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CHAPTER I
INTRODUCTION

The 'F center lattice defect‘in a KMgF, crystal consists of an
electron trapped at a vacant negative ion site. The KMgF; crystal ‘has
cubic perovskite structure with a lattice constant a;, = 3.754 atomic:
units and in.this structure the F center has a Dgh symmetry. The F
center electron replaces a fluorine ion and has two mégnesium ions as
lnn at.a distance of a, (3.754 a.u.), four potassium ions as 2nn at.

V2 ag (5.309 a.u.) and eight -fluorine ions‘as.3nn at V2 ap (5.309 a.u.)
as shown in Figure.l.

Although extensive calculations of the electronic ‘structure of the
F center in crystals with the sodium-chloride structure have been .done,
similar calculations for crystals having the perovskite structure are
more complex and have only recently been attempted. In this paper . the
calculations of the electronic 'structure of the F center in KMgF; are,
reported and the results compared with the experimental findings of
Hall and Leggeat (1), Riley and Sibley (2) and Modine and Sonder (3),
and with ‘the calgulations reported by Harker (4).

The absorption energies of a Ajg + Ay transition and a Ajg > Ey
transition are calculated using the model developed by R. F. Wood and.
U. Opik (5) for alkali halides. This model treats the crystal as though
it had two regions, an inner region and an outer region. The ions.

within the inner region, centered about the defect site, receive a,
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detailed Hartree-Fock treatment by‘way of angular-momentum4dgpendent
exchange potentials. The Hamiltonian for the outer region, which is
composed of the rest .of the crystal, is treated within the effective-
mass approximation. Polarization effects are included according to the
theory of THS (Toyozawa—Haken—Schottky) (5, 6).

Two sets of calculations using the-fédependent potential are re-
ported. Both sets include the explicit treatment 'of the electronic
structure ‘on .the two lnn magnesium ions'and the four 2nn potassium ions.
inside the inner region. The absorption energies are calculated first.
with the trial wave function of the defect consisting of s and p Slater-
type orbitals for the ground and ex&ited states respectively. Then -the
calcﬁlatioﬁs are repeated with the inclusion of d and f angular-
momentum components to demonstrate their effect on the energies of .the
various 'states.

A third set of calculations was done using a point-ion potential
to show the effect ‘of .the inclusion of d and f angular-momentum com-~
ponents in.the abgence of electronic 'structure on the magnesium and.
potassium ions. These results are compared with the calculations done
by Harker (4) using a pseudopotential method, and demonstrate the im-
portance of the inclusion of explicit electronic structure on.
neighboring ions.

In 1969, C. R. Riley and W. A. Sibley reported the experimental.
results of the investigation of color centers in KMgF, (2). The crystal
was irradiated with electrons or ©%Co vy rays. Polarized bleaching re-
vealed absorption in the range 190-800 nm and the absorption at.270 nm
was- attributed ‘to F centers. The absorption energy of. this peak was

measured to be 4.569 eV at ‘78 K.



In their experimental study of.the electronic properties of an F°
center .in KMgF;, F. A. Modine and -E. Sonder .(3) attempted to resolve
the placement of the A, , and‘Eu‘states-relative to .the Alg state.
Measurements of the Magnetic Circular Dichroism (MCD) indicated an
orbitally degenerate excited state and the energy splitting is consis-
tent with an E, excited state and a Alg ground state. However, the ex-
perimental results could not resolve the question of the placement of
the A,, state but the absence of magnetic perturbation in the MCD
spectrum implies that ‘'either the Aj, state is not near the E, state in
energy or it .is so nearly degenerate that it is unresolved.

The primary purpose of this research is to determimne if this

accidental degeneracy does or does not exist. :



CHAPTER II
THEORY AND NUMERICAL TECHNIQUES

. The model .and methods ‘used in this calculation of the electronic
structure of the F center were developed by R. F. Wood 'and U. Opik.
Extensive calculations have been done using this model for the F and U
centers in alkali halides and the F and F' centers in MgO and CaO
(6, 7). The results of these calculations indicate the reliability of
thé’approximations‘made in ‘order to reduce the magnitude of the problem.

The crystal is considered to have two regions; an inner region,,
centered about the defect site, containing the ions whose electronic.
structure is to be considered explicitly and an outer region which is-
treated within the effective-mass approximation.

