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f root of the characteristic equation 
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H thickness of the pavement 
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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem 

1 . i . 1 Genera 1 

The rapid development in jet propelled aircraft coupled with the 

enormous growth in surface transport has focused attention on the inade

quacies in the performance of concrete pavements. The prevalence of 

cracks and pot holes in existing pavements certainly indicates deficien

cies in the analysis, design or construction of highway pavements. 

The behavior of concrete pavements depends on many factors such as 

type of subgrade, ground water, drainage conditions,topography, climac

tic conditions, deterioration of the concrete, and loads that are vari

able in magnitude, space, time and repetitions. All these factors place 

concrete pavement among the most complex structures with which the civil 

engineer has to deal. 

With the recent advancement in the development of the principles of 

soil mechanics, behavior of subgrade materials is·better understood. In 

addition, specifications (2) (3) aimed at promoting the use of sound con

crete and the practice of good construction methods have been deve.loped. 

Today, the problem of material weakness has been greatly reduced, 

and significant progress has been made in the ability to build pavements 

and to measure properties which seem important; however, little has been 

1 
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done to upgrade the methods of analysis. Current procedures for design

ing and evaluating pavements (114) are still based on static loads and 

except for introducing equivalent static loadings (3) they do not account 

for the dynamic response of the pavement to moving loads. This thesis 

resulted from an endeavor to help satisfy the need for more appropriate 

procedures. 

1.1.2 Viscoelastic Approach 

Since highway pavement materials have both elastic and viscous prop

erties (77), the stress-strain relations for the materials are not con

stant but vary with time. Inasmuch as the load conditions which may be 

imposed upon such pavements cover a wide range in time--from the essenti

ally static condition associated with vehicle parking areas to the rapid

ly applied repeated loads occurring on heavy-duty highways and airfield 

taxiways--it would seem appropriate to apply the principles of visco

elastic theory in preparing a more rigorous approach to the analysis of 

these structures. The many unsolved problems posed by increasing traffic 

demands, both in magnitude and frequency of loading, fortify the argument 

for such an approach. 

Recent researches (12} (13) (52) (67} (93) (98) indicate that physi

cal behavior of soils can be expressed in terms of viscoelastic para

meters. Essentially, viscoelastic models are composed of two basic 

elements--purely elastic springs and purely viscqus dashpots. These 

elements are combined into varipus parallel and series configurations to 

produce mathematical expressions for stress-strain-time relations which 

may suit a given material under study. The most familiar models are the 

Voight or Kelvin and the Maxwell. Unfortunately, neither of these simple 
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models is sufficient to describe the behavior of a material such as soil. 

To obtain representative behavior of most materials, it is necessary to 

add more elements to the model system. When this is done, however, the 

mathematical operations to define behavior become quite complex. Never

theless, the necessity to represent the subgrade materials more realis

tically in theoretical design calls for the more mathematically involved 

research required by complex viscoelastic models. 

The different viscoelastic models that are generally associated with 

soils are shown in Figure 1. Both Standard Solid and VanDerPoel models 

are capable of instantaneous elastic deformation, retarded defrirmation, 

and recovery. However, it has been shown that these models lack the 

ability to account for the continual increase in strain measured in tri

axial compression tests on asphalt concrete (97) and, therefore, visco

elastic models with four elements have been suggested to idealize the 

subgrade. Viscoelastic models having both three elements and four ele

ments will be adopted to idealize the subgrade in this present work. 

1.2 Purpose and Scope 

The primary objective of this investigation is to determine the 

deflections and moments in a long rigid pavement of unit width uniformly 

supported by a viscoelastic subgrade idealized by different viscoelastic 

models for the case of a steady, normal, concentrated load moving longi

tudinally at a constant velocity. In this study, the influence of the 

velocity and the relative effects of the elastic and viscoelastic para

meters on the deflections and moments of the pavement will be determined. 

A comparative study will be made to clearly accentuate the static load 

solution and the dynamic load solution. Also, th1 relative effects of 
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(a) Maxwell Model (b) Kelvin Model 

(c) Van Der Poel Model (d) Standard Solid Model 

(e) Burgers ~1odel (f) Four Element ~1odel 

Figure 1. Viscoelastic Models 



idealizing the subgrade by different viscoelastic models will be 

discussed. 

1.3. Assumptions 

1. The subgrade material acts like a set of linear viscoelastic 

elements. The inertia of the material is neglected. 

2. The pavement is considered infinite in the longitudinal 

direction. 

5 

3. The usual assumptions of plate theory hold, namely: the plate 

is homogeneous, isotropic and obeys Hooke•s law; deflections are small in 

comparison to thickness; plane cross sections normal to the middle plane 

in the unstressed condition remain normal to this surface after bending; 

the effect of rotary inertia and shear deformations can be neglected. 

4. Pavement deflections are the same laterally (across the pave

ment) at any given longitudinal distance from the point of loading. 

5. The load acting on the pavement is normal to the surface. 



CHAPTER II 

REVIEW OF LITERATURE 

2.1 Introduction 

The history of the development of modern highway transportation 

is the story of the never-ending cycle of improved highways, which stim

ulate improvement of motor vehicles, which, in turn, increases the demand 

for more and better highways. Concrete pavements have played a tremen-

dously important role in highway engineers' efforts to provide safe, 

durable, all-weather, smooth-riding dustless ~urfaces for the use of the 

motoring public. In order to use this type of structure with maximum 

economy and efficiency, it is necessary for the engineer to know accu-

rately and in detail the character and magnitude of the deflections, 

moments and the stresses induced in a slab by the service loads to which 

it is subjected, and by the expansion, contraction and warping brought 

about by continually changing weather conditions. 

The first extensive concrete road system in the world was construct-
. ' 

ed in Wayne County, M·ichigan in· 1909. These pavements were not designed 

in the usual sense of the word beca.use. no rational theory of pavement 

design existed at that time. During World War II, there was a signifi-

cant increase in volume and weight of truck traffic on highways and a 

large increase in wheel load ·and tire pressure of military aircraft on 

airport pavements. In addition, adequate maintenance during this period 

was almost impossible, leaving many of these pavements in serious need 

6 
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of repair and upgrading. Added to this was the need for many miles of 

additional pavements to satisfy the tremendous growth of rural and metro

politan areas. Consequently, research programs in all phases of pavement 

technology were intensified to meet the ever increasing demands of post 

war traffic. This research ultimately led to procedures which form the 

core of pavement technology today. 

2.2 Static Load Solutions 

In the early 192o•s, Goldbeck (29) and Older (71) independently 

developed formulas for approximating the stress~s in concrete pavements. 
I 

The best known of these is referred to as the 11 0orner Formula ... In 
I 

' 

1926, Westergaard (108) completed his treatise dn the analysis of stress-

es in pavement slabs. The Westergaard equations have since become the 

primary basis for pavement design in the United States. Later Kelley 

(47), Spangler (99), Pickett (81) and Westergaard {109) himself extended 

these original solutions to account for linear temperature variations. 

