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CHAPTER I 

INTRODUCTION 

1. Introduction 

During the past four decades a considerable amount of work has been 

done on the develop~ent of statistical inference procedures which remain 

valid for broad families of underlying distributions. These are conven

tionally known as nonparametric or distribution free procedures. 

The general problem to be considered in this thesis regards the 

hypothesis testing of the agreement between and within several groups of 

obser~ers (blocks). Suppose we have k (~2) objects (treatments) to be 

compared. In many practical situations our decisions have to be based 

on experiments conducted on certain "experimental units." However, in 

general, different experimental units may react differently to the same 

treatment and thus any method of precise comparison should divide the 

experimental units into relad.vely homogeneous sets called "blocks." 

Let there be two groups of observers representing different conditions 

(e.g., two nationalities, or two religions, or etc.), such that each 

observer ranks the same k ·objects independently. If the experimenter 

is willing to assume a priori that the true treatment rankings are the 

same for all groups of observers, no new analysis is required and the 

experiment is merely treated as though one group (pooled) of observers 

had been employed. How~ver, in many cases this assumption is not real

istic and the groups of observers should appropriately be analyzed with 
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this potential group difference in mind. 

2. Literature Review 

A nonparametric test of two-group concordance has been proposed by 

Schucany and Frawley (1973). The procedure tests the null hypothesis: 

H :·Each of the k! permutations of the ranks (1,2, •.. ,k) 
0 

are equally likely 

versus the alternative 

H There is a preference for one of the k! permutations 
a 

within and between two groups of observers. 

2 

The test statistic is defined as follows: For one group of observ-

ers, let R .. 
lJ 

denote the ranking that observer i, i = 1,2, •.. ,m, gives 

to object j,j = 1,2, ... ,k, and let R. denote the sum of ranks 
m J 

assigned to object j ; i.e. , R. = 2: R .. for j 1,2, ... ,k. Let s. 
J i=l lJ 

denote the corresponding sum for the other group of n observers. Then 
k 

the test statistic is !J! = L R.S .. If !J! is large, we will reject 
j=l J J 

H above and will state that there is agreement between and within 
0 

groups. Also, if !J! is small, we will reject H 
0 

and will state 

that there is agreement within each group but complete disagreement 

between two groups. 

Under the null hypothesis that all the observers have randomly 

ranked the objects, Schucany and Frawley (1973) obtained 

and 

mnk (k+l) 2 

4 

mnk 2 (k-1) (k+l) 2 

144 

J 



Thus the variate 

12~- 3mnk (k+l) 2 

[mnk2(k-l)(k+l) 2]112 

is the standardized value of ~. 

3 

For small values of m, n, and k, Frawley and Schucany (1972) have 

tabulated the critical values of ~. For untabled values, they suggest 

a unit normal variate ~* above. An approximate distribution for ~ 

is highly desirable due to labor and cost of computing an exact distri-

bution. OJ* The ~symptotic normality of ~ is confirmed through deriva-

tion of its characteristic function by Li and Schucany (1975). They 

have shown that the statistic !J! is uncorrelated with the Friedman 

statistic, used to measure concordance within either group. 

Finally, Beckett and Schucany (1975) and Schucany and Beckett 

(1976) have further investigated the properties and applications of ~· 

They have proposed the use of !J! for the case of incomplete and par

tial rankings within groups. Also, in their 1975 paper, application of 

a "Duncan" multiple compari-son procedure based on weighted sums of 

object rank totals is recommended for comparing the objects where !J! is 

found to be significant. 

Chapter II is devoted to the study of a two-group concordance 

statistic defined on a more general class of rankings. The relationship 

between the Friedman-type statistics and the generalized two-group con-

cordance statistic is investigated. 

In Chapter III, we make some comments on testing for agreement 

between two groups of· judges and point out the inaccurate results given 

in the paper by Hollander and Sethuraman (1977)~ 

Chapter IV extends the results for the general two-group concordance 
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statistic !J! to the case where-either group follows the structure of a 

balanced incomplete block design. 

In Chapter V, we consider the analysi's of the agreement within and 

between several groups of observers. A new statistic for multi-group 

concordance is proposed and its properties are investigated under the 

null hypothesis of random assignment of ranks. 

Appendices A and B provide a covariance equality in a two-way 

layout by ranks and a geometric representation of the two-group concor

dance statistic, respectively. 

Note. Chapter II was presented at the Joint Statistical Meetings 

in Chicago, Illinois, on August 16, 1977. Chapters II and III are pre

pared according to the format of the Annals of Statistics. Chapters IV 

and V are prepared according to the format of Communications in Statis

tics (Theory and Methods). 
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CHAPTER II 

PROPERTIES OF THE GENERAL TWO-GROUP 

CONCORDANCE STATISTIC 

Abstract 

This paper generalizes Schucany (1971) two-group concordance 

statistic ~ to the case where each observer in the two groups ranks 

or orders k objects by assigning to each object an element from the 

k-vector y having real~valued elements with not all elements equal. 

In the well-known Friedman structure, the vector ~ is defined such 

that its elements are the first k positive integers. The limiting 

distribution of ~.under the null hypothesis of random assignment of 

ranks is shown to be normal. It is established that the Friedman-type 

statistic used to measure concordance within each group is uncorrelated 

with (and, in fact, asymptotically independent of) the statistic !}! 
These results are extended to the case where the two groups employ 

different vectors such as v within Group 1 and u within Group 2. 

As a result the statistic !}! may be used to test agreement within and 

between two groups of observers ranking according to the general vectors 

v and u , respectively. 

1. Introduction 

Let us consider m (~1) observers (blocks), each of which inde

pendently ranks k (~2) objects (treatments) according to some 

6 



permJitaUon of the elements of the vector v = (v1 , ... ,vk) where 

{vj: j = l, ... ,k} is' a set. of k real-valued functions. which are 

assumed to be finite and not all equal. We shall confine ourselves to 

the above class, M say, of rankings. Let r .. 
lJ 

denote the element of 

~ assigned to object j by observer i. Let E(·), V(·), and Cov(·) 

denote the expectation, v~riance, and covarians-e, respectively, under 

the null hypothesis of random assignment of the elements v. 
J 

to the 

objects;- that is,,all row permutations are equally likely. Under the 

assumption of random assignment for each i, r .. 
lJ 

takes any of the 

values v1 , ... ,vk with probability 1/k. The concordance between ob-

7 

servers may be tested by use of a general Friedman-type statistic, given 

by Claypool (1975). It is easily verified that 

and 

then 

and 

E(r .. ) 
1] 

V(r .. ) 
lJ 

1 k 
k 2: v. 

j=l J 

1 k 2 - L (v. - f-L) 
k . 1 J J= 

2 

Cov(r .. , r. 0 ) 
1] lv 

1 
k 1 V(r .. ) for j t .e. 

- lJ 

Let 

E(R.) 
J 

V(R.) 
J 

R. 
J 

m 

2: 
i=l 

2 mo 

r .. 
lJ 

denote the sum of ranks assigned to object 

for all j t .e • 

(1) 

( 2) 

. (3) 

j' 

(4) 

(5) 

(6) 



where 

and 

When we st<mdard i zc• H. we ohta:ln 
.] 