Consider ‘the situation where the F center electron is situated on
one of the closed shell ions long enough to be 'considered a valence
electron. Let ¢4 denote the ith cere orbital on the vth ion and . let
¥ denote the orbital of the F center electron. We wish to determine
the orbital ¥ that will yield an.expectation value of the Hartree-Fock
Hamiltonian,HHF, i.e.,

<E> = <WLHHF1W>/<W|T>
that is stationary with respect .to 'small variations in Y. The effective

Hamiltonian is given by

Zyy - N
H = _Ivz+ — _v...__..._v...}.U
. “*HF % \27 ( ) Ir-va: v



where Zy is the. charge number, R, is the position vector of the nucleus
of ion v and N, is the number of electroms on ion v. U, is .the

numerical Hartree-Fock potential given by

U(r) = [o(x)]1 g, (x)

112
Va(z) = ( ZJ,[<1>Vl(r )1

'] u(
Erw R e e

_ z vi (r) f¢Vi(r Yu(r' )

|r" - x|

and u(r) is an arbitrary one-electron wave function..

This numerical function U(r) and the core orbitals of each ion .
can be generated from Clementi's wave functions (8). The procedure of
obtaining a self-consistent form of the potential function, core
orbitals and energies is discussed in detail in Appendix A. Unless
otherwise specified, Hartree atomic units will be used in.this study.

These units are defined in .Table I.

TABLE I

HARTREE ATOMIC UNITS

Unit - Equivalent:‘ Numerical Value
MASS . Rest mass .of the electron 9.1091 x 10728 gn
LENGTH  Radius of the first Bohr orbit of 0.529167 x 10™% cm

hydroegen .
ENERGY Twice the ionization energy of the 27.2706 eV

ground state of hydrogen.

CHARGE Charge on the electron 1.6021 x 10719 ¢




It is found that the numerical function U(r) varies slightly with
the energy Eg used in the Hartree-Fock calculation but it is strongly
dependent on the azimuthal quantum number %. These results are

illustrated in Table II and Table III.

TABLE II

ENERGY DEPENDENCE OF THE EFFECTIVE POTENTIAL*

~2E0 = 0.8 0.6 0.3
0.005 0.13415 0.13393 0.13366
0.1 2.24294 2.24380 2.24610
1.0 1.30343 1.26356 1.22070
2.8 0.11764 0.1¥139 0.10359
3.6 | 0.04501 0.04379 0.04337
5.0 0.00575 0.00649 0.00898

*#An illustration of the insensitivity of the
effective exchange potential to the energy at which
it is determined. The tabulated value is §(2Zp)
where (-r—1)6(2Zp) is the exchange correction to the
effective potential for a s electron in the field of
a K* ion, r is the distance from the nucleus and Eg
is in atomic units.

Since the numerical function U(r) shows a strong dependence on the
value of &, its straightforward substitution for the potential operator
would not be valid, but if it is defined by a different numerical

function for each % value, V(r) would then be redefined as the U'(r)



TABLE III

ANGULAR MOMENTUM DEPENDENCE OF THE EFFECTIVE EXCHANGE POTENTIAL#*

“\\\\\\:i>=., 0 1 2 3 4

r\QEg= -0.290 | =-0.191 ~0.117 ~0.04 | -0.035
0.005 | 0.1336 | 0.12950 | 0.11006 | 0.07513 | 0.04995
0.1 2.24610 | 0.88760 | 0.77967 | 0.42726 | 0.21076
1.0 1.22070 1.40462 | 1.10615 1.14161 | 0.95915,
2.8 0.10359 | -0.00639 | 0.17000 | 0.07086 | 0.04856
3.6 0.04337 | 0.00966 | 0.05152 | 0.01744 | 0.01125
5.0 0.00898 | 0.00220 | 0.00689 | 0.00162 | 0.00092

*An illustration of the sensitivity of the effective exchange-

potential to the angular-momentum quantum number 2.

The tabulated

value is 6§ (2Zp) where (-r~1)8(2Zp) is the exchange correction to the -
ion, r is the :dis-

effective potential for an outer electron of a

tance from the nucleus and EO is in atomic ‘units.



satisfying the equation -
U ()00 (1) = Ug()ogq(x)
where ¢02(r) is the solution to. the equation
-5 w2 - 22N gy Cmyeg () = 0

for corresponding values of %. A new Hamiltonian H; is defined for

the ion as

(z, - N
H = -%v2 + 7 (-) —>—Y° v) +U
u . i
n - R

However, the Hartree-Fock core orbitals; ¢yi, of the various ions are

not -solutions to the equation

thus -the self-consistent .procedure discussed in Appendix A was used to

obtain core orbitals, , which satisfy the equation

Ovi
(Hy - Eyi)éyy = O . (1)
In this treatment, the free-ion orbitals are regarded as good-
approximations to the Wannier orbitals that satisfy the relation
< $yi | ¢vi> = Syulij -

