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CHAPTER I 

INTRODUCTION 

Assumptions and Notations 

The two sample test introduced by Wilcoxon [12] in 1945 is equiva

lent to the Mann-Whitney U test introduced in 1947 [6]. The experimen

tal application 0£ the test is as follows. Assume an experiment in 

which a random sample is taken from each 0£ two independent populations. 

Also, assume that each population has a continuous distribution 0£ prob

abilities, and that the scale 0£ measurement is at least ordinal. The 

objective is to test the hypothesis that the two populations are identi

cally distributed. Let x 1 , x 2 , ••• , xm denote the random sample 0£ size 

m from the first population and y 1 , y2 , ••• , yn denote the .random sample 

0£ size n from the second population. For convenience, it will be 

assumed that m < n. (This can always be achieved by denoting the 

smaller sample by X-values and the larger sample by Y-values.) Also, 

let the populations have cumulative distribution £unctions G(x) and 

H(y), then define the random variable X to be stochastically larger 

than the random variable Yi£ G(t) > H(t) .£or all t with strict inequal

ity £or at least one t. Thus, we are interested in testing H0 :G(t) 

= H(t) £or all t against an alternative which either specifies a simple 

negation 0£ H0 or specifies that one random variable is stochastically 

larger than the other. The hypotheses are more commonly stated as: 

1 



2 

P(X < Y) 

against one of the following: 

H1:P(X > Y) f }2, 

H3 :P(X > Y) < }2. 

Under the null hypothesis, the data may be viewed as a single ran-

dom sample of size N = m + n from a common population; hence the N 

observed values are ranked from 1 to Nin ascending algebraic order. 

That is, the smallest observed value receives rank 1, the second smallest 

observed value receives rank 2, ••• , and the largest observed value 

receives rank N. Despite the assumption that the samples come from 

continuous distributions, ties do occur. However, the mid-ranks proce-

dure may be used when the number of ties is moderate. The mid-ranks 

procedure assigns to the tied observations the average of the ranks that 

would have been assigned to the observations had no ties occurred. 

The test introduced by Wilcoxon [12] is based on either the statis-

tic W or the statistic W where W is the sum of ranks assigned to the 
x y x 

m X-values and W is the sum of ranks assigned to then Y-values. Since 
y 

the sum of all ranks assigned to the data is simply the sum of the first 

N positive integers it follows that W + W = N(N + 1)/2. 
x y 

The test introduced by Mann and Whitney [6] is based on either the 

statistic Ux or the statistic UywhereUx is the number of pairings 

(x., y.) for which x. > y. and U is the number of pairings (x., y.) for 
l J l J y l J 

which x. < y. for i = 1 1 2, ••• , m and j = 1, 2, ••• , n. The statistics 
l J 



u and u differ from w and w 
y' 

respectively, only by a constant; that x y x 

is, 

u w -m(m+1)/2 
x x 

and 

u w - n(n+1)/2. 
y y 

Since there are mn pairings (x., y.), it follows that U + U ·= mn. 
1 J X y 

,.. 
The observed significance level, denoted by a, is defined as the 

smallest significance level a for which H0 may be rejected. In other 

,.. 
words, a is the probability of obtaining a result which gives at least 

as much support to the alternative hypothesis as that obtained given 

that H0 is true. Let w denote the observed value of W; then u = w -
x 

m(m + 1)/2 is the observed value of U. Letting&. denote the observed 
X 1 

significance level for the alternative hypothesis Hi(i = 1, 2, J), then 

,$, =P(W >w!H0 true) 
2 x -

P(Ux > u!H0 true), and 

The distribution properties of the statistics discussed above will 

be treated in Chapter II. 