R. - E(R.) 
J J 

R * j 

k 

2: R * j 
j=l 

E(R.~'') 
J 

V(R.*) 
J 

Vv(R.) 
for j = 1, ... , k 

J 

1 k 
=-- L (R. -m!-L) 

aVm j=l J 

0 ' 

1 ' 

0 ' 

Rj - E(Rj) R - E(R ) e e Cov 

1 
2 

ma 

v'V(R.) 
J 

y'V(RJ 
e 

for j t e . 

Finally, define the (k-l)xl vector R* as 

R* = (R * R *)' ~ 1 , ... , k-1 . 

Thus, under the null hypothesis of random assignment of ranks, it 

8 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

follows from (10) and (11) that the variance-covariance matrix of R* 

may be expressed as 

k 1 
k-1 I k-1 J (13) 

where the (k-l)x(k-1) matrices I and J are the identity matrix and 

the matrix of ones, respectively. Dk-l is a completely symmetric, 

positive definite matrix having eigenvalues 

k-2 and k=l with multiplicity one. Also 

-1 k-1 
Dk-1 = ~ (I + J) 

k 
k-1 with multiplicity 

(14) 
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Now, from Sen (1968) or Mehra and Sarangi (1967), under the null 

hypothes.ls 

R* a~y MVN cg, Dk-1) (15) 

and as m -+. oo 

WR* = R*'D-l R* a~y x2 (k-l) . 
~. k-lN 

(16) 

It is easily verified that the well-known test statistics for the 

hypothesis of no difference among the k objects due to Friedman (1937) 

and Brown and Mood (1951) are special cases of the test statistic WR* . 

Now consider the case in which two independent groups of observers 

assign ranks v to the same k objects. We can have different numbers 

of observers in the two groups. Schucany (1971) proposed the statistic 
k 2 = '2:: R. S. to test for concordance within and between two independ

j=l J J 

ent groups of rankings of k objects, where R. is the sum of ranks 
J 

assigned to object j within the first group of m (~1) observers, 

j = l, ... ,k, described as above and similarly s. 
J 

is the sum of ranks 

assigned to object j within the second group of n (~1) observers, 

j = l, ... ,k. The statistic 2 is a generalization of Page's 

statistic (1963). Li and Schucany (1975) have studied some properties 

of the 2 statistic for the case of full rankings; that is, 

v = ( 1, 2, ... , k) . In this paper we investigate some properties of ~ 

for the class M of rankings which includes the full ranking vector v 

as a special case. As a result the statistic ~ may be used for the 

class M of rankings to test for agreement within and between two groups 

of observers. This statistic may be considered as a generalization of 

the Wald-Wolfowitz (1944) statistic for which the number of observers 

in each group is one. 
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Under the null hypothesis that all the observers have randomly 

ranked the objects, results corresponding to equations (1) through (16) 

hold for the second group where S, 
J 

and S.* replace 
J 

respectively. It, then, follows that 

E{/j 

and 

v(/) 

k 

2: 
j=l 

E(R.)E(S.) 
J J 

2 
kmn[l. 

k k k 
"' L V(R. ,S .) + L L Cov(RJ.SJ. ,R.eS.e) 

j::ol J J j::ol .e=l 
j# 

= kV(R.S.) + k(k-1) Cov(R.S., R 0 S 0 ) 
J J J J v v 

k 2 4 = -- mnu 
k-1 

are given as 

and 

V(R.S.) 
J J 

[V(R.) + E2 (R.)][V(S.) + E2 (S.)] 
J . J J J 

R. and 
J 

[ Cov ( R . , R 0 ) + E 2 ( R.) ] [ Cov ( S . , S 0 ) + E 2 ( S . ) ] 
J v J J v J 

- E2(R.)E2(S.) for j t .e 
J J 

Thus, the standardized· form of 2 is given as 

P* 2- E($ ,; 2- kmn~2 
/vp) ~ k2 

4 k-l mnu 

and may be expressed in matrix form as 

p* = l R*'D-l S* 
~ N k-lN 1 

R * j , 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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where and are given in (12) and (14), respectively, while 

S* is defined according to (12) with corresponding properties. 

(23) 

and as n -+ oo 

2. Properties of the Statistic fJ!. in the 

Class M of Rankings 

The computation of the null distribution of fJ! is cumbersome and 

the magnitude of labor becomes prohibitive with an increase in the num-

ber of objects and/or observers in either group. However, it is 

desirable to derive at least the limiting distribution of the statistic 

!J! in order to make it practical to use. Such an asymptotic (i.e., 

wh~n m,n,k -+ oo) distribution for !1! is considered in the following 

theorem. 

Theorem 1. Under the null hypothesis of random assignment of ranks for 

the class M of rankings as m, n, and k -+ oo we have 

Pr(}!* < y} --1--JY exp(-x2/2) dx, for any real y. 
y'2; -oo 

Proof. 
(/}'";'\ 

Evaluating the characteristic function of ~ 

E[exp(it[}!*)J 

real t. Using (23) as n-+ oo 

r/J* lim E[exp(it~ )] 
n--

t 2 1 
ER*[exp(- R*'D- R*)] 2(k-l) ~ k-1~ 

we obtain 

(26) 



Using (16) as m ~ oo , 

lim E[exp(i~)] 
n~ 
m~ 

2 - k-1 
t 2 

(l + k-1) 

12 

(27) 

By existence and uniqueness of the characteristic function and since 

2 - k-1 

lim (1 + _t_) 2 
k-1 k-j.OO 

1 2 
exp(- - t ) 
. 2 

We may apply Fubini's theorem and obtain 

.rd 1 2 lim E[exp(i~ ) ] = exp(- 2 t ) , for all real t, 
m~ 

Q~ 

(28) 

(29) 

(I)* 
which says ;;c, is asymptotically (i.e., when m,n,k~oo) normally dis-

tributed. 

Note that (27) may be written as 

k-1 
~ 2 - -2-

lim E[exp(it Jk-J[lf)] = (1 + t ) 
n-j.OO 
m~ 

(30) 

wh,ich implies for odd values of k and for large values of m and n 

the statistic fk-~ is distributed asymptotically as the sum of 

(k-1)/2 independent variables each having a double exponential distrib-

ution. 

Li and Schucany (1975) have shown that for the full ranking case 

the Friedman statistic for either group and the !£ statistic are 

uncorrelated by evaluating the third moments. This result is 

generalized by Ebneshahrashoob and Claypool (1977) by using the equality 

2 
Cov(R. ,R.) 

J J 

A similar equality for the second group by substituting Sj 

in (31). We state this theorem without proof. 

(31) 

for R. 
J 
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Theorem 2. Under the null hypothesis of random assignment of ranks for 

the class M of rankings we_have 

k 2 k 
s. 2) Cove!£, L: R. ) = CovCfJ!, L: = 0 (32) 

j=l J j=l J 

That is, either the statistic WR* or the statistic- WS* , used to 

measure concordance within the respective groups, and the ~ statistic 

are uncorrelated. Beckett (1975) has shown the asymptotic independence 

of Friedman's X2 and ~ (for the full ranking vector). 

