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CHAPTER I 

FACTOR ANALYSIS: AN INTRODUCTION 

The Historical Perspective 

The birth of factor analysis is generally accredited to Charles 

Spearman. However, as is the case with most of the principles and 

procedures found in psychology, factor analysis is not the result of 

one man's work, but slowly emerged from the work of Francis Galton 

and Karl Pearson to achieve its initial theoretical application in 

the work of Spearman. It was Galton's keen interest to uncover the 

principles of the inheritance of manifest characteristics which, in 

turn, led to his borrowing from the work of the French mathematician, 

Quetelet, who is responsible for the earlier mathematical efforts in 

correlation (Burt, 1962). Also, from his work in inheritance, Galton 

became familiar with scatterplots and what he termed the principle 

of "regression toward mediocrity." In 1866, he formalized that 

notion into the "index of co-relation" (Galton, 1866). Pearson, 

fascinated by Galton's attempt to mathematize biological and 

psychological principles, took this index and developed it into what 

is known today as the product-moment correlation coefficient. 

Since the correlation coefficient, £, plays such an important 

part in psychological research, it deserves a closer look. The 

Pearson £ measures linear dependence or the amount of the ratio 
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of the covariance to the geometric mean of the variances. Mathemat• 

ically, it is the first mixed central moment of two random variables 

divided by the product of their respective standard deviations. 

Hence, the equation with which the correlation coefficient is found is 

r xy 
COVxy 

(1-1) 

where COVxy is the covariance of variables x and y, and sx, sy 

represent the standard deviation of x and y respectively. The Pearson 

! can range from +1.00 to -1.00, where 0.00 indicates no relationship 

at all. The direction of the relationship is determined by the sign 

of the coefficient. If the sign is positive, then the variables 

are directly proportional; and if the sign is negative, then the 

variables are inversely related. However, it is the square of the 

Pearson! that concerns the factor analyst most. One may interpret 

!•squared multiplied by a hundred as the percent of variance in one 

variable that can be accounted for by the variance of the other 

variable. For example, assume rxy = 0.70. Then, there is 49 per cent 

of the variance in x that can be attributed to the variance in y. 

As the use of the correlation coefficient gained popularity as 

a measure of the relationship between va~iables, there arose a need 

for a structural theory to account for these relationships (Mulaik, 

1972, p. 2). Two answers were proposed. Pearson (1901) contended 

there should be a method of closest fit of lines and planes to the · 

points in space. An important variation of Pearson's work is that 

of component analysis (Hotelling, 1933). The purpose of component 

analysis is to define the basic dimensions of the data. 
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The second major solution of this early era was by Spearman 

(1904), who proposed the first common factor approach to factor 

analysis. He postulated that a variable could be broken down into 

general and specific parts. In the case of more than one variable, 

each variable should depend on the general factor, but not necessarily 

with the same amount of dependency; and the specific factor peculiar 

to each variable. Mathematically, this can be represented by the 

equation 

(1-2) 

where Xi is the !th variable (e.g. a test score of intelligence), 

ai is the weight indicating how much of the general factor, G, can 

be found in Xi, and Ui is the unique portion of Xi which is uncorre

lated with G. Hence, each specific factor is uncorrelated with the 

general factor and the other specific factors. 

Through additional research, Spearman found that this is only 

the case if the correlations between all possible groups of four 

variables are such that 

(1-3) 

This is known as the tetrad difference criterion (Wolfle, 1940). 

If all tetrad differences in a set of variables equal zero, then 

one may split these variables into a general factor and specific 

factors. Thus, there are three important ideas emerging out of 

Spearman's work. First, one finds that the variation of each 

variable can be explained by exactly two factors, one general and 

one specific. Next, before the correlation matrix can be factored, 

it must be sifted to eliminate variables not meeting the tetrad 
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criterion. Finally, Spearman approaches the problem of factor 

analysis as one of geometric linearity. 

As evidence accumulated, many psychologists contemporary with 

Spearman became dissatisfied with the simple two factor theory. 

According to Harman (1967, p. 7) the movement to group factors in 

the late 1920's and early 1930's constitutes the early modern period 

of factor analysis. Although there was an extensive revision of 

theory during this period, the basic methods of extracting the 

factors remained the same. In group factor patterns, the general 

factor remains unchanged and explains as much of the correlations as 

possible. The residual correlations, then, are explained by the 

postulation of group factors. 

Holzinger's bifactor technique is a representative of this era. 

For him, a test score is dependent on a general factor, one group 

factor, and a specific factor. One of the most important concepts 

emerging from his theory is the general factor accounts for the 

most variance and group factors relatively less, depending on·whether 

they are major or minor group factors (Wolfle, 1940). For Holzinger, 

the geometrical approach is planar. However, as with Spearman, all 

factors are mutually orthogonal (i.e. uncorrelated). There have been 

several variations on this theme (Burt, 1949; Kelley, 1935; Tryon, 

1958). The basic model is somewhat different from Spearman's and 

is reminiscent of the·equation for multiple correlation. It can 

be represented mathematically as 

Xi= aiG + bi1G1 + bi2G2 +·ci1H1 + ci2H2 + .•.. + Ui (1-4) 

where Xi is the .!th variable, ai, bi1' b12 , cu, ci2, •.• , are the 

weights, G is the general factor, G1 and G2 are the major group 
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factors, H1, H2, .•• , are the minor group factors, and Ui is the 

portion of Xi that is unique from all the other variables. 

A break from this traditionally British way of thinking is 

found in L. L. Thurstone. He agreed that group factors were an 

important .concept, but disregarded the notion· of a general factor 

(Thurstone, 1935). This approach has become known as multiple 

factor analysis. His major concern was to reduce the data to the 

minimum number·of common factors necessary to reproduce the original 

data. Simple structure (Thurstone, 1935) became a very useful and 

popular approach to factor patterning in the United States. Probably, 

this is due to the fact that simple structure can be objectively 

defined, which·makes it readily applicable to computers. Factor 

analysis, under Thurstone, became nothing more than the mathematical 

formulation of a reductionistic model. This could possibly explain 

why the·usefulness of factor analysis in the 1950's and 1960's has 

been such a hotly debated topic. 

Emerging from the work of Thurstone and the British factor 

analysts, there are two rather diverse views concerning the nature 

of intelligence. Vernon (1951, p. 30) uses the traditionally British 

group factor method as the basis for his hierarchial structure of 

intelligence, while Thurstone (1938), using the notion of simple 

structure, says intelligence can be divided into primary mental 

abilities. There have. be~ncon:siderable amounts of research generated 

in an attempt to :resolve the issue. However, as yet, there is no 

formidable evidence one way or the other and the resolution of which 

is correct remains purely a person preference. 

5 



6 

It is interesting that Harman (1967, p. 9) considers the next 

period of factor analysis the late modern era, within which fac~or 

analysis grew both in theory and application, while Mulaik (1972, p. 9) 

considers it the blind era of factor analysis. During this period, both 

agree that factor·analysis was widely applied to research in many areas, 

but they disagree as to whether factor analysis provided meaningful 

explanations for the relationships found among the variables. For 

example, Mischel (1968} points out that the trait theorists in 

personality research have not produced factors that have been 

universally accepted as explanatory concepts of human behavior. 

Presently, the major theoretical considerations have centered 

around the use of factor analysis as a method for hypothesis testing. 

The problem was first encountered by Mosier (1939) when he presented 

a mathematical rationale for oblique·rotation to a target matrix. 

He referred to the target matrix as a reference structure. His 

approximate solution for rotating a factor matrix to the best least 

squares fit to the target reference structure has been subsumed under 

the heading of procrustean transformations. Horst (1956) and Hurley 

and Cattell (1962) have strongly suggested this method as a way of 

obtaining approximate solutions. Harman (1967, p. 251) refers to 

this procedure as a general method giving the matrix of transformation 

between any two solutions the same common factor space. There have 

also been exact methods given. These are obtained by adhering to the 

restrictions of orthogonal rotation (Cliff, 1966; Shonemann, 1966). 

Most recently, Joreskog (1970) has provided mathematical rationale 

and computer programs for simultaneous solutions of several populations 

to a hypothetical factor pattern matrix. These new approaches, it has 



been suggested, will make factor analysis a more useful tool in the 

development of structual theories (Mulaik, 1972, pp. 11, 294). 

The Theoretical Perspective 
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The methods of factor analysis were developed primarily for 

identifyin~ the principal dimensions of mentality, but as the methods 

became widely recognized, other applications were found. As has been 

stated, the factor problem is to account for the observed correlations 

among all variables in terms of the smallest number·of factors with 

the smallest possible residual error. Hence, factor analysis does 

not add anything to the original data, but is a method of simpli

fication. 

What does factor analysis do? There have been many different 

approaches to this answer. Harman (1967, p. 2) says "it is a tool 

in the empirical sciences. The major objective of such a tool is to 

provide an explanation for the underlying behavior of the data." 

Similar to the middle of the road approach of Harman is that of 

Mulaik (1972, p. 3). In a more mathematically pure approach, Horst 

(1965, p. 17) states "the primary concern of factor analysis is to 

investigate a table of measures to determine whether the table may 

be simplified in some way. 11 Thurstone (1935), on the other extreme, 

feels that factor analysis not only discovers the underlying order 

of the data, but says that one may identify their nature. 

Keeping this differentiation in mind, one may infer that factors 

may represent three theoretical levels. Most simply, it may be a 

formal concept expressing the mathematical relationships found in 

the raw data (Horst, 1965, p. 16). When taking this approach, one 



refrains from making aggressive assertions about the nature of a 

factor. Secondly, a factor may be a theoretical construct. This is 

the most common theoretical perspective and it represents the belief 

that factors define the causal network underlying the observed 

patterns. This easily can be seen in the application of factor 

analysis to the study of intelligence (Spearman, 1904; Thurstone, 

1935; Vernon, 1951). The final level at which a factor can be viewed 

is as an empirical concept. An example of this is found in the factor 

analytic personality theorists, where typologies play an extremely 

important part in the understanding of personality. In this case, 

factors categorize the concommitent relationships. Therefore, 

factor analysis can become an exploratory device for uncovering 

these basic concepts. These three views, however, do not represent 

the only definitional approaches to factors, but are points on.a 

continuum which goes from a purely mathematical bleaching to the 

colorful identification of factors as representatives of reality. 

