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CHAPTER I 

INTRODUCTION 

Modeling a dynamic system generally resul.ts in certain algebraic 

and differential equations which describe the physical phenomena. These 

equations may be linear or nonlinear. As the complexity of the system 

being modeled increases, the resulting equations become more numerous and 

of higher order. 

Until recently, many systems .could not be simulated accurately be

cause the resulting set of equations was too complex. The modern digital 

computer, with its large storage capacity and high computation speed, has 

made possible the simulation of such systems. Consequently, there has 

been increasing interest in both the modeling and simulation of complex 

systems in recent years. Considerable effort is being spent developing 

numerical techniques to solve systems of algebraic and differential equa

tions. Older techniques which were previously impractical for. hand cal

culations are being revived for use with the computer. New methods are 

also being developed. However, despite the capabilities of present 

machines and the availability of a wide range of numerical methods, some 

problems are still quite difficult to solve with the computer. 

Many dynamic systems are so complex that the large size of the 

resulting set of algebraic and differential equations begins to tax the· 

storage and speed performance of even the largest computers. Special 

analysis techniques are being developed for such systems (3), 
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In contrast, some systems that are relatively simple in nature 

result in sets of equations that require an inordinate amount of computa-

tion time to solve with conventional numerical methods. The inefficient 

solution of these equations drastically increases the simulation cost, 

which can become so high the information obtained is not worth the 

expense, 

An important type of system which leads to an inefficient numerical 

solution is one which contains both large and small time constants. Such 

a system is called "stiff". As the difference between the time constants 

increases, the stiffness increases. Alternately, stiffness can be con-

sidered a measure of the distance between the system poles in the complex 

plane. The wider the pole separation, the stiffer the system is. 

Stiff systems are described by stiff differential equations, A 

differential equation can exhibit stiff behavior from two sources: the 

eigenvalues and the input. The following is a differential equation 

which is stiff due to its eigenvalues: 

2 
.2:...l. + 1001 ~ddt + lOOOy = u(t) 
clt2 

This differential equation has two real eigenvalues, -1 and -1000, The 

two corresponding time constants are 1. 0 and O. 001 seconds, respectively, 

A conventional numerical integration technique would require a step size 

from 1/10 to 1/100 of the smallest time constant. In this case a step 

' size from 0,0001 to 0.00001 would be required. Such a system, though 

relatively simple, leads to a very inefficient numerical solution. 

The following differential equation exhibits stiff behavior due to 

the nature of the input: 

x = - x + 0.02 cos(lOOt) + sin(t) 



The solution of this equation is 

x = e-t + 1.9998 x 10-6 cos(lOOtj + 1.9998 x 10-4 sin(lOOt) 

+ 0.5 cos(t) + 0.5 sin(t) 

The high-frequency portion .of the response is very small in magnitude 

compared with the fundamental response terms e-\ 0.5 cos(t) and 

0.5 sin(t). ·-However, this hi_gh-frequency response has a period of 

21r/lOO, requiring a step size from 21r/lOOO to 2,r/10000, or about 0,006 

to 0.0006 seconds. This is a very small step size considering the low-

frequency of the _fundamental response. 

Stiff systems occur frequently in nature. Many physical systems .. 
have responses which are basically low frequency with high-frequency 

responses superimposed. The high-frequency response may not be as sig-

3 

nificant as the low-frequency response in determining the system beh~vior, 

However, since the time step used in a conventional numerical integr~tio~ 

must be chosen as a fraction of the period of oscillation of the highest 

natural mode in the system, these high-frequency components.cause the. 

solution to be very time consuming. 

Since the high-frequency responses may not be needed or even .desired 

in the simulation, a solution to the problem _would be to eliminate the 

sources of the high frequencies from the model. However, in a complex 

model, this may be quite difficult. Practial simulations frequently con-

tain nonlinearities, complex loop interactions, and sets of linear 

differential equations describing the dynamics of particular parts of the 

system, These sets of linear differential equattons can often be sepa-

rated and considered as linear subsystems. When such linear subsystems 

are stiff,- it should be advantageous to propagate their solutions 
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analytically, These solutions could then be interfaced with the solution 

for the rest of the system, obtained by conventional numerical techniques, 

Figure 1 shows a schematic diagram of the situation frequently en

countered in complex simulations. It shows a system which is nonlinear 

and stiff. However, the stiffness originates in certain stiff linear 

subsystems, which can be identified and separated. Cross-coupling 

between various parts of the system, nonlinear feedback, control loop 

interactions and sampling devices may be present, complicating the compu

tation of a solution. In particular, nonlinearities and sampling devices 

aggravate the numerical problems caused by small time constants since 

they intermittently cause sudden changes in the inputs to the stiff 

linear subsystems. 

A specific example of a system of this type is shown in Figure 2, 

Linear subsystems A; Band Care all stiff. Nonlinearities, non-stiff 

linear subsystems and loop interactions are present, The technique. 

investigated in this study is intended for such systems, 

The purpose of this thesis is to investigate a method for simulating 

systems of the type shown in Figures 1 and 2, and establish guidelines 

and procedures for the use of the ~ethod. The method propagates the 

solutions of the stiff linear subsystems analytically, and interfaces 

their solutions with a conventional numerical technique for simulating 

the remainder of the system. The analytical solutions of the stiff 

linear subsystems ,are obtained stepwise by approximating the input to 

each subsystem as a series of step inputs. For each subsystem an aug~ 

mented system is.formed which is unforced. The state transition matrix 

for each augmented system is then used to propagate the solutions of the 

stiff linear subsystems forward in time. 
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Figure 1. A Complex Dynamic System 
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Figure 2. A Specific Example of a Complex Dynamic System 
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Chapter II presents a short discussion of numerical methods in gen

eral and some methods for solving stiff systems found in the literature, 

Chapter III develops the transition matrix approach for simulating stiff 

linear subsystems. Chapter IV implements this approach on general first 

and second-order subsystems, references a computer program useful in 

implementing the approach on higher-order subsystems, and discusses the 

interfacing of the analytical solutions for the stiff linear subsystems 

with the numerical solution of the rest of the system. Chapter V evalu

ates the method, comparing it with a.fourth-order Runge-Kutta algorithm, 

and presents a general procedure for applying the method to systems of 

the type shown.in Figures 1 and 2, This procedure.is demonstrated with 

an example problem, Chapter VI presents conc+usions and recommendations, 

The results of the study show that the transition matrix approach 

achieves more efficient simulation of systems such as Figure 1 when the · 

inputs to the stiff linear subsystems have periods that are long. relative . 

to the time constants of the subsystems. Depending on the stiffness of 

the linear subsystems and the .overall loop frequencies of the system, 

step size increases of two orders of magnitude or more 1:1.re possible using 

this approach. 



CHAPTER II 

SURVEY OF RELATED TOPICS 

This chapter will present a short discussion of conventional numeri-

cal methods for solving differential equations, and the results of a 

literature search for methods specifically intendeQ for stiff systems, 

Numerical Integration Methods 

The basic problem addressed.by numerical integration methods is the 

solution of the first-order vector differential equation 

dX dt = f (X, t) 

subject to some initial condition for vector X. At each point in the 

X - t hyperplane, the function f(X,t) gives the slope of the .solution 

trajectory. As shown in Figure 3, short line segments with this slope 

can be drawn at points throughout the plane. If smooth curves are drawn 

followi.ng the indicated slopes, a map of the solution tl;'aj ectories in the 

X - t plane is obtained. 

Numerical integration methods trace out a particular solution tra~ 

jectory.originating at the initial condition. T~o basic types of numeri-

cal integration algorithms are in common use, These are one-step 

methods and multi-step methods. 

The simplest one-step method is called the crude Euler method, At 

the initial condition, the slope of the solution curve is calculated and 

8 
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the solution is advanced along this slbpe one time step. A new slope is 

then calculated and the solution proceeds. Higher-order methods utilize 

past values of the dependent variable and the slope to obtain a better 

prediction. The Runge-Kutta second and fourth-order methods are examples 

of higher order one-step methods. One-step integration methods have cer

tain characteristics in common. They do not require iteration to find 

the next solution point; they are .self-starting, meaning they require 

only an initial point to begin the solution, and they do not provide an 

estimate of the error incurred at each integration step. 

x 

I I 
I 

/ I 

I 

-- / /' 

/ 
./ / I / 

/ / t 

Figure 3. Solution Trajectories 

In contrast to the. one-step methods, the multi-step, or predictor

corrector methods require iteration at each step; they are not self

starting and they provide error information at each step. These methods 

use a predictor formula of the one-step type and a corrector formula to 
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recalculate the predicted trajectory point repeatedly until two _consecu

tive calculations.agree within a specified error. Then the predictor 

formula predicts the next point and the corrector formula.again iterates 

and so on. These methods typically adjust the step size according to the 

number of iterations required by the corrector formula to achieve conver

gence. The predictor formula, or some other one-step method is used to 

obtain enough initial points on the trajecto:r;y to "start" the corrector 

formula on its first iteration. Beckett (2) gives a description of 

s~veral integratio~ techniques of both the single and multi-step type. 

Unfortunately, neither single~step nor multi-step methods as des~ 

cribed above are well suited for the soluti_on of systems having both 

large and small time constants. 

Methods Designed to Cope With 

Small Time Constants 

Ebbesen (5) develops an algorithm based on the variational principle 

of mechanics. It is applicable to both linear and nonlinear systems of 

equations, and allows selection of the step size based on the low

frequency system components. The method is designed for those systems 

having dominant low-frequency responses, and suppresses high-frequency 

responses, Signific~nt reductions in computation time along.with 

accurate.solution~ are reported. 

Andrus (1) describes a method applicable to systems of first-order 

linear differential equations ,with constant coefficients, A transforma

tion of the original equations into a system called the canonical equa7 

tions is described, Those canonical equations depending on eigenvalues 

of large magnitude are discarded when their solutions contribute 
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negligibly to the total system response. This allows a larger integra

tion step size than would ordinarily be possible. When it is not possi

ble to decide which canonical equations to eliminate, the input function 

is approximated by linear functions over short time intervals. The 

solution to the canonical equations is expressed analytically in terms of 

the unknown input. This expression is then substituted into the 

canonical equations, and they are then integrated numel;'ically. A signif

icant increase in the required step size is reported. 

Stineman (9) assumes that the high frequencies in the system decay 

rapidly. Therefore a time step based on these high frequencies is used 

during the initial transient. The time step is then incre~sed to 

approach a fraction of the longest time constant in the system. This 

method is not effective if the system is non-periodically excited since 

the high-frequency responses remain in the solution, .and the time step 

must ·remain small. Conventional predictor-corrector techniques could be 

used to advantage where an input such as a step is applied to a system, 

resulting in high-frequency responses that decay off, since the step size 

would be adjusted upward. Some one-step methods with automatically ad

justing step.size could also be used to advantage. But these methods are 

not effective if the system is intermittently excited, for example, by 

sampling devices .or nonlinearities in the. model, since any abrupt change 

in the input, or even any non-periodic input, causes the high-frequency 

transients to remain in the solution. 

Curtiss (4) describes a forward interpolation method which singles 

out and approximates a particular solution of the differential equation, 

Treanor (lO) develops a method which is closely related to the 

Runge-Kutta method. An approximation is made that within an interval the 



first derivative can be expressed in a special form. In certain cases 

the algorithm reduces to the fourth-order Runge-Kutta method. 

12 

Walters (11) describes a multi-step predictor-corrector approach to 

solving systems of stiff ordinary differentia~ equations, Stabilitf 

criteria for multi-step methods.are presented. 

Benyon (3) provides an excellent survey of existing numerical tech

niques for ~igital computer solut~on of systems of differential equations. 

It includes a table summarizing the author's experience with various 

numerical integration techniques applied to several problems, giving the 

relative computation time for each. An extensive bibliography is 

included. 

The literature search revealed that relatively.few techniques have 

been developed to efficiently solve stiff differential equations. More 

effort seems to have been spent on m~thods designed to handle large sets 

of algebraic and differential equations. 
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CHAPTER III 

DEVELOPMENT OF TRANSITION MATRIX APPROACH 

This chapter will develop the transition matrix approach for the 

solution of stiff linear subsystems. 