Thomlinson (100) in 1940 further modified Westergaard•s solution by 

assuming simple harmonic temperature vari ati o·n throughout the depth of 

the slab. 

The analysis of beam or plate on a deformable foundation rests upon 

assumptions concerning the behavior of plate-foundation systems. These 

assumptions involve (1) descriptions of the foundation, {2} conditions to 

be met at the plate foundation interface, and (3) systems of equations by 

which the behavior of the plate is defined. 

The simplest representation of an elastic foundation has been pro

vided by Winkler (111), who assumed a base consisting of closely spaced 

independent linear springs. Based on Winkler•s assumptions that the 
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deflection at any point is proportional to the foundation pressure at 

that point and does not depend on the pressure at any other point of the 

foundation, Zimmerman (115) gave his solution in 1888. 

Wieghardt (110) was the first one to investigate the problem under 

the more general assumption that the deflection at any other point de

pends on the foundation pressure along a certain length of 2L of the 

founda_tion. In 1922, he postulated the deflection of the foundation as 

y(x) =Canst. JL q(~) k(lx- ~1) d~ 
-L 

in which y is the downward deflection, q is the foundation pressure and 

K is a kernel function dependent on the type of foundation. Among oth

ers, Prager (82), Nemenyi (69), Marguerre (63), Reissner (87), and 

Volterra (107) developed solutions for different kernels K. 

One inherent weakness in the Winkler type foundation is that it 

neglects the shearing forces generated at the pavement-base interface. 

Several mechanisms have been offered to account for this effect. 

Filonenko-Borodich (23) added a membrane on top of the Winkler model, 

while Schiel (91) took a fluid which exhibited surface tension as his 

soil model. Pasternak (74), Hetenyi (35), and Kerr (49), on the other 

hand, considered a beam of unit depth resting on a bed of interrelated 

springs as their foundation model. Approaching from a 11 COntinuum 11 point 

of view, Vlasov (106) and Reissner (87) suggested other models. Relaxing 

the assumption of equal properties in tension and compression in a 

Winkler model, Tsai and Westman (104) treated the foundation as a bilin-

ear material, the tensionless found~tion being examined as a special 

case. Later, Lin, Swartz and Williams (59) extended the previous work 



to devise a simplified procedure based on matrix analysis for a beam on 

tensionless foundation. 

Different methods for solving the problem of a beam or a plate on 

9 

an elastic foundation have been suggested by different investigators. 

Classical rigorous solutions were obtained by Biot (7), Besson (8), 

Brotchie (9), Hayashi (32), Hetenyi (35), Hogg (36) (37}, Naghdi and 

Rowley (68}, Schleicher (94), Thornton (102}, and Vesic (105). An itera

tive method analogous to Hardy Cross distribution was used by Gazis (27) 

to solve the problem of finite beam on elastic foundation and later ex

tended by Ewell and Okubo (20) to that of a slab on elastic foundation. 

A method of concordant deflection whereby a set of simultaneous equations 

in terms of the pressure acting on the beam-soil interface can be estab

lished by equating the deflections of the beam and the soil at a number 

of points was first developed by De Beer and coworkers (17) (18) and was 

later modified by Schultze (96), Ohde (70), and Barden (5). Wright (112) 

used a relaxation procedure, and a basic function analysis which is a 

more general version of the Fourier or Harmonic analysis developed by 

Inglis (45}, has been successfully employed by Hendry (33). Levinton 

(57} used the method of redundant reactions, in which he represented the 

pressure of the elastic foundation as a series of redundant reactions and 

set up a system of simultaneous equations in terms of the pressure ordi

nates and elastic constants of the beam and the foundation. Based on 

Levinton's method of redundant reactions, Graszhoff (30) in 1951 pre

sented his numerical solution for the problem of a beam on a modified 

Winkler foundation, where the spring constant K increases towards the 

end of the beam. Extending and systematizing the Vianello-Stodola 

procedures, as are briefly mentioned b,y Foppl (24) and Hetenyi (35}, 



Popov (80) solved the problem of a beam on an elastic foundation. The 

difficult mathematics were completely avoided in this procedure and 

reasonably accurate results were obtained. An ingenious electrical 

arrangement has been developed by Goflin (28) for solving the neces-

10 

sary differential equations. The method appears to be rapid and it can 

provide for the variable moment of inertia of the beam, but it requires 

special equipment and techniques. 

With the easy access of high speed computers in recent years, nume-

rical methods have been developed to solve the problem. Based on a 

variational method which minimizes the potential energy of the structure 

to solve the problem of concrete slabs on ground, Fremond (25) accounted 

for bilateral or unilateral contact between the slab and the soil. 

Finite difference methods have been developed by Malter (62) and Ray (85) 

and finite element techniques have been used by Huang and Warg (43), 

Saxena (90), Hudson and Matlock (44), and Cheung and Zienkiewicz (10). 

All of the above analyses are based on the assumption that the slab 

maintains contact with its support at all points and at all times. To 

account for the effect of partial support, Leonards and Harr (56) solved 

the problem of a partially supported slab on a Winkler foundation for 

linear temperature and/or moisture variation along the depth of the slab. 

Later Bandyopadhyay (4) solved the case of a strip slab partially sup-
• 

ported on Filonenko-Borodich and Reissner foundations and acted upon by 

static loads. Richard and Zia (88) proposed a theory of elastic subgrade 

that accounts for the local loss of support beneath foundation structure. 
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2.3 Dynamic Load Solutions 

Unlike the static load case, the probl~m bf moving load on rigid 

pavement has received very 1 ittl e attention until recently. Previous 

works by Raleigh (84) and Lamb (53) in the later nineteenth century con

cerning the vibration of bars, membranes and plates were primarily stud

ies in mathematics. Later Ritz (89) elaborated on this work and made a 

significant contribution towards the study of vibrating rectangular 

plates. 

Of late, engineers have felt the necessity to study the dynamic 

response of pavements, and several soltuions have evolved. Pioneering 

these solutions was the work of Timoshenko (103), Hovey (42),and Ludwig 

(61) in their studies of the dynamics of rails subjected to moving loads. 

In 1943~ Dorr (19), using Fourier integrals, extended the idea to a beam. 

When a plate is subjected to transverse load of constant intensity which 

moves parallel to the surface of the plate, the stresses induced in the 

plate depend not only on the magnitude of the loads, but also strongly on 

their speed of propagation. This phenomenon has been investigated for 

simply supported, rectangular plates by Schmidt (95) and for the case of 

a simply supported rectangular plate resting on an elastic foundation by 

Hall (38}. Livesley (60) considered the response of a finite plate on 

an elastic foundation to a traveling load. In all of these cases, criti

cal speed of propagation of the load is shown to exist and the effect of 

damping is neglected. Thus, deflections become unbounded when the load 

propagates with a speed equal to a critical speed. In addition, most of 

the solutions are restricted to sub-critical speed. 



Later, in 1953, Kenney {48) introduced the effect of linear damp

ing in the foundation by idealizing the subgrade as a Kelvin model. 