The Mathematical Perspective 

In general, there· are two mathematical approaches to factor 

analysis: (1) common factor analysis and (2) component analysis. 

The basic and most traditional is common factor analysis. There 

8 

have been two basic refinements of this technique. Guttman (1953) 

developed image analysis in order to remove the problem of communality. 

He felt he·could accomplish this by operationally defining "commonness." 

The other·refinement was by Rao (1955) when he extended factor 

analysis to the realm of statistical tests of significance. His 

procedure has become known as canonical factor analysis. The essence 
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of common factor analysis is the division of the varia~les into their 

common and unique parts, while component analysis (Hotelling, 1933) 

does not make this distinction. Of course, there are other mathe-

matical models found in factor analysis, but these two are the·classical 

techniques and the majority of research involves their usage (Gorsuch, 

1970). 

Common Factor Analysis 

This technique was first developed by Spearman (1927) for his 

two factor theory and later extended to multiple factors by Thurstone 

(1935). This is similar to a partial correlation approach in that 

one divides the variance of the variable into two distinct parts. 

The first is that variable of Xj which is common to or related to 

the variance of the other variables in the study. This part is 

technically known as the· communality of Xj. The other part, as 

expected, is the uniqueness of xj.or the variance of Xj not common 

to the·other varia9les under study. Schematically, this is shown by 

Figure 1. 

Common Unique 

Total Variance 

Figure 1. The Common and Unique Parts 
of xj 
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With respect to the above definitions, the following notation can 

be developed. (In subsequent chapters, the following technique will 

be used to introduce important symbols and their definitions. In 

addition to notation, equations which are necessary to derivations 

will also be introduced using this technique,) 

1.1 Notation Zj the standardization of variable Xj 

h~ 
J 

the communality of Zj 

H~m a diagonal matrix of communalities, where hti is the 
communality of variable Zi with respect to the other 
(m - 1) variables 

uj the unique part of variable Zj 

2 d' 1 . f . h 2 . h Umm a iagona matrix o uniquenesses, w ere uii is t e 
uniqueness of variable Zi with respect to the other 
(m - 1) variables 

Using the preceeding notation, it is rather simple to mathematically 

express the variance of Zj as 

uj + h} = 1.00 (1-5) 

With the use of matrix notation, the case of ~ variables can be 

expressed as 1-6, where Imm is an identity matrix. 

u2 
mm = I mm (1-6) 

The common factor model is similar to equation 1-4, but there 

is no distinction made between general, major group or minor group 

factors. In general, common factor analysis defines the hypothetical 

unknown factors related to the common variance components of the 

variables. The common factor equations are 

xl allsl + a12s 2 + + a1PsP + alu8lu 

x2 a2181 + a2282 + + a2 S + a2u82u p p 
(1-7) 

xm am181 +am282 + . . . + ampSp + amu8mu 



where Sp are the p number of common factors, Smu is the unique factor 

for each variable, and the coefficients amp and amu are the scalars 

indicating the weighting of each variable on the common factors and 

unique factor respectively. It is these coefficients that emerge as 

the factor loadings when factor analyzing a data matrix using common 

factor analysis. 

11 

Matrix notation can be readily applied to the techniques of factor 

analysis, and using this notation can express the basic equations in 

a much simpler form. For example, the equations of 1-7 can be 

expressed as the following using a set of standardized variables, 

Zi, rather than the raw score form, Xi, where there are m variables 

and n cases. 

1.2 Notation Fmp a matrix of loadings, a, for each variable on each 
common factor 

a matrix of factor scores for each case on each 
common factor 

S# a matrix of factor scores for each case on the nm 
unique factor 

Z = S F' 
nm np mp 

+~u 
nm mm 

(1-8) 

The object of common factor analysis is, then, to determine SnpF~p· 

It is at this point that one of the most basic derivations of factor 

analysis needs to be presented. 

1.3 Notation l\nm the intercorrelation matrix 

mnun the null matrix, where all elements are zero 

1.4 Derivation of the Basic Equation of Factor Analysis 

The starting point for this derivation is equation 1-8. Taking 

the minor product of both sides and simplifying algebraically, the 

following equations emerge. 



z~mznm = (SnpF~p + s~mumm) I (SnpF~p + s~mumm) (1-9) 

FmpS~psnpF~p + UmmS~~SnpF~p + FmpS~psgmUmm 

+ u s# 1 s# u 
mm·nm nm mm (1-10) 
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Since the common and unique factors are uncorrelated, one may express 

that mathematically in the following manner. 

s#'s = s1 s# = ffi nm np np nm mp (1-11) 

By substituting 1-11, 1-10 can be simplified to arrive at 1-12. 

Z' z F s' s F' + ·u s# 1 s# u nm nm = mp np np mp mm nm nm mm (1-12) 

Now, if one makes the assumption that Snp and S~m have been standard-

ized and the factor loadings are orthogonal, then the following 

holds. 

S' S 
np np = nI pp = nI mm (1-13) 

In making this substitution and simplifying, one obtains the final 

solution. It should be pointed out that in simpl~fying (n- 1 ) is 

multiplied through as a constant. 

(n-1) 2~m2nm - F F' mp mp + u2 mm (1-14) 

One final simplification can be made. Given 1-15 and removing U~m 

from both sides, one obtains the most widely accepted version of 

the basic equation. 

Rui.m = ( -1) I n 2nm2nm (1-15) 

Rmm = FmpF~p + u2 (1-16) mm 

Rui.m = 2 
umm = FmpF~p (1-17) 

It is this final equation that numerous authors refer to as 

the basic equation of factor analysis (Mulaik, 1972, p. 100; 

Thurstone, 1947; Harman, 1969, p. 28). However, there are two 

fundamental indeterminacies found in this derivation. First of all, 

an infinite number of matrices Fmp can be found which will reproduce 
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Rmm - U~m (Guilford and Hoepfner, 1969). Guilford and Hoepfner 

(1969) have examined this problem and emphasize that in an unexplored 

area of research, one has trouble determining which solution represents 

the genuine psychological variables. The other problem, which is 

peculiar to the common factor solution, is that one must identify 

the unique parts of the variables before solving for F • This is mp 

a problem, in that, the unique portions cannot be known until the 

common factors are defined. What is usually done is to estimate the 

uniqueness. This raises the question as to whether differences in 

these unique estimates have any effect on the factor loadings. 

Thurstone (1947, p. 285) presents factor results for three different 

sets of estimates. The factor structures differ significantly. 

Hence, there is a circular effect. It is this problem that is known 

in many texts as the problem of communality, and as yet there has 

been no suitable solution reached. 

Component Analysis 

Harold Hotelling (1933, 1936) proposes a method which attempts 

to rid the factor analyst of the problem of communality. It is the 

analysis of variables into their principal components that removes 

estimation of communalities by employing the following model. 

Xl = all sl + ·a12S2 + +a S - lp p 

X2 a2181 + a22s2 + +-a2PsP 
(1-18) ·--, . -..;...__ . . 

xm = 8 mlsl + am2S2 + . 0 ' +a S mp p 

where s are the first p principal components and the coefficients p 

aij' i = 1, 2, ... , m and j = 1, 2, ... , p, are the scalars which 



represent the weighting of the variables on each component. It is 

important at this point to note that it will require m components to 

reproduce the correlation matrix of m variables exactly. However, 
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the technique which Hotelling developed extracted the components 

in.such a manner that each new component.accounts for the greatest 

possible portion of the total variance·of the variables unaccounted 

for by preceding components. Thus, when results are presented, the 

factors (components) reported are those which significantly contribute 

to the variance. 

The extraction of factors or components in decreasing order of 

variance accountability offers a method which serves to provide a 

unique· s.olution for· equation 1-21. In fact, several methods· have 

been proposed (Hotelling, 1933; Kelley, 1935, p. 145; Thomson, 1934). 

These methods involve iterative schemes which· obtain the roots of the 

characteristic equation, mathematically speaking. These·are known 

as eigenvalues .. In matrix theory, the mathematical usage of 

eigenvalues and eigenvectors is easily seen. Generally, there is 

a number, e, and an m-dimensional column vector, qml such that 

~mqml = (e) qml (1-19) 

Any number, e1, satisfying this equation is called an eigenvalue of 

Rmm and its corresponding vector qml is called the eigenvector of 

Rmm. Due to the mathematical complexity of these extraction 

procedures, they were unpopular techniques in the pre-computer 

age. Hence, many researchers felt that common factor analysis was 

a more appropriate technique due to its relative ease of calculation 

(McCloy, Metheny, and Knott, 1938). However, as Gorsuch (1970) 



points out, most decisions, concerning the model and methods used in 

a factor analytic study, depend on the availability of computer 

facilities and programs. 
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CHAPTER II 

THE ROTATIONAL PROBLEM 

There are two possible steps one could use in obtaining the final 
! 

factor solution: (1) extraction and (2) rotation. Thurs tone (1937) 

points out that it should be the theme of all those who factor 

analyze, in psychology, to achieve psychologically significant 

factors, which (1) can be replicated, (2) can be easily interpreted 

in light of some theoretical position, and (3) can be investigated 

meaningfully by other techniques. There are several methods in 

current·use which use only extraction to achieve the final solution 

(Joreskog, 1970; Harman and Jones, 1966). However, some extraction 

methods lend themselves to rotation. This is the case with principal 

components (Hotelling, 1933), principal factor (Thomson, 1934), and 

centroid (Thurstone, 1947, Chapter 4) extraction procedures. 

The value of rotation is not found in its mathematical basis, 

but rotation is beneficial to the researcher in that· it·allows one to 

include subject matter considerations. In fact, rotation, 

mathematically, leads one again into the problem of indeterminateness, 

for there are an infinite number of rotations which one can make. 

