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CHAPTER I 

INTRODUCTION 

The relea-se of biodegradable organic compounds into 

rivers, lakes, and streams places a demand on the dissolved 

oxygen in the receiving waters, may make the receiving \'later 

aesthetically unsuitable as a source of potable water, may 

make the receiving water chemically unsuitable as a source 

of industrial process water, and may even make the water 

unsafe for·or toxic to both man and other organisms living 

in or near the receiving body.of water or dependent on it 

as a source of'food or potable water. That fraction of 

organic, water-borne waste which is in particulate form is 

readily removable via physical-chemical methods. The 

physical-chemical processes available for removal of 

particulate wastes are efficient and economical - at least, 

when compared to the physical-chemical processes required 

for removal of soluble wastes. The cost of treati11g those 

soluble, organic wastes which are amenable to biological 

treatment by aerobic, biological processes is much less 

than the cost of achieving comparable treatment by physical

chemical means alone. When used as secondary treatment, the 

purpose of aerobic, biological waste treatment is removal of 

soluble organic compounds by conversion to \'Ja ter, carbon 

1 
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dioxide, and new micro-organisms. The new micro-organisms 

can then be removed efficiently and economically by physical 

means. Biological waste treatment also removes various 

other chemical constituents - inorganic, organic, soluble, 

and particulate - by incorporation in new cell material, ad

soption on cell surfaces, absorption into cells, and entrap

ment in intercellular matrices •. Although these mechanisms 

occur in aerobic, biological waste ·treatment; the primary 

function of this process is reilloval of soluble, biodegradable, 

organic compounds. Organic carbon is generally the limiting 

nutrient for microbial growth in wa·ste streams. Where this 

is not the case, other required nutrients are generally 

added to the waste in sufficient quantity to make organic 

carbon the limiting nutrient. 

There are two major classes of aerobic, biological 

treatment processes. These are the fixed-bed reactor, in 

which the micro~organisms adhere to a solid surface and 

the waste streampasses over the stationary micro-organisms; 

and the fluidized-bed reactor, in which the micro-organisms 

are suspended in the waste stream and move with it. There 

are numerous variations and· combinations of the two processes 

on the market. The most widely used process, and consequent

ly the most important, is activat,ed sludge_ - a fluidized-bed 

process. 

The activated sludge process has been used for more 

than six decade$. The design parametefos for activated 

sludge were necessarily crude in the early years of appli-



cation of the activated sludge process. Standard ranges of 

such parameters as hydraulic detention time, BOD loading 

per unit volume, and BOD loading per unit mass of sludge 

per day were used •. These parameters allowed little accuracy 

in control and prediction of effluent BOD. This was of no 

great consequence in the past, as standards for effluent BOD 

were neither demanding of the waste treatment process nor 

stric·tly enforced by the relevant governmental agencies. 

This is no longer true. High waste removal efficiencies 

·are now required of treatment processes and effluent BOD 

standards are strictly enforced. The crude design and con

trol methods of the past are no longer adequate. 

Presently there exist a wide variety of sophisticated 

kinetic models purporting to describe the activated sludge 

process more precisely than the crude methods of the past. 

~The most important of these models can be divided into two 

broad classes. The first class of kinetic models is based 

on !i.J.'§_t ___ Q~cter, .... (je9~~~9ing .rattt, substrate removal. The 

second class of kinetic models is based on the first Qrder, 
·--·-~·--- ---------· 

~!l.&r_e_§._sing r~e,_ microbial growth model of Monod ( 1). 

All of the above-mentioned kinetic models are far more 

sophisticated than earlier empirical methods for design and 

control of the activated sludge process, but all of these 

newer models require_laborious and time cons~ing pilot 

plant studies to determine system constants. The required 

pilot plant studies are in part so timeconsuming and 

laborious because continuous flow, pilot plant studies are 
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required to determine·system constants. While batch studies 

are much simpler and less time consuming than are continuous 

flow studies, batchstudies are generally not thought to 

produce results similar to those derived from continuous 

flow studies. Since the activated sludge process is gen

erally operated as a continuous flow process, continuous 

flow pilot plant operation is the preferred method for 

gathering data for the design of a full size activated sludge 

plant~ 

The purpose of the present study is to explore, in a 

systematic way, the relationship(s) between batch systems 

and continuous flow systems. In order to design a full 

scale, activated sludge system; all of the kinetic models 

require that certain system constants describing microbial 

growth and waste removal be determined in smaller scale 

systems. These constants, once determined, can then be 

_applied to design of the full scale activated s:J_udge system. 

The system constants, as determined in a continuous flow 

bench scale system will be compared to the constants derived 

from batch experiments using sludge drawn from the continuous 

flow system at different sludge ages. 



CHAPI'ER II 

LITERATURE REVIEW 

All of the activated sludge models contain system "con

stants" describing microbial growth and wast.e removal. The 

micro-organisms of greatest signific.ance in the activated 

sludge process are aerobic, heterotrophic bt-.cteria. A gen

eral discussion of the constants describing the growth of 

aerobic, heterotrophic bacteria will be presented first. 

This will be followed by a history of the development of 

quantit&tive descriptions of the activated sludge process. 

Finally, the major activated sludge models presently in use 

will be presented. 

A. Bacterial GrO\'Ith 

The activated s1. udge process, like other aerobic, 

secondary waste treatment processes, is biological in nature. 

Any quantitative description of the D.ctivated sludge process 

must.include not only a description of the hydraulics of 

the activated sludge system, but a description of microbial 

growth and substrate removal qs well •. ·A I,llodel purporting 

t.o describe the acti:va ted sludge process must all0\'1, as a 

minimum, prediction and/or conrrol of the steady state values 

of sludge (microbial mass) production, sludge accumulation 

5 



in the system, and effluent·waste concentration. The 

general discussions of the microbial growth and substrate 

removal constants is drawn from Kincannon &nd Gaudy (2) and 

Gaudy and Gaudy (3). 

As mentioned above, the micro-organisms of primary 

significance in the removal of soluble, organic wastes in 

the activated sludge process are aerobic, heterotrophic 

bacteria. These bacteria feed on the waste, grow, and 

produce new micro-organisms, which can then be physically 

removed from the waste stream. The pseudo-equation often 

used to describe this process is given below. In the above 

Soluble Micro-organisms 
organic + o2 
matter 

-------• co2 + H2o + Micro
organisms 

{1} 

6 

"equation" the waste removed is partitioned by the feeding 

bacteria between the production of energy via respiration 

and the production of new bacterial mass. The oxygen on the 

left hand side of the equation is used by the bacteria to 

oxidize a portion of the organic waste and a portion of the 

energy released during the oxidation process is then stored 

and used in the production of new bacterial mass. 

A quantitative description of the above partitioning 

process is the ncell yield" (Y). This relationship is 

presented below. The cell yield is important in the pre-

Y - dX -as (2) 
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diction of sludge production and acc·u.mulation in the 

activated sludge process. Under continuous flow conditions, 

the observed cell yield (Y0 ) has been found to decrease as 

specific growth rate is decreased. For this reason, a 

specific form of the cell yield must be specified as constant. 

'l'his·is the "true cell yiel~" (Yt). A second constant is 

required to describe the variation of.Y0 with specific 

gro\'Jth rate. The "cell decay coefficient" or "cell 

maintenance coefficient" (kd). is used to account for varia

tion in observed yield. L4fhese two constants (Yt and kd) 

are Shared by all of the activated sludge models 1to be 

discussed later. T.}:}~se constants are generally der~ved 

empirically from the operation of continuous flow,biological 

reactors at various specific growth rates ~). Equations 

3 and 4_describe this relationship. Various explanations· 

0 . 

have been proposed as "the explanationn for the relation

ship described.by equation 3. These will be discussed later. 

The metabolicpathways &vailable for energy production 

in anaerobic micro-organisms &re more limited than are the 

pathways available for energy production in aerobic micro

organisms. For this reason, no generalized statement can 

be made concerning cell yields in aerobic systems. Bauchop 

and Elsderi (4) were able to find a general relationship 



between yield and ATP production in several anaerobic bac

terial cultures. The organic compound of interest was used 

almost exclusively for energy production in this study; 

while the carbon for cell synthesis was derived, from other . 

compounds in the.medium. Prediction of yield in aerobic 

cultures is complicated by uncertainties as to the ATP yield 

from specific substrates in specific micro-organisms {the 

specific pathway used for energy production) and the degree 

of coupling between ATP procuction and synthesis of new 

·cell material. Servizi and Bogen (5)(6) are among those who 

have attempted to relate yield and the free energy of oxi

dation of the substrate. Servizi and Bogen's equation for 

yield as a f'unetion of' the COD of the subst·rate was 0.39 

miligrams of dry cell mass generated per miligram of COD 

used . (where COD is related to the free energy of oxidation). 

lJlcCarty (7) recalculated the data of Siegel and Clifton (S) 

. ( 9) and 1-1cKinney et al. ( 10) as molar growth yields and 

found these to correlate with the free energy of' oxidation, 

although the different sets of data were in serious disagree

ment. Hetling et al. (11) criticized the conclusions of 

Servizi and Bogen on both theoretical grounds and because 

"endogenous metabolism" (variation in yield with specific 

growth rate) was not considered. Hetling et al. determined 

growth yields in continuous flow with several pure cultures 

and mixtures of pure cultures and several substrates. 

Hetling et al. concluded that the "heterogeneous metabol

ism rate" (same as endogenous metabolism) was not consta.nt 
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for all organisms or all substrates, but even after correction 

for this factor, the yield (true yield) varied with substrate 

and with organism. Ramanathan and Gaudy ( 12), using a minimal 

medium with glucose as sole carbon source and heterogeneous 

microbial popUlations, found the average yield in batch 

systems to be 0.62 miligrams of dry cell mass per miligram 

of COD. The range of yields obtained was 0.36 to 0.88. 

Sawyer (13) found the yield on glucose to range from 0.44 

to 0.64. All of this suggests that yield varies with the 

substrate, the micro-organisms, and the specific growth rate 

of the micro-organisms in a continuous flow system. · The 

cell yield cannot be predicted on the basis of the free ener-

gy of oxidation of a substrate in aerobic systems. 

The variation in cell yield with specific growth rate 

has be~explained via cell death, predation, endogenous 

metabolism, cell maintenance, population changes in heter

ogeneous cultures or mutations in homogeneous cultures, and 

decreased efficiency in the capture or utilization of 

energy released during respiration. .Many modifications to 

the major models discussed later have been published in

corporating constants describing one. or more of the above 

concepts. The cell maintenance coefficient (kd), as Used 

in the major models, is an enipiricc..l constant which accounts 

for the decrease in observed cell yield with decreasing 

specific growth rate in continuous flow systems. The reasons 

for this variation in cell yield are open to solution. 
. i 

Ramanathan and Gaudy (14) found yield to be constant during 
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the entire period of substrate removal and cell growth. 

This study was done with a heterogeneous microbial popula

. tion using glycerol as the carbon/energy source. It should 

also be noted that the initial cell concentration ~~as quite 

small, so that substrate removal was effected over a long 

period of time. Where a low S/X ratio is used, causing very 

rapid substrate removal, the yield is gree:.ter initially as 

substrate is removed from·suspension and stored by the 

micro-organisms for later use as .a c.srbon/energy source for 

synthesis (15). However, under the slower substrate removal 

conditions, Srinivasaraghavan (16) and Saleh (17) found that 

the batch values for cell yield obtained using seed from a 

continuous flow·reactor were quite similar to the observed 

yield in the continuous flow reactor. Both of these authors 

used heterogeneous populations and a glucose minimal medium. 

The results of the above studies suggest that the traditional 

explanations of the variation of. cell yield in continuous flow 

reactors questionable - at least those which imply a time 

dependent reaction such as predation, cell death,· or even 

cell maintenance. 

The range of values for the cell maintenance coefficient 

(kd}, as cited by Lawrence and McCarty (18), is 0.045 to 

0.18 day-1 • The values experienced by various resec.rchers in 

the Bioenvironmental Engineering laboratories at Oklahoma 

State University are also in this ra.nge. 