In the following theorem we will show that for the class M of 

. OJ* rankings ,;z; and the standardized of WR* or WS* have an asymptotic 

bivariate normal distribution and that in fact !j' and either of WR* 

or WS* are asymptotically (i.e., when m, n, and k 4 oo) independent. 

By using (16) we have the standardized form of WR,'< as follows: 

1 WR* - ~ 1 
v'2ck-l) 

l R>'<'D-l R>'< 
v 2 (k-1) ~ k-l~ 

(33) 

Theorem 3. Under the null hypothesis of random assignment of ranks for 

the class M of rankings 

1 . E [ ( . (f}k . * ) ] _ [ 1 ( 2 2) ] 1m exp llJ.~ + lt2WRi< - exp - 2 t 1 + t 2 , 
~ 

~== 

Proof. We have 

for all reals t 1 and t 2 

.fk:I [ exp(-it 2~ 2)] 

1 -1 
·ER*{[exp(it2 R*'D R*)) v 2(k-l) ~ k-l~ 

+ E [ ( . t 1 R>'< I D-l s *)I R*] } S* exp l 1-- "' k-1~ ~ 
Vk-1 

(34) 

(35) 



Using (23) as n ~ = , 

Using (16) as m ~ oo , 

lim E[exp(il!Jl* + it 2W~*) l 
J:l-+00 
ll}-?00 

. . nz::I 
[ exp ( -itilT-2-) ] 

{ [exp(it2~ k=l ) ] 

t2 
. (1 + _1 - . .12 )} -(k-1) /2 . 

k-1 lt2Yk'=I 

14 

(36) 

(37) 

Expanding the exponential part and retainiqg terms of order less 

than (k-1)-312 we obtain, 

where the "large 0" has its usual meaning. 

Now as k ~ oo from (38) we get 

lim E[exp(it1T+ it2 VJ~*)] = exp[ -~(ti + t~)], for all reals t 1 and 
~ 

~ 

t 2 which is the relation (34). 

3. The Case of a Different Ranking Vector 

VJithin Each Group 

Consider the case where t~e same ranking vector is used within 

each group and different ranking vectors bet,-;reen t'vo groups. That is, 
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e;ich of m observers in the first group ranks the k objects accord-

ing to the vector ~ = (v1 , ... ,vk) and similarly each of n observers 

iti the second group ranks the k objects according to the vector 

u = (u1 , ... ,uk) where v and u belong to the class M of rankings 

and y t ~· Schucany and Beckett (1976) have discussed partial ranking 

for the two groups and they have given the standardized form of the 

statistic !J! for the case where v = (1,2, ... ,pl'O' ••• ,0) and 

y = (1,2, ... ,p2 ,0, ... ,0); Pe < k fore = 1,2, but they have not 

established the general results given in this section for the vectors in 

the class M of rankings. 

Let r .. 
l.J 

be as before for the first group and let s .. denote 
l.J 

the elements of u assigned to object j by observer i for the 

second group. Under the null hypothesis of random assignment of ranks 

the moments of !J! in this case are 

Ecf£) = kmnf..Llf..L2 (39) 

where i-ll = E(r .. ) and f..L2 E(s .. ), 
l.J l.J 

and 

k2 vr[J!> 2 2 
= k-1 mnala2 (40) 

where 0"2 = V(r .. ) and 0"2 = V(s .. ). 1 l.J 2 l.J 

Thus, the standardized form of !:fl is given as 

!l!)~ 
!l!- EcfJ!) !J!- kmnf..Llf..L2 

~vp) 2 
k 2 2 

k-1 mnala2 

(41) 
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and may be expressed in matrix form as 

l R*'D-l S* 
~ (k-l) N k- lN , 

(42) 

where is given in (14), and S* are constructed similar to 

Section 1 through vectors v and ~· respectively. 

Since the form of !}!* is the same as (22) and the properties of 

R* and S* remain valid for this case, we observe that the three 

theorems proved in Section 2 are still valid. Thus, the results of 

this section extend the applicability of the ~ statistic as a measure 

of concordance within and between two groups of observers. 
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CHAPTER III 

SOME COMMENTS ON TESTING FOR AGREEMENT 

BETWEEN TWO GROUPS OF JUDGES 

Abstract 

The purpose of this paper is to clarify the inaccurate results 

given in the paper by Hollander and Sethuraman (1977). Firstly, the 

differences between underlying assumptions of the test statistic 

proposed by Schucany (1971) and the Kendall's question which was posed 

to Hollander and Sethuraman (1977) are discussed. Secondly, the 

mathematical difficulties which arise in their proofs are pointed out. 

1. Introduction 

The !}! statistic proposed by Schucany (1971) is used to test 

simultaneously for agreement both within and between two groups of 

judges on the ranking of the same k objects. Schucany and Frawley 

(1973) discuss the above test statistic (see Chapter I, Section 2) and 

its relationship to existing techniques. They state that II . it is 

meaningless to make any comparison between groups unless each group 'has 

an opinion' i.e. , there is concordance within each group. 11 This state

ment is completely contrary to the fact that the ,!/! statistic is a 

simultaneous test statistic with respect to concordance between and 

within two groups. The.~ ideas in the latter paper are cleared in a 

later paper by Li and Schucany (1975) (see Chapter I, Section 2). It is 
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worth noting that the assumption of within group agreement is not made 

in the development of the !}! statistic by Schucany et al. 

In the paper by Hollander and Sethuraman (1977), the authors 

address the following question (posed to them by Sir Maurice Kendall): 

Given that there is agreement within each group of judges, how can one 

test for evidence of agreement between the two groups? As Kendall's 

20 

question is stated, agreement within each group of judges is presupposed. 

This is a point of diversity between the above problem and the problem 

which is answered through the !J! statistic. Therefore, the !}! sta-

tistic is not intended to solve and does not answer the Kendall's ques-

tion. Also, they show that the Schucany test is misleading by wrongly 

formulating the problem under the assumption of existence of agreement 

within each group. 

2. Some comments on Proposition 1 given by 

Hollander and Sethuraman (1977) 

Before pointing out the mistakes, we state some notations and the 

proposition given in the paper by Hollander and Sethuraman (1977). 

Define the vectors of mean rankings and the covariance matrices of the 

two groups of judges as follows: 

where 

1-L· J 

~1 

EQ (r •. ) 
1 J 

EQ ( r .. ) 
2 J 

~2 

j l, ... ,k, 

EQ {(r.-v) (r.-v)'} 
. 2 

(1) 

Q1 and Q2 are the probability distributions of rankings on the space Q 
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of k! possible rankings for Groups 1 and 2, respectively. Let 

e = (1, ... ,1)' . When Q1 = U (uniform probability distribution), we 

have ~ = ~* and zl Z* where 

i-t* e(k + 1)/2 , Z* k(k+l) [I -! ee'] 
12 k k' 

and Ik is the k x k identity matrix. Finally, let 

where 

s.(m)l/2 
J 

S. - m~. 
J J 

T. 
J 

nv. 
J 

j l, ... ,k, 

S. and T. are the sum of ranks assigned to object j in group 1 
J J 

(2) 

(3) 

with m judges and in group 2 with n judges, respectively. The vee-

tors s and ~ have independent limiting k-variate normal distribu-

tions with mean vectors Q and covariance matrices z1 , z2 , respec-

tively. 