Kenney showed that the deflection of the beam remains finite at all 

velocities for a viscoelastic foundation of Kelvin elements. More-

12 

over, the solution of the elastic foundation at super critical velocities 

of the load can be easily derived from the viscoelastic solution by let-

ting the damping constant c approach zero in the limit. Kenney found 

that the results obtained with an analog computer by Criner and McCann 

{16), who made a similitude analysis of rails on elastic foundation 

under the influence of high speed traveling loads, verified some of his 

own. Mathews (64) studied a similar problem in 1958. Though he formu-

lated a general equation containing the damping coefficient of the 

foundation, he only solved for the particular case with zero damping. 

Crandall (15), recognizing the contribution of Timoshenko (103) and 

Mindlin (65) on shear deformation, extended Kenney's solutions by replac

ing the Bernoulli-Euler beam with the Timoshenko model. Crandall found 

that whereas the former model had a single resonant frequency and a 

single critical velocity, the latter had three of each. 

It has been shown by Fabian, Clark and Hutchinson (21) that the 

peak axle loading of the pavement beneath a moving vehicle can be some-

what in excess of the static axle load that is exerted by a stationary 

vehicle because of the dynamic excitation of suspension resonances by 

road surface irregularities. Further work by Clark (14) demonstrated 

that the road structure is itself a dynamical J.vstem, forced by the 

vehicle, and capable of magnification of pavement deflections and stress

es through the action of energy transfer between the potential energy 

stored in the subgrade compression and pavement bending, and the kinetic 
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energy of a moving pavement mass. Thus, the simple static analysis of 

pavement stress and deflection heretofore considered adequate to describe 

the road response to vehicle loading forces are shown to be only special 

cases of the more general dynamical analyses introduced in these studies. 

Elaborating on Clark's and Kenney's solutions, Thompson (102), in 

1963,formulated the equation of a long, narrow, elastic pavement, vis

cously damped and uniformly supported by an elastic subgrade. The sol

ution demonstrated that for static conditions the deflection curve is 

symmetrical (with maximum deflection occuring under the load); but that 

as velocity increases, the point of maximum deflection falls farther and 

farther behind the load. In the same year, Reismann (86) also studied 

the dynamic response of an elastic plate strip to moving line load over 

a Kelvin foundation. To achieve a better correlation between the math

ematical model and the actual behavior of the subgrade material, 

Achenbach and Sun (1) replaced the Kelvin model by a VanDerPoel model 

to study the dynamic response of a beam on viscoelastic subgrade. To 

account for the partial loss of contact between the pavement and the sub

grade, Lewis (58) considered the case of a warped slab on a Kelvin foun

dation subjected to moving loads. 

Current theoretical approaches to the solution of viscoelastic 

pavement systems with dynamic loads may be divided into four categories. 

Works by Kenney ( 48) , Cranda 11 ( 15) , Thompson ( 1 01 ) , Rei smann ( 86 ), and 

Lewis (58) fall under the first category, in which the elementary method 

of undetermined coefficients has been used to solve the resulting dif

ferential equations. In all these investigations, Galilean Transforma

tion has been employed first to the resulting differential equations to 

get rid of the time variable. Methods utilizing the Laplace and Fourier 
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transformations come under the second category; and Mathews (64'}, 

Ferrari (22}, Achenbach and Sun (1}, and Pister and Westman (78) took 

this approach. The Correspondence Principle, developed by Lee (55) and 

used by Pister (76}, Ishihara (46), Perloff and Moavenzadeh (75), and 

Chou and Larew (11) comes under the third category. This method, which 

reduced the time dependent problem to an analogous problem for an elastic 

body of the same geometry as the viscoelastic body, is applicable for 

cases for which the boundary condition and the geometry of the body do 

not change with time. This is accomplished by replacing all time vary

ing quantities by their Laplace transformed equivalents and the elastic 

constants by their operational moduli, thereby permitting application 

of existing elasticity solutions to the solutions of viscoelastic prob

lems. The fourth category deals with approximate numerical methods. 

Usually the difficulty in viscoelastic stress analysis arises during the 

final step of taking the inverse of the Laplace Transformed solution. 

To overcome this difficulty, Barksdale and Leonards (6) used a numerical 

collocation method to invert the transformed solution in the Correspon

dence Principle. The Duhamel superposition integral is then used to 

obtain the response of the system to a series of stationary, repeated 

loadings. However, so far this method has not been used for a moving 

load. Another numerical approach, known as 11 Galerkin's Method, .. has 

been outlined by Lattes et al. (54)~ However, this method is not fully 

developed yet, and no numerical results have been published. 

That the subgrade should be treated as a viscoelastic medium rather 

than an elastic medium has been established by Schiffmar (92), Pister and 

Monismith (77), Papazian (41) and Housel (73), among others. Thus, it 

is the object of this thesis to obtain by analytical means a better 



understanding of the dynamical behavior of rigid pavements uniformly 

supported by different viscoelastic models. 
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CHAPTER III 

ANALYSIS 

3.1 Governing Equations 

In general, the governing differential equation describing.the free 

transverse vibration of a free plate can be exp~essed as follows: 

4 4 4 2 
o• (~ + 2 a w +~)+pH~= q(x,y,t) - p{x,y,t) {3.1) 

ax4 ax2 ay2 ay4 at2 

where 

o· = flexural rigidity of the slab; 

w =mid-plane deflection of the slab (positive downward); 

x,y = fixed coordinates; 

p = density of the slab; 

H = slab thickness; 

q = surface loading; 

p = foundation reaction; and 

t = time. 

It is assumed that the slab is supported by a standard solid model. 

The relationship between the deflection and the foundation pressure can 

then be written as: 

nl a . kl + k2 
P + - E.£. = k2w + nl ( ) aw k1 at k1 at (3.2} 

where 

16 
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k1,k2 =elastic subgrade constants; and 

n1 = viscosity constant of the subgrade. 

The analysis problem can be simplified considerably by assuming 

the road width to be small, and solving the resultant narrow-road equa-

tion. Assuming that the deflection of the plate does not vary in the 

lateral (y axis) direction, Equation (3.1), for a constant cross section 

of pavement, becomes 

4 2 
D ~ + pH a w = F(x,t) - p(x,t) 

ax4 at2 

where F(x,t) is the moving line load. 
I 
I 

(3.3) 

Equations (3.3) and (3.2) govern the displacements of the elastic 

pavement on the viscoelastic foundation. If th~ applied load F(x,t) is 

a constant force F , which moves with constant velocity, v, over the 
0 

pavement, it can be expressed as 

F(x,t) = F0 6(x - vt) (3.4) 

where 6( ) is the Dirac delta function. Mathematically, 

00 

6(x) = oo 

6(x) = 0 

J 6(x)dx = 1 
-oo 

when x = 0 

when x ; 0 

To facilitate the solution of Equations (3.2) and (3.3) a trans-

formation of variables is used that is suggested by physical considera

tions to describe the response of the plate in a moving coordinate sys

tem. This is accomplished by the change of variables 

r = vt·- x (3.5) 
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which transforms Equations (3.3) and (3.2) into 

(3.6) 

(3.7) 

Equation (3.5) defines a Galilean transformation which has been 

used to advantage in a number of recent studies (15) (48) (58) (86) (101). 

