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CHAPTER I
INTRODUCTION

Ln this paper solutions of quasilinear hyperbolic
systems of first order partial differential equations with
initial (Cauchy) data are approximated. To be more precise,
Tet F(t.x,U):[0,11xRxR™R", £(x):RR", and A(t,x,U) be
an nxn matrix-valued function real diagonalizable on

[O,1]xRan. The system
(Ut(t,X) = A(t;x,U(t,x))Ux(t,X) + F(t,x,U(t,x)),

(1.1) ( | ©(t.x) € [0,11xR
U(0,x)

= f(x), xe€R.

of first order partial differential equations is then said

to be quasilinear hyperbolic with initial (Cauchy) data.

For A depending on t and x only, (1.1) is said to be

semilinear and if, furthermore, F is a function of‘t‘and X
On1y,‘tﬁen (1.1) is called linear. If certain 'smoothness
conditions (cf. [3], [5], [14] and [19]) are imposed on |
A, F, and f, then (1.T) has a classical solution in some
neighborhood of {0}xR. ‘However, since the purpose of this
study is to approximate thevsolution of (1.1), we assume

(1.1) has a classical so]ution‘oh [0,1]xR.
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To briefly describe the method of approximating U, let

-1

k € z*. Suppressing its dependénce on k, let wm, m=0,

-1

-, k "-1, be a solution of the first order Tinear hyper-

bolic system:

(1.2)  WP(t,x) = AT()UR(t,x) + F™(x),  (t,x)elmk,(mt1)kIxR

where A" and Em are cdnstructed in Theorem 1.1. Two
interesting conditions that could be imposed on (1.2) are
wO(O,x) = f(x) and W™ T mk,x) = W™(mk,x) . However, we merely
require the existehce of a positive K independent of k, m

and x such that

3

IIA

W™ (mk,x) - WM (mk,x) 1 s Kk

2

lIA

WD (mk,x) = WOl (mk,x) ) s Kk

where wo(o,x) = f(x), x€R and m=1,*-, K]

-1. By suitably
choosing Rm and Em’ we prove there exists a positive L |

independent of k,x,t and m such that

WM(tx) - U(t,0 ] = LK
”wT(t,x) - Ux(t,x)ﬂ < Lk
IWG(x) - U(ta0)] = Lk

(-]

-1

for m=0,..., k -1 and (t,x)e[mk,(m+1)k]xR. The proper

choice of A™ and F" is described in Theorem 1.1 (in fact,

A™ and F™ depend on W™(mk,x)).
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There are several reasons for approximating the solution
of (1.1) by solutions of (1.2). First, because (1.2) is
linear, it is less difficult to study than (1.1). Further-
more, there exists an extensive literature concerning the
solutions of linear hyperbolic systems not existing for
quasilinear hyperbolic systems. In fact, if f, Rm and_l?m
are smooth in a sense made precise in Theorem 1.1, (1.2) has
a smooth solution W™ defined for all (t,x)e[mk,(m+1)k]IxR,
that is, (1.2)'15 so]vabie in the classical sense.

Second, approximating the solution of a quasi]ineaf
system by the solutions of linear systems might be useful in
extending numerical methods reserved forvlinear systems to
- quasilinear systems. Suppose we have at our disposal some
numerica] scheme for approxihating wm, the solution of the

~

linear system (1.2), by W™ such that

M) K x) - W) kL)) ) s Kk 3

(we momentarily ignore the condition on WT((m+1)k,x)) .
v X

m+](

We COu1dvthen let W (m+1)k,x) = Wm((m+i)k,x) and repeat

\

the numerical scheme to approximate wm+]((m+2)k,x) by

ﬁm+]((m+2)k,x). If we could show that

WMC(me1) k%) - WM((me1) kL) | = Kk3

for all m=0,---,k71

-1, then we would have a second order
 ’numerica1'approximation of U computéd by a method applied to
"lfnear'systems. Such an approach circumvents the problem of
| numerical instability [20,pp. 129-130] encountered when |

trying to app1y a stable numerical method designed for



linear hyperbolic systems directly to a quasilinear hyper-
bolic system. The appeal of this approach is further
enhanced when one considers the large number of simple
linear schemes, cf. Wendroff [26,pp.183-1851, Kreiss[12],
| Lax and Wendroff [18], Strang [22], Wendroff [25], Lax
and Richtmeyer [16,pp.284—287]; and Richtmeyer and Morton
[20, Chapters'9-10]. Although we do not implement any
numerical methods in this paper, the above is an important
impetus for studying the linear systems (1.2). |
Third, suppose Uk;[O,l]xR»Rn such that U, = W™ on

k
[mk,(m+1)k)xR, m=0,---k'1-11 Then determining when and at
what rateAUk converges to U in some norm is a questidn

mathematically interesting in its own right.
Notation and Spaces

Let,R_nxm denote the vector space of real nxm matrices
and we identify R" with R"*].

If M ¢ R™™, then

M = max |M. .|
1=isn "9

I=sjsm
andvfor M:R+Rnxm,

IMI = supliM(x)|
x€R '



Let I=[0,1] and ScR. If M:SxR-R™™,
then

Ml = sup  [IM(t,x)|l

S (t,x)eSxR
When S=I, abbreviate |[M||=]|M||. For nonnegative integers @y

I

the ordered n—tup]e’a=(a],---,ap) denotes a multi-index
of order la|=a]+---+ap. With each multi-index a we associate

the differentia] operator

a
% = (§) 1, pe

o
I

21 a
_ (9 1,2 2 -
(at) (ax) ’ p"2

(ww]
Q

n

!Q)

[

a a a a
20 & 2(-3—-5]) e (8 )P ez
. P- '

Suppose JcR is a closed or open interval. Let

C"(R,R™™) = (M:R-R™™ | DM exists and is

continuous for |a| s r}.

8" (R,R™™) = (Mec"(R,R™™) [1D°M|| < =, |af

A

r}

Cr(JxR;Rnxm) = {M:dxR=-R"™ |D%M exists and is

continous for la] = r}
cB"(3xR,R™MM) = (mec” (xR, RMM) | unamg < =,|a]zrl.

C(IxRxRY, R™M) = (M:JxRxRI>R™™ |DOM exists and

is continuous for |a| = r}.

]For J closed, the t-derivative is appropriately one-
sided at the boundary of JxR.



nxm

If the v-ball of (R . || ) is denoted by B(y, nxm), i.e.,

B(v,nxm) = {MeRT™ |[M]| = v},
then let
X(q,nxm,r) = (MeC" (IxRxRI,R™™)| DM is Lipschitz in
the RY variable and DGM(IxRXB(y,§x1))
c B(p(y),pxm) for |a| = r and some
p: L0,=)>[0,=)}

Next suppose £:IxR>R™™ and ted is fixed. Define f(t):R+R™*M
by f(f)(x) = f(t,x). If on the other hand f: R-R™M, then
" f(t,x) denotes the extension of f to JxR by f(t,x)=f(x),

1

(t,x)edxR. Last, let k™ 'ez' and denote [mk,(m+1)k] by

MK m=0,c e,k -1,

Statement of the Main Result

In this section we state the principal result of this

paper.

THEOREM 1.1. Assume A,F and f of (1.1) satisfy:

(1) Aex(n,nxn,2);
(2) Fex(n,nx1,2);
(3) feCB2(R,R"),

(4) there exists an invertible PeX(n,nxn,2) such
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‘that P~ " €X(n,nxn,2), PAP']=D‘is diagona]2 and

sup LIP T (o)l + 1P(o)I] < =.
cpEIxRan .