Proposition 1. Let m, n -+ oo where 
m 

---+A., 
m+n 

O<A<l. (4) 

(i) If at least one of ~ and v is not equal to ~* (defined 

by (2)), then 

·2 a 

and a2 > 0 . 

-3/2 rri) 2 (m+n) ~ -mn~' v) -+ N(O, a ) where 

(5) 

If ~ = v = ~* , then~' has a limiting distribution which is the 

distribution of uv where u and v are independent, u is standard 

normal, and 
2 

v has the distribution of 6'2:1 6 where 8 is multivariate 
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normal with mean vector 0 and covariance matrix L:2 . 

(iii) If further IJ. == v == IJ.* ' 
and L:l 

L: ,·~ (defined by ( 2)) ' 

then the variable 
2 

has the distribution of 6 1 6 k(k+l) /12. v 

(iv) If further 1-1. == v 1-1.* , and L: 1 ' == L: 2 == L:* , which is the 

case when (Q1 ,Q2) == (U,U) , then (144v2)/{k2 (k+l) 2 } has a x2 - dis-

tribution with k - 1 degrees of freedom. 

Now, consider 

riJ_ 112 112 112 
~ mn!J. 1 V == m(n) IJ. 1 ~ + (m) nv'~ + (mn) ~~~ . (6) 

In part (ii) of the proposition when 1-1. == v == 1-1.* , the first two terms 

on the right-hand side of (6) vanish. Then, Hollander and Sethuraman 

continue and conclude that f£ 1 has a limiting distribution which is 

the distribution of y 16 where y and 6 are independent k-variate 

normal vectors with mean vectors 0 and covariance matrices L: 1 and 

L: 2 , respectively. Also, they write y 16 as 

y16 (7) 

Then, by first conditioning on 6 and then unconditioning, they state 

that y 16 is seen to have the same distribution as uv where u is 

standard normal and 
2 

v has the distribution of 6 1l: 6 1 

In the above proof the authors fail to note that when one condi-

tions on 6 , as a consequence one has conditioned on n i.e., one 

would let m -+ oo for fixed n This is a violation of condition (4) 

of Proposition 1. Another difficulty is that we can write y'6 as 

6'y I /( 1 )1/2 {6 y y L: 2y } ( 8) 

Here, by first conditioning on y and then unconditioning, 6 1 y y 1 6 



is seen to have the same distribution as xy where x and y are 

independent, x is standard normal, and 
2 

y has the distribution of 

y''Z 2y • Note that we are vio'lating condition (4) of Proposition 1 in 

deriving the distribution of (8). Also, the question remains whether 

8'2: 6 
1 

and y '2: y 2 have the same distribution when 
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Another point of interest is to remember that the formulation underlin-

ing the above proposition assumes the existence of agreement within each 

group which is contrary to the development of the ~ statisti~ as pro-

posed by Schucany (1971). 

3. Approximations to the rtull distribution of !J!. 

Two approximations (Laplace and Normal) to the null distribution of 

~are compared by Li and Schucany (1975), and Beckett (1975). They 

mention that the Laplace approximation is the proper approximation for 

k small and odd and the normal approximation improves as k increases. 

If both groups of judges are large, k has to be at least 6 or larger 

before the approximation is recommended. The normal approximation 

appears to be conservative for a levels down to at least .05. The 

lack of conservatism occurs out in the extremes where it is not very 

crucial. 
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CHAPTER IV 

TWO-GROUP CONCORDANCE INVOLVING BALANCED 

INCOMPLETE BLOCK STRUCTURES 

ABSTRACT 

The main purpose of this paper is to extend the results for 

the general two-group concordanc~ statistic ~ to the case where 

either group follows a balanced incomplete block design structure. 

As in the case of complete block design setting, under the null 

hypothesis of random assignment of ranks, the limiting distribu

tion of ~is normal. Also, it is established that either the 

statistic WR* or the statistic WS* , used to measure concordance 

within the respective groups, and the statistic ~are uncorre

lated (and, in fact, are asymptotically independent). 

1. INTRODUCTION 

Suppose k (~2) objects (treatments) are compared in an 

experimental layout. Consider m observers (blocks), each of 

which independently ranks p of the k objects for 1 S p < k 

according to the vector y = (v1 , ... ,vp) where {vj : j l, ... ,p} 

is a set of p real-valued functions which are assumed to be 
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finite and not all equal. We shall confine ourselves to the above 

class, M say, of rankings. For dealing with such a problem, con

sider a balanced incomplete block design (BIBD) structure as fol

lows: 

I. Every observer is presented p objects to be 

ranked according to the vector ~ v. 

II. Every object is presented to r of the observers, 

r < m. 

III. Every pair of objects appears together (or is 

presented to the same observer) an equal number 

A. of times. 

The parameters of the BIBD are k, m, r, p, and A. and they satis-

fy 

kr = mp, (1) 

and 

A.(k - 1) = r(p - 1) (2) 

Let r .. denote the element of ~ assigned to object j by 
lJ 

observer i. Note that some of the cells (i,j) are blank because 

of the BIBD structure. Let E(·), V(·), and Cov(·) denote the ex-

pectation, variance, and covariance, respectively, under the null 

hypothesis of random assignment of the elements vj 

objects. It is easily verified that 

p 

E(r .. ) 
1 L: - v. [.1.1 ' 1] p J 

j=l 

p 

V(r .. ) 
1 I: (vj 

2 2 
= - - [.!.1) = 0"1 1] p 

j=l 

and 

to the 

Let R. denote the sum of ranks ass~gned to object j by 
J 

the r (<m) observers to whom object j is presented for 

( 3) 

(4) 

(5) 
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j = l, ... ,k. Thus, 

and 

where 

and 

V(R.) 
J 

lfuen we standardize R. we obtain 
J 

R. - E(R.) 
R* 

j 
J J 

VV(R.) 
for j 

J 

k 
LR*. 
j=l J 

E (R*.) 
J 

V(R*.) 
J 

V(R.) 
J 

0 ' 

= 0 

1 ' 

1 
k-1 

1' .•. 'k 

for j '# .e. . 

Finally, define the (k-1)xl vector R* as 

(6) 

(7) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Thus, under the null hypothesis of random assignment of ranks, it 

follows from (12) and (13) that the variance-covariance matrix of 

~* may be expressed as 

1 1 
Dk-1 = k-1 I - k-1 J ' (15) 

where the (k-l)x(k-1) matrices I and J are the identity 

matrix and the matrix of ones, respectively. Dk-l is a complete

ly symmetric, positive definite matrix having eigenvalues k/(k-1) 
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with multiplicity k-2 and 1/(k-1) with multiplicity one. Also, 

(16) 

Now, from Sarangi and Mehra {1969), under the null hypothesis 

asy 
!3-'~ N MVN (Q 'Dk-1) , ( 17) 

as m-+ oo 

-1 
W = u*'D R* R* :;)- k-lN 

asy 
N x2 (k-l) (18) 

It is easily verified that the well-known test statistic for the 

hypothesis of no difference among the k objects due to Durbin 

(1951) is a special case of the test statistic WR* • 

Now consider the case in which two groups of observers inde

pendently assign ranks according to the vectors v and ll , res

pectively, to the same k objects subject to a BIBD structure. 

