in any plane section of the body along its axis of symmetry define completely the state of strain and stress. Furthermore, the stresses and strains do not vary in the tangential direction. Thus, from a mathematical point of view, the axisymmetric system is two-dimensional in nature.

3.2 Material Behavior

3.2.1 Concrete

The tensile strength of concrete was found experimentally to be about 10 percent of the compressive strength. Concrete behaves in a
brittle fashion under various tensile stress states. Test results of Kupfer et al. (31) on the strength of concrete under biaxial stresses are shown in Figure 2. These results show that the tensile strength of concrete is not strongly affected by the presence of tensile stresses in the other direction. Also, the tensile strength of concrete in one direction is not greatly affected if compressive stress is present in the other direction. Therefore, the maximum principal stress was used as a criterion for cracking of concrete in this study. It is assumed that tensile cracks occur normal to the direction of the principal stress. After a crack has formed in the element, for all subsequent loadings tensile stresses cannot be transmitted across the crack, whereas the compressive stresses of concrete remain unchanged in the direction parallel to the crack. However, the material is capable of transmitting shear stresses parallel to the crack. Shear stresses can be carried across the crack by mechanical interlock. It was assumed that the shear carrying capacity and the shear modulus of the cracked material is 50 percent of values for uncracked concrete. On further loading, if tensile stresses exist parallel to the crack, the maximum principal stress is used as a criterion for cracking in that direction.

The strength of concrete under multiaxial compressive stress is higher than that under uniaxial stress as a result of the compressive confinement which slows the propagation of microcracks. Kupfer et al. (31) reported that Poisson's ratio remains constant up to 75 percent of the ultimate load. In this study Poisson's ratio is assumed to be constant. The uniaxial stress-strain curve for concrete was idealized by an approximate linear piecewise curve as shown in Figure 3.

Figure 2. Biaxial Strength of Concrete

Figure 3. Idealized Stress-Strain Curve for Concrete

Mikkola and Schonrich (75) obtained a close agreement with experimental results of Kupfer et al. (31) by using octahedral stresses. The octahedral stresses can be expressed as follows:

$$
\begin{equation*}
\tau_{o c t}+\sqrt{2} \frac{\beta-1}{2 \beta-1} \sigma_{m}-\frac{\sqrt{2}}{3} \frac{\beta}{2 \beta-1} f_{c}^{\prime}=0 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{o c t}= & \text { octahedral shear stress; } \\
\sigma_{m}= & \text { octahedral normal stress; } \\
f_{C}^{\prime}= & \text { uniaxial compressive strength of concrete; and } \\
B= & \text { ratio of biaxial compressive strength of concrete to uniaxial } \\
& \text { compressive strength in which } \sigma_{1} / f_{C}^{\prime}=\sigma_{2} / f_{c}^{\prime} .
\end{aligned}
$$

The above expression is used as a yield criterion for concrete to indicate the boundary between linear and nonlinear behavior in the compression region. The yield criterion is conservative and has been used in this study for elements under multiaxial compressive stresses. Concrete will crush if the equivalent plastic strain, $\bar{\varepsilon}_{p}$, exceeds the ultimate compressive strain, where the incremental equivalent plastic strain is given by

$$
\begin{equation*}
d \bar{\varepsilon}_{p}=\left[\frac{1}{3}\left(2 d \varepsilon_{r}^{p^{2}}+2 d \varepsilon_{z}^{p^{2}}+2 d \varepsilon_{\theta}^{p^{2}}+d r_{r z}\right) p^{2}\right. \tag{3.2}
\end{equation*}
$$

where

$$
\begin{array}{rl}
\mathrm{d} \varepsilon_{r}^{\mathrm{p}}, \mathrm{~d} \varepsilon_{z}^{\mathrm{p}}, \mathrm{~d} \varepsilon_{\theta}^{\mathrm{p}}= & \text { plastic incremental strain in cylindrical coordi- } \\
& \text { nates; and } \\
\mathrm{dr} & \mathrm{rz}= \\
& \text { plastic incremental shear strain in cylindrical } \\
& \text { coordinates. }
\end{array}
$$

3.2.2 Steel

The behavior of steel base plates is idealized as an elastic-
perfectly plastic material as shown in Figure 4, where $\sigma_{y d}$, $\varepsilon_{y d}$ are the yield stress and yield strain, respectively. The material properties can be determined directly from the uniaxial stress-strain of the material. The von Mises yield criterion, widely used for steel, was adopted in this study. The yield surface can be expressed as follows:

$$
\begin{align*}
F= & {\left[\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)^{2}+\frac{1}{2}\left(\sigma_{y}-\sigma_{z}\right)^{2}+\frac{1}{2}\left(\sigma_{z}-\sigma_{x}\right)^{2}\right.} \\
& \left.+3\left(\tau_{y z}^{2}+\tau_{z x}^{2}+\tau_{x y}^{2}\right)\right]^{1 / 2}-\sigma_{y d} \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
F & =\text { yield surface; } \\
{ }^{\sigma_{x}, \sigma_{y}, \sigma_{z}} & =\text { normal stress component } ; \\
{ }^{\tau} x y,{ }^{\tau} y z,{ }^{\tau}{ }_{x z} & =\text { shear stress component; and } \\
{ }^{\sigma_{y d}} & =\text { uniaxial stress at yield. }
\end{aligned}
$$

3.3 Elemental Stiffness Matrices

3.3.1 General

Cost and accuracy are the major factors to be considered in the finite element analysis of structures. The use of higher order elements or a fine mesh is restricted to cases in which higher accuracy is a necessity. This will result in increasing the complexity of an element and increasing the computational time. The linear rectangular element with four integrating points was used in this study to idealize steel base plates and concrete footings. A bond-link element was used to simulate the bond-slip phenomenon between the concrete footing and the steel plate.

A number of alternative methods are available for the formulation of elemental stiffness matrices. The variational approach based on the principal of minimum potential energy is adopted here. A comprehensive review

Figure 4. Idealized Stress-Strain Curve for Steel
of the theory and application of the methods is given in textbooks (76) (77). The formulation procedure can be summarized as follows: the basic step in determining the properties of the element is to define the displacement field $\{\hat{u}\}$ in terms of the nodal displacements $\{u\}$ by a set of equations given as

$$
\begin{equation*}
\{\hat{u}\}=[N]\{u\} \tag{3.4}
\end{equation*}
$$

where [N] is the matrix of shape function. The strain-displacement relations in the element can be expressed as follows:

$$
\begin{equation*}
\{\varepsilon\}=[B]\{u\} \tag{3.5}
\end{equation*}
$$

where $\{\varepsilon\}$ is the strain vector, and $[B]$ is the strain matrix. The stresses may be determined from a constitutive relationship in the form

$$
\begin{equation*}
\{\sigma\}=[D]\{\varepsilon\} \tag{3.6}
\end{equation*}
$$

where $\{\sigma\}$ is the stress vector, and $[D]$ is the material property matrix. For distributed forces the potential energy can be expressed as

$$
\begin{equation*}
P E=\int_{S}\{U\}^{\top}\{q\} d s \tag{3.7}
\end{equation*}
$$

where $\{q\}$ is the vector of force intensity. The strain energy in the elements is the integral of internal work

$$
\begin{equation*}
S E=\int_{v} d\{\varepsilon\}^{T}\{\sigma\} d v \tag{3.8}
\end{equation*}
$$

The total potential energy II of the element is the sum of its strain energy and potential energy. Thus:

$$
\pi=\int_{v} d\{\varepsilon\}^{\top}\{\sigma\} d v-\int_{s}\{U\}^{T}\{q\} d s
$$

or

$$
\begin{equation*}
\Pi=\int_{v}\{U\}^{\top}[B]^{\top}[D][B]\{U\} d v-\int_{S}\{U\}^{\top}\{N\}^{\top}\{q\} d s \tag{3.9}
\end{equation*}
$$

Application of the principle of minimum potential energy in order to ensure equilibrium will result in the desired element stiffness matrix [K] and the nodal force vector [f].

$$
\begin{align*}
& {[K]=\int_{v}[B]^{\top}[D][B] d v} \tag{3.10}\\
& {[f]=\int_{S}\{N\}^{\top}\{q\} d s} \tag{3.11}
\end{align*}
$$

The force displacement relation for the overall structure can be obtained by the summation of element stiffnesses after modifying for boundary conditions as follows:

$$
\begin{equation*}
\{F\}=\left[K_{S}\right]\left\{U_{s}\right\} \tag{3.12}
\end{equation*}
$$

where
$\{F\}=$ generalized nodal forces;
$\left[K_{s}\right]=$ stiffness matrix of structure; and
$\left\{U_{S}\right\}=$ generalized nodal displacements.
The unknown displacements can be obtained by solving the above equation. Thus the nodal displacements, strains, and stresses can be computed for each element from Equations (3.4), (3.5), and (3.6), respectively.

3.3.2 Linear Rectangular Element

The linear edge displacement rectangular element produces displacements due to direct stresses. However, when it is used in problems in which the bending behavior is important, such as the bending of the base plate, a very fine mesh is needed to avoid the effect of parasitic shear as shown in Figure 5. Zienkiewicz and Too (78) used a reduced integration technique to count for parasitic shear in plate and shell elements. Wilson et al. (79) added two quadratic shape functions to the basic shape function to eliminate parasitic shear from the behavior of the lower order

(a) Constraint Mode

(b) True Node

Figure 5. Parasitic Shear Stresses Induced in a Linear Element Under Bending Mode (78)
elements. The only drawback in this procedure is that displacements along the common edges are not solely dependent on the displacements of the terminal nodes. The details of the derivation of the element stiffness matrix can be summarized as follows: the rectangular element with its natural coordinates are shown in Figure 6. The natural coordinates can be related to the global cartesian coordinates through the shape functions $N_{i}(\varepsilon, \eta)$. The coordinate transformation can be written in the form

$$
\begin{align*}
& r(\xi, n)=\sum_{i=1}^{4} N_{i} \bar{r}_{\mathbf{i}} \\
& z(\xi, n)=\sum_{i=1}^{4} N_{i} \bar{z}_{i} \tag{3.13}
\end{align*}
$$

where $\bar{r}_{\boldsymbol{i}}$ and \bar{z}_{i} are the global coordinates at the nodal points. The shape functions can be expanded in the form

$$
\begin{align*}
& N_{1}=\frac{1}{4}(1-\xi)(1-n) \\
& N_{2}=\frac{1}{4}(1+\xi)(1-n) \\
& N_{3}=\frac{1}{4}(1+\xi)(1+n) \\
& N_{4}=\frac{1}{4}(1-\xi)(1+n) \tag{3.14}
\end{align*}
$$

The displacement field within the element is approximated by the shape functions as follows:

$$
\begin{align*}
& \hat{u}(\xi, \eta)=[N]\{u\} \\
& \hat{v}(\xi, \eta)=[N]\{v\} \tag{3.15}
\end{align*}
$$

where

Figure 6. Linear Rectangular Element
[N] = matrix of shape function;
$\{u\}=$ column vector of nodal displacement in the r direction; and
$\{v\}=$ column vector of nodal displacement in the z direction.
For axisymmetric problems the strain displacement relations are

$$
\begin{aligned}
& \varepsilon_{r}=\frac{\partial u}{\partial r}=[N, r]\{u\} \\
& \varepsilon_{z}=\frac{\partial v}{\partial z}=\left[N,,_{z}\right]\{v\} \\
& \varepsilon_{\theta}=\frac{u}{r}=\frac{1}{r}[N]\{u\} \\
& \gamma_{r z}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\left[N,{ }_{z}\right]\{u\}+[N, r]\{v\}
\end{aligned}
$$

where
[N, r] = shape function derivative with respect to r; and
$[\mathrm{N}, \mathrm{Z}]=$ shape function derivative with respect to z .
In matrix form,

$$
\left\{\begin{array}{c}
\varepsilon_{r} \tag{3.16}\\
\varepsilon_{z} \\
\varepsilon_{\theta} \\
\gamma_{r z}
\end{array}\right\}=\left[\begin{array}{cc}
{[N, r} & {[0]} \\
{[0]} & {\left[N,{ }_{z}\right]} \\
{\left[\frac{N}{r}\right]} & {[0]} \\
{\left[N, r_{z}\right]} & {[N, r}
\end{array}\right]\left\{\begin{array}{c}
u \\
v
\end{array}\right\}
$$

which can be expressed as

$$
\{\varepsilon\}=[B]\{u\}
$$

where
$\{\varepsilon\}=$ column vector of strain;
$[\mathrm{B}]=$ strain matrix; and
$\{u\}=$ vector of nodal displacements.

