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CHAPTER I
INTRODUCTION

Modeling a dynamic system generally results in certain algebraic
and differential equations which describe the physical phenomena. These
equations may be linear or nonlinear. As the complexity of the system
being modeled increases, the resulting equations become more numerous and
of higher order.

Until recently, many systems could not be simulated accurately be-
cause the resulting set of equations was too complex. The modern digital
computer, with its large storage capacity and high computation speed, has
made possible the simulation of such systems. Consequently, there has
been increasing interest in both the modeling and simulation of complex
systems in recent.years. Considerable effort is being spent developing
numerical techniques to solve systems of algebraic and differential equa-
tions. Older techniques which were previously impractical for hand cal-
culations are being revived for use with the computer. New methods are
also being developed. However, despite the capabilities of present
machines and the availability of a wide range of numerical methods, some
problems are still quite difficult to solve with the computer.

Many dynamic systems are so complex that the large size of the
resulting set of algebraic and differential equations begins to tax the -
storage and speed performance of even the largest computers. Special

analysis techniques are being developed for such systems (3).



In contrast, some systems that are relatively simple in nature
result in sets of equations that require an inordinate amount of computa-
tion time to solve with conventional numerical methods. The inefficient
solution of these equations drastically increases the simulation cost,
which can become so high the information obtained is not worth the
expense.

An important type of system which leads to an inefficient numerical
solution is one which contains both large and small time constants. Such
a system is called "stiff'. As the difference between the time constants
increases, the stiffness increases. Alternately, stiffness can be con-
sidered a measure of.the distance between the system poles in the complex
plane. The wider the pole separation, the stiffer the system is.

Stiff systems are described by stiff differential equa1l:ions° A
differential equation can exhibit stiff behavior from two sources: the
eigenvalues and the input. The following is a differential equation

which is stiff due to its eigenvalues:

2
&Y 4 1001 Y+ 1000y = u(t)
. dt

This differential equation has two real eigenvalues, -1 and -1000. The
two corresponding time constants are 1.0 and 0.001 seconds, respectively.
A conventional numerical integration technique would require a step size
from 1/10 to 1/100 of the smallest time constant. In this case a step
size from 0.0001 to 0.00001 woula be required. Such a system, though
relatively simple, leads to a very inefficient numerical solution.

The following differential equation exhibits stiff behavior due to

the nature of the input:

X = - x + 0.02 cos (100t) + sin(t) .



The solution of this equation is

x=e '+ 1.9998 x 10°° cos (100t) + 1.9998 x 107 sin(100t)

+ 0.5 cos(t) + 0.5 sin(t)

The high-frequency portion of the reSponse‘is very small in magnitude
compared with the fundamental response terms e-t, 0.5 cos(t) and

0.5 sin(t). -However, this high-frequency response has a period of
21/100, requiring a step size from 27/1000 to 27/10000, or about 0.006
to 0.0006 seconds. This is a very small step size considering the low-
frequency of the fundamental response.

Stiff systems occur frequently in nature. Many,ppysical systems
have responses which are basically low frequency with high-frequency
responses superimposed. The high-frequency response may not be as sig-
nificant as the low-frequency response in determining the system behavior.
However, since the time step used in a conventional numerical integration
must be chosen as a fraction of the period of oscillation of the highest
natural mode in the system, these high-frequency components cause the
solution to be very time consuming.

Since the high-frequency responses may not be needed or even desired
in the simulation, a solution to the problem would be to eliminate the
sources of the high frequencies from the model. However, in a complex
model, this may be quite difficult. Practial simulations frequently con-
tain nonlinearities, complex loop interactions, and sets of linear
differential equations describing the dynamics of particular parts of the
system. These sets of linear differential equations can often be sepa-
rated and considered as linear subsystems. When such linear subsystems

are stiff, it should be advantageous to propagate their solutions



analytically. These solutions could then be interfaced with the solution
for the rest of the system, obtained by conventional numerical techniques.

Figure 1 shows a schematic diagram of the situation frequently en-
countered in complex simulations. It shows a system which is nonlinear
and stiff. However, the stiffness originates in certain stiff linear
subsystems, which can be identified and separated. Cross-coupling
between various parts of the system, nonlinear feedback, control loop
interactions and sampling devices may be present, complicating the. compu-
tation of a solution. In particular, nonlinearities and sampling devices
aggravate the numerical problems caused by small time constants since
they intermittently cause sudden changes in the inputs to the stiff
linear subsystems,

A specific example of a system of this type is shown in Figure 2.
Linear subsystems A; B and C are all stiff. Nonlinearities, non-stiff
linear subsystems and loop interactions are present. The technique
investigated in this study is intended for such systems.

The purpose of this thesis is to investigate a method for simulating
systems of the type shown in Figures 1 and 2, and establish guidelines
and procedures for the use of the method. The method propagates the
solutions of the stiff linear subsystems analytically, and interfaces
their solutions with a conventional numerical technique for simulating
the remainder of the system. The analytical solutions of the stiff
linear subsystems are obtained stepwise by approximating the input to
each subsystem as a series of step inputs. For each subsystem an aug-
mented system is formed which is unforced. The state transition matrix
for each augmented system is then used to propagate the solutions of the

stiff linear subsystems forward in time.
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Chapter II presents a short discussion of numerical methods in gen-
eral and some methods for solving stiff systems found in the literature.
Chapter III develops the transition matrix approach for simulating stiff
linear subsystems. Chapter IV implements this approach on general first
and second-order subsystems, references a computer program useful in
implementing the approach on higher-order subsystems, and discusses the
interfacing of the analytical solutions for the stiff linear subsystems
with the numerical solution of the rest of the system. Chapter V evalu-
ates the method, comparing it with a.fourth-order Runge-Kutta algorithm,
and presents a general procedure for applying the method to systems of
the type shown in Figures 1 and 2. This procedure is demonstrated with
an example problem, Chapter VI presents conclusions and recommendations.

The results of the study show that the transition matrix approach
achieves more efficient simulation of systems such as Figure 1 when the
inputs to the stiff linear subsystems have periods that are long.relative
to the time constants of .the subsystems. Depending on the stiffness of
the linear subsystems and the overall loop frequencies of the system,
step size increases of two orders of magnitude or more are possible using

this approach.



CHAPTER 1I1I
SURVEY OF RELATED TOPICS

This chapter will present a short discussion of conventional numeri-
cal methods for solving differential equations, and the results of a

literature search for methods specifically intended for stiff systems.

Numerical Integration Methods

The basic problem addressed by numerical integration methods is the

solution of the first-order vector differential equation

dx
F =000

subject to some initial condition for vector X. At each point in the

X - t hyperplane, the function f(X,t) gives the slope of the solution
trajectory. As shown in Figure 3, short line segments with this slope
can be drawn at points throughout the plane. If smooth curves are drawn
following the indicated slopes, a map of the solution trajectories in the
X - t plane is obtained.

Numerical integration methods trace out a particular solution tra-
jectory .originating at the initial condition. Two basic types of numeri-
cal integration algorithms are in common use. These are one-step
methods and multi-step methods.

The simplest one-step method is called the crude Euler method. At

the initial condition, the slope of the solution curve is calculated and



the solution is advanced along this slope one time step. A new slope is
then calculated and the solution proceeds. Higher-order methods utilize
past values of the dependent variable and the slope to obtain a better
prediction. The Runge-Kutta second and fourth-order methods are examples
of higher order one-step methods. Oné-step integration methods have cer-
tain characteristics in common. They do not require iteration to find
the next solution point; they are self-starting, meaning they require
only an initial point to begin the solution, and they do not provide an

- estimate of the error incurred at each integration step.

Figure 3. Solution Trajectories

In contrast to the one-step methods, the multi-step, or predictor-
corrector methods require iteration at each step; they are not self-

starting and they provide error information at each step. These methods

use a predictor formula of the one-step type and a corrector formula to
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recalculate the predicted trajectory point repeatedly until two consecu-
tive calculations agree within a specified error. Then the predictor
formula predicts the next point and the corrector formula again iterates
and so on. These methods typically adjust the step size according to the
number of iterations required by the corrector formula to achieve conver-
gence. The predictor formula, or some other one-step method is used to
obtain enough initial points on the trajectory to '"start' the corrector
formula on its first iteration. Beckett (2) gives a description of
several integration techniques of both the single and multi-step type.
Unfortunately, neither single-step nor multi-step methods as des-
cribed above are well suited for the solution of systems having both

large and small time constants.

Methods Designed to Cope With

Small Time Constants

Ebbesen (5) develops an algorithm based on the variational principle
of mechanics. It is applicable to both linear and nonlinear systems of
equations, and allows selection of the step size based on the low-
frequency system components. The method is designed for those systems
having dominant low-frequency responses, and suppresses high-frequency
responses. Significant reductions in computation time along with
accurate solutions are reported.

Andrus (1) describes a method applicable to systems of first-order
linear differential equations with constant coefficients. A transforma-
tion of the original equations into a system called the canonical equa-
tions is described. Those canonical equations depending on eigenvalues

of large magnitude are discarded when their solutions contribute
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negligibly to the total system response. This allows a larger integra-
tion step size than would ordinarily be possible, When it is not possi-
ble to decide which canonical equations to eliminate, the input function
is approximated by linear functions over short time intervals. The
solution to the canonical equations is expressed analytically in terms of
the unknown input. This expression is then substituted into the
canonical equations, and they are then integrated numerically. A signif-
icant increase in the required step size is reported.

Stineman (9) assumes that the high frequencies in the system decay
rapidly. Therefore a time step based on these high frequencies is used
during the initial transient. The time step is then increased to
approach a fraction of the longest time constant in the system., This
method is not effective if the system is non-periodically excited since
the high-frequency responses remain in the solution, and the time step
must remain small. Conventional predictor-corrector techniques could be
used to advantage where an input such as a step is applied to a system,
resulting in high-frequency responses that decay off, since the step size
would be adjusted upward. Some one-step methods with automatically ad-
justing step size could also be used to advantage. But these methods are
not effective if the system is intermittently excited, for example, by
sampling devices or nonlinearities in the model, since any abrupt change
in the input, or even any non-periodic input, causes the high-frequency
transients to remain in the solution.

Curtiss (4) describes a forward interpolation method which singles
out and approximates a particular solution of the differential equation.

Treanor (10) develops a method which is closely related to the

Runge-Kutta method. An approximation is made that within an interval the
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first derivative can be expressed in a special form. In certain cases
the algorithm reduces to the fourth-order Runge-Kutta method.

