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CHAPTER I 

INTRODUCTION 

In this chapter we establish some notations, definitions, and 

mention some classical results, which are either directly used in the 

later chapters, or otherwise, have been instrumental in the development 

of boundary behavior theory for analytic functions. 

In what follows, D, aD, and D will always denote the open unit disk 

in the complex plane, the boundary, and the closure of D, respectively. 

Statements (Theorems, lemmas, etc.) are numbered in sequence within each 

chapter, and the formulae are numbered in sequence within each item. 

For example theorem 2.4 is the fourth theorem of Chapter II, and 2.4.3 

is the third formula (or statement) numbered in theorem 2.4. The sign 

11//r is used to indicate the end of the proof. 

The first major step was taken by Fatou in 1906, who applied the 

newly discovered concept of the Lebesgue integral, to prove the following 

theorem. 

Theorem 1. 1: If f(z) is analytic and bounded in D, then the 

radial limits f*(ei 8 ) = lim f(rei 8 ) exist for all points eie on aD, 
r+l-

except possibly for a set of linear (Lebesgue) measure zero. 

For a proof of this theorem we refer to [10]. The· function f*(ei 8 ) 

in theorem 1.1 which is defined almost everywhere (with respect to the 

Lebesgue measure) on aD, is called the (radial) boundary function of 

f(z). Complementing Fatou 1 s theorem, F. and M. Riesz proved the 
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following theorem which shows the 11 strong 11 dependence of the bounded 

* i e analytic function f(z) to its boundary function f (e ). 

Theorem 1.2: Let f(z) be analytic and bounded in 0. If the set 
. * . 

E of points e16 for which f (e 16 ) = O has positive linear (Lebesgue) 

measure, then f(z) is identically zero in 0. 

For a proof of this result one can consult [10]. Later, 

R. Nevanlinna [18] studied the class of bounded analytic functions, and 
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in particular a certain sub-class, which is characterized by the follow

ing property: a bounded analytic function f(z) in O is said to be an 

inner function (or of Seidel's class U), if its boundary function 

* i 8 f (e ), has modulus one almost everywhere (from now on, unless otherwise 

stated, almost everywhere means almost everywhere with respect to the 

Lebesgue measure) on ao. An inner function without zeros which is 

positive at the origin is called a singular inner function. For example, 

every bilinear transformation of 0 onto itself is an inner function. 

Indeed, more general mappings of 0 into itself belong to the above class, 

for example the so called Blaschke products. Before defining Blaschke 

products we need the following definition: a sequence {an} (finite or 

infinite) of complex numbers which satisfy the conditions: 

( i ) for every n, o < la I < 1, n 
( i i ) for every n, la I < la +11' n - n 

(iii ) L:O- la I) 
n n 

< + 00 ' 

is called a Blaschke sequence. Now let {a } be a Blaschke sequence, 
n n an - z I an I 

then it can be shown [10] that the product n 1 -- a z n 

(finite or infinite) coverges uniformly on every compact subset of 0, 

hence defining a bounded analytic function on 0. We denote this 



function by B(z; {anJ). The function zk·B(z;{a }), where k is a nonn 

negative integer is called the Blaschke product with the zero set 

{an}U{O} (in the case k=O, the zero set is simply {an}). A factor of 
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a Blaschke product is a Blaschke product whose zero set is a subset of 

the former one. In particular, every Blaschke product is its own 

factor. One can show that every inner function is the product of a 

Blaschke product, a singular inner function, and a constant of modulus 

one. It is this singular inner part, that we will mostly be dealing 

with, in this thesis. Using Hergl otz 1 s representation theorem [ 14] , it 

can be shown that every singular inner function S(z;µ) has the following 

representation: 

S(z;µ) = exp , z in D, 

where µ(t) is a monotonically non-decreasing singular function on the 

closed interval [-TI, TI]. The above integral is understood as a Lebesgue

Stieltjes integral. 

Note: µ(t) is the distribution function of a bounded non-negative 

singular Borel measure on [~rr, n], which we will also denote by µ. 

Here singular means singular with respect to the normalized Lebesgue 

measure on [-rr, rr]. From now on, unless otherwise stated, S(z;µ) will 

denote the singular inner function generated by the monotonically non

decreasing singular function µ(t) (or the non-negative bounded singular 

Borel measure with distribution function µ(t)). The singular inner 

function S(z;v) is said to be a factor of the singular inner function 

S(z;µ) if v(t) ~ µ{t) for all values of t in [-TI, TI]. In particular 

every singular inner function is its own factor. 



In the later chapters we shall be concerned with the restriction 

of a measure to a measurable set, which is defined as follows: let µ 

be a non-negative Borel measure on a topological space X, and let K be 

a measurable subset of X. Then the restriction of µ to K denoted by 

µk is defined as fo 11 ows: for every measurable subset A of X we have 

µk (A) = µ(ArlK). In the special case, where the Borel measure has a 

monotonically non-decreasing distribution function this concept can 

be defined in terms of the distribution function of the measure. 
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Independently, Seidel [241 and Frostman [II] made important contri-

butions to the value distribution and boundary behavior of inner 

functions. Their studies were taken up later by Cargo [3], [4], [5], 

[6], and other authors, whose work will be referenced in the relevant 

chapters. 

The following two theorems are used in the later chapters. The 

first one is the important, now classical theorem of Lindelof, which 

has proved to be a useful tool in function theory. For a proof and its 

ramifications and generalizations we refer to [IOJ. 

Theorem 1.3: Let f(z) be analytic and bounded in D. If f(z) tends 

to the complex number a as z tends to eie along some arc£ lying in D 

and terminating at ei 6 , then f(z) tends to a uniformly as z tends to 

eie inside any angular domain lying in D and having eie as vertex. 

Remark: The combination of theorems 1.1 and I.3, is sometimes 

called the Fatou-Lindelof theorem. A proof of the next theorem can be 

found in [20]. 

Theorem 1.4: Let µ be a complex (finite) measure on a measurable 

space X. Let ¢ be a complex measurable function on X, and nan open 

set in the complex plane which does not intersect ¢(X). Let f(z) be 



defined as follows 

f (z) = f ctµ (I;;) 
' z in rt 

<P ( d - z 
x 

Then f (z) is an analytic function on rt. 

We finally close this chapter with a very brief discussion of 

the notion of capacity, which is used in Chapter V. For more infor-

mation as well as some function theoretical applications we refer to 

Frostman [11] and Carleson [7] (a more 11 modern 11 treatment can be found 

in Landkof [15]). Let K be a bounded Borel set in the complex plane 
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and let a be a positive number. We say that K has positive a-capacity, 

denoting it by C (K) > 0, if there exists a bounded positive Borel 
a 

measureµ of total mass one (in other words a probability measure), 

concentrated on K (i.e. whose support lies in K), such that 

f < + 00 

K 

where z0 is an arbitrary complex number. Otherwise, K is said to be of 

a-capacity zero. 

Remarks: 

(i) What we have defined above is really the a-capacity of a 

set. In genera 1, one can define different 11 types" 

of capacities on Borel sets (see [7] or [15], chapter VI). 

(ii) The usual definition of capacity (see e.g. [7]) is some-

what different from above, but equivalent in the above 

situation. 

(iii) The a-capacity is "finer" than the Lebesgue measure 



in the sense that if K has a-capacity zero then its 

Lebesgue measure is also zero, but the converse does 

not hold. The Cantor set which has zero Lebesgue 

measure is of positive a-capacity. 

6 



CHAPTER II 

RADIAL LIMITS OF SINGULAR INNER FUNCTIONS 

AND THEIR DERIVATIVES 

In this chapter we prove some theorems about the existence of 

radial limits for singular inner functions and their derivatives. 