\_..rThe remaining major requirement of an activated sludge 

model is that it describe the rate of microbial growth and 



waste removal •. The relationship between microbial growth 

and waste removal is described by equation 5. If the rate 

11 

y = 9g5dt (5) 
d dt 

of one is known, so is the rate of the other if the cell 

yield is kno\'m. The major models to be discussed var'Y 

significantly with respect to the.reaction rates. The 

mathematical descriptions of the rates may be divided into 

two classes as noted earlier. The first class of activated 

sludge models assume first order, decreasing rate, substrate 
,/"'. ·---·-

reJJ!QVal. This rate is described by equation six or, in its 

integrated for~, equation seven. Equation six is a general 

( 6) 

(?) 

description of the rate. When applied to a complete-mix, 

continuous flow system; S becomes Se. Equation seven applies 

to batch and plug-flow reactors. 

Gaudy { 19), Eckenfelder ( 20), Wilson ( 21), and Wuhr

man (22) found linear substrate removal of specific sub

strates •. One of these authors, Wuhrman, assumed that a 

:g::;~udo-first-order removal rate would ensue with complex 

substrates {a mixture of organic compounds) when a non

specific measure of substrate concentration was used to 

measure substrate concentrc.tion remaining at various times 
' 



after the start of ·substr::~te removal. McCabe and Ecken-

. felder (23) assumed a declining growth phase in the acti

vated sludge process. During this phase of growth, the 

kinetics desc~ibed by equation six are assumed to apply. 

12 

The instantaneous substrate concentration is assumed to 

control the rate of substrate removal and microbial growth. 

These authors also assumed and found first order kinetics 

to apply with botu simple and complex substrates when a non

specific measure (COD) was used to measure substrate re

remaining. However, these authors also stated that simple 

substrates and a non..;specific measure of substrate would 

theoretically yield first order kinetics, simple substra~es 

and a specific measure of that substrate would theoretically 

yield zero order kinetics, and complex substrates with any 

measure of substrate concentration would yield some other 

order kinetics. Also, it was notmade clear why the 

declining growth phase. should begin at the start of a batch 

experiment at a high initial substrate concentration. Later, 

Tischler and ~ckenfelder (24) found zero order kinetic~ to 

occur with simple substrates using both specific and non

specific {COD and TOG) measures of the substrate concentra

tion. First order kinetics occured when the substrates were 

· mixed. This confl:Lcts with the findings and theorizations 

of McCabe and Eckenfelder. Chuboda {25), in a discussion 

of Tischler and Eckenfelder's paper, pointed out that apparent 

order of removal kinetics is related to S/X ratio and 

initial substrate concentration {~t similar S/X ratios). 

The difference between first order and zero order kinetics 



has nothing to do with declining growth, complexity of the 

substrate, or measure of substrate used. 

13 

It should be noted that first order kinetics are implied 

by the empirically useful,· discontinuous linear function 

relating specific growth rate or specific utilization to 

effluent substrate concentration proposed by Garrett and 

Sawyer (26). This relationship implies also that the effluent 

substrate concentration is a function of detention time and 

bio-mass concentration. In fact, various authors, (McCabe and 

Eckenfelder (23) and Rao and Gaudy (27), for example) have 

found removal rate in batch systems to be linearly related to 

bio-mass concentration. It has never been made entirely 

clear whether MqKinney (2g), who also uses first order, 

substrate removal kinetics, assumes the effluent substrate 

concentration to be a function of both bio~mass concentration 

and detention time or a function of detention time only. 

Goodman and ~nglande (29), in comparing ke·and Km, 

apparently interpret McKinney's model as if Km ·is a constant -

i.e., removal rate is independent of bio-mass concentration. 

Unfortunately, the activated sludge operating data presented 

by these authors to show that ~ is a constant rather than 

k8 (the bio-mass concentration dependent, rate constant), 

demonstrates the reverse. However, these authors interpreted 

said data as if it did support their contention. 

McKinney (28) and Go9dznan and .Englande (29) suggest that 

a good value of ~ is 15 hour-I (360 day-~}, while Eckenfelder 

.. suggests that the ke for readily degradable wastes will vary 
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· . -1 I 1 betwe\'in 0.001 and 0.002 hr (rng 1)- • 

The quantitative description of cell growth or substrate 

removal used in the second class of activated sludge models 
' ~ ,., ,...... ..-.. '. . -•... , - ,_ ' ...... _ ""'' -~-.. 

is the first order, increasing rate, microbial growth model 

of Ivlo.nod ( 1). The rate of increase (Jf microbial mass is 

described by equation 8. The integrated form of this 

9! dt = )lX (8) 

equation is equation 9. Equation 9 describes growth in 

ln Xt - ln X0 ( 9 ) )l:::; At 

batch systems and plug-flow systems. The specific growth 

rate is related to substrate.concentration by equation 10. 

(10) 

An alternate form of equation 10, based on specific substrate 

utilization rate (U} instead_o£ specific growth rate, is 

represented by equation 11. Equation 12 relates p and u. 

k s 
U = Ks + S (11) 

(12) 

The appropriate value for substrate concentration (S) in 

equations 10 and 11 is the initial substrate concentration 

(S0 ) when applied to batch systems and the effluent substrate. 

concentration (Se) when applied to continuous flow, complete 
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mi.x systems. 

The relationship between~ and.S was known to be curvi

linear by Garrett and Sawyer (26) and l~Cabe and Eckenfelder 

(23), but activated sludge modellers like Eckenfelder found 

the discontinuous, linear relationship betweenp and S to be 

of adequate precision for their purposes and more convenient 

for model development. Schulze (JO) found that the curvi

linear relationship of Teissier (32} fit the data obtained 

from a pilot plant, activated sludge system better than did 

x~loziod' s equation. Gaudy et al. (33) (34) found Monod' s 

equation a better fit. · In addition to providing a superior 

fit of available data, Monod's equation is much more con

venient and enables greater precision in determining the 

relevant constants than does Teissier's formulation. 

In the.early literature of both Microbiology and 

Sanitary Engineering it was assumed that exponential growth 

in batch reactors (described by f) could neither be attained 

at values of p less than Pm. nor could p be sustained for any 

len&;th of time. The values of Ks reported by Monod (1) were 

quite small. Although Monod (35) stated that f could be 

measured in batch reactors using various values of initial 

substrate concentration (S0 ) and that P.m and Ks c.ould be 

derived from the observed values of p. at the different values 

of S0 , he perhaps created some confusion when he suggested 

that the log growth equated to S0 occurred for a very brief 

period early in the substrate removal phase. Various re

searchers and engineers have since assumed that the observed 
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p varies instantaneously with the remaining substrate con

centration as it is removed. However, Gaudy et al. (36)(37) 

have shown that p does occur at values less than ?m when 

S0 is varied in batch reactors and that ?' once attained in 

a batch system, is sustained at a constant value for an ex

tended period of time - even after the substrate concentration 

has decreased greatly from S0 • Further, iff is calculated 

at various times during the removal of substrates, along 

with the substrate concentrationremainingat that instant; 

the calculated value of K5 will be much smaller than if ? 
is determined versus S0 , due to the loose coupling between 

f and s. ·The question arises as to which method of deter

mining K5 is correct. Using heterogeneous cultures with 

glucose minimal medium, Gaudy et al. ( 33)( 34) compared batch 

derived values of Jlm and Ks, using p and S0 , with the ob

served values of p. and S e (GOD)· from a. chemostat. ;The 

batch values for Pm and Ks were found to provide a reason

ably good fit of the chemostat data. 

The range 'of values for fm and Ks, using glucose mini

mal medium and a sewage-derived heterogeneous culture, report

ed by Gaudy and Gaudy ( J ) are 0.4 to 0.6 hour-1 and 50 to 

125 mg/1 respectively. Using seed drawn from a pilot plant, 

activated sludge reactor; Saleh ( 17), Esfandi ( 65), and 

Sririivasaraghavan (16) reported a wider range of values for 

these constants. The most notable variation was found by 

Esfa.ndi. This author found Ks values above 2000 mg/1. 

Although not noted in the above references, the authors 
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found extended lag periods to occur prior to the log growth 

phase. Es;fandi (65) found the lag period to range from 10 

to 12 hours to as much as 30 to 36 hours. The lag period 

generally encountered prior to the log growth phase, using 

seed from a rapidly growing system, usually lasts less than 

an hour or two. 

The values of flm and Ks reported by Peil and Gaudy (38) 

for a heterogeneous microbial culture grown on sewage were 

0.46 hour-1 and 52 mg/1, respectively. These values are, not 

dissimilar to those cited above for glucose. 

B. History of Activated ~ludge Design 

The activated sludge process was developed early in 

the twentieth century. In 1912, the practice of aeration 

in the presence of micro-organisms was carried over to 

England by Dr. G. J. Fowler after his visit to Lawrence 

Experimental Station in Massachusetts. Ardern and Lockett 

(39) developed the activated sludge process in England in 

1914. The process.was called the activated sludge process 

as it involved the production of an activated mass of micro-

· organisms capable of aerobically stabilizing a waste. These 

early processes were fill-and-draw, but later activated 

sludge plants were continuous flow processes with recycling 

of bio-mass. Parameters for design and operation of the 

activated sludge process were understandably crude early in 

this century. For example, the "Ten State Standards" (40) 

set minimum requirements for sewage detention time in the 



system and maximum BOD loading per .aeration volume. 

Unfortunately, these parameters have little to do with BOD 

removal and allow no prediction of sludge production in the 

activated sludge process. 
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It was not untill the 1940's that Monod (1)(35) published 

his papers describing bacterial growth. Teissier {32) had 

earlier published a curvilinear relationship between cell 

growth rate and substrate concentration as represented in 

equations 13 and 14. Equation 14 is the integrated form of 

{13) 

(14) 

equation 13 (between the limits, 0 and S or p). 
Continuous flow models for microbial gr.owth began with 

~lonod { 41) and Novick and Szilard ( 42), in 1950. Both of 

these models were based on Monod' s kinetics (1)(35). Herbert, 

Ellsworth, and Telling (43) and Herbert (44) produced slightly 
. . . 

more refined models similar to those of Monad and Novick and 

Szilard. Herbert (45) and later Pirt (46) added constants 

describing cell maintenance {kd) and substrate needed for 

cell maintenance requirements (m), respectively. These two 

constants are related by equation 15. 

( 15) 

The microbiological concepts underlying the activated 

sludge process began to be investigated in the early 1950's. 

In 1951, Helmers et al. ( 4 7) reported that cell growth was 
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proportional to BOD removal. In the same year Heukelekian et 

al. (48) proposed an empirical equation reiating the sludge 

accumulation rate, sludge production due to BOD removal, and 

the oxidation of solids. In 1952, Hoover and Porges (49) 

presented an empirical formulation describing the elemental 

composition of activated sludge micro-organisms. This 

formula is often quoted and used today. The ratio o£ COD 

to dry cell mass for this formulation is approximately 1.42. 

In 1952, Garrett and Sawyer (26) and later McCabe and 

Eckenfelder (27) used a discontinuous linear function to 

describe the relationship between growth rate and substrate 

concentration. Garrett ·(50) applied this linear relation

ship to the operation of an activated sludge plant. 

In 1955, EckEmfelder and O'Conner (51) proposed a 

mathematical model of the activated sludge process. Eck

enfelder's early modelling was based on batch pilot plant 

studies; while his later efforts were based on contin~ous 

flow pilot plant studies (52) ( 5.3). Eckenfelder' s model 

follows the discontinuous linear function of Garrett and 

Sawyer (26). That is, first order, decreasing rate, sub

strat.e removal is assumed. 

In 1962, 1-icKinney (28) proposed a mathematical mod·el for 

a complete mixing activated sludge system.-·· In this model, 

McKinney as·sumed a great many "constants" describing his 

conception of what. occurs l.n the activated sludge process. 

MCKinney's model apparently assumed effluent substrat~ con

centration to be dependent on waste detention time and in

dependent of the bio-mass concentration. 