Thus, it is the extraction technique which defines the minimum 

dimensions of the data, and the rotational procedure which makes the 

factors substantively interesting. However, one does not rotate 

blindly. There.are several criteria which must be considered when 
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one uses rotation in factor analysis. It is important, then, to be 

somewhat cautious when using rotational procedures. 

The concept of parsimony is a key factor in determining rotated 

factor matrices. In factor extraction, parsimony is met by using 

the smallest number of factors to account for the observed 

correlations in the variables. However, the meaning of the term, 

with respect to the rotational problem is neither explicit nor 

precise. Since the axes can be rotated to an infinite number of 

positions, a question arises as to which is the most parsimonious 

description. Ferguson (1954) suggests "some function of the sum 

17 

of products of the coordinates might serve as a measure of parsimony." 

If one accepts this view, then the resulting factor pattern is that 

of simple structure (for a fuller discussion of this concept see 

the next chapter), which may or may not be of theoretical interest. 

Hence, it is thought by the author that a more versatile definition 

of parsimony is needed with respect to the problem of rotation. 

Therefore, a factor pattern is parsimonious if the factor structure 

one obtains by rotation is the most expeditious in making the 

transfer from the data to the theoretical model. In other words, 

parsimony is viewed with respect to the theoretical model one is 

considering as well as its traditional aspect of using the simplest 

solution. 

A second major criterion of rotation is factor invariance. In 

fact, Kaiser (1958) states that the ultimate criteria of a rotational 

procedure is factor invariance. By invariance, one means the 

constancy of factors from analysis to analysis. Hence, invariant 

factors always delineate the same variables regardless of the other 
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variables included in the analysis. If a factor is invariant, under 

changing samples of tests, there is evidence that the inferences 

regarding the domain of the factors are correct (Thurstone, 1947, 

p. 360-361). It is felt that Kaiser is placing undue emphasis on the 

notion of invariance. Although one may increase the generalizability 

of the factors, Reyburn and Taylor (1943) show that invariance is a 

function of subjective identification of factors. Hence, they feel 

that while invariance will aid in the verification of theoretical 

formulations, it is not as necessary as parsimony in the final factor 

solution. 

The final criterion used in governing rotational procedures is 

based on the orthogonality-obliqueness issue. The major distinction 

between the two approaches is orthogonality guarantees independent 

factors, whereas oblique rotational processes do not. It must be 

noted, however, that orthogonal rotation is a subset of oblique 

rotation. There exists a great controversy over which approach is 

better. In order to evaluate the positions of both sides, it is 

necessary to delineate the characteristics of each rotational 

procedure. 

Orthogonal rotation yields factors which have an inner product 

equal to zero, implying the factors are independent. The factor 

scores are linearly independent and uncorrelated. Also, the communality 

of each variable remains invariant through the rotational process. 

Probably the most important characteristic associated with orthogonal 

rotation is that the equation 

F* = z' Z* (n- 1) mp nm np (2-1) 
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where F~p is the rotated factor matrix, Znm is the data matrix, and 

Zfip is the rotated factor score matrix, is still applicable. Hence, 

the factor loadings are correlation coefficients of the original data 

and the factor scores. Fruchter (1952) found that orthogonal solutions 

resulted in conceptual clarity when contrasted to oblique rotations. 

Other arguments in favor of orthogonal solutions are simplicity, 

mathematical independence, and the ease with which orthogonal 

solutions can be applied to subsequent manipulations. 

Oblique rotation, on the other hand, defines the clusters of 

variables more precisely. However, there is a loss of independence 

between factors. This is due to the fact that the factors are 

rotated individually until the best fit is obtained. Harris and 

Knoell (1948) offer an extensive analysis of the oblique solution. 

It is evident from their discussion, that in obtaining the additional 

information from oblique solutions, one obsures the basics of factor 

analysis, such as communality, factor structure and pattern, and the 

percent of variance accounted for by each factor. The most convincing 

argument offered for the use of oblique solutions is by Cattell 

(1952, p. 122-123). His reasoning is mainly epistemological. 

Phenomena, according to Cattell, are always interrelated, and the 

factors must express this reality. 

Rummel (1970, p. 388) states that the issue of orthogonality

obliqueness is not a question of either/or. One should try both in 

an effort to find the best theoretical solution. This author feels 

that this is not the case. The position of orthogonality seems to be 

a more potent alternative. As Harris and Knoell (1948) point out, 

the oblique solution led to theoretical problems with respect to 
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their model. Also, the results of oblique solutions were not as 

straight forward as the orthogonal results. It appears that by 

accurately defining each cluster, one is creating more theoretical 

obscurity than providing information. Hence, in oblique solutions 

there is a greater problem with interpretability than one encounters 

with orthogonal solutions. Also, there is not a necessity for higher-

order factors in orthogonal solutions since the factors are uncorrelated. 

It is proposed, then, that there are three major criteria 

governing the rotational procedure. The factor patterns should be 

parsimonious with respect to the theoretical model and in the 

traditional sense. It is felt that this is the most important 

criteria to be met. Secondly, the factors should remain orthogonal 

during the rotational process in order not to cloud their interpret-

ability. The third property one must keep in mind is factor invariance. 

While it is desirable to haveinvariance, it is not an essential 

property. Having factor invariance increases the interpretability of 

the factors, but does not directly influence the factors themselves. 

Using these as rotational guide to aid in finding the right rotation 

to best understand the subject matter, it is now appropriate to 

consider the mathematical aspects of rotation. 

Mathematically, rotation is a relatively simple process. 

2.1 Notation TPP an orthonormal rotation matrix (i.e. Ipp = T'PPTPP) 

F* mp rotated factor loading matrix 

Z* rotated factor score matrix 
np 

Using the above notation, one can rotate the factor loading matrix, 

Fmp' and the factor score matrix, Znp' respectively, using equations 

2-2 and 2-3. 



F* = F T mp mp pp 

Z* = Z T 
np np PP 

(2-2) 

(2-3) 

There are two general methods for obtaining Tpp" The graphical 

procedure is subjective and somewhat laborious. Fruchter and Novak 

(1958) point out that, in addition to being laborious, the accuracy 

of the method is questionable when compared to present computer 

methods. The other method of rotation is the analytic approach. 

Analytic rotations are attempts to specify mathematically how the 
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rotation is to be performed. This will remove the infinite rotational 

possibilities and make the solution determinate. Fruchter and Novak 

(1958) found that the analytic method is the most objective and 

requires the least amount of judgmental decisions. 



CHAPTER III 

THURSTONE'S SIMPLE STRUCTURE 

The Theoretical Position 

In an effort to make the rotational process as mathematically 

complete as possible, Thurstone defined simple structure as the most 

parsimonious factor solution (Thurstone, 1935, p. 150-151). Simple 

structure is an attempt to maximize each factor colinearly with a 

cluster of variables. The initial criteria for determining simple 

structure is as follows (Thurstone, 1935, p. 156): 

1) Each row should have at least one zero. 
2) Each column should have at least r zeros 

(where r is the number of factors). 
3) For every pair of columns, there should be 

at least r variables whose·entries vanish 
in one column but not the other. 

There have been many individuals who have made numerous proposals for 

procedures to attain the goal of simple structure. Since this was the 

first attempt to objectively define a factor structure, it became 

very popular in America. 

In 1947, Thurstone added two more criteria to make sure the 

factors were distinct and overdetermined by the data (Thurstone, 

1947, Chapter 14). At present, the five criterion for simple 

structure are (Thurstone, 1947, p. 335): 

1) Each row of the factor matrix should have·at 
least one zero. 
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2) For each column of the factor matrix, there 
should be a distinct set·of r linearly 
independent tests whose factor loadings are 
zero. 

3) For each pair of columns, there should be 
several variables whose entries vanish in 
one column but not the other. 

4) For every pair of columns, a large proportion 
of variables should have zero entries in both 
columns.·· This applies only to factor problems 
with four or more factors. 

5) For every pair of columns, there should 
preferably be only a small number of vari
ables with nonvanishing entries in both 
columns. 

Schematically, pure simple structure can be seen in the following 

manner. 

TABLE· I 

THE SIMPLE STRUCTURE PATTERN 

Unrotated Simple Structure 
Factors Rotation 

Io I1 I2 Io I1 I2 

x x x 
x x x 
x x x 

x x x 
x x x 
x x x x 
x x x 

x x x 
x x x 

Note: X represents a factor loading other than zero. 
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Using the five criterion, one has a good assurance that the 

factors are defining distinct clusters of variables. There are 

several properties which are inherent in simple structure. As seen 

in Table I, each variable is loaded on one factor. Hence, simple 

structure minimizes the number of factors necessary to account for 

a single variable. Similarly, the number of variables loaded on 

each factor is minimized. This removes a general factor or any 

bipolar factors, leaving only group factors. It is from this that 

Thurstone lays the foundations of his primary mental abilities 

approach to intelligence (Thurstone, 1938, pp. 71-73). 
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Two other general characteristics usually appear when one employs 

the simple structure criteria. The majority of extraction processes 

that lead to rotation (see page 16) extract the factors by maximizing 

the variance each factor represents. Hence, the magnitude of 

variance associated with each factor decreases as the factors are 

extracted. (This is especially true when using the principal 

components or the centroid procedure.) However, after applying 

the simple structure criteria to rotation the variance associated 

with each factor has approximately the same magnitude. The other 

property one usually finds is that the factors define clusters of 

interelated variables. Again, this provides a strong argument for 

Thurstone in favor of primary mental abilities (Thurstone, 1938, 

pp. 89-91). This is one of the main reasons why simple structure 

is so frequently used. The factors lend themselves more easily 

to invariance, since the clusters are interrelated and distinct 

from the other clusters. Thus, the addition of new variables 

in the study will not affect the correlations of those already highly 

correlated. 
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Analytic Rotations to Simple Structure 

The popularity of Thurstone's simple structure increased with the 

development of analytic procedures to rotate factor matrices into 

simple structure. Applying these techniques to computers (e.g. 

Kaiser, 1959), has increased its popularity even more (Gorsuch, 1970). 