Theorems 2.4 and 2.7 are essentially in Ahern and Clark [l] but with-

out complete proof. Since the proof of these theorems involve techniques 

which will later be useful, we feel it is appropriate to give detailed 

proofs of them. 

For our formulation of the results the following remark is in 

order. 

Remark: Let a > O be a real number, and let µ be a non-negative 

Borel measure on aD. Then 

-TI 

1f 

converges, if and only if, f ~µ(t) . 
I lt 18la e - e 

-n 

The following lemma will be used in the sequel. 

converges. 

Lemma 2.1: Let µ(t) be a monotonically non-decreasing function on 

the closed interval [-n,n]. Let a, M > 0 be real numbers such that 

1f 

f 
-n 

dµ(t) 
It - ela 

7 

< M. (2. 1. 1) 
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Ifµ is the non-negative Borel measure with distribution function µ(t), 

thenµ is continuous (or non-atomic) at t = e (i.e. µ({e}) = 0). 

Proof: Let 0 < 0 < 1. Since It - ej < 0 implies It - eja < oa 

we have 

0 '5. µ ({t: it -el < o}) = f dµ(t) 
it - ej < 0 -

7f 
< oa f 

dµ ( t) 
< oa f 

dµ(t) < oa M. - It - eja - Jt - ela 
It - e I ::: 0 -7f 

Now the result follows if we let o ~ o.111 

Proposition 2.2: Let S(z;µ) be a singular inner function. 

Moreover, suppose that 

7f 

f 
-7f 

dµ(t) 
It - el < + 00 • (2.2.1) 

Then S(z;µ) and all its factors have radial limit of modulus one at 

eie. 

Proof: We prove the proposition for e=O, for the case ef0 follows 

in a similar way if we notice that v(t) = µ(t + e) represents a monotoni-

cally non-decreasing singular function on [-7f-e, 7f-e] satisfying 

condition ( 2. 2. 1) (for v) . 

Since we have 

S(z) =exp (-J::~: ~ dµ(t)), z = rei<I>, O < r < 1, ->r <<I><,, 

hence, 



jS(z) I =exp (-Jir_l ,~ r2 2 dµ(t)) . 
le - zl -ir 

It suffices to show: 

1T it 
lim j e.t + r dµ(t) 

r+l- e1 -r 
( i) exists, and 

-ir 
(ii) lim 1 .- r dµ(t) = 0 ! 1T 2 

r+l- le1t - rl2 -ir 
To show (i), let O < cS < i be fixed. There is a Al> 0 

such that 

9 

lsin ti ~ t. 1 itl for It I ~ cS (2.2.2) 

Now consider a relative a-neighborhood of z = 1 (Figure 1). Let 
. 2 1T 

>. = max {~ , -;s} 
1 

We define the following function 

c/> ( t) = 
m , if ltl < cS 

I. , if cS < jtj < ir · 

Then cf> is a non-negative Borel measurable function on [-ir,ir] (we 

notice that cf> is continuous on ~ir,n]-{-cS, 0, cS}). Now from (2.2.1) 

it follows that cf> belongs to L1 (µ). But we have 

_g_ t < sin t < t , 
1T 

0 < t < 1T - 2 

This with (2.2.2) gives us the following estimates 

(2.2.3) 



eit 
eit 

and 

it 
e 

e it 

and finally 

Figure 1. Relative a-neighborhood 
of z = 1. 

+ r 1 + r 2 
< 

leit 
< - - rl lsin ti - r 

2 :\ It I < 8 ' < 
It I ~ TtT - Al 

+ ~ 1~ 2 2 
< 

lsin ti - I sin al 

2TI 
:\, 8 < It I 'JT 

< -< ~ 2 ' - 28 -

10 



eit + r 
it e - r 

These estimates give us 

eit + r 
it e - r 

11 

2 2 
< ~---<-~~-

I it I - I iir/2 I e - r e - r 

= 
2 2 2 

~---<-<-

(r2 + l)~ - r - o 

<%~A,~< ltl <n,o<r<l 

< ij> ( t) for o < r < 1, -n < t < n . (2.2.4) 

Now from (2.2.4) and Lebesgue's dominated convergence theorem (see 

[20]p. 27) it follows that the limit in (i) exists and in fact we have 

'IT it 'IT • 

im .t 1 . fe +r 
- 1 

dµ(t) = f e1t + 1 
it 1 e -

dµ(t) 
r+l e - r 

-n -'IT 

'IT 

=-if cot(f) dµ(t). 

-TI 

To show (ii) we notice that 

'IT • f e it + r 
dµ(t) = Re it 

e - r 
dµ(t) 

-n -n 

Hence, from (2.2.5), it follows that 

1T 2 
limf 1 :r dµ(t)=O. 

r+C le1t - rl2 
-n 

(2.2.5) 

Now let S(z;v) be a factor of S(z;µ}, where v is the corresponding 

generating measure. Since the distribution function of v, denoted by 



v(t}, satisfies v(t) :5 µ(t), tin [-7T,7T], it follows that (2.2.1) now 

holds for the measure v and the above argument also applies to v, 

proving the exfstence of a radial limit of modulus one for S(z;v) at 

z = 1/// 

12 

Proposition 2.3: Let S(z;µ} be a singular inner function. If 

S(z;µ} and all its factors have radial limit of modulus one at ei 8 , then 

µsatisfies the condition (2.2.1). 

Proof: Again without loss of generality we may take e = 0. Since 

the Borel measurable function Th- is bounded for !ti > o, o > 0, it 
7T suffices to show that for some O < o < 2 we have 

Now we may write 

0 

J dµ(t) = 
I ti 

-o 

0 

f dµ(t) 
-o !ti <+oo • 

0 

J dµ(t) 
I ti 

-o 

0 

+ Jdµ(t) 
It! 

0 

Hence it is enough to show the existence of each integral on the right -

hand side. We proceed to show, 

7T for some 0 < o < 2 
Let us define 

0 J dµ(t) < + 00 

I ti 
0 

I µ(-7T), 
v(t) = 

µ(t) ' 

-7T < t < 0 

Clearly v(t) :5 µ (t) on [-7T,7T], moreover, it is monotonically non

decreasing and singular on [-7T,7T]. By hypothesis S(z;v}, which is a 
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factor of S(z;µ), has radial limit of modulus one at z = 1. Therefore 

there is a positive real number R such that 

1 
2 arg S(r;v) < R 

for every r, 0 < r < - 1, i.e. 

'IT 

f fl r sint dv(t) R, 0 r < 1. 
-itl2 

< < - -- re 
-'IT 

Hence, 

'IT 

[ I I 
r sint dµ(t) < R, 0 < r < 1 , 

re-it 12 

and since the integrand is non-negative, letting 0 < o < ~, we have 

0 

f sint ( ) ---...........,...t-2 dµ t < R, 0 < r < 1. 
I 1 - re_, I - -

0 

Now an application of Fatou's lemma (see [20], p. 24) yields 

But we have 

[ sint. dµ(t) 
11 -lt 2 

- e I =(:~-
0 

< lim J r sint 
- - -it,2 r 1 11 re 

0 

It < sint < t 
'IT 

, 0 

dµ(t) < R. 