20 

Busch (54)(55) developed what is essentially an empir

ical design procedure, requiring data from both an activated 

sludge pilot plant operating under non-steady state con

ditions and batch studies. 

Weston et al. {56)(57)(58) have proposed a mathematical 

model and design procedure Q,ased on data obtained from bio

mass developed in fill and draw reactors. Batch experiments 

are performed on the acclimated bio-mass at various S/X 

ratios. 

Schulze {JO) proposed and tested and activated sludge 

model using the kinetic relationship of Teiss~er (.32). 

Schulze used continuous flow reactors. 

Jenkins and Garrison (59) proposed an activated sludge 

model based on Monod kinetics (1). · Lawrence and McCarty (18) 

presented a more complete development of this activated sludge 

model. Sherrard and Schroeder (60)(61) presented a model 

which differed from that of LaWrence and ~mCarty in that the 

observed yield {Y0 ) was used in place of the true yield (Yt) 

and cell maintenance coefficient (kd). 

Gaudy et al. (34){62)(6.3) have proposed both a mathe

matical model and a modified activated sludge system. The 

activated sludge model of Gaudy is based on Monod kinetics 

(1). The modification to the. activated sludge process 

proposed by Gaudy and co-workers is an aerated sludge con

sistency tank between the secondary clarifier and the acti

vated sludge tank. 
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\,, /' 
\J3. The Major Activated Sludge Models 

All of the activated sludge models to be discussed in 

this section of this chapter assume complete mixing in the 

bio-reactor and steady state conditions in the effluent 

substrate concentration, mixed liquor suspended solids con

centra,tion, and sludge wastage rate. The models to be dis

cussed are those of .Eckenfelder (52) (53), McKinney (28) (64), 

Lawrence and McCarty (18), and Gaudy (34)(62)(63). The 

notation and development of the models used here is from 

Kincannon and Gaudy ( 2 ) • The models, as presented here, 

are faithful to the presentations by the original authors, 

except for McKinney's model. The many constants in MCKinney's 

model have been dropped and kinetics similar to Eckenfelder's 

model have been assumed. In McKinney's model the effluent 
~"· 

substrate concentration was apparently assumed to be depend

ent only on hydraulic detention t_ime and independent of ~ludge 

conc.entration. In all of the other models the effluent sub-

strate concentration is a function of both detention time 

and sludge concentration. A diagra,m of the activated sludge 

system is presented in Figure 1~.//rhe substrate and sludge 

mass balances are drawn around the entir~ system for all 

models; except those of Gaud_y's model, which are drawn 

around the bio-reactor. Unlike the other models, Gaudy's 

model makes the assumption that the substrate concentration 

in the sludge recycle line is zero. 

The materials balances for the various models are pre-
' sented in Tables I and II. Table I presents the materials 



Figure 1. Flow Diagram of Typical Activated Sludge 
Process 
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balance for substrate, while Table II presents the materials 

balance. for sludge or bio-mass. These balances are drawn 

around the system shown in Figure l. The net mass rate of 

·change is equal to zero at steady state. X0 is assumed to 

be equal to zero. The design and operational equations for 

each model may be derived for each model from the materials 

balance equations in Tables I and II. See Kincannon and 

Gaudy { 2) for the relevant design equations • 

• ' _,. ••••••• 1'-· '' 



CHAPI'ER III 

MATERIALS AND METHODS 

In order to observe the values of the various kinetic 

constants, bench scale activated sludge units were operated 

over a range of sludge ages (or net specific growth rates). 

At each sludge age, appropriate tests were conducted to allow 

evaluation of the various kinetic constants under contin

uous flow conditions. At each sludge age, some of the daily 

waste sludge was placed in batch reactors and various tests 

were performed with the sludge t.o allow evaluation of the 

kinetic C:onstants in the batch reactors. 

A. Laboratory Apparatus 

1. Continuous Flow Apparatus 

A diagram of the experimental apparatus is presented in 

Figure 2. 

Two reactors were used in this study. The total volumes 

of the reactors were 8.1 and 8.4 liters. The volumes of the 

clarifier and aeration chamber of each of the reactors were 

2.2, 2.2, 5.9, and 6.2 liters •. The reactors were identical 

in design. Both reactors were rectangular in shape, had 

removable baffles separating aeration chamber and clarifier, 

and were constructed of clear plexiglass. 

27 



Figure 2. Laboratory Activated Sludge Unit 
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A continuous feed rate of between 16 and 18 liters per 

day was supplied to the reactors via a pump. The feed rate 

was monitored and adjusted daily. The daily rate could be 

monitored, as 18 liter bottles - made of clear glass and 

marked in one liter graduations - were used as feed reser

voirs. If the pumping rate was incorrect, a graduated 

cylinder and timer were used to adjust the pumping. Flow 

from the reactor to an effluent reservoir was accomplished 

via gravity flow. 

Air was supplied to each reactor through two sintered 

glass diffusers. The air flow was monitored via air flow 

meters and maintained at 4 ! 0.5 liters per minute. A glass 

cotton filter was placed between the air diffusers and the 

air outlet to prevent any oil in the airlines from entering 

the experimental reactors. 

The pH of the system was monitored daily with a pH 

meter. 'rhe pH of the system, both influent and effluent, 

was maintained at 7.2 ±. e.l by means of a phosphate buffer 

system. 

The temperature was monitored daily with a laboratory 

thermometer. The temperature in the reactor stayed at 22 

± 1 °C. 

2. Batch Apparatus 

Two different types of batch apparatus were used during 
.. 

the course of this study. The first type of batch reactor 

consisted of 500 and 1000 mililiter erhlenmeyer flasks. These 
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were kept aerobic and mixed with diffused air supplied through 

sintered glass diffusers. The second type of batch reactor· 

consisted of 200 to 250 mililiter flasks. These were kept 

mixed and aerated via a shaker operating at a steady rate of 

130 cycles per minute. 

B. Feed Solution 

Four stock·solutions were made up in concentrated form. 

·The composition of the stock solutions was as indicated in 

·rable. III. The chemical composition of the feed for the 

continuous flow reactors isalso indicated in Table III • 

. The feed for the various batch experiments was obtained by 

diluting the stock solutions as necessary. The same pro

portions of the stock solutions were used.in the batch ex

periments as was used in the continuous flow reactors. 

Where yeast extract was used as a carbon/energy source, only 

phosphate buffer was added (in the same COD/buffer ratio 

. used with glucose}. Where yeast .extract and glucose ·were 

used together, other stock solutions were added in the same 

ratio of glucose concentration to concentrations of other 

nutrients as was used in· the continuous flow reactors. 

c. Experimental and Analytical Procedures 

The micro-organism seed was taken from the continuous 

flot"t reactors of Esfandi (65). Additional seed was added 

from the primary clarifier overflow of, the Stillwater 

municipal treatment plant. The unit was operated at de

creasing sludge ages from 11.5 days to 2.4 days. Seed for 
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'rABLE III 

COMPOSITION OF SYNTHETIC WASTEWATER 

Solution Component Stock Volume Feed 
Solution per Liter Cone. 
Cone. of Feed 

no. (g/1} (ml/1) {mg/1) 

1 glucose 143 2.2 318 

.2 (NH4)2so4 72 2.2 158 

3 1~~so • 
7h2o 

15 2.2 33 

FeC13 •6H20 0.15 0.33 

cac12 1.5 3.3. 

MnS04•HzO 1.5 3.3 

4 K2HP04 215 2.2 473 

KH2Po4 28 62 

5 Tapwater 991 
·- .-------

the 16.7 day sludge age was drewn from another continuous 

flow reactor operating at a sludge age of approximately• 

· seven days. This was done as it was felt that data .for 

an additional sludge age, higher than 11.5 days, was needed. 

However, the original sludge had acquired characteristics at 

a low sludge ag'e that made. it unuseable {bulky and very 

sticky) and these characteristics persisted when an attempt 

was made to increase the sludge age to the 16 day sludge age. 



Sludge age (or net specific growth rate} was selected 

as the independent variable for this study. The selected 

sludge age was maintained by wasting of microbial mass from 

the continuous flow reactor. This was accomplished daily 

at about the same time. The baffle was removed and the 

contents of the clarifier and the aeration chamber were 

mixed prior to wasting. At the 2.4 day sludge age, system 

effluent v1as returned to the reactor in a quantity equal 

to the volume of sludge removed from the reactor. The 

average total microbial mass in the reactor during each 

24 hour period (median of the daily high and low values 

of microbial mass in.both the clarifier and aeration basin 

of the reactor) v1as used to compute the sludge age and 

specific utilization r·ate. 

Biological solids concentrations were monitored in the 

continuous flow reactors using Itillipore filters having a 
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0.45 micrometer pore size, as described in Standard Methods 

(66}. This method was also used, where required, for moni

toring biological solids concentrations in the batch ex

periments. . \'lhere use of this method for determining suspend

ed solids concentrations was impractical in the batch 

experiments, Absorpance readings at a wavelength of 600 

nanometers were used. The approximate ratio of solids con

centration to Absorbance vias found to be 1050 miligrams/ 

liter. per Absorbance unit. While there seemed to be some 

variation in this ratio with differingmicrobial suspensions, 

the ratio seemed to be relatively constant up to an Absorbance 

of approximately 0.8. 
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Substrate concentration was measured by means of the 

Chemical Oxygen Demand Test ( 66). · . ~'/here a specific test for 

soluble carbohydrate concentration was required, the Anthrone 

Test was used ( 67h 

D. Data Analysis 

Analysis of continuous flow data was accomplished using 

th.e complete mix equations presented below. The median sludge 

concentration (XA) was determined using equation 16. The 

XA = XF + Xo (16) 
2 

specific utili,za tion rate ( U) was determined from aqua tion 17. 

Sludge age or net specific growth rate was determined via 

aqua tion 18. The observed yield wa.s determined via equation 

(18) 

19. Individual values of the substrate removal rate coeffi~ 

c ient ~ ~, \'I ere determined with equation 20. S in this e 

(19) 

case was the effluent COD. The specific substrate removal 

(20) 
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rate, ke·' were determined with equation 21. The value of ke 

{bCOD) was determined by plotting U versus Se { where Se is 

CODe). The slope of the line of best fit through the points 

is ke., while the intercept .of the Se axis is the non-biode

gradeable COD (CODmin). The bCOD at eac~ value of U can be 

determined from the equation below. This method is from 

.COD= CODe- CODmin (22) 

Eckenfelder (52) and this value of ke (using b.OOD, rather than 

CODe) is the one used in Eckenfelder• s design method. The · 

value of Km (bCOD) at each value o£ U can be determined via 

equation 20; above. The true yield and cell maintenance 

coefficient were determined graphically via the relationship 

presented in the equation. below. The values o£ k (and )lm) 

and Ks were determined from a Lineweaver-Burke plot of the 

Monod equation, using the continuous flow values of U and 

e.ffluent bCOD. 

The procedures used in the batch experiments varied 

considerably, as did the mathematical analyses used. In 

order to alleviate any confusion as to which mathematical 

analyses were used with which experimental conditions, the 

r·elevant mathematical analyses will be presented along with 

the relevant results in the "Resultsn chapter·of this study. 



CHAPI'ER IV 

RESULTS 

The results of this study are presented in this chapter. 

The e>bsery~d_operational parameters of the continuous flow 

r_eactor are presented first in order to provide a basis for 

evaluation of the batch reactor data. The operational 

parameters of_ interest are the constants: Yt, kct, Jlm . (or k), 

Ks, ke, and ~· Since the continuous flow reactors are 

small-scale simulations of the activated sludge process (a 

continuous flow process); the values of the constants.deter

mined for the continuous flow reactors are the preferred or 

control values for the various constants, against which the 

batch data will be compared. The batch reactor data are 

presented in the following order: first, data from the sub

strate removal experiments; second, data from the various 

growth rate determinations made in shaker flasks; and third, 

batch yield data. \The continuous flow data are .represented, 

where appropriate, with the batch reactor data for ease of 

·. compari.son .• 

A. Continuous Flow Data 

The mean values of the observed and calculated operating 

parameters for the continuous flow reactor are presented in 

36 
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Tables seven & eight. The remainder of this section of this 

chapter consists of graphic presentations of the data con

tained in the above tables. 