The Transition Matrix 

Consider a set of time-invariant, linear, ordinary differential 

equations, / 

X(t) = AX(t) + BU(t)' X(O) = x0 (1) 

Xis an n-,vector called the state vector, A is an n x n mat:dx of 

constants called the plant matrix, Bis an n x m matrix of constants, and 

U is an m-vector called the control or input, The initial condition for 

the state is x0 , The general sqlution can be written 

t 
X(t) = @(t,t0) x0 + f @(t,,) BU(,) d, 

to 
(2) 

@ is the state transition matrix for the system, Note that the solution 

consists of two parts: a homogeneous and a particular solution, The 

homogeneous solution is the solution when the input U is zero, It is 

therefore termed the "zero-input response", Similarly, the particular 

solution is the solution when the state x0 is zero, and it is termed the 

"zero-state response", The integral, which is the particular solution, 

is called the "convolution integral", 

13 
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The transition matrix is given by 

which may easily be evaluated as an n x n matrix of constants for partic

ular values oft and t 0 . One convenient means of evaluating the transi

tion matrix is by taking the inverse Laplace transform of the resolvent 

matrix: 

where the resolvent matrix, R(S), is given by 

R(S) = (SI - A)-l 

Thus the zero~input response may be readily obtained by evaluating the 

transition matrix. 

The Convolution Integral 

Linear, homogeneous systems rarely occur in simulations. Generally, 

linear subsystems will have some forctng function as input, If this 

forcing function is known in advance, and an analytical expression for it 

can be determined, then the exact response of the subsystem can be 

determined by.Equation (2), 

Unfortunately, in dynamic simulations, the input to the subsystem is 

not known in advance, and generally varies in an unpredictable manner. 

In most cases, then, some numerical method must be used to obtain the 

subsystem response, 

When the subsystem is not stiff, conventional numerical integration 

techniques such as Runge-Kutta are quite adequate, However, when the 
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subsystem is stiff, it would seem advantageous to make use of the analyt

ical solution, Equation (2), to avoid the numerical problems that would 

otherwise be encountered. 

Some analytical approximation for the input to the stiff lin~ar sub~ 

system can be used, and updated each time step. The analytical solution 

can then be obtained for each time step, and the approximate solution 

propagated as a series of short analytical solutions corresponding.to the 

series of input approximations. This basic method of dealing with stiff 

linear subsystems will be explored.in the remainder of this study. 

A simple approximation to the subsystem input-is a series of step 

inputs, as shown in Figure 4. Here t, t 0 , u(t) and ~tare time, the 

initial time, the input, and the time step, respectively. Admittedly, 

this is a crude approximation. It assumes simply that the input is 

constant during each time step, at the value it had at the beginning of 

that step. This is a "zero-order" approximation, in that the input is 

approximated as a zero-order polynomial in time, namely, a constant. 

u (t) 

INPUT APPROXIMATION 

EXACT INPUT 

Figure 4. The "Step" Input Approximation 
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Other subsystem input approximations could be used. A first-order. 

approximation would be as in Figure S. Here, a series of straight lines 

connect consecutive points on the input curve, and the input function is 

approximated by a series of "ramp" inputs,, This is obviously a much 

better approximation to the iriput curve than the step approximation. 

u(t) 

t 

Figure 5. The "Ramp" Input Approximation 

Many other analytical approximations to the subsystem input curve 

could be used, for instance, second, third or higher-order polynomials in 

time, or exponential functions of time. These would require the storage 

of several previous values of the input, and would be more time consuming 

than either the step or ramp approximations. This study focuses on the 

use o~ the step approximation for the subsystem input. 

The step input approximation offers a unique advantage in terms of 
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the evaluation of the convolution integral. Since.the input is assumed 

constant over eacl). time step, it can be factored outside the integral: ·. 

t 
I ~Ct,,) BUC,) d, ~Ct,,) B d, 
to 

Here u is a scalar. It can be shown that the convolution integral is a 

function only oft - t 0, rather than a functiQn of both t and t 0. 

Denoting 

the transform~tion 

gives 

Since 

ect - t) 
0 

t-t0 

J 
0 

which is denoted ~[Ct - t 0) - A], 

e(t - t) = 
0 

which is clearly a function oft - t 0 rather than t and t 0• This is an 

important fact, since if t 0 is considered the beginning time of a time 

step, and tis the time at the end of the step, then 



b.t 
0(b.t) = f ~[b.t - A] B dA 

0 
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a function of only the time step b.t. Note that for a particular value of 

b.t, e is an n x 1 constant vector. This means e can be evaluated once at 

the beginning of the solution, and it is constant thereafter, if the time 

step does not change. So, rewriting Equation (2), 

(3) 

This is a formula which can be used to propagate the subsystem solution 

forward in time. ~(b.t) and 0(b.t) are constant throughout the solution, 

No other input approximation allows such a straight~forward evaluation of 

the convolution integral. However, as will be seen in the next section, 

other subsyst~m input approximations can be handled almost as simply by 

the formation of an augmented system. 

The Augmented System 

An alternate way of using the step input approximation to arrive at 

a propagation formula similar to Equation (3) is to form an augmented 

system consisting of the original subsystem plus certain new states which 

contain input information, This method of forming an augmented system. 

can easily be generalized to higher-order input approximations". The 

method will first be demonstrated on some second-order subsystems" Then 

a generalization will be presented. 

Consider first the subsystem, 
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= + u(t) (4) 

If u(t) is approximated as a series of steps, u can.be expressed as some 

constant 

u = u. 
]_ 

over each time step, where u. is the value of the input u(t) at the. 
]_ 

b . . f h . th eg1nn1ng o t e i step, 

with initial condition 

Define a new state variable 

Since x3 is constant over each time step, 

Rewriting Equation (4) in the form of an at1gmented system, 

= 

0 0 0 

Note that this is a time-invariant, linear, un-forced systE!m, Letting X 
a 

denote the augmented state vector, and A denote the augmented plant a 



matrix, 

. 
X = A X a a a 

The stepwise solution for Equation (5) is 

x (t. + ~t) = ~ (~t) x (t.) a 1 a a 1 

where~ is the state transition matrix for the augmented plant matrix a 

A. ~ is a 3 by 3 matrix of constants which may be.evaluated for a a a 
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(5) 

particular value of ~tat the beginning of the solution. Note that aug-

menting the second-order subsystem with a zero-order input resulted in.a 

third-order augmented system. 

Reconsider subsystem Equation (4) with u(t) approximated by 

u = m.t + u. 
1 1 

where ui is the value .of the input at .the beginning of the ith step and 

· h · 1 f h · d · the 1.th t m. is t e approximates ope o t e input uring s ep. 
1 

ramp input approximation, Defi:q.e a new state 

with initial condition 

Clearly, 

u(t.) 
1 

Now rewriting Equation (4) as an augmented system, 

This is a 



= 

0 0 0 

Define another new state, 

Augmenting again, 

xl all al2 

x2 a21 a22 
= 

X3 0 0 

X4 0 0 

bl 0 

b2 0 

0 1 

0 0 

0 

+ 0 

1 

xl 

x2 

X3 

X4 

m. 
1 

Again, an unforced system results, A second-order subsystem with a 

21 

first-order input results in a fourth-order augmented system, In general, 

· th d b . h th d 1 . 1 . f augmenting an . n - or er su sys tern w1 t an m - or er po ynomia 1n t or 

th the input produces an (n + m + 1) -order a~gmented system. Of course, 

for each unforced, augmented system obtained by the various input approx-

imations, the corresponding transition matrix may be obtained, evaluated 

for some time step, and used to propagate the _solution. 

This met~od c~n also be applied when the input is a vector rather 
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than a scalar. Consider 

= + (6) 

Let 

ul = uli 

u2 = u2i 

Define 

X3 = ul, X3(ti) = ul (ti) 

X4 = ti2 J X4(ti) = u2(ti) 

Then 

• 
X3 = 0 

X4 = 0 

Augmenting 

. 
xl all a12 bll b12 xl 

x2 a21 a22 b21 b22 X2 

= 
x3 0 0 0 0 X3 

X4 0 0 0 0 X4 
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Augmenting a second-order subsystem with a 2-vector of zero-order inputs 

yields a fourth-order augmented matrix. 

Now consider subsystem Equation (6) with 

Define 

Thus, 

Now let 

Augmenting, 
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xl all al2 bll bl2 0 0 xl 

x2 a21 a22 b21 b22 0 0 x2 

X3 0 0 0 0 1 0 X3 
= 

X4 0 0 0 0 0 1 X4 

XS 0 0 0 0 0 0 X5 

x6 0 0 0 0 0 0 x6 

Augmenting a second-order subsystem with a 2-vector of first-order inputs 

yields a sixth-order augmented system. In general, augmenting an nth_ 

order subsystem with am-vector input, each element of which is kth_order 

int results in an [n + m(k + l)]-order augmented system, 

A generalization of the augmenting process for polynomial input 

approximations follows, The assumption is made that each element of the 

m-vector input is the same order polynomial. th For then -order subsystem 

Equation (1) where each element of U(t) is a kth_order polynomial int, 

I 
A B I 01 

I . I 
XA = ------,--- XA 

I I 
I 

02 
I ----I 
I 03 
I 
I 
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The augmented matrix above is [n + m(k + 1)]-order. o1 is an n x mk zero 

matrix, o2 is an m(k + 1) x (n + m) zero matrix, I is an mk .x rnk identity 

matrix, and o3 is an m x rnk zero matrix. To fit this form, the new 

st.ates must be assigned in the same order as in the examples. That_ is, 

first assign state variables to each input-vector element, then to the 

first derivative of each element, then to the .second derivative of each 

element, and so on. 

Broader generalizations.of the augmenting procedure are possible. 

Melsa (7) presents a method for obtaining a~.augmented-system representa

tion for a.~eneral, linear, closed-loop system with an input whose. 

Laplace transform.is a rational function of the Laplace variable S. He 

treats only the scalar input case, however. More information on this 

method is given in.Chapter IV. 



CHAPTER IV 

IMPLEMENTING THE METHOD 

The present chapter will demonstrate the implementation o:l; the step 

transition matrix approach for first.and second-order linear subsystems, 

reference a computer program for implementing the method on higher-order 

linear subsystems, and present a method for interfacing the solutions of 

the stiff linear subsystems with conventional numerical solution of the 

remainder of the system. 

First and second-order subsystems occur more frequently in simula

tions than any others, This is not to say that most physical systems can 

be accurately described as first or second-order linear systems, However, 

even in very complex simulations, certain components in the system can be 

adequately described by first or seconq-order models. 

First-Order Subsystems 

Consider the general first-order subsystem shown in Figure 6, Tis 

the system time constant, U(S) is the input to the system and Y(S) is the 

output, 
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_u _(S_)--. ... ~1.__ __ l ___ i------•- y (S) 
_ TS + 1 

Figure 6. Block Diagram of a 
First-Order Subsystem 

. I 
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·writing the algebraic expression equivalent to Figure 6 and taking 

the inverse Laplace transform yields the following differential equation: 

T dy(t) + y(t) = u(t) 
dt 

Assigning the state variable x1 to the output and rearranging gives 

At this point, an analytic expression can be selected to approximate 

input u(t). As stated in Chapter III, the step input is focused upon 

here for study. Accordingly, 

Augmenting Equation (7) gives 

= 

for which the stepwise solution is 

0 

1 
f 

0 

(7) 



.ii•• 
( 
' 

h . h . th . . . d . h . . were t. is t e 1 point 1n time, an t. 1 1st e prev1ous,t1me. 
. 1 1-
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(8) 

Usi:ng 

standard techniques,. the transition matrix for the augmented system is 

found to be 

t.t t.t -r 
1-e 

-r 
e 

<I> (t.t) = 
0 1 

Substituting this result into Equation (8), note that only the first row 

of the matrix is needed to propagate the soluti.on. The second row merely 

contains the information 

which is a statement .. that the input x2 is constant during the time step. 

Using Equation (8) with thy first row of the transition matrix gives 

t.t t.t 

xl(ti) = e- T xl(ti-1) + (1 - e- r) Xz(ti-1) (9) 

Equation (9) is the propagation formula for a first-order subsystem using 

the step input approximation. 

Second-Order Subsystems 

Consider the general second-ord.er subsystem shown in Figure 7. 

