```
APPROXIMATION OF SOLUTIONS OF
    FIRST ORDER QUASILINEAR
        HYPERBOLIC SYSTEMS
            WITH CAUCHY DATA
```

 By
 LARRY M. FOSTER
 Bachelor of Science
 Oklahoma Baptist University
 Shawnee, Oklahoma
 1972
 Master of Science
 Oklahoma State University
 STillwater, Oklahoma
 1973
 Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 1978

Thesis
$1978 D$
$F>555 a$
$\operatorname{cop} 2$

Thesis Approved:

[^0]Name: Larry M. Foster
Date of Degree: May, 1978
Institution: Oklahoma State University
Location: Stillwater, Oklahoma
Title of Study: APPROXIMATION OF SOLUTIONS OF FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS WITH CAUCHY DATA

Pages in Study: 52 Candidate for Degree of Doctor of Philosophy

Major Field: Mathematics
Scope of Study: This paper investigates a method of approximating the solution of a first order quasilinear hyperbolic system of partial differential equations with Cauchy data.

Findings and Conclusions: Let $C B^{2}\left(R, R^{n \times m}\right)=\left\{f: R \rightarrow R^{n \times m} \mid f^{(j)}\right.$ is continuous and tounded for $j=0,1,2\}, C B^{2}(S \times R, R n \times m)=$ $\left\{M: S \times R \rightarrow R^{n \times m} \mid D^{\alpha} M\right.$ is continuous and bounded on $S \times R$ for $|a| \leqq 2\}, B(\gamma, n \times m)$ be the $\gamma-b a l l$ of $R^{n \times m}$ and $X(n, n \times m, 2)=$ $\left\{M: I \times R \times R^{n} \rightarrow R^{n} \times m \mid D^{\alpha} M\right.$ exists, is continuous, is Lipschitz in the U variable and maps $I \times R \times B(\gamma, n \times l)$ into $I \times R \times B(\rho(\gamma), n \times m)$ for some $\rho:[0, \infty) \rightarrow[0, \infty)$ and for $|a| \leqq 2\}$. Suppose A, P and $P^{-1} \in X(n, n \times n, 2), F \in X(n, n \times 1,2)$ and $f \in C B^{2}\left(R, R^{n}\right)$ with $P A P^{-1}=D$ diagonal. Fix $K \geqq 0$ and $\Lambda \geqslant 1$; let k^{-1} and h^{-1} be positive integers such that $\Lambda^{-1} \leqq k / h$ $=\lambda \leqq \Lambda$. Suppose $T_{m}: C B^{2}\left(R, R^{n}\right) \rightarrow C B^{2}\left(R, R^{n}\right)$ such that $\|\left(T_{m} v\right)(x)-[v(x)+(\lambda / 4) A(m k, x, v(x))(v(x+h)-v(x-h))+$ $(k / 2) F(m k, x, v(x))] \| \leq K k^{3}$ and $\|\left(T_{m} v\right)^{\prime}(x)-[v(x)+(\lambda / 4)$. $A(m k, x, v(x))(v(x+h)-v(x-h))+(k / 2) F(m k, x, v(x))]^{\prime} \|_{\infty} \leqslant k k^{2}$ for $v \in C B^{2}\left(R, R^{n}\right), x \in R$ and $m=0, \cdots, k^{-1}-1$. For convenience, 1 et $W^{-1}(0, x)=f(x)=\varphi^{0}(x)$ and $I^{m}=[m k,(m+1) k]$. Assume $\varphi^{m} \in C B^{2}\left(R, R^{n}\right)$ such that $\left\|\varphi^{m}(x)\right\| \leqq K k^{3}$ and $\left\|\left[\varphi^{\prime}\right]^{\prime}(x)\right\| \leqq K k^{2}$ for $x \in R^{n}$ and $m=1, \cdots, k^{-1}-1$. Then there exist unique functions $W^{m} \in C B^{2}\left(I^{m} \times R, R^{n}\right), m=0, \cdots, k^{-1}-1$, satisfying the first order linear hyperbolic Cauchy problems

$$
\left\{\begin{array}{l}
W_{t}^{m}(t, x)=\tilde{A}^{m}(x) W_{x}^{m}(t, x)+\tilde{F}^{m}(x), \quad(t, x) \in I^{m} \times R \\
W^{m}(m k, x)=W^{m-1}(m k, x)+\varphi^{m}(x), \quad x \in R
\end{array}\right.
$$

where, using the notations $\hat{m}=m+(1 / 2)$ and $Z^{m}=T_{m}\left(\varphi^{m}+\right.$ \left.${\underset{\sim}{m}}_{m-1}^{m}(m k, \dot{f})\right)$, we have $\tilde{A}^{m}(x)=A\left(\hat{m k}, x, z^{m}(x)\right)$ and $\tilde{F}^{m}(x)=F\left(\hat{m} k, x, Z^{m}(x)\right)$. Furthermore, if $U \in C B^{2}\left([0,1] \times R, R^{n}\right)$ satisfies the first order quasilinear hyperbolic Cauchy problem

$$
\left\{\begin{array}{l}
U_{t}(t, x)=A(t, x, U(t, x)) U_{x}(t, x)+F(t, x, U(t, x)) \\
U(0, x)=f(x)
\end{array}\right.
$$

then there exists a positive L independent of m, k, h, W^{m} and φ_{m}^{m} such that $\left\|\left(U-W^{m}\right)(\omega)\right\|_{\infty} \leq k^{2},\left\|\left(U-W^{m}\right) \times(\omega)\right\| \leq L k$ and $\left\|\left(U-W^{m}\right) t(\omega)\right\| \leqq L k$ for $m=0, \cdots,{ }_{\mathrm{k}}-1-1$ and $\omega \in[m k,(m+1) k] \times R$.

ACKNOWLEDGMENTS

I am indebted to my thesis advisor, Dr. H. G. Burchard, for suggesting this problem and directing my research. I thank Dr. S. Ahmad, Dr. J. Choike, Dr. J. Johnson and Dr. W. Tiederman for serving on my committee.
Thanks also to my typist Kathryn Reeder and her husband Kevin for their friendship.
My greatest thanks to my wife Helen for her encouragement and patience; this thesis is dedicated to her.
Finally, I give praise to God for His 2^{N}. many blessings.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Notation and Spaces. 4
Statement of the Main Result 6
Some Known Results 9
II. TECHNICAL THEOREMS 13
III. PROOF OF THEOREM 1.1 24
IV. OPEN QUESTIONS 47
V. SELECTED BIBLIOGRAPHY. 50

CHAPTER I

INTRODUCTION

In this paper solutions of quasilinear hyperbolic systems of first order partial differential equations with initial (Cauchy) data are approximated. To be more precise, let $F(t, x, U):[0,1] \times R \times R^{n} \rightarrow R^{n}, f(x): R \rightarrow R^{n}$, and $A(t, x, U)$ be an $n \times n$ matrix-valued function real diagonalizable on $[0,1] \times R \times R^{n}$. The system

$$
\left\{\begin{align*}
U_{t}(t, x)= & A(t, x, U(t, x)) U_{x}(t, x)+F(t, x, U(t, x)) \tag{1.1}\\
& (t, x) \in[0,1] \times R \\
U(0, x)= & f(x), x \in R .
\end{align*}\right.
$$

of first order partial differential equations is then said to be quasilinear hyperbolic with initial (Cauchy) data. For A depending on t and x only, (1.1) is said to be semilinear and if, furthermore, F is a function of t and x only, then (1.1) is called linear. If certain smoothness conditions (cf. [3], [5], [14] and [19]) are imposed on A, F, and f, then (1.1) has a classical solution in some neighborhood of $\{0\} \times R$. However, since the purpose of this study is to approximate the solution of (1.1), we assume (1.1) has a classical solution on $[0,1] \times R$.

To briefly describe the method of approximating U, let $k^{-1} \in Z^{+}$. Suppressing its dependence on k, let $W^{m}, m=0$, $\cdots, k^{-1}-1$, be a solution of the first order linear hyperbolic system:
(1.2) $\quad W_{t}^{m}(t, x)=\tilde{A}^{m}(x) W_{x}^{m}(t, x)+\tilde{F}^{m}(x), \quad(t, x) \in[m k,(m+1) k] \times R$ where \tilde{A}^{m} and $\tilde{\mathrm{F}}^{m}$ are constructed in Theorem 1.1. Two interesting conditions that could be imposed on (1.2) are $W^{0}(0, x)=f(x)$ and $W^{m-1}(m k, x)=W^{m}(m k, x)$. However, we merely require the existence of a positive K independent of k, m and x such that

$$
\begin{aligned}
& \left\|W^{m}(m k, x)-W^{m-1}(m k, x)\right\|_{\infty} \leqq K k^{3} \\
& \left\|W_{x}^{m}(m k, x)-W_{x}^{m-1}(m k, x)\right\|_{\infty} \leqq K k^{2} .
\end{aligned}
$$

where $W^{0}(0, x)=f(x), x \in R$ and $m=1, \cdots, k^{-1}-1$. By suitably choosing \tilde{A}^{m} and \tilde{F}^{m}, we prove there exists a positive L independent of k, x, t and m such that

$$
\begin{aligned}
& \left\|W^{m}(t, x)-U(t, x)\right\|_{\infty} \leqq L k^{2} \\
& \left\|W_{x}^{m}(t, x)-U_{x}(t, x)\right\| \leqq L k \\
& \left\|W_{t}^{m}(t, x)-U_{t}(t, x)\right\|_{\infty} \leqq L k
\end{aligned}
$$

for $m=0, \ldots, k^{-1}-1$ and $(t, x) \in[m k,(m+1) k] \times R$. The proper choice of \tilde{A}^{m} and \tilde{F}^{m} is described in Theorem 1.1 (in fact, \tilde{A}^{m} and \tilde{F}^{m} depend on $\left.W^{m}(m k, x)\right)$.

There are several reasons for approximating the solution of (1.1) by solutions of (1.2). First, because (1.2) is linear, it is less difficult to study than (1.1). Furthermore, there exists an extensive literature concerning the solutions of linear hyperbolic systems not existing for quasilinear hyperbolic systems. In fact, if f, \tilde{A}^{m} and \tilde{F}^{m} are smooth in a sense made precise in Theorem 1.1, (1.2) has a smooth solution W^{m} defined for all $(t, x) \in[m k,(m+1) k] \times R$, that is, (1.2) is solvable in the classical sense.

Second, approximating the solution of a quasilinear system by the solutions of linear systems might be useful in extending numerical methods reserved for linear systems to quasilinear systems. Suppose we have at our disposal some numerical scheme for approximating W^{m}, the solution of the linear system (1.2), by \tilde{W}^{m} such that

$$
\left.\| W^{m}((m+1) k, x)-\tilde{W}^{m}((m+1) k, x)\right) \| \leqq K k^{3}
$$

(we momentarily ignore the condition on $W_{x}^{m}((m+1) k, x)$). We could then let $W^{m+1}((m+1) k, x)=\tilde{W}^{m}((m+i) k, x)$ and repeat the numerical scheme to approximate $W^{m+1}((m+2) k, x)$ by $\tilde{W}^{m+1}((m+2) k, x)$. If we could show that

$$
\left\|W^{m}((m+1) k, x)-\tilde{W}^{m}((m+1) k, x)\right\| \leqq K k^{3}
$$

for all $m=0, \cdots, k^{-1}-1$, then we would have a second order numerical approximation of U computed by a method applied to linear systems. Such an approach circumvents the problem of numerical instability [20,pp. 129-130] encountered when trying to apply a stable numerical method designed for
linear hyperbolic systems directly to a quasilinear hyperbolic system. The appeal of this approach is further enhanced when one considers the large number of simple linear schemes, cf. Wendroff [26,pp.183-185], Kreiss[12], Lax and Wendroff [18], Strang [22], Wendroff [25], Lax and Richtmeyer [16,pp.284-287], and Richtmeyer and Morton [20, Chapters 9-10]. Although we do not implement any numerical methods in this paper, the above is an important impetus for studying the linear systems (1.2).

Third, suppose $U_{k}:[0,1] \times R \rightarrow R^{n}$ such that $U_{k}=W^{m}$ on $[m k,(m+1) k) \times R, m=0, \cdots k^{-1}-1$. Then determining when and at what rate U_{k} converges to U in some norm is a question mathematically interesting in its own right.

Notation and Spaces

Let $R^{n \times m}$ denote the vector space of real $n \times m$ matrices and we identify R^{n} with $R^{n \times 1}$.

If $M \in R^{n \times m}$, then

$$
\|M\|=\max _{\substack{l \leqq i \leqq n \\ 1 \leqq j \leqq m}}\left|M_{i j}\right|
$$

and for $M: R \rightarrow R^{n \times m}$,

$$
\|M\|=\sup _{x \in R}\|M(x)\|
$$

Let $I=[0,1]$ and $S \subset R$. If $M: S \times R \rightarrow R^{n \times m}$,
then

$$
\|M\|=\sup _{S}=\sup _{(t, x) \in S \times R}\|M(t, x)\|
$$

When $S=I$, abbreviate $\|M\|=\|M\|$. For nonnegative integers α_{i}, the ordered n-tuple $\alpha=\left(\alpha_{1}, \cdots, \alpha_{p}\right)$ denotes a multi-index of order $|a|=\alpha_{1}+\cdots+\alpha_{p}$. With each multi-index a we associate the differential operator

$$
\begin{aligned}
& D^{\alpha}=\left(\frac{d}{d x}\right)^{\alpha} 1, p=1 \\
& D^{\alpha}=\left(\frac{\partial}{\partial t}\right)^{\alpha} 1\left(\frac{\partial}{\partial x}\right)^{\alpha}, p=2 \\
& D^{\alpha}=\left(\frac{\partial}{\partial t}\right)^{\alpha} 1\left(\frac{\partial}{\partial x}\right)^{\alpha}\left(_{\left(\frac{\partial}{\partial U_{1}}\right)^{\alpha} \cdots\left(\frac{\partial}{\partial U_{p-2}}\right)^{\alpha} p, p>2 .}\right.
\end{aligned}
$$

Suppose JCR is a closed or open interval. Let

$$
\begin{aligned}
C^{r}\left(R, R^{n \times m}\right)= & \left\{M: R \rightarrow R^{n \times m} \mid D^{\alpha} M\right. \text { exists and is } \\
& \text { continuous for }|\alpha| \leqq r\} . \\
C B^{r}\left(R, R^{n \times m}\right)= & \left\{M \in C^{r}\left(R, R^{n \times m}\right)\left|\left\|D^{\alpha} M\right\|<\infty,|a| \leqq r\right\}\right. \\
C^{r}\left(J \times R, R^{n \times m}\right)= & \left\{M: J \times R \rightarrow R^{n \times m} \mid D^{\alpha} M \text { exists }\right. \text { and is } \\
& \text { continous for }|a| \leqq r\} \\
C B^{r}\left(J \times R, R^{n \times m}\right)= & \left\{M \in C^{r}\left(J \times R, R^{n \times m}\right)\left|\left\|D^{\alpha} M\right\|<\infty,|a| \leqq r\right\} .\right. \\
C^{r}\left(J \times R \times R^{q}, R^{n \times m}\right)= & \left\{M: J \times R \times R^{q} \rightarrow R^{n \times m} \mid D^{\alpha} M \text { exists }{ }^{1}\right. \text { and } \\
& i \text { is continuous for }|\alpha| \leqq r\} .
\end{aligned}
$$

${ }^{1}$ For J closed, the t-derivative is appropriately onesided at the boundary of $J \times R$.