Literature Review 

The two sample test based on ranks was first proposed by Wilcoxon 

[12] in 1945. His motivation for the test was "to obtain a rapid 

approximate idea of the significance of the differences in [unpaired] 

3 



experiments." He assumed that the data resulted from two unpaired 

samples of equal sizes for the purpose of testing the equality of means 

of the populations, H0 :E(X) = E(Y), against one of the following 

alternatives: 

H2 : E(X) > E(Y), or 

HJ: E(X) < E(Y). 

In order to be able to state the hypotheses as above, the additional 

assumption must be made that should there be any difference in the two 

populations, the difference is in the location of the distribution of 

each population. (The assumption implies equal variances for the two 

populations. Should the experimenter be reluctant to make such an 

assumption, it is worth noting that there is a popular distribution-free 

test known as the Siegel & Tukey rank sum test for testing equality of 

variances.) 

In 1947, Mann and Whitney [6] proposed a test procedure which is 

equivalent to that proposed by Wilcoxon [12]. They expanded the scope 

of application by relaxing the assumption implied above and including 

the case in which the sample sizes are unequal. Based on their assump-

tions (as stated in the previous section), they stated the null hypoth-

esis H0 in terms of the two populations having identical cumulative 

distribution functions against the less restrictive alternative that 

specified a simple negation of H0 or one of the random variables to be 

stochastically larger than the other. They transformed the test statis-

tics W and W to Ux and Uy, respectively, and derived a recurrence x y 

relation involving m and n to calculate the distribution of 
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probabilities for Ux (or Uy), assuming there exist no ties. Using this 

recurrence relation they constructed tables of the probabilities of U 

for max(m, n) < 8. Even at the comparatively small sample sizes 

m = n = 8, they found the distribution of U to be "almost normal. 11 Mann 

and Whitney [6] then proved that under H0 the U statistic is distributed 

asymptotically normally for large values of m and n. 

Most applications of this test procedure do not include the 

restrictive assumption that if the distributions differ, they differ 

only in location parameters. Regardless of whether or not this assump-

tion is included, the test procedure is referred as the Wilcoxon Rank 

Sum Test when W or W is used as the test statistic and as the Mann-x y 

Whitney U test when Ux or Uy is used. More generally, the proceudre may 

be referred to as the Wilcoxon-Mann-Whitney test. 

Most subsequent papers dealing with this test procedure are con-

cerned with the problem of either tabulating the exact distribution of 

probabilities or approximating the distribution of either Wx or Ux' 

under H0 • All are based on the case of no ties. Virtually all tabula-

tions give lower-tail critical values of one of the statistics forcer-

tain ones of the more commonly used significance levels. An a-level 

lower-tail critical value ta may be defined for any integer valued test 

statistic T as the largest interger t such that P(T < t) < a. 

Wilcoxon [13] presented tables of the .05, .02, and .01 level 

critical values of Wx for the case m = n = 5(1)20 in 1947. In the same 

year, Mann and Whitney [6] constructed tables of probabilities of U for 

max(m, n),:: 8 using their recurrence relation. These tables were 

expanded by Owen [8] to max(m, n) ~ 10. The tabulation by Wilcoxon, 

Katti, and Wilcox [14] is the most extensive of these. For a= .005, 



.01, .025 1 .05, and max(m, n) :s_ 50, they tabulate the pair (w , T-w ) 
a.. a 

along with P(W < w ) = P(W > T- w ) to four decimal places and the 
x- a x- a 

pair (w +1, T-w -1) along with P(W < w +1) = P(W > T-w -1) to 
a. 0'.. x- 0.. x- 0'.. 

four decimal places, where wa. is the lower-tail critical value of Wx at 

level a. and T = m(N+ 1). Milton [7] tabulates lower-tail critical 

values of U at the significance levels 0'.. = .0005, .001, .0025, .005, 

.01, .025, .05, and .10 form< 20, n .:S. 40. Other tabulations are ref-

6 

erenced in the bibliography by Jacobson [5]. A non-recurrence procedure 

for constructing these distributions is given by van der Vaart [9]. 