At present, there are two major analytic orthogonal procedures 

enjoying extensive use. They are the quartimax and the verimax. The 

varimax has greater popularity (Gorsuch, 1970), because it is not as 
' 

biased as the quartimax with respect to the weighting of the first 

factor. 

Quartimax 

Several researchers independently developed the quartimax 

rationale (Carroll, 1953; Ferguson, 1954; Neuhaus and Wrigley, 

1954). Although the approaches are mathematically equivalent, they 

arrive at their solutions emphasizing different theoretical aspects. 

Ferguson (1954) approaches the problem by attempting to objectify 

the notion of parsimony (see page 18). On the other hand, Neuhaus 

and Wrigley (1954) and Carroll (1953) place their emphasis on 

finding a mathematical formulation of Thurstone's five criteria 

(1947, p. 335). Carroll's aim centers around criteria three, four 

and five, while Neuhaus and Wrigley attended the concentration of 

test variance which is related to criteria one and two. Since all 

three are mathematically equivalent, it is sufficient to describe 

one in detail. Neuhaus and Wrigley are chosen to serve this purpose, 

mainly because the term "quartimax" is introduced in their article. 



The aim of quartimax, according to Neuhaus and Wrigley, is to 

find an orthogonal transformation which maximizes the variance of 

the factor contributions. The variance of the factor contribution is 

given by the square of the factor loading, since the factor loading 

may be viewed as a correlation. 

3.1 Notation Fmp an unrotated factor matrix 

(fij) an element of Fmp (i=l, 2, 
0 • 0 ' m; j=l, 2, ' .. p) 

Gmp a rotated factor matrix with the variance of the 
squared elements maximized 

(gij) an element of Gmp 

Tpp an orthonormal rotation matrix 

Recalling equation 2=2, the form of rotation is FmpTpp=Gmp· The 

problem then is to find Tpp so that Gmp is actually the maximum 

variance of the squared elements, Neuhaus and Wrigley give the 

variance of all the 

2 -v - (3=1) 

This may also be written as 

2 le ci 4 2 2 -1 ~ 2 2 v =(mp)~ .liil fij =(mp) (lJ (l;gij) , (3-2) 

The (g~,) may be substituted since, for any row, i, the variance 
l.J 

must remain the same due to the conditions of orthogonality. From 

this. they conclude to find Gmp' one has to find TPP which maximizes 

the fourth powers of the elements in the rotated matrix. Hence, the 

name quartimax is chosen, 

Due to the mathematical complexity of determining the angle of 

rotation to simultaneously rotate the entire factor space, a two by 

two transformation matrix is set up and the entire factor speace is 

rotated one plane at a time. The procedure takes two factors at a 
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time and maximizes the squared factor loadings for those factors. The 

process continues until all ((p -l)p)/2 possible combinations have been 

rotated. The transformation can be written 

FmpTl2T13··· Tij••• Tp(p-1) = Gmp· 

A two by two transformation matrix is given by the form 

~s E) 
fE.n e 

-sin E)J 
cos e . 

(3-3) 

Neuhaus and Wrigley, then, give the following formula for de.termining 

(9, which will maximize the squared factor loadings. 

tan 4 e = 2£ (2fkifkj) (f~i - f~j) (3-4) 

In the above equation, i and j are the two factor being rotated. One 

will then obtain a different f) for each pair of factors. 

Varimax 

The varimax can be distinguished from the quartimax in that it 

tries to simplify columns rather than rows. Kaiser (1958) develops 

two versions of the varimax: (1) "raw" and (2) "normalized." 

Since Kaiser (1958, p. 193) states "there is a more fundamental 

rationale to establish the normal varimax as a mathematical 

definition of rotation." Hence the term "varimax" from here forward 

will refer to the "normal" varimax criteria. The normal varimax 

is given by Kaiser as 

" 2/22 '("1(12 22 V = mLa~ (fij hj) - LJ (Lr fij/hj) (3-5) 

In this equation hj is the commu~ality of the jth test. 

In developing the computer program for varimax, some special 

notation was developed which aided in finding the angle E) of 
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rotation for each pair of factors. 

2 2 
3.2 Notation u fki - fki 

v 2fkifkj 

A £u 

B };'v 

c ~· (U2 - V2) 

D ~2UV 

The desired angle of rotation is given by 

D - 2AB/m 
(3-6) tan 4 e = 

As in the case of the quartimax, a different €)is computed for each 

pair of factors. To show differences between the varimax and the 

quartimax, equation 3-4 can be written in the notation used for 

equation 3-6. 
D 

tan 4 f!) (3-7) 
c 

It is readily evident that the quartimax criteria is much less 

complicated than the varimax. Tenopyr and Michael (1963) have shown 

that when a general factor is expected the quartimax does not remove 

enough variance and the varimax removes too much. However, Hakstein 

and Boyd (1972) point out the quartimax is not as accurate as the 

varimax when compared to solutions obtained from visual rotations. 

It is the majority opinion that varimax is the best analytic procedure 

to approximate simple structure. 

Criticisms of Simple Structure 

There are three main criticisms of simple structure. The most 

important is that it does not provide a likely theoretical model for 
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several aspects of human nature. For example, as the British expound, 

the structure of intelligence has more of a hierarchial structure. 

In fact, the evidence is heavily in favor of a hierarchial structure 

of intelligence. The second criticism is an outcropping of the 

first. Reyburn and Raath (1949) point out that there is considerable 

misuse of simple structure in current research. The final criticism 

is made by Reyburn and Raath drawing on the evidence given by 

Reyburn and Taylor (1943). They criticize its invariance property 

due to the heavy reliance on the identity of factors to support a 

factor's invariance. Hence, there is considerable subjectivity in 

interpreting a factor as invariant. 

In conclusion, it is recommended that simple structure should 

be used in two instances. The most obvious case is that in which the 

theoretical model suggests simple structure as the factor pattern. 

The other case is as an alternate solution when reporting results. 

By doing this, one offers the reader a choice and according to the 

reader's theoretical position. This author recommends that the 

automatic use of simple structure be discontinued and more selective 

use of methods available be considered. 



CHAPTER IV 

HIERARCHIAL STRUCTURE 

Unlike simple structure, hierarchial structure is the product 

of a theoretical school of thought, rather than mathematical 

assumptions or factor loading patterns. In other words, the theory 

came before the factor analyses; as opposed to simple structure, 

where theory comes after simple structure is imposed on the factors. 

Therefore, it is easier to discuss hierarchial structure in terms of 

.some aspect of psychological research. The area of intellectual 

abilities has a long history of using hierarchial structure as its 

theoretical model. It is this area, then, that will serve as the 

example for developing the discussion of hierarchial structure. 

The Structure of the Intellect 

In the late nineteenth century, there were two major views 

concerning the structure of intellectual abilities. They were monism, 

which stated the mind was a single entity which was indivisible, and 

plurism, which had as its main tenet the division of the mind into 

special faculties. However, in 1912, McDougall (1912, pp. 71-121) 

proposed a compromise to the problem of the mind by combining the 

monistic and pluristic doctrines. He accomplished this by setting up 

a hierarchy of levels. This approach has become one of the favorite 

of British factor analysts. 
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Burt (1949) uses McDougall's approach as a theoretical explanation 

for the results of several factor analytic studies. He concludes that 

there can be no doubt as to the existence of group factors, and their 

arrangement in some sort of hierarchial schema. This is in contrast 

with Spearman's two factor hierarchy (1942) which does not postulate 

group factors, only a general factor and specific ability factors. 

The following figures should further clarify this distinction. 

I 

'R1 RI 
2 

I I 

'Ml :M2 IHl Hlz 

~2 I I 

tp3 pl 
cl Cz lc3 cl 4 4 

~~ ~ r:-1:-i --- c-1=-, r:-:f, 
s1m1 szm2 S3m3 s4m4 s5m5 s6m6 S7m7 s8m8 

Figure 2. Burt's Hierarchy, (For a fuller 
discussion, see Burt (1909)). 

General 

Relation 

Association 

Perception 

Sensation 

Several differences caQ be found between Burt's hierarchy (figure 

2) and Spearman's two factor hierarchy (Figure 3). It may first be 

noted that Spearman's model is linear, while Burt's is branched. Thus, 

Spearman's approach is continuously graded and Burt's is subdivided 

into levels. This implies that the group factors of Burt are 

differentially weighted with respect to the amount of influence they 

have on the process of intellectual functioning. For example, R1 

would have more influence or account for more variation in a group 

of tests than would P3. A final distinction that has already been 
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noted is Spearman's lack of group factors. For him, there is no ten-

dency for specific abilities to cluster together as in Burt's approach. 

At present, it seems that the majority of evidence points to group 

factors. It remains up to the individual theorist as to which approach 

he takes. However, most factor analysts hold to either the hierarchial 

approach to intelligence of Burt (or some variation thereof) or to 

Thurstone's primary mental abilities. 

§ 
1 

I ... 
General 

~ 
n 

Specific 

Figure 3. Spearman's Hierarchy. (For a fuller 
discussion, see Spearman (1942)). 

The more recent work of Vernon (1956) and Jaynes (1972) add more 

convincing evidence for a hierarchial structure of intellectual 

functioning. In general, the evidence now points to a general 

factor which might best be described as reasoning ability. It should 

be noted that this general factor is not yet a universal factor. 

However, given that its generality is limited to western culture, at 

present, it is a very stable factor. Major group factors are also 

evident. These seem to be associated with reasoning or cognitive 

abilities that are greatly influenced by verbal or mechanical 

skills. These factors are not as stable in that they are influenced 

by the experience of the individual. Finally, there are minor group 

factors that appear to reflect sensory or motor capacities. 



Jaynes (1972) and Jaynes and Weiner (1973) offer an improved 

conception of hierarchial structure. They, like Thurstone, use a 

definition of factor patterns to define his theoretical structure. 

There are two major conditions used to define the pattern of factor 

loadings. The first is positive manifold. This implies that the 

factor loadings of importance will be positive unless there exists 

"true negativity." The other requirement is in the form of 

restrictions on the factor loadings. A variate may load on only 

two factors and one of those factors must be the general factor. 