If the γ-ball of ($\left.R^{n \times m},\| \|\right)$ is denoted by $B(\gamma, n \times m)$, i.e.,

$$
B(\gamma, n \times m)=\left\{M \in R^{n \times m} \mid\|M\| \leqq \gamma\right\},
$$

then let

$$
\begin{aligned}
X(q, n \times m, r)= & \left\{M \in C^{r}\left(I \times R \times R^{q}, R^{n \times m}\right) \mid D^{\alpha} M\right. \text { is Lipschitz in } \\
& \text { the } R^{q} \text { variable and } D^{\alpha} M(I \times R \times B(r, q \times 1)) \\
& C B(\rho(r), n \times m) \text { for }|\alpha| \leqq r \text { and some } \\
& \rho:[0, \infty) \rightarrow[0, \infty)\}
\end{aligned}
$$

Next suppose $f: J \times R \rightarrow R^{n \times m}$ and $t \in J$ is fixed. Define $f(t): R \rightarrow R^{n \times m}$ by $f(t)(x)=f(t, x)$. If on the other hand $f: R \rightarrow R^{n \times m}$, then $f(t, x)$ denotes the extension of f to $J \times R$ by $f(t, x)=f(x)$, $(t, x) \in J \times R$. Last, let $k^{-1} \in Z^{+}$and denote $[m k,(m+1) k]$ by $I^{m, k}, m=0, \cdots, k^{-1}-1$.

Statement of the Main Result

In this section we state the principal result of this paper.

THEOREM 1.1. Assume A, F and f of (1.1) satisfy:

(1) $A \in X(n, n \times n, 2)$;
(2) $\mathrm{F} \in \mathrm{X}(\mathrm{n}, \mathrm{n} \times \mathrm{P}, 2)$;
(3) $f \in C B^{2}\left(R, R^{n}\right)$;
(4) there exists an invertible $P \in X(n, n \times n, 2)$ such
that $P^{-1} \in X(n, n \times n, 2), P A P^{-1}=D$ is diagonal ${ }^{2}$ and

$$
\sup _{\varphi \in I \times R \times R^{n}}\left[\left\|P^{-1}(\varphi)\right\|+\|P(\varphi)\|\right]<\infty .
$$

Let $U \in C B^{2}\left(I \times R, R^{n}\right)$ satisfy (1.1) and fix $\Lambda>1$ and $K \geqq 0$. If h^{-1} and k^{-1} are positive integers, then define $\lambda=\frac{k}{h}$; assume $\Lambda^{-1} \leqq \lambda \leqq \Lambda$. Let $T_{m, k, h}: C B^{2}\left(R, R^{n}\right) \rightarrow C B^{2}\left(R, R^{n}\right)$ such that for $m=0, \cdots, k^{-1}-1, v \in C B^{2}\left(R, R^{n}\right)$ and $x \in R$,

$$
\begin{align*}
& \|\left(T_{m, k, h} v\right)(x)-\left[v(x)+\frac{\lambda}{4} A(m k, x, v(x))(v(x+h)-v(x-h))\right. \\
& \left.\quad+\frac{k}{2} F(m k, x, v(x))\right] \| \leqq K k^{2} \\
& \|\left(T_{m, k, h^{\prime}}\right)^{\prime}(x)-\left[v(x)+\frac{\lambda}{4} A(m k, x, v(x))(v(x+h)-v(x-h))\right. \tag{1.3}\\
& + \\
& \left.\frac{k}{2} F(m k, x, v(x))\right]^{\prime} \| \leqq K k .
\end{align*}
$$

Define $W^{-1}(0, x)=f(x)=\varphi^{0}(x)$ and let $\varphi^{m} \in C B^{2}\left(R, R^{n}\right), m=1, \cdots$, $k^{-1}-1$, such that

$$
\left\{\begin{array}{l}
\left\|\varphi^{m}\right\| \leqq K k^{3} \tag{1.4}\\
\left\|\left[\varphi^{m}\right]^{\prime}\right\| \leqq K k^{2}
\end{array}\right.
$$

Then there exists a sequence of unique functions $W^{m} \in C B^{2}\left(I^{m}, k_{\times R}, R^{n}\right), m=0, \cdots, k^{-1}-1$ such that

$$
\left\{\begin{array}{l}
W_{t}^{m}(t, x)=\tilde{A}^{m}(x) W_{x}^{m}(t, x)+\tilde{F}^{m}(x),(t, x) \in I^{m}, k_{x R} \tag{1.5}\\
W^{m}(m k, x)=W^{m-1}(m k, x)+\varphi^{m}(x), x \in R
\end{array}\right.
$$

where the t-derivative at the boundary of $I^{m, k_{x}} R$ is taken to be appropriately one sided and using the notation $\hat{m}=m+\frac{1}{2}$,

[^1]\[

$$
\begin{aligned}
& \left.\tilde{A}^{m}(x)=A\left(\hat{m} k, x,\left[T_{m, k}, h^{\left(W^{m-1}\right.}(m k)+\varphi^{m}\right)\right](x)\right) \\
& \tilde{F}^{m}(x)=F\left(\hat{m} k, x,\left[T_{m, k, h}\left(W^{m-1}(m k)+\varphi^{m}\right)\right](x)\right)
\end{aligned}
$$
\]

Furthermore, there exists an L independent of k, h and W^{m} and φ^{m} such that for $m=0, \cdots, k^{-1}-1$,

$$
\begin{equation*}
\left\|U-W^{m}\right\|_{I^{m, k}} \leqq L k^{2} \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\left\|U_{x}-W_{x}^{m}\right\|_{I}^{m, k} \leq L k \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\left\|u_{t}-W_{t}^{m}\right\|_{I^{m, k}} \leqq L k \tag{1.8}
\end{equation*}
$$

REMARK 1.2. Theorem 1.1 is proved in Chapter III. In fact, by a proof similar to that given in Chapter III, the following is true. Let

$$
\left(\tau_{h} v\right)(x)=\frac{1}{2}\left(v\left(x+\frac{h}{2}\right)+v\left(x-\frac{h}{2}\right)\right), v \in C B^{2}\left(R, R^{n}\right) .
$$

If $T_{m, k, h}$ of Theorem 1.1 is replaced by $T_{m, k, h}: C B^{2}\left(R, R^{n}\right) \rightarrow$ $C B^{2}\left(R, R^{n}\right)$ such that for $m=0, \cdots k^{-1}-1, v \in C B^{2}\left(R, R^{n}\right)$ and $x \in R$,

$$
\begin{align*}
& \|\left(T_{m, k, h}^{*} v\right)(x)-\left[\left(\tau_{h} v\right)(x)+\frac{\lambda}{2} A\left(m k, x,\left(\tau_{h} v\right)(x)\right)\right. \tag{1.9}\\
& \left.\cdot\left(v\left(x+\frac{h}{2}\right)-v\left(x-\frac{h}{2}\right)\right)+\frac{k}{2} F\left(m k, x,\left(\tau_{h} v\right)(x)\right)\right] \| \leqq K k^{2} \\
& \|\left(T_{m, k, h}^{*}\right)^{\prime}(x)-\left[\left(\tau_{h} v\right)(x)+\frac{\lambda}{2} A\left(m k, x,\left(\tau_{h} v\right)(x)\right)\right. \tag{1.10}\\
& \cdot\left(v\left(x+\frac{h}{2}\right)-v\left(x-\frac{h}{2}\right)\right)+\frac{k}{2} F\left(m k, x,\left(\tau_{h} v\right)(x)\right]^{\prime} \| \leqq K k,
\end{align*}
$$

then the conclusions (1.6)-(1.8) of Theorem 1.1 are still true.

Some Known Results

In this section some known results concerning quasilinear hyperbolic systems are recorded. The second order partial differential equation

$$
\begin{equation*}
F(x, y, u, p, q, r, s, t)=0 \tag{1.11}
\end{equation*}
$$

where $p=u_{x}, q=u_{y}, r=u_{x x}, s=u_{x y}$, and $t=u_{y y}$ is called hyperbolic [1,pp.418-421] at the point ($x, y, u, p, q, r, s, t) \in R^{8}$ if $4 F_{r} F_{t}-F_{s}^{2}<0$. Riemann, in the nineteenth century, obtained a solution of (1.11) when F is linear in r, s and t. Lewy [18] later proved the local solvability of the general nonlinear hyperbolic form (1.11) assuming certain smoothness conditions on F and on some initial data. Hartman and Wintner [7] improved the results of Lewy by relaxing some of Lewy's smoothness criteria. However, if (1.11) is hyperbolic, it can be transformed into a first order quasilinear hyperbolic system of the form (1.1). Hence much research is directed toward (1.1).

It is well known,cf. Lax[13,pp.4-6], and Jeffrey [11, pp. 32-36], that the hyperbolic system (1.1) need not have a differentiable solution on $[0,1] \times R$ no matter how smooth A, F, and fare. However, much work has been done in showing that (1.1) has, under certain smoothness conditions on A, F and f, a local solution, i.e., a solution in some
neighborhood of the initial line. Let P diagonalize A, that is, PAP^{-1} is diagonal. Perron [19], assuming A, P, P^{-1}, F and f were C^{2}, showed (1.1) had a local C^{1} solution. Friedrichs [5], with Perron's assumptions, showed (1.1) had a local C^{2} solution. Later, Courant and Lax [14] and Lax [15] constructed a local Lipschitz C^{2} solution by requiring A, F, f, P and P^{-1} to be C^{2} and Lipschitz. Thereafter, Douglis [3] proved the existence of a local C^{1} solution assuming only that A, F, f, P and P^{-1} were C^{1}.

When (1.1) is linear, Perron [19], and later Friedrichs [5], obtained global solutions (differentiable solutions defined on all of $I \times R$) of (1.1) assuming various smoothness criteria on A, P, P^{-1}, F and f. Friedrichs, in particular, obtained a C^{r} global solution when A, P, P^{-1}, F and f were $c^{r}, r=1,2$. Recent work has also been done in finding weak (distribution) solutions of more generalized forms of (1.l). In particular, let J^{\prime} be the space of tempered distributions and

$$
\begin{aligned}
& \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in R^{n}, \quad \xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n-1}\right) \\
& R_{n}^{+}=\left\{\xi \in R^{n}: \xi_{i}>0, \quad i=1, \cdots, n\right\} \\
& H^{H}(k, s)=\left\{u \in \mathcal{Z}^{\prime}: \hat{u} \text { is a function on } R^{n}\right. \text { and } \\
& \|u\|_{(k, s)}^{2}=(2 \pi)^{-n} \int\left(1+|\xi|^{2}\right)^{k}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s} \\
& \left.\cdot|\hat{u}(\xi)|^{2} d \dot{\xi}<\infty\right\} \\
& \stackrel{\circ}{H}_{(k, s)}=\left\{u \in H(k, s) \text { : supp } u \subset \bar{R}_{n}^{+}\right\}
\end{aligned}
$$

where $k \in Z$ and $s \in R$. Let Ω be an open subset of R^{n} and $\Omega^{\prime} \subset \Omega$ such that $\bar{\Omega}^{\prime}$ is compact. Let P be a linear differential operator strictly hyperbolic on Ω with C^{∞} coefficients and a principal part P_{m} with degree $m[8, p .29]$. If $f \in \stackrel{\circ}{H}(k, s)$, then there exists $v \in \stackrel{\circ}{\mathrm{H}}(k+m-1, s)$ such that ${ }^{t} P(x, D) v=f$ in Ω^{\prime} where t_{P} denotes the adjoint of P. The interested reader is referred to Hörmander [8, p.241] and [9, pp.190-195]. Suppose (1.1) is a conservation law:

$$
\left\{\begin{array}{l}
U_{t}(t, x)+[G(U(t, x))]_{x}=0,(t, x) \in[0, \infty) \times R \tag{1.12}\\
U(0, x)=f(x), x \in R .
\end{array}\right.
$$

Let G be strictly nonlinear [6, p.698] and smooth. If f has sufficiently small oscillation and bounded variation, then (1.12) has a global weak solution U, that is, U is a bounded measurable function, $U(0, x)=f(x)$ and

$$
\int_{0}^{\infty} \int_{R}\left(\varphi_{t} U+\varphi_{x} G(U)\right) d x d t+\int_{R}(x, 0) U(x, 0) d x=0
$$

for all $\varphi \in \mathrm{C}_{00}^{\infty}\left(\mathrm{R}^{\mathrm{n}}\right)$. For further details, see Glimm [6] and Lax [13, pp.28-30].

We now mention some results concerning the initialboundary value analogue of (1.1). Without being too precise, suppose we consider only $(t, x) \in I^{2}$ and require that U assumes, in addition to the initial data, certain values on $\{(t, 0): t \in I\}$ and $\{(t, l): t \in I\}$. Then (1.l) becomes an initialboundary value problem. Thomée [23] developed a numerical scheme for approximating the initial-boundary value problem assuming A of (1.1) was diagonal with eignvalues bounded
away from zero. This at first might seem to be only a minor annoyance since it is well known that (1.l) can be transformed into a system:

$$
(1.13) \quad W_{t}(t, x)=\mathscr{D}(t, x, W(t, x)) W_{x}(t, x)+G(t, x, W(t, x))
$$

where \mathcal{D} is diagonal. However, \mathscr{D}^{\prime} has a zero eigenvalue and hence Thomée's scheme is not applicable to (1.13). The approximations (1.2), being linear, do not suffer from this malady. The author hopes at a later date to combine Thomée's numerical scheme and the initial-boundary value analogue of (1.2) to approximate an initial-boundary value analogue of (1.1). In fact, the operators $T_{m, k, h}$ and $T^{*}{ }_{m, k}, h$ are directly related to Thomée's procedure.