Let the development and notation given above apply to the first 

group and in a manner similar to (1) and (2) let the second group 

have parameters k, n, s, q, andy where 

ks = nq , (19) 

and 

y(k - 1) = s(q - 1) (20) 

Assume v and u = (u1 , ... ,uq) belong to the class M of rankings. 
N ~ 

Let s .. denote the element of ll assigned to object j by 
lJ 

observer i for the second group. Note that some of the cells 

(i,j) ,are blank because of the BIBD structure. Under the null 

hypothesis of random assignment of ranks, 

1 
q 

E( sij) - 2:: u. J-1.2 ' q j=l J 
(21) 

1 q 2 2 
V(s .. ) - "2: (u. J-1.2) 0"2 lJ q j=l J 

(22) 



and 
1 

Cov(s .. , s. 0 ) =- ----'-l V(s .. ) for j :f. f, • 
lJ lv q- lJ 

(23) 

Let S. denote the sum of ranks assigned to object j by 
J 

the s(<n) observers in the second group to whom object j is 

presented for j = l, .•. ,k . Similar to equations (6), (7), and 

(8), for the second group we obtain 

and 

E(S.) 
J 

V(S .) 
J 

(24) 

(25) 

1 
Cov(S.,S-0 ) = y Cov(s . . ,s. 0 ) =- k l V(S.) for j :f. f, • (26) J v lJ lv - J 

Under the null hypothesis that all the observers have randomly 

ranked the objects, results corresponding to equations (9) through 

(18) hold for the second group where s. and S*. replace R. 
J J J 

and R*., 
J 

respectively. 

Schucany and Beckett (1976) have proposed the statistic 

9?=z.k 1R.S. to measure concordance within and between two inde-
J= J J 

pendent groups of rankings subject to the BIBD structure as dis-

cussed above. This represents a generalization of the two-group 

concordance statistic due to Schucany (1971). From the notation 

above and assuming random assignment of ranks by each observer, 

it follows that 

(27) 

(28) 

Thus, the standardized form of f}? is given as 

(29) 
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and may be expressed in matrix form as 

rl?* = 1 R*'D-1 S* 
X . r;-::- N k-lN 

v k-l 
(30) 

The present paper extends the results of Ebneshahrashoob and 

Claypool (1977b) to cover the balanced incomplete block designs. 

2. PROPERTIES OF THE STATISTIC!£ 
IN THE CLASS M OF RANKINGS 

The computation of the null distribution of !£ is cumbersome 

and the task becomes prohibitively laborious with an increase in 

the number of objects and/or observers in .either group. In this 

section, we briefly present the asymptotic results (Theorems 1 

and 3) on ~ Since the proofs of these results follow along the 

lines of the corresponding proofs (for the complete block cases) 

treated in Ebneshahrashoob and Claypool (1977b), these are 

omitted. 

Theorem 1. Under the null hypothesis of random assignment of 

ranks for the class M of rankings as m, n, and k~ oo we have 

* 1 y 2 Prf[l!· < y} ~ -- ~ exp(-x /2) dx, for any real y. (31) 
V2rr -oo 

Thus, for ·large m, n, and k, the critical values of !£* can 

be approximated by those of the standard normal distribution. 

In the following theorem we establish for the class M of 

rankings that either the statistic WR* or the statistic WS* , 

used to measure concordance within respective groups, and the!£ 

statistic are uncorrelated. 

Theorem 2. Under the null hypothesis of random assignment of 

ranks for the class M of rankings we have 

k 2 k 2 
Covcg}. L R. ) = Covcg}. '2.: S. ) 

j=l J j=l J 
0 . 

The proof of the theorem can be accomplished through the 

(32) 
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following lennna. 

Lemma: For the BIBD setting 

. 2 ' 2 
Cov(R. , R.) = -(k-l)Cov(R. , R0 ) for j ~ t . (33) 

J J J v 

This covariance equality for the BIBD structure is the exten

sion of the covariance equality for the complete block design 

structure given by Ebneshahrashoob and Cla~pool (1977a). From 

that paper, 

2 2 
Cov(r .. , r .. ) = -(p-l)Cov(r .. ,r. 0 ) for j ~ f,. (34) 

l.J l.J l.J l.v 

Now, after some algebra, it follows that 

and 

2 
Cov(R. ,R.) 
. J J 

2 
r Cov ( r . . , r .. ) + 2 ( r-1) rJ..L1 V ( r .. ) 

lJ lJ l.J 

2 
A Cov(r .. ,r. 0 ) + 2(r-l)AJ..Ll Cov(r .. , r. 0 ) 

l.J l.v l.J l.v 

for j i e . 

(35) 

(36) 

Substituting (5) and (34) into (35) and combining (35) with (36) 

gives (33). A similar equality holds for the second group. 

Proof of Theorem 2. Using (33) we obtain 

k 2 2 2 
Cov<$ LR·) = kE(S.){Cov(R. ,R.)+(k-l)Cov(R. ,Re)}= 0. 

j =1 J J J J J 

In the following theorem we will state that for the class M 

of rankings the statistic ~* and the standardized form of the 

statistic WR* or the statistic WS* have an asymptotic bivariate 

normal distribution and that in fact ~· and either of WR* or 

WS* are asymptotically (i.e., when m, n, and k ~ oo) independent. 

By using (18) we have the standardized form of WR* as 

follows: 

1 R* 'D-1 R*-~ k-1 . 
vzck-1) ~ k-1~ 2 

(37) 

31 



Theorem 3. Under the null hypothesis of random assignment of 

ranks for the class M of rankings 

rfJk 1 2 2 
~ E[exp(it1~ + it2W*R*)] = exp[-2(t1 + t 2 )] , 

~== 
for all reals t 1 and t 2 • (38) 

Remark 1. If all the objects are presented to every observer, we 

will have complete block design (CBD) structure. When one of the 

groups follows CBD structure and the second group follows BIBD 

structure where the number of objects is the same value k for both 

groups we may still use the statistic ~ to test agreement within 

and between the two groups. The properties of ~ given in this 

paper are still valid for the above situation. 

Remark 2. The results given in this paper for the two-group con

cordance statistic cannot be extended to the case where either 

group follows a partially balanced incomplete block design (PBIBD) 

structure, since the covariance equality (33) given in the lemma 

does not hold for PBIBD settings. Also, the vectors R* and S* 

do not possess a common variance-covariance matrix when the two 

groups have different PBIBD structures. 
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CHAPTER V. 

MULTI-GROUP CONCORDANCE STATISTIC 

ABSTRACT 

The general problem that will be considered in this paper is 

the analysis of the ag~eement within and between several groups of 

observers. Properties of the generalized two-group concordance 

statistics such as zero correlation and asymptotic independence 

are established. An alternative statistic for multi-group concor

dance is proposed and its properties are investigated under the 

null hypothesis of random assignment of ranks. After having a 

significant multi-group statistic~ the ordering of the objects is 

obtained. The multi-group concordance statistic is used in the 

analysis of concordance (ANACONDA). 

1. INTRODUCTION 

In the paper of Beckett and Schucany (1975), the problem of 

multi-group concordance is discussed. Here, we generalize the 

results given there to the general vector of rankings. Also, an 

alternative statistic for multi-group concordance is proposed and 
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investigated. 