Some of the variables are allowed to load only on the general 

factor, but no variates are allowed to load on two group factors. 

This creates an arrangement that can be characterized in Table II. 

TABLE II 

A COMPARISON OF SIMPLE STRUCTURE AND 
JAYNES 1 HIERARCHIAL STRUCTURE 

SOLUTIONS 

Simple Structure Jaynes' Hierarchial 
Pattern Pattern 

I Il I2 G Io Il 0 

x x 
x x 
x x 

x x x 
x x x 
x x x 

x x x 
x x x 
x x x 

Note: X represents a factor loading other than zero. 
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Procedures for Hierarchial Structure 

At present, there are two general procedures used to obtain a 

hierarchial factor structure. Using the notion of oblique factors, 

Schmid and Leiman (1957) propose a method which transforms the 

oblique factors into a larger number of orthogonal factors. This 

procedure is known as higher-order factors. The other procedure was 

introduced by Burt (1950) which is a group factor solution. Burt's 

procedure involves the grouping of variables according to their sign 

pattern in the centroid solution. Jaynes and Weiner (1973) use a 

variation of this method to obtain factor patterns with hierarchial 

structure. This procedure is based on the development of an 

extraction from a hypothesized factor pattern matrix. 

Higher order factors are the results of factor analysis of the 

matrices of correlations of the oblique factors. The data and the 

factors could possibly be laid out in a hierarchy of orders, with 

each order representing a factor analysis of the preceeding oblique 

factor solution. Actually, the higher order factors serve the same 

function as simple structure by systematically clustering the 

oblique factors, which already represent clusters of variables. 

Rummel (1970, p. 425) feels that higher order factors define the 

basic dimensions of the data, while the higher order factors show 

the functional relationships among the various clusters of variables. 

It is felt by the present author that higher order factors 

have several disadvantages which makes their use questionable. 

The major problem with this type of analysis is the final factor 

solution is a matrix which is not of full rank. Thus, some of the 
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factors play no part in defining the factor space. This produces a 

violation of parsimony in the traditional sense and implies that some 

of the factors represent redundant infonnation which may produce 

interpretation complications. A second disadvantage of the use of 

higher order factors is that one must use oblique factors. As has 

already been noted, Harris and Knoell (1948) point out that when 

using oblique factors, one encounters problems of interpretabilitY• 

Burt's multiple group method (1950) is more advantageous than 

the solution of Schmid and Leiman, but still is not the best possible 

solution. Although one can obtain orthogonal factors by using 

Burt's method, there is still a limitation in that one cannot 

maximize the amount of variance accounted for by the factors 

extracted. One of the newer techniques available, Joreskog's 

maximum likelihood procedure (1970), meets with this same problem. 

Although these techniques are more advantageous than higher order 

factors, there still exists a lack of mathematical completeness due 

to that limitation. 



CHAPTER V 

SELECTIVE FACTOR ROTATION 

At present, there exists a need for rotational procedures which 

approximate hierarchial structure. As was demonstrated in the last 

chapter, the present methods are inadequate for their respective 

reasons. In order to fulfill this need, a rotational procedure 

is presented that allows not only approximation to hierarchial 

structure, but to any structure depending upon the researcher's 

theoretical model. No longer need the factor analyst base his 

interpretations solely on the outcomes of a rotation which produces 

simple structure. He can rotate the factors in accord with his 

theoretical perspective. 

This method is based on two important aspects of the present 

analytic rotational procedures. Recalling equation 3-3, one notes 

that the entire factor space is not rotated simultaneously, but 

two factors are rotated at a time while holding the other factors 

involved in the space constant. This pairwise method of rotation 

does not affect the factor's orthogonality with another factor. 

Also, the factors which are being rotated are not affected. Therefore, 

it seems reasonable to conclude that one can stop the rotational 

process at any point leaving all factors independent. For example, 

in a five factor space, one might rotate all pairwise combinations 

of the first three factors and leave the last two in their original 
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position. This will produce an orthogonal factor space and communality 

for each variate wili remain unchanged. 

The second point which acts as a foundation for selective factor 

rotation is that the amount of variance which is shifted from one 

factor to another or spread across factors during the varimax 

procedure influences how well simple structure is achieved. The less 

variance that is moved the closer simple structure is approximated. 

In a Monte Carlo study of this phenomena, Younger (1973) has produced 

fairly substantial evidence for its support. A hypothetical three 

factor solution was set up. The amount of variance each factor 

represented was varied, and it was found that when a great deal of 

variance was shifted about, the number of high loadings decreased 

and moderate to low loadings increased. In other words, simple 

structure was more definitive in terms of high factor loadings when 

the variance was evenly distributed between the three factors. 

Taking the above features into account, one can now produce a method 

of rotation which can be coupled by a principal components extraction 

to produce a hierarchial factor structure. 

Selective factor rotation is a very simple process. The factor 

analyst rotates only those factors which he feels should be rotated. 

This is very similar to what one does in graphical rotation. By 

selectively rotating factors and using analytic procedures which are 

now available, all one does is impose simple structure on only a 

portion of the factor solution instead of the entire solution. 

Therefore, by breaking the initial extraction up into groups of 

factors, according to one's theoretical model, numerous factor 

patterns emerge. Some examples of possible patterns are given in 
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Table III. It should be noted that pattern C is not of full rank. 

Therefore, when on~ is using selective factor rotation to hold a 

general factor constant, pattern D is a matrix of full rank. It 

will be shown in the next chapter that pattern D is the actual 

result of such a rotation. 

TABLE III 

SELECTIVE FACTOR ROTATION PATTERNS 

Pattern Pattern Pattern Pattern 
A B c D 

Io I1 I2 I3 I4 Io Il I2 I3 I4 Io I1 I2 I3 Io I1 I2 I. 
3. 

x x x x x x x 
x x x x x x x x 
x x x x x x x x 
x x x x x x x x 

x x x x x x x x 
x x x x x x x x 
x x x x x x x x 
x x x x x x x x 
x x x x x x x x 

Note: X represents a factor loading other than zero. 

Pattern A can be obtained by rotating factors Ia and I 1 and 

holding all others constant, and then rotating the remaining factors, 

while holding the first two constant. The second pattern, B, simply 

reverses this process. More important is the distinction between 

patterns C and D. Pattern C is the type one would expect from a 
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solution obtained by higher order factors. As already noted, pattern 

C is not of full rank. In order to have full rank some variables 

must load only on the general factor. To obtain this type of pattern, 

one holds the first factor constant while rotating the remaining 

factors to simple structure. A more detailed account for rotation 

to a hierarchial structure can be developed. 

The starti,ng point for hierarchial structure, when using 

selective factor rotation, is Hotelling's principal components 

method. The amount of variance accounted for by the factor space 

is maximized. Thus, the first factor always accounts for the most 

variance, and sometimes there is a substantial difference between 

the variance of the first factor and the rest of the factors in 

the solution. Recalling that the less variance disturbed, the 

closer to simple structure one gets. Therefore it is unwise to 

rotate the first factor of a principal component solution. This 

first unrotated factor of the principal components solution acts 

as the general factor in the hierarchial structure. Now that the 

general factor is found, one finds the major and minor group factors 

by selectively rotating. 

The major,and minor group factors are rotated depending on the 

theoretical model one is using. As is the case of pattern D, the 

remaining three factors are rotated together. rpis is not the only 

hierarchial solution one can obtain. Table IV illustrates a pattern 

resembling Burt's hierarchy. In this solu~ion there were two 

separate rotations. Factors two and five were rotated together and 

factors three, four, six and seven were rotated together. 
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TABLE IV 

A BRANCHED HIERARCHY 

G Rl Hl Hz Rz Ml Mz 

x 
x 
x 
x x 
x x 
x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x 
x x 
x x 
x x x 
x x x 
x x x 
x x x 
x x x 
x x x 

When reporting results which have been selectively rotated, the 

following system of notation should be used. It is assumed, unless 

otherwise stated, that the analytic method used is the varimax 

procedure. Selective factor rotation can be abbreviated by SFR. 

The various groups of factors rotated will appear as subscripts. These 

groups will be separated by commas. The factors in the groups will 

be indicated by parentheses. Table IV can be specified by SFR(Z,S), 

(3_4 , 6_7)' while pattern D in Table III is written SFR(z-4 ). If 



another analytic procedure, other than the varimax is employed, it 

should be stated in a footnote. 
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Combining this rotational procedure with the principal components 

extraction procedure, the factor analyst no longer has to rely on 

approximate methods to obtain hierarchial structure. The researcher 

can use the principal components extraction to ensure that the 

maximum amount of variance is extracted and then rotate that 

extraction to fit the theoretical model by breaking it up into groups 

possessing simple structure. It may also be suggested that breaks 

in the eigenvalues could indicate the groupings. For example, in 

Table IV, G is the first principal component and R1 and Rz are the 

second and third components. Thus, as the importance of the factors 

decreases, the systematic variance they account for also decreases 

due to the nature of the principal components extraction. Hence, 

approximations to hierarchial structure can now be obtained as readily 

as approximations to simple structure have been obtained previously. 



CHAPTER VI 

THE APPLICATION OF SELECTIVE FACTOR 

ROTATION TO RESEARCH 

For any method to be accepted as a research technique,. it must 

be shown to be useful in aq actual research situation. In order to 

show that selective factor rotation is a useful technique, two 

studies will be presented. One is ~ replication of an earlier 

investigation and the other is an investigation which is exploratory 

in nature. The replication is taken from the Holzinger-Swineford 

data (Harman, 1967, p. 124). The second study centers around 

personality variables and is designed so that the interrelationships 

of several of the more popular personality inventories are developed. 

Intellectual Ability 

There presently exists a controversy as to the structure of the 

intellect. In order to shed some light, selective factor rotation 

was applied to the classic intellectual ability data collected by 

Holzinger and Swineford (Harman, 1967, p. 124). The analysis of the 

twenty-four variables provided evidence for the hierarchial approach 

to intelligence. A comparison is made to the simple structure 

solution (Harman, 1967, p. 311) and Jaynes' (1972) multiple group 

solution. The present solution was obtained from a principal 
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components extraction with a SFR(2_5) rotation applied to the 

extraction matrix. 