The F center wave function ¥ can be expressed as a linear combina-
tion of the unoccupied orbitals centered on.the surrounding ioms, all
of which are solutions to equation (l). Therefore ¥ is orthogonal to

the core orbitals and is written as
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Y(r) = £(r) - ) ) d9i<ouq | £>. (2)
v i
If H& is defined as H,; + q/r, it represents the effective positive
charge of a vacancy neutralized by an electron, i.e., a F center, so the

function ¢4 can be regarded as an eigenfunction of H). We can write
Hy ¢yi = Evi ¢vi

where EQi is the energy, corresponding to the wave function ¢y, with a
Madelung potential correction. The generation of this Madelung cor-
rection term is discussed in Appendix B.

The above approximation allows us to write a simplified form of

the matrix elements of Hu.as

<Yy | Hy |¥g> = Hgp = <fi|Hy|fg>

Z Z Eyi <fkl¢vi|fz ><¢vi| fg>
v i

+

q.

<~

Y (<fr | ™Y oyi> < oui | £g >
i

+

<fyplogs> <ogil x| £g>) (3)

—q ) ) <fr|dvi> <ovi| T | dyi> < oyi | £92>
v i

<t fg> = L ) <fief odi> <odil fo> (&)
V.1

vl vy = s

When ¥ is written as a linear combination of the functions Yy de-
fined in equation (2), the energies and wave functions can be obtained

by solving the secular equation

det [ HJ- E§] = 0
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where H and f; are matrices whose elements are Hiy and Syy as given in
equations (3) and (4).
The smooth part £ of the function ¥ is defined to.be a Slater-

type orbital of the form
£(r) = [(28)2%F1/(2n)11% £1 BTy, (0,¢)

where Yzm(6,¢) is a spherical harmonic of degree & and magnetic quantum
number m. Each of the trial functions 'f is cente;ed on the defect site
and is expanded about each ion whose electronic-strﬁcture is to be con-
sidered explicitly. The B's of the STO's are treated as variational
parameters in an iterative procedure of steepest descents to minimize
the ‘total energy of the crystal in its ground and excited states.

Wood and Opik (5) present two methods of treating the ions in the
outer region of the crystal, the method applied here is the effective-
mass approximation. Let Vper be the periodic effective Hartree-~Fock
potential energy of an electron and let V' represent any additional
polarization energy arising from the defect, polarization, etc. The
energy of the bottom of the conduction band is denoted by eyp. Then

for the inner region, we apply the equation

(-%V2+ Vop + V)Y = EY¥

pe
and the outer region is treated by the equation
[-(2m*)~1 V2 + egp + V']g = Eg

where g is the envelope function for the orbital and m* is the effec-

tive mass.
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If an operator G is defined such that in the inner region

= 1. y2 '
G = -%BV+V ,+V

P

and 'in the outer region

G = -%V2 4+ m*% ggp + m*V'
then
<E> = ye¥dr + [

gGgdr)

1 .
( finner outer

/(€ finner ¥2dt + m* fouter g2dt) .

Actually, in the application of this method to the KMgFj crystal,
the formalism was violated in that the electronic structure of the 2nn
potassium ions was included explicitly while the ions actually lié in.
the outer region. The radius that divides the two regions was ¥reated
as a variational parameter and was defined to be inside the 2nn ions.

Dielectric polarization effects have been included -according to’
the theory of THS (Toyazawa-Haken-Schottky) (6). The polarization po-
tential is divided into two parts: Ugy(r), the electronic potential

and Ujon(r), the ionic potential. Ugg(r) is given by

Ugp (1) = (1= kZD{ kg + pp) + (D) [1 - J5(ePer + ePen)]]
and Uj,n(r) is given by

Uion(x) = (et - ko) eV + V) + (@1 - }(eVer + e7VhT) ]}

where Ko and kgt are the high-frequency and static dielectric con-
stants. The parameters Pe and Vg are associated .with the electron and
ph and Vy are '‘associated with the hole. Their values are determined by

THS theory.
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The effective Hamiltonian for the outer region of the crystal can

be expressed as

Hyp = -(2m*)~1 v2 --%—+'€HF

where egp represents the bottom of the conduction band. The value of

egrp is given by

eHF = cexpt * 3(1 - kghog - (G - kGpIV

where €expt is the experimental electron affinity.