Consider q (~2) independent groups of observers (blocks). 

Group .e (=l, ... ,q) consists of 

independently ranks of the 

observers, each of which 

objects (treatments) for 

1 S P,e 

vector 

of 

S k according to some permutation of the elements of the 
.e .e .e 

)Z(t) = v1 , ... ,vpt) where {vj j = 1, ... ,p.e} is a set 

real-valued functions which are assumed to be finite and 

not all equal. We shall confine ourselves to the above class, M 

say, of rankings. For each group .e , a balanced incomplete block 

design (BIBD) structure is considered in such a way that 
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(i) every observer ranks p .e objects according to the vector ~(.e), 

(ii) every object is presented to s,e of the observers, s.e::: ~ , and 

(iii) every pair of objects appears together or is presented to the 

same observer an equal number A..e of times. The parameters of the 

BIBD are k, m.e, s .e, p .e, and A..e and they satisfy 

(1.1) 

and 

A. (k - 1) = s (p - 1) .e .e .e (1. 2) 

Note that when p = k , the BIBD structure reduces to the complete .e 
block design (CBD) structure. 

Let E(·), V(·), and Cov(·) denote the expectation, variance, 

and covariance, respectively, under the null hypothesis of random 
.e assignment of the elements v. (t = l, .•. ,q) to the k objects; 

J 
i.e., all row permutations are equally likely. The generalized 

two-group concordance statistic, given below, may be used to test 

the agreement between and within any two independent groups of 

observers. Let 

0/ k .e t 1 

.;;c.e.e 1 = L R. R: for .e :f:: .e 1 = 1, •.• , q , 
. j=l J.J 

(1. 3) 

.e 
where R. denotes the sum of ranks assigned to object j by the 

J 
s.e (Sm.e) observers in group .e to whom object j was presented. 



The standardized form of ~t 1 is given as 

fore :f: t 1 = l, ... ,q. (1.4) 

where 

l, ... ,q. 

(1.4) may be expressed in matrix form as 

where k-1 
= --

k 

r~* 1 * 1 -1 * 
.;;;£ u I = ~ ;:--: ~.e Dk-1 ~.e I ' 

Vk-1 

(I + J) , the (k-l)x (k-1) matrices 

(1. 5) 

(1. 6) 

I and J 
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are the identity matrix and the matrix of ones, respectively. Also 
* *.t *.t define ~.e, = (R1 , •.. ,~_1 ) 1 such ~hat 

R~ - E(R~) .e 
*.t J J 

Rj - S.e,IJ..e, 
.e 1' •.. 'q R. = . 

J 

~ V(R~) ~ Sf,CJ~ J 

(1. 7) 

note that 

. .e 
R~) .e .e 

j t h cov(R., = -(k-l)cov(Rj, Rb) for . 
J J 

(1.8) 

See Ebneshahrashoob and Claypool (1977) for the properties of the 

generalized two-group concordance statistic in the class M of 

rankings. In Section 2 some properties of the generalized two

group concordance statistic related to the multi-group statistic 

are presented. A new multi-group statistic is proposed and investi

gated in Section 3. 

2. PROPERTIES RELATED TO THE HULTI-GROUP CONCORDANCE 
STATISTIC IN THE CLASS M OF RANKINGS 

In the first theorem of this section, the zero correlation 

between 2..e.e 1 and ~ 1 .e, 11 for all .t t .t' t .t" = 1, ... , q is 

established. 



Theorem 1. Under the null hypothesis of random assignment of 

ranks for the class M of rankj ngs, 

Cov(~t 1, ~ 1t ") 0 for all t t t 1 t t 11 = 1, ... , q 

Proof. Using (1.8), we obtain for j :f h and all 

.e t l 1 t .ell= l, ... ,q, 

=0 

(2 .1) 

Note that by assumption and ~ t 
3 4 

are independent for 

t 1 :f t 2 :f t 3 :f t 4 = 1,2, ... ,q; hence, this case is not included 

in Theorem 1. 

In the following theorem we will state that for the class M 
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of rankings the statistics!J?2.e 1 and p; 1t 11 , t :f .e 1 :f .e 11 = 1, •.• ,q, 

have an asymptotic 

!l!e t 1 and !l!.e 1 t 11 

k ~ oo) independent. 

bivariate normal distribution and that in fact 

are asymptotically (i.e. , mt, m.e 1 , mt 11 and 

The following results will be needed, see 

Ebneshahrashoob and Claypool (1977). For all t :f t 1 = l, ... ,q 

and under the null hypothesis of random assignment of ranks for 

the class M of rankings we have 

where 

matrix 

the 

as mt, 

w * Rt 
k 

Dk-1 = k.:..l I 
* of ~t . WR* 

e observers 1n 

R~·, a~y MVN(O D ) 
~t ~· k-1 ' 

as m.e 

g; a~y X 2 (k-1) 

~ 00 

1 
k-1 J is the exact variance-covariance 

(2.2) 

(2. 3) 

may be used to test the agreement between 

the , tth group. Also, 

1: ~~ I -1 * a~y. N(O, 1) (2.4) p~~ 
ttl 

Vk-1 
E.e Dk-1 E.e~-

" 
mtl ' 

and k~oo . 



Theorem 2. Under the null hypothesis of random assignment of 

ranks for the class M of rankings 

k-1 

= ( 
ti+t~)- - 2-

1 + k-1 

for all reals t 1 and t 2 , 

and all .e t .e 1 t -£" = 1, 2, ... , q. 
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(2.5) 

Proof. Evaluating the joint characteristic function of ~;.e 1 
and p;1 .e" we obtain 

E[exp(itl'~; 1 + 

for all reals t 1 and t 2 . 

Using (2.2) as and -+"" ' 

Using (2.3) as m.e 1 -+ oo , 

lim E[exp{it1~; 1 + itt~:~.e,) 
m.e-+oo J 
m.e "-+oo 
m.e~-

( t~+t~ )-
1 + k-1 

k-1 
2 

Corollary. By existence and uniqueness of the characteristic 

function and since 

(1 2 :; ) _ k;I tl + 

[- 1 2 . 2 1 lim + 
k -

exp 2 (tl + t2) 
k-+oo 

(2.6) 

(2. 8) 

(2.9) 



. OJ* 
we obtain asymptotic normality and independence of~ee' 

* fl!e 'e" 

3. MULTI-GROUP CONCORDANCE STATISTIC 

q groups given as in Section 1 .. There are 

39 

and 

Consider 
q(q-1) 

2 
= n different two-group concordance statistics which 

may be evaluated from the q groups. We propose the test statistic 

= minJ~;,t 
e ,e ~ f 

( 3 .1) 

td~ I 

to test the null hypothesis of random assignment of ranks to the 

k ojbects by the observers in each group for the class M of rank

ings versus the alternative hypothesis that there is a general 

agreement between and within the q groups of observers on the 

ranking of the k objects. A significant (~*. indicates 
~m1n 

agreement between and within the q groups of observers on the 

ranking of the k objects. 