Let U ¢ CB2(IxR,R™) satisfy (1.1) and fix A>1 and K=0. If

h™' and k™1 are positive integers, then define A = %; assume
| ' )

A = A. Let Tm,k,hf CB~(

1

m=0,++-,k '-1, veCB2(R,RM) and x¢R,

=
IIA

R,RM-CBZ(R,R") such that for

Ty p¥) () - [v(x)+FA(mk,x,v(x)) (v(x+h)-v(x=-h))

¢ KE(mkoxov(0) 1) = kK2

| H(Tm,k;hv)/(X) - EV(X)+%A(mk,x,V(X))(V(x+h)-V(X-h))

IIA

Kk
(1.3)

Kk .

IIA

¢ K (mxv 0D T

Define W'1(O,x)=f(X)=@0(x) and let ¢m6CBz(R,Rn), m=1,--,

. k-]

-1, such that
o™ = kk®
(1.4) o
1Le"170 s KK,

Then there exists a sequence of unique functions

m

W™ € cBZ(1™Kur,R"), m=0,+--, k“1-1 such that

WPt x) = AT)WT(t,x) + FM(x), (t,x) e 1Mk R
(1.5) _ } '
W™ (mk,x) = W™ (mk,x) + o™ (x), xeR

where the t-derivative at the boundary of im’ka is taken

to be appropriately one sided and using the notation

~ L1
m—m+2,

2We do not require;'as do some recent studies, that the
eigenvalues of A be distinct (cf. [8] and [24]) or bounded
away from zero (cf. [4] and [23]). ’



Ak xGIT o (7 (mk) +6™) 1(x))

> 2
=
>
N
I

-2
3
—
>
o
1]

PRk [Ty (8 (mk)+0™ 1(20)

Furthermore, there exists an L independent of k,h and W

and o™ such that for m=0,---,k-]-],
(1.6)  u-Ww"] = Lk?,
Im,k
m <
(1.7) U =Wl = Lk,
Im,k
‘ n <
(1.8) Ju Wil s Lk,
-I-m,k

REMARK 1.2. Theorem 1.1 is proved in Chapter III.

. In fact, by a proof similiar to that given in Chapter III,

the following is true. Let
(zpv)(x) = %(v(x+%) + v(x-%)), veCBZ(R,Rn).

' ' ; .rp2 ny -
If Tm,k’hofvTheorem 1.1 is replaced by T* k,h‘CB (R,R')=

2(R,R™) such that for m=0,-- -k 2(R,RM) and xR,

cB -1, veCB

S T e (0 - L) (0 AKX () ()

SvOx) - v+ KRGk (e v) (0D 10 s kK

(1.10)  1(T* o pv) (x) = Llwpv) (x) + BA(m,x, () (X))

(Ol -v(x-) 4 KRk, (1) (0T 1 s Kk,



then the conclusions (1.6) - (1.8) of Theorem 1.1 are

still true.

Some Known Resu]ts

In this section some known results concerning quasi-

linear hyperbo]ic systems are fecorded. The second order

partial differential equation
(1.11) F(X,y,u,p+q,r,s,t) = 0

where p=ux, A=Uys P=Uyy s S=UL s and t=uyy is called

hyperbolic [1,pp.418-421] at the point (x,y,u;p,q,r,s,t)€R8
if 4F Fy - F§ < 0. Riemann, in the nineteenth century,

“obtained a Sblutibn of (1.11) when F is linear in r,s and t.
Lewy [18] later proved the local solvability of the general
non]inéar hyperbo]ic‘fqrm (1.11) assuming certain smoothness
conditions on F and on some initial data. Hartman and Wintner
[ 7 ] improved the results of Lewy by re]axfng some of
Lewy's smoothness criteria. However, ff (1.11) is
hyperbb]ic, it can be tfansformed into a first order
quésf]ineaf hyperbolic system of the form (1.1). Hence much
research is directed toward (T.])._ | »

'Lt is well known,cf.Lax[13,pp.4-6], and Jeffrey [11,
pp. 32-36], that the hyperbd]ié system (1.1) need not have a
differentiable sb]utidn oﬁ [0,1]xR no matter how smooth |
A, F, and f'are.Hdwevef, much work has been done in
showing that (1.1) has, under certain smoothness conditions

on A, F and f, a local solution, i.e., a solution in some
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neighborhood of the initial line. Let P diagonalize A, that

-1 -1

is, PAP is diagonal. Perron [ 19], assuming A, P, P ', F

and f were C2,_showed (1.1) had a local ¢! solution .

Friedrichs [ 5 ], with Perron's éssumptions, showed (1.7)
had a Tocal C2 solution. Later, Courant and Lax [ 14] and

Lax [ 15] constructed a local Lipschitz C2 solution by -

1

requiring A,F,f,P and P~ ' to be 02 and Lipschitz. Thereafter,

Douglis [3] proved the existence of a local C] solution

1

assuming only that A,F,f,P and P~ were C'.

When (1.1) is linear, Perron [ 19 ], and later Friedrichs
[5], obtained global solutions (differentiable solutions

defined on all of IxR) of (1.1)assuming various smoothness

],F and f. Friedrichs, in pdrticu]ar,

obtained a C" global solution when A,P,P'], F and f were

criteria on A,P,P”

CY‘

, r=1,2. Recent work has also been done in finding weak
(distribution) solutions of more generalized forms of (1.1).
In particular, let 7’ be the space of tempered distributions

and

g = (E],’_",En)éRn, El= (E]s.'.sgn_])
R: = {geRn: gi>0, i=1,"'?n}
_-H(k,s) = {ue J': 0 is a function on R" and

lullce.sy = (2m7" f+1g12) %1422

1h(z) | Zdicw)

Io

) =+
(k,s) {UEH(k,s)' supp u cRn }
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where keZ and s¢R. Let g be an open subset of R" and

@ c@ such that & is compact. Let P be a linear differential
operator strictly hyperbo]ié on ¢ with C”'coefficients‘and a
principal part P_ with degree m [8,p.29]. If feﬁ(k,s)’ then
there exists VEﬁ(k#m-],s) such that tP(x,D)v?f in @° ‘where
tP denotes the adjoint of P. The interested reader is

referred to Hormander [8, p.241] and [9, pp.190-195].

Suppose (1.1) is a conservation law:

Ut(tsx) + [G(U(t,X))]X =0, (t:IX)G[Os‘”)XR
(1.12) ' :
U(0,x) = f(x), xeR.

Let G be strictly nonlinear [6, p.698] and smooth. If f
‘has sufficiently small oscillation and bounded variation,
then (1.12) has a global weak solution U, that is, U is

a bounded measurable function, U(0,x) = f(x) and
j'{(mtu+¢ 6(U))dxdt + Jo(x,0)U(x,0)dx = 0
0 X R

for all ¢€CSO(Rn). For further.detai1s, see Glimm [6] and
Lax [13, pp.28—30].'

"We now mention some results concerning the initial-
boundary Va]ue analogue 6f1(1.1). ‘without being too brecise,
suppose we consideh only (t,x)EI2 and require that U assumes,
in addition to the initial data, certain vaTQes 6n
{(t,0):tel} and {(t,1):tel}. Then (1.1) becomes an initial-
boundary value problem. Thomée [23] deveioped a numerical
scheme for approximating the initial-boundary value problem

assuming A of (1.1) was diagonal with eignvalues bounded
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away from zero. This at first might seem to be only a minor
annoyance since it is well known that (1.1) can be trans-

formed into a system:

(1.13) W

i (t,x) =45(t,x,W(tQX))wx(t,X) + G6(t,x,W(t,x))

where iﬁis-diagoha]. However,cfyhas a zero eigenvalue and
hence Thomee's scheme is not applicable to (1.13). The
approximations (1.2), being linear, do not suffer from this
malady. The author hopes at a later date to combine
Thoméé's numerical scheme and the‘initial-boundary value
analogue of (1.2) to approximate an initial-boundary value
vana]ogue of (1.1). 1In féct, the'operators‘Tm’k,h and
| T*m,k;ﬂ ére directly related to Thomée's procedure.