Walters (11) describes a multi-step predictor-corrector approach to
solving systems of stiff ordinary differential equations. Stability
criteria for multi-step methods.are presented.

Benyon (3) provides an excellent survey of existing numerical tech-
niques for digital computer solution of systems of differential equations.
It includes a table summarizing the author's experience with various
numerical integration techniques applied to several problems, giving the
relative computation time for each. An extensive bibliography is
included.

The literature search revealed that relatively few techniques have
been developed to efficiently solve stiff differential equations. More
effort seems to have been spent on methods designed to handle large sets

of algebraic and differential equations.



CHAPTER III
DEVELOPMENT OF TRANSITION MATRIX APPROACH

This chapter will develop the transition matrix approach for the

solution of stiff linear subsystems.
The Transition Matrix

Consider a set of time-invariant, linear, ordinary differential

equations, v ’
X(t) = AX(t) + BU(t), X(0) = X, . 1)

X is an n-vector called the state vector, A is an n x n matrix of
constants called the plant matrix, B is an n x m matrix of constants, and
U is an m-vector called the control or input. The initial condition for
the state is Xou The general solution can be written

t

X(t) = a(t,ty) X, + [ e(t,t) BU(1) dr . (2)
t

0
$® is the state transition matrix for the system. Note that the solution
consists of two parts: a homogeneous and a particular solution; The
homogeneous solution is the solution when the input U is zero. It is
therefore termed the ''zero-input response'. Similarly, the particular
solution is the solution when the state XO is zero, and it is termed the

'""zero-state response'. The integral, which is the particular solution,

is called the '"convolution integral'.

13
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The transition matrix is given by

A(t-t,)
®(t,t0) = e
which may easily be evaluated as an n x n matrix of constants for partic-
ular values -of t and tO’ One convenient means of evaluating the transi-

tion matrix is by taking the inverse Laplace transform of the resolvent

matrix:
S IO
where the resolvent matrix, R(S), is given by
-1
R(S) = (SI - A) .

Thus the zero-input response may be readily obtained by evaluating the

transition matrix.
The Convolution Integral

Linear, homogeneous systems rarely occur in simulations. Generally,
linear subsystems will have some forcing function as input. If this
forcing function is known in advance, and an analytical expression for it
can be determined, then the exact response of the subsystem can be
determined by .Equation (2).

Unfortunately, in dynamic simulations, the input to the subsystem is
not known in advance, and generally varies in an unpredictable manner.

In most cases, then, some numerical method must be used to obtain the
subsystem response.

When the subsystem is not stiff, conventional numerical integration

techniques such as Runge-Kutta are quite adequate. However, when the
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subsystem is stiff, it would seem advantageous to make use of the analyt-
ical solution, Equation (2), to avoid the numerical problems that would
otherwise be encountered.

Sbme analytical approximation for the input to the stiff linear sub-
system can be used, and updated each time step. The analytical solution
can then be obtained for each time step, and the approximate solution
propagated as a series of short analytical solutions corresponding to the
series of input approximations. This basic method of dealing with stiff
linear subsystems will be explored in the remainder of this. study.

A simple approximation to the subsystem input-is a series of step
inputs, as shown in Figur¢ 4. Here t, £0’ u(t) and At are time, fhe
initial time, the input, and the time step, respectively. Admittedly,
this is a crude approximatioﬁ. It assumes simply that‘the input is
constant during each time step, at the Valuevit had‘at the beginning of
that step. Thié is a "zero-order" approximation, in that the input is

approximated as a zero-order polynomial in time, namely, a constant.

u {t)

INPUT APPROXIMATION
T /—

A

EXACT INPUT

Sy

Figure 4. The '"Step" Input Approximation
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Other subsystem input approximations could be used. A first-order
approximation would be as in Figure 5. Here, a series of straighf lines
connect consecutive points on the input curve, and the input function is
approximated by a series of '"ramp" inputs.. This is obviously a much

better approximation to the input curve than the step approximation.

u(t)

—

N\

tg ' t
e . ontll—— AL

Figure 5. The "Ramp'" Input Approximation

Many other analytical épproximations to the subsystem input curve
could be used, for instaﬁce, second, third or higher-order polynomials in
time, or exponential functions of time., These would require the storage
of several previous values of the input, and would be more time consuming
than either the step or ramp approximations. This study focuses on the
use of the step approximation for the subsystem input.

The step input approximation offers a unique advantage in terms of
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the evaluation of the convolution integral., Since the input is assumed
constant over each time step, it can be factored outside the integral:

t t
[ e(t,T) BU(T) dt = u(t,) [ e(t,t) Bdr

B B

Here u is a scalar. It can be shown that the convolution integral is a
function only of t - to, rather than a function of both t and t0°
Denoting

t

ot - t,) = [ e(t,1) B dr ,
to
the transformation
A= T - to
gives
t-to
ot - t,) = é ¢(t,h + t,) B dx
Since
A[(t"to)_k]
d(t,A + to) = e s
which is denoted o[ (t - to) - Al
t-to
e(t - t,) = [ e[(t -t,) -] Bdx ,
0 0 0
which is clearly a function of t - to rather than t and tO“ This is an

important fact, since if t, is considered the beginning time of a time

0
step, and t is the time at the end of the step, then
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At
o(At) = { @[at - A] B dA s
0
a function of only the time step At. Note that for a particular value of
At, ©® is an n x'1 constant vector. This means © can be evaluated once at

the beginning of the solution, and it is constant thereafter, if the time

step does not change. So, rewriting Equation (2),
X(t0 + At) = 0(At) XO + u(to) 0(At) . (3

This is a formula which can be used to propagate the subsystem solution
forward in time. @(At) and 6(At) are constant throughout the solution.
No other input approximation allows such a straight-forward evaluation of
the convolution integral. However, as will be seen in the next section,
other subsystem input approximations can be handled almost as simply by

the formation of an augmented system.
The Augmented System

An alternate way of using the step input approximation to arrive at
a propagation formula similar to Equation (3) is to form an augmented
system consisting of the original subsysteﬁ plus certain new states which
contain input information. This method of forming an augmented system
can easily be generalized to higher-order input approximations, The
method will first be demonstrated on some second-order subsystems. Then
a generalization will be presented.

Consider first the subsystem,
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4)

If u(t) is approximated as a series of steps, u can be expressed as some

constant

over each time step, where us is the value of the input u(t) at the

beginning of the ith step. Define a new state variable

with initial condition
x3(ti) =‘u(ti)

Since Xz is constant over each time step,

X 31 412 by Xy
20071 % 372 b, )
X 0 0 0 x

3 3

Note that this is a time-invariant, linear, un-forced system.

Letting Xa

denote the augmented state vector, and Aa denote the ‘augmented plant
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matrix,
X, = A X : (%)
The stepwise solution for Equation (5) is
Xa(ti + At) = @a(At) Xa(ti)

where @a is the state transition matrix for tﬁe augmented plant matrix
Aa' @a is.a 3 by 3 matrix of constants which may be evaluated for a
particular value of At at the beginning of the solution. Note that aug-
menting the second-order subsystem with a zero-order input resulted in a

third-order augmented system.

Reconsider subsystem Equation (4) with u(t) approximated by
u=mt + u,
i i

where_ui is the value of the input at the beginning of the ith stepland
m. is the approximate slope of the input during the ith step. This is a

ramp input approximation. Define a new state

Xg = U
with initial condition
X3(ti) = u(ti) .
Clearly,
Xg = My

Now rewriting Equation (4) as an augmented system,



21

- ——
X 311 319 by Xg 0
X, | =] a8y 279 b, X |+ 0 my
x3 0 0 0 x3 _J 1

b —t N o _—l

Define another new state,

Xy = M, x4(t0) =m
i4 =0
Augmenting again,
il 11 412 by 0 X1
iz ) 421 422 5, 0 X
is 0 0 0 1 X
X, 0 0 0 0 X,
A B O D

Again, an unforced system results. A second-order subsystem with a
first-order input results in a fourth-order augmented system. In general,

. th . th . .
augmenting an n  -order subsystem with an m™ -order polynomial in t for
the input produces an (n + m + l)th-order augmented system. Of course,
for each unforced, augmented system obtained by the various input approx-
imations, the corresponding transition matrix may be obtained, evaluated
for some time step, and used to propagate the solution.

This method can also be applied when the input is a vector rather



than a scalar, Consider
— - r— - -
x) ) 41 412 X1
X, 41 422 *
S S S —_—
Let
Y1
Y2
Define
Xz = Upo
X4 = Ups
Then
iz
i4
Augmenting
- 0T
X 411 312
X, 421 322
is 0 0
i4 0 0
oL

1i

2i

X3(ti)

x4(ti)

11

21

12

22

= ul (tl)

= uz(ti)

11

21

12

22

u (t)

u, (t)

22

(6)
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Augmenting a second-order subsystem with a 2-vector of zero-order inputs
yields a fourth-order augmented matrix.

Now consider subsystem Equation (6) with

Up = mpstoF Uy,
Uy = Myst + Uys
Define
Xz = Up, xg(ty) = uy(ty)
Xy = Uys Xy (25 = Uy (ty)
Thus,
Xg = My
Xg = M4
Now let
Xg = Mg xg(tg) =myy
Xg = My Xg (tg) = my;

Augmenting,



24

X 87 32 by b 00 X
X, 81 8y Py By 00 X
is 0 0 0 0 1 o Xy
i4 ) 0 0 0 0 0 1 X,
is 0 0 0 0 0 o0 X
i6 | 0 0 0 0 0 0 Xg

Augmenting a second-order subsystem with a 2-vector of first-order inputs
yields a sixth-order augmented system. In general, augmenting an nth-
order subsystem with a m-vector input, each element of which is kth-order
in t results in an [n + m(k + 1)]-order augmented system.

A generalization of the augmenting process for polynomial input
approximations follows. The assumption is made that each element of the
m-vector input is the same order polynomial. For the nth—order subsystem

Equation (1) where each element of U(t) is a kth—order polynomial in t,

e
il
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The augmented matrix above is [n + m(k + 1)]-order. 01 is an n x mk zero

matrix, O, is an m(k + 1) x (n + m) zero matrix, I is an mk x mk identity

2

matrix, and O, is an m x mk zero matrix. To fit this form, the new

3
states must be assigned in the same order as in the examples. That is,
first assign state variables to each input-vector element, then to the
first derivative of each element, then to the second derivative of each
element, and so on.

Broader generalizations of the augmenting procedure are possible.
Melsa (7) presents a method for obtaining an augmented-system representa-
tion for a general, linear, closed-loop system with an input whose.
Laplace transform is a rational function of the Laplace variable S. He

treats only the scalar input case, however. More information on this

method is given in Chapter 1IV.