TABLE V 

CENTROID-VARIMAX SOLUTION FOR 
INTELLECTUAL ABILITY TESTS 

TESTS 

Series completion 
Numerical puzzles 
Problem reasoning 
Arithmetic problems 
Deduction 
Number-figure 
Figure-word 
Sentence completion 
General information 
Paragraph comprehension 
Word meaning 
Word classification 
Paper Form Board 
Cubes 
Flags 
Visual perception 
Word recognition 
Number recognition 
Object-number 
Figure recognition 
Counting dots 
Addition 
Code 
Straight-curved capitals 

Systematic 
Variance 

For Factors 

FACTORS 

57 35 
42 38 
41 36 36 

34 34 44 
47 
32 54 

82 
75 
75 
80 

38 54 
54 
43 
54 
67 

59 

50 
50 
64 

41 43 
69 
70 

36 60 
41 59 

3.08 3.50 2.36 2.44 

Systematic 
Variance 

For Variates 

54 
41 
42 
47 
42 
46 
25 
75 
67 
67 
75 
52 
32 
21 
34 
53 
33 
29 
47 
37 
54 
57 
52 
55 

11.38 

From Harman (1967, p. 311). The decimal points have been 
omitted except at ·the.bottom. 
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The centroid-varimax solution exhibits some clustering, but it 

does not present a clear definitive picture of simple· :structure. 

The moderate loadings (30-39) cloud the"issue. This is probably due, 

as Younger (1973) has pointed out, to the shifting of the systematic 

variance of the factors. Jaynes' (1972) multiple group solution is 

much more definitive in its factor pattern. It is this hierarchial 

structure that is to be replicated by the SFR solution. Jaynes' 

solution is presented in Table VI and the SFR solution is seen in 

Table VII. It should be noted that the order of the variables has 

been changed in the SFR solution to emphasize the pattern obtained. 

The most noticeable characteristic of the SFR solution is that 

a definite hierarchial structure appears; This adds information to 

the growing evidence in favor of a hierarchial conception of the 

structure of the intellect. However, when comparing Table VI with 

Table VII, several major differences appear as well as consistencies 

between the two solutions. Before dealing with the discrepancies, 

it is wise to point out how well the Jaynes' solution was replicate4. 

As is expected, the principal component extraction gives the 

SFR solution more variance to work with in obtaining the final 

solution. The general or first factor in both solutions are very 

similar. It should be noted that the SFR solution produces more 

variance for the general factor, causing the loadings to be somewhat 

higher across the board. Another important aspect which needs to 

be noted is that the variables in all three solutions cluster 

similarly. This is especially evident in the multiple group and 

SFR solutions. 
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TABLE VI 

MULTIPLE GROUP SOLUTION FOR 
INTELLECTUAL ABILITY TESTS 

' . FACTORS 
TESTS . 

. I.0 I.l I.2 L4. 

Series completion 71 
Numerical puzzles 69 
Problem reasoning 68 
Arithmetic problems 68 
Deduction 64 
Number-figure 62 
Figure-word 58 
Sentence completion 48 73 
General information 50 69 
Paragraph comprehension 49 69 
Word meaning 57 65 
Word classification 51 68 
Paper Form Board 34 63 
Cubes 33 57 
Flags 42 55 
Visual perception 62 49 
Word recognition 37 64 
Number recognition 37 61 
Object-number 43 55 
Figure recognition 58 45 
Counting dots 44 
Addition 43 
Code 52 
Straight-curved capitals 59 

Systematic 

I.So 

68 
66 
57 
52 

Variance 17.50 2.03 1.27 1.41 1.68 
For Factors 

From Jaynes (1972). The decimal points have been 
omitted except at the bottom. 
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Systematic 
Variance 

For Variates 

55 
51 
50 
51 
47 
43 
36 
77 
73 
73 
78 
61 
53 
44 
50 
64 
57 
51 
51 
60 
67 
67 
63 
67 

13.87 

The most obvious difference between the multiple group solution 

.and the SFR solution is the negative loadings on factor I 1 in the 

latter solution. This result implies that factors I.2 and I.5 in the 
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multiple group solution are opposite ends of the same continuum. The 

negative loadings on factor I 1 are from tests which deal with perceptual 

and spatial abilities, while the positive loadings are from speed 

type tests which require rapid manipulation.and detailed skills. Hence, 

the continuum might be labeled mental manipulation with one end being 

in the abstract realm and the other in the ·conc·rete. On the other 

hand, the negativity has not previously been reported. In terms of 

positive manifold the solution is not as refined as the multiple 

group solution. 

The other major difference existing between the two solutions is 

that the SFR extracts a new factor, 13 , which is not evident in the 

multiple group solution. The reason for this factor appearing in the 

SFR solution might be attributed to the fact that more variance has 

been extracted. The new factor comes from variables which loaded 

only on the first factor in the multiple group solution except for 

Object-number. The tests loading on the new factor measure rote 

learning ability and deductive processes. One would expect that 

number-figure would also load on this factor. It loads on the verbal 

factor, which does not seem entirely congruent. In conclusion, the 

results of the SFR solution lead one to the following interpretation. 

The structure of intellectual abilities is hierarchial. In the series 

of tests, which are the classic twenty-four psychological variables 

introduced by Holzinger and Swineford, five factors emerge. A general 

factor, accounting for two thirds of the variation in the factor space, 

appears as the first factor with four major group factors branching 

off of it. Factor Io is interpreted to be a verbal factor. I 1 , which 

is the bipolar factor, has already been discussed and appropriately 
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labeled cognitive manipulation. It was also noted that one of the 

poles was abstract and the other was concrete. The third major group 

factor is centered around tests of recognition and recall. Therefore, 

I 2 represents memory. The final factor, I 3 , is the new factor emerging 

from the study and as already mentioned is the rote learning factor. 

It should be noted that if a larger, unselected sample was used, this 

factor might emerge as a minor factor out of the memory factor. 

An Analysis of Personality 

Raymond Cattell (1950) and H. J. Eysenck (1953) develop theories 

of personality based on factor analytic work. Cattell's structure 

of traits represents a hierarchial conception of personality, while 

Eysenck's three broad dimensions, extraversion-introversion, neuro

ticism, and psychoticism, give the appearance of a simple structure 

approach. Since the work in this area is not as extensive as that 

of intellectual abilities, there is not a clear cut solution to 

this difference. It is felt that an analysis of some of the more 

common personality tests would help resolve this issue. 

Method 

Eighty seven undergraduates enrolled in a sophomore level 

psychology course were given a battery of personality tests. The 

entire battery was given at one sitting and the ~s were divided into 

groups in order to counter balance the tests to account for any 

fatigue affects. Age, social class, and nationality were not 

obtained, but the students were asked to furnish their overall 

grade point average. 



TABLE VII 

SFR SOLUTION FOR INTELLECTUAL 
ABILITY TESTS 

FACTORS 
TESTS 

G I 0 
I . 

1 I2 I3 

Series completion 71 
Numerical puzzles 62 
Problem reasoning 64 
Arithmetic problems 67 
Number-figure 54 41 
Sentence completion 67 55 
General information 69 46 
Paragraph comprehension 69 49 
Word meaning 69 53 
Word classification 69 31 
Paper Form Board 44 -52 
Cubes 40 -46 
Flags 51 -34 
Visual perception 61 -30 
Counting dots 48 50 
Addition 47 71 
Code 57 42 
Straight=curved capitals 61 35 
Word recognition 44 57 
Number recognition 41 61 
Figure recognition 53 35 
Object-number 48 34 46 
Figure=word 47 62 
Deduction 64 30 

Systematic 
Variance 8.14 1.89 1.80 1.43 1.19 

For Factors 

Systematic 
Variance 

For Variates 

57 
52 
45 
55 
52 
77 
70 
73 
77 
59 
61 
49 
45 
60 
67 
74 
56 
67 
54 
56 
59 
60 
66 
54 

14.45 

The decimal points have been omitted except at the bottom. 

The test battery consisted of four personality tests which are 
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commonly administered during an intake or preliminary evaluation when 

and individual is seeking psychological assistance. The four tests 
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are: (1) Fundamental Interpersonal Relations Orientation - Behavior 

(FIRO-B), (2) Rotter Locus of Control, (3) Multiple Affect Adjective 

Check List (MAACL), and (4) Mini-Malt ·(The seventy one question version 

of the Minnesota Multiphasic Personality Inventory). (See Appendix 

A for the names of the scales and the·abbreviations employed.) 

The tests were scored and the twenty one resulting scale scores, 

along with the reported grade point average, produced a 22 by 22 

product moment correlation matrix. A principal components extraction 

procedure was performed with extraction being halted on the basis of 

the eigenvalues, the criterion being set at 1.00. Two rotations 

were applied separately to the factor matrix. The first was the 

varimax and the second was a SFR(2-S) rotation. 

Results 

Table VIII contains the principal component solution with all 

factor loadings being reported. Table IX reports the results of 

the two rotations. Only loadings having an absolute value greater 

than 0.30 are reported. 

The varimax solution reveals an interesting phenomena. The 

clusters represent scales of the same test. Therefore, the tests 

are internally homogeneous while they are externally heterogeneous. 

This solution also features more positive manifold than the SFR 

solution. However, the clustering of the tests makes interpretation 

almost impossible. The SFR solution offers more interpretability. 

A hierarchial structure with some interesting properties emerges. The 

first factor looks like a factor measuring within individual stability, 

while the fourth measures social stability. 