The stress-strain relation can be written as

$$
\{\sigma\}=[D]\{\varepsilon\}
$$

where $\{\sigma\}$ is the stress vector and [D] is the material property matrix.
Using the principal of minimum potential energy the equilibrium equations can be expressed as
$\{F\}=[K]\{U\}$
where

```
{F} = force vector;
[K] = element stiffness matrix; and
{U} = displacement vector.
```

A four point, numerical integration technique based on the Gauss quadrant rule is employed to obtain Equation (3.10).

The elemental stiffness matrix for bending elements can be obtained by using a simple technique in which

$$
\begin{equation*}
[K]=\int_{v}[B]^{\top}\left[D_{1}\right][B] d v+\int_{v}[B]^{\top}\left[D_{2}\right][B] d v \tag{3.17}
\end{equation*}
$$

where
$\left[D_{1}\right]=$ partitioned material property matrix containing no shear modulus; and
$\left[D_{2}\right]=$ partitioned material property matrix containing shear modulus terms only.

The first part is integrated about the four integration points based on the Gauss quadrant rule. The second part is integrated only about the center of the element.

3.3.3 Stiffness Matrix of Bond-Link Element

The bond-link element is represented in the r, z plane and is shown
in Figure 7. To compute the stiffness matrix, the stiffness coefficient K_{h} and K_{v} are assumed in the r, z directions, respectively. The stressstrain relation in the matrix notation can be expressed in the form

$$
\begin{gather*}
\{\sigma\}=\left[D_{b}\right] \\
\left\{\begin{array}{c}
\sigma_{r} \\
\sigma_{z}
\end{array}\right\}=\left[\begin{array}{ll}
K_{h} & 0 \\
0 & K_{v}
\end{array}\right]\left\{\begin{array}{c}
\Delta_{r} \\
\Delta_{z}
\end{array}\right\} \tag{3.18}
\end{gather*}
$$

where Δ_{r} and Δ_{z} are the relative displacements between the adjacent steel and concrete nodes. The strain displacement can be verified as

$$
\begin{align*}
& \Delta_{r}=\bar{u}_{3}-\bar{u}_{1} \\
& \Delta_{z}=\bar{u}_{4}-\bar{U}_{2} \tag{3.19}
\end{align*}
$$

The total deformations in terms of the nodal displacement can be written as

$$
\begin{align*}
& \left\{U_{s}\right\}=[B]\{\bar{U}\} \\
& \left\{\begin{array}{l}
U_{s h} \\
U_{s v}
\end{array}\right\}=\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right\} \tag{3.20}
\end{align*}
$$

The stiffness matrix can be evaluated from the relation

$$
\begin{equation*}
[K]=[B]^{\top}[D][B] \tag{3.21}
\end{equation*}
$$

Lassker (71) and Salem (72) have found in their studies of reinforced concrete structures that this type of bond mechanism simulated the interaction between steel and concrete quite accurately. In this study the bond-link elements are assumed to separate if there are tensile forces

Figure 7. Bond-Link Element
present in the elements, and to slip if the horizontal force component is greater than three times the vertical force component.

CHAPTER IV

METHOD OF SOLUTION

4.1 General

One of the most important applications of the finite element method is in the analysis of nonlinear structures. Nonlinearities occur in three different forms. The first is material nonlinearity which results from nonlinear constitutive laws. The second is geometric nonlinearity which is encountered when a structure experiences large deformations. The third is the combined geometric and material nonlinearity. Only the material nonlinearity is considered in this study because of the relatively small deformations in the base plate system.

The solution of material nonlinear problems using the finite element method will result in a set of nonlinear simultaneous equations which may be written in the form

$$
\begin{equation*}
[K]_{n}\{U\}=\{F\} \tag{4.1}
\end{equation*}
$$

The nonlinearity occurs in the stiffness matrix $[K]_{n}$ which is a function of the nonlinear material properties. The coefficients of the [D] matrix are strains evaluated according to the stress-strain relationship of the constitutive laws. The basic variational approach for obtaining the element stiffness and load matrices for nonlinear problems is the same as presented in section 3.3. The basic techniques used in the solution of nonlinear problems are the incremental, the iterative, and the incremental-
iterative procedures. The techniques for the solution of nonlinear problems are discussed in detail in the textbook by Desai and Able (77).

The main advantage of the incremental procedure is its general applicability and the ability to obtain a load-deformation history. On the other hand, the iteration method is easier to use and convergence is achieved faster than in the incremental procedure. The principal disadvantages of the iterative procedure are that the deformations and the stresses can be determined only for the total load and there is no assurance that the method will converge to the exact solution. Because of these limitations, a mixed incremental-iterative procedure which combines the advantages of both the incremental and iterative procedures is widely used. This method tends to minimize the disadvantage of the other procedures. The additional computation effort is justified by the higher accuracy and a more complete description of the load-deformation of the problem.

4.2 Nonlinear Solution

An incremental-iterative procedure for solving the nonlinear problem, based on the initial stress method developed by Zienkiewicz and co-authors (56) (80), is used in this study. The nonlinearity results from the nonlinear form of the constitutive relations of concrete and steel. Relatively small load increments are applied to the structure to predict the actual path of the load-deformation as closely as possible. Assuming a linear strain-displacement relationship, one can obtain a nonlinear solution by iterating until the constitutive laws and equilibrium are satisfied.

The incremental-iterative method is illustrated in Figure 8. The method can be written for the ith increment as follows.

$$
\begin{equation*}
\left[K_{i}\right] \quad\left\{U_{i}^{j}\right\}=\left\{R^{j-1}\right\} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{aligned}
{\left[K_{i}\right]=} & \text { incremental stiffness matrix for load step } i ; \\
\left\{U_{i}^{j}\right\}= & \text { incremental displacement vector for load step } i \text { and itera- } \\
& \text { tion } j ; \text { and } \\
\left\{R^{j-1}\right\}= & \text { residual load vector computed from previous iteration } j-1 .
\end{aligned}
$$ The residual load vector is caused by the excessive stresses ($\sigma_{e x}$) that the element can no longer sustain at the current strain level because of cracking and yielding of the materials. As the result of cracking of concrete, the tangential stiffness matrix $\left[K_{i}\right]$ is computed at the beginning of each load step and used to analyze the structure during the iterations for that load increment. The iterative procedure is terminated when convergence is achieved. The choice of the criterion for convergence may be based on the degree of approximation desired, acceptable accuracy, and financial feasibility. It is cumbersome to check and compute the residuals or displacements for each degree of freedom. In this study the norm of the applied load vector $\{F\}$ and the norm of the residual load vector $\{R\}$ are computed during the iterative solution. Convergence is assumed to occur when the norm of the residuals to the norm of the applied load is less than a preselected convergence factor which can be written as

$$
\begin{equation*}
\frac{\left\|F_{i}\right\|}{\left\|R_{i}\right\|} \leq t \tag{4.3}
\end{equation*}
$$

$\left\|F_{i}\right\|$ and $\left\|R_{i}\right\|$ are norm to the applied loads and the residuals, and t is a convergence factor of about 0.01 or 0.02 .

Figure 8. Incremental-Iterative Procedure

The combination of both the incremental and iterative technique, in which the stiffness matrix is updated at the beginning of the load step, is believed to be the most economical of all available procedures of solving nonlinear material problems (73).

The over-relaxation method proposed by Nayak and Zienkiewicz (81) to improve convergence has not been used in this study. This technique caused divergence of the solution of concrete structures (72) (73).

4.3 Constitutive Laws of Incremental Plasticity

A law defining the limit of elastic behavior under any possible combination of stress is known as a criterion of yielding. Mathematically it is expressed by a surface in the stress space. The general form of the yield surface is in the form

$$
\begin{equation*}
F\left(\{\sigma\},\left\{\varepsilon_{p}\right\}, k\right)=0 \tag{4.4}
\end{equation*}
$$

where $\{\sigma\}$ contains the relevant stress components, $\left\{\varepsilon_{p}\right\}$ is the accumulated plastic strain, and κ is the hardening parameter which describes the modification in the yield surface during the plastic flow. In this equation $F<0$ indicates an elastic state, $F=0$ denotes a plastic state.

The flow rule relates the plastic strain increments $d\left\{\varepsilon_{p}\right\}$ to stresses and their increments. The plastic potential Q to which the normality rule is applicable can be expressed as

$$
\begin{equation*}
Q\left(\sigma, \varepsilon_{p}, \kappa_{0}\right)=0 \tag{4.5}
\end{equation*}
$$

If the plastic potential is identical with the yield surface $F \equiv Q$, the flow rule is referred to as the associated flow rule. Then the normality rule can be expressed as

$$
\begin{equation*}
d\left\{\varepsilon_{p}\right\}=d \lambda \frac{d F}{d\{\sigma\}}=d \lambda\{\dot{N}\} \tag{4.6}
\end{equation*}
$$

where $d \lambda$ is a non-negative constant to be determined, and $\{N\}$ is the normal to the yield surface.

The incremental strain is separable into elastic and plastic portions during an infinitesimal increment of stress

$$
\begin{equation*}
d\{\varepsilon\}=d\left\{\varepsilon_{e}\right\}+d\left\{\varepsilon_{p}\right\} \tag{4.7}
\end{equation*}
$$

The total differential of the yield function is

$$
\begin{equation*}
d F=\left\{\frac{d F}{d\{\sigma\}}\right\}^{T} d\{\sigma\}+\left\{\frac{d F}{d\left\{\varepsilon_{p}\right\}}\right\}^{T} d\left\{\varepsilon_{p}\right\}+\frac{d F}{d \kappa} d \kappa=0 \tag{4.8}
\end{equation*}
$$

Equation (4.8) can be written as

$$
\begin{equation*}
d F=\{N\}^{\top} d\{\sigma\}-H d \lambda=0 \tag{4.9}
\end{equation*}
$$

where

$$
H=-\frac{1}{d \lambda}\left[\left\{\frac{d F}{d\left\{\varepsilon_{p}\right\}}\right\}^{T} d\left\{\varepsilon_{p}\right\}+\frac{d F}{d \kappa} d \kappa\right]
$$

Substituting Equation (4.6) into Equation (4.7) gives

$$
\begin{equation*}
d\{\varepsilon\}=[D]^{-1} d\{\sigma\}+d \lambda\{N\} \tag{4.10}
\end{equation*}
$$

Pre-multiplying Equation (4.10) by $\{N\}^{\top}[D]$ and eliminating $d\{\sigma\}$, one obtains

$$
\begin{equation*}
d \lambda=\frac{\{N\}^{\top}[D] d\{\varepsilon\}}{H+\{N\}^{\top}[D]\{N\}} \tag{4.11}
\end{equation*}
$$

Substituting $d \lambda$ in Equation (4.10) and rearranging the terms, one obtains

$$
\begin{equation*}
d\{\sigma\}=\left([D]-\left[D_{p}\right]\right) d\{\varepsilon\} \tag{4.12}
\end{equation*}
$$

in which

$$
\left[D_{p}\right]=\frac{[D]\{N\}\{N\}^{\top}[D]}{H+\{N\}^{\top}[D]\{N\}}
$$

Rewriting Equation (4.12)

$$
\begin{equation*}
d\{\sigma\}=\left[D_{e p}\right] d\{\varepsilon\} \tag{4.13}
\end{equation*}
$$

where $\left[D_{\text {ep }}\right]$ is the elasto-plastic material property matrix which is symmetric and positive definite.

The isotropic hardening rule assumes a uniform expansion of the initial yield surface. The hardening parameter k depends on the plastic strain hardening and the uniaxial yield stress.

Two definitions have been proposed for k (82). One definition states that k is a function of the plastic work only; hence, it is dependent of the strain path such that

$$
\begin{equation*}
d_{k}=\{\sigma\}^{\top} \cdot d\left\{\varepsilon_{p}\right\} \tag{4.14}
\end{equation*}
$$

The other definition is based on the assumption that the work hardening parameter κ is a function of the equivalent plastic strain

$$
\begin{equation*}
d_{k}=d^{-} \bar{\varepsilon}_{p} \tag{4.15}
\end{equation*}
$$

The two definitions of κ lead to identical results for von Mises yield criterion. The work hardening is more general and is used by Nayak and Zienkiewicz (80). They showed that for isotropic hardening the parameter H in Equation (4.9) is the slope of the uniaxial stress-equivalent plastic strain curve.