CHAPTER IV
IMPLEMENTING THE METHOD

The present chapter will demonstrate the implementation of the step
transition matrix approach for first and second-order linear subsystems,
reference a computer program for implementing the method on higher-order
linear subsystems, and present a method for interfacing the solutions of
the stiff linear subsystems with conventional numerical solution of the
remainder of the system.

First and second-order subsystems occur more frequently in simula-
tions than any others. This is not to say that most physical systems can
be accurately described as first or second-order linear systems. However,
even in very complex simulations, certain components in the system can be

adequately described by first or second-order models.
First-Order Subsystems

Consider the general first-order subsystem shown in Figure 6. T is
the system time constant, U(S) is the input to the system and Y(S) is the

output.

26
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1
u(s
()»
TS + 1

—— Y (S)

Figure 6. Block Diagram of a
First-Order Subsystem

‘Writing the algebraic expression equivalent to Figﬁre 6 and taking

the inverse Laplace transform yields the following differential equation:

1 Ly = u

Assigning the state variable x, to the output and rearranging gives

1
X, = - X+ @ ule) : (7)

At this point, an analytic expression can be selected to appfoximate
input u(t). As stated in Chapter III, the step input is focused upon

here for study. Accordingly,

Xy = ug, xy(tg) = ulty)

: o |,
X T T 1
x2 0 0 x2

for which the stepwise solution is
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X(ti) = o(At) X(t, ;) (8)

. .th . . . . . . .
where ti is the i~ point in time, and ti~l is the previous time. Using
standard techniques, the transition matrix for the augmented system is

found to be

¢(At) =

Substituting this result into Equation (8), note that only the first row
of the matrix is needed to propagate the solution. The second row merely

contains the information
x)(t5) = %0t )

which is a statement that the input x, is constant during the time step.

2

Using Equation (8) with the first row of the transition matrix gives

At At

- —mm— - ——

x,(t,) = e T x (t; )+ (1-e Tyt ) . (@)

Equation (9) is the propagation formula for a first-order subsystem using

the step input approximation.
Second-Order Subsystems

Consider the general second-order subsystem shown in Figure 7.

z and w, are the damping ratio and natural frequency, respectively.
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Z
u(s) w
n
ST+ ZanS + wn

Figure 7. Block Diagram of a Second-Order Subsystem

Taking the inverse Laplace transform of the algebraic equivalent to

Figure 7 gives the following differential equation:
- . 2 2 :
y(t) + 2%w y(t) + w y(t) = w u(t) . (10)

Changing to state variable form, let

hel
i

1 = v, x (tg) = y(ty)

~
0

5 = Y(t)
Then Equation (10) becomes

-2TW X, - wzx + wiu(t)

n 2 nl

~
n

Using the step input approximation, let

X, = U., x3(t0) = u(fo)

Then the augmented-system representafion of Equation (10) is
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Xy 0 1 0 x1

i = -w 20w w2 X

2 1 n- 2

x3 0 0 0 x3
- — — i — ’

for which the stepwise solution is Equation (8). The resolvent matrix
for the augmented system is readily found, and each element expanded in
partial fractions. The form of the inverse Laplace transform of the
resolvent matrix is different for each of the three cases 0 <z < 1,

£ =1, and £ > 1. The resulting formulae for the elements ef the ¢(At)
matrix, being rather lengthy, are given in Appendix A. Thus the propaga--
tion formula for the second-order subsystem with step input approximation

is

X (t;) %11 %12 %13 xp (5 4)
X (t85) [ =] ¢ %22 %23 Xy (t5 1)
XS(ti) 0 0 1 XS(ti-l)

where the ¢ij are given in Appendix A by the approximate formulae
depending on . Note that only the first two rows of the ¢ matrix are
used to propagate the states, and the third row says that the input, Xz,
is constant over each time step.

The elements of the &(At) matrix are constant throughout the solu-

tion, Even though the formulae for these elements may be lengthy, the

time required to calculate them is negligible since they are calculated
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only ence, at the beginning of the solution.
The results above express the step transition matrix propagation
formula for any second-order subsystem, since all such subsystems can be

expressed in the form of Figure 7.

A Computer Program for Implementation on

General Linear Subsystems

Even for a second-order subsystem, the work involved in obtaining
the elements of the ¢(At) matrix for the simple step input approximation
is time consuming. More complex input approximations require even more
work. Fortunately, Melsa (7) presents a computer program called ''RTRESP"
which computes the time response in closed-form of the general closed-

loop system,
X(t) = AX(t) + bu(t)
u(t) = K[r(t) - kKX(t)]
y(t) = C'X(t)

corresponding to Figure 8. In Figure 8, u(t) is a scalar input, r(t) is
a scalar reference input, k is a vector feedback coefficient, I is the
nth-order identity matrix, C is an.n x 1 output vector, and y(t) is the
scalar output. A computer program is presented for finding the closed-
form time response for this system, given some analytical input function
whose Laplace transform is a rational function of the Laplace variable S
with a pole-zero excess of at least one. This program can be utilized
effectively in conjunction with the transition matrix method, since it-

forms the augmented system and finds the transition matrix.
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o<
<
~]

u(t) +

1 o
gl C =y (t)

Figure 8. A Linear Closed-Loop System

Sebesta (8) includes a program called "RTRES", a modification of
YRTRESP'" which will generate the step transition matrix ¢(At) for such a
system. This transition matrix can then be used to pro?agate the solu-
tion. A restriction on the use of "RTRES" is that the augmented system

may not have repeated eigenvalues.

Interfacing the Transition Matrix Method With a

Conventional Technique

The transition matrix approach is intended to be used to propagate
the solution of stiff linear subsystems within an overall model. The
remainder of the system is simulated with a conventional method. Figure
9 shows a flow chart of the interfacing of the two methods. A more
specific procedure fof interfacing the step transition matrix solution of
stiff linear subsystems with a Runge-Kutta fourtﬁ-order solution for the
remainder of the system is shown in Figure 10. Note that the solutions
of the stiff linear subsystems are advanced twice per Runge-Kutta step.

This specific procedure is used to solve an example problem in Chapter V.
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VARIABLES
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SOLVE
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ADVANCE SOLUTIONS
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NUMERICAL METHOD
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Figure 9. Interfacing the

Transition Matrixv

With a Conven- -
tional Method
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START
ITERATION

At A ADVANCE STIFF LINEAR
Xao L1+ =%, (Z) X, () | SUBSYSTEM SOLUTIONS
TO t+At),

]
i=jt1
>3 YES
NO
hy=A t,
AY;; = DY), h; | hy=a 1,
ADVANCE STIFF hy=4t
LINEAR SUBSYSTEM '
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Xa, A0 :=F,, 4h) X (t+ =) t=twsh | TRIAL STATES
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NO
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L ADVANCE
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tu=t STORE STATES
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Figure 10. Flow Chart for Interfacing Transition Matrix
Method With RK-4



CHAPTER V
EVALUATING THE METHOD

This chapter first presents an analytical expression for the error
incurred propagating the solutions of the stiff linear subsystems., Then
the results of an extensive computer study of the performance of the
transition matrix method on first and second-order linear subsystems are
reported. Comparison is made with the performance of a fourth-order
Runge-Kutta algorithm for accuracy and computation time. The results of.
this computer study are then used to formulate a general procedure for
applying the transition matrix approach to systems of the type shown in
Figures 1 and 2 of Chapter I, having stiff linear subsystems of any
order. Finally an example problem is considered to demonstrate the
application of the procedure, and the results are discussed.

Several factors affect the results of any machine computation. They
are considered in Appendix B. Because these factors influence the re-
sults of a. computer study of any numerical method, analytical predictions
for the performance of a numerical method are desirable. They provide a
baseline for evaluating the method which is not dependent on these highly
variable conditions. To this end, the next section derives an error

expression for the transition matrix method applied to linear subsystems.
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Analytical Subsystem Analysis
Consider again the linear, time-invariant subsystem
X=AX+BU

for which the exact solution after the first time step is

Y

X(t)) = X(t,) #(at) + f @(ty - ) BU(t) dr

&

U(t) is the exact, continuous input vector. Denote the analytical

*
approximation to that input vector over the first time step as Ul(t)o
The analytical approximation to the input over the ith time step is de-

*
noted Ui(t). The approximate state after the first time step is

Y

X (t]) = X(ty) 9(at) + [ @(t; - ©) B U (x) dr

t

*
where X denotes the approximate solution. Denote the additional error
due to approximating the input over the ith time step as E(ti)o The

error after the first time step is . obtained as

t t
. 1 1 .
E(t)) = X(t;) - X (¢]) = { ¢(t; - 1) B U(T) dr - { ¢(t; - 1) B U (1) dr.
0 0

*
Note that this error is due only to approximating the input as U1° The

exact solution after the second time step is

t

X(t,) = @(At) X(ty) + f ¢(t, - 7) B U(x) dr

Y

and the approximate solution is
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ty

X*(tz) = o (At) x*(tl) . { ot - 1) B U;(T) dr
1

Denote the total error at time ti as
*
ET(ti) = X(ti) - X (ti)

After the second time step,

t
. 2
ET(tz) = @(At)[xctl) - X (tl)] + { o(t, - 1) B U(t) dt
1
t, .
- { o(t, - 1) B Uy(1) dr
1

d(At) E(tl) + E(tz)_

Note that at the end of the first time step, E and ET are the same since
both the exact and the approximate solutions start from the same initial
condition. However, for every point in time after tl, it is important to
distinguish betweenAE(ti), the additional error incurred by approximating
the input over the ith step,vand ET(ti), the total error at ti composed
of both E(ti) and the error propagated by the inexact previous state,
Xf(ti_l)g The situation is depicted in Figure 11.