Since the bottom of the conduction band has not been determined
experimentally, the magnitude of the energies of the various states
have ‘no valid physical interpretation and only their values relative
to each other is of importance.

The calculation of the transition energies and the determination
of the placement of the A,, state were of primary importance in this
paper, but a secondary calculation was done to determine the transi-
tion probability in terms of the oscillator strength for the various
states. The energy of a state is relatively insensitive to slight
variations in the wave function of the defect but the oscillator
strength is highly dependent on the coefficients of the linear combi-
nation of the Slater-type orbitals composing the optimized trial de-
fect wave function.

Because of this sensitivity, the oscillator strength provides a
check on the accuracy of the form of the defect wave furction.

The values of the oscillator strengths were calculated using the

expressions
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- |2 1
fAlg"’AZu B { 38 B Azu{/—?fszpcs G <falrlfp>

+ /2T cgCp <fyqlr|ts>
35 &

/% :
+ —l-S—dXPCde<fd|r|fp> CNajg t Mayy

4
fAlg"’Eu = [?AEAIg*Eu{SPCS CP<fS|r|fP>
1
—7—5—dzpcdcp<fd]r|fp>
- 1%(1% Cq Cf <fqlr|fg >

/ S22 T CaiCe <f4lrlf >}2]/N N
— r [ ]
140 &, d Ce, < fq £, g " VB,

where AE is the transition energy between the states indicated. C de-
notes the coefficients of the components, f, of the trial wave function
that yields the optimal energy. N represents the appropriate normali-

zation factor.



CHAPTER III
PREVIOUS THEOQRETICAL WORK

A calculation of the electronic structure of the F center in KMgFj
was recently reported by A. H. Harker (4). He used the point-ion model
of Gourary and Adrian (9) in two sets of calculations; Case 1 includes
angular momentum components up to and including & = 1 and Case 2 in-
cludes angular momentum components up to and including £ = 3.

The energies of the Alg’ Ay, and E, states obtained by using this
model are listed in Table VI and from these results, Harker (4) con-
cluded that

. Our results for the energy levels suggest that the
point-ion theory of Gourary and Adrian (1957) becomes un-
reliable when terms other than the first (spherically

symmetric) in the expansion of the point-ion potential

have non-vanishing matrix elements with the variational.

wave function. (p. 3351)

Harker introduced a correction for the finite sizes of the iomns
according to the method developed by Bartram, Stoneham and Gash (10)
and reported the calculations for the same two cases. The results of
these calculations are listed in Table IV. This model does not yield
the anomalously low energy for the A, state that resulted from the
point-ion calculation. However, for Case 1 the A, 6 and E, states are
relatively close to each other in energy while inclusion of higher-

order angular momentum terms in Case 2 created a separation of several

electron volts.

15



Harker concludes that

16

While simple (the point-ion and ion-size) approximations
yield ground state wave functions which give reasonable
values of the hyperfine interactions which accurately pre-
dict spin-orbit effects, more sophistication is required
in calculating the energies. (p. 3353)

TABLE IV

HARKER'S CALCULATED ENERGY LEVELS OF F CENTER IN KMgF 5

W ' . S Point-Ion Ion - Size
ave Function ymmetry Energy (eV) Energy (eV)
Alg -7.60 -6.56
Case 1 Ay -6.99 -1.99
Ey -3.17 -1.87
A1g -10.63 -6.81
Case 2 Ay -12.73 -2.13
E -4.56 -3.33




CHAPTER IV
RESULTS AND DISCUSSION

The calculation of the electronic structure of the F center in-
KMgF3; was done on an IBM 360/65 computer. The programs used were modi-
fied versions of the set of programs written by U. Opik for calcula-
tions of the energies of an F center in sodium chloride-structured
crystals.

The first step in the calculation was the generation of the radial
part of the one-electron wave function for each closed shell ‘and a tabu-
lated numerical potential represented by an effective nuclear charge.
Atomic wave functions from Clementi's tables (8) were used to obtain '
tabulated wave functions and potentials for a potassium ion, a magnesi-
um ion and a fluorine ion.

These tabulated numerical values were used as input to a second
program which is capable of generating a self-consistent set of core
wave functions, effective potentials and energies. The-program calcu-
lates an exchange correction to théveffective potential, Vgfg, accord-

ing to the equation
Veff = Zp(r) - I, + ézp(r)

where Zp(r) is one-half  the effective nuclear charge for the potential,
Ic is the charge of the core and Gzp(r) is the exchange correction to

Zp(r). This potential is generated for each angular-momentum number £

17
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by introducing an additional correction according to

_ ZZp(r) N 2(8 + 1)

r ]’.'2

where Zp(r) does not. contain the exchange correction. The process of
attaining self-consistency is discussed in Appendix A.