The change of variables may be given the following physical interpreta

tions: an observer fixed with respect to the x-y coordinate system will 

see the line load F advance in the dir~ction of the positive x-axis, and 

to him the deflectio~ of the plate will appear to be dependent upon x, y, 

and t. However, an observer fixed with respect to the r,y coordinate 

system will move with the advancing load, and to him the deflection sur

face will appear stationary--that is, independent of t, and a function of 

r alone. It is noted that by neglecting the damped transients mue to the 

starting of the motion, the implicit assumption th~t the load has been 

moving for a sufficiently long period has been made. It shoul~ also be 

noted that r is negative ahead of the load and positive behind the load. 

Equations (3.6) and (3.7) are now put in dimensionless form by 

introducing the following dimensionless quantities. 

where 

and 
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f3 = 
Y§ 

40 

R = sr 
v 6 =-

vcr 

where 

The quantities w0 and vcr both refer to the problem of a plate of 

unit width on an elastic foundation of spring constant k2. The deflec

tion w0 is the deflection at the point of application of a stat1onary 

1 oad F . The ve,l oci ty, V , is the cri ti ca 1 ve 1 ocity of a tran~verse o cr . 
displacement wave along a freely vibrating, elastically supported plate 

' 

of unit width wit~ zero damping. 

After the introduction of the dimensionless quantities, Equations 

(3.6} and (3.7} can be written as 

4 2 
d W(R} + 4s 2 d W(R} + 4P(R} = 8o(R} 

dR4 dR2 
(3.8} 

p + e(l - m}z; dP(R} = W(R} + ~ dW(R} 
m dR m dR (3.9) 
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The problem now is to determine W(R) from Equations (3.8) and (3.9) 

under the condition that 

R -+ ~ IX)' w' w I ' w II' wIll -+ 0 (3.10) 

where a prime denotes a differentiation with respect to the dimension-

less R. 

3.2 Application of the Complex 

Fourier Transformation 

The condition Equation (3.10) makes it possible to obtain the solu

tion of Equations (3.8) and (3.9) in a convenient way by applying the 

complex Fourier transformation. The transform of a function f(R) is 

defined as 

f(s) ~ foo eisR f(R)dR (3. 11) 

If the complex Fourier transforms of W(R) and P(R) are W(s) and 

P(s), respectively, Equations (3.8) and (3.9) after the transforms be-

come 

W(s) [s4 - 4e 2s2] + 4P(s) = 8 (3.12) 

P(s) [1 - e(l- m)z; is] = W(s) [1 -~is] m m (3.13) 

Equations (3.12) and (3.13) are obtained under the following bound-

ary conditions: 

W' -+ 0 

R-++co W11 -+ 0 (3.14) 

Will-+ 0 
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The transformed displacement W(s) is obtained from Equations (3.12) 

and (3.13) 

in which 

[1- e(l-m)z:; is] 
W ( s} = ---::::-r-,m:'-----

F{s) 

F(s} = [1 - e(l- m)z:; is][s4 - 4e 2s2] + 4[1 - ~is] m m 

(3.15} 

(3.16) 

The inverse transform W(R) of Equation (3.15) can be determined if 

the zeros of the function F(s} are known. The expression for F(s), 

Equation (3.16), is a polynomial of the fifth order and consequently 

there is no standard method available to determine analytical expressions 

for the roots. It is, however, possible to make some observation on the 

general character of the roots. From Equation (3.16) it is observed that 

the coefficients of even and odd powers of s are, respectively, real and 

imaginary, and thus at least one of the roots is imaginary. The imagin-

ary root is defined ass= -in, where n is real. The real number n now 

satisfies the equation 

(3.17) 

With the Budan-Fourier theorem, it can be shown that the number of 

real roots of Equation (3.17) does not exceed three. Because the coeffi

cients of Equation (3.17) are all real, the remaining roots are all con

jugate complex roots. Returning to Equation (3.16), the function F(s} 

may then assume any of the following forms: 

{3.18) 



in which 

F(s) = (s + ia1)(s + ia2)(s + ia3)(s- s3)(s- s4) 

F(s) = (s + ia1 )(s + ia 2)2 (s- s3)(s - s4) 

sl ,2 = ~ d - i c 

1. f s3,4 = ~ 9 -

3.3 Partial Fractionalization 

22 

(3.19) 

(3.20) 

To determine the inverse transform W(R), Equation (3.15) is expanded 

into partial fractions. It developed that in all the cases considered, 

F(s) assumed the form of Equation (3.18). In determining the inverse 

transform W(R), explicitly this form is only considered for F(s). Return

ing to Equation (3.15), it can be written as 

8[1 - e(l; m)~;; is] 

(s + ia1)(s- s1)(s- s2)(s- s3)(s- s4) [- ie(l~m)~;;] 

= [ A + B + C + D + E ] [- m I;;] 
s+ia1 s-s1 s-s2 s-s3 s-s4 ie(l-m) 

(3.21) 

in which A, B, C, D, and E are all constants. Therefore~ 

[ e(l-m)z;.] (. )( )(. )( ) 8 1 - m 1 s = A s - s1 s - s2 s - s3 s - s4 

+ B(s + ia1)(s- s2)(s- s3r(s- s4) 

+ C(s + ia1)(s- s1)(s- s3)(s- s4) 

+ D(s + ia1)(s - s1)(s - s2)(s - s4) 

+ E(s + ia1)(s- s1}(s- s2)(s- s3} 

(3.22) 



The values of the constants A, B, C, D, and E can be determined 

from Equation (3.22) by letting stake the value of -ia1, s1, s2, s3, 

and s4, respectively. The values of the constants are found to be 

where 

8[1 - a(l- m)r,; a] 
m 

A = 2 2 2 2 
{d + (c - a) }{~ + (f - a) } 

8{Ml - iN1}{Pl + iQ1} 
B = --'----.i:-----'--;:---'--

2d(Pf + Qf) 

8{M1 + iN1HP1 - iQ1} 
c = --'----.i;-----'-..,.---'--

2d(P2 + Q2) 
1 1 

8{M2 - iN2}{P2 + iQ2} 
D = 2 2 

2g(P2 + Q2) 

8{M2 + iN 2}{P2 - iQ2} 
E = 2 2 

2g(P2 + Q2) 

M = 1 1 
a(l-m)r,; 

- c m 

M =1-a(l-m)r,;f 
2 m 

N = a(l- m)r,; d 
1 m 

N =a(l-m)r,; 9 
2 m 

P1 = d{(d2 - g2) - (c - f) 2} - 2d(c- a)(c- f) 

2 2 2 2 . Q1 = 2d (c - f) + (c - a) {(d ~ g ) - (s - f) } 

2 2 2 P2 = g{(g - d ) - (f- c) } - 2g(f- a)(f - c) 