A general expression for the additional error introduced by approxi-

mating the input during the ith step is

t. t.
1 1 %
E(t,) = f e(t, - 1) B U(T) dr - f @(t; - 1) B U, (1) dt (11)
Y tia1

Carrying the solution one step further in order to generalize, the error

at t3 1s



38

Bp(t) = 8(A)[X(t,) - X (£,)] + E(t,)

i}

2(8t) Ep(ty) + E(ty)

o(at)[e(at) E(ty) + E(t,)] + E(ty)

@ (2At) E(tl) + o(At) E(tz) + E(ts)

An expression for the total error at the ith time is

He

Ep(t;) = kzl o[ (i - k)ot] E(t) .. - (12)

Equations (11) and (12) together give a method for calculating the error
at t. for the transition matrix approximate solution, for any vector in-

. *
put U(t), and any series of vector analytical input approximations Uk(t),

EXACT SOLUTION

X (1)

\— APPROXIMATE

SOLUTION

Eri(tz)
B, (t,) = Elty)
—~| p-at
01234
| S )
INTERVAL NUMBER=--— 1 2 3 4 i

Figure 11. Analytical Error Notation
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Equations (11) and (12) describe a recursive procedure for finding
the error at ts, since the error at ti depends on the error at each pre-
vious value of time. More specific error expressions could be derived by
restricting the input approximation to a certain type, such as a step
approximation. However, a recursive evaluation procedure would still be
necessary. Thus, as a practical matter of evaluating the error, it is
better to simply propagate the subsystem solution by the transition
matrix method and compare with an exact solution, if available. However,
Equations (11) and (12) do lend some insight into the sources of error
for the transition matrix simulation of a linear subsystem.

Examination of Equations (11) and (12) reveals the following facts.

1. The error at time t, is a function of the following factors:

A. the time step At;

B. the input U(t) and B;

C. the input approximation U:(t); and

D. the subsystem itself, since ¢(At) is determined from the
subsystem A matrix.

2. The total error ET(ti) is composed of two parts:

A. the error E(ti) due to the ith approximation to the input;
B. the propagation of the previous errors E(tk), k=1,2,.,.,i~1,
through multiplication by the transition matrix.

These observations, although useful from the standpoint of under-
standing the sources of error for the method, do not give specific infor-
mation about how accurate the method is, or when it is preferable to a
conventional method. To obtain this more useful information, extensive
computer studies of the method, as implemented in Chapter IV for first

and second-order subsystems, were conducted. These are reported in the
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next section.
Computer Subsystem Error Study

Chapter IV presented the implementation of the step transition
matrix method for first and second-order subsystems. In the computer
study of the method, these subystems were subjected to the scalar input

function
u(t) = cos(wt) . (13)

This input function was chosen because the exact, analytical solution for
both subsystems is easily obtained for this input, the input frequency w
can be easily varied, and for w = 0, u(t) is a unit step input.

For the first-order subsystem with this input, the exact solution is

=3[t

y(t) = ———1—5—5-{-e + cos wt + Tw sin wt}

1 + T
Initial conditions of zero were used throughout the investigations, ex-
cept for the input, which has an initial condition of 1.

The exact solution for the second-order subsystem with a cosine in-
put is easily obtained for three cases: an underdamped system
(0 < g < 1), a critically damped system (¢ = 1), and an overdamped system
(z » 1). These solutions are given in Appendix C.

The step transition matrix method was programmed in double precision
on the IBM 360 Model 65 computer to simulate general first and second-
order subsystems according to the propagation formulae given in Chapter
1V, and using input Equation (13). The approximate solutions obtained
were compared with the analytical solutions to determine the error.

Comparison was also made with solutions obtained independently using the
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fourth-order Runge-Kutta numerical integration algorithm,

The coding used to program these solutions is shown in Appendix D.
These programs were written strictly as research tools, and the documen-
tation is provided only to show the exact manner in which the error
values were obtained. As discussed in Appendix B, the exact coding used
to program a problem can often affect the results.

Of several possible error measures, average normalized per-cent
error was chosen, because it combines relative-error and absolute-error
information. Details on error measurement are given in Appendix E. In
the remainder of the study, "error' should be understood as average
normalized per-cent error unless stated otherwise.

A series of simulation runs were made to examine the performance of
the step transition matrix method on first and second-order subsystems
under a variety of conditions. An input amplitude of 1.0 was used
throughout the tests, and a time interval of one second was simulated
each run, starting at t = 0. The test results will be presented in a
series of graphs.

Figure 12 shows error versus time step for the first-order subsystem
for an input frequency of 6.28 rad/sec, and a subsystem time constant of
1.0. The error for three methods is shown: the step transition matrix,
the ramp transition matrix, and Runge-Kutta fourth order. This graph
shows .that error increases with time step for all three methods. Note
that for the.step transition matrix method, halving the step size halves
the error. In fact, for this input frequency and time constant, the

error can be expressed as

Error = (350) (At)
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This indicates that when all other factors are held constant, the error
is directly proportional to the time step. For the ramp method, the

error is directly proportional to the square of the time step, as
2
Error = (280) (At) .

These two observations seem to indicate that, other factors being the
same, the error for the transition matrix method, with an nth—order input

approximation, is given by.

Error = k(At)n+1

where k is a constant determined by other factors. As expected, the RK-4
method exhibits error proportional to the fourth power of the time step.

For these conditions, that error is approximately given by
4
Error = (50) (At)

For this low-frequency subsystem, the RK-4 method has clearly superior
accuracy. As expected, the ramp method has considerably better accuracy
than the step method since the ramp is a first-order input approximation
while the step is a zero-order approximation. Figure 13 shows a corres-
ponding graph for the second-order subsystem. The comments for Figure 12
apply here also. Inspection of the gfaph reveals that for the step

method,
Error = (820) (At),
for the ramp method,

Error = (340)(At)2,
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and for the RK-4 method,
4
Error = (85)(At) 7,

for these conditions.

Figure 14 shows error plotted against input frequency for a first-
order subsystem with a time step At = 0.0l seconds. The graph shows that
error increases with input frequency for all three methods. Close.
inspection reveals that the error for both step and ramp approximations
is proportional to the square of the input frequency, for input fre-
quencies less than 2.0 rad/sec for the step method and 10.0 rad/sec for

the ramp method. The approximations are: for the step method,

Error = 0.1 mz,

and for the ramp method,

Error = 4.5 X 10_4 wz

The error for the RK-4 method is proportional to the input frequency to a
power between 3 and 4 for these conditiohs° Figure 15 is a corresponding
plot for a second-order subsystem. It also shows that for low fre-
quencies, the error: for the transition matrix method is roughly porpor-
tional to the square of the input frequency. The RK-4 method exhibits
more complex behavior. By the observations made from Figures 12 through
15, it appears that the error for the transition matrix could be approxi-

mated as

Error = k(At)n+1 wz,

for low input frequencies. This approximation will be checked against
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subsequent results,

Figure 16 shows error plotted against the inverse of the system time
constant for first-order subsystems. It is more convenient to use 1/T
than T since the value of 1/T is indicative of the subsystem's stiffness.
That is, the larger the value of 1/T, the smaller the subsystem time
constant T and the stiffer the subsystem. The value of w was picked as
2m, and error lines are shown for four time steps. First, notice that
the error for the transition matrix method is not strongly . affected by
the stiffness of the subsystem. This seems reasonable since the transi-
tion matrix method is analytical, and owes its error to the input approx-.
imation rather than the subsystem's response. In contrast, the Runge-
Kutta method is shown to be strongly a function of the subsystem time
constant, the error increasing sharply as the stiffness increases. This
also seems reasonable because for stiff subsystems, the response contains
high-frequency transients, which the RK-4 must follow to remain accurate.
If the subsystem is stiff enough, the response frequencies become too
high for the time step used, and the solution becomes unstable. For the
time steps used in Figure 16, the RK-4 method becomes unstable for 1/T in
the range 250 to 2000. The transition matrix is clearly more accurate
for very stiff subsystems. The ramp transition matrix shows error values
about two orders of magnitude lower than the step transition matrix
method. The RK-4 method again shows much better accuracy for non-stiff
subsystems.

Figure 17 corresponds to Figure 16, except for secend-order subsys-
tems. It shows error versus damping ratio for several values of natural
frequency. The damping ratio ¢ and natural frequency w determine tﬁe

eigenvalues, and thus, the stiffness of the subsystem. In general,
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stiffness increases with both 7 and Wy - This graph again clearly shows
the accuracy of the transition matrix method relatively unaffected by the
subsystem stiffness, since the error is not strongly a function of ¢ or
W And again, the RK-4 method's error increases sharply with the sub-
system stiffness, being strongly a function of both # and W increasing
with each. The exception to this is that for underdamped subsystems, the
error increases with decreasing damping ratio, since . the response becomes
more oscillatory, and harder to follow.

Figure 18 is the first of several plots designed to provide guide-
lines for the use of the step transition matrix method. It shows lines
of constant error plotted on a graph of time step versus input frequency.
T = 1.0 was chosen arbitrarily for this graph. As has been seen, very
similar results would obtain for other values of T. Error is a parameter
on the graph. The lines shown are sets of values for input frequency and
time step for which the step transition matrix has constant error. Lines
are shown for several error values. To show how these lines.can be used,
pick any point on the 10% error line. Decrgasing either the input fre-
quency or the time step decreases the error, so any point on the graph
left of the 10% line has error less than 10%. Any point right of the 10%
line has more than 10% error, and any point between the 3% and 10% lines
has error between 3% and 10%. This graph can be used, then, as a guide
for selecting the time step. If a first-order subsystem is being simu-
lated, and the input frequency is 1.0 rad/sec, Figure 18 dictates that a
step size less than 0.075 seconds be used if 1% accuracy is desired. The
graph indicates that as the input frequency decreases the allowable step
size to achieve a given accuracy increases. It also provides a means of

checking the hypothesis, stated earlier, that the error for the step
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transition matrix method can be approximated as
2
Error = k(At) w

Picking an input frequency of 1.0 rad/sec, and observing the time steps

required to give specific error values, it can be confirmed that
L] 2
Error = 13(At) w

is a reasonable approximation for the error for a first-order subsystem
for input frequencies less than 3.0 rad/sec. For higher frequencies, the
approximation becomes worse, predicting error values that are too high.
Figure 19 is the second-order subsystem equivalent of Figure 18. On
this graph, two lines of constant error, 1% and 10%, are shown for the
RK-4 method; here, z and wo were arbitrarily picked -as 10 and 100,
respectively. This constitutes a stiff subsystem, and notice how small
the area is beneath the RK-4 line. For any time step above 0.0014, the
RK-4 method has over 10% error for any input frequency. This graph can
be used in the same manner described for Figure 18. From Figure 19, the
error for the step transition matrix method applied to a second-order

subsystem can be approximated as
L] ‘ 2
Error = 23.8(At) w

for input frequencies less than 2.0 rad/sec. For higher input frequen-
cies, this approximation becomes inaccurate, predicting errors that are
too high.,

Figure 20 deals with the first-order subsystem, and is an accuracy
comparison between the step transition matrix method and the RK-4 method.