Net specific growth rate is plotted versus specific 

utilization rate in Figure 3. The true cell yield and cell 

maintenance coefficient derived from Figure 3 via linear 

regression are 0.63 and 0.056 respectively. All of the major 

activated sludge design models ~ McKinney, Eckenfelder, 

Lawrence and McCarty, and Gaudy - employ these two constants 

and all employ a graphic method for determination of these 

constants similar to Figure 3. Equation 23 describes the 

relationship presented in Figure 3. 

The specific utilization.rate is presented versus effluent 

COD concentration in Figure 4. The graphic presentation in 

Figure 4 is from Eckenfelder's design procedure for determin

ation of ke. The relevant equation is presented below. 

·(24) 

The slope of the line through the plotted values is Eaken

felder's substrate removal rate constant (ke) and '1/Tas found 

to be 0.0506 day-l(mg/1)·1 via linear regression. The point 

of intersection of the line with the x-axis is the theoret

ical minimum effluent COD. This value was found to be 27.4 

mg/1. The difference between this value and observed effluent 

COD values is the effluent bCOD. The bCOD is the effluent 

substrate concentration used in Eckenfelder's design proced• 

ures. The effluent bCOD will be used later in this study. 



Figure 3. Net Specific Growth Rate Versus Specific 
Substrate Utilization Reite 
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Figure 4. Specific Substrate Utilization Rate Versus 
Soluble Effluent COD 
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Eckenfelder's design procedure employs only a single 

value for ke' derived via the method described in the pre

vious paragraph. However, multiple values of ke can be 

calculated via equation 25, where Se is either effluent bCOD 

or observed effluent COD. The calculated values of Ecken-

(25) 

felder's constant are presented versus sludge age in Figure 5. 

The values of Eckenfelder's constant in the upper portion of 

Figure 5 were computed using the bCOD values for Se (CODmin 

minus the observed effluent COD).. These values of ke are 

similar to each other and are related to the value found in 

the previous figure. The mean for these values of ke is 

0.056 day-l{mg/1)~1 • The values for the substrate removal 

constant plotted in the lower portion of Figure 5 were cal- . 

culated using the observed effluent COD values for Se and 

would not normally be considerec (in Eckenfelder's design 

procedures). However; these values are presented .here as 

they wi],l '9e compared to similar values obtained in the batch 

experiments later in this study. These latter values of ke 

show a tendency to decrease with increasing ec. 

The ~alculated values of McKinney's substrate removal 

constant at each sludge age are presented in Figures 6 and 7. 

These constants were calculated via th~ following equation: 

(26} 



Figure 5. Specific Substrate Removal Constant (ke) 
Versus Sludge Age 
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Figure 6. Substrate Removal Constant (Km, COD) Versus 
Sludge Age 
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Figure 7. Substrate Removal Constant (Km, bCOD) Versus 
Sludge Age 



00£ ooz 001 
,_nF?p ((oo~q) w>i 



The values of Km in Figure 6 were calculated using the 

effluent COD concentration for Se in equation 26, while the 

values in Figure 7 were calculated using the effluent bCOD 

for se in equation 26. 
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The reciprocal of the specific utilization rate is 

presented versus the reciprocal of the effluent bCOD in 

Figure 8. This figure presents a linear form of lawrence and 

McCarty's kinetic equation relating U to Se• This plot can 

be used to determine k, Ks, and Pm {where Pm is related to k 

via equation 12). The c~nstants k and Ks are employed in 

lawrence and McCarty's design model. The constantspm and Ks 

are employed in Gaudy's design model. The line of best fit 

in Figure $ was derived via linear regression. The maximum 

specific substrate utilization rate {k) and the substrate 

saturation constant {Ks) were found to be 3.15 day-l and 

54.8 mg/l respectively. The maximum specific growth rate 

(,Urn) was found by multiplying k by the value of the true cell 

yield {Yt) derived in Figure 3. The value of the maximum 

specific growth rate is 2.00 day-l or 0.0833 hour-1• 

B. Batch Reactor Data 

1. Substrate Removal Experiments 

The experiments to be reported in this section con

sisted of measuring the soluble COD remaining at various 

times during the course of substrate removal in batch reactors. 

These experiments were performed with sludge drawn from the 

continuous flow reactors at each of the five sludge aves. 



Figure 8. Inverse of Specific Substrate Utilization 
· Rate Versus Inverse of Soluble Effluent 

Substrate Concentration 
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The S/X ratios were sufficiently small so that the quantity 

of new cells produced from the COD removed was a fractional 

portion of the total micro-organism population in the batch 

reactors at any time. For both the above reason and because 

. the cell yield under these conditions was unknown and un

measurable, the specific substrate removal constant (ke) was 

calculated using the initial sludge concentration. Later in 

this section of this chapter, batch yields found under higher 

S/X ratios were used to estimate specific growth rates. 

A typical set of substrate removal curves (8c=4.S days) 

is sho\~ in Figure 9. As the Eckenfelder and MCKinney models 

assume first order, decreasing rate kinetics; a semi-log plot 

was used to find Y~ and ke. The relevant equation is equat

ion 7. In addition to the removal rate constants calculated 

using the observed COD values; ~ second set of removal rate 

constants were derived, based on bCOD. This was done because 

the continuous flow values of Km and ke reported in the pre

vious section of this chapter varied, depending on whether 

COD or bCOD values of effluent substrate concentration were 

used to. calculate removal rates. The bCOD values for Km and 

ke were derived by finding the time to reach 28.4 mg/1 COD 

remaining (where the minimum achievable effluent COD is 27.4), 

assuming that 1.0 mg/1 bCOD remained at this point, and 

applying equation 7 to find the new value of Km• The values 

for Km are presented versus initial sludge concentration in 

Figure 10. These values were derived from the previous 

figure. The upper line is based on COD removal and the slope 



Figure 9. Batch Substrate Removal Experiment 
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Figure 10. Substrate Removal Constant {Kzn) Versus . 
Initial Sludge Concentration (From Fig-
ure 9} · 
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of this line is k (batch, COD). The lower line is based on 
e 

bCOD removal and the slope of this l:ine is ke (batch, bCOD). 

The remainder of the COD removal data (for other 8c's) will 

be found in Table IX. 

The values of ke (batch) for all sludge ages are pre

sented in Figure 11. The uppermost line represents the 

values of batch ke calculated on the basis of bCOD as ex

plained in the previous paragraph. While there is some 

fluctuation in these values of ke' there seems to be no 

systematic variation of ke with varying 9c; i.e., ke is a 

constant. The middle line represents the values of batch 

ke found using COD. Again, there. seems to be no systematic 

variation of these values of ke with varying 9c• The lowest 

line represents the batch ke values calculated on the basis 

of bCOD plus CODmin (see Figure 12). These values of ke 

· represent the slope of a line from the origin to the rele

vant point on line B. These values dova.ry systema.ti.cally 

with ec; i.e., ke decreases with increasing ec •. · The value of 

Se (bCOD plus CODminl in this instance is an artificial value 

for effluent COD, which produces a relationship between U and 

Se qualitatively similar to that in Figure 4. . The predicted 

values for effluent COD, in this case, approach CObmin (as do 

the observed continuous flow, effluent COD's) rather than 

zero. (as do the effluent COD's predicted without consideration 

of CODmin). 

The values of Se predicted by the ke values presented in 

Figure 11 are presented versus ~pecific substrate utilization 



Figure 11 •.. Batch Specific· Substrate. Removal Constant 
(ke) Versus Sludge Age 
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F~gure 12. Specific Substrate Utilization Rate Versus 
Soluble Effluent Substrate Concentration 
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rate (U) in Figure 12. The slope of.the line through the 

·origin {line A) is approximately equal to the mean batch ke 

calculated using observed COD removal. The slope of the line 

which intersects the x-&xis at 27.4 (CODmin) is equal to the 

mea.n value of the batch ke calculated using bCOD removal. 

The values for the third type of batch ke would be equal to 

the slopes of lines from the origin to the points along line 

B. 

· In Figure 13, the three types of batch ke are presented 

versus the appropriate continuous.flow ke• The ratio of ke 

(continuous flow, COD) to ke (batch, bCOD+cODmin) is approx

imately 1.3. Since ke (batch, COD) is essentially a constant, 

. while ke (continuous flow, COD) varies with U or ec; there is 

no relationship between ke (batch, COD) and ke {continuous 

fiO\'l, COD). The ratio of ke (continuous flow, bCOD) toke 

(batch, bCOD) is approximately 1.9. This relationship is 

presented in the right side of Figure 13. Both of these 

values of ke·are essentially constant, resulting in a cluster 

of points. 

In Figure 14, specific substrate utilization rate is 

presented versus the effluent substrate concentration for 
. . 

both the continuous flow reactor and the batch reactor (ke, 

batch and continuous flow, are bCOD values). Since the two 

ke values differ by a factor of approximately 1. 9 (as mention

ed in the· above paragraph), the Se values ( bCOD) at each U 

vary by approximately the same factor. · The batch values of 

ke. (bCOD) predict an effluent Se at each U approximately 



Figure 13. Continuous Flow Specific Substrate Removal 
Rate Constant Versus Batch Specific Sub
strate Removal Rate Constant 
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Figure 14. Specific Substrate Utilization Rate Versus 
Soluble Effluent Substrate Concentration 
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double the bCOD values predicted by the continuous flow 

values of ke (bCOD). 

67 

The values plotted in the above figure are replotted in 

Linewea.ver-Burke form in Figure 15 (except that .bCOD is plot

ted rather t~an bCOD+CODmin>• The maximum specific growth 

rate {maximum specific utilization rate) and substrate sat

uration constaot for these batch experiments are 0.885 day-1 

{1.40 day-1 ) and 41.6 mg/1 respectively. The continuous 

flow values from Figure 8 are included in this figure for 

comparison. 

The observed and predicted values of effluent substrate 

concentration {from the previous figure) at each sludge age 

are presented in Figure 16. The Se (bCOD) predicted from the 

batchPm and Ks are again approximately double those predicted 

by the continuous flow Pm and Ks• 

The observed specific growth rates were calculated for 

the first thirty minutes of growth and substrate removal for 

all substrate removal curves. Equation 26 was used to calcu

late the specific growth rates. The means of the calculated 

(26) 

where, 

= lnXt - lnXo 
p. t (27) 

and, 

(2$) 



--------------- --

Figure· 15. Inverse of Specific ·Substrate Utilization 
Rate Versus Inverse of Soluble Effluent 
Substrate Concentration 
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Figure16. ·Effluent Substrate Concentration Versus 
Sludge Age 
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specific· growth rates (~t<JO minutes) at each continuous 

flow, net specific growth rate ar.e presented in Figure 17. 

The overallmean specific growth rate for·all substrate re

moval experiments is 0.067 hour-1 or 1.62 day-1. Since S0 

?2 

is approximately 350 mg/1. COD, these values of p may reasonably 

be interpreted as approximations of Jlm• 

'l'he substrate removal curves at a sludge age of 11.5 

days extended to a sufficiently low level of remaining COD 

to allow recovery of the maximt.un specific growth rate and 

substrate saturation constant. The specific growth rate was 

calculated for successive COD sampling intervals via equation 

26 and plotted versus the median soluble COD remaining during 

the relevant· sampling inte.rval (the· mean of S0 and St) in 

Figure 18. The maximum specific growth rate and saturation 

constant; for all four substrate removal curve$, are 0.0671 

hour-1 {l.ol day-1)· and 89 mg/1, respectively. This value of 

1-lm is, coincidentally, ·equal to themean specific growth rate 

for all substrate removal curves at all 8c' s· ·(see previous 

paragraph). The effluent substrate predicted by these values 

is compared with the observed continuous flow values of 

effluent bCOD in Figure 19. 