2 2 2 2 Q2 = 2g (f- c) + (f-a) {(g - d ) - (f- c) } 

23 
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3.4 Inverse Transform 

The inverse transform of Equation (3.15) can now be determined not

ing that the inverse transform of a function f(s) is defined as 

f(R) = i'IT {'eisRf(s)ds 
-oo 

Accardi ngly, the inverse trans form of + \ . is s u 1 v 

(sgn v) e -vR e i uR H[ (sgn v)R] 

(3.23) 

(3.24) 

In Equation (3.24) sgn( ) and H( ) are generalized functions de

fined by 

=C 
for v > 0 

sgn(v) 
for v < 0 

f for R > 0 
H(R) = O 

for R < 0 

With Equation (3.21) and the related Equations (3.23) and (3.24), 

it is found, after some arithmetic, that 

W = A1[sgn(a)]e-aR H[sgn(a)R] 

+ [sgn(c)]e-cR [B1cosdR + B2sindR] H[sgn(c)R] 

+ [sgn(f)]e-fR [B3cosgR + B4singR] H[sgn(f)R] (3.25) 

in which 
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B2 
8 M1Q1 - N1P1 m = 

d(P2 + Q2) 
. 

e(l-m)r; 
1 1 

83 
8 Ml2 + N2Q2 m = 2 2 

. 
e(l-m)r; g{P2 + Q2) 

B4 
8 M2Q2 - Nl2 m = . 

e(l-m)r; 2 2 
g{P2 + Q2) 

The first term of Equation (3.25) corresponds to the first term of 

Equation (3.18). Because a is always positive, the first term of Equa

tion (3.25) only contributes to the displacement for R > 0, i.e., behind 

the load. The other two terms in Equation (3.25) represent a damped 

periodic response in R. It can be shown that the two quantities c and f 

are of opposite sign. The positive one gives a contribution to the dis

placement behind the load, and the negative one contributes to the dis-

placement ahead of the load. 

Let the actual bending moment in the plate be denoted by M*. 

According to the plate theory, the bending moment M* can then be expressed 

in terms of the actual deflection w as 

2 
M* = -o·d w 

dr2 

Introduce the dimensionless bending moment M as 

in which 

M* M =-
Mo . 

F 
M = __Q_ 
o 4e 

(3.26) 

(3.27) 

{3.28) 

M , as defined in Equation {3.28) is the bending moment just under a 
0 
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stationary load in a plate of unit width supported by an elastic founda

tion of spring constant k2. The relation between the dimensionless bend

ing moment, M, and the dimensionless deflection, W, is now easily found 

as 

M = - l w· 2 

Equation (3.25) can be differentiated twice to find W11 as 

W11 = -A1[sgn(a)]a2 e-aR H[sgn(a)R] 

-cR ( 2 2 · - [sgn(c)]e [{81 c - d )_ - 2B2cd}cosdR 

+ {2B1cd + B2(t2 - d2)}sindR]H [sgn(c)R] 

- [sgn(f)]e-fR [{B3(f2 - g2) - 2B4fg}cosgR 

+ {2B3fg + B4(f2 - g2)}sinqR]H [sgn(f)R] 

(3.29) 

(3.30) 

If the subgrade is idealized by a VanDerPoel model, the pressure 

deflection relationship for the foundation then will be 

(3.31) 

Proceeding exactly as above, the deflections and moments are given by 

the same Equations (3.25) and (3.30), where 

A _ 8[1 - az;(1 - m)al 
1 - az;;(1- m)[(a- c) 2 + d2]((a- f) 2 + g2] 

-8d(1- m)ar;P1 - 8[1 - (1- m)ar;c]Q1 
81 = 2 2 

ad1-m)d [P1 + Q1J 
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8d(l- m)ez;Q1 - 8[1 - (1- m}ez;c]P 1 
B = ---------..,.,..----=------'-
2 edl - m)d [P~ + Q~] 

-8g(l - m)e~;;P 2 - 8[1 - (1 - m}ez;f]Q2 
B =----~--.....,..---=------= 
3 edl - m)g [P~ + Q~] 

8g(l- m)ez;Q2 - 8[1 - (1- m)ez;f]P2 
84 = 2 2 

edl- m)g [P2 + Q2J 

P1 = (c - a)[(c - f) 2 - (d2 - g2) - 2d2(c - f) 

2 2 2 Q1 = d[(c- f) - (d - g )] + 2d(c- a)(c- f) 

P2 = (f-a) [(f- c) 2 - (g2 - d2)] - :2l(f- c) 

2 2 2 • 
Q2 = g[(f - c) - (g - d )] + 2g(f - a)(f - c) 

3.5 Viscoelastic Models With Four Elements 

In this section a subgrade idealized by viscoelastic models having 

four elements will be treated. Two models, namely Burger•s and Four 

Element, have been chosen separately to simulate the subgrade condition. 

The pressure-deflection relationship for Burger•s model is 

(3.32) 

The pressure-deflection relationship for Four Element model is 

(3.33) 

In addition to the dimensionless quantities already introduced for 

the Standard Solid model, another dimensionless quantity needs to be 

introduced, defined by 
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A. = (3.34) 

Equations (3.31) and (3.32) can now be written in dimensionless form as 

follows: 

(3.35) 

2 2 . . 2 2 
p + ~ (t..m + r;) dP + ~ (l _ m) .9__i_ = ~ d w + et.. dw 

m dR m dR2 m dR2 dR 

(3.36) 

Equations (3.35) and (3.36) can now be combined separately with the 
I 

plate Equation (3.8) to obtain the transformed displacement W{s). For 

Burger • s mode 1: 

8[1 -_ e(A. + mr;) . - e2t..dl- m) 2] 
m 1s m , s w ( s ) = ___ __:.:.;___--;:;-.,..--,.--....;,;..;_---

Fl(s) 
(3.37) 

and for the case of the Four Element model: 

2 
8 [ 1 _ e ( t..m + z;) is _ e A. z;( 1 - m) s 2] 

W(s) = m m 
F2(s) (3.38) 

where 

(3.39) 
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(3.40) 

Equations (3.39) and (3.40) are sixth-order equations and for the range 

of values considered here assume the following form: 

in which 

if s3,4 = ~ g -

(3.41) 

Following what has been done in section 3.3 and noting that the inverse 

transform of 

~ is - t sgn(R) (3.42) 

the deflection equation of the pavement supported on Burger's or the 

Four Element model is found to be 

A2 R 
W = 2 [sgn(R) - B[sgn(a)]e-a H[sgn(a)R] 

- [sgn(c)]e-cR [C1cosdR + c2sindR] H[sgn(c)R] 

- [sgn(f)]e-fR [C3cosgR + c4singR] H[sgn(f)R] (3.43) 

in which, for Burger's model 

2 
8 [ 1 _ e (Am + r;) a + e A r; ( 1 - m) a 2 ] 

m · m m 
B = - a{d2 + (c- a) 2Hg2 + (f- a) 2} • e2Adl- m) 
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and for the Four Element model 