(2.3.1) 



and 

These with (2.3.1) gives 

2 
7f 

or 

To show 

it suffices to consider 

8 

J 
0 

dµ(t) 
I ti 

8 

. 2 t 4 sin 2 

8 

<! sint 
11 - e-itl2 

0 

J dµ(t) < + 00 • 

It I 
0 

0 

J dµ(t) < + 00 

It I 
-8 

-TI < t < Q lµ(t) ' 
w(t) = + 

µ(O ) ' 0 < t < 7f 

and apply the above argument tow./// 

dµ(t) < R 

The following theorem is a direct consequence of propositions 

2.2 and 2.3. 

Theorem 2.4: A necessary and sufficient condition for a 

14 

singular inner function S(z;µ), and its factors to have a radial limit 

of modulus one at the point ei 8 , is that the following condition hold 

true 



/

7f dµ(t) 
It - el 

-7f 

Frostman [12] showed that a necessary and sufficient condition 
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for a Blaschke product with zero set {an}' n s J (J is a subset of 

positive integers), and all its factors to have radial limit of modulus 

one at eie is that 

This condition is known as the Frostman condition. Now applying 

the above theorem and theorem 2.4 gives the following corollary. 

Corollary 2.5: Let I(z) be a non-constant inner function with 

zero set {an}, n s J, and corresponding singular measure µ. Then a 

necessary and sufficient condition for I(z) and all its factors to have 

a radial limit of modulus one at eie is 

7f 

+ J dµ(t) 
It - el 

(2.5.1) 

In the remainder of this chapter we investigate radial limits of 

successive derivatives of singular inner functions. We first prove 

the following lemma. 

Lemma 2.6: Let µ{t) be a non-negative non-decreasing singular 

function on [-7f,7f] satisfying the following condition 

7f 

f dµ ( t) < + °" ' -7f < e < 7f 
It - eln+l 

(2.6.1) 

-7f 
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where n is a non-negative integer. Let F(z) be defined as follows 
TI 

f z + eit 
F(z) = it dµ ( t) , z in D. (2.6.2) 

z - e 

Then F(k)(z), k = 0, 1, ... , n has radial limit at eie (F(O)(z)d~fF(z)). 

Proof: As before we may assume that e = 0. We observe that 

F(z) is analytic in D (Theorem 1.6 in Chapter I), and condition (2.6.1) 

implies that 

TI 

f I :it~~ i < + 00 , k = o, ... , n. 

-TI 

We now have 

(
TI k 

F(k) (z) = ~ 
J d k 

-TI z 
( z + e~~) dµ(t) 

z - e 
TI f eit 

= -2(k!). ~------,--
( it )k+l e - z 

So it suffices to show that 

l im 
r-+ 1 

TI it 

f e dµ(t) 
(eit _ r)k+l 

dµ(t) 

exists. 

Since the proof is similar to the proof of proposition 2.2 we omit it./// 

Theorem 2.7: Let S(z;µ) be a singular inner function. Let 

S(z;v) denote a factor of S(z;µ) (in particular S(z;µ) itself). A 

necessary and sufficient condition for existence of radial limit of 

modulus one for S(z;v) and existence of radial limit for S(n)(z;v), n 

an integer greater than one, at a point ei 6 , is that the condition 

(2.6.1) hold true. 

Proof: As in the proof of the proposition 2.2 it suffices to 



prove the theorem for S(z;µ) only. We may also assume that e = 0. 

Let F(z) be defined by (2.6.2). We have 

S(z;µ) =exp [F(z)] , z in D 

To prove the sufficiency we proceed by induction on the order 

of the derivative. Assume the conclusion of the theorem holds for 

all integers k < n. An application of the Leibniz formula for 

differentiation of products gives us 

S(n)(z;µ) :21:(n-) F(k+l)(z). S(n-k-l)(z;µ). 

k=O k 

Now by the inductive hypothesis we have 

lim S(n-k-l)(r;µ) exists fork= 0, 1, ... , n-1. 
r +1 

Also from lemma 2.6 it follows that 

lim F(k+l)(r) exists fork= 0, 1 •... , n-1. 
r +1 

Hence from (2.7.1) we conclude that 

lim s(n)(r;µ) 
r+l 

exists 

and the sufficiency follows from this and proposition 2.2. 

We now proceed to the necessity. Again, we induct on n. We 

17 

(2.7.1) 

assume that the conclusion holds for all integers k < n. Therefore by 

proposition 2.3 lim 
r+l 

formula (2.7.1) we have 

S(r;µ) exists and is of modulus one. From 
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~~ (n-1) (k+l) s(n-k-l)~r;µ) 
-~ F (r) S(r;µ 

(2.7.2) 

k=O k 

From our hypothesis and the inductive hypothesis it follows that each 

term on the right hand side of formula (2.7.2) has limit as r ~ 1-. 

Therefore lim F(n)(r) exists. But we have 
r~ 1 

(n) _ , /TI eit 
F (r) - -2(n.) it n+l 

(e - r) 
-'IT 

dµ(t) (2.7.3) 

Now let us define the following family of continuous functions 

2( ') it f(t)=- n. e , O<r<l 
r ( 1t )n+l e - r 

Then since lim F(n)(r) exists, the formula (2.7.3) shows that the 
r~l 

family {f r(t)} is uniformly integrable. Hence applying a result of 

Vitali (see [20], p. 143) we conclude that the Borel measurable 

function 

f(t) = -2(n !) 
( it e -

it e 
l)n+l 

belongs to L1(µ). i.e., 

'IT f dµ(t) < + 00 

leit - lln+l 
-'IT 

Now by the remark we made at the beginning of this chapter this is 

equivalent to 
'IT 

f 
and the result follows./ 11 -TI 

d ( t) 
ltl n+l 
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CHAPTER I I I 

ONE-SIDED BEHAVIOR OF SINGULAR INNER FUNCTIONS 

AND THEIR DERIVATIVES 

Extending a result of Seidel [24] and Calderon, Gonz~lez-

Dami nguez, and Zygmund [ 2] , Choi ke [ 8] obtained the fa 11 owing results 

on boundary behavior of bounded analytic functions and in particular 

Blaschke products. To state the results we need the following defini

tion: let f(z) be an analytic function in D. Then, f(z) is said to 

have a right-sided (left-sided) limit at eie if there is a positive 
* . 

number 6 such that f (e18 ) exists and is continuous for all 

t, e - 6 st s e (es ts e + 6). 

Theorem 3.1: (Choike). Let f(z) be analytic and bounded, 

lf(z)l<l, in D. If f*(eit) is of modulus one almost everywhere on an 

b f D d P ie b · · 1 · t f arc a < t < o a an = e , a < e < , is a s1ngu ar po1n or 

f(z), then either 

(i) the values of f*(eit), a< t < e, cover aD infinitely many 

times and f(z) has a left-sided limit at eie of modulus 1, or 

(ii) the values of f*(eit), 8 < t < b, cover aD infinitely 

many times and f(z) has a right-sided limit at eie of 

modulus 1, or 

(iii) the values of f*(eit) for both arcs a< t < e and e < t < b, 

respectively, cover ao infinitely many times. 

19 



Theorem 3.2: (Choike). Let B(z) be a Blaschke product with 

zero set {an}. Then, B(z) and all its factors have a right-sided 
ie limit of modulus 1 ate , if and only if, 

t 1 - lanl 
n=l I e 1 e - an I 

< + 00 

and there exists positive numbers a and s , s < 1, such that there are 

no zeros of B(z) in the region 

t:,. = { z : 1 - s < I z I < 1, e - cS < a rg ( z) < e} 

In this chapter we will prove analogous results for singular 

inner functions and their derivatives. We also extend theorem 3.2 

to derivatives of Blaschke products. 