The failure criteria can be expressed in terms of the three invariant quantities ($\sigma_{m}, \bar{\sigma}, \phi$) as suggested by Nayak and Zienkiewicz (80) as

$$
\begin{align*}
& \sigma_{m}=\frac{J_{1}}{3}=\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \bar{\sigma}=\sqrt{J_{2}}=\left[\frac{1}{2}\left(S_{x}^{2}+S_{y}^{2}+S_{z}^{2}\right)+\tau_{x y}^{2}+\tau_{y z}^{2}+\tau_{z x}^{2}\right]^{1 / 2} \\
& \phi=\frac{1}{3} \sin ^{-1}\left[-\frac{3 \sqrt{3}}{2} \frac{J_{3}}{3}\right] \quad-\frac{\pi}{6}<\phi<\frac{\pi}{6} \tag{4.16}
\end{align*}
$$

where

$$
\begin{aligned}
& J_{1}=\sigma_{x}+\sigma_{y}+\sigma_{z} \\
& J_{2}=\frac{1}{6}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+\left(\sigma_{z}-\sigma_{x}\right)^{2}+6\left(\tau_{x y}^{2}+\tau_{y z}^{2}+\tau_{x z}^{2}\right)^{1 / 2}\right. \\
& J_{3}=S_{x} S_{y} S_{z}+2 \tau_{x y} \tau_{y z}^{\tau} z x-S_{x} \tau_{y z}^{2}-S_{y} \tau_{z x}^{2}-S_{z} \tau_{x y}^{2} \\
& S_{x}=\sigma_{x}-\sigma_{m} \\
& S_{y}=\sigma_{y}-\sigma_{m} \\
& S_{z}=\sigma_{z}-\sigma_{m}
\end{aligned}
$$

The normal to the yield surface $\{N\}$ can be obtained in the form

$$
\begin{align*}
& \{N\}=\frac{\partial F}{\partial\{\sigma\}}=\frac{\partial F}{\partial \sigma_{m}} \frac{\partial \sigma_{m}}{\partial\{\sigma\}}+\frac{\partial F}{\partial \bar{\sigma}} \frac{\partial \bar{\sigma}}{\partial\{\sigma\}}+\frac{\partial F}{\partial \phi} \frac{\partial \phi}{\partial\{\sigma\}} \\
& \{N\}=C_{1}\left\{a_{1}\right\}+C_{2}\left\{a_{2}\right\}+C_{3}\left\{a_{3}\right\} \tag{4.17}
\end{align*}
$$

where

$$
\begin{aligned}
F & =\text { yield surface } \\
\left\{a_{1}\right\} & =\frac{\partial \sigma_{1 n}}{\partial\{\sigma\}} \\
\left\{a_{2}\right\} & =\frac{\partial \bar{\sigma}}{\partial\{\sigma\}} \\
\left\{a_{3}\right\} & =\frac{\partial \phi}{\partial\{\sigma\}}
\end{aligned}
$$

for the case in which the stresses are $\sigma_{x}, \sigma_{y}, \sigma_{z}$ and ${ }^{\tau} x y$. The derivatives of the stress invariant are

$$
\begin{aligned}
& \left\{a_{1}\right\}^{\top}=\frac{1}{3} \quad[1,1,1,0] \\
& \left\{a_{2}\right\}^{\top}=\frac{1}{2 \bar{\sigma}}\left[S_{x}, S_{y}, S_{z}, 2 \tau_{x y}\right] \\
& \left\{a_{3}\right\}^{\top}=-\frac{\sqrt{3}}{2 \cos 3 \phi}\left[\frac{1}{\sigma^{3}} \frac{\partial J_{3}}{\partial\{\bar{\sigma}\}}-\frac{3 J_{3}}{-4} \frac{\partial \bar{\sigma}}{\partial\{\phi\}}\right]
\end{aligned}
$$

where

$$
\frac{\partial J_{3}}{\partial\{\sigma\}}=\left\{\begin{array}{c}
S_{y} S_{z}-\tau_{y z}^{2} \tag{4.18}\\
S_{x} S_{z}-\tau_{x z}^{2} \\
S_{x} S_{y}-\tau_{x y}^{2} \\
2\left(\tau y z^{\tau} x z-S_{z}{ }^{\tau} x y\right)
\end{array}\right\}+\frac{1}{3}\left\{\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right\} \bar{\sigma}^{2}
$$

The values of C_{1}, C_{2}, and C_{3} are constants dependent on the failure criteria. For von Mises yield criterion the constants are:

$$
\begin{equation*}
c_{1}=0, c_{2}=\sqrt{3}, \quad c_{3}=0 \tag{4.19}
\end{equation*}
$$

The constants for the octahedral shear yield criterion given in Equation (3.3) are

$$
\begin{equation*}
C_{1}=\frac{\beta-1}{2 \beta-1}, \quad C_{2}=\frac{1}{\sqrt{3}}, \quad C_{3}=0 \tag{4.20}
\end{equation*}
$$

4.4 Evaluation of Excessive Stresses

In the analysis of problems with nonlinear stress-strain laws, the stiffness matrix is constructed by using material properties established during the previous iteration. After solving for displacements, one can obtain the strain increment $d\{\varepsilon\}$ and the stress increment $d\{\sigma\}$. The total stress $\left\{\sigma_{e}\right\}$ is evaluated by adding the stress increment to previous stresses. As a result of the material nonlinearity, the stresses $\left\{\sigma_{e}\right\}$ are
different from the true stresses $\{\sigma\}$. Thus excessive stresses can be evaluated as

$$
\begin{equation*}
\left\{\sigma_{e x}\right\}=\left\{\sigma_{e}\right\}-\{\sigma\} \tag{4.21}
\end{equation*}
$$

During the transition from elastic to plastic conditions, the intermediate stress value at which the yield begins must be determined. Let F_{0} be the yield function corresponding to stresses $\left\{\sigma_{0}\right\}$ and F_{1} be the yield function corresponding to stresses $\left\{\sigma_{0}+\Delta \sigma_{e}\right\}$

$$
\begin{align*}
& F\left(\sigma_{0}\right)=F_{0}<0 \tag{4.22}\\
& F\left(\sigma_{0}+\Delta \sigma_{e}\right)=F_{7}>0 \tag{4.23}
\end{align*}
$$

If plasticity is encountered in the increment, a factor r must be determined, such that

$$
\begin{equation*}
F\left(\sigma_{0}+r \Delta \sigma_{e}\right)=0 \tag{4.24}
\end{equation*}
$$

By linear interpolation an approximate value r can be found as

$$
r_{1}=\frac{-F_{0}}{F_{1}-F_{0}}
$$

Nayak and Zienkiewicz (80) obtained a better estimate of r by evaluating the instantaneous position of the yield surface, F_{2}, where

$$
\begin{equation*}
F_{2}=-\{N\}^{\top} \cdot \Delta\{\sigma\} \cdot \Delta r_{1} \tag{4.25}
\end{equation*}
$$

and an improved value of r can be given by

$$
\begin{equation*}
r=r_{1}-\frac{F_{2}}{\{N\}^{\top} \Delta\{\sigma\}} \tag{4.26}
\end{equation*}
$$

The value of r is used in the correction of the incremental plastic strains and stresses. The strain increment $\Delta\{\varepsilon\}$ may be separated into
two parts: an elastic strain increment $\mathrm{r} \Delta\{\varepsilon\}$ which corresponds to a stress point on the yield surface; and a plastic strain increment (1-r) $\Delta\{\varepsilon\}$ in the same manner the stress increment can be separated.

The excessive stresses can be calculated as

$$
\begin{equation*}
\left\{\sigma_{e x}\right\}=\int_{r \Delta\{\varepsilon\}}^{\Delta\{\varepsilon\}}\left[D_{p}\right] d\{\varepsilon\} \tag{4.27}
\end{equation*}
$$

where $\left[D_{p}\right]$ is the plastic material property matrix. The equation can be written in an approximate form as

$$
\begin{equation*}
\left\{\sigma_{e x}\right\}=(1-r)\left[D_{p}\right] \Delta\{\varepsilon\} \tag{4.28}
\end{equation*}
$$

The error resulting from such an approximation is very small and no correction is necessary in the case in which the departure from the yield surface is small.

The excessive stresses are converted into unbalanced nodal forces as

$$
\begin{equation*}
\{P\}=\int_{v}[B]^{\top}\left\{\sigma_{e x}\right\} d v \tag{4.29}
\end{equation*}
$$

where $\{P\}$ is the unbalanced forces resulting from the excessive stresses $\left\{\sigma_{e x}\right\}$.

4.5 Outline of Computational Steps

The computational procedure can be summarized as follows:

1. Divide the total load vector $\{F\}$ to be applied into suitable small increments $\{\Delta \mathrm{F}\}$.
2. Apply a load increment $\{\Delta \mathrm{F}\}$ to the structure. Store $\{\Delta \mathrm{F}\}$ in the residual load vector $\{R\}$.
3. Assemble the stiffness matrix [K] using geometry and elastic data. Analyze the structure using the load vector $\{F\}$. The Gaussian
elimination procedure is used to solve the linear simultaneous equations. Solve for incremental displacements $\{\Delta U\}$. Update the displacements $\{U\}$.
4. Using the incremental displacement $\{\Delta U\}$, compute incremental strains $\{\Delta \varepsilon\}$ and update the strains $\{\varepsilon\}$.
5. Determine incremental stresses $\{\Delta \sigma\}$ using the incremental strains $\{\Delta \varepsilon\}$ and the current material properties. Add the incremental stresses to the previous stresses to obtain the stress vector $\left\{\sigma^{\prime}\right\}$.
6. Check the stresses against possible transition criteria (criteria for cracking, crushing, and yielding). If none of the transition criteria is achieved, proceed to step 10.
7. Calculate material property matrix [D] based on the current strains and stresses. Determine the stress vector $\{\sigma\}$ at which the element can sustain at this strain level.
8. Obtain the excessive element stresses $\left\{\sigma_{\text {ex }}\right\}$ by subtracting the stresses $\{\sigma\}$ from $\left\{\sigma^{\prime}\right\}$.
9. Convert the excessive stresses $\left\{\sigma_{\text {ex }}\right\}$ into unbalanced nodal forces \{p\} for the element.
10. Add the unbalanced nodal forces to the global unbalanced nodal loads $\{R\}$. Calculate a new elemental stiffness matrix.
11. Check all elements repeating steps 4 through 10.
12. Use convergence criteria mentioned in section 4.2 to determine if convergence is achieved. If convergence has not been achieved, perform a new iteration cycle starting from step 3.
13. If convergence has been achieved, apply a new load step starting from step 2.

A flow chart for the computational procedure is summarized and presented in Figure 9.

Figure 9. Flow Chart for Computational Steps

Figure 9. (Continued)

CHAPTER V

ANALYTICAL RESULTS

5.1 General

In order to illustrate the solution capability of the program and to verify the accuracy of the method used in this study, several problems have been solved. Analytical results are compared with experimental results which are presented in Appendix A, and with results obtained by conventional closed form solutions.

In this chapter several problems are described and discussed. Data input and output information is presented in Appendix B and a computer listing for the program is presented in Appendix C. All computations were carried out on the IBM 370/185 computer.

5.2 Example Solutions

5.2.1 Simply Supported Circular Plate

A simply supported circular plate was solved to verify the accuracy of the integration technique used in this study for bending elements in the elastic range of loading. A plate with a radius of 2.61 in . and a thickness of 0.26 in . was selected. The plate was loaded with a concentrated load of 62.83 lb at the center. The plate material had a modulus of elasticity of $10.5 \times 10^{6} \mathrm{psi}$ and a Poisson's ratio of 0.33 . The exact deflection at the center of the plate is $1.221 \times 10^{-3} \mathrm{in}$. The plate was
idealized by 28 rectangular elements. The central deflection for the bending elements was $1.208 \times 10^{-3} \mathrm{in}$. with a difference of 1 percent. However, the central deflection for the rectangular elements without bending mode was $1.075 \times 10^{-3} \mathrm{in}$. with a difference of 11 percent. This problem demonstrates the adequacy of the integration technique used in this study for bending elements.