The Tinear hyperbo]ic}systems (1.2) and hence (1.5)
are also motivated by a numerical scheme bf'Dupont [4].

Let k! -1,

€ Zf and m=0,. ..,k 1. In approximating the
solution of a particular initial-boundary va]ué problem
deﬁcfibing gas fiow}in a pipe Tine, Dupont used approxi-
mations U™(x) of U(mk,x) and Taylor expansions to approxi-
mate A(t,x,U(t,x)) and F(t,x,U(t,x)) for t=mk where ﬁ=m+%.,
Using these apbroximations, an approximation Um+1(x) to
U((m+1)k,x) was generated. In an simiiiar fashion, A™(x)
and Fm(x) (cf. Theorem 1.1) are generated from W™(mk,x), an
approximation of U(mk,x), and apprbximate A(t;x,U(t,x)) and

F(t,x,U(t,x)) fespectively for t=mk.



CHAPTER I1I
TECHNICAL THEOREMS

The.exiétence, degree of smoothness and rate of growth
of the solution of a particular type of first order linear
hyperbo]ic system with Cauchy data are investigated in
this chapter. To begin, we state a basic lemma ( cf.

[10 , Chapter 1, Section 5] ).

2.1 LEMMA. Suppose JcR is a bounded open interval.
Let d(t,x) ¢ CB](JxR,R) and assume d,  is Lipschitz in x.
If (t,xo) € JxR, then there exists a unique sd]ution

x(o;t,xo), o€d, of

) gg(o;t,xo) = d(o,x(o3t,xy)), oed
(2.1)

x(t;t,xo) Xq -
Furthermore = (o,t xo) exists, is continuous and is
majorized by Exp Njt-of) where N is some positive constant

indebendent of o, t, and Xq -

2.2 DEFINITION. The solution x(ost, xg) of (2.1) is

ca]]ed the characteristic curve through (t, XOL generated

_x d{t,x).

13
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2.3 DEFINITION. Let JcR be an open interval. V is a
)

nonsingular continuous vector field on JxR if VeC(JxR,R

and V(t,x)#0 for (t,x) € JxR. V:JxR—»R2 is nowhere parallel

to the x-axis if V(t,x) and (0,1) are linearly independent

for all (t,x) € JxR. Let d(t,x) € C(JxR,R). The character-

istic field generated by d(t,x) is the nonsingular continuous

vector field V(t,x) = (1,d(t,x)) on JxR.

We need in the proof of Theorem 2.6 the following

Temma [2, pp.312-315] whose proof we give for completeness.

2.4 LEMMA. Let JcR be an open interval. Suppose V
is a nonsingular continuous wector fié]d nowhere parallel
.to the x-axis on JxR. Let U ¢ C(JXR,R) such that the
directional derivatives of U in the x direction and
V(f;x) direction exist and are continuous at each
(t.x) € JxR. Then U € C'(IxR,R)

PROOF. Let a € JxR and B(a,p) = {((t,x): !(t,X)-a|<é}}
"Pick p>0 such that B(a,p) ¢ JxR. For notational convenience,
let e = (0,1) and v = V(a); without loss of'genera1ity, |
assume |v| = 1. Let e>0. Then thgre exists a 51§0 such

that if |p|<5,, then
|[U(a+Bv) - U(a) - BDVU(a)l < elBl.
Let F(a,B) = U(atae+pv); we assume |a|+|B]<p . Clearly

DyF(a,p) = D U(a+ae+pv)

By the Mean Value Theorem,
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U(atae+pv) - U(a+pv) = F(a,B) - F(0,B)

aDeU(a+Ye+BV), 0éjyi§]a].

Becouse DeU is continuous at a, there exists a 0<52<p '

such that if |a| + [B| < &,, then

|U(a+ae+pv) - U(a+Bv) - aD U(a) |=se|a]
Let & = min{6,,6,}; then for la| +|B] < &
JU(atae+pv) - U(a) - aD U(a) - gD U(a)| = e[|af+|p]].

Since e and v are linearly independent, Schwartz's inequality
implies that |e:v| < |e|-|v] =1. So there exists O<N<1 such

that

2|ae-gv| = 2(1-N%) |a[fp| = (1-N®)[]a]? + |B|%]

Hence Iae+ev12 = Ialz + IBIZ + 2ae°Bpv

N[ Ja|?+18]%1 = NPL]al + [pl1%/2

v
v

Therefore, if |aet+Bv| < &, then

N

IIA

|[U(a+ae+pv) - U(a) -aDeU(a) - BDVU(a)[ | ae+pv].

N e
In particular, let a=vy and B = Yo where (1,0) = T18tY,V.
Then for h]Y]e+Y2vi < &,
|U(a+h(1,0)) - U(a) - hY]DeU(a) - hYzDvU(a)]
V2
= 7R ale]e+Y2V|.

Hence DtU(a) exists. Moreover, DtU(a) = Y]DeU(a)+yzDvU(a)

which implies that D_U is continuous at a.

t /17



16

2.5 ESTIMATES. Let a>0. Using elementary calculus one

can show the following two inequa]ities,

e - 1 = t(e%-1) = te%, t €1

t _ ,
ﬁ/}eas—l)ds < t(eat-1)'§ tzea, tel.
0 : :

With the above lemmas and estimates we can now prove the

following result.

2.6 THEOREM. Assume the following:

(1) D(x) = diagonal {d; (x)} and D(x) ¢ CB](R,Rnxn).
l=zisn

(2) Q(x) ¢ cB'(R,R™").

(3)  s(t.x) € cB'(IxR,R").
(4) f(x) ¢ CB'(R,R").

Then there exists a unique U ¢ CB](IxR,Rn) safisfyiﬁg
Up(Ex) = DU (£,x) + QUx)U(E,x) + S(t,x),
2.2 | | | (t.x) ¢ IxR |
~U(0,x) = f(x), x€R.

Furthermore ,

(2.3)  JUCE) = [FI{T+t-Exp(nlQll} + Hs%tz-gxp(nnon>

+ max lfs (c, o,t x))do

x€R
<'|<n O



17
where xi(o;t,x) is the characteristic curve through

(t,x) ¢ IxR generated by -d..

PROOF. In order to use temma 2.4 in this proof, the closed

set IxR must be enlarged to an open set. Let U<e<l and

denote the open interval (-e, 1+e¢) by J. Let
25(0,x) - S(-t,x), e < t< 0
(2.8) T(t,x) ={S(t,x), 0 =t =1
2S(1,x) - s(z-f;x), 1< t< Tte

Clearly T ¢ CB'(JxR,R") and T| =
IxR

We first construct a solution W(t,X)ECB](JxR,Rn) satisfying

We(t,x) = DOx)W, (t,x)+Q(x)W(t,x)+T(t,x), (t,X)GJxR

(2.5)
W(0,x) = f(x), x¢R.