The linear hyperbolic systems (1.2) and hence (1.5) are also motivated by a numerical scheme of Dupont [4]. Let $k^{-1} \in Z^{+}$and $m=0, \cdots, k^{-1}-1$. In approximating the solution of a particular initial-boundary value problem describing gas flow in a pipe line, Dupont used approximations $U^{m}(x)$ of $U(m k, x)$ and Taylor expansions to approximate $A(t, x, U(t, x))$ and $F(t, x, U(t, x))$ for $t=\hat{m} k$ where $\hat{m}=m+\frac{1}{2}$. Using these approximations, an approximation $U^{m+1}(x)$ to $U((m+1) k, x)$ was generated. In an similiar fashion, $\tilde{A}^{m}(x)$ and $\tilde{F}^{m}(x)$ (cf. Theorem 1.1) are generated from $W^{m}(m k, x)$, an approximation of $U(m k, x)$, and approximate $A(t, x, U(t, x)$) and $F(t, x, U(t, x))$ respectively for $t=\hat{m} k$.

CHAPTER II

TECHNICAL THEOREMS

The existence, degree of smoothness and rate of growth of the solution of a particular type of first order linear hyperbolic system with Cauchy data are investigated in this chapter. To begin, we state a basic lemma (cf. [10, Chapter 1, Section 5]).
2.1 LEMMA. Suppose $J \subset R$ is a bounded open interval. Let $d(t, x) \in C B^{l}(J \times R, R)$ and assume d_{x} is Lipschitz in x. If $\left(t, x_{0}\right) \in J \times R$, then there exists a unique solution $x\left(\sigma ; t, x_{0}\right), \quad \sigma \in J, o f$
(2.1) $\left\{\begin{array}{l}\frac{d x}{d \sigma}\left(\sigma ; t, x_{0}\right)=d\left(\sigma, x\left(\sigma ; t, x_{0}\right)\right), \quad \sigma \in J \\ x\left(t ; t, x_{0}\right)=x_{0} .\end{array}\right.$

Furthermore $\frac{\partial x}{\partial x_{0}}\left(\sigma ; t, x_{0}\right)$ exists, is continuous and is majorized by $\operatorname{Exp}(N|t-\sigma|)$ where N is some positive constant independent of σ, t, and x_{0}.
2.2 DEFINITION. The solution $x\left(\sigma ; t, x_{0}\right)$ of (2.1) is called the characteristic curve through $\left(t, x_{0}\right)$ generated by $d(t, x)$.
2.3 DEFINITION. Let JCR be an open interval. V is a nonsingular continuous vector field on $J \times R$ if $V \in C\left(J \times R, R^{2}\right)$ and $V(t, x) \neq 0$ for $(t, x) \in J \times R . V: J \times R \rightarrow R^{2}$ is nowhere parallel to the x-axis if $V(t, x)$ and $(0,1)$ are linearly independent for all $(t, x) \in J \times R$. Let $d(t, x) \in C(J \times R, R)$. The characteristic field generated by $d(t, x)$ is the nonsingular continuous vector field $V(t, x)=(1, d(t, x))$ on $J \times R$.

We need in the proof of Theorem 2.6 the following lemma [2, pp.312-315] whose proof we give for completeness.
2.4 LEMMA. Let JCR be an open interval. Suppose V is a nonsingular continuous vector field nowhere parallel to the x-axis on $J \times R$. Let $U \in C(J \times R, R)$ such that the directional derivatives of U in the x direction and $V(t, x)$ direction exist and are continuous at each $(t, x) \in J \times R$. Then $U \in C^{1}(J \times R, R)$

PROOF. Let a $\in J \times R$ and $B(a, p)=\{(t, x):|(t, x)-a|<\rho\}$. Pick $\rho>0$ such that $B(a, \rho) \subset J \times R$. For notational convenience, let $e=(0,1)$ and $v=V(a)$; without loss of generality, assume $|v|=1$. Let $\varepsilon>0$. Then there exists a $\delta \rho>0$ such that if $|\beta|<\delta_{1}$, then

$$
\left|U(a+\beta v)-U(a)-\beta D_{v} U(a)\right|<\varepsilon|\beta| .
$$

Let $F(\alpha, \beta)=U(a+\alpha e+\beta v)$; we assume $|\alpha|+|\beta|<\rho$. Clearly

$$
D_{1} F(\alpha, \beta)=D_{e} U(a+\alpha e+\beta v)
$$

By the Mean Value Theorem,

$$
\begin{aligned}
U(a+\alpha e+\beta v)-U(a+\beta v) & =F(\alpha, \beta)-F(0, \beta) \\
& =\alpha D_{e} U(a+\gamma e+\beta v), 0 \leqq|\gamma| \leqq|\alpha|
\end{aligned}
$$

Becouse $D_{e} U$ is continuous at a, there exists a $0<\delta_{2}<p$ such that if $|\alpha|+|\beta|<\delta_{2}$, then

$$
\left|U(a+\alpha e+\beta v)-U(a+\beta v)-\alpha D_{e} U(a)\right| \leqq \varepsilon|\alpha|
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$; then for $|\alpha|+|\beta|<\delta$

$$
\left|U(a+\alpha e+\beta v)-U(a)-\alpha D_{e} U(a)-\beta D_{V} U(a)\right| \leqq \varepsilon[|a|+|\beta|] .
$$

Since e and rare linearly independent, Schwartz's inequality implies that $|e \cdot v|<|e| \cdot|v|=1$. So there exists $0<N=1$ such that

$$
2|\alpha e \cdot \beta v| \leqq 2\left(1-N^{2}\right)|\alpha||\beta| \leqq\left(1-N^{2}\right)\left[|\alpha|^{2}+|\beta|^{2}\right]
$$

Hence $|\alpha e+\beta v|^{2}=|\alpha|^{2}+|\beta|^{2}+2 \alpha e \cdot \beta v$

$$
\geqq N^{2}\left[|\alpha|^{2}+|\beta|^{2}\right] \geqq N^{2}[|\alpha|+|\beta|]^{2} / 2
$$

Therefore, if $|\alpha e+\beta v|<\delta$, then

$$
\left|U(a+\alpha e+\beta v)-U(a)-\alpha D_{e} U(a)-\beta D_{v} U(a)\right| \leqq \frac{\sqrt{2}}{N} \varepsilon|\alpha e+\beta v| .
$$

In particular, let $\alpha=\gamma_{1}$ and $\beta=\gamma_{2}$ where $(1,0)=\gamma_{1} e+\gamma_{2} v$.
Then for $h\left|\gamma_{1}{ }^{e+\gamma_{2}} v\right|<\delta$,

$$
\begin{aligned}
& \left|U(a+h(1,0))-U(a)-h \gamma_{1} D_{e} U(a)-h r_{2} D_{v} U(a)\right| \\
& \quad \leqq \frac{\sqrt{2}}{N} \varepsilon h\left|r_{1} e+\gamma_{2} v\right| .
\end{aligned}
$$

Hence $D_{t} U(a)$ exists. Moreover, $D_{t} U(a)=\gamma_{1} D_{e} U(a)+\gamma_{2} D_{v} U(a)$ which implies that $D_{t} U$ is continuous at a.
2.5 ESTIMATES. Let $\alpha>0$. Using elementary calculus one can show the following two inequalities,

$$
\begin{aligned}
& e^{\alpha t}-1 \leqq t\left(e^{\alpha}-1\right) \leqq t e^{\alpha}, t \in I \\
& \int_{0}^{t}\left(e^{\alpha s}-1\right) d s \leqq t\left(e^{\alpha t}-1\right) \leqq t^{2} e^{\alpha}, t \in I
\end{aligned}
$$

With the above lemmas and estimates we can now prove the following result.
2.6 THEOREM. Assume the following:

(2) $Q(x) \in C B^{1}\left(R, R^{n \times n}\right)$.
(3) $S(t, x) \in C B^{1}\left(I \times R, R^{n}\right)$.
(4) $f(x) \in C B^{1}\left(R, R^{n}\right)$.

Then there exists a unique $U \in C B^{1}\left(I \times R, R^{n}\right)$ satisfying
(2.2) $\left\{\begin{aligned} U_{t}(t, x)= & D(x) U_{x}(t, x)+Q(x) U(t, x)+S(t, x), \\ & (t, x) \in I \times R \\ U(0, x)= & f(x), x \in R .\end{aligned}\right.$

Furthermore,
(2.3) $\|U(t)\| \leqq\|f\|\left\{1+t \cdot \operatorname{Exp}(n\|Q\|\}+\|S\| t^{2} \cdot \operatorname{Exp}(n\|Q\|)\right.$

$$
+\max _{\substack{x \in R \\ 1 \leqq i \leqq n}}\left|\int_{0}^{t} S_{i}\left(\sigma, x_{i}(\sigma ; t, x)\right) d \sigma\right|
$$

where $x_{i}(\sigma ; t, x)$ is the characteristic curve through $(t, x) \in I \times R$ generated by $-d_{i}$.

PROOF. In order to use temma 2.4 in this proof, the closed set $I \times R$ must be enlarged to an open set. Let $0<\varepsilon<1$ and denote the open interval $(-\varepsilon, 1+\varepsilon)$ by J. Let

$$
T(t, x)=\left\{\begin{array}{l}
2 S(0, x)-S(-t, x),-\varepsilon<t<0 \tag{2.4}\\
S(t, x), 0 \leqq t \leqq 1 \\
2 S(1, x)-S(2-t, x), 1<t<1+\varepsilon
\end{array}\right.
$$

Clearly $T \in C B^{1}\left(J \times R, R^{n}\right)$ and $\left.T\right|_{I \times R}=S$.
We first construct a solution $W(t, x) \in C B^{1}\left(J \times R, R^{n}\right)$ satisfying
(2.5) $\left\{\begin{array}{l}W_{t}(t, x)=D(x) W_{x}(t, x)+Q(x) W(t, x)+T(t, x),(t, x) \in J \times R \\ W(0, x)=f(x), x \in R .\end{array}\right.$
(2.5) may be rewritten as
(2.6) $\begin{cases}\frac{\partial W}{\partial t}(t, x)-d_{i}(t, x) \frac{\partial W}{\partial x} i & t, x)= \\ & {[Q(x) W(t, x)+T(t, x)]_{i},} \\ & (t, x) \in J \times R \\ W_{i}(0, x)=f_{i}(x), x \in R . & \end{cases}$
where $i=1, \cdots, n$. Since d_{i} is a function of x only, the characteristic curves $x_{i}(\sigma ; t, x),(\sigma, t, x) \in I \times I \times R$, are the restrictions to $I \times I \times R$ of the solutions (with the obvious notation) $x_{i}(\sigma ; t, x),(\sigma, t, x) \in J \times J \times R, o f$

$$
\left\{\begin{array}{l}
\frac{d x}{d \sigma}(\sigma ; t, x)=-d_{i}\left(x_{i}(\sigma ; t, x)\right),(\sigma, t, x) \in J \times J \times R \\
x_{i}(t ; t, x)=x
\end{array}\right.
$$

Temporarily fix $(t, x) \in J \times R$ and formally let

$$
W_{i}(\sigma)=W_{i}\left(\sigma, x_{i}(\sigma ; t, x)\right), \sigma \in J
$$

Then

$$
\begin{align*}
\frac{d W_{i}}{d \sigma}(\sigma)= & \frac{\partial W_{i}}{\partial t}\left(\sigma, x_{i}(\sigma ; t, x)\right)+\frac{\partial W_{i}}{\partial x}\left(\sigma, x_{i}(\sigma ; t, x)\right) \tag{2.7}\\
& \cdot \frac{d x_{i}}{d \sigma}(\sigma ; t, x) \\
= & {\left[Q\left(x_{i}(\sigma ; t, x)\right) W\left(\sigma, x_{i}(\sigma ; t, x)\right)+T\left(\sigma, x_{i}(\sigma ; t, x)\right)\right]_{i} }
\end{align*}
$$

and $W_{i}(0)=f_{i}\left(x_{j}(0 ; t, x)\right)$. Integrating (2.7) with respect to σ, we obtain
(2.8) $W_{i}(t, x)=f_{i}\left(x_{i}(0 ; t, x)\right)+\int_{0}^{t}\left[Q\left(x_{i}(\sigma ; t, x)\right) W\left(\sigma, x_{i}(\sigma ; t, x)\right)\right.$

$$
\left.+\mathrm{T}\left(\sigma, \mathrm{x}_{\mathrm{i}}(\sigma ; \mathrm{t}, \mathrm{x})\right)\right]_{\mathrm{i}} \mathrm{~d} \sigma
$$

Hence a solution $W \in C^{1}\left(J \times R, R^{n}\right)$ of (2.2) must be a fixed point of the integral transform $\mathcal{F}: C^{1}\left(J \times R, R^{n}\right) \rightarrow C^{1}\left(J \times R, R^{n}\right)$ defined by
(2.9) $\quad(\mathcal{F} V)_{i}(t, x)=f_{i}\left(x_{i}(0 ; t, x)\right)+\int_{0}^{t}[Q V+T]_{i}\left(\sigma, x_{i}(\sigma ; t, x)\right) d \sigma$.

Conversely, if $V \in C^{l}\left(J \times R, R^{n}\right)$ and $\mathcal{F} V=V$, then V satisfies (2.2). If $\|Q\|=0$, (2.9) immediately gives a solution in $C^{l}\left(J \times R, R^{n}\right)$ of (2.2),
$(2.10) W_{i}(t, x)=f_{i}\left(x_{i}(0 ; t, x)\right)+\int_{0}^{t} T_{i}\left(\sigma, x_{i}(\sigma ; t, x)\right) d r$.