5.2.2 Thick Wall Cylinder

A classic case was studied to test the plasticity routine of the computer program. Hodge and White (83) studied an infinitely long thick wall cylinder under internal pressure for the case of elastic-perfectly plastic material using the von Mises yield criterion. The cylinder had an inner radius, a, and an outer radius, $2 a$. The internal pressure, p, was increased from $0.7 \mathrm{p} / \mathrm{k}$ to $1.4 \mathrm{p} / \mathrm{k}$ in eight increments, where k is the yield stress in pure shear. The solution was obtained for ten rectantular elements.

The results of the finite element analysis in this study are compared to the solution obtained by Hodge and White in Figures 10 and 11. Figure 10 shows the pressure-external displacement of the cylinder presented in a nondimensionalized form, where G is the shear modulus. Figure 11 shows the distribution of radial, hoop, and axial stresses after the elastoplastic boundary had propagated to 1.5 a . The results of the finite element analysis show excellent agreement with the close form solution of Hodge and White.

5.3 Circular Base Plate System

Eight circular base plate specimens with axisymmetric loading,

Figure 10. Thick Cylinder Pressure-Displacement Curve

Figure 11. The Distribution of Radial, Hoop, and Axial Stresses When the Radius of the Plastic Zone is 1.5a
boundary, and geometric conditions were studied both experimentally and analytically. The various aspects of the experimental program are presented in detail in Appendix A. The concrete footing portion of the base plate system was idealized by 400 rectangular elements having a height of 1/2 in. and a width of $1 / 4$ in., as shown in Figure 12. The circular steel base plate was connected to the concrete footing by bond-link elements. The stiffness of the bond-link elements was chosen to suppress the relative displacements between the nodes at the bottom surface of the base plate and the nodes at the top surface of the concrete footing. Large numerical values were used for the stiffness of the bond-link elements. The stiffness of the bond-link elements must be chosen with caution because small or extremely large stiffness values may result in erroneous solutions. In this study a combination of constant and variable stiffnesses was used to improve the convergence of the solution.

Analytical load-deformation curves for the eight base plate systems are presented and compared with experimental results in Figures 13 through 20. The vertical displacement of the center of the plates relative to the edge of the plate and the vertical displacement of concrete at the outer edge of the plate relative to the edge of the plate are presented. The predicted ultimate load carrying capacity of the base plate system is in close agreement with experimental results. The load deformation curves of the proposed analytical model compare well with experimental results of this study. The use of a finer mesh, or a more complex material, or smaller load increments might result in better agreement with experimental data. However, the inherent uncertainties associated with the characteristics of the individual experimental specimens may result in some differences when comparisons of this type are made.

Figure 13. Load-Deformation Curve, Base Plate Cl

Figure 14. Load-Deformation Curve, Base Plate C2

Figure 15. Load-Deformation Curve, Base Plate C3

Figure 16. Load-Deformation Curve, Base Plate C4

Figure 17. Load-Deformation Curve, Base Plate C5

Figure 18. Load-Deformation Curve, Base Plate C6

Figure 19. Load-Deformation Curve, Base Plate C7

Figure 20. Load-Deformation Curve, Base Plate C8

5.4 Variables Influencing a Circular Base Plate System

Existing design methods express the bearing strength of concrete as a function of the compressive strength of concrete. Increased bearing strength is permitted when the load is applied to only a portion of the surface of the footing. In design, a base plate thickness is chosen to limit the bending stresses in the plate. Therefore, the compressive strength of concrete, yield strength of the steel, and the fraction of the concrete surface under load are the major variables influencing the design and possibly the behavior of the base plate system.

A concrete footing with a diameter of 8.0 in . and a height of 4.0 in., and a base plate having a diameter of 5.0 in . and a thickness of 0.5 in. were selected as a reference to study these variables. This footing was idealized by 64 elements, each having a height of $1 / 2 \mathrm{in}$. and a width of $1 / 2 \mathrm{in}$. A compressive strength of 3000 psi was used for concrete footing and a yield strength of 36,000 psi was used for the steel. The base plate system was loaded in a manner which corresponded to a loading which would occur with a pipe column having a nominal diameter of 3.0 in . The ultimate load carrying capacity of this system was 71 kips.

The influence on the ultimate capacity of the footing system resulting from variations in the compressive strength of the concrete footing, yield strength of the steel plate, plate thickness and plate diameter on the base plate system are presented in Figures 21 through 24. The increase in the ultimate load carrying capacity of the base plate system resulting from an augmentation in the yield strength of the plate was more significant than the increase in capacity resulting from an augmentation in the compressive strength of concrete. The load carrying capacity

Figure 21. Influence of Compressive Strength of Concrete on Ultimate Load

Figure 22. Influence of Yield Strength of Steel on Ultimate Load

Figure 23. Influence of Plate Thickness on Ultimate Load

Figure 24. Influence of Plate Diameter on Ultimate Load
of base plates increased with an increase in the plate thickness until a limiting value was reached which represents the thickness of a rigid plate. The capacity of the base plate system also increased as a result of increasing the plate diameter.

These limited parametric studies illustrate the manner in which the program can be used to investigate the variables which influence the capacity of the base plate system. By further experimental and analytical work, improvements in the present design procedures may be realized.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

A model for circular base plates based on the finite element method was developed. The principal characteristics affecting the behavior of the base plate system were incorporated in the model. Steel was idealized as an elastic-perfectly plastic material. Concrete was assumed to be an isotropic homogeneous material when loaded in the elastic range and was assumed to be an elastic-perfectly plastic material in the compression zone. Cracking and crushing of concrete were considered also in the nonlinear range of loading. Steel base plates were connected to concrete footings through bond-link elements in such a way that a slip and separation between the two materials was permitted. Linear rectangular elements were used in this study to represent the steel base plate and the concrete footing. An integration technique was used in this study for elements in which the bending behavior was important.

Several numerical examples were solved to demonstrate the validity of the proposed model. The analytical solutions compared favorably with experimental results. The proposed model appears to be adequate for predicting the ultimate load for circular base plate systems. A limited number of solutions was obtained to study the effects of certain variables influencing the ultimate load carrying capacity of the base plate system.

6.2 Conclusions and Recommendations

The proposed analytical model is capable of analyzing and predicting the ultimate load carrying capacity for circular base plate systems. The effects of the material nonlinearities, cracking, crushing, and yielding were included in the analysis and the material model was adequate to analyze the base plate systems.

The compressive strength of concrete, yield strength of steel, relative area of base plate, and thickness of plates are the major variables influencing the behavior of the base plate system. Experimental results in this study indicated that circular base plate systems exhibited a lower bearing strength than square base plates which were loaded through wide flange sections (14).

The base plate model can be extended to include reinforcement in the concrete footing to better simulate actual design conditions. Also, different boundary conditions can be included in the model to allow for interaction between the structure and the surrounding soil. The results obtained suggested that more general problems, such as a three-dimensional base plate system which includes plates loaded by wide flange columns, can be solved by the method used in this study.