Theorem 2 and its corollary provide us with a useful result 

which will be used to obtain the approximate null distribution for 

(~* We have 
~min· 

f£~2····~q~;3, ... ~;q•···~:-l,q asy N(O,l). 
i·i·d 

(3. 2) 

Thus, the asymptotic cumulative distribution function of the first 

order statistic r~* is given by 
~min 

asy n 
= 1- [1- ~(y)] for every real y , (3. 3) 

where ~(y) is the cumulative distribution function of the stan

dard normal distribution. 

S. S. Gupta (1961) tabulates the .50, .75, .90, .95, and .99 

quantile values of the distributions of all normal order-statistics 

for n - 1(1)10, and for the extreme and central order-statistics 

for n = 11(1)20. This table of Gupta facilitates our job for 

finding the probability given by (3.3). Teichroew (1956) gives 

the means, and Sarhan and Greenberg (1962) give the variances and 
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and covariances of all normal order-statistics to 10 decimal places 

for n = 2(1)20. Note that the variance of the first order statis

tic from the normal population for n = 3 is 0.5594672038 and 

it decreases as n increases. This provides further useful asymp

totic result for the multi-group concordance statisticr~* .• 
Xm1n 

Next question of practical interest would be to identify the 

ordering of the k objects which causes this agreement between 

and within the q groups. 

A technique suggested by Beckett and Schucany (1975) may be 

generalized to the general vector of rankings and to the q groups 

of observers as f.ollows: 

Define .e = l, ... ,q' (3.4) 

and consider the 1 x k vector C* defined as 
~ 

(3.5) 

where 1' ... 'q are the nonnegative weighting constants 

with 1 and the denominator in (3.5) is the known standard 
q .e 

deviation of L atRi . 
1 .e=l 

be a.e =-, .e = l, .•• ,q, (each observer equal voice) or 
q q 

a.e = m.e/ ( .Lm·) , .e = 1, ... ,q , (each group equal voice). 
. J=l J * 

The most common weighting schemes would 

Now, 

one may compare differences of the C. (entry of C*) to the percent-
] ~ 

age points of the Duncan multiple range test, using v = oo (error 

degrees of freedom), (see Miller [1966]). 

The concept of ANACONDA (Analysis of Concordance) as given by 

Beckett and Schucany (1975) may also be used for the class M of 

rankings except instead of sum of two-group statistics used to 

measure the agreement between and within all groups involved, we 

propose r~*. to do this job. This latter statistic is an appro-
Xmln 

priate indicator of the between and within agreement of the · q 

groups' since r~*. will be signific:ant when all ( q2) different Xmln 



(~* are and vice versa, which is an indication of concordance rh,et 1 

between nnd withln correHponding groups. Also, the old adage that 

a chain is no stronger than its weakest link provides an intuitive 

ground for such a choice. 

'! 
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APPENDIX A 

A NOTE ON UNCORRELATED CONCORDANCE STATISTICS 

SUMMARY 

A covariance equality applicable to pairs of values randomly 

drawn from the discrete uniform distrj_bution without replacement 

is presented. This result is extended to obtain a covariance 

equality in a two-way layout by ranks, which is used as a basis 

for showing that the two-group concordance statistic and the 

Friedman-type statistic are uncorrelated for both complete and 

partial ordering within blocks. 

1. INTRODUCTION 

Li and Schucany (1975, Theorem 2) prove that "Under the null 

hypothesis that all row permutations are equally likely, the 

Friedman statistic used to measure concordance within either of 

the two groups of observers and the t~o-group concordance statis

tic !J! are uncorrelated." In this, paper we present a covariance 

equality which will simplify the proof of this theorem and also 

extend the scope of the theorem to a gen~ral class of ranking 

vectors. 
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2. CORRELATION OF TWO-GROUP CONCORDANCE STATISTIC 
WITH FRIEDMAN-TYPE STATISTIC 

Conoider m(~l) observers (blocks), each of which independ

ently ranks k(~2) objects (treatments) according to the vector 

~ = (v1 , ... ,vk) where {vj; j = l, ... ,k} is a set of k real

valued functions which are assumed to be finite and not all equal, 

for any finite k. Let s .. 
lJ 

denote the element of y assigned 

to object j by observer i. Under the assumption of random 

assignment for each i, sij takes any of the values v1 , ... ,vk 

with probability 1/k. It follows that 

and 

E(s .. ) 
lJ 

V(s .. ) 
lJ 

k 
1/k 2:: v. 

j=l J 
j..l. , 

k 
1/k L (v. - j..!.) 2 

j=l J 

2 
=a 

Cov ( s .. , s . .e ) 
l] l 

1 
- k 1 V(s .. ) for j =/: .e , 

- lJ 
or 

Cov(s .. , sij) -(k-1) Cov(s .. , sH) for j =/: .e . l] lJ 
Also, 

2 k 
3 

k 2 k 
Cov(s .. , s .. ) 1/k 2:: v. - (1/k 2:: v. )(1/k 2:: lJ lJ j=l J i=l J .e =1 

k k 

v.e,) , 

(1) 

(2) 

1 2:: 2: 
j=l .e=l 

2 k 2 k 
vJ. v.e- (1/k L v. )(1/k L v.e) . (3) 

j=l J e=l k(k-1) 

Substituting 

k 2 k 
<l:v. )(Lv.e) 
j=l J .e=l 

j# 

k 3 
l:v. + 
j=l J 

k k 
2:: I: 
j =1 .e=l 

j# 

into (3) and combining (2) and (3) gives 

2 2 
Cov(s .. , s .. ) = -(k-1) Cov(s .. , s 1 . .e) for j =/: .e • 

lJ lJ lJ 
(4) 
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It also follows that this relationship may be applied to pairs of 

values randomly drawn from the discrete uniform distribution with-

out replacement. 

Let s. m 
denote the sum of ranks assigned object = zi=l s .. to 

J l.J 
j by the m observers. Under the assumptions of independence 

between observers and random assignments of ranks for each i , it 

is easily verified that 

and 

or 

E(S.) = m!J. 
J 

V(S.) 
J 

2 
= mcr 

Cov(Sj,Sj) = -(k-l)Cov(Sj,St) for j '# .e, (5) 

which is the extension of (1) to the object rank sums. Now, after 

some algebra, it follows that 

Cov(S~, S.e) = m Cov(s~j, sit) + 21J.(m2-m) Cov(sij ,sit), j i: .e • (6) 

Proceeding in a similar manner, 

2 2 2 
Cov(S., S.) = m Cov(s .. ,s .. ) + 21-J.(m -m) Cov(s .. ,s .. ). (7) 

J J l.J l.J l.J l.J 

Substituting (1) and (4) into (6) or (7) and combining (6) with 

(7) gives a covariance equality in a two-way layout by ranks as 

follows: 

Cov(s:, S.) = -(k-1) Cov(s:, S0 ) for j = .e , 
J J J v 

which is the extension of (4) to the object rank sums. 