2 
B[l _ e(A + mz;;) a + e Al;(l- m) a2] 

m m m 
2 e AI;;( 1 - m) 

Other constants in Equation (3.43) are the same for Burger•s and the 

Four Element models, and are given by 

m 
2 

e Al;{l-m) 

m 

m 

m 

2 
M3 = 1 _ e(Amm+ d c _ e Al;~-m) (d2 _ c2) 

2 
N = e Adl - m) 2cd _ e (Am + d d 

3 m m 

2 
M = 1 _ e (Am + ~;; ) f _ e A~;; ( 1 - m) ( g 2 _ f2) 
4 m m 

2 
N = e Ad 1 - m) 29 f _ e (Am + ~;;) 9 

4 m m 

2 2 2 2 P3 = {d - c(c-a)H(d -g)- (c-f )} 

- {(cd + d(c- a)}{2d(c- f)} 



2 2 2 Q3 = {d - c c - a)}{2d(c - f)}{cd + d(c - a)}{(d - g ) 

- (c - f) 2} 

2 2 2 2 P4 = {g - f(f- a)}{(g - d ) - (f- c) } 

- {fg + g{f - a)}{2g(f - c)} 

Q4 = {g 2 - f(f - a)}{2g(f - c)} + {fg + g(f - a}{(g2 - d2) 

- (f - c) 2}. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Viscoelastic Models With Four Elements 

It can be seen from Equation (3.43) that although W', W11 , and W111 

are zero at R =co, W is not and, therefore, it does not satisfy the pri-

mary condition that the deflection W must be zer:o at an infinite distance. 
I 

The constant term~ [sgn(R)] in Equation (3.43) jis the direct contribu-

tion of the real root zero in Equation (3.41). 1This real root zero 

appears whenever there is a dashpot connected in series with the Standard 

Solid, VanDerPoel, or Kelvin model. It is found that the value of the 

constant A in Equation (3.43) is directly dependent on the value of n2, 

and therefore on A. For values of n2 much greater than n1 or, in other 

words, when A becomes much greater than s, the numerical value of A be-

comes negligible and therefore the deflection giv~n by Equation (3.43) 

satisfies all the boundary conditions given by Equation (3.10). Inter-

estingly enough, values of n1 and n2, as suggested by Secor and Monismith 

(97) from their creep test results on asphaltic concrete, show that A is 

about 4000 times large than s; consequently, the numerical value of A 

becomes almost zero an Equation (3.43) becomes a valid solution. It 

should be noted that a A+co, Burger's model becomes VanDerPoel's model 

and the Four Element m del becomes a Standard Solid model. In fact, for 

A > 50, the deflection val~es of the two viscoelastic models with four 

32 
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elements become almost the same as those of the corresponding viscoelas

tic model with three elements. Accordingly, numerical results are pre-

sented for the three-element model, namely, Standard Solid and VanDer 

Poel. 

4.2 Elastic Response 

Both the Standard Solid and Van Der Poel models exhibit an initial 

elastic response and delayed elasticity. Two elastic responses are thus 

always associated with each model. The elastic responses are limit cases 

of the viscoelastic responses because they correspond to ~ = oo and ~ = 0. 
i 

For a Standard Solid model it can easily be seen from the relation be

tween the foundation pressure and the plate deflection Equation (3.2) 

that the elastic constants, k1 + k2 (initial elasticity) and k2 (delayed 

elasticity), correspond to~= oo and~ = 0, respectively. For the Van 

Der Poel model, as can be seen from Equation (3.31), the elastic con

stants are k1 (initial elasticity) and mk2 (delayed elasticity). The 

complex Fourier transform of the deflections for the four elastic cases 

follow from Equation (3.15). 

Standard Solid: 

Elastic Case I: ( 4. 1 ) 

Elastic Case II: (4.2) 

VanDerPoel: 

Elastic Case III: ~ 
8 = --.-----,..-~..::,__---~ 

s 4 - 4 8 2 s 2 + 4m ( 1 - m r 1 
(4.3) 

8 
= -4.,._-----.2----=2--

s - 48 ·s + 4m 
Elastic Case IV: ~ = 0, W(s) 4 (4.4) 
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From Equations (4.1) through (4.4) it is noticed that W(s)l' W(s} 2, 

W(s) 3, and W(s) 4 will have singularities on the real s-axis whenever, 

respectively, 

Elastic Case I: 4 ( fl e ~ 1-m 

Elastic Case II: e4 > 1 

Elastic Case III: 4 -1 e ~ m(l - m) 

Elastic Case IV: 4 e > m 

The inverse transform of a function \'lith poles on the real axis can 

be determined by making the convention that the integration is not exact

ly along the real axis but is along a line an infinitesimal amount above 

the real axis. An additional requirement is that the function should 
i 

have simple poles only on the real axis. It is 'noted from Equations 

(4.1) through (4.4) that for e = (1- m)- 1/ 4, 1, [m(l- m)- 1] 114, and m1/ 4, 

respectively, W(s) 1, W(s) 2, W(s) 3, and W(s) 4 have poles of the second 

order on the real axis, and as a consequenc~, inverse transforms do not 

exist. For Elastic Cases I and II the poles are in the complex plane, 

if e < (1- mf l/4 and e < 1, respectively, and the inverse transforms 

are then readily evaluated. For Elastic Cases III and IV the poles are 

in the complex plane, if e < [m(l-m)-1]1/ 4 and e < m1/ 4. 

4.3 Elastic Plate on Kelvin Foundation 

The dynamic response of an elastic beam on a foundation of Kelvin 

elements was investigated by Kenney (48). A subgrade of Kelvin elements 

corresponds to a limit case of a foundation of Standard Solid elements, 

the limit being obtained by letting the constant of elasticity K1 in

crease beyond bounds. Accordingly, the Kelvin foundation yields a value 

of m equal to unity. The transformed displacement for the plate on the 



35 

Kelvin foundation is then obtained from Equations (3.15) and (3.17) by 

substitution of m = 1. The result is 

- 8 
W(s) = 4 2 2 

s - 4e s - 4ies + 4 
(4.5) 

The inverse transform of Equation (4.5) is again determined by expansion 

in partial fractions. The deflection is given by 

where 

~~ = [sgn(c)]e-cR [D1cosdR + D2sindR] H [sgn(c)R] 

+ [sgn(f)]e-fR [P3cosgR + o4singR] H [sgn(f)R] (4.6) 

- 8Q5 
Dl - d(P2 + Q2) 

5 5 

8P5 
D = - --..---'--..--
2 d(P2 + Q2) 

5 5 

8Q6 
D = --..-----'-....,.--

3 g(P~ + Q~) 

8P6 
D = - ---=------'--=--
4 g(P2 + Q2) 

6 6 

P5 = (d2- g2} - (c - f)2 

Q5 = 2d(c - f} 

P6 = (g2 - d2) - (f - c)2 

Q6 = 2g(f - c) 

The difference of a Kelvin foundation response with that of Equa

tion (3.25) is in the first term of Equation (4.6). The response of the 
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plate on the Standard Solid foundation includes an exponentially decay

ing nonperiodic response behind the load. This response is absent for 

the plate on the Kelvin foundation, and it is thus related to the initial 

elasticity of the Standard Solid foundation. 