~ and wn are the damping ratio and natural frequency, respectively. 
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__ u_(_S_)-11 ... ~1 ~-------S---+-2-:-:--S--+--w....-------~ i------~---·-
. n . n 

y (S) 

Figure 7. Block Diagram of a Second-Order Subsystem 

Taking the inverse Laplace transform of the algebraic equivalent to 

Figure 7 gives the following differential equation: 

y(t) + 2~w y(t) + w2y(t) = 
n n 

Changing to state variable form, let 

x1 = y(t), 

. x = y(t) 
2 

Then Equation (10) becomes 

Using the step input approximation, let 

x = u. J 3 1 

2 w u(t) n 

Then the augmented-system representation of Equation (10) is 

(10) 
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xl 0 1 0 xl 

2 
-2~w 2 

x2 = -w w x2 n n n 

x3 0 0 0 X3 

for which the stepwise solution is Equation (8). The resolvent matrix 

for the augmented system is readily found, and each element expanded in 

partial fractions. The form of the inverse Laplace transform of the 

resolvent matrix is different for each of the three cases O < ~ < 1, 

~ = 1, and~> 1. The resulting formulae for the elements 0£ the ~(~t) 

matrix, being rather lengthy, are given in Appendix A. Thus the propaga-

tion formula for the second-order subsystem with step input approximation 

is 

¢11 ¢12 ¢13 

= ¢21 ¢22 ¢23 

0 0 1 

where the¢ .. are given in Appendix A by the approximate formulae 
1J 

depending on~. Note that only the first two rows of the~ matrix are 

used to propagate the states, and the third row says that the input, x3 , 

is constant over each time step. 

The elements of the ~(~t) matrix are constant throughout the solu-

tion. Even though the formulae for these elements may be lengthy, the 

time required to calculate them is negligible since they are calculated 
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only once, at the beginning of the .solution. 

The results above.express the step transition matrix propagation 

formula for any second-order subsystem, since all such subsystems can be 

expressed in the form of Figure 7. 

A Computer Program for Impl¢mentation on 

General Linear Subsystems 

Even for a second-order subsystem, the work involved in obtaining 

the elements of the <I>(M) matrix fo.r the simple step input approximation 

is time co~suming. More.complex input approximations require even more 

work. Fortunately, Melsa (7) presents a computer program called "RTRESP" 

which computes the _time response in closed-form of the general clo~ed-

loop.system, 

X(t) = AX(t) + bu(t) 

u(t) = K[r(t) - kTX(t)] 

corresponding to Figure 8. In Figure 8, u(t) is a scalar input, r(t) is 

a scalar reference input, k is a vector feedback coefficient, I is the_ 

th d 'd ' ' C ' 1 d () ' h n -or er 1 entity matrix, 1s an n x output vector, an y t is t e 

scalar output, A computer program is p~esented for finding the closed-

form time response for this system, given some analytical input function 

whose Laplace transform is a rational function of the Laplace variable S 

with a pole-zero excElss of at least one. This program can be utilized 

effectively in conjunction with the transition matrix method, since it, 

forms the augmented system and finds the _transition matrix. 



u(t) 

K 

B + 

+ 

.. . 
._x-.--i .!. 1 ~ ... x~ s 

A 

CT 1------1--y(t) 

Figure 8. A Linear Closed-Loop System 

Sebesta (8) includes a program called "RTRES", a modification of 
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11 RTRESP 11 which will generate the step transition matrix cI>(t.t) for such a 

system. This transition matri.x can then be used to propagate the solu-

tion. A. restriction on the use of "RTRES" is that the augmented system 

may not have repeated eigenvalues. 

Interfacing the Transition Matrix Method With a 

Conventional Technique 

The transition matrix approach is intended to be used to propagate 

the solution of stiff linear subsystems within an overall model. The 

-remainder of the system is simulated with a conventional method. Figure 

9 shows a flow chart of the interfacing of the two methods. A more. 

specific procedure for interfacing the step transition matrix solution of 

stiff linear subsystems with a Runge-Kutta fourth-order solution for the 

remainder of the system is shown in Figure 10. Note that the solutions 

of the stiff linear subsystems are advanced twice per Runge-Kutta step. 

This specific procedure is used to solve an example problem in Chapter V. 



INITIALIZE 
VARIABLES 
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SOLVE 
ALGEBRAIC 
EQUATIONS 
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ADVANCE SOLUTIONS 

OF STIFF LINEAR 
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ADVANCE OTHER STATES 
WITH A CONVENTIONAL 

NUMERICAL METHOD 
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Figure 9. Interfacing the 
Transition Matrix 
With a Conven
tional Method 
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ADVANCE STIFF 
LINEAR SUBSYSTEM 
SOLUTIONS TO t+ .dt 

ADVANCE STIFF LINEAR 
XAi l t +~l= I Ai \~) x Al (t) SUBSYSTEM SOLUTIONS -----------.-.! TO t + ..:1 t/2 

..:1Yii = (DY); hi 

YES 

h, =..:1 t/2 

h2=.d t/2 _______ ... h3=.d t 

Y;=YU;+ .dY;i 

t = tU-tihi 

CALCULATE 
TRIAL STATES 

CALCULATE DERIVATIVES 
AT TRIAL STATES 

UPDATE NON-STATE SIGNALS 

COMPUTE STATE DERIVATIVES 

ADVANCE 
RK-4 
SOLUTIONS 

STORE STATES 
(CORRECT FOR LIMITS) 

Figure 10. Flow Chart for Interfacing Transition Matrix 
Method With RK-4 
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CHAPTER V 

EVALUATING THE METHOD 

This chapter first presents an analytical expression for the error 

incurred propagating the solutions of the stiff linear subsystems, Then 

the results of .an extensive computer study of the performance of the 

transition matrix method on first and second-order linear subsystems are 

reported. Comparison is made with the performance of a fourth-order 

Runge-Kutta algorithm for accuracy and computation time. The results of 

this computer study are then used to formulate a general procedure for 

applying the transition matrix approach to systems of the type shown in 

Figures 1 and 2 of Chapter I, having stiff linear subsystems of any 

order. Finally an example problem is considered to demonstrate the 

application of the procedure, and the results are discussed, 

Several factors affect the results of any machine computation, They 

are considered in Appendix B. Because these factors influence the re

sults of a.computer study of any numerical method, analytical .predictions 

for the performance of a numerical method are desirable, They provide a 

baseline for evaluating the method which is not dependent on these highly 

variable conditions. To this end, the next section derives an error 

expression for the transition matrix method applied to linear subsystems, 
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Analytical Subsystem Analysis 

Consider again the linear, time-invariant subsystem 

. 
X = A X + B U 

for which the exact solution after the first time step is 

tl 
= X(t0) ~C~t) + f ~Ct1 - T) BU(,) dT 

to 

U(t) is the exact, continuous input vector. Denote the analytical 

* approximation to that input vector over the first time step as u1 (t), 

The analytical approximation to the input over the ith time step is de-

* noted U. (t). The approximate state after the first time step is 
l 

* 

tl 
= X(t0) ~(~t) + f 

to 
* ~(tl - T) B Ul(T) dT 

where X denotes the approximate solution. Denote the additional error 

d . , h . h .th . E( ) Th ue to approximating t e input overt e 1 time step as t, , e 
l 

error after the first time step is obtained as 

tl tl 
* 
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- j ~(tl - T) B U(T) dT - j 
to to 

~(tl - T) B Ul(,) d,, 

* Note that this error is due only to approximating the input as u1 , The 

exact solution after the second time step is 

t2 
= ~(~t) X(t1) + f ~(t2 - T) BU(,) dT 

tl 

and the approximate solution is 



Denote the total error at time t. as 
1. 

After the second time step, 
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* i(t2 - T) B U2(T) dT 

Note that at the end of the first time step, E and ET are the same since 

both the exact and the approximate solutions start from the same initial 

condition, However, for every point in time after t 1 , it is important to 

distinguish between_E(ti)' the additional error incurred by approximating 

the input over the ith step, and ET(ti)' the total error at ti composed 

of both E(t.) and the error propagated by the inexact previous state, 
1. 

* X (ti_ 1), The situation is depicted in Figure 11, 

A general expression for the additional error introduced by approxi-

. h . d . h . th . mating t e input ur1ng t e 1 step 1s 

E (t.) 
1. 

t. 
1 

= J 
t. l 1-

(11) 

Carrying the solution one step further in order to generalize, the error 



An . f h 1 h .th . . expression or t e tota error at t e 1 time 1s 

i 
ET(t.) = l ~[(i - k)dt] E(tk) 

l k=l 

38 

.. (12) 

Equations (11) and (12) together give a method for calculating the error 

· at ti for the transition matrix approximate solution, for any vector in

* put U(t), and any series of vector analytical input approximations Uk(t), 

k=l,2, ... ,i. 

x (t) 

SOLUTION 

ET ·(t1 ) = E(t1) 

-t t--6t L---.;._.;._ ___ ...._ _________ t 

0 1 2 3 4 
~ 

INTERVAL NUMBER- 1 2 3 4 

i 
.._; 

Figure 11. Analytical Error Notation 
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Equations (11) and (12) describe a recursive procedure for finding 

the error at t., since the error at t. depends on the error at each pre-
i i 

vious value of time, More specific error expressions could be derived by 

restricting the input approximation to a certain type, such as a step 

approximation, However, a recursive evaluation procedure would still be 

necessary. Thus, as a practical matter of evaluating the error, it is 

better to simply propagate the subsystem solution by the transition 

matrix method and compare with an exact solution, if available. However, 

Equations (11) and (12) do lend some insight into the sources of error 

for the transition matrix simulation of a linear subsystem. 

Examination of Equations (ll} and (12) reveals the following facts, 

1. The error at time t. is a function of the following factors: 
i 

A, the time step lt; 

B. the input U(t) and B; 

* C. the input approximation U. (t); and 
i 

D. the subsystem itself, since ~(lit) is determined from the 

subsystem A matrix. 

2, The total error ET(t1) is composed of two parts: 

A h EC ) d h .th . " h . , t e error t. ue tote i approximation tote input; 
i 

B. the propagation of the previous errors E(tk)' k=l,2, ... ,i-1, 

through multiplication by the transition matrix. 

These observations~ although useful from the standpoint of under-

standing the sources of error for the method, do not give specific infor-

mation about how accurate the method is, or when it is preferable to a 

conventional method. To obtain this more useful information, extensive 

computer studies of the method, as implemented in Chapter IV for first 

and second-order subsystems, were conducted. These are reported in the 
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next section. 

Computer Subsystem Error Study 

Chapter IV presented the implementation of the step transition 

matrix method for first and second~order subsystemsi In the computer 

study of the method, these subystems were subjected to the scalar input 

function 

u(t) = cos(wt) (13) 

This input function was chosen because the exact, analytical solution for 

both subsystems is easily obtained for thts input, the input frequency w 

can be easily varied, and for w = O, u(t) is a unit_step input, 

For the first-order subsystem with this input, the exact solution is 

t 
1 - T 

y(t) = ~~~~ {-e + cos wt+ Tw sin wt} 
1 + w2T2 

Initial conditions of zero were used throughout the investigations, ex-

cept for the input, which has an initial condition of l, 

The exact solution for the _second-order subsystem with a cosine in-

put is easily obtained for three cases: an underdamped system 

(0 ~ s < 1), a critically damped system Cs= 1), and an overdamped system 

Cs> 1). These solutions are given in Appendix C. 

The step transition matrix method was programmed in double precision 

on.the IBM 360 Model 65 computer to simulate general first and second-

order subsystems according to th~ propagation formulae given in Chapter 

IV, and using input Equation (13), The approximate solutions obtained 

were compared with the analytical solutions to determine the error, 

Comparison was also made with solutions obtained independently using the 
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fourth-order Runge-Kutta numerical integration algorithm. 

The coding used to program these solutions is shown in Appendix D. 

These programs were written strictly as research tools, and the documen

tation is provided only to show the exact manner in which the error 

values were obtained, As discussed in Appendix B, the exact cqding used 

to program a probl~m can often affect the results. 

Of several possible error measures, average normalized per-cent 

errqr was chosen, because it combines relative-error and absolute-error 

information. Details on error measurement are given in Appendix E. In 

the remainder of the study, "error" should be understood as average 

normalized per-cent error unless stated otherwise. 