(2.5 may be rewritten as

Wie,x) - d (£ D (e,x) = [QOON(EX)+T(E,x) ],

(2.6) ‘ ‘ (t,x) € JxR

W, (0,x) = f.(x), xeR.

where i=1,---,n. Since di is a function of x only, the
characteristic curves xi(c;t,x), (o,t,x) € IxIxR, are the
restrictions to IxIxR of the solutions (with the obvious

notation) xi(o;t,x), (o,t,x)eIxIxR,0f
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%gi(o;t,x) = -d; (x5 (o3t,x), (o,t,x) € IxIxR

X.i(t;tsx) = X.
Temporarily fix (t,x) € JxR and formally Tet

W (o) = W.(o,x. (o3t,x)), ocd.

i i i
Then
dN'(é) =-a—bii(cx (o3t,x)) +ﬂi(ox (o3t,x))
(2.7 651 ot (A I X A T
i (o3t ,x)

"

[Q(X.i(O';tsx))w(o'ax.i(O';ts)‘())""T(.Gsx.i(O';tsxk))].i‘

and wi(O) = fi(xi(O;t,x)). Integrating (2.7) with kespect

to o, we obtain
, .
(2.8)  W.(t,x) = fi(xj(O;t’x))+/EQ(X1(C;tsX))W(G,Xi(c;t,X))
| 0
+ Mo,x;(o3t,x)) ] do.

Hence a solution W ¢ C](JxR,R") of (2.2) must be a fixed
point of the integral transform FQC](JXR,Rn) - C1(JxR,Rn)
defined by

(2.9) (?V)](t,X) = f](X_I(‘O;t,X)) + [QV+T].i(O'sX.i(O';'t,X))dO-

Conversely, if V ¢ C'(JxR,R") and ¥V = V, then V satisfies
"(2.2). If Q)] = 0, (2.9) immediately gives a solution in -

ch(axr, R™) of (2.2),
t

k2.10) wi(t,x) = fi(xi(O;t,x)) ;/}.(c,xi(o;t,x))dr.

1
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For Q)0 define recursively w?(t,x) = fi(ki(o;t,x))
?
Cand Wt ='3w&. For brevity, let I(t) denote [t,0] for t<0

and [0,t] for t20. Next we show that

(2.11) !

q 1 o
) < (nlq o
Wll < (& ; }[nHQHHfH + HT¥(t)], ted.

I(t)
For,Q=0, (s,x) € JxR and i=1,--+, n,

S
’d/;HQHHfH + ([T do
I(s)

[sICnQIIen + 0Tl ).

1
i

W.(s,x) - wg(ﬁ,xﬂ

A

(s)
'Therefore
w0 = sup |w}(s;X)—w?(s,X)
. I(t) (s,x)eI(t)xR
T=i=n

iIA

AtlinliQinifIl + HT¥ ).

(t)
Assume (2.11) is true for §; then
. t ,
wf*z(t,x) . wf+1(t,x)] < anuquuwﬂ+]-wu do
: +
| faaipgpen
0
“[niQifl + 07 ldo
o P I1(o)
_ (nllg||t])**2

(9+2) In]lQl
o DnlQuiEl + T 1
- 1(t)

. ) . 2 n . .
and thus (2.11) is proved. Since WeC(JxR,R"), (2.11) implies

" the existence of WGC(J%R,Rn) such that
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v ; %
(2.12) 1im |W -W| = 0.
- J |
In fact, since 3: €' (IxR,.R")5C! (3xR,R"), WHT = 3w and

: i
WO € C](JxR,Rn), an easy induction argument shows that wx

exists and is continuous. Hence to show that wx exists and
is continuous,vit sufficies to show that w: is Cauchy with
respectvtb the || ]| norm. Throughout the remainder of this
:proof'LCL wi]],dengte some positive consfant independent of

W, W, t and x. From (2.11),

- : ' &+] L‘ £ +1

(2.13) W 7w s lTLl———
| 1(t) i

Since
t

TS I _ o8 0] 4
(w'i "w.i)x(tax) - O[I:Q (w -W ) + Q(w -W )X]'l

(Gsxi(c;t,x))%gi(o;tgx)do.
Lemma 2.1 and (2.13) imply

: ‘ Q+T. t .
T 1 J !
I(t) I(G) 7

However,

el .0
-l s Lt
CI(t)
“and hence

2+1

(2.14) uw£+1-wm < (LﬁJfl)
*1(t)
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Using a standard theorem [21, Theorem 7.17], W_ exists,

X
%
is continuous and Tim HwX-WXH = 0. Thus (2.14) and

Lemma 2.1 imply J

(2.15) Wl s 1|ff{|eL6]tl+ L6(e'-6|t|-1) s Ly, ted.
» I(t)

The existence and continuity of W, could be proved in

t
a fashion analogous to that of w*. However, using Lemma 2.4,
a much shorter proof may be given. C1eak1y W is a fixed
point of 7. Hence wi is continuously differentiable along
the characteristic curves generated by 'di‘ Since no charac-
teristic curve generated by 'di is ever parallel to the
x-axis and wx is continuous, Lemma 2.4 guarantees the exist-
ence and continuity of wt. ‘Summarizing, We Cl(JxR,Rn),

FW = W and W(0,x) = f(x); therefore, W satisfies (2.5).

Because Wl < = and [[W [ < «,
J J

W

A

tg HDHHWXH + HQHNWg + HTE < @

and thus W ¢ CB](JxR,Rn). The proof of uniqueness is’
standard left to thé_reader. Let U(t,x) be the restriction
of W(t,x) to IxR. Clearly U ¢ CB1(IxR,Rh) ahd satisfies
(2.2). We next prove (2.3). Let (t,x) € IxR. If HQH:>0,

then by (2.11),

I+ > [IW

=0

(2.16) [U(t.x)] el

IIA

(t,X)‘w (t,X)”

”f”en“Q”t +

A
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Since
: t

Us(tsx) = fo(x,(05t,x)) +d/}QU+S)1(c,Si(o;t,X))dc,

(2.16) and Estimates 2.5 give

(2.17) lUi(t,x) < £ +ee™Qyysy L2eniial
0,t]
t .
+ /Si(c,xi(o;t,x))do .
‘ 0
Since |JU(t)]|= sup |Ui(t,x)l, (2.17) easily implies (2.3). If
: l=izn .
x€R

1Qll = 0, (2.10) implies (2.3).

/17

We now use Theorem 2.6 to prove a résu]t which 1is

needed in Chapter 3.

2.7 THEOREM. Assume the following:

(1) A(x) e CBZ(R,RnX"); B(x) and h(x) are elements

~ of cB¥(r.R™T). |

(2) There exists a nonsingular P(x) such that P(x)
and.P_](x) are members of.CBz(R,Ran)ﬁ

(3) P(x)A(x)P'1(x) = D(x) is diagonal.

Then there exists a unique U ¢ CBZ(IxR,Rn)ﬁsatisfying

Ut(t,x) = A(x)UX(t,x) + B(x), (t,x) € IxR.
(2.18) :

Tu(o,x) = h(x), xeR.
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PROOF. Friedrichs [5, Theorem 5.3], improving the
earlier work of Perron [19], has shown (2.18) has a unique

solution U ¢ CZ(IxR,Rn). Hence we need only show that D%y

A

is bounded for |af 2. 'Following Treves [24,Chapter 16],

Tet P-1(x)V(t,x) U(t,x); then

V(t,x)

DOV, (£,x)+IPACP™TY T0x)V(£,x)4[PBI(X) ,
(2.19) (t.x)€eIxR.
V(0,x) = P(x)h(x), xeR.

By Theorem 2.6, V ¢ CB'(IxR,R") and hence U ¢ CB!(IxR,R").
If W =1U, then
B : / e .
W (tsx) = AW (t,x) + A (x)W(t,x) + B (x) on IxR.
(2.20) o |
W(0,x) = h7(x), xeR.