Time step is plotted against 1/T with input frequency a parameter. Each.
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point on a particular line is a set of conditions for which the twb
methods have the same error. If a point is picked on one of the lines,
say w = 0,10, increasing 1/T causes the RK-4 method to have greater error
than the transition matrix method. Increasing the time step has the same
result. Thus for a given input frequency, points above the line corres-
ponding to that input frequency result in the transition matrix having
lower error. For points -below the line, the RK-4 method is more accurate.
Therefore, Figure 20 provides a quick method of determining which method
is more accurate for a given situation. For instance, if the time step

is 0.01, and 1/T = 10.0, and w = 0.10, the RK-4 method is more accurate
because the point corresponding to the given At and 1/T falls below the

w = 0.1 line. Two dashed lines of constant error are drawn on the graph
to provide an idea of the errors involved. All points beneath the 1%

line have error less than 1%. Observe that decreasing the input frequency
moves the lines of equal error toward the origin. This means lowering
the input frequency decreases the error of the transition matrix method
relative to the error of the RK-4 method. Note also that as 1/T in-
creases, the time step required by the RK-4 method to achieve equal
accuracy decreases. Therefore it can be concluded that both lowering the-
input frequency and increasing 1/T increase the relative desirability of
the transition matrix method.

Figure 21 is the second~order equivalent to Figure 20. Here, the
time step is picked as 0.01, and 0 is plotted against 7, with input
frequency a parameter. The same general comments made about Figure 20
apply here also. For each input frequency, RK-4 is more accurate for
points below the line corresponding to that input frequency, and the

transition matrix method is more accurate for points above the line.
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Figures 22 and 23 are perhaps the most significant plots, since they
are lines of equal cost. Figure 22 plots input frequency versus 1/T.
Each point on the line represents a condition where the cost required to
achieve 1% accuracy is the same for both RK-4, and the transition matrix.
Starting atva point on the line, increasing 1/T, or decreasing the input
frequency causes the RK-4 method to require more computation time than
the transition matrix method to achieve a 1% accuracy solution. Thus,
for all points below and to the right of the line, the transition matrix
is less expensive, and for all points.above and to the left of the line,
the Runge-Kutta method is less . expensive, for 1% error or less. Note
that decreasing the input frequency, or increasing 1/T increases the
desirability of the transition matrix method.

Figure 23 is the equal-cost plot for the second-order subsystem.
Lines are shown for two input frequencies. Wy is plotted versus z with
input frequency a parameter. Again, this plet indicates that lower input
frequencies and stiffer subsystems favor the transition matrix method.
For all points above the lines, the transition matrix is less expensive.
For all points below the lines, the Runge-Kutta method is less expensive.
Both lines are for 1% error.

The computation costs for determining Figures 22 and 23 were deter-
mined by counting the number of calculations done per iteration by each
method. More details on computation time estimation are given iﬁ
Appendix F.

The last two graphs of the computer study, Figures 24 and 25, pre-
sent the number of time steps per input cycle required to achieve a given
accuracy versus input frequency. These graphs are for the transition

matrix method only. Figures 24 and 25 show lines foer 1% and 10% error
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for first and second-order subsystems, respectively. ?he two figures are
remarkably similar. Note that the number of steps per cycle needed in-
creases with input frequency up to a point, then levels off. For the
first-order subsystem, a maximum of 390 steps per cycle is needed to
achieve 1% accuracy, at w = 4.0 rad/sec. For the second-order subsystem,
the known maximum occurs at 330 steps/cycle at w = 19 rad/sec. Again,
these two graphs emphasize that increasing the input frequency degrades
the performance of the step transition matrix method.

An analysis of the computations involved for the transition matrix
and Runge-Kutta methods, for which details are presented in Appendix F,
results in the following computation time estimates: for the same time
step,

A. first-order system--step transition matrix 32% of RK-4;

B. second-order system--step transition matrix 22% of RK-4.
So it can be seen that for the same time step, the step transition matrix
offers a considerable reduction in computation time. |

The primary factors affecting the accuracy of the transition matrix
simulation of linear subsystems are the input frequency and the step

size. Results indicate the error can be approximated by

Error = k(At)n+1 wz (14)

where n is the order of the input approximation used, and k is a constant.

For the step transition matrix method, the constant k is approximately

k = 13 for first-order subsystems,

k = 23,8 for second-order subsystems .

So an approximate rule for selecting the step size may be obtained by
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solving Equation (14) for At. For the step method,

maximum allowable error (%)

At = 3 w<3 (15)
13w
for first-order subsystems, and
i o
At = Daximum allowablg error (%) <2 (16)
23.8 w

for second-order subsystems. These equations are rather conservative for
w larger than the specified bounds. For w > 3, Figures 24 and 25 may be
used for step size selection.

The .accuracy of the transition matrix method is relatively unaf-
fected by the subsystem being simulated. For a first-order subsystem,
this is equivalent to saying the accuracy is not strongly a function of
the system time constant. For a second-order subsystem, the accuracy is
not strongly a function of the natural frequency or the damping ratio.
For a general linear time-invariant subsystem, the accuracy is not
strongly a function of the pole locations of the subsystem.

In general, the transition matrix method is most appropriate when
the dominant input frequency to the subsystem is low relative to the sub-
system response frequencies. It is very difficult, however, to identify
any quick "rules of thumb" to say when the transition matrix should be
used, and when not. For instance, consider Figure 23. For w = 1.0,
whenever 0, is larger than 6.0, the transition matrix is less expensive.
So postulate that when the input frequency is less than 1/6 of the
natural frequency, the transition matrix method is better. But for
w = 6.28, the ratio is 6.28/150, which is considerably different.

Several "stiffness numbers' were defined to see if correlations

could be made with the suitability of the method. For instance, the
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ratio of the largest to the smallest eigenvalue, or the distance between
the poles are possible stiffness numbers. None of these numbers were
found to be independent parameters which could be used to predict when
the method should be used in preference to a conventional method.

The transition matrix method is very stable, as would be expected
since it is an analytical method. Tests indicate that the error for the
method stabilizes after about 1 input cycle.

The next section presents a general procedure for applying the

transition matrix approach in a complex simulation.
A General Procedure for Applying the Method

The results of the preceding subsystem error study would be of
limited usefulness if they could not be applied to third or higher-order
subsystems. This section presents a procedure for generalizing the
results based on the dominant poles of the subsystem.

In a linear system, the low-frequency poles are called dominant,
since they determine the system behavier. The high-frequency poles have
only small effect. However, the high-frequency poles often may dictate
the choice of solution method because of the adverse effect they have on
the efficiency of conventional methods. These facts suggest a general
procedure for applying the transition matrix approach. Starting with the
basic physical system under study,

1. Model the system.

2. Separate the linear subsystems occurring in the model.

3. For each linear subsystem, estimate the input frequency. Con-

sidering the dominant poles of the subsystem, consult the

results of the previous sections to determine whether the
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transition matrix or a conventional method is more éppropriate;
If the results indicate the transition matrix is better suited,
use it to simulate-the subsystem without further conéideration.
If the results indicate the RK-4 method is more éppropriate,
consider the high frequency poles as dominant, and again con-
sult the results. If the results here say the RK-4 method is
still better, use it; otherwise use the transition matrix.

If possible, group together those subsystems for which the
transition matrix is better, and those for which RK-4 is better.
For instancé, a subsystem such.as shown in Figure 26 could be
divided into two blocks as in Figure 27. In this case, it might
be advantageous to use RK-4 to simulate block A, and the transi-

tion matrix to simulate block B.

u - - 1
S(S + 1000)

-y

Figure 26. Block Diagram Example

u 1 1
™3 S+1000 -y
A B

Figure 27. An Equivalent Block Diagram



67

5. Interface the RK-4 and the transition matrix solutions as shown
in Chapter IV, and simulate the system, choosing the step size
based on the linear subsystem with the highest dominant input
frequency.

6. Run the solution again with a smaller step size and compare with
the previous solution. If the two results agree within accept-
able error, use the previous step size. If not, continue re-
ducing the step size until the results of two consecutive runs
are in acceptable agreement.

The next section demonstrates the application of this procedure on

an example problem.
Example Problem

Consider the complex dynamic system shown in Figﬁre 28. Steps 1 and
2 of the procedure just outlined have already been done since the system
has been modeled, and a block diagram has been drawn showing the linear
subsystems.

Step 3 requires estimating the input frequency of each linear block.
By neglecting the nonlinearities and plotting the open-loop frequency
response between the input and point z, the overall loop frequency for
this system is found to be approximately 280 rad/sec. Note, however,
that the linear blocks within the dashed box would experience much higher
input frequencies, because the inputs are the responses of high-frequency
blocks. It is desirable to form the augmented system for the entire
closed loop linear subsystem C in order to avoid simulating the internal
blocks with their high-frequency inputs. This is easily accomplished

using the program RTRES, mentioned in Chapter IV.
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Consider first the linear subsystem A. It is a first-order system

with 1/T = 1667. The time constant is

1 .
TEET = 0.0006 seconds

The RK-4 method would require a step size from 6 x 10-5 seconds to
6 x 10_6 seconds. Consulting Figure 24, the number of steps per input
cycle needed to achieve 1% error with the transition matrix method is
estimated at 350. Assuming an input frequency of 280 rad/sec, this cor-
responds to a time step of 6.4 x 10-5 seconds. Since this is above the
upper limit of the possible RK-4 time steps, it is better to use the
transition matrix method for this block, especially since it requires
less computation than RK-4 for the same time step.

Now consider linear subsystem B. The pole-zero configuration for
this .subsystem is shown in Figure 29. It is seen that the dominant poles
are high-frequency oscillatory poles with ¢ = 0.70 and W, = 3768. The

time constant associated with these poles is

1

3ETTE - 0.00038 seconds

which would result in a Runge-Kutta step from 4 x 107° to 4 x 1078

seconds. Consulting Figure 25, it is seen that the step size needed to
simulate this block with the transition matrix approach is again
6.4 leo“s seconds. Thus the transition matrix is more appropriate than
RK-4 for this block also.

Linear subsystem C contains time constants as small as 1/4800
seconds, so the transition matrix method should be used here, also. This
subsystem was.handled in two pieces. The program RTRES was used to

generate the transition matrix for the closed loop system, and the first
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order block was solved directly in the ceding.

With this high overall loop frequency, the RK-4 method should be
used to simulate the remainder of the system, which consists of low-
frequency linear blocks and nonlinearities.

To demonstrate the inefficiency of a conventional simulation of this
system, the problem was first coded using the RK-4 method to simulate the
entire system. Using an input frequency of 1 rad/sec, this approach re-
quired a time step of 1 x 10_8 seconds to avoid an unstable solution.