A series of simulation runs were made to examine the performance of 

the step transition matrix method on first and second~order subsystems 

under a variety of conditions. An input amplitude of 1.0 was used 

throughout the tests, and a tim~ interval of one second was simulated 

each run, starting at t = 0, The test results will be presented in a 

series of graphs. 

Figure 12 shows error versus time step for the first-order subsystem 

for an input frequen~y of 6.28 rad/sec, and a subsystem time constant of 

LO, The error for three methods is shown: the step transition matrix, 

the ramp transition matrix, and Runge-Kutta fourth order, This graph 

shows that error increases with time step for all three methods, Note 

that for the step transition matrix method, halving the step size halves 

the error, In fact, for this input frequency and time constant, the 

error can be expressed as 

Error= (350)(6t) 
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This indicates that when all other factors are held c9nstant, the error 

is directly proportional to the time step, For the ramp method, the 

error is directly proportional to the square of the time step, as 

2 
Error= (280)(6t) 
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These two observations seem to indicate that, other factors being the 

same, the error for the transition matrix method, with an nth_order input 

approximation, is given by 

Error= k(M)n+l 

where k is a constant determined by other factors. As expected, the RK-4 

method exhibits error proportional to the fourth power of the time step. 

For these conditions, that error is approximately given by 

Error= (50) (6t) 4 

For this low-frequency subsystem, the RK-4 method has clearly superior 

accuracy, As expected, the ramp method has considerably better accuracy 

than the step method since the ramp is a first-order input approximation 

while the step is a zero-order approximation. Figure 13 shows a corres

ponding graph for the second-order subsystem. The comments for Figure 12 

apply here also. Inspection of the graph reveals that for the step 

method, 

Error= (820)(6t), 

for the ramp method, 

Error= (340)(6t) 2, 
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and for the RK-4 method, 

Error= (85)(~t) 4 , 

for these conditions. 

Figure 14 shows error plotted against input frequency for a first-

order subsystem with a time step ~t = 0.01 seconds. The grap~ shows that 

error increases with input frequency for all thr~e methods. Close. 

inspection reveals that the error for both step and ramp approximations 

is proportional to the square of the input frequency, for input fre-

quencies less than 2.0 rad/sec for the step method. and 10.0 rad/sec for 

the ramp method. The approximations.are: for the step method, 

Error= 0.1 2 
w J 

and for the ramp method, 

Error= 4.5 X 10-4 w2 

The error for the RK-4 method is proportional to the input frequency to a 

power between 3 and 4 for these conditions. Figure 15 is a corresponding 

plot for a.second-order subsystem. It also shows.that for low fre-

quencies, the error for the transition matrix method is roughly porpQr-

tional to the square of the input frequency. The RK-4 method exhibits 

more complex .behavior. By the observations made from Figures 12 through 

15, it appears that the error for the transition matrix could be approxi-

mated as 

Error= k(~t)n+l 2 
w J 

for low input frequencies. This approximation will be checked against 
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subsequent results. 

Figure 16 shows error plotted against the inverse of the system time 

constant for first-order subsystems. It is more.convenient to use 1/T 

than T since the value of 1/T is indicative of t~e subsystem's stiffness. 

That is, the larger the value of 1/T, the smaller.the subsystem time 

constant T and the stiffer the .subsystem. The value of w was picke4 as 

21r, and error lines are shown for four time steps. First, notice that 

the error for the transition matrix method is not strongly affected by 

the stiffness of the subsystem. This seems reasonable since the transi

tion matrix method is analytical, and owes its error to the .input approx-. 

imation rather than the subsystem's response. In contrast, the Runge

Kutta method is shown to be strongly a funct~on of the subsystem tim~ 

constant, the error increasing sharply as the stiffness increases. This 

also seems reasonable because for stiff subsystems, the response contains 

high-frequency transients, which the RK-4 must follow to remain accurate. 

If the subsystem is stiff .enough, the response frequencie~ become too 

high for the time step used, and the solution becomes unstable. For the 

time steps used in Figure 16, the RK-4 method becomes unstable for 1/T in 

the range 250 to 2000. The transition matrix is clearly more accurate 

for very stiff subsystems. The ramp transition matrix shows error values 

about two orders of magnitude lower than the step transition matrix 

method. The RK-4 method again shows.much better accuracy for non-stiff 

subsystems. 

Figure 17 corresponds to Figure 16, except for second-order subsys

tems. It shows error versus damping ratio for several values of natural 

frequency. The damping ratio~ and natural frequency wn determine the 

eigenvalues, and thus, the stiffness of the subsystem. In general, 
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stiffness increases with both~ and w. This graph again clearly shows n 
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the accuracy of the transition matrix method relatively unaffected by the 

subsystem stiffness, since the error is not strongly a function of~ or 

w o And again, the RK-4 method's error increas~s sharply with the sub
n 

system stiffness, being strongly a function of both ~'. 'and w , increasing 
n 

with each. The exception to this is that for underdamped subsystems, the 

error increases with decreasing damping ratio, since the response becomes 

more oscillatory, and harder to follow. 

Figure 18 is the first of several plots designed to provide guide-

lines for the use of the step transition matrix method. It shows lines 

of constant error plotted on a graph of time step versus input frequency. 

T = 1.0 was chosen arbitrarily for this graph. As has been seen, very 

similar results would obtain for other values of T. Error is a parameter 

on the graph. The lines shown are sets of values for input frequency and 

time step for which the step transition matrix has constant error. Lines 

are shown for several error values. To show how these lines.can be used, 

pick any point on the 10% error line. Decreasing either the input fre-

quency or the time step decreases the error, so any point on the graph 

left of the 10% line has error less than 10%. Any point right of the 10% 

line has more than 10% error, and any point between the 3% and 10% lines 

has error between 3% and 10%. This graph can be used, then, as a guide 

for selecting the time step. If a first-order subsystem is being simu-

lated, and the input frequency is 1.0 rad/sec, Figure 18 dictates that a 

step size less than 0.075 seconds be used if 1% accuracy is .desired. The 

graph indicates that as the input frequency decreases the .allowable step 

size to achieve a given accuracy increases. It also provides a means of 

checking the hypothesis, stated earlier, that the error for the step 
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transition matrix method can be approximated as 

Error 2 = k(t.t) w 

Picking an input frequency of.1.0 rad/sec, and observing the time steps 

required to give specific error values, it can be confirmed that 

Error· 13(~t) w2 

is a reasonable approximation for the error for a first-order subsystem 

53 

for input frequencies less than 3.0 rad/sec. For higher frequencies, the 

approximation becomes worse, predicting error values that are too high. 

Figure 19 is the second~order subsystem equivalent of Figure 18. On 

this graph, two lines of constant error, 1% and 10%, are shown for the 

RK-4 method; here, ~ and w were arbitrarily picked as 10 and 100, n 
respectively. This constitutes a stiff subsystem, and notice how small 

the area is beneath the RK-4 line. For 1?nY time step above 0.0014, the 

RK-4 method has over 10% error for any input frequency. This graph can 

be used in the same manner.described for Figure 18. From Figure 19, the 

error for the step transition matrix method applied to a second-order 

subsystem can.be approximated as 

Error· 23.8(t.t) w2 

for input frequencies less than 2.0 rad/sec. For higher input frequen-

cies, this approximation becomes inaccurate, predicting errors that are 

too high. 

Figure 20 deals with the first-order subsystem, and is an accuracy 

comparison between the step transition m~trix method and the RK-4 method. 

Time step is plotted against 1/T with input frequency a parameter. Each. 
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point on a particular line is a set of conditions for which the twb 

methods have the same error. If a point is picked on one of the lines, 

say w = 0.10, increasing 1/T causes the RK-4 method to have greater error 

than the transition matrix method. Increasing the time step has the same 

result. Thus for a given input frequency, points above the line corres-

ponding to that input frequency result in the transition matrix having 

lower error. For points below the line, the RK-4 method is more accurate, 

Therefore, Figure 20 provides a quick method of determining which method 

is more accurate for a given situation. For instance, if the time step 

is 0.01, and 1/T = 10.0, and w = 0.10, the RK-4 method is more accurate 

because the point corresponding to the given ~t and 1/T falls below the 

w = 0.1 line. Two dashed lines of constant error are drawn on.the graph 

to provide an idea of the errors involved. All points beneath the 1% 

line have error less than 1%. Observe that decreasing the input frequency 

moves the lines of equal error toward the origin. This means lowering 

the input frequency decreases the error of the transition matrix method 

relative to the error of the RK-4 method. Note also that as 1/T in-

creases, the time step required by the RK-4 method to achieve equal 

accuracy decreases, Therefore it can be concluded that both lowering the 

input frequency and increasing 1/T increase the relative desirability of 

the transition matrix method, 

Figure 21 is the second-order equivalent to Figure 20, Here, the 

time step is picked as 0,01, and w is plotted against~' with input 
n 

frequency a parameter, The same general comments made abbut Figure 20 

apply here also, For each input frequency, RK-4 is more accurate.for 

points below the line corresponding to that input frequency, and the 

transition matrix method is more accurate for points above the line, 
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Figures 22 and 23 are perhaps the most significant plots, since they 

are lines of equal cost. Figure 22 plots.input frequency versus 1/T. 

Each point on the line represents a condition where the cost.required to 

achieve 1% accuracy is the same for both RK-4, and the transition matrix. 

Starting at a point on the.line, increasing 1/T, or decreasing the input 

frequ~ncy causes the RK-4 method to require more computation time than 

tl).e transition matrix method to ac~ieve a 1% accuracy solution. Thus, 

for all.points below and to the right of the line, the transition matrix 

is less expensive, and for all points above and to the left of the line, 

the Runge-Kutta method is less.expensive, for 1% error or less. Note 

that decreasing the input frequency, or incre~sing 1/T increases the 

desirability of the transition matrix method .. 

Figure 23 is the equal-cost plot for the second-order subsystem. 

Lines are shown for t~o input frequencies. wn is plotted versus, with 

input frequency a parameter. Again, this plot indicates that lower input 

frequencies and stiffer subsystems favor the transition matrix method. 

For all points above the lines, the transition matrix is less expensive. 

For all points below the lines, the Runge-Kutta method is less expensive. 

Both lines are fo~ 1% error~ 

The computation costs for determining Figures 22 and 23 were deter

mined by counting the .number of calculations done per iteration_ by each 

method. More details on computation time estimation are given in 

Appendix F. 
• 

The last two graphs of the computer study, Figures 24 and 25, pre

sent the .number of time steps per input cycle required to achieve a given 

accuracy versus input frequency. These graphs are for the transitiQn 

matrix method only. Figures 24 and 25 shqw lines fer 1% and 10% error 
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for first and second-order subsystems, respectively. The two figures are 

• remarkably similar. Note that the number of steps per cycle needed in

creases with input frequency up to a point, then levels off. For the 

first-order subsystem, a maximum of 390 steps per cycle is needed to 

achieve 1% accuracy, at w = 4.0 rad/sec. For the second-order subsystem, 

the known maximum occurs at 330 steps/cycle at w = 19 rad/sec. Again, 

these two graphs emphasize that increasing the input frequency degrades 

the performance of the step transition matrix method .. 

An analysis of the computations involved for the transition matrix 

and Runge-Kutta methods, for which detail.s are presented in Appendix. F, 

results in the following computation time estimates: for the same time 

step, 

A. first-order system--step transition matrix 32% of RK-4; 

B. second-order system--step transition matrix 22% of RK-4. 

So it can be seen that for the·same time step, the step transit:ion matrix 

offers a considerable reduction in computation time. 

The primary factors affecting the accuracy of the transition matrix 

simulation of linear subsystems are the input frequency and the step 

size. Results indicate the error can be approximated by 

Error= k(~t)n+l w2 (14) 

where n is the order of the input approximation used, and k is a constanL 

For the step transition matrix method, the constant k is approximately 

k = 13 for first-order subsystems, 

k = 23,8 for second-order subsystems 

So an approximate rule for selecting the step size may be obtained by 
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solving Equation (14) for 8t, For the step method, _ 

__ maximum allowable error (%) 8t 
13w2 

w < 3 (15) 

for first-order subsystems, and 

__ maximum allowable error(%) 
8t 

23.8 w2 
w < 2 (16) 

for second-order subsystems. These equations are rather conservative for 

w larger than-the specified bounds. For w > 3, Figures 24 and 25 may be 

used for step size se~ection. 