Theorem 3.3: Let S(z;µ) be a singular inner function. Then 

S(z;µ) and all its factors have a right-sided limit (but not left
·e 

sided limit) of modulus one at e1 a if and only if 

i ) 

TT !- dµ( t) 
-TT It - ea I 

< + 00 , and 

ii) there is a positive number a such that 

Supp(µ) n (ea - cS, eal = {ea} 

where Supp(µ) stands for the support of µ. 

Proof: Without loss of generality we may assume that ea = 0. 

We proceed to prove the sufficiency. As it will be clear from the 

proof we need only to verify the assertion for S(z;µ), since the 

proof for factors of S(z;µ) is similar. 

Let 7T 

F(z) = J: 
-TT 

+ eit 
it - e 

dµ(t) • z in D. 

2a 
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Then we have 

S(z;µ) =exp [F(z)], z in D . 

Now let o > 0 be the number provided by condition (ii) above. 

* * Choose o , 0 < o < o. From theorem 1.4 it follows that 
TT • • 

* ie - j e1e + e1t * 
F (e ) - ie it dµ(t) , - o :S: e :o: o (3.3.1) 

-TI e - e 

* is continuous (in fact analytic) for - o s e < 0. Now as it was 

demonstrated in the proof of proposition 2.2, condition (i) implies 

that 
TT 

* Jl+eit F (1) = it dµ(t) 
-TT 1 - e 

which extends F* (e ie) to the closed interval [-o*, 0]. Hence, to 

show that S(z;µ) has right-sided limit at z=l, we need only to prove 

* -continuity of F ate= 0 (left continuity). Now let {en}, n = 1, 

2, 3, ... ,be a sequence of positive real numbers satisfying the follow-

ing conditions 

We let 

and 

* e < o 
n 

n = 1, 2, ... 

(3.3.2) 
n t l, and lime =O. 

n-+.xi n 

2 
-~.--~.- , n=l,2, ... 
le-1en - e1tl 

h ( t) = 2 



We make the following observation: by lemma 2.1 JJ is continuous at 
1 + eit 

t = 0, hence g ( t) converges to --~1 -t a. e (with respect to p) . 
n 1 - e 

Similarly, h (t) converges to h(t) a.e (with respect to 11) and 
n 
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Jgn(t) [ $ hn(t), n = 1, 2, ... Moreover, by the remark we made at the 

beginning of Chapter II, condition (i) implies that h(t) is in L1(µ). 

Now from a general convergence theorem (see [19], p. 232) it 

follows that to prove our assertion it suffices to show 

'TT 

lim J h (t) 
n + oo n 

'TT 

dµ(t) = ./"h(t) dµ(t) 
-TI -'TT 

(3.3.3) 

To this end let E > 0 be given. We consider the following Borel 

sets: 

and 

'TT * E2 = { t =2< t < 2TI - 0 } 

We have the following estimates 

* 
je-ien - eitj > -ien -io > I -ie1 -io*I 

E2 e - e - e - e , on ' 

and 

Now from a known theorem (see [19], p. 230) it follows that there 

exists o1 positive such that for any measurable subset E of 

[-n,TI] with µ(E) < o1 we have 

f h ( t) dp ( t) 

E 

< ~ 
2 

(3.3.4) 

(3.3.5) 



Since h (t) 
n 

is non-negative, for any measurable subset E of [-n,n] with µ (E) < n 

we have [applying (3.3.4) and (3.3.5)] 

f hn ( t) dµ(t) = f hn(t) dµ(t) 
E E 

= J hn(t) dµ(t) + J hn(t) dµ(t) 
En E1 EnE2 

f h(t) dµ(t) + 
1 f dµ(t) < 

I e -i e1 -i o* -
EnE 1 e I EnE2 

5 f h(t) dµ(t) + µ ( E) 

E I e - i e 1 _ e - i o* I 

< E: + 
2 

1 

and it follows that the family {hn(t)} is uniformly integrable, 

therefore by Vitali 1 s theorem (see (20], p. 143) we conclude that 
* . e (3.3.3) holds true, and the continuity of F (e1 ) at 0- is proved. 

Now from condition (ii) and a known theorem (see [14], p. 68) 

it follows that z = 1 is a singular point of the function S(z;µ). 

The sufficiency now follows from theorem 3.1. 

We now prove the necessity. By hypothesis S(z;µ) has right-

sided limit of modulus 1 at z = 1. From the sectorial limit theorem 
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of Lindelof (Theorem 1.3) it follows that S(z;µ) and all its factors have 

radial limits of modulus 1 at z = 1. Therefore, condition (i) follows 

from proposition 2.3. To prove (ii) we first observe that 0 belongs 

to Supp(µ). Assume on the contrary, i.e. that zero does not belong to 
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Supp(p); then since Supp(µ) is a closed set, the reflection principle 

(see [10], p. 94) would show that S(z;µ) is regular at z = 1, contradict-

ing our hypothesis. Now we prove the existence of a positive number o 

such that Supp(µ) n (-o, 0) = 0 . Assume on the contrary, that for 

every o > 0, Supp(µ) n (-o, 0) ~ 0. We consider the following two 

cases. 

Case I: The distribution function of the measureµ has a point 

of discontinuity at some t 0 in (-o, 0). Then by a lemma of Lohwater [16] 

it follows that 

Hence, 

1 im 
r -+ 1 

1 im 
r -+ 1 

J 1 - r 2 

-TI 1 + r2 - 2r cos(t0 - t) 
dµ(t) = + ()() . 

(3.3.6) 

But S(z;µ) has radial limit of modulus 1 a·e on ao. This in con-

junction with our hypothesis concerning the existence of right-sided 

limit for S(z;µ) contradicts (3.3.6). 

Case II: The distribution function ofµ is continuous on (-o, 0). 

In this case since µ(t) is singular and not identically constant, from 

a known theorem (see [23], p. 128) it follows thatµ' (t) is equal 

to + 00 at an uncountable set of points in (-o, 0). Therefore, there 

exists t 0 in (-o, 0) such thatµ' (t0) = + 00 • Therefore it follows that 

(see [ 10] , p. 30) 

1 im 
r -+ 1 

!TI 1 - r2 

-TI 1 + r 2 - 2r cos(t0 - t) 
dµ ( t) = + oo, 



and this yields the same contradiction that we encountered in Case I. 

This proves our assertion concerning the support of µ and completes 

proof of theorem 3.3~// 

As a result of applying theorems 3.2 and 3.3 we have the 

following corollary. 

Corollary 3.4: Let I(z) be an inner function with zero set {a }, 
n 
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n s J (J a subset of positive integers), and letµ denote the generating 

measure of its singular part. Then, a necessary and sufficient condi

tion for I(z) and all its factors to have a right-sided limit of 
;e modulus 1 ate , but not a left-sided limit, is that 

and 

( i ) L: 
n s J 

1 - lanl 
·e 

Jel - a I 
n 

+ 

TI 

f dµ(t) < + 00 

"ft - eT , 
-TI 

(ii) therearepositive numbers o ands, s < 1, such that 

Supp(µ) n (e - o e] = {8} 

{z 1 - s < izl < 1, 8 o < arg (z) < 8} n {an} = 0. 

Before we prove the next theorem we need the following lemma. 