A SELECTED BIBLIOGRAPHY

(1) Manual of Steel Construction. American Institute of Steel Construction, Inc., 1971.
(2) "Supplement No. 3 to the Specification for the Design, Fabrication and Erection of Structural Steel Building." American Institute of Steel Construction, 1974.
(3) "Building Code Requirements for Reinforced Concrete, ACI 318-77." American Concrete Institute, 1977.
(4) Meyerhof, G. G. "The Bearing Capacity of Concrete and Rock." Magazine of Concrete Research, Vol. 4, No. 12 (April, 1953), pp. 107-116.
(5) Sheslon, W. "Bearing Capacity of Concrete." Proceedings, Journal of the American Concrete Institute, Vol. 54, No. 5 (November, 1957), pp. 405-414.
(6) Campbell-Allen, D. "Discussion of Reference 5." Proceedings, Journal of the American Concrete Institute, Vol. 54, No. 12 (June, 1958), pp. 1185-1187.
(7) Au, T., and D. L. Baird. "Bearing Capacity of Concrete Blocks." Proceedings, Journal of the American Concrete Institute, Vol. 56, No. 9 (March, 1960), pp. 869-879.
(8) Hawkins, N. M. "The Bearing Strength of Concrete Loaded Through Rigid Plates." Magazine of Concrete Research, Vol. 20, No. 26 (March, 1968), pp. 31-40.
(9) Chen, W. F., and D. C. Drucker. "Bearing Capacity of Concrete Blocks or Rock." Journal of the Engineering Mechanics Division, ASCE, Vol. 95, No. EM4 (August, 1969), pp. 955-978.
(10) Hyland, M. W., and W. F. Chen. "Bearing Capacity of Concrete Blocks." Proceedings, Journal of the American Concrete Institute, Vol. 67, No. 12 (March, 1970), pp. 228-236.
(11) Niyogi, S. K. "Bearing Strength of Concrete--Geometric Variations." Journal of the Structural Division, ASCE, Vol. 99, No. ST7 (July, 1973), pp. 1471-4190.
(12) Niyogi, S. K. "Concrete Bearing Strength--Support, Mix, Size, Effect." Journal of the Structural Division, ASCE, Vol. 100, No. ST8 (August, 1974), pp. 1685-1702.
(13) Niyogi, S. K. "Bearing Strength of Reinforced Concrete Blocks." Journal of the Structural Division, ASCE, Vol. 101, No. ST5 (May, 1975), pp. 1123-1136.
(14) Ghanem, H. M., and J. P. Lloyd. "Investigation of Base Plates for Axially Loaded Columns." Publication No. R(S)7. School of Civil Engineering, Oklahoma State University, November, 1976.
(15) Hawkins, N. M. "The Bearing Strength of Concrete Loaded Through Flexible Plates." Magazine of Concrete Research, Vol. 20, No. 63 (June, 1968), pp. 95-102.
(16) Popovics, S. "Review of Stress-Strain Relationship for Concrete." Proceedings, Journal of the American Concrete Institute, Vol. 67, No. 3 (March, 1970), pp. 243-248.
(17) Griffith, A. A. "The Phenomena of Rupture and Flow in Solids." Philosophical Transactions of the Royal Society, Vol. 221A (1920), pp. 163-198.
(18) Newman, K. "Criteria for the Behavior of Plain Concrete Under Complex States of Stresses." Proceedings, International Conference of the Structure of Concrete, Cement and Concrete Association, London (1960), pp. 255-274.
(19) Kaplan, M. F. "Strains and Stresses of Concrete at Initiation of Cracking and Near Failure." Proceedings, Journal of the American Concrete Institute, Vol. 60, No. 7 (July, 1963), pp. 853-879.
(20) Sturman, G. M., S. P. Shah, and G. Winter. "Microcracking and Inelastic Behavior of Concrete." Proceedings of the International Symposium Flexural Mechanics of Reinforced Concrete; Miami, Florida, November, 1964. Ann Arbor, Mich.: American Society of Civil Engineers, 1965, pp. 473-493.
(21) Jones, R., and M. F. Kaplan. "The Effect of Coarse Aggregate on the Mode of Failure of Concrete in Compression and Flexure." Magazine of Concrete Research, Vol. 9, No. 26 (August, 1957), pp. 89-94.
(22) Smee, D. J. "The Effect of Aggregate Size and Concrete Strength on the Failure of Concrete Under Triaxial Compression." Civil Engineering Transactions, Institution of Engineers, Australia, Vol. CE9, No. 2 (October, 1967), pp. 339-344.
(23) Akroyd, T. N. W. "Concrete Under Triaxial Stress." Magazine of Concrete Research, Vol. 13, No. 39 (November, 1961), pp. 111118.
(24) Bresler, B., and K. S. Pister. "Failure of Plain Concrete Under Combined Stresses." Transactions of the American Society of Civil Engineers, Vol. 122 (1957), pp. 1049-1068.
(25) McHenry, D., and J. Karni. "Strength of Concrete Under Combined Tensile and Compressive Stresses." Proceedings, Journal of the American Concrete Institute, Vol. 54, No. 10 (April, 1958), pp. 829-839.
(26) Föppl, A. "Mitteilunger aus dem Mech. Technischen Laboratorium der Koenig Tech. Houchschule." Technischen Hochshule, Nos. 27 and 28, München, 1899 and 1900.
(27) Wästlund, G. "Nya ron Angaende Betongs Grundlaggende Halfasthetsegenskaper." Betong, Stockholm, Vol. 3 (1937).
(28) Weigler, H., and G. Becker. "Undersuchungen über des Bruch--und Verformugsverhalten von Beton bei Zweiachsiger Beanspruchung." Proceedings, Deutscher Ausschuss fur Stahlbeton, Vol. 157, Berlin (1963).
(29) Sundara Raja Iyengar, K. T., K. Chandraskekhara, and K. T. Krishnaswamy. "Strength of Concrete Under Biaxial Compression." Proceedings, Journal of the American Concrete Institute, Vol. 62, No. 2 (February, 1965), pp. 239-249.
(30) Vile, G. W. D. "Strength of Concrete Under Short-Time Static Biaxial Stress." Proceedings, International Conference on the Structure of Concrete, Cement and Concrete Association, London (1968), pp. 275-288.
(31) Kupfer, H., H. K. Hisdorf, and H. Ruch. "Behavior of Concrete Under Biaxial Stresses." Proceedings, Journal of the American Concrete Institute, Vol. 66, No. 52 (August, 1969), pp. 656666.
(32) Rosenthal, I., and J. Glucklich. "Strength of Plain Concrete Under Biaxial Stresses." Proceedings, Journal of the American Concrete Institute, Vol. 67, No. 59 (November, 1970), pp. 909-914.
(33) Carnio, N. J., and F. O. Slate. "Limiting Tensile Strain Criterion for Failure of Concrete." Proceedings, Journal of the American Concrete Institute, Vol. 73, No. 15 (March, 1976), pp. 160-165.
(34) Hansson, V., and K. Schimmelpfennig. "Concrete Strength in Multiaxial Stress States." Special Publication 34. Concrete for Nuclear Reactors, American Concrete Institute, Vol. 1 (1972), pp. 295-304.
(35) Bremer, F. "On a Triaxial Strength Criterium for Concrete." Special Publication 34, Concrete for Nuclear Reactors, American Concrete Institute, Vol. 1 (1972), pp. 283-294.
(36) Mills, L. L., and R. M. Zimmerman. "Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions." Proceedings, Journal of the American Concrete Institute, Vol. 67, No. 47 (October, 1970), pp. 802-807.
(37) Pandit, G. S. Discussion of "Compressive Strength of Plain Concrete Under Multiaxial Loading Conditions." Proceedings, Journal of the American Concrete Institute, Vol. 68 (April, 1971), pp. 299-300.
(38) Kotsovos, M. D., and J. B. Newman. "Behavior of Concrete Under Multiaxial Stress." Proceedings, Journal of the American Concrete Institute, Vol. 74, No. 41 (September, 1977), pp. 443446.
(39) Turner, M. J., R. W. Clough, H. C. Martin, and L. J. Topp. "Stiffness and Deflection Analysis of Complex Structures." Journal of Aerospace Sciences, Vol. 23 (1965), pp. 805-823, 854.
(40) Mendelson, A., and S. S. Manson. "Practical Solution of Plastic Deformation Problems in Elastic-Plastic Range." NASA TRR 28, 1959.
(41) Wilson, E. L. "Matrix Analysis of Nonlinear Structures." Proceedings, Second ASCE Conference on Electronic Computation. Pittsburgh, Pennsylvania (September, 1960) pp. 415-428.
(42) Gallagher, R. H., J. Padlog, and P. P. Bijlaard. "Stress Analysis of Heated Complex Shapes." Journal of the American Rocket Society, Vol. 32 (May, 1962), pp. 700-707.
(43) Goldberg, J. E., and R. M. Richard. "Analysis of Non-Linear Structures." Journal of the Structural Division, ASCE, Vol. 89, No. ST4 (August, 1963), pp. 333-351.
(44) Wilson, E. L. "Finite Element Analysis of Two-Dimensional Structures." Structural Engineering Laboratory Report No. 63-2, University of California-Berkeley, June, 1963.
(45) Percy, J. H., W. A. Loden, and D. R. Navaratna. "A Study of Matrix Analysis Methods for Inelastic Structures." RTD-TDR-63-4032, October, 1963.
(46) Argyris, J. H., S. Kelsey, and H. Kame1. "Matrix Methods of Structural Analysis. A Precis of Recent Developments." Matrix Methods in Structural Analysis, 1964. AGARDograph 72. B. Fraelys de Veubeke, ed. Oxford: Pergamon Press, 1964, pp. 1-164. (Presented at AGARD Structures and Materials Panel, Paris, France, July, 1964.)
(47) Jensen, W. R., W. E. Falby, and N. Prince. "Matrix Analysis Methods for Anisotropic Inelastic Structures." AFFDL-TR-65-220, 1966.
(48) Pope, G. G. "A Discrete Element Method for Analysis of Plane Elasto-Plastic Stress Problems." TR 65028. Royal Aeronautical Establishment, 1965.
(49) Swedlow, J. L., and W. H Yang. "Stiffness Analysis of ElastoPlastic Plates." SM 65-19. Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, California, 1965.
(50) Marcal, P. V., and I. P. King. "Elastic-Plastic Analysis of TwoDimensional Stress Systems by Finite Element Methods." International Journal of Mechanical Sciences, Vol. 9 (1967), pp. 143-155.
(51) Felippa, C. A. "Refined Finite Element Analysis of Linear and Nonlinear Two-Dimensional Structures." Structures and Materials Research Report No. 66-22. University of California at Berkeley, Berkeley, California, October, 1966.
(52) Yamada, Y., N. Yoshirnura, and T. Sakurai. "Plastic Stress-Strain Matrix and Its Application for the Solution of Elasto-Plastic Problems by Finite Element Method." International Journal of Mechanical Science, Vol. 10 (1968), pp. 343-354.
(53) Akyzy, F. A., and J. E. Merwin. "Solution of Nonlinear Problem of Elasto-Plasticity by Finite Element Method." AIAA Journal, Vol. 6 (October, 1968), pp. 1825-1831.
(54) Lee, H. C., and S. Kobayashi. "Elasto-Plastic Analysis of PlaneStrain and Axisymmetric Flat Punch Indentation by Finite Element Method." International Journal of Mechanical Science, Vol. 12 (1970), pp. 349-370.
(55) Marcal, P. V. "Finite Element Anlaysis With Material Nonlinearities." Proceedings, Japan-United States Seminar on Matrix Methods in Structural Analysis and Design, Tokyo, 1969, pp. 257-282.
(56) Zienkiewicz, 0. C., J. Valliappan, and I. P. King. "Elasto-Plastic Solutions of Engineering Problems, Initial Stress, Finite Element Approach." International Journal of Numerical Methods in Engineering, Vol. 1 (1969), pp. 75-100.
(57) Oden, J. T. "Finite Element Applications in Nonlinear Structural Analysis." Proceedings, Symposium on the Application of Finite Element Methods in Civil Engineering, Nashville, Tennessee, November, 1969, pp. 419-456.
(58) Rashid, Y. R. "Analysis of Axisymmetric Composite Structures by Finite Element Methods." Nuclear Engineering and Design, Vol. 3 (1966), pp. 163-182.
(59) Rashid, Y. R. "Ultimate Strength Analysis of Prestressed Concrete Pressure Vessels." Nuclear Engineering and Design, Vol. 7 (1968), pp. 334-344.
(60) Scordelis, A. C., and N. Nago. "Finite Element Analysis of Reinforced Concrete Beams." Proceedings, Journal of the American Concrete Institute, Vo1. 64 (March, 1967), pp. 152-163.
(61) Nilson, A. H. "Nonlinear Analysis of Reinforced Concrete by Finite Element Method." Proceedings, Journal of the American Concrete Institute, Vol. 65, No. 9 (September, 1968), pp. 757-766.
(62) Corum, J. M., and N. Krishnamurthy. "A Three-Dimensional Finite Element Analysis of a Prestressed Concrete Reactor Vessel Mode1." Proceedings, Symposium on the Application of the Finite Element Method in Civil Engineering, ASCE, Vanderbilt University, Nashville, Tennessee, November, 1969, pp. 63-94.
(63) Cornell, D. C. et al. "SAFE-3D: A Computer Program for the ThreeDimensional Stress Analysis of Composite Structures." Atomic Energy Commission Research and Development Report No. GA-7855, Washington, D.C., September, 1967.
(64) Franklin, A. H. "Nonlinear Analysis of Reinforced Concrete Frames and Panels." (Unpublished Ph.D. dissertation, University of California at Berkeley, Berkeley, California, 1970.)
(65) Cervenka, V. "Inelastic Finite Element Analysis of Reinforced Concrete Panels Under In-Plane Loads." (Unpublished Ph.D. dissertation, University of Colorado, Boulder, Colorado, 1970.)
(66) Jofriet, J. C., and G. M. McNiece. "Finite Element Analysis of Reinforced Concrete Slabs." Journal of the Structural Division, ASCE, Vol. 97, No. ST3 (March, 1971), pp. 785-806.
(67) Bell, J. C., and D. Elms. "Partially Cracked Finite Elements." Journal of the Structural Division, ASCE, Vol. 97, No. ST7 (Ju7y, 1971), pp. 2041-2045.
(68) Scanlon, A. "Time Dependent Deflections of Reinforced Concrete Slabs." (Unpublished Ph.D. dissertation, University of Canterbury, Christchurch, New Zealand, 1970.)
(69) Hand, F. R., D. A. Pecknold, and W. C. Schobrich. "A Layered Finite Element Nonlinear Analysis of Reinforced Concrete Plates and Shells." Civil Engineering Studies, SRS No. 389. University of Illinois at Urbana-Champaign, Illinois, August, 1972.
(70) Lin, C. S. "Nonlinear Analysis of Reinforced Concrete Slabs and Shells." (Unpublished Ph.D. dissertation, University of California at Berkeley, Berkeley, California, 1973.)
(71) Lassker, A. J. "Nonlinear Behavior of Reinforced Concrete Beams by the Finite Element Method." (Unpublished Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma, 1972.)
(72) Salem, M. H. "Nonlinear Analysis of Planar Reinforced Concrete Structures." (Unpublished Ph.D. dissertation, University of Illinois, Urbana, Illinois, 1974.)
(73) Scordelis, A. C. "Finite Element Analysis of Reinforced Concrete Structures." Proceedings of the Specialty Conferences of the Finite Element Method in Civil Engineering, Montreal, Quebec, Canada, June, 1972, pp. 71-113.
(74) Phillips, D. V., and 0. C. Zienkiewicz. "Finite Element Nonlinear Analysis of Concrete Structures." Proceedings, Institutions of Civil Engineering, Vol. 61, Pt. 2 (March, 1976), pp. 59-88.
(75) Mikkola, M. J., and W. C. Schonbrich. "Material Behavior Characteristics for Reinforced Concrete Shells Stressed Beyond the Elastic Range." Civil Engineering Studies, SRS No. 367, University of Illinois, Urbana, Illinois, August, 1970.
(76) Zienkiewicz, 0. C. The Finite Element Method in Engineering Science. London: McGraw-Hill, 1971.
(77) Desai, C. S., and J. F. Abel. Introduction to the Finite Element Method. New York: Von Nostrand-Reinhold, 1972.
(78) Zienkiewicz, O. C., and J. M. Too. "Reduced Integration Technique in General Analysis of Plates and Shells." International Journal of Numerical Methods in Engineering, Vol. 3 (1971), pp. 275-290.
(79) Wilson, E. L., R. L. Taylor, W. P. Doherty, and J. Ghaboussi. "Incompatible Displacement Models." ONR Symposium, University of Illinois at Urbana-Champaign, Illinois, 1971.
(80) Nayak, G. C., and O. C. Zienkiewicz. "Elasto-Plastic Stress Analysis. A Generalization for Various Constitutive Relations Including Strain Softening." International Journal of Numerical Methods in Engineering, Vol. 5 (1972), pp. 113-135.
(81) Nayak, G. C., and O. C. Zienkiewicz. "Note on the Alpha-Constant Stiffness Method for the Analysis of Nonlinear Problems." International Journal of Numerical Methods in Engineering, Vol. 4 (1972), pp. 579-582.
(82) Hill, R. Mathematical Theory of Plasticity. Oxford: Clarendon Press, 1950.
(83) Hodge, P. G., Jr., and G. N. White, Jr. "A Quantitative Comparison of Flow and Deformation Theories of Plasticity." Journal of Applied Mechanics, Vo1. 17 (June, 1950), pp. 180-184.