The,accuracy of the transition matrix _method is.relatively -unaf-

fected by t~e subsystem being simulated. For a first-order subsystem, 

this is equivalent.to saying the accuracy is not strongly a function of 

the system time constant. For a second-order subsystem, the accura~y is 

not strongly a function of the natural frequency or the damping ratio, 

For a genera_l linear time-invariant subsystem, the accuracy is not 

strongly a function of the pole locations of the subsystem, 

In general, the transition matrix method is most appropriate when 

the dominant input frequency to the _subsystem is low relative to the sub-

system response frequencies, It is very difficult, however, to identify 

any quick "rules of thumb" to say when the transition matrix should be 

used, and when not, For instance, consider Figure 23. For w = 1,0, 

when~ver wn is larger than 6.0, the transition matrix is less expensive, 

So postulate that when the input frequency is less than 1/6 of the 

natural frequency, the transition matrix m_ethoq is better, But; for 

w = 6,28, the ratio is.6.28/150, which is considerably different, -

Several "stiffness numbers" were defined to see if correlations 

could be made with the suitability of the method. For instance, the 
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ratio of the largest to the smallest eigenvalue, or the distance between 

the poles are possible stiffness numbers. None of these numbers were 

found to be independent parameters which could be used to predict when 

the method should be used in preference to a conventional method. 

The transition matrix method is very stable, as would be expected 

since it is an analytical method. · Te~ts indicate that the error for the 

method stabilizes after about 1 input cyc+e. 

The next se~tion presents a general procedure for applying the 

transition matrix approach in a complex simulation .. 

A General Procedure for Applying the Method 

The results of the preceding subsystem error study would be of 

limited usefulness if they could not be applied to third. or higher-order 

subsystems. This section presents a procedure for generalizing the 

results based on the dominant poles of the subsystem. 

In a linear system, the low-frequency poles are called dominant, 

since they determine the system behavior. The high-frequency poles have 

only small effect. However, the high-frequency poles often may dictate 

the choice of solution method because of the adverse effect they have on 

the efficiency of cqnventional methods. These facts suggest a general. 

procedure for applying the transition matrix approach. Starting with .the 

basic physical.system under study, 

1. Model the system. 

2. Separate the linear subsystems occurring in the model. 

3. For each 1:i,..near subsystem, estimate the input frequency. Con

sidering the dominant poles of tl).e subsystem, consult the 

result~ of the previous sections to determine whether the 
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transition matrix or a conventional method is more appropriate. 

If the results indicate the transition matrix is better suited, 

use it to simulate the subsystem without further consideration. 

If the results indicate the RK-4 method is more appropriate, 

consider the high frequency poles as dominant, and again con-

sult the results. If the results here say the RK-4 method is 

still better, use it; otherwise use the transition matrix. 

4. If possible, group together those subsystems for which the 

transition matrix is better, and those for which RK-4 is better. 

For instance, a subsystem such as shown in Figure 26 could be 

divided into two blocks as in Figure 27. In this case, it might 

be advantageous to use RK-4 to simulate block A, and the transi-

tion matrix to simulate block B. 

u ·I 1 
~ 

S(S + 1000) 
y 

Figure 26. Block Diagram Example 

_u __ ._...,.ITJ • ls.ioo~ ... y 

A B 

Figure 27. An Equivalent Block Diagram 
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5. Interface the RK-4 and the transition matrix solutions as shown 

in Chapter IV, and simulate the system, choosing the step size 

based on the linear subsystem with the highest dominant input 

frequency. 

6. Run the solution again with a smaller step size and compare with 

the previous solution. If the two res~lts agree within accept-

able error, use the previous step .size. If not, continue re-

ducing the step size until the results of two consecutive runs 

are in acceptable agreement. 

The next section demonstrates the application of this procedure on 

an exa,rople problem. 

Example Problem 

• Consider the complex ,dynamic system shown in Figure 2$. Steps 1 and 

2 of the procedure just outlined have already been done.since the system 

has been modeled, and a block diagram has been drawn showing the linear 

subsystems. 

Step 3 requires estimating the input frequency of each linear block, 

By neglecting the nonlinearities and plotting the open-loop frequency 

response between the input and point z, the overall loop frequency for 

this system is found to be approximately 280 rad/sec, Note, however, 

that the linear blocks within the dashed box would experience.much higher 

input frequencies, because the inputs are the responses of high-frequency 

blocks,_ It is desirable to.form the augmented system for the entire 

closed loop.linear subsystem C in order to avoid simulating the internal 

blocks with their high-frequency. inputs, This is. easily accomplished 

using the program RTRES, mentioned in Chapter IV. 
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Consider first the linear subsystem A. It .is a first-order system. 

with 1/T = 1667. The time constant is 

16!7 ~ 0.0006 seconds 

The RK-4 method would require .a step size from 6 x 10-5 seconds to 

6 x 10-6 seconds. Consulting Figure 24, the .number of steps per input 

cycle needed to achieve 1% error with the transition matrix method is 

estimated at 350. Assuming an input frequency of .280 r~d/sec, tl).is cor

r~sponds to a time step of 6.4 x 10-5 seconds. Since this is above.the 

upper limit of the possible RK-4 time steps, it is better to use the 

transition. matrix method for this block, especially since it requires 

less computation than RK-4 for the same time step. 

Now consider linear subsystem B. The pole-zero configurat~on for 

this-subsystem is shown in Figure 29. It is seen that the dominant poles 

are high-frequency oscillatory poles with~= 0.70 and w = 3768. The 
n 

time constant associated with thes.e poles is 

1 --26..,...3.,.,.,7,.... . .,.,..5 • 0. 00038 seconds 

-5 -6 which would result in a Runge-Kutta step from 4 x 10 to 4 x 10 

seconds. Consulting Figure 25, it is seen.that.the step size needed to 

simulate this block with the transition matrix approach is again 

-5 6.4 x 10 seconds, Thus the transition matrix is more appropriate than 

RK-4 for this block also. 

Linear subsystem C contains time cc;mstants as small as 1/ 4800 

seconds, so the transition matrix method should be used here, also. This 

subsystem was handled in two pieces. The program RTRES was used to 

generate the transition matrix for the closed loop system, and the first 
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order block was solved directly in the coding. 

With this high overall loop frequ~ncy, the RK-4 method should be 

used to simulate the remainder of the system, .which consists of low-

frequency linear blocks.and nonlinearities. 

To demonstrate the inefficiency of a conventional simulation of this 

system, the problem was first coded using the RK-4 method to simulate the 

entire system. Using an i~put frequency of 1 rad/sec, this approach re

quired a time step of 1 x 10-8 seconds to avoid an unstable solution, 

The system was then simulated using the step transition matrix to 

propagate the solutions,of the stiff linear subsystems A, Band C. Their 

solutions were interfaced with the RK-4 solution of the remainder of the. 

system as shown in Figure 10, Chapter IV. Using this combination, a time 

step of 0.001 seconds gave less than 2.0% error for an input frequency 

w = 1.0 rad/sec. This represents an increase of 5 orders of magnitude in 

the step size. 

Discussion of Results 

The example problem just considered is the type of system for which. 

the transition matrix method is extremely well suited. Basically a non-

linear system, it contains many linear subsystems, some of which are 

stiff. It also contains nonlinearities which can cause abrupt.changes in 

the inputs to the stiff parts of the system, exciting the .transient 

responses. The use of the transition matrix method to simulate these 

stiff subsystems can affect a considerable savings in computation time, 

as noted above, Note that the linear subsystems A, Band C have domi~ant 

input frequencies that are low relative to the subsystem transient fre

quencies, It is important to .choose the time step for each linear 
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subsystem according to the dominant input frequency. In a system such as 

Figure 28, t4e subsystem inputs will contain high frequency transients. 

If the time step for the subsystem solution.is chosen to follow these 

transients, there would be.no advantage to the method. By choosing a 

step size based on the .dominant input frequency, the sampling of the 

input acts to filter the high frequency transients from the. subsystem 

input. 

In this sense, the transition matrix methoq act~ to reduce the ~d

verse effect of high-frequency components on the simulati.on efficiency, 

while leaving these components in the model. The effects of the high

frequency components can be included or exclude4 as the step size is 

decreased or increased, respectively. This feature of the method sug

~ests its use as a tool for simplifying a complex model, since the effect 

on the overall system performance of leaving out certain high-frequency 

components can be easily studied. 

It is important that the high-frequency blocks and the low-frequency 

blocks be grouped together whenever possible. Low-frequency blocks 

should not be propagated by the transition matrix since higher accuracy 

can be achieved using conventional methods. 

In some cases, the stiffness of the system may be due to nonlinear 

differential equations, If a very small step size is necessitated, it 

may be more economical to use the transition matrix for all of the linear 

blocks, since for the same time step, it requires less computation than 

RK-4. 

In general, more.efficient simulation can be achieved when·the 

method and the step size are chosen to suit the particular part of the 

system being simulated. However, such an approach would be extremely 
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problem dependent, and would require ·careful implementation. 

The general procedure outlined above is intended only as a guide for 

the application of the method. Since it is impossible to consider all 

the special cases that could arise, engineering judgment should be 

applied to each problem to obtain an efficient implementation of the 

method. 



CHAPTER VI· 

CONCLUSIONS AND RECOMMENDATIONS 

A method for simulating stiff dynamic systems .has been evaluated, 

and a general procedure for using the method has been presented. The 

method is well suited for systems having stiff linear subsystems whose 

transients are high frequency relative to the dominant input frequency 

for the subsystem. In such cases, step size increases of two orders of 

magnitude or more are possible over conventional methods. 

The computer studies and example problem show the transition matrix 

approach to be. a viable and relatively simple technique .. Considering the 

number of simulations in which stiff linear subsystems arise, this method 

should find wide application. 

Recommendations for Further Study 

The following areas merit further investigation. 

1. The transition matrix method concentrated on in this study 

utilized a zero-order input approximation. Preliminary results indicate 

a ramp input approximation gives much improved accuracy for a small in

crease in computation time (see Appendix F}. The program RTRES, men

tioned in Chapter IV, should be modified to handle repeated eigenvalues 

in the augmented system. This would permit the easy implementa1;:ion of 

more sophisticated input approximations for the method. These approxima

tions could then be studied for accuracy and computation time. 

74 
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2. Various.methods for computing the transition matrix for the aug

mented system should be investigated. The accuracy of this matrix is 

critical to the accuracy of the method. 

3. The accuracy of the method studied here was much lower than RK-4 

for non-stiff subsystems. A higher-order transition matrix method might 

be developed which would have accuracy superior to numerical methods for 

any linear subsystem, stiff or not. This method could then be used to 

simulate all linear subsystems in a simulation. It is felt that decreased 

computation time would also result from using such a method. 

4, The system-size limitations for the method should be investi

gated. The method as presented here is aimed at relatively low-order 

subsystems. The maximum-order subsystem that this method will handle is 

probably dependent on how large the augmented matrix can be without 

causing difficulties in finding the~ ~atrix. This may also be a limita

tion on using higher-order input approximations, since the size of the 

augmented system increases as the order of the input approximation 

increases. 