Defining P71 (x)Z(t,x) = W(t,x) and Q = P[AP"']7, (2.20)

becomes
. ,
2, (t,x) = D(x)Z,(t,x) + Q(x)Z(t,x) +.(PB )(x),
| (tsX)GIXR-
s -
Z(0,x) = P(x)h" (x)
By Theorem 2.6, Z ¢ CB'(IxR,R") and hence U ¢ CBZ(IxR,R").

/17



CHAPTER III

A PROOF OF THEOREM 1.1

In this chapter Theorem 1.1 is proved. We begin with

a lemma.

3.1 LEMMA. Fix C = 1, M = 1 and k™ ¢ z¥ such that

CeC(M+k-](CeC+1))2k3 < 1. Let gy = Mk® and

Busp = CBS + (1#CK)p, + €k form = 1,..., k71~
Then B = eC(M#Ce®+1)k% form = 1,---, k™ V..

PROOF. Let E = Cec. Recursively define

(3.1)  ap = Mk® and a_,; = Eal + o *+ EKS, m =100, k7121
We will prove that
(3.2) a_s= (Mem(E+1))k3, m = 1,---, k™1,

(3.2) is clearly true for m = 1; suppose it~is true for m=1,

-, k71210 Then

3

Ea2 + a +

am+1 m m Ek

A

E(Mem(E+1))2k8 + (Mm(E+1))k3 + EK3

A

k3 4 (mem(E+1))Kk3 + Ek3 = (Me(m+1) (E+1))K5.

24
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Hence (3.2) is proved; we next show that
s (140K Ma L m o= T,eee, KL
(3.3) Bm =( am’ 9 3

By construction (3.3) is true for m = 1; assume it is true

for m = Taeee, ko121, since (1+CK)M<e® form = 1,..-, K77,
Bis] = Ee'CBg1 + (1+>Ck)Bm + ok’
< E(1+ck) M[(1+CK)Ma 1% + (1+ck)™T e+ £k
S (k)™ e L

Thus (3;3) is proved; this implies, form= 1,5 k

(1+CK)M(M+m(CeCe1)) k>

A

Pm

eC(M+CeC+1)k2-

IiA

/17

3.2 REMARK. Theorem 2.7 guarantees that the algorithm

described by (1.5) can be completed. Suppose W™(mk,x) is
2 '

an element of CB2(R,R"). Then A"(x), P™(x),(P™(x))" ! and

Em(x) are elements of CBZ(R,Rn)} Theorem 2.7 asserts the

unjque-EXiStence 0‘f V(t:x) € CBZ(Im"ka’Rn) SatiSfying

Vt(t,x)

Rm(x)vx(t,x) + Fm(xj,(t,x) e 1Mk yp

Vimk,X) = WM(mk,x),x € R.

CLet W™(t,x) = V(t,x) on I™KXxR. since WM((m+1)k,x) is an
element of CBZ(R,Rn), it is possible to begin the next step
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of the algorithm with some wm+]((m+1)k,x)€CB2(R,Rn) satisfying
™ (e 1)) WD K T s KEP.
W™ ((me1)k) - W((me) KO s KKS.

3.3 NOTATION. 1In the proof of Theorem.1.1, L = 1 and

Lo =1 will denote constants independent of k,h and W".
They will not necessarily be the same constants during the

proof.

3.4 PROOF OF THEOREM 1.1. For convenience temporarily

abbreviate T_ = Tk pand " = Im’k' If M is a function

with domain IxRan, we will use the following abbreviations:

Mh(x) = M(&k,x, (T W™ (mk)) (x))

(%) = MOk, x, (T U(mK) ) (x)

1

form=20,..-, k™'<1. With this notation we have

3 3 ~ et wmen T
(P™M=1 = (P71)™ and B™ = (pap~T)M = BMAM(p-TyM.

PART 1. The residual on I™xR of U(t,x) in (1.5) is defined
to be

R™(,x) = Uy(t,x) = AT()U, (t,x) - F™(x), (t.x)eI™R.
Hence
(3.4)  R™(t.x) = (A(t,x,U(t,x)) - A™(x))U (t,x)

+ F(t,x,U(t,x)) - FM(x).
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Def{ning 7™ = U-W" on 1™« R, we obtain the Cauchy problem:

(3.5) (27(t.x) = A"(x)ZM(£.x) + R"(£,x).(t.x) € I™x R

Z™M(mk,x) = (U-W™)(mk,x), X€R.

Before estimating Zm(t,x), we will estimate

(3.6) ¢ = JZ"(mk) [, m = 0, -o, K7V

To do this we first diagonalize (3.5). Let

PM(x)Z™(t,x),(t,x) € I™R.

(3.7)  v™(t,x)

Then
‘fvﬁ(f,x) - Bm(x)vj(t,x) + QTOOV(t,x) + ST (t,x),
(3.8 < : | (t,x) e 1My R
‘) vo(d,x) =0, x ¢R
\iuﬁm)‘”vm(mk)—(ﬁm‘1)‘1vm'](mk)n < Kk
where |

Q"(x) = ﬁm<x)ﬂm(x)[(ﬁm)"(x)]/ and

s™(t,x) = PM(x)R™(t,x).
For notational convenience below, let

Q"(x) = P"(x)A"(x) LA™ T ()1
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PART 2. To bound ¢_, we first estimate V™ ! (mk), m=1,---,
k']. For convenience temporarily fix m=0,""", k']-1 and let
xi(o;t,x) be the characteristic through (t,x) ¢ I™xR
generated by -ET, the iEﬂ diagonal element of _Bm_ Hence

dxs . - _om ) m
aF-I(O':tsX) = d.i(x.i(o':tsx))s o€l

(3.9)
x;(tst,x) = x.

With the obvious change in notation, Theorem 2.6 applied to

(3.8) implies
(3.10)  IV™((m+1)K) | s V™ (mk) | {1+k-Exp(n}Q™)) }

£ Is™ k2 Exp(n)§™))
Im

#sup | [ sTloaxgos(m1)kox) ) do
X€R m

i=1,-++,n I

Next, to bound va((m+1)k)”,we must estimate

]fsT( oux; q;.(m+1)|.<,x)).do|,
M |

the subject of Parts 3, 4, and 5.0f this proof.

Notation: For brevity let A(t,x) = A(t,x,U(t,x)),

F(t,x) = F(t.x,U(t,x)), P(t.x) = P(t,x,U(t,x)) and

D(t,x)
(1.1).

D(t,x,U(t,x)) where U ¢ CBZ(IxR,Rn) satisfies



PART 3.

Because

s™(t,x) = PM(x)(A(t,x)-A"(x))U_(t,x)

X

+ PM(x)(F(t,x)-F™(x)),

estimates of (A-Km)(t,x) and (F-Fm)(t,x) are found next.

We begin by showing

(3.11) (T _U(mk) - T W"(mk))(x)| = L, + L€ + Lk

2
m
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where L follows the convention established in Notation 3.3.

By hypothesis, A and F are Lipschitz in the R" variable;

hence

1T U(mk) = T W™ (mk)) (x) )

s

IIA

A

1™ (mk,x) + ZA(mK ,x W™ (mk,x)) (W™ (mk,x+h) -

=~

WM (mk,x-h)) + ZF(mk,x,W"(mk,x)) - U(mk,x)

- %A(mk,x)(U(mk,x+h) - U(mk,x-h)) - %F(mk,x)”

+ KKC.