The system was then simulated using the step transition matrix to
propagate the solutions of the stiff linear subsystems A, B and C. Their
solutions were interfaced with the RK-4 solution of the remainder of the
system as shown in Figure 10, Chapter IV. Using this combination, a time
step of 0.001 seconds gave less than 2.0% error for an input frequency
w = 1.0 rad/sec. This represents an increase of 5 orders of magnitude in

- the step size.
Discussion of Results

The example problem just considered is the type of system for which
the transition matrix method is extremely well suited. Basically a non-
linear system, it contains many linear subsystems, somé of which are
stiff. It also contains nonlinearities which can cause abrupt changes in
the inputs to the stiff parts of the system, exciting the transient
responses. The use of the transition matrix method to simulate these
stiff subsystems can affect a considerable savings in computation time,
as noted above. Note that the linear subsystems A, B and C have dominant
input frequencies that are low relative to the subsystem transient fre-

quencies. It is important to choose the time step for each linear
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subsystem according to the dominant input frequency. In a system such as
Figure 28, the subsystem inputs will contain high frequency transients.
If the time step for the subsystem solution is chosen to follow these
transients, there would be no advantage to the method. By choosing a
step size based on the dominant input frequency, the sampling of the
input acts to filter the high frequency transients from the subsystem
input.

In this sense, the transition matrix method acts to reduce the ad-
verse effect of high-frequency components on the simulation efficiency,
while leaving these components in the model. The effects of the high-
frequency components can be included or excluded as the step size is
decreased or increased, respectively. This feature of the method sug-
gests its use as a tool for simplifying a complex model, since the effect
on the overall system performance of leaving out certain high-frequency
components cén be easily studied.

It is important that the high-frequency blocks and the low-frequency
blocks be grouped together whenever possible. Low-frequency blocks
should not be propagated by the transition matrix since higher accuracy
can be achieved using conventional methods.

In some cases, the stiffness of the system may be due to nonlinear
differential equations. If a very small step size is necessitated, it
may. be more economical to use the transition matrix for all of the linear
blocks, since for the same time step, it requires less computation than
RK-4.

In general, more efficient simulation can be achieved when the
method and the step size are chosen to suit the particular part of the

system being simulated. However, such an approach would be extremely
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problem dependent, and would require careful implementatioen.

The general procedure outlined above is intended only as a guide for
the application of the method. Since it is impossible to censider all
the special cases that could arise, engineering judgment should be

applied to each problem to obtain an efficient implementation of the

method.



CHAPTER VI -
CONCLUSIONS AND RECOMMENDATIONS

A method for simulating stiff dynamic systems has been evaluated,
and a general procedure for using the method has been presented. The
method is well suited for systems having stiff linear subsystems whose
transients are high frequency relative to the dominant input frequency
for the subsystem. In such cases, step size increases of two orders of
magnitude or more are possible over conventional methods.

The computer studies and example problem show the transition matrix
approach to be a viable and relatively simple technique. Considering the
number of simulations in which stiff linear subsystems arise, this method

should find wide application.
Recommendations for Further Study

The following areas merit further investigation.

1. The transition matrix method concentrated on in this study
utilized a zero-order input approximation. Preliminary results indicate
a ramp input approximation gives much improved accuracy for a small in-
crease in computation time (see Appendix F). The program RTRES, men-
tioned in Chapter IV, should be modified to handle repeated eigenvalues
in the augmented system. This would permit the easy implementation of:
more sophisticated input approximations for the method. These approxima-

tions could then be studied for accuracy and computation time.
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2. Various methods for computing the transition matrix for the aug-
mented system should be investigated. The accuracy of this matrix is
critical to the accuracy of the method.

3. The accuracy of the method studied here was much lower than RK-4
for non-stiff subsystems. A higher-order transition matrix method might
be developed which would have accuracy superior to numerical methods for
any linear subsystem, stiff or not. This method could then be used to
simulate all linear subsystems in a simulation. It is felt that decreased
computation time would also result from using such a method.

4. The system-size limitations for the method should be investi-
gated. The method as presented here is aimed at relatively low-order
subsystems. The maximum-order subsystem that this method will handle is
probably dependent on how large the augmented matrix can be without
causing difficulties in finding the ¢ matrix. This may also be a limita-
tion on using higher-order input approximations, since the size of the
augmented system increases as the order of the input approximation
increases.

5. Higher-order input approximations might make the method tend
toward instability for certain inputs. This area could be investigated.

6. The use of the method as a tool for simplifying mathematical

models, as discussed in Chapter V, should be studied further.
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ELEMENTS OF &(At) FOR A SECOND-ORDER SYSTEM
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Case I.

Case 1II.

0 <z <1 (underdamped system)
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For each case,
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APPENDIX B

FACTORS AFFECTING THE RESULTS OF

MACHINE COMPUTATIONS
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In studying any numerical mefhod, two results are of prime impor-
tance: the accuracy of the results and the computation time. Both of-
these performance measures are affected by the following factors:

(a) the particular computer being used; .

(b) the word length; and

(c) the particular coding used to program the problem.

Factor (a) often has a strong effect on both accuracy and run-time, since
computers vary considerably in computation speed and word length. Factor
(b) determines the number of digits the computer can carry through a
calculation, and therefore affects the roundoff error. Calculations.done,
on machines with long word lengths, and calculations done in double pre-
cision, which doubles the normal word length, have much reduced roundoff
error. Factor (¢) often has a strong effect on the roundoff error in a
calculation. Subtraction of a number frem a nearly equal number, and
addition of two numbers of widely different magnitude are two examples of.
calculations which lead to large roundoff.errors due to the finite word
length of the machine. Such calculations are called "ill-conditioned".
These problems can often be made less severe by algebraic rearrangement

of the expression being evaluated. For example, the expression

4

v C2—l

results in a large roundoff error when ¢ is large, since the term on the

1 -

right approaches 1. An algebraic manipulation converts the expression to

1-2°

@n? v e?n?

which aveids the subtraction of nearly equal numbers, and is more
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accurate for large z.

The computer investigations, in this study were done on an IBM 360
model 65 computer. All calculations were done in double precision, which
on this computer gives a 64 bit word length. Ill-conditioned calculgﬁ
tions, such as the example above, were avoided by algebraic rearrangement,

when possible.
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EXACT SOLUTION FOR SECOND-ORDER SYSTEM
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Case I. 0 <z < 1 (underdamped)

_ -Zw_t -zw_ t
y(t) = A e sin(wnv 1—62 t - 9) + S e sin(wnv 1—;2 t)
v 1-C2 w_V 1-C2

n

+ C cos(wt) + g-sin(wt)

Case II. ¢ =1 (critically damped)

~w_t -w_t D v
y(t) =Ae " (1 -wt)+Bte | +Ccos(ut) + g sin(wt)
Case III. % > 1 (overdamped)
A r -wn(C—V C2-1)t A . -wn(Z;H/ ;2—1)t
y(t) =53] 1- e t5 1+ e
/P /g%
B w @/ e - e/ e
G ————————— e - e
anV Cz-l
D .
+ C cos(wt) + 5-51n(wt]
where

¢ = tan © (—)
—wz(wz - wz)
A = n-n
(w> - w2)2 + 4;2wiw2
—2;w5
B = il
(w - w2)2 * 4C2wiw2
C=-A
2Cw2w
D =

(wﬁ - w )" 470w
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Ta2 DO#T4l

T43 QRT (T42)

T44=1.,DC/T42

T47=-DELT/T

T48=DEXP(T27})

TT=T*T48

T49=1.00-T48
T50=DELT-T+T7
T51=-T47
T52=T51/2.00
5 «00-T51%(1,00-T52% (1 .00-T52))
«D0-T51%(2,D0-T52)
«DI-T51%(3.00-T51%(1.D0-T52/2.00))

T36=T51/6.D0 .

AMP=,TQ7D-2/T43

AMPL=,TO7D0/T43
et Rt R e e e R S el Sl Lt Rl et i Ll ittt il

LI I I IR A R R N N R
LR R IR N N R IR R

* BEGIN ITERATION. *
B R R AR O RO O KR R KK K KR K A ORI ROR K RO R R R
2 TM1=TIME

TIME= {TIME*DELT
TNITER=TNITER+! .DO
RSTOR =R
R=0C0S(T14)
T14=0MEGA*T IME
T45=-TIME/T

18T
18T
1ST
1ST
18T
18T
18T
1ST
187
15T
187
1sT
18T
15T
18T

T1ST

1sT
1sT
18T
18T
1ST
18T
18T
18T
1sT
18T
18T
15T
18T
18T
187
18T
157
18T
157
15T
15T
1587
1T
18T
18T
187
18T
1SV
187
18T
18T
187
1sT
1sT
15T
18T
18T
18T
15T
1ST
18T
187
1s7T
18T
18T

0010
0020
0030
0040
0050
0060
0070
0080
0090
o100
0110
0120
0130
0140
0150
0160
o170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
03190
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
0520
0530
0540
0550
0560
0570
0580
0590
€600
0610

Is¥aXsl

cac

ac o

oo

C
C
C

Ta5=-DEXP(T45)
T4=DC0S(T14)
TS=CSINIT 14}

T6=TL*T5
LR L T e T T e e R T P i i)
* CALCULATE EXACT SOLUT [ON. *

R 2 S R e R R R R R R S R R P R R I S R L
EXACT=T44%(T46+T4+T6)
ER I R R 2 R R R R R R S e R LR R R PR PR S STy ]
% CALCULATE STEP TRANSITION MATRIX SULUTION. .
AER R R R RN R Rk RSNk Rk d kR Rk kxR ko ko kR
STEP=T48%STEP+T49*RST OR
thxxkkrkrkaakk kR kg Rk ko ok kg ok ok ko ko
* CALCULATE RAMP TRANSITION MATRIX SOLUTION. *
EE T R 22 R TR R 2 R S R 2 R R PR S R P R R ST E S PR R R S 2 2T 2 ]
SLOPE=(R-RSTOR ) /DELT
RAMP=T4B *RAMP+T49 #kSTOR 4T 50 #SLOPE
F2 2T S R Lty R R R R IR S e S R R 2 Y
* CALCULATE RUNGE-KUTTA FOURTH ORDER SOLUTICN. *
REEEEE AR R AR RN R R R C R AR R R R AR AR R R R Rk Rk
TEMPT1=TM1+ T9
R1=CCOS(OMEGA®TEMPTL)
RK&=RK4+T55% (RETS3¥RSTUR+TS5 4 #R1 ~T55 #RK4 )
AEEXRFEEREEEE RN AR AR E R AR AR R AR AR AR AR RN KRR R R KRR Ak kR
* CALCULATE ERROR VALUES. *
XA R AR R AR R AR R R R AR AR A AR R R AR R R R R R RN R R RN
FRSTEP=DABS{EXACT-STEP)
ESSTEP=ESSTEP+ERSTEP
PESTPN=ERSTEP/AMP
PESSTP=PESSTP ¢PESTPN
APESTP=PESSTP/TNITER
AB SLE XACT-RAMP)
RRAMP/ AMP
PE SRMP=PESRMP+PERMPN
APERMP =PE SR MP /TNI TER
ERRK4=CABS { EXACT -RK 4}
PERK4N=ERRK4/ AMP
PESXK &=PE SRK 4+ PERK 4N
APERK4=PESRK4/TNITER
IF{TIME.GE. TFINAL) GO TO 8