·2. Specific.Growth Rate Experiments 

Using seed drawn directly from the continuous.flow 

react,ors, small scale growth experiments were conducted. 

These experiments were conducted using 200 to 250 mililiter 

erhlenmever flasks~ shaken at 130 cycles/minute. The biomass 
. . 

concentration vms monitored via Absorbance e.t a wavelength of 



Figure 17. Mean Initial.Speci.fic Growth Rate Calculated 
.from Substrate Removal Experiments Versus 
Continuous·Flow Net Specific Growth Rate 
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Figure 18. Inverse_of Specific.Growth·Rate During 
Sampling Interval Versus Inverse of 1'·1edian 
Soluble COD Remaining in Sampling Interval 
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Figtire· 19. · Soluble Effluent Substra~e Concentration 
Versus Sludge Age (From Figure 18) 
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600 nanometers. 

It was found that a rather long lag period, of variable 

length,· occurred prior to logarithmic growth. The results 

of one of the many growth experiments is presented in Figure 

20. The lag period, in this case, was approximately 24 hours. 

The seed for this experiment was drawn from a continuous· 

flow reactor operating at a sludge age of 16.7 days. '£he 

results of the other experiments performed at other sludge 

ages are presented in tabular form in Table X in Appendix.· 

Figure 21 is a Lineweaver-Burke plot of the data from Figure· 

20. It should be noted from this figure that the value of 

Ks seems to be ·dependent on the initial seed concentration 

(X0 ). 'rhe values for observed Ks ancl X0 for all growth 

experiments (at the end of the lag period) are presented in 

Figure 22. Equation 29, derived v.ia linear regression, is 

· an empirical description of the observed relationship be

tween Ks and X0 (both as mg/1). The observed values of Jlm 

(29) 

for all experiments are presented versu~ X0 in·Figure 23. 

· 'l'he mean Jlm is 0~ 275 hour-1 • There ~as ·a systems tic vari-
, 

~tion in P.m with varying X0 • The values for predicted Se 

(usirig,um=0.275 hour-1 , Ks::;;365 mg/1, kd=0.056 day-1 J are pre

sented in Figure 24, along with the observed effluent bCOD 

for the continuous flow .react~rs. Figure 25 presents both 

length of lag period (for those experiments where it could be 

determined) versus·ec and X0 versus the Absorbance at·the 



Figure 20. Growt.h at End of 11lag Period" - Absorbance 
Versus Time · <· 
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·Figure 21.· Inverse of Specific Growth Rate Versus 
Initial Su.bstrate Concentration (COD) -
From Figure 20 
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Figure 22. Substrate Saturation Constant Versus.Ini
tial· Biomass Concentration 
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l<,igure 23; Maximum Specific Growth Rate Versus Initial 
Sludge Concentration 
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Figure 24. 

iiii 

Effluent Soluble Substrate Concentration 
Versus Slude;e Age (From Figures 22 and 23) 
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Figure 25. Variation in Lag Periods: 
i,. lag Period Versus Sludge Age 
B. Initial Biomass Concentration Versus 

· Absorbance at End of Lag Period 
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end of the lag period (start of.log growth period). The 

empirical equations, derived via linear regression, from this 

data are presented below. The significanceof the first 

equation is evident. The units for t1 and ·ec are hours and 

days, respectively. The second equation suggests that at 

the start of log growth, the cell mass had slightly more than 

doubled (IV2.4X0 ). The units for A1 and X0 are Absorbance· 

units and mg/1, respectively. X and A are related by equation 

32. · The onset of the log growth phase (or the end of the lag. 

A1 = 0.00199 X0 + 0.0245 

X/A ~ 1050 mg/1 / O.D. unit 

(30) 

(31) 

(32) 

period) was accompanied_by an obvious change in physical 

character of the biomass. The cells suddenly became quite 

sticky. The cells formed clumps around the water line, 

which had to be physically scraped off the walls of the 

·.shaker flasks back into suspension at regular intervals. 

Since the cells drC:l.wn from the continuous flow reactors 

existed in a medium which probably contained various growth 

factors not present in the glucose minimal medium and very 

little glucose, two other experiments were performed. Yeast 

extract was used as the sole c-s.rbon/energy source in one 

batch gro\'lth experiment and glucose/yeast extract (10/1) was 

used in the.other experiment. Lineweaver-Burke plots of the 

results of these two-experiments are presented in Figures 26 



Figure 26. Lineweaver-Burke Plot of Growth at End of 
Lag Period with Yeast Extract as ~arbon/ 
Energy Source . 
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and 2'7. The seed for these·. experiments was drawn from the 

continuous flow reactor operating at a ec of 11.5 days. As 

with the growth experiments with glucose, a lengthy lag period 

was encountered in these two g~owth experiments (12 to lS 

hours). It _should also be noted that Ks varied with X0 in 

these experiments. 

As noted in Figure 25, the cell mass had slightly-more 

than doubled at the onset of log growth. In order to ascer

tain what was occurring during the lag period; Absorbance, 

soluble COD, and soluble carbohydrate were monitored for 

approximately orie doubling time from time zero. Absorbance 

· was monitored continuously in order to ascertain when one 

doubling time was reached. Soluble COD and carbohydrate were 

calculdted .for t 0 and td. A summation of the observed growth 

rates are presented in Table IV. No Pm or Ks could be obtain

ed from the observed growth rates, although linear regression 

was used to calculate p. for all conditions. There seemed to 

be no systematic Variation in r Vlith S0 , X0 , Or sludge age 

of micro-organism seed. The mean p is 0.103 hour-1,. with 

··values ranging from 0.0675 to 0.1559. The values for p are 

octually more similar than they appeo.r·to be in Table IV. 

'l'he <:.lPPclrent variation is probably due to the limited number 

of points available for determination of each f• Figure 28 

demonstrates this graphically via example. The mean amounts 

of soluble COD removed during the doubling periods are pre

sented in Figure 29. The mean change$ in carbohydrate 

concentration are presented in Figure 30. Figures 29 and 30, 



Figure 27. Lineweaver-Burke Plot of Growth at End of 
Lag Period Using Glucose/Yeast Extract in 
Ratio of 10/1 as· Carbon/Energy· Source . 
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TABLE IV 

SPECIFIC GROtlTH RATES DURING FffiST DOUBLING TIME 

Initial Initial Substrate Cone. 
Bio-mass (mg/1 glucose as COD) 
Cone. (mg/1} 1000 600 400 200 

25 0.0675 0.0908 0.1204 0.1317 
50 0.0897 0.1003 0.1029 0.1470 
100 0.1038 0.1006 0.1185 0.1094 

ec = 2.4 days-1 ? = 0.1069 hours-1 

25 0.1176 0.1192 0.1559 0.1475 
50 0.0944 0.1119 0.1222 0.1027 
100 0.0903 0.0985 0.0840 0.0951 

ec ;; 4.8 days'"'1 p = 0.1116 hours -1 

25 0.0995 0.0941 0.0835 0.0967 
50 0.0885 0.0921 0.0865 0.0871 
100 0.0928 0.0918 0.0924 0.0878 

ec = 7.4 days-1 ? = 0.0911 hours -1 

Overall ~~an? = 0.1032 hours-1 

\.0 
OJ. 



Figure 28 •. Absorbance Versus Time for First 'Doubling 
Period 
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Figure 29 •· Soluble COD Removed During First Doubling 
Period Versus Initial.Soluble COD Con
centration 
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Figure JO. ~oluble Carbohydrate Removed During First 
Doubling Period Versus Initial Soluble 
Carbohydrate Concentration 
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unlike the values of p, seem to indicate a Nonod-like re

lationship between growth (substrate removal) and initial 

substrate concentration. The amount of substrate removed is 

also dependent on X0 • The approximate value for the mean 

·cell yield, calculated on the basis of ~A and ~COD, is 0.55. 

In order to establish whether a ?m and Ks could be de

termined for the lag period, two additional experiments were 

performed using seed again dravm from the continuous flow 

reactors (at a ec of 2.4 and 16.7 days). The Absorbance was 

monitored from time zero to the apparent end of substrate 

removal. Linear regression was used to obtain values for ~· 

The calculated values for Pro and Ks, at 8c's of 16.7 and 2.4 

days, are 0.0543 hour-1 , 7.6 mg/1, 0.0660 hour-1 , and 7.3 

mg/1 respectively. The predicted values of se, using ?m and 

Ks equal to 0.0543 hour-l and 7.6 mg/1 respectively, are 

compared with the observed values of effluent bCOD for the 

continuous flow reactors in Figure 32. 

There seemed to be two distinct grov-rth phases. The 

first phase (the "lag period 11 ) seemed to have a flm less than 

0.1 hour-1 , while the second phase (after the 11 lag period 11 ). 

seemed to have a Pro equal to or greater than·o.2 hour-1 • 

However, no o.ppa.rent increase in p was observed during the 

course of the experiments reported in the previous paragraph. 

The initial substrate concentrations were all below 600 

mg/1 COD. For this reason, an experiment was performed in 

v.rhich Absorbance v1as monitored over an extended period of 

time. The initial substrate concentration was 2000 mg/1 



Figure Jl. Lineweaver-Burke Plot of Growth During ''Lag 
Period 11 
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Figure 32. Effluent Soluble Substrate Concentration 
Versus Sludge Age (From Figure 31) 
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glucose (as COD). The results are presented in Figure 33. 

The soluble COD and suspended solids concentration were 

determined at the times indicated by the arrows. The ratio 

of X to A at A=O.S5 was 1000 - similar to the r~tio observed 

at lower levels of X and A. No increase in p after an ex

tended period was observed. The observed F remained essent

ially constant at approximately 0.045 hour_1.for 34 hoursi 

except that at the beginning of growth and substrate re

moval, the apparent p was somewhat greater than it was later. 

The yield will be presented later. 

An additional set of growth experiments were carried out 

at 9c's of 2.4 and 16.7 days.· Extra.flasks containing high 

substr~te concentrations (lOOOand 2000 mg/1 glucose as COD) 

were incubated along with the growth experiments done to 

determine the growth constants for growth during the log 

growth phase (after the lag period). At the peak of growth 

in these flasks, these flasks were used as a source of seed 

for an additional set of growth experiments. A Lineweaver

Burke plot for the results of this "second generation" growth 

experiment is presented in Figure 34. The original seed for 

this experiment was grown at a 80 of 16.7 days. fm arid Ks 

are, :respectively, 0.200 hour.:.l and 85 mg/1. The "second 

generation -t values of Jlm and Ks for seed. drawn originally 

from the continuous flow reactor at a ec of 2.4 days are 

0.210 h~ur-1 and 37 mg/1, r-espectively. The Se predicted 

from the constants for a ec o~ 16.7 days are compared with 

the observed values of Se (bCOD) for the continuous flow 



Figure 33. Growth During "Lag Period 11 
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Figure 34. Lineweaver-Burke Plot o£ 11Second Generationn 
Growth 
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reactor$ in Figure 35. 

The cell yield was calculated for the continuous flow 

reactors (Y0 ), in batch reactors during the "first genera

tion" growth (YB)~ and in batch reactors during "second 

generation'' growth (YB2). The means for all experiments are 

presented versus ec in Figure 36. Since the continuous flow 

reactor operated at a ec of 16.7 days was started from a 

diffe~ent seed than. the continuous flow reactors operated at 

other 9c's, YtB and kdB for the batch yields was calculated 

both with and without the values for batch yields at a ec of 

16.7 days. A linear form of' equation 3 and linear regression 

were used to calculatebatch.yield constants. The constants, 

YtB and kdB' with ai}d without the batch yields for the 16.7 

day sludge age, were 0.58, 0.0029.day-1, 0.67, and 0.034 

day-1. A·summary of' the batch.yield data may be found in 

Table X in.the Appendix. 