For $\|Q\|>0$ define recursively $W_{i}^{0}(t, x)=f_{i}\left(x_{i}(0 ; t, x)\right)$ and $W^{l+1}=7 w^{l}$. For brevity, let $I(t)$ denote $[t, 0]$ for $t \leqslant 0$ and $[0, t]$ for $t \geqslant 0$. Next we show that

$$
\begin{equation*}
\left\|W^{l+1}-W\right\|(t) \leq \frac{n\|Q\||t|)^{l+1}}{(l+1)!n \| Q}[n\|Q\|\|f\|+\|T\|(t)], t \in J . \tag{2.11}
\end{equation*}
$$

For $\ell=0,(s, x) \in J \times R$ and $i=1, \cdots, n$,

$$
\left.\begin{array}{rl}
\left|w_{i}^{7}(s, x)-W_{i}^{0}(s, x)\right| & \leqq \mid \int_{0}^{s} n\|Q\|\|f\|+\|T\|(s) \\
& =|s|(n\|Q\|\|f\|+\|T\|(s)
\end{array}\right) .
$$

Therefore

$$
\begin{aligned}
\left\|W^{1}-W^{0}\right\|_{I(t)} & =\sup _{(s, x) \in I(t) \times R}\left|W_{i}^{1 \leqq i \leqq n}(s, x)-W_{i}^{0}(s, x)\right| \\
& \leqq|t|(n\|Q\|\|f\|+\|T\|(t)
\end{aligned}
$$

Assume (2.11) is true for l; then

$$
\begin{aligned}
& \left|w_{i}^{l+2}(t, x)-w_{i}^{l+1}(t, x)\right| \leqq\left|\int_{t}^{t} n\|Q\|\left\|w^{l+1}-w\right\| d \sigma\right| \\
& \leqq\left.\right|_{0} ^{t} n\|Q\| \frac{(n\|Q\||\sigma|)^{l+1}}{(l+1)!n Q} \\
& \text { - }[n\|Q\|\|f\|+\|T\|(\sigma)] d \sigma \\
& \leqq \frac{(n\|Q\||t|)^{\ell+2}}{(\ell+2)!n\|Q\|} \\
& \text { - }[n\|Q\|\|f\|+\|T\|(t)]
\end{aligned}
$$

and thus (2.11) is proved. Since $W^{\ell} \in\left(J \times R, R^{n}\right)$, (2.11) implies the existence of $W \in C\left(J \times R, R^{n}\right)$ such that
(2.12) $\quad \lim _{\rightarrow \infty}\left\|W^{\ell}-W\right\|_{J}=0$.

In fact, since $\mathcal{F}: C^{l}\left(J \times R, R^{n}\right) \rightarrow C^{1}\left(J \times R, R^{n}\right), W^{l+1}=7 W^{l}$ and $W^{0} \in C^{1}\left(J \times R, R^{n}\right)$, an easy induction argument shows that W_{X}^{l} exists and is continuous. Hence to show that W_{x} exists and is continuous, it sufficies to show that W_{x}^{ℓ} is Cauchy with respect to the $\left\|\left\|\|_{j}\right.\right.$ norm. Throughout the remainder of this proof L_{α} will denote some positive constant independent of w, W^{l}, t and $x . \operatorname{From}(2.11)$,
(2.13) $\left\|W^{\ell+1}-W\right\|_{I(t)} \leqq \frac{(L}{(l+1)!)^{\ell+1}}$

Since

$$
\begin{aligned}
&\left(W_{i}^{l+1}-W_{i}^{l}\right)_{x}(t, x)= \int_{0}^{t} \\
& {\left[Q^{\prime}\left(W^{l}-W^{l-1}\right)+Q\left(W^{l}-W^{l-1}\right)_{x}\right]_{i} } \\
&\left(\sigma, x_{i}(\sigma ; t, x)\right) \frac{\partial x}{\partial x} i(\sigma ; t, x) d \sigma
\end{aligned}
$$

Lemma 2.1 and (2.13) imply

$$
\left\|W_{x}^{l+1}-W_{x}^{l}\right\|(t)<\frac{\left(L_{2}|t|\right)^{l+1}}{(l+1)!}+L_{3}\left|\int_{0}^{t}\left\|W_{x}-W_{x}^{-1}\right\|_{I(\sigma)} d \sigma\right| .
$$

However,

$$
\left\|W_{x}^{1}-W_{x}^{0}\right\|(t)<L_{4}|t|
$$

and hence
(2.14) $\| W_{x}^{l+1}-W_{X_{I(t)}^{l}} \leqq \frac{\left(L_{5}|t|\right)^{\ell+1}}{l!}$

Using a standard theorem [21, Theorem 7.17], W_{x} exists, is continuous and $\lim _{\rightarrow \infty}\left\|W_{x}^{\ell}-W_{x}\right\|=0$. Thus (2.14) and Lemma 2.1 imply
(2.15) $\left\|W_{x}\right\|_{I(t)} \leqq\left.\left\|f^{\prime}\right\| e^{L}\right|^{t} \mid+L_{6}\left(e^{L_{6}|t|}-1\right) \leqq L_{7}, t \in J$.

The existence and continuity of W_{t} could be proved in a fashion analogous to that of W_{x}. However, using Lemma 2.4, a much shorter proof may be given. Clearly W is a fixed point of \mathcal{F}. Hence W_{i} is continuously differentiable along the characteristic curves generated by $-d_{i}$. Since no characteristic curve generated by $-d_{i}$ is ever parallel to the x-axis and W_{x} is continuous, Lemma 2.4 guarantees the existence and continuity of W_{t}. Summarizing, $W \in C^{1}\left(J \times R, R^{n}\right)$, $F W=W$ and $W(0, x)=f(x)$; therefore, W satisfies (2.5).

Because $\|W\|_{J}<\infty$ and $\left\|W_{X J}\right\|_{J}<\infty$,

$$
\left\|W_{t}\right\|_{J} \leqq\|D\|\left\|W_{x}\right\|_{J}+\|Q\|\|W\|_{J}+\|T\|_{J}<\infty
$$

and thus $W \in C B^{l}\left(J \times R, R^{n}\right)$. The proof of uniqueness is standard left to the reader. Let $U(t, x)$ be the restriction of $W(t, x)$ to $I \times R$. Clearly $U \in C B^{1}\left(I \times R, R^{n}\right)$ and satisfies (2.2). We next prove (2.3). Let $(t, x) \in I \times R$. If $\|Q\|>0$, then by (2.11),
(2.16) $\|U(t, x)\| \leqq\|f\|+\sum_{l=0}^{\infty}\left\|W^{\ell+1}(t, x)-W \quad(t, x)\right\|$

$$
\leqq\|f\| e^{n\|Q\| t}+\frac{\left(e^{n\|Q\| t}-1\right)}{n\|Q\|}\|S\|[0, t]
$$

Since

$$
U_{i}(t, x)=f_{i}\left(x_{i}(0 ; t, x)\right)+\int_{0}^{t}(Q U+S)_{i}\left(\sigma, s_{i}(\sigma ; t, x)\right) d \sigma
$$

(2.16) and Estimates 2.5 give
(2.17) $\left|U_{i}(t, x)\right| \leqq\|f\|\left\{1+t e^{n\|Q\|}+\|S\|[0, t]^{t^{2}} e^{n\|Q\|}\right.$

$$
+\left|\int_{0}^{t} S_{i}\left(\sigma, x_{i}(\sigma ; t, x)\right) d \sigma\right|
$$

Since $\|U(t)\|=\sup _{\substack{1 \leqq i \leqq n \\ x \in R}}\left|U_{i}(t, x)\right|$, (2.17) easily implies (2.3). If
$\|Q\|=0,(2.10)$ implies (2.3).

We now use Theorem 2.6 to prove a result which is needed in Chapter 3.
2.7 THEOREM. Assume the following:
(1) $A(x) \in C B^{2}\left(R, R^{n \times n}\right) ; B(x)$ and $h(x)$ are elements of $C B^{2}\left(R, R^{n \times 1}\right)$.
(2) There exists a nonsingular $P(x)$ such that $P(x)$ and $P^{-1}(x)$ are members of $C B^{2}\left(R, R^{n \times n}\right)$.
(3) $P(x) A(x) P^{-1}(x)=D(x)$ is diagonal.

Then there exists a unique $U \in C B^{2}\left(I \times R, R^{n}\right)$ satisfying

$$
\left\{\begin{array}{l}
U_{t}(t, x)=A(x) U_{x}(t, x)+B(x), \quad(t, x) \in I \times R . \tag{2.18}\\
U(0, x)=h(x), \quad x \in R .
\end{array}\right.
$$

PROOF. Friedrich [5, Theorem 5.3], improving the earlier work of Perron [19], has shown (2.18) has a unique solution $U \in C^{2}\left(I \times R, R^{n}\right)$. Hence we need only show that $D^{\alpha} U$ is bounded for $|a| \leqq 2$. Following Traves [24 ,Chapter 16], let $P^{-1}(x) V(t, x)=U(t, x)$; then
(2.19)

$$
\left\{\begin{aligned}
V_{t}(t, x)= & D(x) V_{x}(t, x)+\left[P A\left(P^{-1}\right)\right]^{\prime}(x) V(t, x)+[P B](x), \\
& (t, x) \in I \times R . \\
V(0, x)= & P(x) h(x), x \in R .
\end{aligned}\right.
$$

By Theorem 2.6, $V \in C B^{1}\left(I \times R, R^{n}\right)$ and hence $U \in C B^{1}\left(I \times R, R^{n}\right)$. If $W=U_{X}$, then
(2.20) $\left\{\begin{array}{l}W_{t}(t, x)=A(x) W_{x}(t, x)+A^{\prime}(x) W(t, x)+B^{\prime}(x) \text { on } I \times R . \\ W(0, x)=h^{\prime}(x), x \in R .\end{array}\right.$

Defining $P^{-1}(x) Z(t, x)=W(t, x)$ and $Q=P\left[A P^{-1}\right]^{\prime},(2.20)$ becomes

$$
\left\{\begin{aligned}
Z_{t}(t, x)= & D(x) Z_{x}(t, x)+Q(x) Z(t, x)+\left(P B^{\prime}\right)(x) \\
& (t, x) \in I \times R . \\
Z(0, x)= & P(x) h^{\prime}(x)
\end{aligned}\right.
$$

By Theorem 2.6, $Z \in C B^{1}\left(I \times R, R^{n}\right)$ and hence $U \in C B^{2}\left(I \times R, R^{n}\right)$.

A PROOF OF THEOREM 1.1

In this chapter Theorem 1.1 is proved. We begin with a lemma.

$$
\begin{gathered}
\text { 3.1 LEMMA. Fix } C \geqq 1, M \geqq 1 \text { and } k^{-1} \in Z^{+} \text {such that } \\
C e^{C}\left(M+k^{-1}\left(C e^{C}+1\right)\right)^{2} k^{3}<1 . \text { Let } \beta_{1}=M k^{3} \text { and } \\
\beta_{m+1}=C \beta_{m}^{2}+(1+C k) \beta_{m}+C k^{3} \text { for } m=1, \ldots, k^{-1}-1
\end{gathered}
$$

Then $\beta_{m} \leqq e^{C}\left(M+C e^{C}+1\right) k^{2}$ for $m=1, \cdots, k^{-1}$.
PROOF. Let $E=C e^{C}$. Recursively define
(3.1) $\quad a_{1}=M k^{3}$ and $a_{m+1}=E \alpha_{m}^{2}+a_{m}+E k^{3}, m=1, \ldots, k^{-1}-1$.

We will prove that
(3.2) $\quad a_{m} \leqq(M+m(E+1)) k^{3}, m=1, \cdots, k^{-1}$.
(3.2) is clearly true for $m=1$; suppose it is true for $m=1$, $\cdots, k^{-1}-1$. Then

$$
\begin{aligned}
a_{m+1} & =E a_{m}^{2}+a_{m}+E k^{3} \\
& \leqq E(M+m(E+1))^{2} k^{6}+(M+m(E+1)) k^{3}+E k^{3} \\
& \leqq k^{3}+(M+m(E+1)) k^{3}+E k^{3}=(M+(m+1)(E+1)) k^{3} .
\end{aligned}
$$

Hence (3.2) is proved; we next show that
(3.3) $\quad \beta_{m} \leqq(1+c k)^{m} \alpha_{m}, m=1, \cdots, k^{-1}$.

By construction (3.3) is true for $m=1$; assume it is true for $m=1, \ldots, k^{-1}-1$. Since $(1+C k)^{m}<e^{C}$ for $m=1, \ldots, k^{-1}$,

$$
\begin{aligned}
\beta_{m+1} & =E e^{-C} \beta_{m}^{2}+(1+C k) \beta_{m}+C k^{3} \\
& \leqq E(1+C k)^{-m}\left[(1+C k)^{m} a_{m}\right]^{2}+(1+C k)^{m+1} \alpha_{m}+E k^{3} \\
& \leqq(1+C k)^{m+1}{ }_{\sigma_{m+1}} .
\end{aligned}
$$

Thus (3.3) is proved; this implies, for $m=1, \cdots, k^{-1}$,

$$
\begin{aligned}
\beta_{m} & \leqq(1+C k)^{m}\left(M+m\left(C e^{C}+1\right)\right) k^{3} \\
& \leqq e^{C}\left(M+C e^{C}+1\right) k^{2} .
\end{aligned}
$$

3.2 REMARK. Theorem 2.7 guarantees that the algorithm described by (1.5) can be completed. Suppose $W^{m}(m k, x)$ is an element of $C B^{2}\left(R, R^{n}\right)$. Then $\tilde{A}^{m}(x), \tilde{P}^{m}(x),\left(\tilde{P}^{m}(x)\right)^{-1}$ and $\tilde{F}^{m}(x)$ are elements of $C B^{2}\left(R, R^{n}\right)$. Theorem 2.7 asserts the unique existence of $V(t, x) \in C B^{2}\left(I^{m, k} \times R, R^{n}\right)$ satisfying

$$
\left\{\begin{array}{l}
V_{t}(t, x)=\tilde{A}^{m}(x) V_{x}(t, x)+\tilde{F}^{m}(x),(t, x) \in I^{m, k} \times R \\
V(m k, x)=W^{m}(m k, x), x \in R .
\end{array}\right.
$$

Let $W^{m}(t, x)=V(t, x)$ on $I^{m, k} \times R$. Since $W^{m}((m+1) k, x)$ is an element of $C B^{2}\left(R, R^{n}\right)$, it is possible to begin the next step
of the algorithm with some $W^{m+1}((m+1) k, x) \in C B^{2}\left(R, R^{n}\right)$ satisfying

$$
\begin{aligned}
& \left\|\left[W^{m+1}((m+1) k)-W^{m}((m+1) k)\right]^{\prime}\right\| \leqq K k^{2} . \\
& \left\|W^{m+1}((m+1) k)-W^{m}((m+1) k)\right\| \leqq K k^{3} .
\end{aligned}
$$

3.3 NOTATION. In the proof of Theorem .1.1, $L \geqq 1$ and $L_{\alpha} \geqq 1$ will denote constants independent of k, h and W^{m}. They will not necessarily be the same constants during the proof.
3.4 PROOF OF THEOREM 1.1. For convenience temporarily abbreviate $T_{m}=T_{m, k, h}$ and $I^{m}=I^{m, k}$. If M is a function. with domain $I \times R \times R^{n}$, we will use the following abbreviations:

$$
\begin{aligned}
& \tilde{M}^{m}(x)=M\left(\hat{m} k, x,\left(T_{m} W^{m}(m k)\right)(x)\right) \\
& \bar{M}^{m}(x)=M\left(\hat{m} k, x,\left(T_{m} U(m k)\right)(x)\right)
\end{aligned}
$$

for $m=0, \ldots, k^{-1}-1$. With this notation we have $\left.\left(\tilde{P}^{m}\right)^{-1}=\widetilde{\left(P^{-1}\right.}\right)^{m}$ and $\left.\tilde{D}^{m}=\widetilde{\left(P A P^{-1}\right.}\right)^{m}=\tilde{P}^{m_{A}} \tilde{A}^{m}\left(\widetilde{P^{-1}}\right)^{m}$.