TESTS 

MMPI Sc 
MMPI Hs 
MMPI D 
MMPI Pt 
MMPI Pa 
MMPI Hy 
MMPI Pd 
MMPI F 
ROTTER IE 
MMPI L 
MMPI K 
MMPI Ma 
MAACL A 
MAACL D 
MAACL H 
FIRO•B Ie 
FIRO-B Aw 
FIRO·B Iw 
FIRO-B Ae 
FIRO-B Ce 
FIRO-B Cw 
GPA 

Systematic 
Variance 

For Factors 

TABLE VIII 

THE FIRST FIVE PRINCIPAL COMPONENTS 
OF 22 PERSONALITY VARIABLES 

FACTORS 

I II III IV v 

90 14 14 -02 01 
79 05 14 01 -08 
75 -21 26 -03 -04 
74 -32 29 00 -18 
68 -10 35 -17 -03 
51 -31 37 -35 03 
37 -52 46 -27 23 
77 47 -04 01 12 
70 42 -18 22 -13 
60 63 -18 -01 08 
54' 68 -09 -10 18 

-05 -55 48 -20 -04 
38 -69 -09 37 18 
48 -57 -17 38 27 
21 -57 -33 52 23 

-42 50 39 17 22 
-36 17 69 18 01 
-22 28 61 34 34 
-03 40 59 13 -03 
-28 10 21 05 69 

24 15 23 66 -27 
-15 11 38 23 -48 

6.15 3.88 2.76 1.61 1.30 

Systematic 
Variance 

For Variates 

87 
66 
69 
78 
64 
63 
75 
84 
79 
81 
81 
60 
82 
82 
81 
65 
67 
74 
54 
63 
65 
51 

15.70 

The decimal points have been omitted except at the bottom. 

The systematic variance for variates is not presented in Table 
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IX because the rotations are orthogonal and the variance for variates 

does not change during rotation. The validity scales load positively 

on the general intraindividual stability factor, but negatively on 



the group factors emerging from it. The interindividual stability 

factor, s0, has a group factor emerging from it also. Due to the 
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fact that wanted control and GPA load heavily on it, it could be 

labeled as an academic achievement or dependency factor. Hence, it is 

not an instability factor, but a factor indicating the individual's 

orientation to interpersonal relations. 

Discussion 

The results of this analysis lead one to several interesting 

conclusions. Although a hierarchy does appear, two separate aspects 

emerge, each having group factors branching from it. The first 

hierarchy is found in the first three factors, I 0 , I 1 , and I 2 • Io 

is the general factor of this group and is interpreted as an intra

individual stability factor. This factor closely resembles Eysenck's 

Neuroticism factor. The group factors emerging from this factor may 

be interpreted as follows. Since I 1 has the MMP Ma scale loading on 

it as the highest variable, it can be labeled as an energy factor. 

If an individual has a high factor score on this factor, there would be 

a great deal of energy within his system. Factor I 2 , since it is made 

of the scales from the MAACL, could be labeled as a self-image factor. 

The higher the factor score on this factor would indicate a lower 

self-image. A distinction is made here between the Mini-Mult and 

the Multiple Affect Adjective Checklist from the standpoint of their 

different techniques of measurement. Since, both are measuring 

similar aspects of personality, the differences causing their 

separation in the factors is a result of their different approaches 

to the measurement of those aspects. 



TESTS 

MMPI Sc 
MMPI Hs 
MMPI D 
MMPI Pt 
MMPI Pa 
MMPI Hy 
MMPI Pd 
MMPI F 
ROTTER IE 
MMPI L 
MMPI K 
MMPI Ma 
MAACL A 
MAACL D 
MAACL H 
FIRO-B Ie 
FIRO-B Aw 
FIRO•B Iw 
FIRO-B Ae 
FIRO•B Ce 
FIRO-B Cw 
GPA . 

,. 

Systematic 
Variance 

For Factors 

' 

TABLE IX 

VARIMAX AND SFR ROTATIONAL SOLUTIONS 
FOR PERSONALITY VARIABLES 

VARIMAX SFR 
FACTORS FACTORS 

I .. n III IV .. v Io Ii I2 

61 68 90 
52 55 79 

72 75 32 
83 74 42 
75 68 35 
68 51 57 
77 37 73 

85 31 77 -37 
30 70 -47 

.91 60 -56 -31 
89 54 -51 -40 

-61 57 76 
30 83 38 75 

87 48 73 
84 80 

63 -32 -42 
79 -36 
84 
33 32 
34 •70 
65 
40 54 

... ~0:1 \,$1 ., ' 

64 
65 
83 
63 
44 -57 
38 59 

60 

4.81 4.35 2.73 2.69 1.37 6.15 3.06 2.59 2.49 1.41 

The decimal.points have been omitted except at the bottom. 

The interindividual factors deal mainly with social skills and 

the individual's satisfaction in those relationships. Factor s0 is 

the general social stability factor and can be related to Eysenck's 

Extroversion factor. Factor s1 branches off to form a dependency 
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factor. The recognition of those two hierarchies is important in the 

verification of certain personality theories. They seem to provide 

indirect support for Eysenck's approach. Since the first two factors 

he found were Neuroticism and Extraversion, these results add to the 

evidence that those two factors are fundamental in the personality of 

man. These results indicate that man is a two-sided being. Therefore 

the fact that inter- and intraindividual factors exist needs to be 

a fundamental supposition in the development of theories of personality. 



CHAPTER VII 

SUMMARY 

· This study investigated the possibilities of developing a 

rotational procedure to produce hierarchial solutions. A brief 

background was presented and it was shown that present factor 

analytic work was stuck in a simple structure mold. It was shown 

that there are several theorists who hold to a hierarchial theory 

of intelligence. Therefore, the simple structure is inadequate. 

Selective factor rotation was developed because of this 

inadequacy. It is based on two properties of the present analytic 

procedures. The plane by plane rotation technique is employed as a 

logical basis of development and it was noted that shifting great 

amounts of variance causes more problems in the approximation of 

simple structure. It was shown that by using the principal components 

extraction procedure and then rotating the factors according to a 

theoretical position with selective factor rotation certain hierarchial 

structures could be obtained. 

Finally, the procedure was applied to two different sets of data. 

A replication of the Hilzinger and Swineford data was presented. It 

was found that Jaynes' (1972) hierarchial solution was closely 

approximated, with the exception of two factors. The other study 

dealt with an investigation of several personality tests and their 

factor structure. It was found that two hierarchies appear. One 
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represents Eysenk's Neuroticism factor or intraindividual stability 

and the other represents Eysenck's Extraversion factor or inter-

individual stability. The group factor associated with the latter 
~ 

factor is a dependency factor. The group factors associated with the 

intraindividual factor are energy level and self image. The use of 

selective factor rotation in a replication and exploration proved 

to be worthwhile. 

The major flaw that is seen in the technique is the increased 

negativity in the factor loadings after rotation. This was seen in 

both studies. Therefore, if selective factor rotation is to be 

fully useful to the researcher, some refinement needs to be made to 

aid in the production of positive manifold. When this refinement is 

realized, selective factor rotation will allow the researcher to have 

the tools necessary to find the most parsimonious solution from a 

theoretical perspective. 

55 



SELECTED BIBLIOGRAPHY 

Burt, Cyril. Experimental tests of intelligence. British Journal of 
Psychology, 1909, 1, 94-177. 

Burt, Cyril. The structure of the mind: A review of the results of 
factor analysis. British Journal of Educational Psychology, 
1949, 19, 100-111, 176-199. 

Burt, Cyril. Group factor analysis. British Journal of Psychology, 
Statistical Section, 1950, 1, 40-75. 

Burt, Cyril. Francis Galton and his contribution to psychology. 
British Journal of Statistical Psychology, 1962, 15, 1-49. 

Carroll, John. An analytic solution for approximating simple structure 
in factor analysis. Psychometrika, 1953, 18, 23-38. 

Cattell, R. B. Personality: ! systematic, theoretical, and factual 
study. New York: McGraw-Hill, 1950. 

Cattell, R. B. Factor analysis: An introduction and manual for the 
psychologist and social scientist. New York: Harper and Row, 
1952. 

Cliff, Norman. Orthogonal rotation to congruence. Psychometrika, 
1966, 31, 33-42. 

Eysenck, H. J. The structure of human personality. New York: Wiley, 
1953. 

Ferguson, George. The concept of parsimony in factor analysis. 
Psychometrika, 1954, 19, 281~290. 

Fruchter, Benjamin. Orthogonal and oblique solutions to a battery 
of aptitude, achievement and background variables. Educational 
and Psychological Measurement, 1952, 12, 20-38. 

Fruchter, B. J., & Novak, E. A comparitive study of three methods of 
rotation. Psychometrika, 1958, ~' 211-221. 

Galton, Francis. Hereditary genius, ~ inquiry into~ laws and 
consequences. London:· University of London Press, 1869. 

56 



Gorsuch, R. L. 
Varimax. 
861-868. 

A comparison of Biquartimin, Maxplane, Promax and 
Educational and Psychological Measurement, 1970, 30, 

57 

Guilford, J. P., & Hoepfner, R. Comparisons of varimax rotations with 
rotations to theoretical targets. Educational and Psychological 
Measurement, 1969, 29, 3-17. 

Guttman, Louis. 
variables. 

Image theory for the structure of quantitative 
Psychometrika, 1953, 18, 277-296. 

Hakstein, A. R., & Boyd, W. M. An empirical investigation of some 
special cases of the general "orthomax" criteria for orthogonal 
factor transformation. Educational and Psychological Measurement, 
1972, 32, 3-14. 

Harman, Harry. Modern factor analysis. Chicago: University of 
Chicago Press, 1967. 

Harman, Harry, & Jones, W. H. Factor analysis by minimizing residuals 
(Minres). Psychometrika, 1966, 31, 351-368. 

Harris, C., & Knoell, P. M. The oblique solution in factor analysis. 
Journal of Experimental Psychology, 1948, 39, 385-403. 

Horst, P. A simple method of rotating a centroid factor matrix to a 
simple structure hypothesis. Journal of Experimental Education, 
1956, 24, 251-258. 

Horst, P. Factor analysis of data matrices. New York: Holt, Rinehart 
and Winston, 1965. 

Hotelling, H. Analysis of a complex of statistical variables into 
principal components. Journal of Educational Psychology, 1933, 
24, 417-441, 498~520. 