Figure 35. Soluble EffluentSubsti'ateConcentration 
Versus Sl\ldge.Age {From Figure 34) 
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Figure )6. Batch and Continuous Flow Cell Yields Versus 
Sludge Age. 
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CHAPrER V 

DISCUSSION 

A. Continuous Flow Growth Constants 

All of the continuous.flow growth constants were within 

the relevant ranges discussed in Chapter II, except for the 

maximum specific growth rate. The expected range for Jlrp.' 

from Gaudy and .Gaudy (3), is 0.4 to 0.6 hour-1 (9.6 to 14.4 

day~1 ); while the value found in this study was 2.00 day-1. 

It was necessary to use bCOD to determine )lm and Ks• The 

values of p.m and Ks are sensitive to the point selected for 

CODmin - which determines the effluent bCOD's. Also, since 

the observed values ofSe and U cover a.small range within 

the range. of. possible values; Pm and Ks are determined by a 

very small apparent curvature of the relationship between U 

and Se• . Because there is some acatter o£ paired Se and U or 

p values around a line describing either a. Monod or Lawrence 

and MCCarty relationship between Se and U or f' recovery of 

the "true" values o~ k, frrJ., and Ks is unlikely. However, the 

observed pm for the continuous flow reactors lies within the 

range of Jl values observed in the batch experimEil ts for the 

lag period of growth (approximately·l.2.to 2.4 day-1 ). 

Whether this is coincidence or an indication of some relation

ship between the low specific.growth rates which occur during 

120 
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the lag period and low Pm calculated for the continuous flow 

reactors is unclear. 

B. Comparison of Growth Constants 

One of the major purposes of this study was to explore 

the possibility of predicting continuous flow operation of an 

activated sludge reactor· from determinations of the growth 

constants made in batch reactors. 

Before making any comparisons or discussing these com

parisons, a couple of preliminary points should·be.made clear. 

oCOD was employed as the measure of the effluent substrate 

concentration from the continuous flow reactor. However, 

there are other measurements which might have been justifi-

ably employed. Examples of alternative measurements of Se 

are observed COD or glucose conc~ntration~ \'lhile ca'lculation 

of bCOD is based on a questionable assumption - i.e., that· 

there is an invariant and non-biodegradable residual pro

duced at all sludge ages - there is some justification for 

its use. as a measure of Se• The bCOD, as used in this study, 

is probably a better indicator of the concentration of readily 

biodegradable organic compounds present in an effluent; than 

is COD or any measurement of a specific organic compound. 

The readily degradable organics present in·the effluent stream 

of a secondary waste treatment plant are generally of greater 

interest than is the total COD concentration or concentration 

of a specific organic compound. Another equally significant 

factor is that it is necessary to subtract any apparent 
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residual before ke, k, pm, or Ks can be calculated. A plot 

·of Se versus f or U must pass through the origin, in order 

that a linear form of the MOnod equation may be used to cal

culate the constants ?m or k and Ks• Whether the continuous 

flovl effluent bCOD can be related to the growth constants, as 

determined in batch experiments, was an empirical question to 

be determined in this study. The other preliminary point that 

needs to be made is that the various operating parameters -

U, ?n, etc. - and the growth constants can be calculated in 

either of two ways. The two methods involve inclusion of 

differing sludge masses in calculating the operating para

meters or growth constants. In one method, the total sludge 

mass in the system is employed in the calculations. In the 

other method, only the sludge mass in the aeration chamber 

at any moment is employed in the calculations. There has 

been some speculation as to which is the "correct" method 

(68). Regardless of one's criteria tor "correctnessw, there 

is no empirical evidence supporting one method over the other. 

The former method (using total sludge mass in the system) 

was employed in the previous chapter for calculation of the 

various constants. The sludge mass in the aeration chamber 

v1as not monitored, so it was not possible to accurately cal

culate the operating parameters and growth constants of the 

continuous flow system using only the sludge mass in the 

aeration chamber. However, if one assumes that the sludge 

in the system was evenly distributed between the clarifier 

and aeration chamber proportional to their volumes; the 



123 

operating parameters and the resultant growth constants can 

be calculated. The ratio of aeration chamber volume to 

clarifier volume was approximately 2.7 to one. The contin

uous flow growth constants, calculated via both methods, are 

presented in Table V; in order that both sets of continuous 

flow growth constants may be compared with batch growth con-

stants. 

TABLE V 

CONTINUOUS FLOW GROWTH CONSTANTS 

Constant {units) Calculated Calculated 
with with only 

Total Solids Aeration Solids 

y t {mg cell/mg COD) 0.63 0.63 

kct (day-1 ) 0.056 0.076 

ke {1/mg•day) 0.051 0.07 

k (day-1 ) 3.2 4.J 

Um (day-1) 2.0 2.7 

Ks (mg/1) 55 55 

Can Yt and/or kd be determined via batch experiments? 

Batch yield is often interpreted as a constant equivalent to 

the true cell yield (Yt)• The cell maintenance coefficient 
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is often treated as a reactioh rate constant which can be 

determined in batch reactors via some measurement, such as 

the resp_iration: rate or the· rate of disappearance of sludge 

mass in a batch reactor in the absence of an exogenous carbon/ 

energy source. The studies of Saleh (17) and Srinivasaragha

van (16) .suggest that the batch yield varies systematically 

with the continuous flowgrowth rate at which the microbial 

seed for the batch determination of yield is grown. Their 

data further suggest that t~e.variation in observed yield 

and batch yielq with specific growth rate is not a time

dependent reaction, but rather a fixed characteristic of the 
' . 

cells such that the efficiency of conversion of substrate to 

cell material is affected·· The batch yield determined using 

se-ed ·grown·. at a gi ve.n continuous flow growth rate was found 

to be equivalent to the observed·yield in the continuous 

flow system. Esfandi (65), under similar conditions, found 

the batch yield to be much larger than eithe:r the observed 

yields or the true. cell yield. 

The t'first generation" batch yield was found to vary 

. Slightly froni the observ~d yield, but both yields were found 

to be dependent on the continuous flow growth rate. The 

_yield constants -. Yt, kd, YtB, and. kdB ·~ .. were· calculated via 

. equa.tio11 3, using Jln calculated on the basis of· total sludge 

in.the system. The cell yield constants, Yt and kd, found 

in the 'continuous flow reactors were dissimilar to the con

stants found in the batch reactors. The true cellyield 

found in.the continuous flow reactors was 0.63, while the 
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true cell yields found in the batch reactors (using sludge 

seed drawn from the continuous flow reactors at each sludge 

age) were 0.5S (with the yields found in the batch system 

at a sludge age of 16.7 days) and 0.67 (without the 16.7 day 

sludge age data). The cell maintenance coefficients, in the 

same order, are 0.056, 0.0029, and 0.034 day-1. The two 

sets of batch reactor data were calculated, because the con

tinuo_us flow reactor operated ata sludge age of 16.7 days 

was started with a different micro-organism seed than were 

the continuous flow reactors operated at other sludge ages. 

The batch true yield and batch cell maintenance coefficient, 

calculated without the batch yield for the sludge age of 16.7 

days, seem to fit the observed batch yields plotted in Figure 

36 better than do the constants calculated-with the batch 

yield found at a sludge age of ~6.7 days. That is, the batch 

yield at a sludge age of 16.7-days does not follow the trend 

observed in the other batch yields. A comparison of the 
.. 

batch yields and the trend of the observed yields in Figure 
. . ' . 

36 sugge·sts that the cell yields in batch and continuous 

flow reactors approach the same maximum cell yield as net 

specific growth rate increases,·but tend to vary increasingly 

more widely as net specific growth ~ate decreases. As was 

noted _earlier, -Saleh and Srinivasaraghavan found y 
0 to be 

equivalent to Ya -- i.e., Yt is equivalent to YtB and kd is 

equivalent to kdB• Such was not found to be the case in 

this study. However, the findings of this study are in 

agreement with the findings of Saleh and Srinivasaraghavan 

in that Ya does seem to be dependent on the growth rate in. 
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the continuous flow reactor from which the seed for the batch 

growth study is drawn. The f:i,.ndings of Esfandi - that YB is 

much larger than Y0 and independent of the continuous flow 

growth rate - are not supported. However, unlike Saleh, 

Srinivasaraghavan, and the author of the present study; 

Esfandi was working with a microbial population which 

included nitrifying bacteria with the carbonaceous·. bacteria. 

The ni trii'ying bacteria may have affected. the ba·tch yields 

observed by E3fandi. The 11 second generation" batch studies 

performed by the present author produced batch yields, which 

did seem to be independent of· the continuous flow growth rate 

and also approximated the true yield. 

The yield data obtained in this study suggest that the 

variation in yield (both Y0 and YB) might be better explained 

via some internal mec.hani~m of the individual cell linking 

yield with the environment. or some property of the cell pop

ulation: dependent·on the environment, rather than via some 

simple time-dependent reaction. It seems not unreasonable to 

suppose that utilization of' substrate by the cell might be 

different when substrate is scarce (as at a low continuous 

·flow growth rate), than \·lhen substrate is plentiful (high 

continuous flow growth !Cite)-. The influence of continuous 

flow growth rate on "first gene~a tion" batch yields may 

reflect some sl:j.ppage in the linkage between envirorunent and 

cell yield~ If this supposition is correct; the batch cell 

yield should vary more widely from the observed yield in the 

direction of the true yield with increasing distance in time 

· and cell generations from the environment p~oducing the 
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observed yield {continuous flow reactor at low f), along with 

the presence of a plentiful supply of carbon/energy souce. 

That is, Ya2 would be expected to approach Yt• Since a 

heterogeneous population was used, a change in predominance 

could also account for the observed variation in yields. 

Whatever the correct explanation is for the observed varia~ 

tion in yields {Y0 and Ya versus ?n), it does not appear to 

be a simple time-dependent reaction {such as "cell decay" or 

"endogenous respiration") which can be determined in a single 

batch experiment - i.e., kd should probably be determined in 

a continuous flow system. The true cell yield is best deter-

. mined in a continuous flow system, but might be approximated 

via determination of "second generation11 batch yield. As 

the values of YB2 and Yt found in this study are similar to 

the mean_batch yield cited by'Ramathan and Gaudy (12) for an 

acclimated seed of sewage_ ori.gin grown on glucose, the value 

of Ys2 might be interpreted as the batch yield one would 

expect to find using a "young", acclimated microbial seed. 

Can the effluent substrate concentration from a con

tinuous flow reactor be predicted by batch determinations of 

the grO\"lth constants - ke, Jlm, k, and Ks? The batch deter

minations of the cell growth and substrate removal constants 

are presented in Table VI, along with the continuous flow 

values of these constants. The values of k for_the batch 

experiments were determined using the true cell yield. While 

the batch yield may have been more correct in some cases, use 

of Yt provides for some measure of uniformity and does not 
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alter the calculated value of k very much. The presented 

values of k are close enough for comparison purposes. The 

values of ke in Table VI were computed by dividing k by Ks• 

When Se is very lov1, as it generally is in the activated 

sludge process, this gives a goodapproximation of ke• 

Closeness of predicted Seat anyU or Jl is more readily seen 

via ke, than via Pm (or k) and Ks• At any U (when Se is low), 

ke is approximately inversely proportional to Se• 

Source -
Figure: 

Cont. Flow 

Cont. Flow 

Batch - 15 

Batch - 18 

.·.Batch - 24 

Batch 31: 

Batch - 34 

TABLE VI 

COMPARISON OF CELL GRMH AND 
SUBSTRATE RElvlOVAL CONSTANTS 

. P.m 
(day-1) 

. k 
(day-l) · . Kr (mg/ ) 

(XTQTl -8 . ·2.0. . 3 •. 2 55 

(XAER) 2.7 4.3 55 

0.89 1.4 42 

·1.61 2 .• 6 89 

6.6 .10.5 365 

l.J . 2.1 7.6 

4.8 7.6 85 

. ke 
(1/mg•day) 

0.058 

0.078 

0.033 

0.029 

0.029 

0.28 

0.089 . 
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It should be apparent from Table VI that the constants 

derived from nsecond generation" growth pr_ovide the best fit 

of observed continuous flow data (using either XAER or ~OT)• 

The Monod constants for this tisecond generation" growth are 

more closely comparable to those cited by Gaudy and Gaudy (3), 

than are the other· sets of Monod constants. The reason for· 

this is that the ranges of the 14onod constants cited by 

Gaudy and Gaudy were derived using young, active cell pop

ulations; as was the case with the "second generation" growth 

experiments in this study. Before_the reader gets too ex

cited about this result, it should be recalled that a second 

nsecond generationn growth experiment was performed. The 

values of f-m {k) and Ks found in that experiment were 0.21 
. . 

hour-1 {8.0 d~y.:.l) .and 37 mg/1,· which give .an approximation 

of ke of 0~22 1/mg•day. This value of ke is grossly dif'

·ferent from that observed in the continuous flow. system 

(0.058 or 0.0781/mg•day). Repeated determinations of 

Pm and Ks in 11 second generationn growth experiments-may 

possibly have favored the greater Ks, giving a good approxi

mation of the_ ke for the continuous flow system. The values 

of fm probably would have been.similar to those found in 

"first generation11 log growth (after the lag period) - i.e., 

0.2-to 0.4 hour-1. For the two determinations of "second 

· generation" roonod constants, ?Ill was found to be approximately 

equal to Pm for the nfirst generation" growth (after .the lag 

period) • The values of K5 varied greatly, but that will be 

discussed later. 
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It should be noted that direct determination of ke was 

attempted in batch reactors. An initial substrate concentra

tion equal to that in the continuous·flow systems was used, 

along with high initial sludge concentrations. The batch 

determinations of ke at all sludge ages were found to be 

consistently lower than the·ke values obtained in the con

tinuous flow system (Figures 9 thru 14). The reasons for 

this are unclear. 