APPENDIX A

EXPERIMENTAL INVESTIGATION

A. 1 Specimens

The tests involved eight specimens. Each specimen consisted of a circular base plate and a cylindrical mortar footing having a diameter of 10 in . and a height of 10 in . The plates were either 6.5 in . or 8.5 in. in diameter. Details of the specimens are given in Table I. The specimens were loaded through a loading apparatus as shown in Figure 25.

TABLE I
OUTLINE OF BASE PLATE SPECIMENS

	Base Plate			Size
Speci- men	Diameter (in.)	Compressive Strength (in.)	(ingess of Concrete (psi)	Age at
C1	6.5	0.250	3140	(days)
C2	6.5	0.375	3140	38
C3	6.5	0.500	3140	38
C4	6.5	0.625	3140	39
C5	8.5	0.375	3140	39
C6	8.5	0.500	3140	40
C7	8.5	0.625	3140	40
C8	8.5	0.750	3140	41

A. 2 Materials

The mortar in the investigations contained type I portland cement and river sand meeting relevant ASTM specifications. The mix proportions

Figure 25. Loading Apparatus for Circular Plates
by weight of cement and sand were 1.00:5.00; the water-cement ratio was 0.7. The nominal strength for the mix was 3000 psi. The mortar was mixed in the laboratory and the compressive strength of concrete was 3140 psi and the tensile splitting strength was 250 psi. A typical stressstrain curve for concrete used in this study is shown in Figure 26. The circular plates were annealed to relieve the effect of the residual stresses which resulted from flame cutting of the plates. Coupons were cut from the plate material and tested in tension; the results of the tests are given in Table II. A typical stress-strain curve for the steel used in this study is shown in Figure 27.

TABLE II
TENSILE PROPERTIES OF PLATES

Plate Thickness (in.)	Yield (psi)	Strength
0.250	39,000	Ultimate (psi)
0.375	30,100	60,500
0.500	28,400	47,400
0.625	36,000	50,600
0.750	34,600	61,600
		58,200

A. 3 Experimental Procedure

Cylindrical footings and control cylinders were cast in disposable cardboard molds. Mortar was consolidated with the use of an electric

Figure 26. Typical Stress-Strain Curve for Concrete

internal vibrator. The cylindrical footings and control cylinders were removed from the forms after one day and cured in a moist room until the time of the test.

Vertical displacement at the center of the plate and of the concrete footing at the outer edge of the plate was measured relative to the edge of the plate by two DCDT displacement transducers as shown in Figure 28. Load displacement curves were continuously plotted during the test by two $X-Y$ recorders. The load was applied concentrically to the plates through a loading apparatus. The loading apparatus had a 3.5 in . outer diameter at the loading surface. Portland cement grout was used to position the plates on the top of the footings and high strength gypsum cement grout was used between the bottom of the footing and the one-inch thick shoe plate. Four dial gages were placed horizontally at 2.0 in . intervals to detect the horizontal motion of the footing as shown in Figure 28.

A. 4 Experimental Results

Circular base plates were loaded up to failure and the load was applied in increments of 10 kips. Vertical cracks formed at the surface of cylindrical footings and propagated, thus indicating splitting due to tensile stresses normal to the radial direction. Failure in all cases occurred by formation of a solid core under the base plate followed by splitting and radial cracks. A typical specimen at failure is shown in Figure 29. The load carrying capacity of the base plate system dropped after the ultimate load was reached. Edges of base plates having a diameter of 6.5 in . did not deflect upward and separate from the concrete footing even at higher loads, although edges of base plates having a diameter of 8.5 in . deflected upward and separated from the concrete

Figure 28. Loading Arrangement for Circular Plates

Figure 29. Circular Base Plate System at Failure
footing. The deflections of the center of the base plates and of the concrete footing were measured relative to the edges of the base plate. The ratio of footing area to the plate area, the ultimate bearing stress and the dimensionless relationship between the ultimate bearing pressure and the concrete compressive strength are summarized in Table III.

TABLE III
RESULTS OF CIRCULAR BASE PLATE SPECIMENS

	Ultimate Load (kips)	R	Ultimate Bearing Stress, qu (psi)	qu f^{\prime}
C1	80	2.36	2,410	0.768
C2	90	2.36	2,710	0.864
C3	108	2.36	3,250	1.036
C4	120	2.36	3,610	1.152
C5	88	1.38	1,550	0.494
C6	110	1.38	1,940	0.617
C7	136	1.38	2,390	0.763
C8	150	1.38	2,640	0.842

APPENDIX B

INPUT/OUTPUT INFORMATION

B. 1 INPUT INFORMATION

IDENTIFICATION OF PROBLEM (2 alphanumeric cards per problem)

| $10 \mathrm{A4}$ | 80 |
| :---: | :---: | :---: |

$\square 10 \mathrm{~A} 4$	80
1	

CONTROL DATA

NUMNP = total number of nodal points
NUMEL $=$ total number of elements
NMPRT = number of parts (maximum 10)
$N B=$ number of bond-link elements (maximum 50)

MESH GEOMETRY


```
NPT = number of a part
    R1 = r coordinate of first node in a part
    Z1 = coordinate of first node in a part
    R2 = r coordinate of last node in a part
    Z2 = z coordinate of last node in a part
    NR = number of elements in r direction
    NZ = number of elements in z direction
NNS = number of first node in a part
NES = number of first element in a part
All units must be consistent in all input data.
```


MATERIAL PROPERTIES


```
NPRO(1) = material type (concrete = 1, steel = 2)
NPRO(2) = (no bending mode = 1, bending mode = 2)
NPRO(3) = number of points in a stress-strain curve in tension
NPRO(4) = number of points in a stress-strain curve in compression
        E = modulus of elasticity
        v = Poisson's ratio
        FT = ultimate uniaxial stress in tension or yield stress in tension
        FC = ultimate uniaxial stress in compression or yield stress in compression
    ALFA = ft '/f
    BETA = 的/f c
```

BOUNDARY CONDITIONS

APPLIED NODAL LOADS


```
        FR = initial load in r direction
    FZ = initial load in z direction
    DFR = increment of load in r direction
    DFZ = increment of load in z direction
```

ITERATION DATA

NSTEPT = maximum number of load steps
NIT = maximum number of iterations per step
NRUN = run identification number
IFRQ $=$ frequency of updating stiffness matrix
IPRINT $=$ frequency of printing output data
TNC = convergence factor

B. 2 Output Information

A complete list of input data is printed. Calculated results are printed according to an option specified by user. The computed forces and deformations can be printed at each load increment or at any specified number of increments.

For each load increment radial and vertical displacements are calculated at each node. Also, radial, hoop, vertical, and shear stresses and the principal stresses are calculated for each element. Messages are printed for elements when cracks or yield occurs on those elements.

APPENDIX C

COMPUTER PROGRAM LISTING


```
    I
```



```
        SS,O, N:UPT, SFX,SFY, MTYP MS:,C, INBD, ISTAR, SKH,
```



```
C--->SET JP:CTAL STIFFNESS MATRIX
```



```
    stop as:0}=2
```



```
    CALL ST:FFI X,Y, SGPR,NPNAXPMEX,NPNAX2,FCSCE,SFNRCF,SFX, SFY ',
        #IST
    00 25 i=1, YUMAP2
        MFSPCE\!)= FOPCE(I)
    OISPLIIT= 2ERO
    COY:1R.SE 
    czirmue
            |!UPST=1
            :F (S.STEPOLENSTEPT ) GO TO 120
110 pरिlvt 2010
```



```
            FN=C =|II= SFCRCEIII
            CFDACEM!) = XFGRCE(I)
    30
    CALLHCZR M'MUY:SP2,CFCRCE, ELNORM,
OPINT 202N, NSTEP,ELNORM
```



```
    PRIFI MILLE.NIT ) GO TO 210
```


210 PR:NイT 2240 .

IVVRT $=1$
IUNST $=$ IUPST + IFRD

230 CALL FOPSLK (B, YMAL VE, MLENG

---CCALCULATE OI SDLAC EMNT
$k=0$
$k=0$
$4 \leq 12$

mstnpemlige

$K=K+2$
$0=[T A(K-1)=A(H, N)$
$0=L T A(K-1)=A(H, N)$
$D E L T A C K Y=A(4+1, N)$
If © K. GE. NUMPLI GO TC 250
$\begin{array}{ll} & \text { Ifik } \\ 235 & \text { CONTINE } \\ 240 & \text { CONTHUS }\end{array}$

FTRCSII = ZERO

CALL PLASCL 1 vUUEL, NIJUTP, Dipuax, HELYAX, NPMAX2, DELTA,
$2_{2}^{\text {CAL }}$
BFO, NISPL, NBC, NE, SKV, SKH, UNIAX, NPROMTYP,
DNVRT, NELPT, NSTEPT, FORCE, IUPDAT,
DO $275 \mathrm{~N}=1$, NUMAP

CALL NARM I NUYNP2,FORCE,ELFORC
PRINT 2050 , ELFORC

IF 1 ELFOR
GOTE 200
CONTINUE
280

29: \quad COMTAUE
GF G \because :STEP.EO.ASTEPT ; GQ TO 300
295 IF : :STEPTEED. : UEITE(6.2J03
trar
350
continue
P2INT 2010
PRINT 2100
Srop
ENO

$\frac{1}{2}$

2030 FORVAT $1 / 1 / 134 \mathrm{H}$

(1)

Dint 2010

DKiNT 2030
EAD DO 130 NPT=1, ANPRT

 $N P 3 N T=N P R C(3, N P T)$

PCRS=RPPC(4,NDT)
PRIMT 2070
0) 120 : = ! . ApCl:MT
 2 Sijnue
On:

PRINT ${ }^{2.5 \%}{ }_{\text {JS? }}$?

(F (KIOCY:ildSp), USDi(JSD), VSPN(JSP), IENON

150 PRINT $21: 10$

- $\frac{1}{1}$ PESO AND ECHO APPLIED NODAL LCADS $=10$ JSP !

PRINT 2120 =

170 PR:NT 2130
1
C---->DEAD AR:O ECHO SFUN(T) $1=1=1$
PRINT 2150
PRINT $21 \in n$
IF (NB .NE. O) GO TO 180
GO $\operatorname{Tr}^{\mathrm{JB}} \mathrm{SB}_{185}=$
$180 \quad 00190$ JB = $1, \mathrm{NB}$