Lemma 3.5: Let {zk} , k = 1, 2, ... be a sequence of complex 

numbers in D satisfying the conditions Jzkl:; izk+ll , k = 1, 2, ... , 

and 1 im izkl = 1. Moreover, assume that 
k -+ 00 

00 

lzkl I: 1 -

N < + co • 

k=l 11 - zkl 

Then we have 

< + co, m = 0, 1, ... , N. 
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Proof: We have 11 - zk I ~ 2 for k = 1, 2, ... , therefore 

00 00 

1 - jzkl 1 2: L: tr (1 - I zk I) s: N k=l k=l jl - zkl 

hence, 
00 00 

I: (1 - lzkj) ~ 2N I: 1 - lzkj 
N < + 00 • 

k=l k=l ll - zkl 

Now let E = {k : 11 - zkj > 6}, where 0 < 6 < 1 is a fixed real 

number. Denoting complement of a set by 11 ~ 11 we have 
00 

jzkl 1 - jzkj 1 - lzkj I: 1 - 2: r~ = + m zkjm zkjm k=l jl - zkj kd j 1 - kcf::. 11 -

< _!__ 2: +I:~ 
1 - jzkj 

( 1 - I zk I ) N 6m kd kEE 11 - zkl 

00 00 

1 - lzkj 1 I: 1zk!) + 2: <- (1 - N < + oo. 
om k=l k=l 11 - zkj Ill 

Theorem 3.6: Let B(z) be a Blaschke product with zero set 

{an}' n = l, 2, ... , B(O) 1 0. Let F(z) denote an arbitrary factor of 

B(z) (in particular we may take F(z) _ B(z)). Then a necessary and 

sufficient condition for F(k) (z), k = 0, 1, ... , N, to have a right

sided limit (fork = 0, right-sided limit of modulus 1) at eie is 

that 
00 

I a I I: 1 -
(; ) n < + and I ie a IN+l 

00, 

n=l e - n 
( i ; ) There are positive real numbers 6 and E, E < 1, SO that, 

{z: 1 - E < I z I < 1, 8-6 < arg(z) < e} n {an} = 0 



Proof: The necessity follows from theorem 3.2 and [l] (Theorem 

3, p. 190). We proceed to show the sufficiency. 

Without loss of generality we may assume that e = 0. We will 

prove the assertion by induction on the order of the derivative. 

We assume that the conclusion holds for all n < N and show that it 

must be ture for n = N. Let 
-
ak ak - z 

bk(z) = ~ 1 - akz 

we define Bk(z) by the relation B(z) = bk(z). Bk(z). It follows 

that Bk(z) is a factor of B(z). We can now write 
00 
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B' (z) = L Bk(z) 
k=l 

1 - jakl2 

(1 - akz)2 
, z in D. (3.6.1) 

Differentiating both sides of (3.6.1) N - 1 times, using Leibniz's 

formula, gives us 

B(N)(z) 

N-1 oo 

= I:(N~l) L 
j=O J k=l 

(N-1-j) 
8k (z) 

(3.6.2) 

Now let 

hk . (z) = ,J 
( ) 1 - jakl 

(a )j(l +la j) B N-l-j , z in o, 
k k k ( 1 - ) J +2 - akz 

and 
00 

= .L hk . (z) 
k=l ,J 

, z in D, 

where j = 0, 1, ... , N - 1 and k = 1, 2, 3, .... Now (3.6.2) can be 

written as follows. 

N-1 ( ) 
B(N)(z)= L N~l (j + l)!g. (z) 

j=O J J 
, z in D. (3.6.3) 



* Leto be a positive real number strictly less than o (which is 

provided by hypothesis). By lemma 3.5 and our inductive hypothesis 

hk .(eit) is continuous on [-6*, 0] for j = 0, 1, ... , N-1 and k"' l, 
,J 

. * 
2, .... We will show that g.(e 1 t) is continuous on [-o , 0] for 

J 

j = 0, l, ... , N-1, subsequently proving the continuity of B(N) (eit) 

* on [-8, 0]. 

Let 

L'1 = { z I z I < 1 , 0 ::; a rg ( z ) ~ ~ } 

and 

E = {k : ak is in L'1 }. 

From (ii) in the hypothesis it follows that 

I e it - ak I :'.'. * J1 - akl , k in E, t in [-o , OJ , 
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(3.6.4) 

We let 

and 

inf * 
tE [-0 ,0 ) 
k E E 

"t 
{je 1 - akl} = c0 > 0. 

1 - jakl 

11 - aklm+l ' 

M (m)= k 
_1 (1 - I ak I ) , Ca 

00 

M(m) = L Mk (m) 
k=l 

k in E 

~ 

k in E 

where k = 1, 2, ... and m = 0, 1, ... , N. We observe that by 

(3.6.5) 

hypothesis (i) and lemma 3.5 we have M(m) < + oo, form= 0, 1, ... , N. 

The following fact is needed in the remainder of the proof. 

Fact: The family { B ( j) 
k 

(eit)} ' j = 0' 1, ... , N-1, k = 1, 2, ... ' 
* is uniformly bounded on [ -o ' 0]. To show this we notice that by the 



Figure 2. A Zero Free Region 
for B(z) 

. d t. h th . . B ( S) ( i t) . t . ~ * 0] 1n uc 1ve ypo es1s, since e 1s con 1nuous on [-u , 

S = 0, 1, ... , N - 1, there is a positive real number M such that 

* 
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s: M, s = 0, 1, ... , N - 1 and tin [-8 , 0]. But we have 

j 

Bk (j ) ( e it) = L (~) bk ( m) ( e it) . B ( j-m) ( e it) 
m=O 

Therefore, by (3.6.4) and (3.6.5) we get the following estimate: 



which proves the fact. 

~(N!) M [1+2 (N!) ~ M(m)] 

~ ( N ! ) M r I + 2 ( N ! ) fi M ( m )] 

"t Recalling the definition of hk .(e 1 ), (3.6.4) and (3.6.5), and 
,J 

using the above fact gives us the following estimate: 
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"t 
jhk,j (e 1 ) I < 2K · Mk (j + 2) , j = 0, 1, ... ,N-1, k=l,2, ... 

00 

Therefore by the Weierstrass M-test, the series L: h .(eit) 
k=l k,J 

* converges uniformly (and absolutely) on [ - 6 , 0 J for each j = 0, 1, 

N - 1. Hence from a well-known theorem it follows that gj(eit) is 

* continuous on [-6 ,OJ for each j = 0, 1, ... , N - 1 as it was to be 

proved. This in conjunction with (3.6.2) showsthat B(N) (eit) is 

* continuous on [-o , OJ. 

We observe that the same argument is valid for factors of B(z) 

as well _I 11 

In the next theorem we give a similar result for singular inner 

functions and we give a sketch of the proof leaving out the details. 

... ' 

Theorem 3.7: Let S(z;µ) be a singular inner function. Let F(z) 

denote an arbitrary factor of S(z;µ). Then a necessary and sufficient 

(k) -condition for F (z), k - 0, 1, ... , N, to have a right-sided limit 

(for k = 0, right-sided limit of modulus 1) at eie is that 
7f 

( i) f dµ ( t ) < + 00 ' 

-n it - elN+l 

(ii) there is a positive real number o such that 

Supp(µ) n (8-o,e ]= {8} . 



Proof: The necessity follows from theorems 2.7 and 3.3. For 

proving the sufficiency we merely need to use theorem 3.3, lemma 2.6 

and the induction technique used in the proof of theorem 3.6./// 

We now state a corollary to the above theorems. 
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Corollary 3.8: Let I(z) be an inner function on D, with zero set 

{an}' n£J (J is a subset of positive integers), and letµ be the 

generating measure for its singular part. Let F(z) denote an arbitrary 

factor of I(z). Then a necessary and sufficient condition for F(k)(z), 

k = 0, 1, 2, ... , N, to have a right-sided limit (fork= 0, right

sided limit of modulus 1) at eie is that 

( i ) L 
n=J 

1 - I a I n + f1T dµ{ t) 

-rr It - eJN+l 
< + 00 ' 

(ii) there are positive numbers cS and £, £ < 1, such that 

Supp{µ) n (6 - cS, 6] = {6} 

{z: 1 - £ <Jzl < 1, 6 - cS < arg{z) < 6}n{an}= ~. 