PART 1. The residual on $I^{m} \times R$ of $U(t, x)$ in (1.5) is defined to be

$$
R^{m}(t, x)=U_{t}(t, x)-\tilde{A}^{m}(x) U_{x}(t, x)-\tilde{F}^{m}(x), \quad(t, x) \in I^{m} \times R
$$

Hence
(3.4) $\quad R^{m}(t, x)=\left(A(t, x, U(t, x))-\tilde{A}^{m}(x)\right) U_{x}(t, x)$

$$
+F(t, x, U(t, x))-\tilde{F}^{m}(x) .
$$

Defining $Z^{m}=U-W^{m}$ on $I^{m} \times R$, we obtain the Cauchy problem:

$$
\left\{\begin{array}{l}
z_{t}^{m}(t, x)=\tilde{A}^{m}(x) z_{x}^{m}(t, x)+R^{m}(t, x),(t, x) \in I^{m} \times R \tag{3.5}\\
z^{m}(m k, x)=\left(u-W^{m}\right)(m k, x), \quad x \in R .
\end{array}\right.
$$

Before estimating $Z^{m}(t, x)$, we will estimate
(3.6) $\quad \epsilon_{m}=\left\|z^{m}(m k)\right\|, m=0, \cdots, k^{-1}$.

To do this we first diagonalize (3.5). Let
(3.7) $\quad V^{m}(t, x)=\tilde{p}^{m}(x) z^{m}(t, x),(t, x) \in I^{m} \times R$.

Then
(3.8)

$$
\left\{\begin{array}{l}
v_{t}^{m}(t, x)=\tilde{D}^{m}(x) v_{x}^{m}(t, x)+\tilde{Q}^{m}(x) v^{m}(t, x)+s^{m}(t, x), \\
v^{0}(0, x)=0, x \in R \\
(t, x) \in I^{m} \times R \\
\left\|\left(\tilde{p}^{m}\right)^{-1} v^{m}(m k)-\left(\tilde{p}^{m-1}\right)^{-1} v^{m-1}(m k)\right\| \leqq K k^{3}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \tilde{Q}^{m}(x)=\tilde{p}^{m}(x) \tilde{A}^{m}(x)\left[\left(\tilde{p}^{m}\right)^{-1}(x)\right]^{\prime} \text { and } \\
& S^{m}(t, x)=\tilde{p}^{m}(x) R^{m}(t, x) .
\end{aligned}
$$

For notational convenience below, let

$$
\bar{Q}^{m}(x)=\bar{p}^{-m}(x) \bar{A}^{-m}(x)\left[\left(\bar{p}^{-m}\right)^{-1}(x)\right]^{\prime} .
$$

PART 2. To bound ϵ_{m}, we first estimate $V^{m-1}(m k), m=1, \cdots$, k^{-1}. For convenience temporarily fix $m=0, \cdots, k^{-1}-1$ and let $x_{i}(\sigma ; t, x)$ be the characteristic through $(t, x) \in I^{m} \times R$ generated by $-\tilde{d}_{j}^{m}$, the $i \frac{\text { th }}{}$ diagonal element of $-\tilde{D}^{m}$. Hence

$$
\left\{\begin{array}{l}
\frac{d x}{d \sigma} i(\sigma ; t, x)=-\tilde{d}_{i}^{m}\left(x_{i}(\sigma ; t, x)\right), \sigma \in I^{m} \tag{3.9}\\
x_{i}(t ; t, x)=x .
\end{array}\right.
$$

With the obvious change in notation, Theorem 2.6 applied to (3.8) implies
(3.10) $\quad\left\|V^{m}((m+1) k)\right\| \leqq\left\|V^{m}(m k)\right\|\left\{1+k \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)\right\}$

$$
\begin{aligned}
& +\| S^{m^{m} \| k^{2} \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)} \\
& +\sup _{x \in R}^{I^{m}}\left|\int_{i=1} s_{i}^{m}\left(\sigma, x_{i}(\sigma ;(m+1) k, x)\right) d \sigma\right|
\end{aligned}
$$

Next, to bound $\left\|V^{m}((m+1) k)\right\|$, we must estimate

$$
\left|\int_{I^{m}} S_{i}^{m}\left(\sigma, x_{i}(\sigma ;(m+1) k, x)\right) d \sigma\right|,
$$

the subject of Parts 3, 4, and 5 of this proof.

Notation: For brevity let $A(t, x)=A(t, x, U(t, x))$, $F(t, x)=F(t, x, U(t, x)), P(t, x)=P(t, x, U(t, x))$ and $D(t, x)=D(t, x, U(t, x))$ where $U \in C B^{2}\left(I \times R, R^{n}\right)$ satisfies (1.1).

PART 3. Because

$$
\begin{aligned}
S^{m}(t, x)= & \tilde{P}^{m}(x)\left(A(t, x)-\tilde{A}^{m}(x)\right) U_{x}(t, x) \\
& +\tilde{P}^{m}(x)\left(F(t, x)-\tilde{F}^{m}(x)\right),
\end{aligned}
$$

estimates of $\left(A-\tilde{A}^{m}\right)(t, x)$ and $\left(F-\tilde{F}^{m}\right)(t, x)$ are found next. We begin by showing
(3.11) $H\left(T_{m} U(m k)-T_{m} W^{m}(m k)\right)(x) \| \leqq L \epsilon_{m}+L \epsilon_{m}^{2}+L k^{2}$
where L follows the convention established in Notation 3.3. By hypothesis, A and F are Lipschitz in the R^{n} variable; hence

$$
\begin{aligned}
&\left\|\left(T_{m} U(m k)-T_{m} W^{m}(m k)\right)(x)\right\| \\
& \leqq \| W^{m}(m k, x)+\frac{\lambda}{4} A\left(m k, x, W^{m}(m k, x)\right)\left(W^{m}(m k, x+h)-\right. \\
&\left.W^{m}(m k, x-h)\right)+\frac{k}{2} F\left(m k, x, W^{m}(m k, x)\right)-U(m k, x) \\
&-\frac{\lambda}{4} A(m k, x)(U(m k, x+h)-U(m k, x-h))-\frac{k}{2} F(m k, x) \| \\
&+K k^{2} . \\
& \leqq L_{i}\left\|^{m}(m k, x)-U(m k, x)\right\|+L_{2} \|(A(m k, x) \\
&\left.-A\left(m k, x, W^{m}(m k, x)\right)\right)(U(m k, x+h)-U(m k, x-h)) \| \\
&+L_{3} \| A\left(m k, x, W^{m}(m k, x)\right)\left[U(m k, x+h)-W^{m}(m k, x+h)\right. \\
&\left.+W^{m}(m k, x-h)-U(m k, x-h)\right] \|+K k^{2} \\
& \leqq L_{4} \epsilon_{m}+2 n \| A\left(m k, x, W^{m}(m k, x) \| \epsilon_{m}+K k^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqq L_{5} \epsilon_{m}+L_{6}\left\{\|A(m k, x)\|+\epsilon_{m}\right\} \epsilon_{m}+K k^{2} \\
& \leqq L \epsilon_{m}+L \epsilon_{m}^{2}+L k^{2}
\end{aligned}
$$

Therefore (3.11) is proved. Next, for $(t, x) \in I^{m} \times R$,
(3.12) $\left\|U(t, x)-\left(T_{m} U(m k)\right)(x)\right\|$

$$
\begin{aligned}
& \leqq\left\|U(\hat{m} k, x)-\left(T_{m} U(m k)\right)(x)\right\|+\|U(t, x)-U(\hat{m} k, x)\| \\
& \leqq L_{1} k^{2}+L_{2} k \leqq L k
\end{aligned}
$$

For reference below, suppose $M \in X(n, n \times q, 0), q=n$ or 1 . Let $M(t, x)=M(t, x, U(t, x))$. Then, using (3.11) and (3.12),
(3.13) $\left\|\bar{M}^{m}-\tilde{M}^{m}\right\| \leqq L \epsilon_{m}+L \epsilon_{m}^{2}+L k^{2}$
(3.74) $\quad\left\|M-\bar{M}^{m}\right\| \leqq L k$
I^{m}
(3.15) $\quad\left\|M-\tilde{M}^{m}\right\| \leqq L \epsilon_{m}+L \epsilon_{m}^{2}+L k$ I^{m}
(3.16) $\left\|\bar{M}^{m}\right\| \leqq L$.

$$
I^{m}
$$

PART 4. In addition to m, temporarily fix $1 \leqq i \leqq n$ and $x \in R$; denote $x_{i}(\sigma,(m+1) k, x)$ by $x(\sigma)$. If
(3.17) $J_{1}=\left|\int_{I}\left[\tilde{P}^{m}\left(A-\tilde{A}^{m}\right) U_{x}\right]_{i}(\sigma, x(\sigma)) d \sigma\right|$
(3.18) $J_{2}=\left|\int_{I^{m}}\left[\tilde{p}^{m}\left(F-\tilde{F}^{m}\right)\right]_{i}(\sigma, x(\sigma)) d \sigma\right|$
then
(3.19) $\left|\int S_{i}^{m}(\sigma, x(\sigma)) d \sigma\right| \leqq J_{1}+J_{2}$.

$$
I^{m}
$$

Recall that sup $\|P(\varphi)\|<\infty ;$ so $\|P\|<\infty$ where $P(t, x)=P(t, x, U(t, x))$, $\varphi \in I \times R \times R^{n}$
The estimates of Part 3 then imply
(3.20) $J_{2}=\iint\left[\left(\tilde{P}^{m}-P\right)\left(F-\tilde{F}^{m}\right)-P\left(\tilde{F}^{m}-\bar{F}^{m}\right)\right.$

$$
\begin{aligned}
& I^{m} \\
& \left.+P\left(F-F^{m}\right)\right]\left._{i}(\sigma, x(\sigma)) d \sigma\right|_{I^{m}} \\
\leqq & k\left\|\tilde{P}^{m}-P\right\| n\left\|F-\tilde{F}^{m}\right\|+k\|P\|\left\|\tilde{F}^{m}-\bar{F}^{m}\right\| n \\
& +\left|\int_{I^{m}}\left[P\left(F-\bar{F}^{m}\right)\right]_{i}(\sigma, x(\sigma)) d \sigma\right| \\
\leqq & L_{1} k\left(\epsilon_{m}^{m}+\epsilon_{m}^{2}+k\right)^{2}+L_{2} k\left(\epsilon_{m}+\epsilon_{m}^{2}+k^{2}\right) \\
& +\left|\int_{I^{m}}\left[P\left(F-\bar{F}^{m}\right)\right]_{i}(\sigma, x(\sigma)) d \sigma\right| \\
\leqq & L k\left(\epsilon_{m}+\epsilon_{m}^{4}\right)+L k^{3}+\left|\int_{I^{m}}^{m}\left[P\left(F-\bar{F}^{m}\right)\right]_{i}(\sigma, x(\sigma)) d \sigma\right| .
\end{aligned}
$$

Similarly,

$$
+n \cdot \max _{1 \leqq j \leqq n} U_{x}(\hat{m} k, x(\hat{m} k)) \|\left|\int_{I}\left[P\left(A-\bar{A}^{m}\right)\right]_{i j}(\sigma, x(\sigma)) d_{\sigma}\right|+L k^{3}
$$

We next estimate $P\left(A-\bar{A}^{m}\right)_{i j}$ and $P\left(F-\bar{F}^{m}\right)_{i}$ at $(\sigma, x(\sigma))$, the subject of Part 5.

PART 5. Throughout the remainder of this proof γ and γ_{α} will denote various intermediate values in remainder terms of a Taylor series. Like L and L_{α}, γ and γ_{α} will not necessarily be the same constants during this proof.

Furthermore, in this part, the $O\left(k^{r}\right)$ symbol will be reserved for those estimates not depending on W^{m} and hence not on z^{m} or V^{m}. Continuing with the conventions of Part 4 ,

$$
\begin{aligned}
|x(\sigma)-x(\hat{m} k)|= & \left|\frac{d x}{d \sigma}(\gamma)(\sigma-\hat{m} k)\right| \\
\leqq & \left|\bar{d}_{i}^{m}(\gamma, x(\gamma))(\sigma-\hat{m} k)\right| \\
& +\left|\left(\bar{d}_{i}^{m}-\tilde{d}_{i}^{m}\right)(\gamma, x(\gamma))(\sigma-\hat{m} k)\right|, \sigma \in I^{m} .
\end{aligned}
$$

Then using the estimates of Part 3 ,

$$
\begin{equation*}
|x(\sigma)-x(\hat{m} k)| \leqq L k\left(1+\epsilon_{m}^{2}\right), \quad \sigma \in I^{m} \tag{3.22}
\end{equation*}
$$

$$
\begin{equation*}
|x(\sigma)-x(\hat{m} k)|^{2} \leqq L k^{2}\left(1+\epsilon_{m}^{4}\right), \quad \sigma \in I^{m} \tag{3.23}
\end{equation*}
$$

For convenience we let

$$
H^{m}(x)=\left(T_{m} U(m k)\right)(x), \quad x \in R .
$$

Clearly
(3.24) $\left\|H^{m}-U(\hat{m} k)\right\| \leqq L k^{2}$.