Now, consider the case in which two groups of observers 

independently assign ranks according to the vector v to the 

same k objects. Let the development and notation given above 

apply to the first group. Suppose the second group consists of 

n observers giving object totals T., j = l, ... ,k. 
J 

Within 

(8) 

group concordance may be tested by use of a general Friedman-type 

statistic, given by Claypool (1975) which is a function of 



z~=l· s~ and k 2 
l:j=l Tj for the two groups, respectively. The sta-

p, tis tic proposed by Schucany (1971), may be used to test for 

concordance both within and between groups where 

k 
fR= I:s.T .. 

j=l J J 
(9) 

Theorem. Under the null hypothesis that all row permutations are 

equally likely for the general vector y of rankings, 

k 2 k 2 
Cov(!J!, Z::s.) = Cov(!J!, l:T.) = 0. 

j =1 J j =1 J 

Proof. Using (8) we obtain 

k 
Cov( !J!, L s:) 

j=l J 

Similarly, 

k 2 
Cov ( !J!, L: T . ) = 0 . 

j=l J 

(10) 

That is, the two-group concordance statistic !J! is uncorrelated 

with either of the Friedman-type statistics. 
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APPENDIX B 

A GEOMETRIC REPRESENTATION OF THE 

TWO-GROUP CONCORDANCE STATISTIC 

SUMMARY 

A geometric representation of the generalized two-group con

cordance statistic ~ is obtained which facilitates the tabula

tion of the exact distribution of ~ under the null hypothesis 

of random assignment of ranks for small values of m and n (# 

of observers in groups I and II), and k (#of objects). An 

example illustrates the concept. 

1. INTRODUCTION 

Suppose that two groups of observers of sizes m (group I) 

and n (group II) respectively (1 ~ m ~ n without loss of gen

erality) have each assigned ranks independently to the same k 

objects according·to some permutation of the elements of the 

vector y = (v1 ,._ .. ,vk) where {v. : j = l, ... ,k} is a set of 
J 

k real-valued functions which are assumed to be finite and not 

all equal (class M of rankings). Let S. 
J 

and (j = 1' .•• 'k) 

denote the sum of ranks assigned to object j observers in 
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groups I and II, respectively. The ~ statistic proposed by 

Schucany (1971) is defined by 

P= 
k 
L:s.T. = S'T , 
j=l J J 

~ ~ 

where s and T are the k X 1 vectors of the column sums 
~ 

49 

(1) 

of 

ranks for groups I and II, respectively. That is, p is the inner 

product of the two vectors of column sums of ranks. 

In Section 2, we shall confine ourselves to the positive 
+ subclass, M say, of class M of rankings; i.e., v. (j = l, ... ,k) 

J 
is a positive real-valued function, and give a geometric represen-

tation of the ~ statistic. For the case where y E M , one may 

transfer v by adding some positive constant to its entries in 

order to obtain a vector which belongs to M+ and then give a 

geometric representation. Such a transformation would result in 

some changes in the direction of the eigenvectors. 

2. A GEOMETRIC REPRESENTATION 

The number of values of the ~ statistic ~vhich must be com-

d d b (k.')m+n. pute to generate the entire permutation istri ution is 

which becomes large rather quickly as either m, n, or k 

increases. Therefore, a short-cut method of computation is highly 

desirable. 

Let us define the ipformation matrix C(k;m,n) as 

C(k;m,n) = § r' , (2) 

where S and T are defined in Section 1. The matrix C(k;m,n) 

is a k x k matrix of rank one. We have 

k-1 k 
det[A.Ik- C(k;m,n)] =A. (A.- "L:s.T.) 

j=l J J 
(3) 

where det stands for determinant (see e.g., Gantmacher [1959]). 

The A.'s which satisfy det [A.Ik- C(k;m,n)] = 0 are the eigen

values of the matrix C(k;m,n). Thus, from (1) and (3) A.=~ 
is the unique positive eigenvalue of C(k;m,n) and A. = 0 is its 

eigenvalue of multiplicity k - 1. We have the following 



equalities: 

~=The unique positive eigenvalues of C(k;m,n) 

Maximum eigenvalue of C(k;m,n) 

Trace of C(k;m,n) 

Sum of eigenvalues of C(k;m,n) (4) 

The eigenvector of C(k;m,n) corresponding to the eigenvalue~ 
is S 

Example. Consider the case where k = 2, m 2, n = 3, and 

v = (1,2). There are three different values of § which gives 

three lines through the origin with corresponding slopes 
82 2 3 4 
s1 • = 4 ' 3 ' 2 

Illustrations of the rankings corresponding to 

different lines are as follows: 

Case I: 

Group I 

1 
1 

s =2 
1 

2 
2 

s =4 2 

Group II 

1 
2 
2 
2 

2 
1 
1 
1 

5 4 

/I of points + 

(~) (~) 1 ' g; = 6 + 24 = 30 

(~) = (i) = 3 • g; = 8 + 20 28 

(; ) = 3 ' ~ = 10 + 16 26 

( ~) = (; ) = 1 ' g; = 12 + 12 = 24 

8 points 

50 



Consider the case where S == (2,4)' and T = (3,6)' . From 

(2) the information matrix is 

C(2;2,3) ST' 

and 

~12 - C(2;2,3) = ( ~~~ -12) 
~-24 

From (3) , 

det (~I 2 - C(2;2,3)) = 0 = ~(~ - 30) = 0 = ~ = 0 , ~ = 30 
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Thus, ~ = 30 , which is the value of fJ! in this case is an eigen

value of the matrix C(2;2,3) and since C(2;2,3)~ =f;l§ the 

corr:esponding eigenvector is S . . Therefore, for case I, the 

eigenvector has the form (s1 , zs1) 1 and the eigenvalues related 

to the different cases of group II are Il= 30, 28, 26, 24 . 

These values are shown on line I, Figure 1. 

Case II: 

Group I 

1 2 
2 1 

27 

(~) (i) 3 ' Il= 12 + 15 = 27 

(n" (n 3 ' Il= 15 + 12 27 

(~) (~) = 1 , P= 18 + 9 27 

*Since there are two 

obtain the vector S 

16 points* 

( ( ~) == ( i) = 2) different ways to 

(3,3) 1 in group I, the 45° line should be 



considered as two lines which are superimposed. 

Similar to the case I, for the case II one can show that the 

eigenvector has the form (s1 , s 1) 1 and since the components of 

this vector are equai and J~Tj -= 9 is fixed, the eigenvalues 

related to the different cases of group II would be the same and 

are equal to 27. These are shown on line II, Figure 1. 

Case III: This case is similar to the case I except that sl 
and. s2 are interchanged. The eigenvector for this case has the 

form ( 2Sl' Sl) I and the eigenvalues are the same as the case I. 

These are shown on line III, Figure 1. 

The above results are. summarized in Figure 1. 

For values of k, m, and n in general, the following des

cription applies: k =dimension of Euclidean space used in 

geometric representation of two-group concordance statistic. 

(k!)m # of lines, some of which are superimposed 

(k!)n #of fJ? values on each line, some of which 

are superimposed 

(k!)m · (k!)n = (k!)m+n = Total 3 of !J! values 

The above results for the case k = 2, m = 2, and n = 3 are 

shown in Figure 1. 
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(3 

0 

(1 

(3 

\ 

\ 
\ 

(1 point) 

(3 points) 

(3 points) 

point) 

Geometric representation of the fJ! statistic 

FIG. 1 

The frequency function for the permutation distribution of fJ! is 

shown below. 

fl! = 24 ' 26 ' 27 ' 28 ' 30 

32 £~) = 2 ' 6 ' 16 ' 6 ' 2 
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