We close this chapter with the following remark. 

Remark: All of the theorems in this chapter, with proper 

modifications, can be stated for left-sided limits as well. 



CHt'\PTER IV 

RADIAL AND SEGMENTAL VARIATION OF 

SINGULAR INNER FUNCTIONS 

Let f(z) be an analytic function in the unit disk D, a belong to 

the open interval (- i, i ), and e belong to the closed interval 

[-n, n]. We let 

L8(a) = ~ ei 8(1 - t eia) : O < t <cos a,~ 

which is a chord terminating at eie making an angle a with the radius 

terminating at this point. We notice that the other end of this 

chord is in the interior of D. The total variation of f(z) on 

L8(a) is now given by 

( * ) V ( f ; L 8 (a) ) = J I f ' ( z ) I I dz I 
L8(a) 

The function f(z) is said to have finite segmental variation at 

eie provided, V(f; L8(a)) is finite for all a belonging to the open 

interval (- i,; ). When a= 0 is fixed, we say that f(z) has finite 

radial variation if the right-hand side of (*) is finite. Geometrically 

this means that the image under the transformation w = f(z) of the radius 

terminating at eie has finite length. For e = Owe simply write 

V(f;a) to denote V(f; L0 (a)). In this case formula (*) can be written as 

32 
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cos a 
(**) V(f;a) = ~ jf'(l - t eia)I dt 

0 

We should mention that the integrals in formulae (*) and (**) are 

taken in the Lebesgue sense. 

The existence of radial (even non-tangential) limit at a point 

eie of a function f(z), analytic in D, does not necessarily imply 

finite segmental (or even radial) variation at ei 8 . In fact, Rudin (21] 

has shown the existence of a function f(z), analytic in D and continuous 
-

on D , whose radial variation is infinite, except on a subset of aD 

which is both of linear (Lebesgue) measure zero and first category. 

This, in conjunction with Fatou-Lindelof's theorem substantiates the 

statement at the beginning of this paragraph. More recently, Rudin (22] 

has also shown that finite radial variation does not necessarily imply 

finite segmental variation, not even for analytic functions on D with 

continuous extension to D 

Cargo [3], [4], has studied the radial and segmental variation of 

Blaschke products and has found a necessary and sufficient condition 

for finiteness of radial (segmental) variation for these functions. 

More precisely he has proved the following theorem: 

Theorem 4.1: Let {zn}~=l be a Blaschke sequence. Then all the sub

products (i.e. factors) of B(z; {a }) have finite segmental variation at 
n 

the point eie if, and only if, 
00 . L 1 - lz I 

. n < + 00 • 

n=l je1e - znl 



In this chapter we will study the radial and segmental variation 

of singular inner functions. We start with the following lemma. 

Lemma 4.2: Let µ be a non-negative singular Borel measure on 

[-TI,TI] satisfying the following condition: 
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!TI dµ(t) 
--~----'---,-- < + oo,-TI ~ 8 ~ TI . 

-TI It - ejn+l 
(4.2.1) 

Let F(z) be defined as follows: 

F (z) = 

TI . f z + e1t 
it -TI Z - e 

dµ ( t) , z in D. 

Then V(F(k) , L8(0)) < + 00 fork = 0, 1, 2, .. ., n. 

( 4.2.1) 

Proof: Without loss of generality we may assume that e = 0. 

Leto be a positive number less than 1. By a change of variable 

(namely, r = 1 - t) in formula (**) we may write: 

1 
V(F(k) 0) = J I F(k+l) (r) I dr 

0 

=JI [1 JTI--~(k+l)'.eit dµ{t)i].dr 
(e1t _ r)k+2 

0 -1r 

1 !TI . dµ(t) 
~ 2 (k+l)! J dr -TI leit _ rlk+2 

0 

= 2(k+l)![Jldrjo . dµ{t) ,.+jldrJ. dµ(t) ~ 
le1t _ rjk+L le1t_rfk+2 

o ~ o ltl?s 
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The assertion fo11ows if we show that both I 1 and I 2 are finite. 

I 2 is finite: 

From le1 t - rl 2 = (r - cost) 2 + sin2t it fo11ows that 

Hence we have: 

1 

12 = J dr J .dµ(t) k 2 
le it I + :s: o It I ~o - r 

1 { t 
I sin o I k+2 µ 

ltl~o}<+oo. 

I 1 is finite: 

By Tone11i 1 s theorem (see [19], p. 270) we may write I1 as fo11ows: 
0 1 

Il = fdµ(t) f it dr k+2 ltl : o . 
-o 0 le - rl 

But we have (for 0 < It I < o ) : 

1 1 

A(t)d~f f dr < 1 [ dr 
I it I k+2 -

lsintlk leit - rl2 0 e - r 

1 
[Arc t (!-cost) - Arc tan (-~ost)] = 

lsintJk sint 
an sint sint 

Now letting M(t) = l/lsintlk·sint we have 

A(t) < M(t) [Arg(i - ieit) - Arg (-i eit)J 

= M(t) Arg 1 .- ~~ = M(t) Arg (1 - e- 1 t) (. . it) . 
-1 e 

= M(t) Arc tan (cot }) . 
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But we have 

ifO<t<o 

Arc tan (cot ~) 
if -o < t < 0. 

Hence, 

z -cS s / Arc tan (cot f )/ ~ ~ + o , It I < o · (4.2.3) 

Now we have 

ltl k+l A(t) I t I k+ll A t ( t t)/ s sint re an co 2 . 

Therefore from (4.2.3) and the fact that lim tlsint = 1, it 
t -+ 0 

follows that, there exists a positive number l such that 

O;;; /t/k+l A(t) :; l, /t/ < o . 

Therefore we have 
0 0 

0 s I 1 ~ l f dµ ( t) ~ l j dµ ( t) 
-8 /t/k+l -o /t/n+l 

Tf 

:; l f dµ(t) < + 00 • 

-TI /t/n+l 
Ill 

Proposition 4.3: Let S(z;µ) be a singular inner function. Let 

S(z;v) denote a factor of S(z;µ) (in particular we may take v=µ). 

Then for S(k)(z;v), k = 0, 1, ... , n to have a finite radial variation 

at eie it is sufficient that (4.2.1) holds true. 

Proof: Without loss of generality we may assume that e = O. 

We notice that the condition 4.2.1 holds for v as well. Now from 

theorem 2.7 we infer the existence of a positive real ntmber M(v), 
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which depends only on the measure v, such that 

!S(j) (r;v)! ~ M(v) , j = 0, l, ... , k, k ~ n (4.3.1) 

From formula (2.7.1) we have 
k 

S(k+l) (r;v) "~ (~) F{j+l) (r) S(k-j) (r;v). (4.3.2) 

where F(z) is defined by formula (4.2.2). From lemma 4.2 it follows 

that V{F(j);O) < + oo for j = 0, 1, ... , k, k 5 n. Therefore using 

(4.3.1) and (4.3.2) we have 

1 

O) = J !S(K+l)(r) I dr 

0 

k 1 

,; M(v) ~O)~ jF{j+l)(r)I dr 

"M(v) t(~) V(F(j) ; O ) < + ro. 