C-190 CONTIMUE
PRINT $21 \% 0$
PFAD 109 C
PRIMT 22CO. NSTEPT, NIT, NRUN: TNC
C---->EHD INPU
920 PRINT 9020


```
M,
```

```
120 conriviteriti= =3
```



```
    03 1:0J=1., JSP
            isTat = lilz(J)
```



```
            140 1 = istar.ast
            US(1) = = LSPN(J) 
    140 CONTMPCE
```



```
            OT isi J=1, A:JMNO
    15\ CENTITHE
        lol
                M,
    252 contin!je
        ccmtImye
        OF 154J=1, Numap
            F(ISTAR(J),EJ. IELANK), GO TO 154
                *)
```



```
    154 CONTINJEASLE 4 - APPLIED NCDAL LOAD
```



```
            ISTRT=(NNL4(J)
```



```
    155 OD 160 I = ISTOT. ISTJP, NSTEP
```



```
            FX(I)=FX(I) FY(I) FNN(J)
            N\mp@code{SFX(I)=SFX(I): SFN(J)}
        continue
```



```
        M.je(%,\)={\\5(N)
    250 cerilyuF
C---->DETEQYI:E SLva wIOTM
    N2 249 i= 1, NUMEL
```



```
        IF (:OIFF OLE. Y.3AND IGOTO 220
        MSAND =LE. ICIFF
    220 cc.vivNUE
```



```
    RO:jur
```



```
    M, SIH PGOINITE ELEVENT AMALYSIS OF, AXISYMMETRIC
```



```
    270 PRINT 20CO
MSM, MAXITUM GANO PARAKETER=: IS,,
270 PRINT 20CO NUMER OF BOVD LINXS EXCEEDES DIMENSION 'I
    \
```



```
    YaL!CITRESL OTTO
```



```
            0.3 105 I = = 1, %
```



```
    O- COniINUERE|IT = <EPO
            02 2C) = = 1: NumN
            K=OPCE:(K-1= FORCE(K)
            CRCO (x+1)= FORC
            SFORCE(K)=SFDOCE(K) SFX(N)
200 Conti:iU
    RETUQ
```



```
            FOLz=-i0.3000
            l
            ANGLE=2ERO
```



```
            M1 = %
            MK
            D0 3000 M10}=1
cc(1,j)= c(1.J)
3OJ WQITENTIRUE (SIGO:I,EPS(1),T=1,4),GY(1),GY(2),H,ALFL,BETA,FC,F1,
```



```
            {=1,41,J=1,4),(1
    EETURN
```



```
    l
                MLCNG, NPCOJE, NP
```



```
    l
```



```
        M,
    P.EWIVO 1
        D2 So NN=1 MNIDE/2
        D2 50 M=1, NUMEL, (EIM)
    50) contyue
        OO 75 M=1,NS.
        cory:quc(4) = ONE
        lomrliUC = N MLCNC
```



```
ICJ CJN:TIGUESS MATRIX BY BLOCKS
        MUWBLK = AUMBLK + '1
            FM
    RENIVD 2 NO SION=1, NUMEL
    KEAD (2) (LR(1),i=1,41, (150)(1,J),1=1,8),J=1,8)
        IF { ET:I,LE. 2EFO:GO TO 310
        OO 129II=1,4.4. NSTART .AND. LBII) .LE. NSTOP ) GO TO 130
        lontiNuE
        CO.
        CONTINUE (N)=-E(N)
        DO280 E(N) = -E(N)
        CONTINLI) =2**(LB(!)-1)
280 CONTINUE STIFFNESS MATRIX
    lol
    II=LM(II_K-KSH!ft
    0n 290J=1:4
        Jコ=(41J)+L-11+1-XShIFT
```

```
        IF(JJ.LEゃ*NCOTn290
        A(11,JJ)=A(II,JJ)+SOO(KK,LL)
    29.0.cmatisu
M-2,
    SpRtIES TM STIFFNESS MATRIX
            S: TO = NSTART, NSTOP
```



```
            IF:%; EO. o, GO TO 510
```



```
            IF (fz(:A) LE. LERO I GS TO 510
```



```
            G= Pr:Slo
```



```
                \,
            lol
```



```
            lol
```



```
            03490L = L, [2, 2, +L, 11+1-KSHIFT
```



```
            CONTNUE
    500 C79TMMU
CSIO CCNTINUE
400
```


C---SV - SPECIFIED 340 N KSHIFT

350 CALCMTHMUE COMATICNS CN TAPE END SHIFT UP LOWER BLCC

Dn $390 \mathrm{~N}=1$, Mics

CONTING(N) = LABSLEB(N))
400 CONTINUE
RETURN
EMO

C--->STAR ${ }_{\text {DO }}: \cdot, 1=2$, MSAM

100
 c3nTinue
RE TURN
END
 TYDLICIT zEAL $=8$ ($A+H$, Co-z)
C--->SET FROLE VECTRE $1 / 2$ RLDCKS
1 :

PEwran

100
200

$\kappa=2 \geq: 1-1-\kappa S H!F T$
$k=2=j-1$
$i=1$
R(K) $=7(K)+F N Q C E L C)$
$A(x+11=B(K+1)+F R R C(L+1)$
-300 CDinciluc
If (NAX.GT, A:UNA, NMEX=NUMNP

$m=2 * v-1-x 541 F$

$M=2 * v-x S H I F$
$p(y)=y S(A)$
350 CONTIT:
TE (3) $19(1), 1=1, \operatorname{MiA} 10 E)$
$350=N=1,4 W I D E$
$K=M W I D E+N$
$B(N)=3(x)$
$B(x)=2 E R O$
C-390 CONTINUE
IFinsTJP.LT.NUMNP) GO TO 200
GO TO 400
END
ENET

TPLICII DEAL © 8 ($A-\mathrm{H}, 0-2$)

NSTADT = YHICE + 1

© $125 \mathrm{~N}=2,0 \times 1 \mathrm{DE}$

Do $110 \mathrm{~L}=1$, Maño
(4.L) $=2(4, L)$
$\begin{array}{ll}110 \\ 120 & \text { contriens }\end{array}$

$P \equiv A C$
$P E A J$,
3

$=A(N, M) *$ IEYP
$=N+M-1$

$\begin{aligned} & J \\ & A(I, J)=1\end{aligned} a(l, J)-C * A(N, K)$
$B(1)=B(1)-A(N, M) * B(N)$

$\begin{array}{ll}150 \\ 160 & \text { CONTIN: } \\ \text { CONTI: }\end{array}$
C--->MOITE RFDUCED BLOCK CN TAPE


```
            COMT SNJE
            ontinese mix
            If NALK = NBLK ; \({ }^{1}\)
```



```
        GO TO
TO
            go to
continue
    RETURN
END
```

SUPROUTIRE RECGE:i (NPYAX, PELMIX,X,Y,NPC,NLMAP,NUMEL,NX,NY,NNS,NES

C--->Calcillatt ing:i crez. i cerosctivity for rectangle mesh

CATA LERC : N:

$\mathrm{ox}=(\times 2-\times 1) / \mathrm{x}$
$\mathrm{or}=(\mathrm{y} 2-\mathrm{y} 1) / \mathrm{y}$

00 1 OD $I=1$, $1 \times A x$

$Y(J)=Y 51$
$0 \equiv L X=0=L X * 0 x$
110
100
contin:
cont
DO 120 i=i.es, NUMEL
$J=1-N E S$
$k=s / N X$

NPC $1,11=$ NNiJu

PETUR
END


```
            axisyumetric rectavgle Elenexts
```



```
            \(\begin{array}{ll}80 & 122 \\ \text { OC } & 101.9 \\ J=1,9\end{array}\)
            \(J=1: 3\)
\(S E\left(: i^{3}, J\right)=Z E R O\)
```



```
            CONTIYUE
OO \(115 \mathrm{~J}=1.4\)
```



```
            \(B=(J,!)=2 E R O\)
\(C=(J, i)=2 \in R O\)
        centri:us
contitice
            GNTIt:LUE
D: \(122 \quad=1,4\)
00
```



```
                \(22(1, j)=2 E R 0\)
\(0(1, j)=z E 20\)
            CONTINUE
            \(\begin{array}{lll}0 & 123 & =1.3 \\ 00 & 123 \\ j=1.3\end{array}\)
```



```
            \(4(4,4)=0(4,4)\)
8
3
            F3=CVE/OSGRT(THREE)
        stifeness matrix by four point numefical integration
            or \(1 \% \rho i=1,4\)
```



```
    DC \(140 \quad j=1,4\)
    DO \(130 \mathrm{KK}=1,4\)
```



```
    GO T0 130 年
```



```
    140 CONTINUC Dit.JJI=TEMP
150 CCNTINUG
150
\(-->P\) ORM PROCUCT BT*D*B
```



```
        0) \OEupzLERC
        03 1C0KK=1,4
```



```
175 CM:
cr.yt UE
IF 1 4:SDL EOC. 2 1GO TO 195
    in) 29.) {=1.8
= S(1, &)
290 contrduc
95 Gn Crimineo
CsviliajE
```



```
ETA=2F50
            l
    CALL DER!VEGETA,XI,CA,Ba,FR,BMA
        On}233|=1,
        OO TCMJ=2,8 (SRC
        00 21> KK=1,4,
        CכNTMME:(I,JJ)=TEMP
220
        CONTTMUE
        O0 28J i=1,8
        On 270 J=1,8
        n0 2c9 k=1
        TEMP=TEMP+BM(K,T)=03(K,S)
        CONTI:MEII,S) = SE(I,J)~TEMP*AA*BB*RR
        contrmue
        OO 300 1=1,8
        00 300 J=1,a}=SE(1,J)+S({,J)
300
        CENTINUE
    RETU
```


C---MINTIALILE Cr. SiARTS

av(1,2) $=7 \times 11,1$

BN(4,5$)=5 \times(2,6)$
$34(4,1)=5 \cup(1)$

RETUR
ENO


```
            MR2\times2,
            c
            M{RR]
            On men m=1,"
            O) Leg Sil:8
```



```
    M, %
```



```
170 conrinue
    &ETURN
    EETV
```


oata zezc , Mopzioco
DATA
PEHND
PEMINO
and

on $150 \mathrm{l}=1.4$

C- ${ }^{100}$ -

$\xrightarrow{110}$ CONTINEE
CULATE STRALAS
$\operatorname{TEP}^{T E M P}=\mathrm{ZEQ}$

00150111214
02240 Jus 1
CTEMP $=$ TEMP+CC(II, JJ) $=D E P S(J J)$
DSIGIII = temp
150
ontinue

```
C-->Stagt dlastic calctlations
--->CHECK YA:ER:AL TYPE
```



```
            M,
```



```
            j=1,41,1=1,4) ,A\cupGLE
209 COWTMONS
        If (:AN,j). 0, GO TO 250
        03 250:=1, is 
            j=N0c(1,1)*2
```



```
            SKY(1)=2ERO
220
        CONTI:USSN
            FSKN = SKHII)*HOISP
            SKV = SKVII)*VDISP ( SKH(I) = 2ERO
250 CO4TIN 
    MEW1YO2
        MEWIND
        OE 300 N = 1.NU4EL
```



```
            Fi, SJP,GX, SX, C22,C44, M1, N1C, xO, YO, AA, B3, &0, 
```



```
            M=1,4\,I=1,4i ANGLE
300
    METUQ
```

```
        SugrcutikE PLSCON I FNCE, Noxz, UNTAX, NSTEDT. INVDT, NPT, DGE,
    IMPLICIT OFAL * 8 I AS,H,S-L,
```



```
    i
```



```
    2OSTA LEEC DSS,M, OGE(4), DSPL(4),D(9) ETE. PTE, PAD
```



```
C--->ELASTIC SOLUTION
        MCDL=NP9O
```



```
        . GE\II = 2ERO
        GM(I)= CEES
    60 continue
C--->CALCULATE TOTAL STRESS
        Di: BO J=1,4
                GP(J) =G(J)
    80 CGNTI:NE, 200.1CJ.30J
--->STACT PLASTICITY CALCLLATIONS (GEM, FO, A, NTEMP, MI)
```



```
    IFF/F1.OTR.ETE OGO TO 125
```



```
    l30 CJNTSN(1)= GPa(t)
        CNNTNUF:
C---\CHECKUULOADING FRCM ELASTIC TO PLASTIC,
--->GET AFH ESTIMATE OFR RFI-FO)
\55
    OO 160 DGPLI每=G(U)+RI=DGE(I)
160
    CONTINUE =G(I)+RI*DGEII
    *00call OCTA
        A I DGPL, GY(1), ALFA, BETA, F2, A, NTEMP, MI I
```