L 0™ (mk,x) = U(mk,x) I+ Lyl (ACmk,x)

- A(mk,x W™ (mk,x))) (U(mk ,x+h) - U(mk,x-h))]

+ L3”A(mk,x,wm(mk,x))[U(mk,x+h) - W™(mk ,x+h)
+ wm(mk,x-h) - U(mk,x=h)]] + Kk2

. . m . ) 2
La€y * 2nifA(mk,x,W (mk,x)”em + Kk
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2
s Lyey + Lg {IA(mKLX) | + € Te  + Kk
. 2 2

s Le, + Lel + Lk°.

Therefore (3.11) is proved. Next, for (t,x) ¢ 1™xR,

(3.12) U(t,x) - (T U(mk))(x)]

A

IU(mk,x) - (T U(mk))(x) ]+ J1UCt,x) - U(mk,x)]

kS + L

A

L k

A

Lk.

1 2

For reference below, suppose M ¢ X(n,nxq,0),q=n or 1.

‘Let M(t,x) = M(t,x,U(t,x)). Then, using (3.11) and (3.12),
' Mo oemy 2 2
(3.13) M7 - M7 = Le + Le + Lk

(3.14) M - MM = Lk

: omy 2
(3.15) |IM - M7 = Lem +Le, + Lk

IIA
—

(3.16) ||H"]

Im

~ PART 4.  In addition to m, temporarily fix lsisn and x ¢ R;

denote xi(o,(m+1)k,x) by x(o). If

(3.17) 9, ljr[ﬁW(A-Km)uX]i(c,x(c))do}
) I m

(3.18) 4, ’J[[ﬁm(F-Em)Ji(c,x(§))dc|
| n
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then

(3.19) L/.S?(c,x(c))dc < J.l + Jz.
Im

Recall that sup ||P(g)|<=350 [[Pl<= where P(t,x)=P(t,x,U(t,x)),
¢ € IxRxR"
The estimates of Part 3 then imply -

(3.20) 4, ij[(ﬁm-P)(F-Fm) - P(F"-FM)
Im

+ P(F-FM 1, (0.x(0) ) do

KIIP™-PnliF-F™ + k|P[IF™-F"|n
m Im Im

1A

I

+ L/'[p(r-ﬁm511(o;x(c))dal
" |

2 2 2 .
L]k(em + €.t k)® + sz(em + €7+ k

2
n )

A

+ L[IP(F-Em)]i(G,X(O))dGI
" |

A

Lk(Em

+ Gﬁ’,* Lk> L/EP(F-Em)Ji(c,x(c))dg :
Im
Similarly,

(3.21) J1§Lk(em+e;)+LkuA-Zm¥m-su?muux(c,x(a))-Ux(ﬁk,x(ﬁk))u
, ok

3

+ni2;;ﬂux(ﬁk’x(ﬁk))“ {; [P(A‘Am)]ij(o,X(g))dO +Lk

We next estimate P(A—Am)ij and P(F-F™). at (o,x(o)), the

i

subject of Part 5.
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PART 5. Throughout the remainder of this proof y and "
will denote various intermediate values in remainder terms
of a Taylor ser%es; Like L and L_,vy and v_will not
_necessari]y be the same constants during this proof.
Furthermore, in this part, the 0(k") symbol will be reserved
for those estimates not depending on W™ and hence not on
m

Z" or Vm., Continuing with the conventions of Part 4,

(o) - x(fik) = 192y (o) |

A

185 (vux(¥)) (o-ik) |
+ 1@ - @M (rax() (o-mk) |, oer™

Then using the estimates of Part 3,
(3.22) |x(o)-x(Ak)| =Lk(1+&), ger™
(3.23)  |x(9)-x(k) |25 Lk?(1+ &), Germ,

For convenience we let

m

H.(x) = (TmU(mk))(x), X E‘R.

Clearly

(3.24) [H" - U(iK)] = LKkZ.

Since U ¢ CBZ(IxR,Rn) and

Ulosx(o)) = Ulmk,x(mk)) + Uy (yq)(c-mk)

+ U, (v,) (x(0)-x(k)), o € 17

(3.22) and (3.23) imply
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(3.25) |U(o,x(0)) - U(mk,x(mk))[ = Lk(1+e2)

. - o 4
(3.26)  Ulo.x(0)) - Ulmk,x(mk)) |2 = LkZ(1+em)

(3.22), (3.23), (3.25) and (3.26) in conjunction with

Taylor's theorem give
(3-27) F(G,X(o))
= F(mk,x(mk))

o Fo(mk,x(mk) L U(mk, x(mk))) (o-fik)

A

+ F(mk,x(mk) ,U(mk,x(mk) ) (x(o)-x (k)

}: F mk ,x(mk) u(ﬁk,x(&k)))

,,oéIm.

- [U(o,x(0)) - U(mk,x(ﬁk))]j +A0(k2)(1+€$)
In a~simi]iar~manner;vexpahd FM(x(e)) = F(ﬁk,x(O),Hm(x(O)))

in a Taylor series about (mk,x(mk) ,H™(x(mk))) and then
~expand the coefficients of this series about (ﬁk;x(ﬁk),
U(mk,x(mk)). Then with the aid of (3.22), (3.23), (3.24)
cand [ (x(0)) - HM(x(AK)) | = 0(K)(1+¢2), we have

(3.28) F"(x(0))

~

,x(ﬁk))+FX(ﬁk;x(ﬁk),U(ﬁk,x(ﬁk)))(x(c)-x(ﬁk)) |

= F(mk
+ 2": FU_(r%k,x(rﬁk),u(n?k,x(r?uk)))
Cg=1 3 | |
- TH™(x(0)) = U(mk,x(mKk)) T, + 0(k%) (T+el), oet™.
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Subtkactihg (3.28) from (3.27),
(3.29)  (F-F")(o,x(0))
- Ft(ﬁk,x(ﬁk),u(ﬁk,x(ﬁk)))(o-ﬁk)
+ ;i%FUj(ﬁk,x(ﬁk),U(ﬁk,x(ﬁk)))

C [U(esx(0)) = HM(x(0)) T + O(KD) (T+ep).

Using

(3.30); U(osx(0)) = H'(x(0)) = Ulosx(o)) - U(fik,x(c))
| | 4 0(k2) , g 1™

“and consequently, with (3.22),

(3.31)  U(o,x(o)) - H™(x(o))

= ut(ﬁk,x(ﬁk))(o-ﬁk) + 0(k2)(1+€:), cel™,

~Combining (3129) and (3.31),
(3.32) (F;Em)(o,x(o))
=.(c-ﬁk)[F (mk ,x(mk) ,Uu(mk,x(mk))) +

EE:F (Pk s (/) U (i x (k) ) (U (ko x(fk))) ]

" o( 2)(1+e$), oelIm

By the mean value theorem, x(c)-x(ﬁk) —-d (Y ) (o-Mk);

Taylor's theorem then implies
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(3.32) P(o,x(c)) = P(mk,x(mk)) + Pt(mk x(mk)) (o-mk)
+ P (mk,x(mk))d] (v) (o-fik)
2 1p o) (oK) E + P () 8T () (o-fik

o (rg) (o-ik) 2 JLAT(1) 1%, oet”

. m .
Integrating the product of (3.31) and (3.32) over I" gives

4

(3.33) L/EP(F P (o>>d01 < 0(k%) (14 (1B +k1DM%) -

With the estimates of Part 3, ||D™|=||D™)+|D"- BmH%L(1+e2)
Hence (3 34) becomes If.[P F-F™) 1. (0,X(c)d0’<0(k )(1+6 )

8

3
Then by (3.20), J _Lk(6m+€m

)+Lk~. In an fashion §imi]iar
to above,HUX(o,x\c))-Ux(ﬁk,x(ﬁk))Hng(1+ei), celM, and
Ij%[P(A-ﬂm)]i(c,x(o))l§O(k3)(]+e§). These estimates

I :

]st(€m+Em

combined with (3.14) and (3.21) imply that J +LKS.