5, Higher-order input approximations might make the method tend 

toward instability for certain inputs. This area could be investigated, 

6. The use of the method as a tool for simplifying mathematical 

models, as discussed in Chapter V, should be studied further, 
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APPENDIX A 

ELEMENTS OF ~(~t) FOR A SECOND-ORDER SYSTEM 

77 



Case I. 0 ~ ~ < 1 (underdamped system) 

~11 = 

1 -~w lit 
~12 = e n 

wG 
sin(w a At) 

n 

n 

~21 

-w -~w lit ;----::; 
= n. e · n sin(w I 1-~2 lit) a n 

~22 = 
1 -~w lit ,r---:r 

- e n s:i,.n(w I 1-~w 6t - ~) a n 

~23 = 
w -~w lit ;-----, 
n e n sin(w I 1-~2 lit) a n 

-1 CQ) ~=tan ~ 

Case II. ~ = 1 (critically-damped system) 

-w lit 
~11 = e n 

~12 

-w lit 
=lite n 

~13 

-w lit n . 
= 1 - e (1 + w lit) 

n 

-w lit 
~21 = -w~llt e n 
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-w tit 
~ = e n 

22 

Case III. ~ > 1 (overdamped system) 

~ =.!.[1-11 2 

1 [- (~-/Ti)w tit -(~+~)w flt] 
~12 = ---.- e n - e n 

2w /Ti 
n 

w [-(~-/Ti)w tit -(~+/Ti)w tit] _ n . e n _ e n 
~· 

21 ~--1 
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For each case, 

cl>31 = O 

cl>32 = O 

cl>33 = l 
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APPENDIX B 

FACTORS AFFECTING THE RESULTS OF 

MACHINE COMPUTATIONS 
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In studying any numerical met.hod, two results are · of prime impor-
: ' •' 

tance: the accuracy of the results and the computation time. Both of· 

these performance measures are affected by the following factors: 

(a) the particular computer being used; 

(b) the word length; and 

(c) the particular coding used to program the problem. 

82 

Factor (a) often has a strong effect on both accuracy and run-time, since 

computers vary con$iderably in computation speed and word length •. Factor 

(b) determines the n~mber of digits the computer.can carry through a 

calculation, and therefore. affects the roundo~f error. Calcq.lati.ons, d~ne. 

on machines with long word lengths, and calculations done in double pre~ 

cision,. which doubles .the normal word length, have nn.1ch redu~ed roundoff 

error. Factor (~) often has a strong effect on the roundoff error in a 

calculation .. Subtraction of a number from a nearly equal numb~r, and 

addition of;two numbers of widely different magnitude are two ex~mpl~s of. 

calculations.which lead to large roundoff,errors due to the fi!lite .word 

length of the machine. Such c~Jculations are called "ill-conditioned". 

These probl~ms can often be made less severe by algebraic reijrrangement 

of the expression being evaluated .. For example, the expression 

1 - __ z; __ 

~ 

results in a large roundoff error when z; is large, since the term on the 

right approaches 1. An algebraic manipulation convert~ the expression to 

2 1-z; 

which avoids the subtraction of nearly equal numbers, and is more 
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accurate for large~. 

The computer investigations,in this study were done on an IBM 360 

model 65 computer. All calculations were done. in double. precision, whi.ch 

on this computer gives a 64 bit word length. Ill-conditioned ~~lcitl,~ ... 

tions, such a~ the example above, were avoided by algeb~aic rearrangement, 

when possible. 
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EXACT SOLUTION FOR SECOND-ORDER SYSTEM 
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Case I. 0 < s < 1 (underdamped) 

-A -swnt ~ 8 -swnt 
y(t) = --- e sin(w ,/ 1-1;~ t - ¢) + ---- e 
~ n w~ 

n 

+ C cos(wt) + Q sin(wt) 
w 

Case II. s = 1 (critically damped) 

85 

sin(w v9 t) 
n 

-wt -wt 
y(t) = Ae n (1 - wt) + Bte n + C cos(wt) + Q sin(wt) 

n w 

Case III, z; > 1 (overdamped) 

whe:re 

A 
+ -2 

B n n [
-w (l;-~)t -w (l,;+~)t] 

+---- e -e 

2w~ 
n 

B 

c 

D 

+ C cos(wt) + Q sin(wt) 
w 

5 
-nw n = 2 2 4 2 2 2 (w2 - w ) + s w w n n 

= -A 

2sw2w3 
n = 

(w2 2 2 2 2 2 - w ) + 4l; w w 
n n 
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L *** *** * *** *** ** ****** *** ******'********** ****** ********** **** ****** * 
(, * E~RCR EVALUATION PROGRAM FOR A GENERAL FIRST ORDER SYSTEM. * 
( *****. * * * ********* ******** **** **** **** ********** •• **** •• **** ••••••• 

*********•********************************************************* 
VARIABLE OEFINITIONS AND EXPLANATIONS * 

*** *** ... ******* ********* *** •••••••• *******l!II.* **** ********* *********** 
AMPL IS THE RMS AVERAGE OF THE RESPONSE AMPLITUDE. * 

C APESTP IS THE AVERAGE PERCENTAGE ERROR FOR THE STEP METHOD. * 
C APERMP IS THE AVERAGE PERCENTAGE ERROR FOR THE RAMP METHOD. * 
C * APERK4 IS THE AVERAGE PERCfNTAGE ERROR FQR THE RK-4 •ETHOO. 
C • OELT IS THE TIME STEP. 
C ERSTE? IS THE ABSOLUTE ERROR FOR THE STEP METHOD. * 

ERRAMP IS THE ABSOLUTE ERRD• FOR THE RAMP METHOD. * 
C • ERRK4 IS THE A6SllCUTE ERROR FOR THE RK-4 ~ETHOO. * 
C * EXACT IS THE EXACT SOLUTION. * 
C OMEGA IS THE INPUT FREQUENCY. * 
C PESTPN IS THE NORMALIZED PERCENTAGE ERROR FOR THE STEP METHOD. * 
C * PERMPN IS THE NORMAL! ZED PERCENT AGE ERROR FOR f HE RAMP ME THJO. * 
C • PER K4N IS THE NORMAL! ZED PERCENTAGE ERROR FOR THE RK-4 MET HOO. * 
C PESSTP IS THE SUM OF THE PERCENTAGE ERROR FOR THE STEP METHOD. * 
C PESRMP IS THE SUM OF THE PERCENTAGE ERROR FOR THE RAMP METHOD. * 
C PESRK4 IS THE SUM OF THE PERCENTAGE ERROR FOR THE RK-4 METHOD. * 
C P IS HE INPUT. 
C * RAMP IS THE RAMP TRANS! TION MATRIX SOLUTION. 
C * RK4 IS THE RUNGE-KUTT A FOUR TH ORDER SOLUTION. * 
C STfP IS THE STEP TRANSITION MATRIX SOLUTION. * 
C TIS THE SYSTEM TIME CONSTANT. * 
C T !ME IS CURRENT TIME. • 
C * TN! TER IS THE TOTAL NUMBER OF ITERATIONS. * 
c *** ********** ***************** •• ** **** ********** **** ••••••••••••••• 
C CALCULATION Of CONSTANTS USED 'IN ITERATIONS. * 

c- ** * * ** *. *** *** •• ** * ••••• ***** * •·•••• * ** ** •••• **** ******** ** •• ******* 
Tl=OMEGA*T 
T9='CELT/2.00 
T4l=Tl*Tl 
T42= ! .oo+T41 
T43=DSQRT IT42 I 
T44=l .DO/T42 
T47=-DELT /T 
T48 =OEXP IT4 71 
T7=T*T48 
T49=l.OO-T48 
T50=0ELT-T+T7 
T5l=-T47 
T52=T51/2.DO 
T53=1. DO-T51* 11, DO-T52* ll .DO-T52 I I 
T54=4.DU-T5l•l 2. DO-T52l 
T55=6. DJ-T5 l * 13. DO-T5 l*l l .DO-T 52/ 2 .DO l l 
T56=T51 t6. DO 
AMP=.7070-2/T43 
AMPL=. 7 07 00 /T43 

c **. * ** * * ** *** ~ ** * * *. * ••••• *** * **. * *. * * *. *** * * * ** * ***** ** •• * ** *** ** * 
C BEG IN ITERATION. * 

,:,:** * **. * * * * *** * * * * ••• **. ** •• ** ••••• *** ** ••• *** •• **. *** ** •••• ** *** •• 
2 TMl=TIME 

TIME= ITIME*DELT 
Tf\llTF.R=TNITER+l .DO 
R STOR =R 
R=DCOSIT141 
Tl4=0eEGA*T l~f 
T45=-TIME/T 

lST 0010 
!ST 0020 
lST 0030 
!ST 0040 
lST 0050 
lST 0060 
lST 0070 
lST 0080 
!ST 0090 
lST 0100 
lST 0110 
l ST 0120 
!ST 0130 
lST 0140 
!ST 0150 
!ST 0160 
lST 0170 
lST 0180 
!ST 0190 
!ST 0200 
lST 0210 
!ST 0220 
l ST 0230 
lST 0240 
lST 0250 
lST 0260 
lST 0270 
lST 0280 
lST 0290 
!ST 0300 
lST 0310 
I ST 0320 
lST 0330 
l ST 0340 
lST 0350 
lST 0360 
1 ST 0370 
lST 0380 
lST 0390 
lST 0400 
!ST 0410 
lST 0420 
lST 0430 
lST 0440 
1 ST 0450 
1 ST 0460 
lST 0470 
l ST 0480 
1 ST 0490 
lST 0500 
!ST 0510 
IS T 0520 
!ST 0530 
!ST 0540 
lST 0550 
lST 0560 
!ST 0570 
lST 0580 
lST 0590 
lST 0600 
lST 0610 

c 
c 
c 

c 
c 
c 

L 

c 

c 
c 
c 

T46=-DEXPIT451 
T4=0COSI Tl41 
T5-=CSINlTl4) 
T6=Tl*T5 

••***************************************************************** 
CALCULATE EXACT SDLUT ION. 

******************************************************************* 
f:XAC T= T 44*( T46+ T4+ T6 J 

******************************************************************* 
CALCULATE STEP TRANSITION MATRIX SULUTIO~. * 

························******************************************* 
STE ~.zT48•S T E.P+T49* RS TOR 

If.**** •• **-*** •••••••• ******* ••• ******* •••• *.*.* ••••••••• **** ••••••• 
• CALCULATE RAMP TRANSITION MATRIX SOLUTION. * 
******************************************************************* 

SLOPE=IR-RSTOR 1/0EL T 
R Afl'P=T4B *RAMP+-T 49 *K.S TOR +T 50 *SLOPE 

******************************************************************* 
* CALCULATE RutaGE-KUTTA FOURTH ORDER SOLUTI CN. 
******************************************************************* 

TEMPT!=TMl•T9 
Rl=~COSIOMEGA*TEMPTLJ 
!< K4 =RK4+- T56 * ( R+ T53* RS TU R+T 5 4 *Rl -T 55 *RK4) 

******************************************************************* 
* CALCULATE ERROR VALUES. * 
**** ****** **** •••• *** * ** •• **** •••• **** ***** ***** ** •••••••••••• **** * 

FR ST EP=OA8 SI EXACT- STEP I 
ESS TEP= ESS TEP +ERST EP 
PE S TPN•ER STEP/AMP 
PESSTP=PESSTP+PESTPN 
APESTP=PESSTPITNITER 
FR RAMP =DABS IE XAC T-RAMPI 
PERaPN=ERRAMP/AMP 
PE SRMP=PE SR.MP+ PE RMPN 
APERMP=PE SRMP /TN! TER 
ERRK4= CARS ( EX ACT-RK 41 
PERK4"-i=ERRK4/ A.MP 
PE S~K 4=Pf SRK 4+PERK4N 
AP EqK4= PES RK4ITN IT ER 
IF( TIME.GE. TFINALI GO TO 8 

8 CJNT INUE 
GOT02 

*** *** •••• **** •• ***** •.•• ** •••••••• ****** *** ** •••••••••••••••••••••• 
ENO ITERATION. * 

* * * •• *. * * ** •• * •• * * * *. * * * ** ••• * ** *** ••• * * * *. * * ••••••••••• **** * •• ***. 