Since $U \in C B^{2}\left(I \times R, R^{n}\right)$ and

$$
\begin{aligned}
U(\sigma, x(\sigma))= & U(\hat{m} k, x(\hat{m} k))+U_{t}\left(\gamma_{1}\right)(\sigma-\hat{m} k) \\
& +U_{x}\left(\gamma_{2}\right)(x(\sigma)-x(\hat{m} k)), \sigma \in I^{m}
\end{aligned}
$$

(3.22) and (3.23) imply

$$
\begin{equation*}
\|U(\sigma, x(\sigma))-U(\hat{m} k, x(\hat{m} k))\| \leqq L k\left(1+\epsilon_{m}^{2}\right) \tag{3.25}
\end{equation*}
$$

(3.26) $U(\sigma, x(\sigma))-U(\hat{m} k, x(\hat{m} k)) \|^{2} \leqq L k^{2}\left(1+\in \begin{array}{c}4 \\ m\end{array}\right)$
(3.22), (3.23), (3.25) and (3.26) in conjunction with

Taylor's theorem give
(3.27) $F(\sigma, x(\sigma))$

$$
=F(\hat{m} k, x(\hat{m} k))
$$

$$
+F_{t}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))(\sigma-\hat{m} k)
$$

$$
+F_{x}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))(x(\sigma)-x(\hat{m} k))
$$

$$
+\sum_{j=1}^{n} F_{U_{j}}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))
$$

$$
\cdot[U(\sigma, x(\sigma))-U(\hat{m} k, x(\hat{m} k))]_{j}+0\left(k^{2}\right)\left(1+\epsilon_{m}^{4}\right), \sigma \in I^{m}
$$

In a similar manner, expand $\bar{F}^{m}(x(\sigma))=F\left(\hat{m} k, x(\sigma), H^{m}(x(\sigma))\right)$ in a Taylor series about ($\hat{m} k, x(\hat{m} k), H^{m}(x(\hat{m} k))$) and then expand the coefficients of this series about ($\hat{m} k, x(\hat{m} k)$, $U(\hat{m} k, x(\hat{m} k))$. Then with the aid of (3.22), (3.23), (3.24) and $\left\|H^{m}(x(\sigma))-H^{m}(x(\hat{m} k))\right\|=0(k)\left(1+\epsilon_{m}^{2}\right)$, we have (3.28) $\quad \bar{F}^{m}(x(\sigma))$

$$
\begin{aligned}
= & F(\hat{m} k, x(\hat{m} k))+F_{x}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))(x(\sigma)-x(\hat{m} k)) \\
& +\sum_{j=1}^{n} F_{U}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k))) \\
& \cdot\left[H^{m}(x(\sigma))-U(\hat{m} k, x(\hat{m} k))\right]_{j}+0\left(k^{2}\right)\left(1+\epsilon_{m}^{4}\right), \sigma \in I^{m}
\end{aligned}
$$

Subtracting (3.28) from (3.27),

$$
\begin{align*}
&\left(F-\bar{F}^{m}\right)(\sigma, x(\sigma)) \tag{3.29}\\
&= F_{t}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))(\sigma-\hat{m} k) \\
&+\sum_{j=1}^{n} F_{U_{j}}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k))) \\
& \cdot\left[U(\sigma, x(\sigma))-H^{m}(x(\sigma))\right]_{j}+0\left(k^{2}\right)\left(1+\epsilon_{m}^{4}\right) .
\end{align*}
$$

Using
(3.30) $U(\sigma, x(\sigma))-H^{m}(x(\sigma))=U(\sigma, x(\sigma))-U(\hat{m} k, x(\sigma))$

$$
+0\left(k^{2}\right), \sigma \in I^{m}
$$

and consequently, with (3.22),
(3.3T) $U(\sigma, x(\sigma))-H^{m}(x(\sigma))$

$$
=U_{t}(\hat{m} k, x(\hat{m} k))(\sigma-\hat{m} k)+0\left(k^{2}\right)\left(1+\epsilon_{m}^{4}\right), \sigma \in I^{m}
$$

Combining (3.29) and (3.31),
(3.32) $\left(F-\bar{F}^{m}\right)(\sigma, x(\sigma))$

$$
\begin{aligned}
& =(\sigma-\hat{m} k)\left[F_{t}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))+\right. \\
& \left.\sum_{j=1}^{n} F_{U_{j}}(\hat{m} k, x(\hat{m} k), U(\hat{m} k, x(\hat{m} k)))\left(U_{t}(\hat{m} k, x(\hat{m} k))\right)_{j}\right] \\
& \quad+0\left(k^{2}\right)\left(1+\epsilon_{m}^{4}\right), \sigma \in I^{m}
\end{aligned}
$$

By the mean value theorem, $x(\sigma)-x(\hat{m k})=-\tilde{d}_{i}^{m}(\gamma)(\sigma-\hat{m} k)$;
Taylor's theorem then implies
(3.32) $P(\sigma, x(\sigma))=P(\hat{m} k, x(\hat{m} k))+P_{t}(\hat{m} k, x(\hat{m} k))(\sigma-\hat{m} k)$

$$
\begin{aligned}
& +P_{x}(\hat{m} k, x(\hat{m} k)) \tilde{d}_{i}^{m}(\gamma)(\sigma-\hat{m} k) \\
& +\frac{1}{2} p_{t t}\left(r_{1}\right)(\sigma-\hat{m} k)^{2}+P_{x t}\left(r_{2}\right) \tilde{d}_{i}^{m}(\gamma)(\sigma-\hat{m} k)^{2} \\
& +P_{x x}\left(r_{3}\right)(\sigma-\hat{m} k)^{2} \frac{1}{2}\left[\tilde{d}_{i}^{m}(\gamma)\right]^{2}, \sigma \in I^{m} .
\end{aligned}
$$

Integrating the product of (3.31) and (3.32) over I^{m} gives

$$
\begin{equation*}
\mid \int_{I^{m}}\left[P\left(F-\bar{F}^{m}\right)_{i}(\sigma, x(\sigma)) d \sigma \mid \leqq 0\left(k^{3}\right)\left(1+\epsilon_{m}^{4}\right)\left(1+\left\|\tilde{D}^{m}\right\|+k\left\|\tilde{D}^{m}\right\|^{2}\right) .\right. \tag{3.33}
\end{equation*}
$$

With the estimates of Part 3, $\left\|\tilde{D}^{m}\right\| \leqq\left\|\bar{D}^{-m}\right\|+\left\|\tilde{D}^{m}-\bar{D}^{m}\right\| \leqq L\left(1+\epsilon_{m}^{2}\right)$. Hence (3.34) becomes $\mid \int_{I}\left[P\left(F-\bar{F}^{m}\right)\right]_{i}\left(\sigma, x(\sigma) d \sigma \mid \leqq 0\left(k^{3}\right)\left(1+\epsilon_{m}^{8}\right)\right.$.
Then by (3.20), $J_{2} \leq L k\left(\epsilon_{m}+\epsilon_{m}^{8}\right)+L k^{3}$. In an fashion similiar to above, $\left\|U_{x}(\sigma, x(\sigma))-U_{x}(\hat{m} k, x(\hat{m k}))\right\| \leqslant L k\left(1+\epsilon_{m}^{2}\right), \sigma \in I^{m}$, and $\left|\int_{\mathrm{I}}\left[P\left(A-\bar{A}^{m}\right)\right]_{i}(\sigma, x(\sigma))\right| \leqq 0\left(k^{3}\right)\left(1+\epsilon_{m}^{8}\right)$. These estimates combined with (3.14) and (3.21) imply that $J_{1} \leq L k\left(\epsilon_{m}+\epsilon_{m}^{8}\right)+L k^{3}$. Thus, by (3.19),
(3.35) $\quad\left|\int_{I} S_{i}^{m}(\sigma, x(\sigma)) d \sigma\right| \equiv L k\left(\epsilon_{m}+\epsilon_{m}^{8}\right)+L k^{3}$.

PART 6. Combining (3.10) and (3.35)
(3.36) $\quad \| V^{m}\left((m+1) k\|\leqq\| V^{m}(m k) \|\left\{1+k \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right\}\right.\right.$

$$
\begin{aligned}
& +\left\|S^{m}\right\|_{m^{k}}{ }^{2} \cdot \operatorname{Exp}\left(n\left\|Q^{\sim}\right\|\right) \\
& +\operatorname{Lk}\left(\epsilon_{m}+\epsilon_{m}^{8}\right)+L k^{3} .
\end{aligned}
$$

Abbreviate $\delta_{m}=\left\|V^{m-1}(m k)\right\|$. For convenience let $a V b=m a x\{a, b\}$. Define $\delta_{-1}=0$ and let $\rho_{m}=\delta_{m-1} V \delta_{m}, m=0, \cdots, k^{-1}$. By (3.6), (3.7) and (3.8),
(3.37) $\quad \epsilon_{m}=\left\|Z^{m}(m k)\right\| \leqq \operatorname{nsup}_{\varphi \in I \times R \times R^{n}}\left\|^{p^{-1}}(\varphi)\right\|\left\|V^{m-1}(m k)\right\|+K k^{3}$

$$
\leqq L_{1} \delta_{m}+K k^{3} \leqq L_{\rho_{\cdot m+j}}+L k^{3}, j=0,1 .
$$

Using (3.37) and the estimates of Part 3,
(3.38) $\left\|\tilde{p}^{m}\left(\tilde{p}^{m-1}\right)^{-1}\right\|$

$$
\begin{aligned}
\leqq & \left\|\tilde{p}^{m}\left(\left(\tilde{p}^{m-1}\right)^{-1}-\left(\bar{p}^{m-1}\right)^{-1}\right)\right\|+\left\|\left(\tilde{p}^{m}-\bar{p}^{m}\right)\left(\bar{p}^{m-1}\right)^{-1}\right\| \\
& +\left\|p^{-m}\left(\bar{p}^{-m-1}\right)^{-1}\right\| \\
\leqq & \left(\left\|\bar{p}^{-m}\right\|+\left\|\bar{p}^{m}-\tilde{p}^{m}\right\|\right)\left\|\left(\tilde{p}^{m-1}\right)^{-1}-\left(\bar{p}^{-m-1}\right)^{-1}\right\| n \\
& +n\left\|\left(\bar{p}^{m-1}\right)^{-1}\right\|\left\|\tilde{p}^{m}-\bar{p}^{m}\right\|+1+L_{1} k \\
\leqq & L_{2}\left(1+\epsilon_{m}+\epsilon_{m}^{2}+k^{2}\right)\left(\epsilon_{m-1}+\epsilon_{m-1}^{2}+k^{2}\right)+L_{2}\left(\epsilon_{m}+\epsilon_{m}^{2}+k^{2}\right)+1+L_{2}^{k} \\
\leqq & L\left\{\rho_{m}+\rho_{m}^{4}\right\}+1+L k .
\end{aligned}
$$

By (3.8) and (3.38)
(3.39) $\left\|\dot{V}^{m}(m k)\right\| \leqq\left\|\left(\tilde{p}^{m}\right)\left[\left(\tilde{p}^{m}\right)^{-1} V^{m}(m k)-\left(\tilde{p}^{m-1}\right)^{-1} V^{m-1}(m k)\right]\right\|$

$$
\begin{aligned}
& +\left\|\tilde{p}^{m}\left(\tilde{p}^{m-1}\right)^{-1} v^{m-1}(m k)\right\| \\
\leqq & n\left\|\tilde{P}^{m}\right\| K k^{3}+\left[L_{1}\left\{\rho_{m}+\rho_{m}^{4}\right\}+1+L \eta^{k}\right] \varepsilon_{m} \\
\leqq & \delta_{m}\left\{L \rho_{m}+L \rho_{m}^{4}+1+L k\right\}+L k^{3} .
\end{aligned}
$$

Using (3.15) and (3.37)
(3.40) $\left\|S^{m}\right\|_{I} \leqq\left\|\tilde{P}^{m}\right\|\left[\left\|A-\tilde{A}^{m}\right\|_{I}\left\|_{U_{1}}\right\|_{m}+\left\|F-\tilde{F}^{m}\right\|\right]_{n}{ }^{2}$

$$
\leqq L \rho_{m}+L \rho_{m}^{2}+L k
$$

Substituting (3.37), (3.39) and (3.4) into (3.36) gives

$$
\begin{aligned}
\delta_{m+1} \leqq & {\left[\delta_{m}\left(L \rho_{m}+L \rho_{m}^{4}+1+L k\right)+L k^{3}\right]\left[1+k \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)\right] } \\
& +L k^{2}\left(\rho_{m}+\rho_{m}^{2}+k\right) \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)+L k\left(\rho_{m}+\rho_{m}^{8}\right)+L k^{3}
\end{aligned}
$$

and hence
(3.41) $\rho_{m+1} \leqq \rho_{m}\left[L \rho_{m}+L \rho_{m}^{4}+1+L k\right]\left[1+L k \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right]\right.$

$$
\begin{aligned}
& +L k^{2}\left(\rho_{m}+\rho_{m}^{2}\right) \cdot \operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)+\operatorname{Lk}\left(\rho_{m}+\rho_{m}^{8}\right) \\
& +L k^{3}\left(1+\operatorname{Exp}\left(n\left\|\tilde{Q}^{m}\right\|\right)\right) .
\end{aligned}
$$

To complete the estimate of ρ_{m+1}, we must estimate $n \| \tilde{Q}_{\|}^{\|}$, the subject of Part 7 .

PART 7. In this part we derive estimates needed below and estimate $\left\|\tilde{Q}^{m}\right\|$ Let
(3.42) $T^{m}(t, x)=\left(A-A^{m}\right)(t, x) U_{x}(t, x)+\left(F-\bar{F}^{m}\right)(t, x)$,

$$
(t, x) \in I^{m} \times R .
$$

Clearly
(3.43) $\left\|T^{m}\right\|_{I^{m}} \leqq L k$.
(3.44) $\left\|T_{x^{m}}^{m}\right\|^{m}$.