8 CONTINUE
60T 02 .

T R R AR R R RO R R R K kR ok kR Rk R R Rk ok

* ENG ITERATION. *

LR RN OO OR ORI ok R KRRk K R K R ok kR Rk R ok kR R kR Rk

18T
18T
18T
18T
15T
18T
1sT

18T

18T
1ST
18T
18T
1ST
187
18T
18T
187
1ST
187
1sT
1sT
1ST
1ST
tST
18T
18T
18T
18T
18T
15T
18T
187
18T
18T
18T
18T
18T
18T
18T
18T
18T

18T
18T
1sT

0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
os8o
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
104D
1050
1060

L8
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* ERRUR EVALUATION PRUGRAM FOR A GENERAL SECCND ORDER SYSTEM. *

AR YRR MR RIS AT R R AR AR AR R AR R AR AR R AR R Rk R R

L R3] ttlﬂlﬂtﬂﬂtﬂ:“t"..t.t.t*t.‘t..?‘ﬂ.ttﬂt.‘ﬂt‘.‘ﬁ# EEEREREGRERR R

% VAR IABLE DEFINITIONS AND EXPLANATEONS, »

EE R R e R R R Rt R R R R 2 S EE SR ISR 2 2 S

“« AMPL 1§ THE RMS AVERAGE OF THE RESPONSE AMPLITUOE.

APESTP IS THE AVERAGE PERCENTAGE ERROR FOR THE STEP METHOD.

APERMP IS THE AVERAGE PERCENTAGE ERROR FIR THE RAMP METHOD.

APERK& IS THF AVERAGE PERCFNTAGE ERRDR FOR THF Rk~4 METHOD.

DELT 1S THE TIME STEP.

ERSTEP 1S THE ABSOLUTE ERROR FOR THE STEP METHOD.

ERRAMP 1S THE ABSDLUTE ERRUR FOR THE RAMP ME THUD.

FRRK4 1S THE ABSOLUTE ERROR FOR THE RK-4 METHOD.

EXACT IS THE EXACT SDLUTION.

IS THE INPUT FREQUENCY.

1S THE NATURAL FREQUENCY.

IS THE NORMALIZED PERCENTAGE ERROR FOR THE STEP METHOD.

PERMPN IS THE NDRMAL IZED PERCENTAGE ERROR FiR THE RAMP ME THOD.

PERK4N 1S THE NORMALIZED PERCENTAGE ERROR FOR THE RK-4 METHOD.

PESSTP IS THE SUM OF THE PERCENTAGE ERROR FOR THE STEP METHOD.

PESRMP IS THE SUM OF THE PERCENTAGE ERROR FUR THE AMP ME THOD.

PESKKG 1S THE SUM OF THE PERCENTAGE ERROR FOR THE RK-4 METHAD.

PHIRL1, ETC. ARE THE ELEMENTS OF THE TRANSITION MATRIX FUR THE
RAMP INPUT APPROXIMATION METHOD.

R 15 THE INPUT.

RAMPL AND RAMP2 ARE THE Tw) STATE VARIABLES USED BY THE RAMP
INPUT APPROX IMAT ION METHOD. RAMPL IS THE SOLJTIDN.

RK41 AND RK42 ARE THE TWQ STATE VARIABLES USED BY THE RK—4
METHOD. RK41 IS THE SOLUTION.

STEPL AND STEPZ ARE THE TWO STATE VARIABLES FOR THE STEP INPUT
APPROXIMATION METHOD. STEPL IS THE SOLUTION.

TIMF IS CURRENT TIME.

TNITER IS THE TOTAL NUMBER OF ITERATIONS.

ZETA IS THE DAMPING RATIO.

LR PR RS S22 R 3SR P R 2 R RSt E RS2 Rttt Rt R a2 Lty

PR K IR BRI RS A R I N CRECRE R RN )
L N IR A R R R N e N R R

* CALCULATION OF CONSTANTS USED IN ITERATICNS. *
* PREL IMINARY CALCULATIONS ARE DIVIDED INTO FJUR SETS. *
B Ty L ey e e P L]
* SZT J. DEFINED FUR AtL VALUES OF ZETA. *

B AR R RN R RN R R RO K R KRR R S XA R R AR KRR R ARk
T2 =0MEGA* OMEGA

T6l=T6O*DELT

T62=DEXP(-T61)

TH2=ZETA®ETA

Tha=( 1.D0-ZETA)&{1.DU+ZETA)
T4=UMEGAN®DELT

T$5=T94+1, 00

T96=DEL T*T52
T9I=[MEGAN®OMEGAN

T55=TS6-T2

T91=T9R*T96
T102=T99%T9G+4, DO*T 63 #T98%T2
T101=T58« T99/T132
T102=2,00%ZE TA*DOMEGA* TOB*OMEGAN/T102
T106=-2,D0%2ZFTA*TO8*T98/T102
T120=-2.D0% TO

T200=T62%T95

1291=1.00-T200

2ND
2ZND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2NO
2ND
2ND
2ND
2ND
2ND
2ZND
2ND
ZND
2ND
2ND

»2ND

2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
N0
2ZND
2ND
2ND
2ND
28D
2ND
2ND
28D
2ND
2ZND
24D
28D
2ND
2ND
2ND
2ND
2ND
2ND
28D
28D
2ND
240
2ND
2ND
2ND
20D
24D

0010
0020
0030
004y
0050
0060
0070
0080
0090
0100
otlo
0120
o130
0140
0150
0160
o170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
03to
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480
0490
0500
0510
052D
0530
0540
0550
0560
D570
0580
0590
0600
0610

YRR

T202=T62%(1.00-T94}
AMPL=T98/DSIRT(T102}%.703700
AP =AMPL/100.D0
I[F{ZETA.GE.1.0DO)GUTOLS
Py e S R L el L e Rl ettt
*  SET 1I. DEFINED ONLY FOR ZETA LESS THAN ONE, *
R ER KRR R R RN AR R R IR R R R KRR R KRR RN R KRR RN
TH3=0SeRT(To4)
To6=TIa*T£5
ToT=T65/LETA
PAI=DATAN{ T6T7}
Tod=Toe-PHI
T59=0S1N(T68)
T7J=DSIN(Ts6)
T7T1=ZETA%TTQ
T12=TT0/IMEGAN
TT3=T66+PHI
T74=DS IN(TT73)
T7o=0MEGAN=TTQ
T113=DMEGAN #T6&5
T203=T62/765
T24=-T169+2,D00%T71
T205=T203*T204
T206=T203%772
T207=1.03-T2023*T74
T208=-T203%T76
T209=-T203*T69
PHIRLI=T62/T65%{~T69+2,00*T7L)
PHIR12=T62/T119*TT0
«DO-1.00/T65%T62*TT4
T98*PHIRL2
1.,00/T65%T62%T69
PHIR21
HIR13
2 +DO*ZETA/ OMEGAN*(1 .DO-PHIA 221 +#( 4.00%T63-1.D0)*PHIA 12
ELT#PHIRT]

GITur?
15 IF(ZETA.GT.1.,000160T016
AR R AR KRR R R MR KRR KRk R KR R KRR KX KRRk R R R R

* SET 1il. DEFINED FOR ZETA EQUAL TO ONE. x

R B AR AR R AR KRR AR KRR R R R RN R R R R RN Sk R Rk R kR
PHIR11=T62%T95

26

+ DO-PHIRL1

T93*pHIR12

62%{1.00-T94)

PHlR14=DELT-2.D0/0MEGAN® (1. DO-PHIR22) +3.Du¥PHIR]Z

PHIRZ3==-PHIR21

PH1R26 =PH1R13

G3TO17
AR AR AR AR RN R EE R R RS R AR A AR R AR KRR AR R AT
# SET Iv. ODEFINED ONLY FOR ZETA GREATER THAN ONE. *

AR RS AR AR R A AR R R R R AR R E R R KRR IK RN AR R R E R KRR KRR K
16 TB2=DSQRT (-T64 1)

T38=UMEGAN* T2

T39=2,.00%788

T99 =1 . T3/ T89

T93=0ME3AN/12.D0%T82)

TI7=2ETA/TA2

T74=-1.00/(ZETA*TB2-Te4 )

T79=u.500%T78

2ND
2ND
2ND
2NO
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND

2ND
2 ND
2ND
2ND
2ND
28D
2?ND
2ND
28D
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND

0620
0630
0640
0650
0660
0670
o680
0690
0700
0710
0720
0730
0740
9750
0760
0770
0780
0790
0800
os1to
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
09s0
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1050
1070
1080
1090
110D
1110
1120
113D
1140
1150
1160
1170
1180
1190
1200
1210
1229

38



¢ e

[aNal ol

Tdu=1. DU+ T77

TB1=0.500%T80
TIL=ULSTOHITHI+ZETAXTH2-1.D01/T 64
T92=0.5D00/1T63-1 DI+LETA%TB2)
T138=T1C4/T782

Ta3=2ETA-TB2

T84=2ETA+ 132

T162=-0MEGAN%*T83
T163=~CMEGAN*TB&
T35=DE XP{ T162%DELT)
T86=0DEXP{T163%DELT)
T87=T5-T86
T164=-C.500%T101*T78
T165=-0.5D0%T101*TB80
T16€=T138/2.D0
T210=TE1*TB5+T79% T8¢
T211=TS0*{T785-T86}
T212=TG1#T85+792%T36+1.D0
T213=T79%T85+T31*T86
T214=-T93 %787

PHIRL1=T79* TS5+ TB1*TBG+TTT*T87
PHIR] S0%T8T
PHIRL3=1.D0+¢T91*TB5+T92 *T86
PHIR21=-T98*PHIRL2

PHIR2 73%T85+TE1%T86

PHIR2 PHIR21

PHIR2 HIR13

2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2NO
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2NO
2ND
2ND
2ND
2ND
2ND
2ND