!ST 0620 
lST 0630 
lST 0640 
lST 0650 
lST 0660 
lST 0670 
lST 0680 

·l ST 06QO 
lST 0700 
lST 0710 
!ST 0720 
lST 0730 
lST 0740 
!ST 0750 
1 ST 0760 
l ST 0770 
1 ST 0780 
lST 0790 
lST 0800 
lST 0810 
lST 0820 
lST 0830 
!ST 0840 
!ST 0850 
l ST 0860 
lST 0870 
lST 0880 
l ST 0890 
lST 0900 
lST 0910 
lST 0920 
lST 0930 
lST 0940 
lST 0950 
lST 0960 
lST 0970 
!ST 0980 
l ST 0990 
l ST 1000 
lST 1010 
lST 1020 
1ST 1030 
l ST 1040 
lST 1050 
lST 1060 



c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
( 

c 
c 

c 
c 
c 

-·**************************************************************** 
* cRROR EVALUATION PROGRAM FOR A GENERAL SECCND ORDER SYSTEM. * 

*** "'** ********* *** *** *** ** **** ******** ** ••• ** ***** * ***** ** *** ****** **************************************************************••••• * V,\~IAtll'= Dt:FINITIONS AND EXPLAN4Tt0NS. * 
*** .:;,:** ** ** ******# * *** * **** ********* *** ***** ******* ** ** ** *********** 

AMPL IS TH~ RMS AVERAGE OF THE RESPONSE AMPLlTJUE. * 
APESTP IS THE AVERAGE PERCENTAGE ERROR FOR THE STEP METHOD. * 
APEl{MP IS THE AVERAGE PfRCENTAGE EPROR FJR THE RM1P t.1ETHOD. 
APE~K4 IS THF AVE~AGE PERCFNTAGE ERROR FOR THF RK-4 METHOD. 
OELT IS THE TIME STEP. 
Ei<STEP !S THE ABSOLUTE ERROR FOR THE STEP ~ETHOO. 
ERRAMP !S THE ABSOLUTE ERROR FOR THE RAMP METHOO, 
0 RRK4 IS THE ABSOLUTE ERROR FOR THE RK-4 METHOD. 
i: XAC T I 5 Trlf EXACT SOLUTION. * 
OMEGA 15 THE INPUT FRE:JUENCY. • 
CME GAN IS THE NATURAL FREQUENCY, 
PESTPN !S THE NORMALIZED PERCENTAGE ERROR FOR THE STEP METHOD. • 
PERMPN IS THE NORMALilED PERCENTAGE ERROR fiJR THE RAMP METHOD. * 
PERK4N 15 THE NORMALIZED PERCE~TAGE ERROR FOR THE RK-4 METHOD,* 
PESSTP IS THE SUM Of THE PERCENTAGE ERROR FDR THE STEP METHOD, * 
PES~MP JS THE SUM OF THE PEfl.CE'HAG!:. ERROR FUR THf ~A._,P METl-iOD. * 

* PE:SKK.4 IS THE SUM OF THf PER.CE~TAGE ERROR FOR THC RK-4 METHOD. * 
* PHH.11, ETC.. ARE THE ELEMENTS Uf THE TRANSi TIO:\i MATRIX FOR THE* 

R~MP INPUT APPROXIMATION METt-OD. * 
PIS THE INPUT. * 
SAMPl ANO RAMP2 ARE THE TWO STATE VARIABLES USED BY THE RAMP * 

* INPUT APPROXIMATION METHOD. RAMP! !S THE SJLJT!O~. 
RK41 ANO RK42 ARE THE TWO STATE VARIABLES USED BY THE RK-4 * 

METrlOD, RK41 lS THE SOLUTION, * 
STE>l A~O STEP2 ARE THE TWO STATE VARIABLES FD?. THE STEP !~PUT * 

APPROXIMATION METHOD. STEP!° lS THE SOLUTION, * 
TIME !S CURRENT T !ME. 
T~l TER !S THE TOTAL NUMBER OF lTERAT!ONS, * 
ZET4 IS THE DAMPING RATIO, * 

** * *************** *** *** ** **** ***** *** ***** ** ***** **** ** ** ********* 
* CALCULATION OF CONSTANTS USED IN ITERATIONS. * 
• .;>RELIMINARY CALCULATIONS ARE DIVIDED INTO FOUR SETS, 

*** ***** *** *** **>:<**** * ** ** *"' ** **** ** ** ***'** ********* ** ** **** ****** * * ScT !, LIEflNED FOR ALL VALUES OF ZETA. * 
.. ** *** **** * *** ** ** *** ** * ** ******** ** ** ** ****** * ******,:,, ** ** ** * * **** * 

T2 =O~EGA• OMEGA 
T·1= DEL T / 2 .DO 
T6J= ZET A*O~ EGAN 
.T6l=T6C*DEL T 
T62=0EXP(·T6'!J 
T63 =l ET A*LET A 
H:i<t=( l.00-ZETAJ*(l.Ol)+ZETAt 
T~~= 1Jfl1EGAN*DEL T 
T95 =T94+ 1. 00 
T96=L.lEL T*T~2 
T9,=CMEGAN*OMEGAN 
r..:;'1=T98-T2 
T97= T(.)8*T96 
Tl02=T99*T94+4.DO*Tb3*T98*T2 
Tl 01 = Vi8* T99/ Tl J2 
T 10 != 2. DO*Z E TA*OMEGA * T98*0MEGAN/T 10 2 
TlD4=-2.0J*ZfTA*T98*T98/Tl02 
Tl2C=-.2.DO*T~O 
T 2iJJ.:: T62*T9 5 
T2JI.=l.DO-T200 

2,0 0010 
2 ND 0020 
2ND 0030 
2ND 004J 
2NO 0050 
2ND 0060 
2ND 0070 
2ND 0080 
2ND 0090 
2NO 0100 
2ND 0110 
2NO 0120 
2ND 0130 
2ND 0140 
2ND 0150 
2NO 0160 
2ND 01 70 
2ND 0!80 
2NO 0190 
2ND 0200 
2ND 0210 
2ND 0220 
2ND 0230 

· 2NO 0240 
2NO 0250 
lND 0260 
2 ND 0270 
2NO 0280 
2ND 0290 
2ND 0300 
2ND 0310 
2ND 0320 
2ND 0330 
2NO 0340 
2NO 0350 
2ND 0360 
2NO 0370 
2 ND 0380 
2ND 0390 
2 NO 0400 
2NO 0410 
2,0 0420 
2 NO 0430 
2ND 0440 
2ND 0450 
2 NO 0460 
2ND 0470 
2ND 0480 
2 ND 0490 
2ND 0500 
2ND 0510 
2NO 0520 
2,0 053 0 
2NO 0540 
2ND 0550 
2•0 0560 
2ND 0570 
2ND 0560 
2ND 0590 
2 NO 0600 
2NO 06[ 0 

T202=Tb2*(l.CO-T94l 
A~PL=Tq6/0$JRT(Tl02)*•7U7DO 
.,'1tJ=A . ..,PL/lJO.DO 
r< I z=.T A.GE ,1 ,ODO )GOTO 15 

*~*••••************************************************************ 
StT 11, DEF INE.O LINL Y FOR ZFH LESS THAN ONE. * 

¥****************************************************************** 
T65=tl S.,,;R TC T64 > 
T66=Tq4*T65 
T~7 =Tl:i5/ lET A 
Pr-11 .:rU,\ TA,\J( T67) 
To>i=T66-PH[ 
T~g =D::il t\( T68 l 
T7J=DS1 NIT >61 
T7l=ZETA*T70 
T 72 =T70/().',4fGAN 
T73=T66+PH[ 
T74=DS INIT73 I 
T7o=lJMFGAN* T70 
Tll~=OMEGA"'4*T65 
T2J3 =Tt2/Tt,5 
l ., J 4 =- T 6 'J+? • DO* T7 l 
T 2Ll5=T 2U3*T 204 
TZUb=T.203*T72 
1201= 1. ~o-T 2v3• T74 
12v8=-T203*T76 
T2JQ=-T2iJ3•T69 
PHI~ 11= T62/T65*,-Tb9+2. Dll* T71 > 
PH1Rl2=T62/Tll9*T70 
PH! RI 3=1, DO-l ,DO/T65*T62*T74 
PHIR2l=-T9d*PH1Rl2 
PH!R22=-l ,OO/T65*T62*T69 
PHIR23=-PH!R21 
PH!~24=PHIR13 
PH l 'HI =-2, oo•z ET A/ OME GAN* (1. 00-P HH 22 I +I 4 ,JO*T63- l .OO I *PH 1 • 12 
PHl~l4=0ELT+PHIRTl 
GJTLJ '!.. 7 

l? IF(ZtTA.~T.l.ODU}GOTOl6 
~****************************************************************** 
• SET 111, DEFINED fuR ZETA ~QUAL TO ONE, 
••***************************************************************** 

P~JQ ll=T62*TG'5 
PHll<l2=T·J6 
Prll Rl3=1, DO-PH!Rl! 
PHl~21=-T99*PHlR12 
PH!R22=T62*11,DO-T94J 
PrllKl4=DELT-2.DO/OMEGA~*(l.DO-PHIR221+3.0iJ*PHI~l2 
PH!R23=-PHI R21 
Ptil R24 =PHI Rl3 
GJTU l 7 

******************************************************************* * SfT JV. DEFINED ONLY FOR ZETA GREATER THAN ONE. * 
(•***********•***************************************************** 
lo TB2=0S"<T(-T641 

T i8=UMEGAN* TB2 
T19=C .!JO*TB8 
T9\J =l, CO/T~9 
T 43 =JME;,il\NI( 2 • DO* Tc:12 J 
T77=lJ:TI\/T82 
T7d =-1. lJO/ ( ZF.TA*TB2-Tt-4) 
T79=u.5UJ*T7tl 

2 ND 0620 
mo 0630 
2ND 0640 
2ND 0650 
2ND 0660 
2ND Db10 
2NO 0680 
2ND 0690 
2 NO 0700 
2ND 0710 
2ND 0720 
2NO 0730 
ZNO 0740 
2ND 0750 
2ND 0760 
2ND 0770 
2 ND 0780 
2ND 0700 
ZND 0800 
2ND 0810 
2NO 0820 
2NO 0830 
? NO 0840 
2ND 0850 
2NO 0860 
2 ND 0870 
2~0 0880 
2 ND 0890 
2ND oqoo 
2NO 0910 
2 ND 0920 
2Nll 093 0 
2ND 0940 
2 ND 0950 
2NO 0960 
2ND 0970 
2 ND 0980 
2~0 0990 
?NO 1000 
2NO 1010 
2NO 1020 
2ND 1030 
2NO !040 
2~0. 1050 
2ND IOSO 
2NO l 070 
2SD lvBO 
2NO 1090 
2,0 1100 
ZND 1110 
2ND 1120 
2ND 1130 
2ND 1140 
2NO 1150 
2ND llbO 
2ND 1170 
2NO 1180 
2ND 1190 
2 NO 1200 
2W 1210 
2 ND 1220 

00 
00 



ToO=l, Ou+T77 2~0 1230 
TBl=D,5DJ•TBO 2ND 1240 
..,.9l=U.5Ci)*{T63+ZETA*T82-l.DOJ/T64 2ND 1250 
T92=0,5DO/l T63-l ,D~+lETA*TB21 2~0 1260 
TlV8-=flC4/T82 2ND 1270 
T83 =ZET A-T~2 2ND 1280 
T84=lETA+TB2 2ND 12qo 
Tl62=-0MEGAN*T83 ZND 1300 
Tl<>J=-C~EGAN•TB4 2ND 1310 
T35=DE XP( Tl62*DEL Tl 2NO 1320 
T86=DEXP(Tl63*0ELTI 2NO 1330 
187 =T8S-T86 2NO 1340 
Tl64=-C. 500*Tl0l*T78 2NO 1350 
Tl65=-0.5DO*Tl0l*TBO 2NO 1360 
Tl66=TlJ8/2,00 2ND 1370 
T210=Tel•T85+T7S*T86 2NO 1380 
T2ll=T90•(T85-T861 2ND 13qo 
T212=TSl*T85+T<~Z*T66+1.DO 2N.D 1400 
T213=T79*T85+T8l*T86 2NO 1410 
T214=-T93*T87 2ND 1420 
PrlJR 1..l=T79*T85+T8l*T86+T77*T87 2NO 1430 
PHlqlZ=T90*TR7 ZND -1440 
PH1Rl3=1.DJ+T9l*T85+T92*T86 2~0 1450 
PHIRZ1=-T98*PHIR12 ZND 1460 
PHt~22=T79*T9~+T8l*T86 2NO 1470 
PHI R?3=-PHI R21 2~0 1480 
PHIRZ(i=PI-II" !3 ZND 1490 
PHI R 14= DEL T +( 2, DO*lET A/OM EGAN I *I PH IR 22-1, OJI+ ( 2,00•ZE U-1, DOI*( 2, 02ND 1500 

~C*ZETA+l.DO)*PH[Rll. 2\10 1510 
*************~***************************************************** 2ND 1520 