J=O 
Ill 

Proposition 4.4: Let S(z;µ) be a singular inner function generated 

by the measure µ. Moreover, assume that µ is non-atomic (continuous) 

at t = 8. If S(z;µ) and all its factors have finite radial variation 
i 8 at e , then 

TI J dµ(t) It - el < + 00 • 

-TI 

Proof: Without loss of generality we assume that e = 0. Let us 

now assume that 
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TI 

f dµ(t) 
-TI It I = + 00 ' (4.4.1) 

and show that some factor of S(z;µ) does not have radial limit at 

z = 1, from which the non-existence of finite radial variation at 

z = 1 for this factor will follow, proving the proposition. 

or 

Now from (4.4.1) it follows that either 

Case I: 

Case II: 

We consider Case 

TI f dµ(t) -
0 It I -

0 

f dµ(t) = TtT -'IT 

I first. 

+ 00 , 

+ 00 

Let v denote the restriction of µ to [0,TI]. A routine computa-

ti on shows that for a non-negative Borel measure T on [n,TI] one has 

arg S(r;T) 

TI 

= J 2r sint 
!eit- r!2 

-TT 

dT(t) . 

Now let M be a number greater than 1. We choose a positive number 
TI o less than 2 such that: 

sint 
> 1 - ~ = k if 0 :s t < 0. 

(4.4.2) 

(4.4.3) 

Now let v1 be the restriction of v to [0,o]. We notice that S(z;v) 

is a factor of S(z;µ), hence S(z;v1) being a factor of S(z;v) is also 

a factor of S(z;µ). We also notice that the condition (4.4.1) holds 

true for measures v and v1 as well. From (4.4.2) we have 
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cS _ J 2r sint 
- 0 jeit - rj2 

dµ(t) (4.4.4) 

Now let {rn} be a sequence of non-negative real numbers less than 1, 

which converges monotonically to 1. By (4.4.4) we have 

5 

f sint ( ) 
~ , t 2 dµ t n=l,2, .... 

0 Je - rnl (4.4.5) 

Applying Fatou 1 s lemma to (4.4.5) and using (4.4.3) we have: 

8 
1 im 

n-r+oo f sint 
arg S ( r n; vl) > 0 -I e_i_t ___ l _I -2 dµ{t) 

Now from the hypothesis and the remark made at the beginning of 

Chapter II it follows that the right hand side of the above inequality 

diverges to + 00 • Therefore, lim arg S(r ;v1) = + oo, But since {rn} 
n -+ 1 n 

was arbitrary it follows that lim arg S(r; v1) = + 00 , which means 
r -+ 1 

either 1 im 
r -+ 1 

S{r; v1) does not exist (from which the assertion follows), 

or we may have that lim arg S(r;v1) =O. We proceed to show 
r -+ 1 

this case S(z;v1) has a factor for which (4.4.1) holds (with 

that in 

respect 

to the corresponding measure), and the radial limit does not exist. 

Let N be an integer greater than or equal to 1. We define 

<S 

o(N)=inf{n: 

N 
J dlH) > l, n positive integer} . 
0 
N 

(4.4.6) 



Remark: Since we have 

0 
N f dµ(t) = + 00 

I ti 
0 

The existence of such n in assured. 

We now notice that in this way we form a monotone increasing 

sequence of positive integers by defining Nk+l = o (Nk). Now we choose 

a sequence of real numbers {en} , strictly between 0 and 1, such that 
00 n c > 0 (i.e. the infinite product converges). 

n=l n 
In what follows we adopt the following notation: 

def 
= The restriction of µ to [§._ , 0~ Nk \ 1~k / 

SN (k) = S(z; µN ) 
k k 

for N1, ... , Nn we define 

n def 8 0 
µz = The restriction ofµ to u [- 'or"N ), 

n k=l Nk \ 11k' 

and Sz (z) = S(z;µz ). 
n n 

We now begin our construction as follows. 

Let N1 = 1 and consider SN (z). Since SN (z) is analytic at 
1 1 

z = 1, there exists a positive number r 1 less than 1 such that 
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I SN ( r) I ;:- c1 if r1 < r < 1 . 
1 

(4.4.7) 

We now select an integer N2, N2 : o (N1) such that 
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if (4.4.8) 

To accomplish this it suffices to choose N2 so large that the following 

hold true: 

1 ln -
Cl 

Tf 

and this can be done since -~ dµ(t) < + ~ and µ is non-atomic at 

t = 0 (small set theorem [19), p. 230). To see that such a choice 

works we proceed as follows: 

·e ( I SN2 ( r 1 e 1 ) I = exp - ( t ~ , -n<8<n 

: exp 

Now (4.4.8) follows from the minimum modulus theorem for non-vanishing 

analytic functions. 

We next select r2 , r 1 < r2 < 1 , such that 

(4.4.9) 

Now by induction [as in (4.4.7), (4.4.8) and (4.4.9)] we define two 

monotone increasing sequences {r n} and {N } such that: n 

I SN ( r) I > c ifO<r<r n-1' (n > 1) ' - n - - (4.4.10) n 

ISI ( r) I > c if r < r < 1, (n > 1) . n n - - -n 



' ' 

Denoting by Sr (z), the singular inne~ function corresponding to 

the measure "Loo d<;f ;es tri ct ion of µ to n~ 1 [ ~n, 0 ( ~n)) , we observe 

that by (4.4.10) we have 

Consequently, 

Likewise we have 

I SL ( r 2) I > c2 , !SN ( r2) I > c ' n = 3' 4' .... - n 2 n 
Hence 

I SL (r2ll '"" > n c 
00 n=2 n 

and inductive argument shows that 

00 

I SL (r )j > n ck ' n = 1, 2' .... 
oo n k=n 

Therefore 
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l i m I SL (r )J = 1 
n 

(4.4.11) 
n + oo oo 

Now we notice that by our construction (the way Nk 's were chosen) 

we have 

= + 00 • 

But SL (z) is a factor of S(z,µ) and from (4.4.11) we have 
00 

l i m I SL ( r) I = 1 (Note: I SL (z)j < 1, z in D). -r + 1 00 co 

This shows that l im1 SL (r) does not exist. This takes care of Case I. r + 
00 

Since the argument in Case II is similar we omit the details. This 
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concludes the proof of proposition 4.4. Ill 

Corollary 4.5: Let S(z;µ) be a singular inner function generated 

by a continuous measureµ. Then S(z;µ) and all its factors have a finite 

radial variation at eie if, and only if, 

TI 

f dµ(t) 
jt - el < + 00 

-TI 

Proof: Follows immediately from propositions 4.3 and 4.4. Ill 

Corollary 4.6: Let S(z;µ) be a singular inner function generated 

by a continuous measureµ. Then S(z;µ) and all its factors have a 

finite radial variation at eie if, and only if S(z;µ) and all its factors 

have radial limit of modulus 1 at ei 8. 

Corollary 4.7: Let S(z;µ) be as in Corollary 4.5. Then some factor 

of S(z;µ) has infinite radial variation at eie if, and only if, some 

factor of S(z;µ) fails to have radial limit at ei 8 . 

Combining corollary 4.5 with theorem 4.1 we have: 

Corollary 4.8: Let I(z) be an inner function whose singular part 

has a continuous generating measure µ. Then a necessary and sufficient 

condition for the existence of finite radial variation at eie is: 

oo 1 - Ian! 
L reie - a I 
n=l n 

+ 

where {an} is the zero set of I(z). 

!TT dµ( t) 
It - e I 

-TI 

< + O'.) 

Remark 4.9: The assumption of non-atomicity (continuity) of µ 

in proposition 4.4 is unavoidable. This is illustrated by the singular 

inner function 

S(z) = exp z + 1 
z - 1 



where the generating measure here is the point mass at t = 0. A 

simple calculation shows that V(S;O) = ~ , and the radial variation 

of its other factors (there is only one such!) is 1. But the integral 

condition in Corollary 4.5 is not satisfied. We observe however, 

that in this case not all factors of S(z) have radial limit of modulus 

1 at z = 1. 