PHIR14=CELT+(2.D0%ZETA/OMEGAN ) *(PHIR22-1.00)#(2.D00*ZETA-1.D0)*(2.D2ND

®(*2E TA+1.DOVXPHIRLZ
L R R e R L R i R R RS R R RS RS PP RS S TR Y
* REGIN ITERATION. . *
AR GR AR AR AR R AR U R RS R AR D ARk R RN kKRR R T ke Rk kR kA kR Rk R Rk &k
17 CONTINUE
2 TML=TIVE
TNITER= INITER+1.00
T IME= [T IME®DELT
T14=CMEGAXTIME
RSTUR=PR
R=LCUS(TI4)
T1CS=T60% TIME
TL1e=0EXP(-T109)
T111=CMEGA®T IME
T112=DCGSE TIIL)
T113=0SIN(T111)
T118=CFEGANST [ME
IF(2ZFTALGE. 1, 2001GOTOBY
T136=T119*T IME
T137=T136-PHI
Tile=DSIN(TLI3T)
T117=DSIN{T136)
GOTC8L :
30 IF{ZETALEG.1.0DIGOTOAL
TL6O=DEXP{T162%T ME)
TLEL=DEXP{ T163* TIME)
a1 ITIME= ITIME+1
IF(ZETA-]1,000127,28,29
LI R e e T e e R LR L S R e s 2222 s T 2 2]
* BEGIN CALCULATION OF EXACT SOLUTION, THREE CASES. *
AR RN AR R RN SNk SRR Rk Rk kR kR ok Rk kR kR Rk Rk kg Rk Rk
* (ASE L. ZETA EQUAL TO OR GREATER THAN 2ERJ AND LESS THAN ONE.
27 EXACT=TIOL/T65*T116%T110+T104/T65*T1104T 1174 T101%T112+TL03%T113

2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ZND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND

1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430

‘1440

1450
16460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
170D
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

e oy

GuTI30
CASF I1. ZETA EQUAL TU ONE.
B EXACT==TLUISTILU¥(1.D0-T118) ¢T1O4*TL1B*TILI+TLOL*TLLZ4T103%T113
GOTU30
% CASE IIf. ZETA GREATER THAN ONE,
29 EXACT=T164%T160+TL65% TLOL+T166# (TL60U-T161) +T1OL1#TL12+4T103%T113
30 IF(ZETA-1.00)31,32,33
ARG E R R R G R R K R R Y ER A AR R Rk R ok kR kR Rk Rk Rk Rk
% A8EGIN CALCULATION OF STEP TRANSITION MATRIX SOLUTION, .
SRR A E R AR R R R R Rk R kRN R A KRR ROk kAN AR AR R Rk R kKRN
% CASE T. ZETA EQUAL TO OR GREATER THAN ZERD AND LESS THAN ONE.
2] TEMP=STEP]
STEPL=T205%STEPL +T206 *STEP2 +T 20 T#RSTOR
STEP2=T208=TEMP+T209% STEP2+ T2UBXRSTOR
€3T 290
= CASE I1.
32 TEMP=STEPL
STEPL=T200%STEP L+T 96*STEP 2+ T201 *R STOR
STEPZ=TSTRSTOR-TOTR TEMP+T202*STEP2
GOT0990
* CASE III.
23 TEMP=STEPL
STEPL=T2L0*STEP1+T211*STEP2¢T21 2%RSTOR
STEP2=T214*TEMP~T214 *RSTUR+T 213%STEP2
% C(ALCULATE ERROR VALUES FOR THE STEP METHOD.
90 ERSTEP=DABS(EXACT-STEPL)
PESTPN=ERSTEP/ AMP
PESSTP=PESSTP+PESTAN
APESTP=PESSTP/TNITER
AR AR KRR R R KRR R R R ARk kR ko ko k kR kxR kR kR kX
* BEGIN CALCULATION OF RAMP TRANSITION MATRIX SOLUTIOUN. *
AER KRR SRR R R R R K R R kKRR KR KK KRR R KRR KR R R kTR K
SLCPE=(R=-RSTOR) /DELT
I1TEMP=RAMP ]
FAMPL=PHIRL] #RAMPL +PHIR 1 2%R AMP 24RHIR 1 35k STOR P+ IR 1 4% SLIPE
RAMP2=PHIRZ1%Z1 TEMP+PHI R2Z*RAMP2+ PHIR23*AST JR+PHIR24*SLOPE
* CALCULATE ERROR VALUES FOR THE RAMP METHOD,
ERRAMP=CABS (EXACT -RAMPL }
PERMPN=ERRAMP/AMP
PESHMP=PESRMP +PERMPN
APEKMP=PESRMP/TNITER
AR R R R IRk R R R AN KRG ARG R R R R KRR KRk R R R R Rk Ak R KRR R R R X
* DEGIN CALCJLATIUN OF RUNGE-KUTTA FIURTH ORDER SULUTION. *
RN KRR AR RS KRR RS KR KGR R R KRN R AR R SRR AR KT KRk kR ¥ kR Rk

R

ZETA EQUAL TO ONE.

ZETA GREATER THAN ONE.

TEMPT1=TM1+T9
PL=UCCS{UMEGA®T EMPT]

TEMP=T58¢R1

DRK 4 1=RK 42

DRK&2=T120%RK&42 -T9B*RK414T9G*RSTOR
DEL11=DELT*DRK&]1

CEL 21=CELT *DRK&2

DO

CEL12=DELT*TEMP 2
UEL22=DFLT*{T120%TEMP2-TS8%T EMPL +TEMP )
TEMD 1=RK4140EL12/2.00
TEMP2=RK42+CEL22/2.00

DEL13=DELT* TEMP2
OELZ3=CELT*(T120%TE4P2-T98* TEMP 1+ TEMP}
TEMPl=FK&l +DFLL13

TEMP2=0K42¢DEL23

2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2NO
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2N0
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND

2ND,

2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND
2ND

1840
1850
1860
1870

1880
1890
1900
1510
1320

1930
1940
1950

1960
1970
1980

1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2119
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2210
2280

2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
26410
2420
2430
2440

68
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CELY4=DELT*TEMPZ 2ND 2450

DEL24=0FLT#(T12 I*TEMP2-TOB& TEMPL+ T98%*R} 2ND 2460
FK31=RK&L+(DFL11+2.D0%{ DEL12+DEL 13)+DEL14)/5.D) 2ND 2470
KKa2=RK&2+{DEL21+2 4 00*(DEL22+CEL23) +DEL24 ¥/ 6410 2ND 2480
* CALCULATE FRRUR VALUES FCR THE RK-4 METHCO. 2ND 2490
FRRK4=CABS (EXACT-RKal) 2ND 2500
£ SFK4 =ESRK&+ERRK4 2ND 2510
PERK4N=FERRK 4/AMP 2ND 2520

PES RK: FSRK4 ¢PERK&4N 2ND 2530
APERR&L=PF S2K& /TNI TER 2ND 2540
[F{TIME.GE.TF INALIGUTO55 2ND 2550
GG 7T 2 2ND 2560
55 CONTINLE 2ND 2570
AREEERERRRERR ARG RU KRR KRR KRR AR ARG E R R R C ke R bk a2k ke sk 2ND 2580
* ENO ITERATICN. * 2ND 2590

ARG ARG KRR KRR KRR AR KRB R A AR RS R kR KRRk kKRR RE ek kxx ok xbkxntx  IND 2600

06



APPENDIX E

ERROR MEASUREMENT CONSIDERATIONS.
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Consider Figure 30. The best indication of the accuracy of a nﬁmer—
ical simulation method is how closely the approximate solution follows
the exact solution over some time interval. For this reason a time-
averaged error is needed. Furthermore, since the error can be positive

or negative, absolute error should be used. So define

_ exact _ approximate
Absolute Error = [ 1,ti0n solution
N
Error Sum = ) (absolute error),
i=1

€TrTOoTr sSum

Average Absolute Error = N

where i indicates a particular point in time, and N is the total number

of solution steps in the interval.

y(t)

EXACT

APPROXIMATE

Figure 30. Error Measurement
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The average absolute error measures the error throughout the inter-
val, but it does not give relative-error information. If the exact solu-
tion is small in magnitude, the absolute error can be small while the
percentage error is large. A true per-cent error, on the other hand,
gives relative-error information without giving any indication about ab-
solute-error magnitudes. Furthermore, if the solution curve is oscilla-
tory, as in the cases studied here, there is a large peak value of
per-cent error whenever the solution passes through zero, which is not at
all indicative of how closely the approximation follows the solution. So
a normalized per-cent error can be defined by dividing the absolute error
by the RMS of the steady-state response amplitude. Since an input ampli-
tude of 1 is used throughout the investigations, the steady-state

response amplitude is the same as the amplitude ratio, which is given by

1

J1 4 W)

Amplitude =

for the first-order system and

2
w

Amplitude =

2 2.2 22
/[(-w + mn) + 422w w,

for the second-order system. The RMS average is obtained as

AMPL = ﬁg (amplitude) s

normalized per-cent error is given by

absolute error
AMPL

NPE = ( ) x 100)% R

and finally, averaged normalized per-cent error is
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N
'21

—l=
ANPE = —_— .

(NPE)

This error measure gives relative-error information since it is a per-
centage based on a nominal response amplitude. It also gives absolute-
error information since it is normalized by a constant, which is known
for the particular system being considered. The normalized per-cent

error can be multiplied by this known constant to give the absolute

. €rror.
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The time required to do a calculation on a computer is highly vari-
able. It depends on the particular computer being used, the word length,
and in some cases, the number of programs being run. The most reliable
way to estimate the computation time for a numerical method is to count
each basic arithmetic operation done in the calculation.  If the time re-
quired for the particular computer being used to do each operation is
known, an estimate. for the speed of the method can be obtained.

The basic operations done in both the transition imatrix method and
the Runge-Kutta fourth-order method were counted and ére tabulated below.
The times in Table I were calculated using the following estimates for
the IBM 360 model 65:

1 Addition = 0.65 Microseconds
1 Multiplication =.4.9 Microseconds
The times for the RK-4 method include an estimate of 1 multiplication for

an additional input evaluation.

TABLE 1

COMPUTATION TIME

Total Time
Additions  Multiplications per Iteration % of RK-4
(Microseconds)

Step 1 2 10.45 32.0
First
Order Ramp 3 4 21.55 66.0
System

RK-4 5 5 32.65. 100.0

Step 4 6 29.40 21.7
Second
Order Ramp 7 9 48.65 33.0
System

RK-4 23 26 147.25 100.0
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