The self-consistent forms of the core orbital wave functions, the
effective exchange potentials and the energies corresponding to the
core orbitals with a Madelung potential correction are used as input to
a third program which calculated the electronic energies and wave
functions of the F center.

The trial wave function used in determining the matrix elements of
the effective Hamiltonian and overlap matrices defined by equations (3)
and (4) is composed of Slater-type crbitals where the B's are the
variational parameters. Orbitals of angular-momentum quantum number
2 =0, 1, 2 and 3 were included in the wave .functions and the spherical
harmonics that composed the angular parts of the orbitals for the three
states are listed in Table V (l1). Two combinations of spherical har-
monics were used for the & = 3 angular momentum component for the E;
state.

The explicit electronic structure on the lnn magnesium ions and
the 2nn potassium ions is included by a %2-dependent Hartree-Fock treat-
ment but overlaps between core orbitals on positive ions have been
ignored because ‘they are small in magnitude compared to overlaps be-
tween outer electrons on these ions with the F center wave function.
Since.in the equations considered these overlaps have a power of two,
this approximation seems reasonable. But the overlaps between positive

and negative ions are not.negligible as can be seen in Table VI. This
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fact will be of importance when considering the inclusion of the ex-

plicit structure on the fluorine ions.

TABLE V

ANGULAR PART OF THE SLATER-TYPE ORBITALS OF THE BASIS WAVE FUNCTION -

S Real Spherical Cartesian Coordinate
ymmetry | 2-Value ) . . ‘ .
Harmonic Representation Representation
1
Alg O Y0,0 ‘2*‘1?
2 Y50 / —12— 322 - r?)
3 2
Ay 1 ¥1,0 Jar T
3 Y50 /L& (522 - 3x%)
/3
E, 1 /E'(Ylgl + Y ,-9) Z;:%%
% [ 5(Yg,5 + Y3,-3) S 1Y e 2
3 + 3(Y3 +Y )] 16n r3 (Oy° - 3r9)
1 3,-1 '
[/3(Y3,3 + Y3,-3) '105 e _
3 - /E(Y3’; + Y3’_,1)] 16m r3 (X‘ z%)

The polarization

energy is included according to the theory pre-

viously discussed and a list of the values of the parameters p,, Pp,
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Vas Vks Kws Kgp and X appear in Table VII. The high-frequency and

expt
static dielectric constants, K, and kg, were the only parameters for
which experimental values were used and were determined by C. H. Perry
and E. F. Young (12). The other polarization parameters were allowed
to vary but were not radically different from values used in alkali-

halide calculations from which the initial estimates of their wvalues

were obtained.

TABLE VI

OVERLAPS BETWEEN CORE ORBITALS

Ions =  <F7|F™> <F~ |Mgt> <F~|K"> Mgt |kt>
R = 5.309 3.754 5.309 6.502
Overlap Overlap

1s 2s 0.1334E-03 0.4436E-04 1s 35 0.8170E-04 | 0.4088E-05
1s 2P 0.2729E-02 0.3445E-03 1s 3p 0.6515E-03 | 0.5958E-04
28 28 0.6657E-02 0.1495E-01 25 38 0.7063E-02 | 0.1086E-03
28 2P 0.4022E-01 0.2059E-01 2s 3p 0.1970E-01 | 0.9434E-03
2P 18 0.2729E-02 0.6666E-02 2P 38 0.4541E-01 | 0.2691E-03
2p 2S 0.4022E-01 0.6667E~01 2p 2p 0.1882E-02 | 0.4035E-05
2P 2P 0.6908E-01 0.4871E-01 2p 3P 0.5910E~01 | 0.1446E-02

2PP 2PP 0.2274E-01 0.1503E-01 2PP 3PP 0.1477E-01 0.1492E-03




21

The radius that divides the crystal into two regions is R, and
this value was chosen to be 4.0, between the lnn magnesium ions and the
2nn potassium ions. This choice of R, was found to be necessary in
order to obtain a calculated transition energy close to that seen ex-
perimentally. The fact that R, is less than the 2nn radius appears to
be due to the treatment of the fluorine ions as point ions while taking
the electronic structure on the potassium ions explicitly into account.
The effective mass was set at 0.6, comparable to alkali-halide calcu-
lations. These values are also listed in Table VII. The values of
the parameters listed there apply to all calculations reported unless

explicitly stated otherwise.