BEGIN ITERATION. * 2ND 1530 

******************************************************************* 2ND 1540 
17 CONTINUE 2NO 1550 

2 T~l=Tl,E 2ND 1560 
TNI TER=TNITER+l,DO 2ND 1570 
T !ME= IT 1-~E*DEL T 2 ND 1580 
Tl4=C~~GA+TIME 2~0 15qo 
R.STUR=~ 2ND 1600 
R=CCUS(Tl4) 2ND 1610 
Tl CS= T60* Tl ME 2ND 1620 
Tl\J=LlfXP(-Tl091 2ND 1630 
Tlll=C~EGA•TIME 2ND 1640 
Tll2=DCOSl Tlll) 21'10 1650 
Tll3=DSIN(Tllll 2ND 1660 
Tll8=C"1fGAN*.TIME 2\10 1670 
IFllrTA,GE,l,OOOIGOTOBO 2ND 1680 
Tll6=Tll9*T !ME 2ND 1690 
Tll7=Tl36-PHI 2~0 1700 
Tll6=DS1t<IT1371 2NO 1710 
Tll7=DSIN(T't361 2ND 1720 
GOTC81 2NO 1730 

du !FIHTA,EW,l,DDJIGDT081 2NO 1740 
T16.J=OEXP(Tl62'*TIME) 2ND 1750 
T!tl=DEXP( Tl63*TIMEI 2ND 1760 

Bl ITI~E=ITIME+l 2NO 1770 
If(lETA-1.000127,28,29 2NO 1760 

•****************************************************************** 2ND 17qo 
* BEGIN CALCULATION OF EXACT SOLUTION. THREE :ASES. * 2NO 1800 
***************•*************************************************** 2~0 1810 

CASE I, ZETA EQUAL TO OP GREATER THAN lERD AND LESS THAN ONE, 2ND 1820 
!.1 EXACT=Tl01/T6~*Tll6*TllO+Tl04/T65*TllO*Tll7+TlOl*Tll2+Tl03*Tll3 2ND 1830 

GJTJ3U 
OS F 11, LETA EQUAL TO 1JNE, 

2~ f X,\(. T=-TlU~*Tl ~ V* ( l.DO-TtlB) +Tl J4*Tl 18*Tl l J+TlJl•Tl 12 +T 1J3*T 113 
GIJT:J 30 
CASE Iii, ZETA GREATER THAN ONE, 

29 EXACT= 1 l04*T l60+Tl65* Tlbl+ Tl66* ( Tl6V-Tl6l I +Tl 01 *Tl 12 +Tl03 *T 113 
30 IF(l!:TA-1.00131,32,33 

****•************************************************************** 
dEGl~ CALCULATION OF STEP TRAhSITION MATRIX SOLUTION. * 

~****************************************************************** 
* C.\S!: t. ZETA EQUAL TO OR GREATER THAN ZERO ANO LESS THAN U~E. 
~l TEMt>=STEPl 

STE Pl =T 2J5 *ST EPl +T 206 +STEP 2 +T 207*RS TOR 
STEP2=T2J8*T~MP+T209*STEP2+T2U~*RSTOR 
GJT J90 
CASE li, ZETA EQUAL TO ONE, 

~2 TEMP=ST-EPl 
5 TE Pl=T 200 *STEP 1 +T 90*STEP 2+ T201 *R STOR 
STE P2 =T 97*R S TOR- T97* T EMP+T2 02 *ST EP2 
GOT09J 
C AS E I 11 , l ET A GR EAT ES THAN ONE , 

;3 TE~P=STEPl 
STEPl=T210*STEPl+T2ll*STEP2+T212*RSTOR 
S Tf P2=T2J 4+T EMP-T 2 l4*RS TOP +T 213*S TEP 2 
CALCULATE ERROR VALUES FOR THE STEP METHOD, 

90 Ei>STEP=DA8S(EXACT-STEP11 
PEST Pi\i =l:RST E P/ AMP 
PE SSTP=PE SS TPtPE STPN 
APES T P= PESS TP/TN IT ES 

*****************************************************•************* 
nEGIN CALCULAT!ON OF PAMP TRANSIT!ON MATRIX SOLUTION, 

** * *** ** e::• ** •• * *** ***. ** ** **** **** **** ******** ****** ** ** **** •• ** ** * 
SLCPE= ( P-R STORI I DEL T 
ZlTEM!)=f<AMPl 
~ A"1Pl = PHI Rl l *RAM Pl +PH IR l2*R AMP 2+PHI R l 3*K S TJk+P,-U ~ l4+SLJPE 
RA•'1P 2 =PH I R21* ll TE MP+ PHI R22 * RAMP2+ PH I R2 3+RS T 01R+P H IR24*SLOP E 
CALCDL•TE ERROR VALUES FD< THE RAMP METHOD, 
ERRftMP=CA8S(EXACT-RAMPll 
PfR~PN=ERRAMP/AMP 
PES~MP=PESRMP+PERMPN 
APEkMP=PES~~P/TNITER 

*************************•***•************************************* 
bEGli't CALCJLAT IUN OF RUNGE-i<UTTA FJURTH D~OER SJLLITION. * 

~************~***************************************************** 
TEMPT l;:: TM l +Tq 
Pl=CCCS(UMEG~*TEMPTl) 
H'.MP=TC.8*Rl 
DRi<.4l=RK42 
O~K42 =Tl 2U*RK42 -T98 *RK4 l +T9 8 +RS TOR 
D'Elll=DEL T*DRK4l 
CEL 2l=CEL T •ORK42 
T~~P! =ei:K4l+DE-Ll 1/2.DU 
T~~Pl=RK42+DFL2l/2.D0 
C[L 12= CELT •TEMP 2 
UC U2 =DI: LT* (T 1 ZO*T E .... P2-T98 *TEMP l +T !:MP ) 
T=MPl=RK41+0EL12/2.00 
f~~P2=PK42+CELZ2/2.00 
DE Ll.3=DEL T+ TEMP2 
DEL Z 3=CEL T*( T 120*TE..,P 2- Tqa• TE ~p l+TE MP) 
TtMPJ = F-K4l+OF.Ll3 
TEMP2=ill\4-2+DfL23 

2 NO 1840 
2ND 1850 
2NO 1860 
2 ND 1870 
2ND 1880 
2ND 1890 
2 ND 1qoo 
2ND 1910 
2 ND 1920 
2NO 1930 
2ND 1940 
2ND 1q50 
2ND 1%0 
2ND 1970 
2NO 1980 
2ND 1q90 
2ND 2000 
2ND 2010 
2ND 2020 
2ND 2030 
2 NO 2040 
2NO 2050 
2 ND 2060 
2NO 207 0 
2ND 2080 
2ND 2090 
2ND 2100 
2ND 2110 
2ND 2120 
2ND 2\30 
2NO 2140 
2ND 2150 
2ND 2160 
2ND 2170 
2ND 2180 
2ND 2190 
2 ND 2200 
2ND 2210 
2ND 2220 
2NO 2230 
2ND 2240 
2ND 2250 
2 NO 2260 
2NO 22 70 
2NO 2290 
2ND 2290 
2~0 2300 
2ND 2310 
2ND 2320 
2ND 2330 
2 ND 2340 
2~0 2350 
2ND 2360 
2NO 2370 
2ND 23 BO 
2ND 2390 
2ND 2400 
2ND 2410 
2 ND 2420 
2ND 2430 
2ND 2440 

00 
\0 



CE:Ll4 =DEL T •TE MP2 
DEL .24=0FL T* ( Tl 2 J* TE MP2- 198>1< TEMPl + T9 8* RI 
~ K·~ l=KK4t +IOFL 11+2 .00*( DEL l 2+DEL !.3) +DEl.141 /6.DJ 
r<K4Z=RK42+ ( DEL2 l +2. DO* ( DEL2 2. +CEL2 3 J +DEL 24 U 6 .1..10 

* CA.LCULAH: fRRUR VALUES FOK THf- RK-4 METrlCD. 
~~~K4=CABS(EXACT-RK4l I 
E $RK4=ES~K4+fRKK4 
i' f:R.K 4N= !:RRK 4/AMP 
PES~K4=Pf5ijK4+P~RK4N 
AP[RK4=Pf S~K4/TNI TER 
I~(TI~E.GE.TFl~ALIGUT055 
GO T: 2 

55 tJNTINL!: 

*** *** * * * * * ** ** *"'* **** •• ** **** **** ** ** ** ** * * **' *# ** * *. * * * * * *** * *** * * 
ENCi ITER.ATICN. * 

.. * .... * ,:,.,:, ** ******Ill<****** *Ill<*** ,c,:,;,:,c,:,:. ** ****** ***** ******* **** ** *** **** **** 

2ND 2450 
2ND 2460 
2ND 2470 
2~0 2480 
2 ND 2490 
2ND 2500 
2~0 2510 
2 ND 2520 
2ND 2530 
2ND 2540 
2 ND 2550 
2ND 2560 
2ND 2570 
2 ND 2580 
2ND 2590 
2ND 2600 

\.0 
0 
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Consider Figure 30. The best indication of the accuracy of a numer-

ical simulation method is how closely the approximate solution follows 

the exact solution over some time interval. For this reason a time-

averaged error is needed. Furthermore, since the error can be positive 

or negative, absolute error should be used. So define 

Absolute Error = I exact approximate' 
solution - solution 

N 
Error Sum = l 

i=l 
(absolute error). 

1 

Average Absolute Error= error sum 
N 

where i indicates a particular point in time, and N is the total number 

of solution steps in the interval. 

y(t) 

Figure 30. Error Measurement 
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The average absolute error measures the error throughout the inter-

val, but it does not give relative-error information. If the exact solu-

tion is small in magnitude, the absolute error can be small while the 

percentage error is large, A true per-cent error, on the other hand, 

gives relative-error information without giving any indication about ab-

solute-error magnitudes. Furthermore, if the solution curve is oscilla-

tory, as in the cases studied here, there is a large peak value of 

pe;r-cent error whenever the solution passes through zero, which is not at 

all indicative of how closely the approximation follows the solution, So 

a normalized per-cent error can be defined by dividing the absolute error 

by the RMS of the steady-state response amplitude. Since an input ampli-

tude of 1 is used throughout the investigations, the steady-state 

response amplitude is the same as the amplitude ratio, which is given by 

Amplitude== 1 

/1+(wT) 2 

for the first-order system and 

Amplitude== 

I c-w2 + 

2 
w 
n 

2)2 w + 
n 

4 2 2 2 
I',; w w 

n 

for the second~order system. The RMS average is obtained as 

AMPL ==~(amplitude) 

normalized per-cent error is given by 

NPE = (absolute error) x lOO)% 
AMPL · 

and finally, averaged normalized. per-cent error is 
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N 
l (NPE). 

i=l ]. 
N 

ANPE = 

This error measure gives relative-error information since it is. a per-

centage based on a nominal response. amplitude. It also gives, absolute-

error information since it is normalized by a.constant, which is known 

for the particular system b~ing considered. The normalized per-cent 

error can.be multiplied by this known constant to give the .absolute 

. error. 
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The time required to do a calculation on a computer is highly vari-

able. It depends on the particular computer being used, the word ler1gth~ 

and in some cases, the number of programs being run. The most reliable 

way to estimate the computation time for a numerical methocl is to count 

each basic arithmetic operation done in the calculation. If the time re-. . 

quired for the particular computer being used to do each operation is 

known, an estimate for the speed of the method can be obtained •. 

The basic operations done in.both the transition 1matrix method and 

the Runge-Kutta fourth-order method were counted and are tabulated below. 

The times in Table I were cal'culated using the following estimates for 

the _IBM 360 model 65: 

1 Addition= 0,65 Microseconds 

1 Multiplication =.4.9 Microseconds 

The times for the RK-4 method include an estimate of 1 multiplicaqon for 

an additional input evaluation. 

TABL_E I 

COMPUTATION TIME 

Total Time 
Additions Multiplications per Iteration % of·RK-4 

(Microsecond~) 

Step 1 2 10.45 · 32.0 
First 
Order Ramp 3 4 21.55 66.0 
System 

RK-4 5 5 32.65. 100.0 

Step 4 6 29.40 21. 7 
Second 
Order Ramp 7 9 48.65 33.0 
System 

RK-4 23 26 147.25 100.0 
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