We now return to the question of existence of finite segmental 

variation for a singular inner function. We first prove a lemma 

analogous to the lemma 4.2. 

Lemma 4.10: Letµ be a non-negative singular Borel measure on 
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[-n,TI] satisfying condition (4.2.1) of lemma 4.2. Let F(z) be the func

tion defined in the lemma 4.2. Then F(k)(z) has finite segmental 

variation at eie fork= 0, 1, ... n. 

Proof: We may again assume that e = 0. Let a be strictly between 

TI TI - 2 and 2 We choose the oomber iS strictly positive and less than 

min{l, TI- iJal }. Proceeding as in the lemma 4.2 and using formula 

(**) we have 

V(F(k) a)< 2 (k + 1)! (1 1 + I2), k = 0, 1, ... , n 

where we have 

cos a iS 

11 =f ds f, it 
dµ(t) 
1 + se i al k+2 

0 -8 e 

and 
cos a 

12 = f ds f d ( t) 
Jeit ia,k+2 

0 Jtl~o 
- 1 + se I 

It can be shown that 

Jeit - 1 + se ia I ~v2 lsin ~I if 0 < I ti< f ~ -



> 1 - 5 if f ~ !ti~ TI· 

Letting M =min {(1- o},v2 lsin ~I} it then follows that 

2 cosa 
M 

Now observing that 

µ{t !ti:: 8} < + 00. 
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leit - 1 + s eial = [s - 2 sin i sin (t- a)] 2 + 4 sin2 i cos 2(i- a) 

> 4 sin2 ~ cos 2 (l - a) 
- L 2 

one can show (with calculations similar to those in lemma 4.2) that 

cos a 

~ l•it c 1 ~ss eialk+2 = o( ltl~+l) 
and as it was shown in lemma 4.2 this will force 11 to be finite. Ill 

Proposition 4.11: Let S(z;µ} be a singular inner function. 

Then S(z;µ} and all its factors have finite segmental variation at 
i e e , if the following condition holds true. 

TI I dµ( t) 
It - el < + 00 

• 

-TI 

Proof: The proof is simply a direct application of lemma 4.10. Ill 

Since finite segmental variation implies finite radial variation. 

Applying proposition 4. 11 and Corollary 4.5 we conclude this chapter 

with the following corollary. 

Corollary 4.12: Let S(z;µ) be a singular inner function with 

continuous generating measure µ. Then S(z;µ} and all its factors 
ie have finite segmental variation ate if, and only if, S(z;µ) and 

all its factors have finite radial variation at eie. 



CHAPTER V 

SOME REMARKS CONCERNING THE GLOBAL 

PROBLEM, SUMMARY, AND SOME 

OPEN PROBLEMS 

In his inspiring paper, Frostman [12] proved the following 

interesting theorems. 

Theorem 5.1: Let {an} be a Blaschke sequence such that 

00 

L: 
n=l 

(1-Jaj)lnn<+oo. 
n 

(5.1.1) 

Then B{z; {an}) and all its factors have radial limit of modulus 1 

except on a set of linear (Lebesgue) measure zero on aD. 
00 

Remark: It is known that ~ (1 - la I)<+ 00 is enough to 
n=l n 

ensure the existence a.e of radial limits of modulus 1 for B(z; {an}) 

but not for all its factors. Condition (5.1.1) says more. 

Theorem 5.2: Let {a } be a Blaschke sequence such that 
n 

(X) 

I: 
n=l 

(1 - ja j)a < + 00 , 
n (5.2.1) 

for some positive real number a less than 1. Then B(z; {an}) and all 

its factors have radial limit of modulus 1 except on a set of a-capacity 

zero on 8 D. 
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As it is readily seen, these results are global in nature in 

contrast to the results obtained in the previous chapters, which are 

local. Cargo [4] and Rudin [21] have shown that conditions (5.1.1) 

and (5.2.1) lead to similar results for Blaschke products concerning 

their radial and segmental variation. 

Let us now consider a singular inner function S(z;µ). Can one 

put (non trivial) condition(s) on the measureµ in order to obtain 

results in the spirit of theorems 5.1 and 5.2? The question for 

singular measures whose distribution function is a step function 

does not demand much effort. Thus, using the Lebesgue decomposition 

of a singular measure (see [17], p. 152), we may considerµ to be 

continuous. 

Let c be a positive real number less than 1. We let 

and define 

def 
¢ (8) = 

E 

¢(8) = lim ¢E (8) 
E + 0 

-TI < 8 < TI 

-TI < 8 < TI • 

We notice that ¢ and ¢ are positive Borel measurable functions. 
E 

By the results of previous chapters it is clear that the existence 

of radial limit (radial and segmental variation) of S(z; µ) is 

intimately connected with the properties of the function ¢. (In 

general,¢ is an extended real-valued function). Applying the 

integration-by-parts formula for the Lebesgue-Stieltjes integral 

(see [13], p. 41~ to (5.3) we obtain the following relation: 
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(5.3) 

(5.4) 
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7f 

t/> ( 0) = k ( 0) - 20 ( 0) + f µ ( 0 _±_:tj__:__ll_(_Q_~ dt ( 5. 5) 
! [ 2 

E t 

where the i ntegra 1 on the right-hand side is in the Lebesg:ue sense, 

k(e) is a bounded function independent of t:: and D (e) is the symmetric 
E 

difference quotient of µ (to be more precise, the symmetric difference 

quotient of the distribution function ofµ) i.e. 

D ( 8) 
E 

= µ(8 + t::) - µ(8 - t::) 
2t:: 

It is known that lim D (e) = 0 a.e (with respect to the Lebesgue 
£ -+ Q E 

measure). Further exploitation of (5.5) might result in different 

local (possibly global) conditions for existence of radial limit. 

(5.6) 

There are reasons to believe that this problem is connected with the 

problem of existence of conjugate function of a Fourier series. 

In Chapter II we studied radial limit of a singular inner 

function and proved that under certain (local) conditions the radial 

limit for the singular function and all its factors (at a given point) 

exists, and is of modulus 1. This condition turned out to be 

necessary as well. The question for derivatives of such functions was 

studied too, establishing a necessary and sufficient condition for 

existence of radial limit. Some corollaries for inner function were 

given. 

In Chapter III, after defining one-sided limit of an analytic 

function at a given point on the boundary of the unit disk, we gave 

a necessary and sufficient condition for the existence of one-sided 

limit for inner functions and their derivatives, extending some of 

the results in [8]. An important step in [8] is a "classification" 



of behavior of the radial limit function of a bounded analytic 

function at a singluar point. Is such a classification possible for 

a more general class of functions, say for instance Hp functions, 

p > 1 (or at least for functions in n 1HP)? Note: It is known 
- p ~ 

that this class contains the space of bounded analytic functions as 

a proper subset [9]). An affirmative answer to this question will 

lead to refinements and extensions of the results of Chapter III. 

Chapter IV deals with the problem of existence of the radial 

and segmental variation for singular inner functions. There, it is 

shown that the condition for existence of radial limit at a boundary 

point, with a minor modification, is both necessary and sufficient 

for existence of radial and segmental variation of a singular inner 

function. Some corollaries are also given. In the same Chapter 

(proposition 4.3), we proved the existence of finite radial variation 

for higher derivatives of a singular inner function under a certain 

condition. Is this condition necessary? We conjecture that the 

answer to this question is 11yes 11 • 
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