TABLE VII

PARAMETERS USED IN THE F CENTER ENERGY CALCULATIONS

Parameter Value

Ra 4.0
Ko 2.04
Kot 5.96
Pe 0.2
oy 0.2
vy 0.0
vy 0.0
Xexpt 0.11

m¥* 0.6
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The first calculations of the energies of the_Alg, Ay and‘Eul
states were made with 2 = 0 and 1 angular momentum components in the :
trial defect wave function. The A1g state's basis function consisted
of ls, 2s, 2s and 3s STO's; the basis function for both the A,, and
E, states were composed of 2p, 2p, 3p and 4p STO's.

The program was allowed to find an "optimal, minimal" energy for
the lowest states of each symmetry by performing a pattern search from
an algorithm by A. F. Kaupe (13). The description "optimal, minimal"
is relative to the calculation being performed, the calculation was
optimal in that the minimal energy was found to be within the tolerances
desired. The determination of the energy to machine precision loses
its meaning when considering the approximations made in the theory of
the model.

With this restriction in mind, the optimal energies for the three
states are listed in Table VIII. Other relevant properties, such as
the electronic polarization energy and the average radius at which the
F center electron is found, are listed in Table IX. Also listed is the
percentage of the total charge enciosed in spheres centered on the de-
fect site and defined by the radii of the lnn ions and R,.

The only change involved in the second set of calculations was the
addition of a & = 2 angular momentum component to the basis set of the
Alg state and the addition of a £ = 3 component to the basis sets of
the A2u and E  states. The explicit descriptions of these orbitals are
listed in Table VIII and the energies and electronic properties of . the
three states are listed in Table IX.

A comparison of the states in the first calculations show that the

transition energy from the Alg state to the E, state to be 4.3 eV with



TABLE VIII

CALCULATED ENERGY LEVELS OF A F CENTER IN KMgF,

Wave Function Symmetry Energy (eV)
Aig -4.7736
L =0,1 Ary -0.5889
Ey ~0.4774
Arg ~5.0320
2 =0,1,2,3 Aoy -0.6533
Ey -0.5146
TABLE IX

THEORETICAL PREDICTIONS OF ELECTRONIC PROPERTIES*

Wave Function | Symmetry | Rave | Cinn(5) | Cra(%) | Epol(eV)
Ag 2.313| 92.96 95.88 -0.590

L =0,1 Ay, 15.122 6.81 7.55 -1.091
E, 21.043 0.12 0.13 -1.243

Alg 2.373| 91.39 94.64 - -0.607

L2 =0,1,2,3 Ay, 10.673] 17.64 19.55 ~0.968
E, 17.966 1.62 1.83 -1.164

*R is the expectation value of the position of the F

aye . ‘
center electron; Cj,, and Cra represent the total charge found
inside a sphere centered on the defect site with a radius de-
fined by the distance to the lnn ions and R, respectively; Epo1
is the electronic polarization energy expressed in eV's.
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a 0.11 eV separation of the A,y and E,; states. The transition energy
compares with the experimental value of 4.6 eV. In the second calcu-
lations, the expected lowering of the energies of all states due to the
additional element of the basis set is observed. The transition energy
of 4.52 eV is closer to the experimental value and a 0.14 eV separation
of the Ay, and E, states is now observed. Several other calculations
were done ‘using different values for the parameters of Table VII and
the two excited states were never separated by more than a few tenths
of an electron volt.

It is important to note that there was no erratic displacement of
the energies of the states relative to each other with the addition of
the £ = 2 and 3 angular momentum components as was observed in ‘the
calculations done by Harker (4). So a third set of calculations was
performed using a point-ion potential instead of the {-dependent ef-

fective exchange potential. The Hamiltonian was defined to be
HPI = = Lﬁ VZ - Z Vi(r)
i

where Vi(r) is the point-ion potential of each of the ions inside the
inner region defined by R, . The parameters in this calculation are-
those given in Table VII except R, which is now defined to be 10.5.
The energies generated using the point-ion potential both with and
without 2 = 2 and 3 angular momentum contributions are listed in Table
X along with Harker's results for his point-ion calculation.