4.4 Numerical Results 

For various values of the foundation constants, ~ and m, and the 

load velocity parameter, e, the roots of the fourth, fifth, and sixth 

order equations have been calculated and subsequently substituted in the 

equation for the deflection and the moment. The computation of the roots 
I 
i 

has been carried out with the Newton-Raphson itcirative technique on an 

IBM 360 computer. 

4.5 Discussion of Results 

An important feature of the road vibrations that occur because of a 

moving load is that the deflections are not symmetrical about the load. 

While the wavy profile of the pavement does propagate along the road with 

the same velocity as the load, the waves ahead of the load have a shorter 

wave length and smaller amplitude, in general, than the waves behind the 

load. 

For a given road construction or pavement subgrade configuration, 

one matter of concern is how the deflections or vibrations of the road 

will change with an increase in velocity of the moving load. Figures 3, 

5, and 7 show the effects of load velocity as predicted by the present 

study. At static conditions, e = 0 (not shown in the figures), the maxi

mum deflection W occurs under the load (at R = 0) with the deflection 

curve being symmetrical about the position R = 0. As the velocity 
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increases (i.e., 6 > O),the point of maximum deflection falls behind the 

load; then the load appears to be imposed on the inclined side of the 

trough. All profiles computed in this work show the trend of maximum 

deflection falling behind the load as speed increases. To the extent of 

the present calculations, however, the point of load application never 

rises above the level of the undeflected pavement surface in 11 Climbing 

out" of the trough with increasing speed. 

Beginning with the symmetrical condition at zero speed, ahead of 

the load the wave length becomes shorter with increasing speed; behind 

the load the wave length becomes extended to where, at supercritical 

velocity, no oscillatory waveform will ever be obtained. This pattern 

appears to be a kind of 11 Doppler 11 effect. A complete discussion to de

fine this matter becomes increasingly complex because in elastic solids 

there are two conditions of sonic speed corresponding to the propagation 

velocities of longitudinal, compression and tension waves, and of trans

verse shear waves. Wave interactions then tend to obscure a simple 

phenomenological picture. 

In comparing the displacement curves for 6 = 0.5, Figures 2, 3, and 

4, it is noticed that for the small value of t. the deflections are only 

slightly different from the deflections for t = 0 (Elastic Case II). As 

t increases, the maximum deflection tends to fall behind the load more 

and more. However, as t approaches still larger values the maximum 

deflection moves back to the position under th~ applied force, because 

t = oo corresponds to Elastic Case I. 

Figures 4, 6, and 7 show the effect of damping on deflections for 

a Standard Solid model. The damping of the fou~dation has a pronounced 
' 
I 

influence on the pavement deflection for load velocities in the 
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neighborhood of the critical velocities. This effect is clearly shown 

in Figure 10, where the maximum deflection has been plotted as a func

tion oft for various values of e for the Standard Solid model. An 

observation of interest is that for values of e > 2.0, the maximum de

flection in the pavement is always less than the maximum static deflec

tion value for all values of t. For e = 0.5, the maximum deflection 

decreases with increase in t and becomes less than the static value for 

t > 1.0. With speed increasing up to the vicinity of critical velocity 

(e = 1), maximum deflection in the pavement is always higher than the 

static value for all values of t. 

An alternate way of viewing the results obtained in the computa

tional study is shown in Figures 8 and 9, called Stability Diagrams. 

The maximum deflection amplification factor at positions fore and aft of 

the load through the range of the velocity ratio have been plotted for 

values of constant damping t· Figure 8 shows that maximum deflection 

behind the load occurs in the region of positive deflection (downward), 

whereas the maximum deflections ahead of the load occur in the region of 

negative deflection (upward), as shown in figure 9. 

The appearance of Figure 8 is quite similar to steady state reso

nance diagrams displayed, for example, by second-order systems subjected 

to a constant amplitude, sinusoidal forcing function. When the damping 

is small and the frequency of the forcing function approaches the natural 

frequency of the system, the displacements exhibit excursions to very 

large values because of conditions of resonance. In the assumed fifth

order raod system, such excursions in the deflections due to a steady 

moving load occur when the velocity of the moving load approaches the 

critical value given by the propagation velocity of the transverse 
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flexure waves of the freely vibrating road structure. However, no forc

ing function containing a sinusoidal frequency is involved. Because of 

this difference, the conditions of maximum road deflections near a = 

are termed instability rather than resonance. 

The bending moments in the slab are shown in Figures 12 and 13. It 

can b~ observed that the viscoelastic behavior of the subgrade is again 

of 1mportance in the near critical velocity range. 

4.6 Comparative Study of Different 

Viscoelastic Models 

In this work five viscoelastic models--namely, Burger's, Four Ele

ment, VanDerPoel, Standard Solid, and Kelvin, and three different 

elastic cases which are in fact limit values of Standard Solid and Van 

Der Poel--have been considered to study the comparative effect of those 

models on the deflection and the moment of the road structure. Earlier, 

it has been shown that the results obtained with Burger's and Four Ele

ment models did not satisfy the boundary condition that the deflection 

should be zero at infinite distance. However, it has also been shown 

that limited data that are available in the literature on the values of 

the four elastic and viscoelastic parameters for Burger's and Four Ele

ment models virtually reduce them to the Van Der Poel and Standard Solid 

model, respectively, for all practical purposes. 

In Figure 2, the deflection profiles of the road surafce for three 

elastic cases have been plotted. The elastic constants for Elastic Cases 

I, II, and III are K1 + K2, K2, and mK2, respectively, which implies that 

Elastic Case I is stiffer than Elastic Case II which, in turn, is stiffer 
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than Elastic Case III; therefore, the nature of the deflection profile 

is self-explanatory. 
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In Figures 3, 5, 7, 10, 11, and 12, deflections and moments in the 

slab are plotted against the position of the load for different values 

of velocity ratio e for Kelvin, VanDerPoel, and Standard Solid sub

grades. Although, in general, the nature of the deflection and moment 

profiles is the same for the three models, the relative difference in 

magnitude of maximum deflection and maximum moment between Van Der Poel 

and Kelvin or Standard Solid is as great as 100 percent. The significant 

difference in amplitude between ~lvin and Van Der Poel is due to initial 

elasticity, and the difference between the Standard Solid and the Van Der 

Poel is due to lesser initial elastic deformation, because Standard Solid 

has stiffer elastic constants. 

Although recent investigations established beyond doubt that the 

subgrade has both elastic and viscous properties, it is not possible yet 

to concl~de which model simulates the subgrade most realistically because 

of a paucity of available data in the current literature. A comprehen

sive experimental program is required to relate soil to a specific model. 