Hotelling, H. Simplified calculations of principal components. 
Psychometrika, 1936, !, 27-35. 

Hurley, J. L., & Cattell, R. The procrustes program producing direct 
rotation to test an hypothesized factor structure. Behavioral 
Science, 1962, z, 258-262. 

Jaynes, W. An improved hierarchial conception for factor analysis 
with applications to intelligence and instructor ratings. Paper 
presented at the meeting of the Southwestern Psychological 
Association, Dallas, May, 1972. 

Jaynes, W., & Weiner, B. Temperament factors and work preferences. 
Paper presented at the meeting of the Southwestern Psychological 
Association, Dallas, May, 1973. 



Joreskog, K. A generalized computer program for simultaneous factor 
analysis in several populations. Research Bulletin 70-62. 
Princeton, New Jersey: Educational Testing Service, 1970. 

Kaiser, H. The varimax criterion for analytic rotation in factor 
analysis. Psychometrika, 1958, 23, 187-200. 

58 

Kaiser, H. Computer program for varimax rotation in factor analysis. 
Educational and Psychological Measurements, 1959, 19, 413-420. 

Kelley, T. Essential traits of mental life. Harvard Studies in 
Education. Cambridge, Mass.: Harvard University Press, 1935. 

Mccloy, E., Metheny, E., & Knott, V. A comparison of the Thurstone 
method of multiple factors with the Hotelling method of 
principal components. Psychometrika, 1938, d• 61-66. 

McDougall, W. Psycholagy: The study of behavior. New York: Henry 
Holt and Co., 1912. 

Mischel, W. Personality and assessment. New York: John Wiley and 
Sons, 1968. 

Mosier, C. Influence of chance error on simple structure. Psycho
metrika, 1939, ~' 33-44. 

Mulaik, S. The foundations of factor analysis. New York: McGraw
Hill, 1972. 

Neuhaus, J., & Wrigley, C. The quartimax method: An analytic approach 
to orthogonal simple structure. British Journal of Statistical 
Psychology, 1954, z, 81-91. 

Pearson, K. On lines and planes of closest fit to systems of points 
in space. Philosophic Magazine, 1901, E_, 559-572. 

Rao, C. R. Estimation and tests of significance in factor analysis. 
Psychometrika, 1955, 20, 93-111. 

Reyburn, H. A., & Raath, M. J. Simple structure: A critical 
examination. British Journal of Psychology, Statistical Section, 
1949, 1. 125-133. . 

. Reyburn, H. A., & Taylor, J. G. On the interpretation of common 
factors: A criticism and a statement. Psychometrika, 1943, 
!!, 53-64. 

Rummel, R. J. Applied factor analysis. Evanston: Northwestern 
University Press, 1970. 

Schmid, J., & Leiman, J.M. The development of hierarchial factor 
solutions. Psychometrika, 1957, 22, 53-61. 



59 

Schonemann, P. H. A generalized solution of the orthogonal procrustes 
problem. Psychometrika, 1966, 31, 1-10. 

Spearman, C. General intelligence, objectively determined and measured. 
American Journal of Psychology, 1904, 201-293. 

Spearman, C. The abilities of man. New York: Macmillan Co., 1927. 

Spearman, c. How G can disappear .. Psychometrika, 1941, ~' 353-354. 

Tenopyr, M. L., & Michael, W. B. A comparison of two computer based 
procedures of orthogonal analytic rotation with a graphical 
method when a general factor is present. Educational and 
Psychological Measurement, 1963, 23, 587-599. 

Thomson, G. H. Hotelling's method modified to give Spearman's G. 
Journal .2.f Educational Psychology, 1934, 25, 366-374. 

Thomson, G. H. The factorial analysis of human ability. New York: 
Houghton Mifflin Co., 1951. 

Thurstone, L. L. The vectors of the~· Chicago: University of 
Chicago Press, 1935. 

Thurstone, L. L. Primary mental abilities. Psychometrika Monographs, 
No. 1, Chicago: University of Chicago Press, 1938. 

Thurstone, L. L. Multiple factor analysis. Chicago: University of 
Chicago Press, 1947. 

Tryon, R. c. General dimensions of individual differences: Cluster 
vs. multiple factor analysis. Educational and Psychological 
Measurement, 1958, 18, 477-495. 

Vernon, P. E. The structure of human abilities. New York: John 
Wiley and Sons, 1951. 

Vernon, P. E. The measurement of abilities. London: University of 
London Press, 1956. 

Wolfle, D. Factor analysis to 1940. Psychometric Monographs, No. 3, 
Chicago: University of Chicago Press, 1940. 

Younger, K. The approximation of simple structure as a function of 
the distribution of the systematic factor variance. Unpublished 
manuscript, Oklahoma State University, 1973. 



APPENDIXES 

60 



APPENDIX A 

SCALE ABBREVIATIONS FOR 

PERSONALITY VARIABLES 
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MMPI 

Rotter 

MAACL 

FIRO-B 

GPA 

ABBREVIATION 

Sc 

Hs 

D 

Pt 

Pa 

Hy 

Pd 

F 

L 

K 

Ma 

IE 

A 

D 

H 

le 

Aw 

Iw 

Ae 

Ce 

Cw 

SCALE 

Schizophrenia 

Hypochondrias is 

Depression 

Psychasthenia 

Paranoia 

Hysteria 

Psychopathic deviate 

Validity 

Lie 

K 

Hypomania 

Internal-External 

Anxiety 

Depression 

Hostility 

Expressed Inclusion 

Wanted Affection 

Wanted Inclusion 

Expressed Affection 

Expressed Control 

Wanted Control 

Grade Point Average 

62 



APPENDIX B 

CORRELATION AND RESIDUAL MATRIX FOR 

PERSONALITY VARIABLES 
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Variable 

1. MMPI Sc 

2. MMPI Hs 

3. MMPI D 

4. MMPI Pt 

5. MMPI Pa 

6, MMPI Hy 

7. MMPI Pd 

8. MMPI F 

9. MMPI Ma 

10. MMPI L 

11. MMPI K 

12. Rotter IE 

13. MAACL A 

14. MAACL D 

15. MAACL H 

16. FIRO-B Ie 

17. FIRO-B. Aw 

18. FIRO-B Iw 

1 2 3 4 5 6 7 8 9 

71 63 73 66 37 38 78 02 

61 63 54 56 19 56 -11 

-04 03 72 52 55 45 48 20 

07 01 03 68 45 . 51 35 30 

01 -04 -10 04 
j 

-10 13 00 -12 -07 

49 42 39 21 

58 18 23 

64 

10 11 

56 52 

44 38 

30 24 

09 03 

26 28 

09 17 

05 -11 -05 -02 -08 -04 09 55 -17 -13 

03 -05 -02 -03 -06 -05 05 -28 79 76 

07 -10 -01 02 -01 -16 02 05 -47 .. 44 

-04 -03 04 -08 -02 04 -01 02 -01 86 

-05 09 01 -09 01 10 -01 01 -01 08 

08 -04 -08 02 02 -05 04 -01 04 -08 -04 

-02 -02 -02 -07 02 03 00 00- -01 03 07 

-05 00 -01 -04 00 07 00 01 -06 03 -09 

01 02 01 01 02 00 07 05 03 01 -01 

02 07 -06 05 03 -02 -02 -01 07 -02 -02 

04 00 -02 -04 -02 06 -05 00 -09 -02 01 

01 06 05 03 00 03 -07 00 -05 -02 -03 

19. FIRO-B Ae -01 -02 -09 -03 -06 01 08 -02 -02 02 00 

20. FIRO-B Ce 06 03 06 04 03 -05 00 00 04 01 -03 

21. FIRO- B Cw 02 -06 00 00 -02 00 -03 00 08 00 00 

22. GPA 03 -08 -07 -09 -01 00 -03 04 00 10 05 

The decimal points have been omitted. Correlations are above the 
diagonal, and residuals are below. 



Variable 

1. MMPI Sc 

2. MMPI Hs 

3. MMPI D 

4. :MMPI Pt 

5. :MMPI Pa 

6. :MMPI Hy 

7. :MMPI Pd 

8. MMPI F 

9. MMPI Ma 

10. :MMPI L 

11. :MMPI K 

12. Rotter IE 

13. MAACL A 

14. MAACL D 

15. MAACL H 

12 13 14 15 16 17 18 19 20 21 21 

73 20 27 06 -23 -24 -10 09 -14 27 -10 

52 22 30 09 -19 -17 -03 06 -27 19 -09 

30 36 38 17 -39 -15 -03 -05 -14 18 -06 

41 37 39 21 -34 -16 -10 -01 -26 24 -04 

35 24 25 01 -20 -07 -03 06 -12 10 -01 

02 28 30 -01 -29 02 -05 04 -14 -07 -06 

-11 39 35 12 -25 -01 -03 09 08 -03 -13 

72 -01 15 -01 -08 -22 -03 11 -09 22 -09 

-35 22 06 06 -03 12 01 -01 06 -02 10 

62 -14 01 -14 -02 -25 -06 14 -07 16 -02 

59 -19 -05 -26 08 -14 01 18 -01 09 -09 

03 17 04 -14 -26 -12 06 -24 34 -03 

-02 79 69 -47 -20 -16 -26 -12 10 -11 

00 01 70 -47 -24 -16 -27 -12 09 -11 

-01 -04 -04 -29 -32 -21 -28 -08 10 -19 

16. FIRO-B Ie -01 -04 -05 07 41 58 42 30 13 09 

17. FIRO-B Aw 00 04 -03 -02 -08 63 50 14 09 32 

18. FIRO-B Iw -01 -02 -02 -06 -02 02 33 34 22 17 

19. FIRO-B Ae -01 03 03 08 -03 00 -18 11 23 28 

20. FIRO-B Ce -05 -07 -10 -07 -10 -13 -12 -04 -16 02 

21. FIRO-B Cw -02 -06 -07 -07 02 -12 -04 -05 -01 19 

22. GPA -02 -06 07 02 -10 -05 -05 -03 -16 -15 

The decimal points have been omitted. Correlations are above 
the diagonal, and residuals are below. 
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