The probability of a transition from the ground state to the A2u
and to the E,, states was calculated in terms of the oscillator
strengths. The coefficients of the linear combination of the optimized

basis functions that yielded the energies in Table VIII were used in-



these calculations with an effective mass of 0.6 and the value of Ra
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set to 4.0. Although no experimental data is available for a compari-

son, the theoretically predicted values as listed in Table XI seem

anomalously small,

COMPARISON OF THE RESULTS OF TWO

TABLE X

POINT-ION CALCULATIONS

Energy (eV)

Wave Function Symmetry

Whisenhunt Harker

Alg -7.611 -7.60

L =0,1 Ay -7.042 -6.99
E, -3.166 -3.17

Alg -9.651 -10.63

L2 =0,1,2,3 Ay -11.219 -12.73
Eu -4.167 -4.56




TABLE XI

OSCILLATOR STRENGTHS

Wave Function | Transition | Oscillator Strength
Ajg > Ayy 0.0248
L =0,1
Alg > Ey 0.0013
A1g > Ay 0.0848
2 =0,1,2,3
Alg > Ey 0.0114
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‘CHAPTER V

CONCLUSIONS

It would appear from the energy calculations that the model as ap-
plied to alkali halides can be extended to crystals of lower symmetry.
The predicted transition energy of 4.52 eV compares quite favorably
with the experimental value of 4.6 eV but reflected in this value is
the fact that many constants of the calculation had to be treated
essentially as variational parameters because an experimental determi-
nation of their values has not yet been affected, namely the energy of.
the bottom of the conduction band and the effective mass.

A comparison of the energies in Table VIII shows that the inclusion
of angular momentum terms greater than £ = 0 and 1 have little effect
on the energies of.the various states as was reported in an earlier
publication (14). The expected lowering of the energies of all states
due to the expansion of the basis set of the trial defect wave function
is observed but no large displacement of the states relative to each
other occurs.

The point-ion calculation performed exhibits a behavior of the Ajy
state similar to that shown by Harker and appears to indicate that ex-
plicit inclusion of the electronic structure on the ions neighboring
the defect has a marked influence on the -energy of the state, especial-

ly when higher-order angular-momentum terms are considered.
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Although the energies of the states yield a reasonable transition
energy, the small oscillator strengths pose a question as to the ac-
curacy of the form of the trial defect wave function. The size of
these transition probabilities might be a reflection of the fact that
the fluorine ions at the edges of a cube centered on the defect site
are treated as point ions even though they are the same distance from
the defect as the 2nn potassium ions. The size of the overlaps of the
fluorine core orbitals with orbitals on potassium, magnesium and other-
fluorine ions could have a pronounced effect, especially when con-
sidering that there are eight equivalent fluorine ions.

It might be argued that the effect of leaving these ions as point
ions in the calculations up to the present has been counter-balanced by
defining the value of R, to be inside the 2nn potassium ions since the
effect of including the orthogonalization terms on the fluorine ions
would be to decrease the overlaps while moving the radium R, inward.
tends to increase the effective mass contribution. The explicit in-
clusion of these fluorine ions is in progress now and will be continued
by T. M. Wilson at Oak -Ridge National Laboratory.

As can be seen from the values in Table IX, the Alg state is an
extremely localized state while both the Ap, and E, states are more de-
localized and effective-mass-like. Therefore the inclusion of the
fluorine ions would be expected to have a more pronounced effect on the
ground state than on the diffuse excited states.

The conclusion that can be drawn at this stage of the calculations:
is that the E; and A,, states have so nearly the same energy that the
states would not easily be resolved experimentally and so appear to

have a near accidental degeneracy. Furthermore, this near degeneracy
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was evident regardless of the variation of parameters of the calcula-

tion. The separation of these states from the ground state implies a-
transition energy that agrees favorably with experiment. But further

calculations are needed to remove approximations and provide further

checks with experiment.
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APPENDIX A
METHOD OF SELF-CONSISTENT CALCULATION

The model of the F center used in this paper is based on an
angular-momentum dependent exchange potential and the p£ocess of de-
riving this potential will be outlined in this appendix.

First, the core wave functions and an effective nuclear charge form
for the potential are generated in tabulated form using Clementi's
atomic.orbitals (8). The effective form for this potenFial is repre-
sented by the total charge of the nucleus with the coulombic inter-
action of the closed shell electrons subtracted from it. Let these core
wave functions be denoted by ¢gi and the effective nuclear charge for .
potential by Zp(r).