A simple computation shows that
(3.45) $\left(U-W^{m}\right)_{t}(t, x)$

$$
\begin{aligned}
= & \tilde{A}^{m}(x)\left(U-W^{m}\right)_{x}(t, x)+\left(\bar{A}^{m}-\tilde{A}^{m}\right)(t, x) U_{x}(t, x) \\
& +\left(\bar{F}^{m}-\tilde{F}^{m}\right)(t, x)+T^{m}(t, x),(t, x) \in I^{m} \times R
\end{aligned}
$$

Let
(3.46) $\Psi^{m}=\left(U-W^{m}\right)_{x}$ on $I^{m} \times R$.
(3.47) $Y^{m}(t, x)=\left(\bar{A}^{m}-\tilde{A}^{m}\right)(x) U_{x}(t, x)+\left(\bar{A}^{m}-\tilde{A}^{m}\right)(x) U_{x x}(t, x)$

$$
+\left(\bar{F}^{m}-\tilde{F}^{m}\right)^{\prime}(x)+T_{x}^{m}(t, x),(t, x) \in I^{m} \times R
$$

$(3.48)\left\{\begin{aligned} \Psi_{t}^{m}(t, x)= & \tilde{A}^{m}(x) \Psi_{x}^{m}(t, x)+\left(\tilde{A}^{m}\right)^{\prime}(x) \Psi^{m}(t, x)+Y^{m}(t, x), \\ & (t, x) \in I^{m} \times R . \\ \Psi^{m}(m k, x)= & \left(U-W^{m}\right)_{X}(m k, x), \quad x \in R .\end{aligned}\right.$
If
(3.49) $\left(\tilde{P}^{m}\right)^{-1} \chi^{m}=\Psi^{m}$ on $I^{m} \times R$,
then
$\left(3.50\left\{\begin{aligned} x_{t}^{m}(t, x)= & \tilde{v}^{m}(x) x_{x}^{m}(t, x)+\tilde{p}^{m}(x)\left[{\left.\left.\widetilde{\left(A P^{-1}\right.}\right)^{m}\right]^{\cdot}(x) x^{m}(t, x)}+\tilde{p}^{m}(x) Y^{m}(t, x),(t, x) \in I^{m} \times R .\right. \\ x^{m}(m k, x)= & \tilde{p}^{m}(x)\left(U-W^{m}\right)_{x}(m k, x), \quad x \in R .\end{aligned}\right.\right.$

By (2.3)
(3.51) $\left\|x^{m}((m+1) k)\right\|$

$$
\begin{aligned}
\leqq & \left\|x^{m}(m k)\right\|\left\{1+k \cdot \operatorname{Exp}\left(n \| \tilde{P}^{m}\left(\widetilde{\left(A P^{-1}\right.}\right)^{m}\right)^{\prime} \|\right\} \\
& +\left\|\tilde{P}^{m} Y^{m}\right\| k^{2} \cdot \operatorname{Exp}\left(n \| \tilde{P}^{m}\left(\widetilde{\left(A P^{-1}\right.}\right)^{m}\right)^{\prime} \| \\
& +\sup _{\substack{x \in R \\
l \leqq i \leqq n}}\left|\int_{I}\left(\tilde{p}^{m} \gamma^{m}\right)_{i}\left(\sigma, x_{i}(\sigma ;(m+1) k, x)\right) d \sigma\right|
\end{aligned}
$$

Suppose $M \in C B^{2}\left(R, R^{n}\right)$. Using hypothesis (1.3),
(3.52)

$$
\begin{aligned}
\left(T_{m} M\right)^{\prime}(x)= & M^{\prime}(x)+\frac{\lambda}{4} A_{x}(m k, x, M(x))(M(x+h)-M(x-h)) \\
& +\frac{\lambda}{4} \sum_{j=1}^{n} A_{U_{j}}(m k, x, M(x)) M_{j}^{\prime}(x)(M(x+h)-M(x-h)) \\
& +\frac{\lambda}{4} A(m k, x, M(x))\left(M^{\prime}(x+h)-M^{\prime}(x-h)\right) \\
& +\frac{k}{2} F_{x}(m k, x, M(x))+\frac{k}{2} \sum_{j=1}^{n} F_{U_{j}}(m k, x, M(x)) \\
& \cdot M_{j}^{\prime}(x)+O(k)
\end{aligned}
$$

(3.52), (3.46), repeated use of the triangle inequality and (3.37) give
(3.53) $\left\|\left[T_{m} W^{m}(m k)-T_{m} U(m k)\right]^{\prime}\right\|$

$$
\begin{aligned}
\leqq & L_{1}\left\|U(m k)-W^{m}(m k)\right\|+L_{1}\left\|\Psi^{m}(m k)\right\|+L_{1}\left\|U(m k)-W^{m}(m k)\right\|^{2} \\
& +L_{1}\left\|U(m k)-W^{m}(m k)\right\| \cdot\left\|\Psi^{m}(m k)\right\|+L_{1}\left\|U(m k)-W^{m}(m k)\right\|^{2} \\
& \cdot\left\|\Psi^{m}(m k)\right\|+L_{1} k \\
\leqq & L\left(\rho_{m}+\rho_{m}^{2}+k\right)+L\left(1+\rho_{m}^{2}\right)\left\|\Psi^{m}(m k)\right\| .
\end{aligned}
$$

Next suppose $M \in X(n, n \times q, 2), q=1$ or n. Again using the triangle inequality, (3.11), (3.37) and (3.53) imply
(3.54) $\left\|\left(\tilde{M}^{m}\right)^{\prime} \quad-\left(\bar{M}^{m}\right)^{\prime}\right\|$

$$
\begin{aligned}
\leqq & \| M_{x}\left(m k, x,\left(T_{m} W^{m}(m k)(x)\right)-M_{x}\left(m k, x,\left(T_{m} U(m k)\right)(x)\right) \|\right. \\
& +\sum_{j=1}^{n} \| M_{U_{j}}\left(m k, x,\left(T_{m} W^{m}(m k)\right)(x)\right) \cdot\left(T_{m} W^{m}(m k)\right)_{j}^{\prime}(x) \\
& -M_{U_{j}}\left(m k, x,\left(T_{m} U(m k)\right)(x)\right) \cdot\left(T_{m} U(m k)\right)_{j}^{\prime}(x) \|+L_{1} k \\
\leqq & L{ }_{2}\left\|T_{m} W^{m}(m k)-T_{m} U(m k)\right\|+L_{2}\left\{1+\left\|T_{m} W^{m}(m k)-T_{m} U(m k)\right\|\right\} \\
& \cdot\left\|\left[T_{m} W^{m}(m k)-T_{m} U(m k)\right]^{\prime}\right\|+L_{2} k . \\
\leqq & L\left(\rho_{m}+\rho_{m}^{4}+k\right)+L\left(1+\rho_{m}^{4}\right)\left\|\Psi \Psi^{m}(m k)\right\| .
\end{aligned}
$$

Since $\left\|\left(\bar{M}^{m}\right)^{\prime}\right\|<\infty,(3.54)$ implies
(3.55)

$$
\begin{aligned}
\left\|\left(\tilde{M}^{m}\right)^{\prime}\right\| & \leqq L_{1}\left(\rho_{m}+\rho_{m}^{4}+k\right)+L_{1}\left(1+\rho_{m}^{4}\right)\left\|\Psi^{m}(m k)\right\|+\left\|\left(\bar{M}^{m}\right)^{\prime}\right\| \\
& \leqq L\left(1+\rho_{m}^{4}\right)+L\left(1+\rho_{m}^{4}\right)\left\|\Psi^{m}(m k)\right\| \\
& \leqq L\left(1+\rho_{m}^{4}\right)\left(1+\left\|\Psi^{m}(m k)\right\|\right) .
\end{aligned}
$$

For convenience let
(3.56) $\quad \xi_{m}=\left\|x^{m}(m k)\right\|$

Then by (3.49),
(3.57) $\left\|\Psi^{m}(m k)\right\| \leqq\left\|\left(\tilde{p}^{m}\right)^{-1}\right\| \xi_{m} \leqq L \xi_{m}$.

Substituting (3.57) into (3.55) and (3.54),
(3.58) $\cdot n\left\|\tilde{p}^{m}\left(\widetilde{\left({A P^{-1}}^{-1}\right)^{\prime}}\right)^{\prime}\right\| \leqq L\left(1+\rho_{m}^{4}\right)\left(1+\xi_{m}\right)$.
(3.59). $\left\|\left(\bar{A}^{-m}-\tilde{A}^{m}\right)^{\prime} \cdot\right\| \leqq L\left(\rho_{m}+\rho_{m}^{4}+k\right)+L\left(1+\rho_{m}^{4}\right) \xi_{m}$.
(3.60) $\left\|\left(\bar{F}^{m}-\tilde{F}^{m}\right)^{\prime}\right\| \leqq L\left(\rho_{m}+\rho_{m}^{4}+k\right)+L\left(1+\rho_{m}^{4}\right) \xi_{m}$.

Since (3.13) and (3.37) imply
(3.60) $\left\|\bar{A}^{-m}-\tilde{A}^{m}\right\| \leqq L\left(\rho_{m}+\rho_{m}^{2}+k^{2}\right)$,
(3.44), (3.59) and (3.60) give
(3.61) $\left\|Y^{m}\right\|_{I} \leqq L\left(\rho_{m}+\rho_{m}^{4}+k\right)+L\left(1+\rho_{m}^{4}\right) \xi_{m}$.

By hypothesis (1.5),

$$
\left\|\left(\tilde{p}^{m+1}\right)^{-1} \chi^{m+1}((m+1) k)-\left(\tilde{p}^{m}\right)^{-1} \chi^{m}((m+1) k)\right\| \leqq K k^{2} .
$$

Hence using (3.38), (3.51), (3.56), (3.58) and (3.61),
(3.62) $\quad \xi_{m+1}=\left\|x^{m+1}((m+1) k)\right\|$

$$
\leqq\left\|\left(\tilde{p}^{m+1}\right)\left[\left(\tilde{p}^{m+1}\right)^{-1} \chi^{m+1}((m+1) k)-\left(\tilde{p}^{m}\right)^{-1} \chi^{m}((m+1) k)\right]\right\|
$$

$$
+\left\|\left(\tilde{p}^{m+1}\right)\left(\tilde{p}^{m}\right)^{-1} \chi^{m}((m+1) k)\right\|
$$

$$
\leqq L_{1} k^{2}+\left[L_{p}\left(\rho_{m+1}+\rho_{m+1}^{4}\right)+1+L k\right]\left\|x^{m}((m+1) k)\right\|
$$

$$
\leqq\left[L_{2}\left(\rho_{m+1}+\rho_{m+1}^{4}+k\right)+1\right]\left\|x^{m}((m+1) k)\right\|+L_{2} k^{2}
$$

$$
\begin{aligned}
\leqq & {\left[L_{3}\left(\rho_{m+1}+\rho_{m+1}^{4}+k\right)+7\right]\left\{\xi_{m}\left[1+k \cdot \operatorname{Exp}\left(L_{3}\left(1+\rho_{m}^{4}\right)\left(1+\xi_{m}\right)\right)\right]\right.} \\
& +L_{3}\left[\left(\rho_{m}+\rho_{m}^{4}+k\right)+\left(1+\rho_{m}^{4}\right) \xi_{m}\right] k^{2} \cdot \operatorname{Exp}\left(L_{3}\left(1+\rho_{m}^{4}\right)\left(1+\xi_{m}\right)\right) \\
& \left.+L_{3} k\left[\rho_{m}+\rho_{m}^{4}+k+\left(1+\rho_{m}^{4}\right) \xi_{m}\right]\right\}+L_{3} k^{2}
\end{aligned}
$$

CLAIM 1. There exists a $\Gamma \geqq i$ independent of k and h such that if $\rho_{r} \leqq k$ for $r=0, \cdots, N \leqq k^{-1}$ and $\Gamma e^{\Gamma} k<1$, then (3.63) $\quad \xi_{r} \leqq \Gamma k^{2} \sum_{j=0}^{r-1}(1+\Gamma k)^{j} \leqq \Gamma k e^{\Gamma}<1, \quad r=0, \cdots, N \leqq k^{-1}$.

PROOF OF CLAIM 1. Let $\Gamma=23 L_{3}^{2} \cdot \operatorname{Exp}\left(4 L_{3}\right)$ where L_{3} is the positive constant in (3.62). Since $\xi_{0}=0,(3.63)$ is true for $r=0$. Suppose (3.63) is true for $0 \leqq r-1<N$. Because $\xi_{r-1}<1$, $\rho_{r}<1$ and $\rho_{r-1}<1,(3.62)$ implies

$$
\begin{aligned}
\xi_{r} \leqq & \left(1+3 L_{3} k\right)\left\{\left(1+k \cdot \operatorname{Exp}\left(4 L_{3}\right)\right) \xi_{r-1}\right. \\
& \left.+L_{3}\left(3 k+2 \xi_{r-1}\right) k^{2} \cdot \operatorname{Exp}\left(4 L_{3}\right)+L_{3} k\left(3 k+2 \xi_{r-1}\right)\right\}+L_{3} k^{2} \\
\leqq & (1+\Gamma k) \xi_{r-1}+\Gamma k^{2} \\
\leqq & (1+\Gamma k) \Gamma k^{2} \sum_{j=0}^{r-2}(1+\Gamma k)^{j}+\Gamma k^{2} \\
= & \Gamma k^{2} \sum_{j=0}^{r-1}(1+\Gamma k)^{j} \leqq \Gamma k^{2} k^{-1}(1+\Gamma k)^{-1} \leqq \Gamma k e^{\Gamma}<1 .
\end{aligned}
$$

Hence (3.63) is proved.

We next estimate $n\left\|\tilde{Q}^{\sim}\right\|$. Combining (3.13), (3.16), (3.37), (3.55) and (3.57),
(3.64) $n\left\|\tilde{Q}^{m}\right\|=n\left\|\tilde{P}^{m} \tilde{A}^{m}\left[\left(\tilde{p}^{m}\right)^{-1}\right]^{-}\right\|$

$$
\begin{aligned}
& \leqq L_{1}\left\|\tilde{A}^{m^{\prime}} \cdot\right\|\left[\left(\tilde{p}^{m}\right)^{-1}\right]^{-} \cdot \| \\
& \leqq L_{2}\left(1+\epsilon_{m}+\epsilon_{m}^{2}+k^{2}\right)\left\|\left[\left(\tilde{p}^{2}\right)^{-1}\right]^{-}\right\| \\
& \leqq L_{3}\left(1+\rho_{m}^{2}\right)\left[\left(1+\rho_{m}^{4}\right)\left(1+\xi_{m}\right)\right] \\
& \leqq L\left(1+\rho_{m}^{6}\right)\left(1+\xi_{m}\right) .
\end{aligned}
$$

Substituting (3.64) into (3.41) gives

$$
\begin{aligned}
(3.65) \rho_{m+1} \leqq & \rho_{m}\left[L \rho_{m}+L \rho_{m}^{4}+1+L k\right]\left[1+L k \cdot \operatorname{Exp}\left(L\left(1+\rho_{m}^{6}\right)\left(1+\xi_{m}\right)\right]\right. \\
& +L k^{2}\left(\rho_{m}+\rho_{m}^{2}\right) \cdot \operatorname{Exp}\left(L\left(1+\rho_{m}^{6}\right)\left(1+\xi_{m}\right)\right) \\
& +L k\left(\rho_{m}+\rho_{m}^{8}\right)+L k^{3}\left[1+\operatorname{Exp}\left(L\left(1+\rho_{m}^{6}\right)\left(1+\xi_{m}\right)\right)\right] .
\end{aligned}
$$

PART 8. We begin with the following claim:

CLAIM 2. There exists $C>1$ independent of k and h such that if $\rho_{m}<1$ and $\xi_{m}<1$, then
$(3.66) \rho_{m+1} \leqq C \rho_{m}^{2}+(1+C k) \rho_{m}+C k^{3}$.
PROOF OF CLAIM 2. Let $C=7 L^{2} \cdot \operatorname{Exp}(4 L)$ where L is the positive constant in (3.65).