Until more is known about the elastic and viscous parameters of soils, 

the Standard Solid model seems to be the logical choice to idealize the 

subgrade. 

4.7 Numerical Example 

So far, all the results are presented in terms of dimensionless 

parameters. In the following example, realistic ~alues 9f the parameters 

and physical properties of a load and a road configuration are first 



specified, the static deflection is computed, and then various aspects 

of the deflection profiles due to the moving load are found. 

On specifying: 

E = 4 X 106 psi 

].l = 0.15 

p = 150.9 lbm/ft3 = 0.271 x 10-2 lb-sec2;in. 4 

H = 8 in. 

Axle load = 18,000 lb; thus 

P = 125 lb/in. 

one obtains: 

K1 = K2 = 100 pci 

Eh3 8 . 
D • = _--=..:.;..----:::2~ = 1 . 7 460 x 1 0 psi I in. 

12(1-].l) 

= 4fT2 = 
s 'w 1.9452 x 10-2 rad/in. 

4K o· 114 

Vcr = [(p~)2] = 290.96 ft/sec = 198.4 mph 
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The deflections and positions of the maximum deflection fore and aft of 

the load can now be found as follows: 

At e = 0.3 (59.5 mph) and s = 0.5, 

(~) = +1.02998 
wo +max 

-2 w+max = l. 02998 x l. 215 x 10 = 0. 0125 in. 

(~) = -0.064 
wo -max 

-2 8 . W X= -0.064 X 1.215 X 10 = -0.000 1n. -rna · 

( s r) +max = 0. 045 r+max = 0.045/0.019452 = 2.3 in. 
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(Br) = -3.0 -max r = 3.0/0.019452 = -154.2 in. -max 

In Table I, numerical results are presented for a = 0.3 (59.5 mph) 

and a= 0.4 (79.3 mph) for s = 0.5, 1.0, and 2.0. 



Vel. (!!'___) 
8 (mph) s wo +max 

0.3 59.5 0.5 +1.02998 

0.3 59.5 1.0 +0.98756 

0.3 59.5 2.0 +0.89789 

0.4 79.3 0.5 +1.05601 

0.4 79.3 1.0 +0.98733 

0.4 79.3 .2.0 +0.87560 

TABLE I 

VALUES OF MAXIMUM DEFLECTION 

w+max (!!'___) w -max 
(sr)+max (in.) wo -max (in. ) 

+0.0125 -0.064 -0.0008 +0.045 

+0.0120 -0.064 -0.0008 +0.070 

+0.0109 -0.080 -0.0007 +0.090 

+0.0128 -0.080 -0.0010 +0.060 

+0.0120 -0.079 -0.0009 +0.080 

+0.0106 -0.067 -0.0008 +0.090 

r+max 
(Sr)_max (in.) 

+2.3 -3.00 

+3.6 -2.50 

+4.6 -2.50 

+3.1 -2.50 

+4.1 -2.50 

+4.6 -2.50 

r -max 
(in.) 

-154.2 

-128.5 

-128.5 

-128.5 

-128.5 

-128.5 

U1 
U1 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

The purpose of the study reported in this thesis is to obtain a 

better insight into the dynamic behavior of a road structure and to de

vise theoretical techniques for establishing the relative influence of 

dynamic and static loading on the deflections and moments induced by a 

vehicle on the pavement. 

The flexural motion of a long road pavement of unit width uniform

ly supported by a viscoelastic subgrade has been found for the case of a 

steady, normal, concentrated load moving longitudinally at constant 

velocity. The subgrade has been idealized by different viscoelastic 

models, namely, Burger•s, ~our Element, Standard Solid, Van Der Poel, and 

Kelvin, and deflections and moments of the pavement are written in terms 

of the roots of the characteristic equations associated with the equation 

of motion of the pavement. Solution to the differential equations has 

been obtained by the application of the complex Fourier transform. A 

detailed study has been made to determine the effect of different para

meters, namely, the velocity ratio and elastic and viscous constants of 

the subgrade, on the deflections and moments of the pavement. Also, the 

relative implications of idealizing the subgrade with different visco

elastic models have been studied. 

56 



57 

5.2 Conclusions 

From the results of this study, the following conclusions can be 

made: 

1. On the basis of the assumptions stated herein, the equation of 

motion of a long, narrow, elastic pavement uniformly supported by a 

viscoelastic subgrade has been formulated. Since the pavement model is 

subjected to a steady, normal, concentrated load moving longitudinally 

at constant velocity, transformation from a coordinate system fixed with 

respect to the pavement to one fixed with respect to the moving load is 

possible. The resulting ordinary differential equations are then amen

able to solution by complex Fourier transform. 

2. The results obtained by idealizing the subgrade with viscoelas-

tic models that have four elements are virtually the same when those 

models are replaced by their corresponding three element models, for the 

range of values of the element constants available in the literature. 
I 

3. The pavement profile computations demonstrate that the position 

of maximum deflection of the pavement falls behind the load as the vel-

ocity of the load increases. 

4. The wavelength of the vibrations decreases in front of the load 

and increases behind the load with increase in velocity of the load. 

5. The deflection of the pavement increases as velocity of the load 

increases and becomes maximum near the vicinity of the critical velocity: 
' 

with further increase in velocity the deflection,starts decreasing. 

6. Subgrade dampling plays an important role in the magnitude of 

maximum deflection. At light damping and with speed increasing up to the 

vicinity of critical value (e = 1), the maximum deflection, which is 

located behind the load, increases up to three times the static deflectio~ 



depending on the model. For heavy damping, the maximum deflection for 

the Kelvin model is always less than the static value. It never gets 

lower than the static value for the Van Der Poel model and is between 

these two values for the Standard Solid Model. 
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7. Due to the paucity of experimental data available in literature, 

it cannot be concluded which viscoelastic model gives the best approxi

mation for the actual subgrade. However, it can be concluded that the 

Standard Solid subgrade give deflection profiles which fall between those 

of the Kelvin and Van Der Poel subgrades, and therefore is recommended by 

the author as the model to idealize the subgrade until enough is known 

about the actual viscoelastic behavior of soils. 

5.3 Suggestions for Future Work 

At the present time, there is very little known on the range of 

values to be used in viscoelastic models and therefore a full scale 

experiment is in order. A specific choice of viscoelastic model can be 

made for a particular type of subgrade only after much more is understood 

about the viscoelastic behavior of soils. Triaxial and Creep tests 

should be performed extensively on different kinds of soils to correlate 

them with specific viscoelastic models. Also, future theoretical work 

should include (a) the effects of rotatory inertia and/or shear defor

mation of the pavement; (b) energy losses due to pavement flexure; (c) 

an adequate determination of the boundary conditions that prevail with 

finite length pavement slabs; (d) the three dimensional effect of a 

finite width pavement slab (e) the dynamics of the vehicle. It is 

anticipated, however, that many or all of these refinements will contri

bute only second order or smaller perturbations to the present solutions, 



especially for the relatively low velocity ratio characteristics of 

contemporary or future vehicles. 
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