A numerical function Zé(r) is defined to be:
' = — —
Zp(r) = Zp(r) I, SZp(r)

where I, is the net charge of the core and SZp(r) is the -exchange cor-
rection to Zp(r).
Then twice the radial potential is calculated accdrding‘to the

equation

=2Zp(r) 9y + 1)
+ z

Ve(r) = r r

where % is the angular momentum quantum number of the outer orbital to

be considered.
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The radial Schrddinger equation for this outer orbital is solved
by integrating outward over the core orbitals. This equation is given
by

[-%V2 - (Z2-N)/r + Vo (xr) - Egl¥,(x) = 0 (7)

where Eg is the energy corresponding to the outer electron Yy and Vg
is given by equation (6). Equation (7) is solved for values of § = 0,
1, 2, 3, 4 and 5.

Another calculation is performed to define the core orbitals cor-
responding to the corrected form of the potential‘VZ(r) obtained from
equation (7). These core orbitals are calculated by solving the
equation

[-%V% - (2 - N)/r + Vo (x) - E{loi(x) = 0O (8)

where Vg (r) is the potential for the corresponding angular-momentum
number % of the core orbital'¢i and the equation is integrated outward
over only the orbitals within ¢;.

If a self-consistent calculation is desired, at this point rede-
fine ¢44 and the corresponding Ej; to be the ¢;'s and E;'s obtained
from equation (8). Then recalculate the exchange correction SZP(r) in
equation (5) with these new values for ¢,; and proﬁeed through the
calculations defined by equations (6), (7) and (8).

At this stage, a comparison is made between the core orbitals ¢Oi
and the core orbitals ¢; from equation (8). If the numerical form of
the two sets of wave functions are self-consistent to within acceptable
tolerances, the calculation is terminated. Otherwise return to equa-
tion (5) and iterate again. It has been observed that acceptable

self-consistency can be attained after two iterationmns.
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If the calculations are determined to have reached self-consis-
tency, the numerical potential Vy(r) of equation (7) for values £ =
0, 1, 2, 3, 4 and 5 are defined to be the potentials for the outer
electrons in the F center calculation. The core orbitals corresponding
to these potentials are.the ¢;;'s used to determine the exchange cor-
rections in équation (5), not the‘¢i‘s with their corresponding E;'s
in equation (8).

These values of Vz(r), boi and Egq are used as input to the pro-
gram that calculates the energy of the F center. It should be noted
that the energies, Ej;;, must be corrected for the Madelung potential
contribution; the derivation of this correction is discussed in Appen-

dix B.



APPENDIX B
MADELUNG CORRECTION TO THE ENERGY

The energy for each core orbital must be corrected for the elec-
trostatic interaction (*q?/r) between the ions called the Madelung
energy. The‘Madelung correction terms were calculated according to a
method which employs Born's and Hund's basis potentials (15). The
total potential at a point is given by the equation

¢ = ] dui Vi

o

where o represents groups made up of ions within the same unit cell.
The charge q,; is calculated according to an ionk position in the unit
cell; charges in the interior, on the face, on the edge, or on the
corner of the cube assume weights of 1, %, %, or ;é respectively. The
¥'s are Hund's basic potentials (15) that are chosen according to the
position of the ion in the cell,

Using this method, the potential on the potassium ion would be
given by the expression

o = Yo + 2¥; - 3¥,

where Y,, ¥, and ¥, correspond to the potassium, magnesium and fluorine
ions, respectively.

The Madelung correction term is given by

Md = - kd g qOLi ll"i
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where kd is dependent on the structure of the crystal (16). The
Madelung corrections, calculated with respect to the first nearest
neighbor ions, for KMgFj; were: Kt: +0.3588, Mgtt: +0.8243, and
F~: -0.4299 a, u.

This correction is added -to the energy, EOi’ of each core orbital

for all ions. The resultant energy, E', is used as input to the F

center program.



APPENDIX C

POINT-ION POTENTIALS

The F center program is capable of generating point-ion potentials
for ions out to an arbitrary radius R. The form of the potential for

r < R and through £ = 6 is

- 2 Y
Vo (F) = Yoo Zoo * Y20 T Zyg * Yuo T Zug
Y 6 6
toYyy T Zyy tvgo T Zgg tovey T Zgy
where Zgg = Yo.0
and  Zgm = VE(Yp,m + Yg,-m).

The coefficients, ygm, are determined for the nth shell of ions by
the equation
n n-1
= % i
Yem T Yem T Z Yom
i=1
where Yzm represents the shell where the coefficients cease to change
relative to the previous shell. In our calculations, this occurred at
the fifteenth nearest neighbor shell which includes 8,810 ioms.
This method of expressing the point-ion potential was presented by

M. T. Hutchings (17) and the program used to determine the coefficients,

Ygym» Was provided by Harold L. Davis (18).
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