.Thus,'by (3.19),
(3.35) 11551(0, ))do| sLk(e_+e )+Lk3
PART 6. Combining (3.10) and (3.35)
(3.36) V" ((m+1)k] = Jv™(mk) | {T+k-Exp(nliQ"]}
+ 18" k? - Exp Q")

¥ Lk(em+eﬁ) + LKS,
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Abbreviate 6m=HVm-](mk)H. For convenience let aVb=max{a,b}.

Define &_,=0 and let p =& -1

V&m, m=0,--+, k By (3.6),

m-1
(3.7) and (3.8), '

(3.37) ¢, = 1Z™mk) | = nosup 1P (o) IV (mi) )+ KK
‘ @€ IxRxR
< L + Kk3 < L + Lk3 j;O 1
= -'6m = pm..l.j ? L

Using (3.37) and the estimates of Part 3,
(3.38) P™(B"™ 1)y

A S MUV L LIV ELE Y

liA

s pm P Ty

IIA

CIE™ + BBy (8™ 1= - (BT

(M) T ETAT 4 1+ Lk

2
.L2(1+em+e

2,2 2,2
1ten_1tkT) + L2(6m+em+k,)+1+L2

A

2
LS - k

fIn

Lipptogt + 1 + Lk.

By (3.8) and (3.38).

lin

(3.39)  V™(mk) = (™™ W mk) - ™) T T (k) 7

# MmN TTym=T ey

IIA

nlIP™IKK® + TLy(p +ppd + 1+ Lokls,

4 3
6m{me+me+1+Lk}+ Fk .

A
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Using (3.15) and (3.37)

A

(3.40) usmgm

uﬁmn[nA-ngmnuxym + |[F-F"| 1p2

¥ Lpi F Lk

lIA

me

Substituting (3.37), (3.39) and (3.4 ) into (3.36) gives

4 3 A
Spaq = [0, (Lo +Lp #1+Lk) + Lk”I[1+k-Exp(n[Q"]])]
+ Lk (o toltk) -Exp(nlQM]) + Lk(optod) + LK°.

and hence

4

m+]+Lk][1+Lk-Exp(nH6mH]

(3.41) pppq = eplle,tlo

+ LkP(p +02) Exp(nl|Q™) + Lk(p_+p2)

+ LS(1+Exp(n) Q™)) .

To complete the estimate of pm+1; we must estimate nHGmH,

the subject of Part 7.

PART 7. In this part we derive estimates needed below and

estimate Hﬁm”. Let

(3.42) TM(t,x) = (A-A™) (£, (£,x) + (F-F")(t,x),

(t,x) ¢ I™R.
Clearly
(3.43) ™" = Lk.

Im

(3.44) ”TT” < Lk.
Im



A simple computation shows that

(3.45)  (U-W™) . (t.x)

t

- ~

= AT(x) (U-W™) (t,x) + (AT-AT) (£,x)U, (t,x)
+ (F"-F™) (%) + T"(t,x), (t,x) eI"xR.

Let

(3.46) " = (u-w"‘)X on IMxR.

(3.47) Y"(t,x) = (A" () (t,0) + (A"-A™) () U, (t,%)

XX

# (F"-F™ (x) + TR(t,x), (t,x) ¢ I™R.

(3.48) (t,x) e IMxR.
v (mk,x) = (u-wm)x(mk,x), X€R.
If

(3.49) (PM~ 1™ = ¥™ on 1™xR,

then
| .~ |
x0t.x) = BP0 (Ex) + PMOGOLAPT) ™ ()X (%)
(3.50 + PM(x)YM(t,x), (t,x) e I"xR.

x"(mksx) = B™(x) (U-W") (mk,X), x€R.

38

e(t,x) = A"OOEM (e + (A" GOY(t,x) Y (t,x)
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By ( 2.3 )

(3.51)  x™((m+1)k) ]

o /‘\_/ s
< Ix™(mk) | {1+k-Exp(n)P™( (AP DLW

~m,m,, 2 “m, s mY
+ [[PTY T kS -Exp(nPT((AP "))
M

+ sup lj;(ﬁmYm)i(c,xi(o;(m+1)k,x))d&

€ I
I=izn
Suppose M € CBZ(R,Rn). Using hypothesis (1.3),
(3.52) (T M) (x) = M(x) + FA(mk,x,M(x)) (M(x+h)-M(x-h))

j=1 7]
+ M (m,x,M(x)) (M (x+h) - M (x-h))
n
+ %Fx(mk,x,M(x)) + %~’TFUj(mk’x’M(X))
J:

. M}(x) + o(k)f,

(3.52), (3.46), repeated use of the triangle inequality and
(3.37) give |

(3.53) LT MM mk) - T u(nk) 1)

A

Ly IUCmk) -W™(mk) |+ Ly Ie™(mk) |+ LU (mk) -W" (mk) |
+ Ly HuCmk) =" (mk) § - g™ (mk) |+ LU (mk) -W™(mk) )2

Je™(mk) |+ Lk

1

A

Lipg+ol+k) + L(1+p2) ¥ (mk) | .

2
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Next suppose M ¢ X(n,nxq,2), q=1 or n. Again using the

triangle inequality, (3.11), (3.37) and (3.53) imply

(3.54) (™) - (M"Y |

liA

1M Cmkyx, (T W™ (mk) (x)) = M (mk,x, (T U(mk)) (%)) ]

n
Do lMy (mx (TN (i) ) () = (T ™ (mk ) (x)
=
- MUj(mk,x,(TmU(mk>)(x))-(TmU(mk))}(x)u + Lok

A

LI T W (mk) =T U(mk) [+ L, {1+ W" (mk)-T U(mk)Il}

T W (mk) =T U(mk) 171+ Lk

2

A

L(

pptontk) + L(Trop) " (mk) .

Since H(ﬁm{hn < » , (3.54) implies

L4

(3.55) (™) I = Ly(pptotek) + Ly(eom) e (mk) | + (™)

L(T+p1) + L(T+p) 2" (mk)|

IIA

lIA

L(T+o) (141" (mi) ) -
For convenience let
(3.56) &, = Ix"(mk)]|

Then by (3.49),

~

1M Tz s Le

m
(3.57)  ¥"(mk)] n s L&

IA
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Substituting (3.57) into (3.55) and (3.54),

r—~ P
(3.58) nlB"((APTH)™Y | 5 L(1+pm) (T4e,).

(3.59)  I(A™-A") || s Lipytontk) + L(1+pm)e, .
(3.60) N(F"™-F™ || s L(ptop+k) + L(1+ot)e .

Since (3.13) and (3.37) imply
(3.60) AM-AM) = Lo tolk?),

(3.44), (3.59) and (3.60) give

A

(3.61) uvmgm- L(p +on+k) + L(1+p:)£m.

" By hypothesis (1.5 ),
TE™ ) ™ ((me1)k) - (B™) XM ((me1)K) | s KK,
Hence using (3.38), (3.51), (3.56), (3.58) and (3.61),‘

(3.62) = HXm+]((m+i)k)H

Em+1

A

TE™ Y LA™Yy L™ ey - B™) %™ ((m+1) k) 1)

£ ™Y (B™) M ((me1) k) |

Lk% # [y (o pptepag) + 1+ LKIX™((m+1)K)]

A

2
[Ly(opgr*opeq k) 11X ((m+1)K) ] + L,k

IiA
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s [Ly(pppq+opag k) +HILE [T+kExp(Lg(T+o0) (1+5,)) ]

+ LyL(e *odek) + (Trom) e Tk Exp(Ly(14o0) (142,))

N 4. . 4 2
+ Lak[optotk+ (140 )g I3 + Lak™.