Since $\rho_{m}<1$ and $\xi_{m}<1$, (3.65) implies

$$
\begin{aligned}
\rho_{m+1} \leqq & \rho_{m}\left[L \rho_{m}+L \rho_{m}^{4}+1+L k\right][1+L k \cdot \operatorname{Exp}(4 L)] \\
& +L k^{2}\left(\rho_{m}+\rho_{m}^{2}\right) \cdot \operatorname{Exp}(4 L)+L k\left(\rho_{m}+\rho_{m}^{8}\right)+L k^{3}(1+\operatorname{Exp}(4 L)) \\
\leqq & C \rho_{m}^{2}+(1+C k) \rho_{m}+C k^{3} .
\end{aligned}
$$

Hence Claim 2 is proved.

Since
(3.67) $\quad \rho_{0}=0=\xi_{0}$
(3.66) implies
(3.68) $\rho_{1} \leqq C k^{3}$.

Throughout the remainder of this proof, we assume k satisfies
$(3.69)\left\{\begin{array}{l}C e^{C}\left(C+k^{-1}\left(C e^{C}+1\right)\right)^{2} k^{3}<1 \\ e^{C}\left(C+C e^{C}+1\right) k^{2}<k \\ \Gamma k e^{\Gamma}<1\end{array}\right.$
where Γ and C are the constants from Claim 1 and Claim 2 respectively. Let $\beta_{1}=C k^{3}$ and $\beta_{m+1}=C \beta_{m}^{2}+(1+C k) \beta_{m}+C k^{3}$, $m=1, \cdots, k^{-1}-1$. We next prove that
(3.70) $\quad \rho_{m} \leqq \beta_{m}, \quad m=1, \cdots, k^{-1}$.
(3.68) guarantees that (3.70) is true for $m=1$.

Suppose $\rho_{r} \leqq \beta_{r}$ for $1 \leqq r \leqq m<k^{-1}$. By (3.67), Lemma 3.1 and (3.69), $\rho_{r}<k$ for $0 \leqq r \leqq m$. Hence, by Claim $1, \xi_{r}<1$ for $0 \leqq r \leqq m$. Using Claim 2 ,

$$
\begin{aligned}
\rho_{m+1} & \leqq C \rho_{m}^{2}+(1+C k) \rho_{m}+C k^{3} \\
& \leqq C \beta_{m}^{2}+(1+C k) \beta_{m}+C k^{3} \leqq \beta_{m+1}
\end{aligned}
$$

(3.70) is therefore proved. (3.67), (3.69), Lemma 3.1 and (3.70) imply
(3.71) $\rho_{m} \leqq e^{C}\left(C+C e^{C}+1\right) k^{2}<k, m=0, \cdots, k^{-1}$
and hence by Claim 1 ,
(3.72) $\xi_{m} \leqq \Gamma \mathrm{e}^{\Gamma} \mathrm{k}<1, \mathrm{~m}=0, \cdots, \mathrm{k}^{-1}$.

Substituting (3.71) into (3.39) gives

$$
\left\|V^{m}(m k)\right\| \leqq L k^{2}
$$

(3.40) and (3.71) imply

$$
\| S_{\|_{\mathrm{I}}^{m}} \leqq L k
$$

while (3.64) with (3.71) and (3.72) implies

$$
n\left\|\tilde{q}^{\sim}\right\| \leqq L
$$

Hence Theorem 2.6 applied to (3.8) gives

$$
\left\|V_{I}^{m}\right\|_{m} \leqq L k^{2}, \quad m=0, \cdots, k^{-1}-1
$$

and so by (3.7)
(3.73) $\quad\left\|U-W^{m}\right\|_{I} m \leqq k^{2}, \quad m=0, \cdots, k^{-1}-1$.

By substituting (3.71) and (3.72) into (3.58) and (3.61),

$$
\begin{aligned}
& n\left\|\tilde{P}^{m}\left(\left(A P^{-1}\right)^{m}\right)^{\prime}\right\| \leqq L \\
& \left\|\tilde{P}^{m} y^{m}\right\|_{I^{m}} \leqq L k
\end{aligned}
$$

Then Theorem 2.6 applied to (3.50) gives

$$
\left\|x^{m}\right\|_{\mathrm{I}} \leqq L k
$$

and hence by (3.46) and (3.49),
(3.74) $\left\|\left(U-W^{m}\right)_{x^{m}}^{\|}\right\|^{m}$.

Since $\left\|\tilde{A}^{\tilde{m}}\right\|<L,\left\|\bar{A}^{-m}-\tilde{A}^{\tilde{m}}\right\| \leqq L k$ and $\left\|\bar{F}^{-m}-\tilde{F}^{m}\right\| \leqq L k$, (3.43), (3.45)
and (3.74) imply $\left\|\left(U-W^{m}\right)_{I_{m}}\right\|_{I} \leqq L$.

CHAPTER IV

OPEN QUESTIONS

In this chapter we enumerate briefly some open questions arising from this study.

QUESTION 1. Construct a second order numerical method by which the solutions W^{m} of (1.5) may be approximated so as to satisfy the conditions in (1.4). The numerical approximations of W^{m}, by virtue of Theorem 1.1, would then approximate the solution U of (1.1).

QUESTION 2. Construct a sequence of linear initialboundary value analogues of (1.2) whose solutions W^{m} approximate the solution U of a quasilinear initial-boundary value analogue of (1.1) in a fashion similiar to (1.6), (1.7) and (1.8). Then construct a numerical scheme to approximate W^{m} and thereby approximate U. This particular question was the beginning motivation of this thesis. The original proposal was to construct the appropriate approximations W^{m} and then approximate W^{m} by some scheme similiar to that of Thomée [23].

QUESTION 3. Let S be a measurable subset of R and $L^{p}\left(S \times R, R^{n \times m}\right)=\left\{M: S \times R \rightarrow R^{n \times m} \mid\|M\|_{p, S}^{p}=\right.$

$$
\begin{aligned}
& \left.\max _{\substack{1 \leqq i \leqq n \\
1 \leqq j \leqq m}} \int_{S \times R}\left|M_{i j}(t, x)\right|^{p} d m<\infty\right\} \\
& B^{p}(r, n \times m)=\left\{M \in L^{p}\left(I \times R, R^{n \times m}\right) \mid\|M\| \underset{p, I}{ } \leq \gamma\right\}^{\prime} .
\end{aligned}
$$

Suppose that, in addition to the hypothesis of Theorem 1.1, there exists $\rho:[0, \infty) \rightarrow[0, \infty)$ such that

$$
D^{a} M\left(I \times R \times B^{p}(\gamma, n \times m)\right) \subset B^{p}(\gamma, n \times m)
$$

for $|a| \leftrightharpoons 2$ and $M=A, P, P^{-1}, D$ and $F(w i t h$ the appropriate choices of m). Assume also that for $|a| \leqq 2$,
$D^{\alpha} f \in L^{p}\left(R, R^{n}\right)$
$D^{\alpha} U \in L^{p}\left(I \times R, R^{n}\right)$.

Under what conditions will $W^{m} \in L^{P}\left(I^{m} \times R, R^{n}\right)$; furthermore, when and at what rate will $\left\|U-W^{m}\right\|_{p, I} m, k$ converge to zero as $\mathrm{k} \rightarrow \infty$?

QUESTION 4. Suppose the existence of the solution U of (1.1) is removed from the hypothesis of Theorem 1.1. As demonstrated in Remark 3.2, the solutions W^{m} of (1.5) still exist. Under what conditions will there exist a function $V: I \times R \rightarrow R^{n}$ such that $\left\|V-W_{I}^{m}\right\|_{m}$ converges to zero as $k \rightarrow \infty$? If such a function V exists, what smoothness properties will it have? When will such a V be a solution of (1.1) in
some sense? If (1.1) is a conservation law [13,pp.3-17], will V possess the appropriate "shocks"? If V does display shocks, then the convergence question must be studied in a topology weaker than L^{∞}, e.g., an L^{p} or distribution space topology.

QUESTION 5. If the conditions

$$
\begin{aligned}
& \sup _{\varphi \in I \times R \times R^{n}}\|P(\varphi)\|<\infty \\
& \sup _{\varphi \in I \times R \times R^{n}}\left\|P^{-1}(\varphi)\right\|<\infty
\end{aligned}
$$

are removed from the hypothesis of Theorem 1.1, are the conclusions of Theorem 1.1 still valid?

SELECTED BIBLIOGRAPHY

[1] Courant, R., and Hilbert, D. Methods of Mathematical Physics, Vol. III. New York: Interscience Publishers, 1962.
[2] Devinatz, A. Advanced Calculus. New York: Holt, Rinehart, and Winston, 1968.
[3] Douglis, A. "Some Existence Theorems for Hyperbolic Equations in Two Independent Variables." Comm. Pure Appl. Math., 5(1952), pp. 119-154.
[4] Dupont, T. "Galerkin Methods for Modeling Gas Pipelines." Constructive and Computational Methods for Differential and Integral Equations. Eds. A. Dold and B. Eckman. Berlin: SpringerVerlag, 1974, pp. 112-130.
[5] Friedrichs, K. "Nonlinear Hyperbolic Differential Equations for Functions of Two Independent Variables." Amer. J. Math., 70(1948), pp. 555-589.
[6] Glimm, J. "Solutions in the Large for Nonlinear Hyperbolic Systems of Equations." Comm. Pure Appl. Math., 18(1965), pp. 697-715.
[7] Hartman, P., and Wintner, A. "On Hyperbolic Partial Differential Equations." Amer. J. Math., 74(1952), pp. 834-864.
[8] Hörmander, L. Linear Partial Differential Operators. 2nd printing. Berlin: Springer - Verlag, 1964.
[9]
"The Cauchy Problem for Differential
Equations with Double Characteristics." Journal
D'Analyse Mathematique, $32(1977), \operatorname{pp.} 118-196$.
[10] Hurewiez, W. Lectures on Ordinary Differential Equations. Cambridge: M.I.T. Press, 1958.
[11] Jeffrey, A. Quasilinear Hyperbolic Systems and Waves. London: Pitman, 1976 .
[12] Kreiss, H. "On Difference Approximations of Dissipative Type for Hyperbolic Differential Equations." Comm. Pure Appl. Math., 17(1964), pp. 335-353.
[13] Lax, P. Hyperbolic Systems of Conservation Laws and the Mathematical Theory $\frac{\text { of }}{3}$ Shock Waves. Philadelphia: SIAM, $197 \overline{3}$.
\qquad , and Courant, R. "On Nonlinear Partial Differential Equations with Two Independent Variables." Comm. Pure Appl. Math., 2(1949), pp. 255-273.
[15] \qquad , Partial Differential Equations. New York:
[16]
, and Richtmeyer, R. "Survey of the Stability of Linear Finite Difference Equations." Comm. Pure Appl. Math., 9(1956), pp. 267-293.
[17] \qquad , and Wendroff, B. "Difference Schemes for Hyperbolic Equations with High Order of Accuracy." Comm. Pure Appl. Math., 17(1964), pp. 381-398.
[18] Lewy, H. "Über das Anfangowertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen." Mathematische Annalen, 98(1928) pp. 179-191.
[19] Perron, 0. "Über Existenz Und Nichtexisting von Integralen partieller Differentialgleichungschung zweiter Ordnung mit zwei unabhangigen Zeitschift, 27(1928), pp. 549-564.
[20] Richtmeyer, R., and Morton, K. Difference Methods for Initial Value Problems. 2nd ed. New York: Interscience PubTishers, 1967.
[21] Rudin, W. Principles of Mathematical Analysis. 2nd ed. New York: $\overline{M c} \overline{G r a w-H i l l, ~} 19 \overline{64}$.
[22] Strang, G. "Accurate Partial Difference Methods I: Linear Cauchy Problems." Arch. Rational Mech. Anal., 12(1963), pp.392-402.
[23] Thomée,V. "A Stable Difference Scheme for the Mixed Boundary Problem for a Hyperbolic, First Order System in Two Dimensions." J. Soc. Indust. App1. Math., 10(1962), pp. 229-245.
[24] Treves, F. Basic Linear Partial Differential Equations. New York: Academic Press, 1975.
[25] Wendroff, B. "On Centered Difference Equations for Hyperbolic Systems." J. Soc. Indust. Appl. Math., 8(1960), pp. 549-555.
[26] , Theoretical Numerical Analysis. New York: Academic Press, 1966 .

VITA ${ }^{2}$
Larry M. Foster
Candidate for the Degree of
Doctor of Philosophy

Thesis: APPROXIMATION OF SOLUTIONS OF FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS WITH CAUCHY DATA

Major Field: Mathematics
Biographical:
Personal Data: Born in Münich, Germany, May 5, 1951, the son of Marshall P. and Lola R. Foster.

Education: Graduated from Alamogordo High School, Alamogordo, New Mexico, 1969; received the Bachelor of Science degree from Oklahoma Baptist University in July, 1972 with a major in mathematics; received the Master of Science degree from Oklahoma State University, July 1973; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University, May 1978.

Professional Experience: Graduate Assistant at Oklahoma State University, 1973-1978.

Professional Organizations: American Mathematical
Society and Mathematical Association of America.

[^0]: 1016565

[^1]: ${ }^{2}$ We do not require, as do some recent studies, that the eigenvalues of A be distinct (cf. [8] and [24]) or bounded away from zero (cf. [4] and [23]).