The Monod constants, pm and Ks, derived from the 

substrate removal experiments at a sludge age of 11.5 ·days 

wer·e found to be 0.067 hour-1 and 89 mg/1 (Figure 18). The 

ke derived from these ·constants. is about O.OJ 1/mg•day, which 

is about the same as the values of ke.derived directly from 

substrate removal versus time. This is· as it should be. 

·What makes· the values· of Pm and Ks ·of interest is the 

difference between the continuous flow ke and the batch ke• 

The· Ks found above is questionable. According to .Gaudy (36) 

{37), there should be nslippage" during growth. The Ks 

derived via comparison of the instantaneous values off and 

S should be smaller than the K5 derived via comparison of 

}l and S0 • The value of K5 found above is comparable. to the. 

nsecond generation" value of Ks and much -larger than the Ks 

derived for the lag period (the lag period is applicable·to 

the lowS /X substrate removal experiments). The reason that 

this probabiy does not happen (Small Ks) is t.hatin order to 

calculate F from substrate removal, a YB must be assumed. 

The value of Ys assumed was the value of YB observed in high 
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S/X growth experiments at the .sludge age of 11.5 days. 

Yield under· these low S/X conditions was probably close to 

one initially {due to oxidative assimilation), while synthesis 

lagged behind substrate removal (substrate removing mass}. 

Assumption of a constant (and probably incorrect) yield 

results in a variable p {more variable than it really is), 

making K5 larger than it should normally appear to be. 

Figure 17 presents the calculated mean initial p for the 

various substrate removal experiments. The YB used to cal

culate these values of p was the value of YB observed.in 

high S/X growth experiments - such that synthesis had begun 

long before YB was determined. The mean of the values off 

in Figure 17 is 0.067 hour-1• The growth rates presented in 

. Table IV were observed growth rates where time of observation 

was approximately one doubling time. These values of p 

.represent observed changes in cell mass (via Absorbance}. 

The mean p here was 0.103 hour-.1. Both values o£ p reflect 

growth during the lag period. Figure 33 also suggests an 

initially high?' which decreases with time. ·This "hump 11 

suggests a varying yield (oxidative assimilation). Perhaps, 

as an alternative explanation, p does in fact start very high 

and decrease rapidly - as opposed to a variable yield. This 

variation of p or YB does not appear to be related to S or 

.6S. \'lhatever the reason for the observed effects, the value 

of Pm and/or Ks is probably not the 11 true" value of that 

constant. Consequently, the value·of ke observed in batch 

substrate removal experiments is·not the "truen value o£ 



ke - i.e., the value of ke observed in continuous flow 

syetems. The discussion below, of the high S/X growth 

experiments, may help to clarify the above discussion. 

The loonod constants, Pm and Ks, derived in the high 
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S/X batch systems will be discussed at this point. Explan

ation and understanding of the varied findings ~dll hope

fully be made easier by the graphic presentation in Figure 

37. Figure 37 will be referred to during the course of this 

discussion; along with other figures as they become relevant. 

There are at least two good alternatives for explaining 

what occurred during 11first generationtr growth - both during 

and after the apparent lag period. These are presented in 

parts A and B of Figure 37. Represented in part A of Figure 

37 is the concept of 11viability11 , "active fractionn, or any 

other hypothesis which purports to explain the observed de

crease in specific activity of the sludge mass at high sludge 

ages whereby a portion of the sludge is assumed to consist of 

dead or inactive suspended solids. Represented in part B of 

Figure 37 is an alternative concept whereby the sludge is 

assumed to consist of bacterial cells whose metabolic pro

cesses are operating slowly both in the activated sludge 

system at high sludge age and initially in the batch reactor. 

After a period of time, the presence of a high substrate 

concentration produces a change within the cells - the ap

parent fm is greatly increased. These concepts are not 

mutually exclusive and either or both may in fact occur. It 

is also recognized by the author that the former concept is 

probably the preferred one. There have been innumerable 



Figure 37. Growth of Seed from Activated Sludge System 
. in High S/X Batch Reactor Systems ( 11First 
· Generation" Gr-owth) · . 
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papers published concerning 11viability 11 and many activated 

sludge modellers, including McKinney, who hc:Lve included the 

concept of active/inactive sludge fractions. While the con

cept of "viabilityu is questionable, there are readily per

ceivable quantities of intercellular slime/matrix material in 

activated sludge, which must be considered ninactive11 • 

The apparent lag period can be interpreted in accordance 

with either of the above hypotheses. If the observed specific 

growth rates during the lag are interpreted as being a con

sequence of the· existence of a sizeable inactive fraction in 

the biomass, the small Ks found for this period is under

standable. Both the range and values of the specific growth 

rates observed during the lag period would be very small -

giving both a small apparent Pm and small apparent Ks 

(Figure 31). The occurrence of oxidative assimilation during 

the lag period, as discus~ed earlier, would tend to further 

overshadow the variation in Jl with S0 • Both fm and Ks would 

be quite meaningless under these circumstances. The altern

ative hypothesis is that the metabolism of the individual · 

cells within the biomass is much decreased. In this instance, 

the values of Jlm and Ks (Figure 31) may have some signifi ... 

cance wit.h respect to cell metabolism - at least, . the same 

significance that is generally attributed to fm and Ks• 

It should also be noted that the apparent rate of gro~'lth 

during the lag period seemed to be retarded in growth flasks 

which were left unattended until the end of the lag period. 

This was probably due to a·ccumulation of cells on the walls 



136 

of the flask, where they were washed up by the shaking 

action. Access to substrate was probably limited by this 

occurrence • 

. The Nonod constants, }lm and Ks, observed during growth 

after the lag period were affected as shown in Figures 22 and 

23. The observed value of Ks was found to be dependent on 

the initial biomass concentration, whilepm was found to vary 

to a much lesser extent with variation of the initial biomass 

concentration. Again, this finding can be explained via 

either of the hypotheses pictured in Figure 37. If the 

proper hypothesis is the active/inactive fraction hypothesis; 

the initial sludge concentration would be expected to affect 

the observed value of Ks, but not the observed value of fm 

to any great extent. In accordance with this hypothesis, the 

range of initial substrate concentrations {via S/X ratio) 

and distribution of the biomass between the active and in

active fractions would both also af'.fect the observed Ks. 

The range o.f initial substrate concentrations used in these 

growth determinations remained between 200 mg/1 and 2000 

mg/1 glucose as COD. \'/here X0 vias very high; the minimum S0 

used was generally 300 or 400 mg/1, as the substrate v-1as 

often exhausted before the end of the lag period when S0 

was less than dou.ble X0 • It should also be not.ed that 

reaching the end of' the lag period required from 15 to 34 

hours and -t;;he rei!lB-ining gro\'tth requii1ed from 8 to 12 hours 

more. The question arises as to whether a truly constant f 
can be main·tained over this period, with the substrate con

centration changing constantly. This question is relevant 
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to both hypotheses, but in a different sense in each case. 

The change in metabolic activity hypothesis assumes that at 

the end of the lag period a certain amount of substrate has 

been removed the amount of substrate removed being depend-

ent in large part on X0 and to a lesser extent on S0 (Fig

ures 29 and 30) • The substrate remaining at the end of the 

lag period (St) replaces S0 in the rolonod expression. The 

apparent Ks (K5 A) is displaced from the ntrue" K5 {KsTl 

because s in the Monod equation is decreased before the nlog 11 

growth period begins; so that cell metabolism is "set11 at 

St, rather than S0 • These are related quantitatively via 

the equation below. It can be seen that this hypothesis also 

(33) 

which reduces to: 

where, 

(35) 

suggests that Ks is sensitive to X0 and S0 , but not to per

centage inactive fraction (since it is not considered). 

Both hypotheses predict variation in K5 • The values of Pm 

also varied slightly with X0 (Figure 23), although to a 

lesser extent than did the values of Ks• A graphic represent

ation of. the variation of both K5 and Pm with varied X0 is 

l 
. I 
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presented in Figure 38. The fm values observed at a given 

sludge age approximated the "second generation11 values of 
.. 

Jlm ''at the relevant sludge age. 

The values of Ks found in this study during "first 

generation11 growth are higher than those cited by Gaudy and 

Gaady (3.) for a heterogeneous population grown on glucose. 

The values of Ks cited by Gaudy and Gaudy - 50 to 125 mg/1 -

were derived using "young", active microbial seed. A much 

11 older" microbial seed drawn from an activated sludge reactor 

was used in the determinations of Ks presented in Figure 22. 

Saleh (17), Srinivasaraghavan (16), and Esfandi (65), using 

11 older 11 seed also drawn from activated sludge reactors, found 

values of Ks ranging from the values cited by Gaudy and 

Gaudy to much higher values - Esfandi found a high Ks of 

2000+ mg/1. These authors cited no values of initial 

sludge concentrations. The effect of X0 on K5 found here 

almost certainly explains the wide range of Ks values found 

by these authors. The values of Ks observed in "second 

generation" growth might reasonably be assumed to be the 

11 true 11 value of Ks; which the values of Ks. derived for 

11first generation" growth after the lag period approach. 

The 11 second generation11 value of Ks is probably comparable 

to the values of K5 cited by Gaudy and Gaudy for "young", 

active seed. 

The g.-rowth at the end of the lag period, using yeast 

extract and yeast extract/glucose as the carbon/energy 

source exhibited the same dependence of Ks on X0 as dis

cussed above. The discussion above, concerning "first 



Figure JS. Effect of X0 on Is and Pm During 11First 
Generation" Growth After the Lag Period 
as Demonstrated by Lineweaver-Burke Plots 
of Hypothetical Growth Curves at Various 
Values of X0 
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generation" growth, applies here as li'lell. However, Pm did 

not vary with X0 as it did with growth on glucose alone. 

The Lineweaver-Burke plots of this data (Figures 26 and 27) 

suggest some sort of complex inhibition - perhaps substrate 

inhibition. 

Although the results of this study suggest .that the true 

cell yield and growth or substrate removal constants for a 

continuous flow system may be approximated by "second genera

tion" batch experiments {11young", acclimated seed), batch 

determinations of the constants are subject to considerable 

variation. While batch determinations of the yield and growth/ 

substrate removal constants were made at a number of sludge 

ages in this study, such would not be the case if batch deter

minations of the constants were made for design purposes. 

There would be no reason for batch experiments; if con-

tinuous flow data were available, since the continuous flow 

data would be the preferred source of the kinetic constants. 