$3 \times 173 \mathrm{~J}=1.4$
170 CCVT:ME $=$ OENCN+A(J) FRGE(J)


```
        C1I \(=1590\)
\(0311=2 \leq R 0\)
```



```
        NTINU
```



```
C---PCHECK ELRSTIC UNLOADING OQ \(2 E R\) R PLASTIC STKAIN
            CLAY \(=\) 2ERJ
            DO \(230 \begin{gathered}:=1,4 \\ \text { Gucil }\end{gathered}\)
```



```
249 CONTINUE
\(--2 C A L C U L A T E P L A S T I C I T Y ~ I N C R E M E N T S ~\)
```



```
245 CONTMPIJF
```



```
        IF SUP = SUP +0 ENOM
    250 PPINT \(1500 . \mathrm{M}\)
255 CCMPRESSION
```



```
        DO 260 I= UST, NSTP ,
            \(H=\) UNIIAXII, 1,NPT)-UNiAXIT-1, ,NPTI 1
        GYNI \(A X I S, 3, N P T I-U N I A X I:-\)
GY(ICASE)
GY(ICASE \()+H * O E N C H\)
            GO Tr 285
            CONTINUE
```



```
    270
        COMTINUEJI \(=2\) ERO
```



```
    DO 250 NOM \(=\angle E R 3\)
```



```
    292 C3nfitive
```



```
                \(52=95 \pi(54(1)-5,4(2) 1)\)
\(S_{3}=350=152 * * 2+64(4) * * 21\)
\(G X=51+53\)
                \(6 x=51+53\)
\(62=51-53\)
```



```
    C2Z \(=\mathrm{CC}(2,2)-\mathrm{Cc}(1,2)=2 / \mathrm{CC}(1,1)\)
        PRINT \(12 C 90, ~ K, 2 \% G L E\)
\(00298 \quad=1,4\)
```



```
        IF GPR(3).GT. UNIAX(2,1,NPT): FC=ONE
    \(299 \operatorname{PRINT}^{G 6} 1500\) TR \(M\)
```



```
        Fix \(=\) LERJ
IFLAE \(=M I\)
        G7 TC 1 350,370,445 i, IFLAG
```



```
            Contilius
Co \(360 \quad 1=1\).
        Co 360 CI: \(=1,4\)
```



```
        If thiver.gT. j1 go to 390
        GO T0 420 SHEAR
            \(\mathrm{T}=\mathrm{PSAC44}\)
\(\mathrm{Fl}=2 \mathrm{ERD}\)
            Cil \(=0.10-5 * C 22\)
```



```
                \(c(13,1)=0.10-5 * c\)
\(c(13)=c(11,3)\)
                \(c(13,1)=c(11,3)\)
\(c(13,2)=c(11,3)\)
```



```
400
```



```
            D(1) \(=2\) 䀎
```



```
            Jisi \(=\) GPR (3)
```



```
    ELEMENT CRACKEJ IN ? DIRECTION
    PRINT 2600 . : \({ }^{\mathrm{MI}}{ }^{3}\)
        \(D(2)=\) UNIAX \(2,1, N P T)\)
\(F[X=\) ONE
        \(0 \operatorname{Te}_{412}^{\text {FIX }}=\) ONE
```



```
    PRINT \(200^{M I}=3\)
        D(2) = UNIAX \(15,1, N P T)\)
```

```
    Ca \({ }^{\text {FIX }}=0 \mathrm{ME}\)
```



```
                \(n(1)=\) lero
\(0(2)=2 \in ミ 0\)
```



```
        60 ir \(455=\) CPR(3)
```



```
C Gatl tras to too
```



```
    CNTINJE \(=\) GPRIII
```



```
    550
C 760 IF 1 iupoat .eq. o ) go tc 790
    \(\begin{array}{cc}\text { PRINT } & 10 . \\ \text { GI } \\ \text { TC } \\ \text { MI } \\ 800\end{array}\)
```



```
    195
    CONTINUE,
```



```
798 CONTIM
BOJ
CONTINU
```



```
    CALL AXREC I AA, EB. CCC, RO, ST, MOD I
```


850 00 $309!=1,4$
$11=2 *!$
$\jmath J=L \exists 1)=2$
$F=O C(1 J-1)=$ FORCE $(J J-1)+P(11-1)$

oj firat i/7.0 the coutvolent uniaxial plastic strain in element.

 ENO


```
    2,
    OATA LE=C. DSI,1, ODEL41, OSPL(4), P(8), CYM(2)
```



```
        M-11}=
        SSTOCL=1,PRO(2,NPT)
```



```
    50 Crue10:E
        F!c, SLuyTIG* (%E. 0) GO ro 200
        GN(1)= 2ERO
    C3n+lmas
    1ryEto =0
```



```
            g%(f)=G(J)
                M,
C-305 cosmTATPISSTICITY CALCUATIOS
    CALL NISES (1)11),GY(1), FO, A, NTEMP, PM&)
    Cl
```



```
        IF IFI, FTT. ETE I GO TO 400
        OO TC 420
        CMT(MUE
        OMYIELD = 0
```



```
4 2 0
c--->CE
    AN ESTMMATE OF R PIN= FC/F1-FO),
```



```
    440 CONTINUE
    LL MISES ( DGPL, GY(1), F2, A, NTEMP, MNI,
            DENCY = 2ERO
```



```
C----xCALCULATf RETAMAA \(=\) RERO
```



```
        03 53. \(\mathrm{I}=1,4\)
        CC:Tinitc
        2n \(5=0\) il \(=1,4\)
```



```
        \(2054.3 J=1,40(1)+C\left(1, \int\right) * A(J)\)
```



```
55J CETI:AUE CCEFFICTENTH
```



```
    570 OL \(\mathrm{DL} \angle 4=\) 2ERO
        D) \(\sec\) IVIELD \(=0\)
        D) G4(1) = GPRII
    530 catyliuf
    \(590 \quad\) G. TC 7 Tho
```



```
--->calcuate plistic strain e stress incerment
```



```
610 CONTRYU5 \(=\) GM(I)-DLAM*DB(I)
610 CONTRUE
```



```
C---->LOCATE PFESEIT POITM CN STM STRESS-STPAIN CUFVE
C---->COMPRESSION ITV 1 620.630 .630
-20 - - COMPRESSION ICASE \(=2\)
```



```
    co in 640
```



```
    640
```



```
            \(i 4=1\) Ni: \(x\left(1,1, Y^{2} T\right)-j: i x(1-1,1, N P T) / 1\)
                (u凶IAx(1,3, vati-čidali-1,3,NPT))
```



```
    - Gn ir 700
    PRINT DTNTHOE
```



```
            \(\begin{gathered}\text { GONTINUE } \\ \text { GYUII }\end{gathered}=\) LERO
                GYUC1H \(=\) LERC
LLFAY
```



```
            on 720 DEN: \(i=1=2 E z\)
        DENDY = DENCYHJIJ**2
        DENJY = FI/DENOK
```



```
730 CONTHNE
750 CJNTINUE
```



```
    IF
PQINT IUPDAT
UPDAT
VARIABLES
C---->UPNATE VERIABLES
C—-->CALCIMLATE KESIDUAL FCRCE
    IF I IYIELO . EQ. Ji go TC 790
            IF IYIELO.
OO \(785 \mathrm{~J}=1.8\)
On \(785 \mathrm{I}=1.4\)
    P(J) \(=P(J)+B E(1, J) *\) IGPR(I)-GA(I) I*RO
    785 contreus
```



```
    95 Conisnue \(=\) G411)
```



```
    SUP \(=\) SUF:
GY(1)
GY(2) \(=\) GYM(1)
    ALFA = ALFAM
```



```
```

 \(0.6: \begin{aligned} & 0!=1,4 \\ & 1! \\ & z=1\end{aligned}\)
    ```
```

```
```

 \(0.6: \begin{aligned} & 0!=1,4 \\ & 1! \\ & z=1\end{aligned}\)
    ```
```



```
```

 19 F F = An 1151
    ```
```

```
```

 19 F F = An 1151
    ```
```



```
```

1 ThE Egitvelit uniaxial plastic stain at elemento

```
```

```
```

1 ThE Egitvelit uniaxial plastic stain at elemento

```
```


SU3F JUTISE CCTA (G. GY. ALFA, BETA. F, A, ISIGN, MI)

$S_{2}=p 5 * 1 G 11 i+G 1211$
$S_{2}=0 j * 1 G(1)-G(2)$

C---->DEYIATOAIC STOESSES
Do $12 \mathrm{f}=1,3$
10 Gons(1) $=G(1)-G 4$

C--->componert of the ncrusl to yielo surface

 C---->CASE OF: G1 .LT.i.ON2, ANO. G2 .LT. Or(2); GO TO 100

TE
CI
$=T E M P$
TONE-ALFA) $/(O N E+A L F A)$
$C_{1}=$ TEMP
$F=G 1-G Y(1)$

$C 1=T E M P$
$F=C 2 * G B+T E M P * G M-1 B E T A * D A B S(G Y(2)) 1 /$ ITHREE*(THO*BETA-ONE

250 CONTINUE $=C 1 * A 1(1)+C 2 * A 2111$
RETURR
END

S2 $=P 5 *(G(1)+G(2))$
$S 2=P S=(G(1)-G 12))$
$S 2=P 5 *(G(1)-G(2))$
$S 3=0 S 0=1(S 2 *=2+G(4) * * 2)$
$61=51+53$
$62=51-53$
C---->0Eviatopic staEsses

S(1) = G(I)-GM

C---->CCMPCNEN: OF THE ACaryit to YiELO SUDfaCE

RETURN $F=503+G 8+G Y(2)$
so RETURN PETUPN
ENO

SAL $=$ OSSMCLL
$\mathrm{CAL2}=\mathrm{CAL}+* 2$

IF 1
CON
$C 1$
$=1$
ONE
200
$\begin{array}{ll}A(1) & =B(1) * C A(2+P(2) * S A L 2+C 1 * P(4) * S C A L \\ A(2) & =B(1) * S L\end{array}$
$A(2)=B(1) * S A L 2 * B(2) * C A L 2-C 1 * 3(4) * S C A L$
$A(3)$ $A(3)=8(3)$
$A(4)=-C 2 * B(1) * S C A L * C 2 * B(2) * S C A L+B(4) *(C A L 2-S A L 2)$

peturn


```
    100
        VALUE \(=\) VALUE \(+A(1) 0=2\)
    continue value \(=\) osortivalues
    aftid
```

```
C-.-->RUSCUTINE MATREO, C, AL, C11, C22, C44
    SNGOUCOTNE MLTREO
    MMPL:CIT QEAL DTR:X (A-H, 0-2
    Data Tac. FOL,\mp@code{2 0000.40000}00
        SAL=OS!N4L2
        C:N=x=S(:L)
```



```
    c(1,4)= -c220CAL*SN(**3-TNO*C
    C(4.1) = C(1,4)
        C(2,2)=C1:SAL**4+C22*CAL**4+FCUR*C44*CAL**2*SAL**2
        C(2,4)= -C22*CAL**3*SAL+TMC*C44*CAL**3*SAL-THO*C44*CAL
C(4,2)= S\(2,4)
CS4,4)=(C11*C22)*CAL*=2*SAL**2+C44*CAL**2-SAL**2)**2
RETUR
```


 $1,1{ }_{50} 1$

data zepr.inol 0.0cjo. $2.0000 /$
C---->Dainf cisplaceaEt:TS
PR:NT 2002,
PRINT 20:0
print 2010
paint 2030

PaINT 204), N, X(N), Y(H), DISPL(X), DISPL(K+1) If : A .GE. NLMNP $\mathrm{IF}^{\mathrm{N}} \mathrm{GE}$ TO 150

PRINT 2100
PalNT 2020
PRINT 2020
PRINT 2030
100 COITINLEE
150 CONTINUE
PRINT 200 MLINE $_{0}=11010^{40}(1), 1=1,201,1102(1), 1=1,201$
PQINT
PRINT 20030
PRINT 2060
PRINT 2000
READ Dn $_{81} 200$ MII, NUMEL

$C C=1 S 1 G 11+S 1 G(2) 1 / 1 / \mathrm{TmO}$
$F F=1 S I G(1)-S I G(2) 1) / T h 0$
$C R=O S Q R T(F F *=2+S I G(4) * * 2)$

```
                S!G(5)=C=FC
            S:G(0)=CC-C
            s:s(5)=cc
```



```
            co TC S!G(J)=こsta,
170
```



```
    IF 2040,(4,x",Y,(EPS:\,i=1,4)1
```



```
    PRINT 2060
    PRINT 2070
MLINE = MliNE * 40
220
            CONTINUE
RENO
```


VITA

Hussam Mohamed Fahmy Ghanem
Candidate for the Degree of
Doctor of Philosophy

Thesis: STUDY OF BASE PLATES FOR AXIALLY LOADED COLUMNS
Major Field: Civil Engineering
Biographical:
Personal Data: Born in Alexandria, Egypt, on July 28, 1948, the son of Dr. Mohamed Fahmy Ghanem and Aziza Abdou Dowair. Married to Amina Hussein Hassab on January 6, 1976.

Education: Graduated from El-Nasseria Secondary School, Alexandria, Egypt, in 1966; received the Bachelor of Science degree from the University of Alexandria, Alexandria, Egypt, in 1971; received the Master of Science degree from Oklahoma State University, Stillwater, Oklahoma, in 1974; completed the requirements for the Doctor of Philosophy degree in December, 1978.

Professional Experience: Teaching assistant, University of Alexandria, 1971-1973; graduate research assistant, Oklahoma State University, 1973-1976; graduate teaching assistant, Oklahoma State University, 1977-1978.

Honorary Societies: Member of Chi Epsilon, American Concrete Institute, and National Society of Professional Engineers.