CLAIM 1. There exists a I' =2 1 independent of k and h

-1

such that if pr = k for r=0,--, N=sk and Perk<1, then -

r-1 ) '
(3.63) E. S rk2§: (1+7k)d = rkel < 1, r=0,---,Nsk
. | j=0 |

PROOF OF CLAIM 1. Let r= 23L5-Exp(4L,) where L, is the
positive constant in (3.62). Since g0=0,(3.63) is true for
r=0. SuppoSé (3.63) is true for O=r-1<N. Because gr_]<1,

| pr<1 and pr_1<],‘(3.62) implies

fiAa¢
IA

< (1+3L3k){(]+k-Exp(4L3))£r;]

+ Ly(3k+2g 1)k  Exp(aL 2

3( 3) * L3k(3k+2;r_])}+L3k

2

{IA

(1+7k) & + Tk

r-1

r-2
(1+7K) k2D (1+7k)d  + k2

IIA

r-1 370 1
= rk2§: (1+7k)J = rkzk'1(1+rk)k = rkel < 1.
J=0

Hence (3.63) is proved.

We next estimate h”ﬁmn. Combining (3.13), (3.16),
(3.37), (3.55) and (3.57),
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(3.64) nQ™ = nF"AML(B™M) 1T

IIA

LA™ L™ T T

Ly (e re2ek®)Le™ 1T

A

HA

L3 (1+p2) [(T+p0) (T+2,) ]

6
)

IIA

L(T+p ) (T2 ).

Substituting (3.64) into (3.41) gives

» | 4 6
(3:65)p . = pm[me+me+1+Lk][1+Lk'EXP(L(1+p3(1+5m)]

v L% (o *+02) -Exp(L(148) (142 ))
+ Lk(p +00) + LKP[1+Exp(L(1+00) (142 ))].

PART 8. We begin with the following claim:

CLAIM 2. There exists C > 1 independent of k and h

such that if pm <. 1 and g < 1, then

2
m

3

(3.66)_pm+] s Co_ + (]+Ck)pmv+ Ck™.

2

PROOF OF CLAIM 2. Let C = 7L"-Exp(4L) where L is the

positive constant in (3.65).

Since om < 1 and £, < 1, (3.65) implies

IIA

o i pm[me+Lp$+]+Lk][]+Lk'Exp(4LH

+ Lk%(p, +p2) - Exp(4L) + Lk(p +p5)+Lk3(1+Exp(4L))

< cpﬁ + (T4Ck)p + ck3.
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Hence Claim 2 1is proved.

Since
(3.67) Pg = 0 ='£0

(3.66) implies

(3.68) oy s ck3.

Throughout the remainder of this proof, we assume k satisfies

ceCic+kT(ceb1))2k3 < 1

(3.69) < eC(c+cel+1)k? < k

err < 1

where T and C are the conStants from Claim 1 and Claim 2
respectively. Let By = Ck3 and B+1 = Csﬁ + (1+Ck)(3m + Ck3,

-']_

m=1,---,k 1. We next prove that

(3.70) p_ s p > m=l, okl

(3.68) guarantees that (3.70) is true for m=1.

Suppose op

IiA

B, for T=rsmek ™!, By (3.67), Lemma 3.1 and
(3.69), Pp < k for Osrsm. Hence, by Claim 1, £ < 1 for

Osrsm. Using Claim 2,

2 v 3
P+l S Cpm + (1+Ck)pm + Ck

2

Cp, + (1+(:k)g3m + ck®

S Brep-

A



(3.70) is therefore proved. (3.67), (3.69), Lemma 3.1 and

(3.70) imply

-1

(3.71) < eC(c+ceb+1)K? < Kk, m=0,---,k

Pm
and hence'by Claim 1,

(3.72) &= relk < 1, m=0,-- k7",

Substituting (3.71) dinto (3.39) gives
IV (mk) | s LKZ.

(3.40) and (3.71) imply

Lk

A

m
IS
Im

while (3.64) with (3.71) and (3.72) implies

A

nlQ™) = L

Hence Theorem 2.6 applied to (3.8) gives

LkZ, m=0,---,k"]

lIA

uvmgm
and so by (3.7)

(3.73)  u-u"y s Lk%, m=0,- .-,k
I

- By substituting (3.71) and (3.72) into (3.58) and (3.61),

nPMCAPT )™ ) = L

A

P™™ s Lk

Im

45
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Then Theorem 2.6 applied to (3.50) gives

m
7l = Lk
Im

“and hence by (3.46) and (3.49),

(3.74) n(u-wm)xn < Lk.
X

Since A" < L, |A™A™| = Lk and |F"-F™| = Lk, (3.43), (3.45)

IA

and (3.74) imply u(u-wm)tu‘ < Lk.
. _
I

/77



CHAPTER IV
OPEN QUESTIONS

In this chapter we enumerate briefly some open questions
arising from this study.

QUESTION 1. Construct a second order numerical method

by which the solutions W™ of (1.5) may be approximatedvsd as
to satisfy the conditions in (1.4). The numerical approxi-
mations of wm, by virtue of Theorem 1.1, would then approxi-

mate the solution U of (1.1).

QUESTION 2. Construct a sequence of linear initial-

boundary value analogues of (1.2) whose solutions WM
approximate the solution U of a quasilinear initjal-boundary
value analogue of (1.1) in a fashion similiar to (1.6), (1.7)
and (1.8). Then construct a numerical scheme to approximate
W™ and thereby approximate U. This particular question was
the beginning motivation of this thesis. The original
proposal was to construct the appropriate approximations

m

W™ and then approximate W" by some scheme similiar to that

of Thomée [23].

47
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QUESTION 3. Let S be a measurable subset of R and

p
Lp(SxR,Rnxm) = {M:SxRﬁRnxm M| =
psS
max IM. . (t,x)|Pdm <=}
lsi=n SxR 'J
T=sjsm
Bp(Y,nxm) = (MeLP(IxR, RV ™) | IM|  =v7.
p,l

Suppose that, in addition to the hypothesis of Theorem 1.1,

there exists p: [0,»)-»[0,») such that

D™M( IxRxBP(y,nxm)) < BP(y, nxm)

1

for |a| < 2 and M=A,P,P ' ,D and F(with the appropriate

choices of m). Assume also that for |a| = 2,
Df ¢ LP(R,R")
DU ¢ LP(IxR,R").

Under what conditions will W™ Lp(Ime,Rn);furthermore,
when and at what rate will HU-me n.k converge to zero as
p,I7°
K-> ?

QUESTION 4. Suppose the existence of the solution U

of (1.1) is removed from the hypothesis of Theorem 1.1.

As demonstrated in Remark 3.2, the solutions W™ of (1.5)

still exist. Under what conditions will there exist a
function V:IxR-R" such that HV-WmHm’k converges to zero as
k+~? If such a function V existg, what smoothness properties

will it have? When will such a V be a solution of (1.1) in
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some sense? If (1.1) is a conservation law [13,pp.3-17],
will V possess the appropriate "shocks"? If V doés disp]éy'
shocks, then the convergence question must be studied in a
topology weaker than L, e.g., an LP or distribution space

topology.

QUESTION 5. If the conditions

sup IP(o)ll < =
o € IxRxR

sup 1P ()]l < =
@€ IxRxRN
_ are removed from the hypothesis of Theorem 1.1, are the

conclusions of Theorem 1.1 still valid?
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