The source of seed for batch determinations of the kinetic 

.·constants. would be "young", acclimated biomass. These batch 

determinations are subject· to co·nsiderable variation. The 

range of yields on glucose, with young heterog~neouspop-. 

ulations, cited by Ramanathan and Gaudy (12) is 0.36 to 0.88 

mg cell/mg COD. The ranges of values for Ks and p.m, under 

sim.ilar conditions, cited by Gaudy and Gaudy {3), .are 0.4 

. ·to 0.6 hour'"'l and 50 to. 125 mg/1, respectively. Predictions 

of sludge mass produced and effluent substrate concentrati()ns 

vary over a wide range •. The variations of yield are evident 
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above. 'l'he possible variation in prodicted Se, using the 

Vi.i.lues of Pm and K5 cited above, is evident if one uses the 

ratio of.fm to Ks• The high value of pm/Ks is 0.29 1/mg•day, 

while the low value is 0.0$ 1/mg•day. The Se predicted at B. 

given p is approximately inversely proportional to pm/Ks 

(at lm·1 0e)• The variation in Se predicted at a given f is 

nearly .four-fold. At a given design value of Se, the re

quired sludge l'lli.lss (volume times concentration} is also 

approximately inversely proportional to fm/Ks (at low values 

. of Se). If concentration of sludge in the aeration basin is 

assumed constant, the range of design values for required 

aeration basin volume is again nearly four-fold. The 

significance of this is that the design.values of the kinetic 

constants should be carefully determined, preferably in a 

continuous flmv system. The var·ia tion one is liable to 

encounter by using batch determinations of the kinetic 

constants or simply choosing ngood engineering approximations" 

of the growth constants is, .or .should be, intolerable. 



CHAPI'ER VI 

CONCLUSIONS 

1. The value of Eckenfelder's specific substrate re

moval constant (ke) observed in batch experiments, using 

seed drawn from a continuous flow system operated at various 

sludge ages, remains essentially constant and consistently 

lower than the value of ke observed in the continuous flow 

system. 

2. Batch growth experiments, using seed drawn from a 

continuous flow system operating at a high sludge age, ex

hibit a very long lag period. 

3. Substrate removal occurs during the lag period, but 

the apparent )lm and Ks are very small. 

4. The apparent value of Ks - and to a lesser extent 

,Um - derived from growth rates observed after the long lag 

period are dependent on the initial microbial seed concentra-

tion. 

· 5. The 11 second generation" batch values of pm and Ks 

are the 11 truen values of these constants and the best batch

derived predictors of the observed continuous flow values of 

effluent substrate concentration. 

6. The value of the batch yields (YB) derived using 

seed drawn directly from a continuous flow reactor are 

14.3 
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dependent on the net specific growth rate of the continuous 

flow system. 

7. The value of the batch yield (YB2) derived using 

seed drawn from a batch experiment s,eeded from the continuous 

flow system is independent of the net specific growth rate 

of the continuous flow system and approximates the true cell 

yield (Yt)• 



CHA.PfER VII 

SUGGESTIONS FOR FUTURE STUDY 

Based on the results of this study, the following studies 

are suggested for future investigation. 

1. Study the effect of S/X ratio in batch experiments, 

using seed drawn from continuous flow reactors operated at 

various sludge ages, on the batch yield. 

2. Study the effect of varied )ln on 11first generation" 

values of ?m and Ks, after the lag period, at a set value of 

X0 and a set range of values of S0 • 

3. Study the effect of variation of S0 on 11first 

genera tion 11 values of Pm and Ks, after the lag period, at a 

set value of Pn and a set value of X0 • 

4. Compare values of 11 second generation11 batch fm and 

Ks derived at various continuous flow sludge ages with each 

other and with the continuous flow Jlm and Ks• 

5. Run high S/X, "first generation" batch experiments 

using activated sludge seed grown at high sludge age and 

monitor increase in biomass protein and carbohydrate content, 

along with biomass concentration, in order to determine if 

oxidative assimilation does in fact account for the "hump" 

in growth rate observed during the early hours of the lag 

period. 

145 
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6. Run the above experiment using seed grown at various 

sludge ~ges in order to determine the quantitative effect of 

)ln on the 11 hump 11 in grovtth rate which occurs during the lag 

period. 
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TABLE VII 

RAW DATA FOR THE COriTINUOUS FLOW REACTORS 

ec Date v F Fw XF . x. si se e 
(days) (liters} (1/day) · (1/day) (mg/1) . (mg/1) (mg/1) (mg/1) 

2.4 10-11 8~1 17.5 2.7 1344 2' 337 40 
10..:13 15.0 1160 4 365 36 
10-14 16.5 1096 4 341 48 
10-26 17.0 1232 14 349 32 
10-29 16 .• 5 1200 16 353 28 
11-1" 16.0 . 1200 8 339 40 
11-3' 17.0 1192 8" 347 36 
11-5 16.0 1184 10 . 347 40 
11-6· 17.0 . 1144 12 339 52 
11-8 16.5 1188 10 355 44" 

mean 16.5 . 1194 9 347 39.6 
s.d. 0.7 . 64 4.5 8.8 7.2 
s.d.~dOO/mean 4.3 5.4 52 2.5 18.1 

4.8 8-1 8.4 18.0 1.4 1460 22 345 28 
8-2 17.0 1340 26. 333 36 
8-5 18.0 1348 22 351 44 

.· $-8 16.5 1432 12 291 56 
8-16 18.0 1440 22 350 28 
8-17 i7.d 1325 14 346 31 
8-18 18.0 1436 10 346 35 

mean 17.3 1397 18 337 36.9 
s.d. 0.7 57 6.2 21.3 10.1 
s.d.x.lOO/mean 4;.0_ 4.1 34 6.3 27.4 
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TABLE VII (Continued) 

ec Date v F Fw X xe s. se 
(mg/1) 

~ 

(days) {liters) (1/day) (1/day) (mg/1) (mg/1) (mg/1) 

7.4 8-1 8.1 . 18.0 0.9 ·1584 20 353 44 
8-2 18.0 1616 22 361 28 
8-5 16.5 1648 6 ' 347 44 
8-8 16.5 1780 20 355 48 
8-16 18.0. 1672 10 327 24 
8-17 17.0 1654 12 339 31 
8-18 16.5 .1692 6 350 35 

mean 17.2 1664 14 347 36.3 
s.d. o.s 62 6.9 11.3 9.2 
s.d.x100/mean 4.4 3.8 . 49 3.3 . 25.3 

11.5 5-26 8.1 18.0 0.6 3152 36 348 37 
5-28 17.5 3432 . 20 336 12 
5-30 17.0 3548 24 344 21 
6-2 16.5 3648 20 342 60 
6-3 17.0 3600 18 342 40 
6-4 1S.o 3472 $ 346 44 
6-5 16.5 .3324 16 340 30 
6-6 17.0 3276 6 334 30 
6-9 17.0 3208 2 . 341 20 
6-11. 17.5 3304 . 14 325 20 

mean 17.2. 3396 16 340 31.4 
s.d. 0.5 169 9.8 6.7 14.3 
s.d.x100/mean 2.9 5.0 61 2.0 45.5 
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TABLE VII (Continued) 

9c Date v F Fw XF ·X e si se 
(days) (liters) (1/day) (1/day) (mg/1) (mg/1) (mg/1) (mg/1) 

16.7 11.:..29 8.4 18.0 0.45 5456 12 360 32 
12-1 17.0 5576 6 360 28 
12-8 18.0 5356 8 364 24 
12-10 18.0 5260 22 358 28 
12-15 18.0 5108 10 352 36 
12-18 17.0 . 5052 14 369 31 

mean 17.7 5301 12 360 29.8 
s.d. 0.5 202 5.7 5.7 4.1 
s.d.xlOO/mean 2.9 3.8 48 1.6 13.8 

XF and Xe were· monitored for from 2 to 3 9c' s prior to collection of the data in this 
table 1n order to ascertain that steady state conditions had prevailed in the reactor· 
for said period prior to collection of the data in this table. 

1-' 
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'rABLE VIII. 

OPERATING DATA FOR THE CONTINUOUS FLOW REACTORS 

Operating Operating Condition No. · 
Parameter 1 2 3 4 5 

P-ieans) 

v {liters) . e.1 e.4 e.1 e.1 e.4 

Fw (1/day) 2.7 1.4 0.9 0.6 0.45 

li' {l/day) 16.5 17.3 17.2 17·2 17.7 

Si (mg/1 COD} 347 337 347 340 360 

Se (mg/1 COD} 39.4 36.9 36.") 31.4 29.8 

X (mg/1} 1194 1397 1664 . 3396 5301 

Xe (mg/1) 9 18 14 16 12 

XA (mg/1} 995 1281 . 1572 3270 5159 

t (days} 0.491 0.486 0.471 0.471 0.475. 

U (day-1) 0.630 0.483 0.420 0.200 0.135 

Yo . (mg/mg) 0.660 0.432 0.323 0.435 0.444 

,Un (day-1) . 0.415 o.2oe · . 0.136 0.087 0.059 

ec (days) 2.41 4.80 7.38 . 11.5 16.7 

Km (COD). 
(mg/1). 15.9 16.7 18.2 20.9 23•3 

k9 (CODj_. . . 
. (day- (mg/1)-1) 0.016 0.0131 0.0116 0.0064 0.0045 
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TABLE IX 

BATCH SUBSTRATE REMOVAL EXPERIMENTS 

ec X K~(CO£) kf (COD{ Kw(bC£D) kr~~C9£> (days) (mg~1) ( ay- ) da~- ( ay- ) . 
(mg/1 -1)) (mg/1)-1) 

2.4 739 7.56 17.6 
1160 12.2 28.5 
1232 11.6 0.0101 26.8 0.0235 

4.8 432 4.84 11.3 
716 10.4 24.3 
1348 17.3 0.0136 . 40.3 0.0320 

7.4 890 8.62 20.0 
1648 19.1 44.2' 
502 3.80 0.0102 8.92 0.0242 

11.5 1050 18.1 42.3 
1750 32.6 75.9 
3450 . 62.2 0.0180, 150 0.0430 

16.7 2104 20.2 47.4 
5356 56.5 0.0101 128 0.0232 



TABLE X 

MONOD CONSTANTS FOUND DURING "FIRST GENERATION" GRONTH 
AFTER LAG PERIOD WITH HETEROGENEOUS POPULATION 

GRONN ON GLUCOSE 

ec X K Jlm 1 (days) (mg/~) (mg/1 aon) {hour- ·) 

2.4 57 933 0.236 
133 15.39 0.196 

4.8 25 208 0 • .326 
80 1084 0.191 
145 1227 0.245 

7.4 25 522 0.278 
80 1488 0.264 
170 1039 0.167 

11.5 25 316 0.414 
50 783 0.411 
90 1283 0.344 
90 449 0.283 
100 1391 0.372 
170 1196 0.288 
200 2076 0.271 

16.7 55 664 0.211 
110 976 0.191 
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ec s 
(days) {mg/1 8on} 

2.4 1909 
1909 
2000 
1000 

4.8 1268 
2000 
2000 

7.4 1204 
2000 
2000 

11.5 988 
1137 
1000 

16.7 1846 
1846 
980 
980 
1960 
1960 

TABLE XI 

BATCH YIELD 

sf . X 
(mg/1 COD} (mg~1} 

84 57 
68 57 
72 50 
48 50 

189 300 
39 10 
441 10 

299 310 
244 10 
1l~2 10 

157 96 
755 100 
266 25 

962 272 
1523 103 
32 110 
52 55 
79 110 
75 55 
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X YB 
(mg91) (mg/mg} 

1188 0.62 
1292 0.67 
1324 0.66 
696 0.68 

884 0.54 
948 0.48 
924 0.59 

780 0.52 
1004 0.57 
1012 0.54 

'504 0.49 
296 0.51 
372 0.47 

844 0.65 
324 0.68 
676 0.60 
652 0.64 
1276 . 0.62 
1176 0.59 
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