Howeverj this procedure has gained limited acceptance due to the tedium 

involved in its application. 

As previously mentioned, the normal approximation was first pro-

posed by Mann and Whitney [6] in 1947. White [11] used the normal 

approximation to approximate 0'..-level critical values of the statistic 

Wx for 0.. = .001, .01, and .05. White found the normal approximation to 

be excellent at the 0'.. = .05 level and good at the 0.. = .01 level. pro-

vided m was of sufficient size. As an example, he found that for 

m + n = JO the normally approximated value was in consonance with the 

exact value in 11 of the 14 cases, the remaining 3 cases differing only 

by unity. However, Fix and Hodges [4] found that the percent relative 

errors incurred in using the normal approximation for approximating 

cumulative probabilities of Ux are quite large when m < 12 and u < 100. 

For example, when m = n = 12 and u = 55, they found the normally approx-

imated value to be 0.17039 and the exact value to be 0.17368. 

Another area of confusion arising from the several discussions on 

the normal approximation is the use of a correction for continuity. 

Verdooren [10] first suggested its use in 1963. However, no mention has 
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been made as to the advantages or disadvantages of such a correction. 

The.normal approximation is discussed even further by Verdooren [10], 

Jacobson [5], and Buckle, Kraft, and van Eeden [1]. 

The use of the Edgeworth approximation was first suggested by Fix 

and Hodges [4] in 1955. They found that a more efficient approximation 

was needed due to the limitations of the tables of exact distributions 

and due to the large percent relative errors incurred by the normal 

approximation. As a result, they derived an approximation using the 

2 
Edgeworth series to terms of order 1/m. They fo~nd the Edgeworth 

approximation to be accurate to about four decimal places form= n 

= 12, the accuracy of the approximation increasing for increasing values 

of m. In 1963, Verdooren [10] discussed the use of the Edgeworth 

approximation to terms of order 1/m and compared it td the normal 

approximation for selected values of m and n, a= .001, .005, .010, 

.025, .050, and .10. The Edgeworth approximation to terms of order 1/m 

shows a considerable improvement over the normal approximation and is 

accurate to about four decimal places for n = 25, m 3'.: 5. It is inter-

esting to note that the statement of accuracy made for the Edgeworth 

approximation to terms of order 1/m2 (as discussed by Fix and Hodges 

[4]) extends to the Edgeworth approximation to terms of order 1/m (as 

discussed by Verdooren [10]). Furthermore, as in the case of the normal 

approximation, no mention is made as to the effect of the correction 

for continuity on the Edgeworth approximation. Finally, it may be of 

interest to compare the corrected Edgeworth approximation to terms of 

order 1/m to the uncorrected Edgeworth approximation to terms of order 

2 
1/m • 
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Statement of the Problem 

Concerning the Edgeworth approximation, it remains unclear as to 

whether or not there is any advantage to using the approximation to 

terms of order 1/m2 over the approximation to terms of order 1/m. It is 

apparent from Fix and Hodges' [~] comparison of the two versions of the 

Edgeworth approximation that greater accuracy is gained from the approx-

2 
imation to terms of order 1/m. However, the comparisons are made at 

only a few values of m, n, and u, and it remains unknown as to whether 

or not the additional computations of terms merit the increase in 

accuracy. 

Thus, there remain many unanswered questions concerning the normal 

and the Edgeworth approximations. The objectives of this study are: To 

describe the general behavior of each approximation over the complete 

distribution of Wx or Ux, to determine the magnitude of the. percentage 

errors for the normal approximation, to determine the significance 

levels for which it is advantageous to use the correction for continu-

ity, to determine the magnitude of the.percentage errors for the 

Edgeworth approximation, to compare the accuracy of the Edgeworth 

2 
approximation to terms of order 1/m to the accuracy of the approxima-

tion to terms of order 1/m, to determine any advantages or disadvantages 

of using the correction for continuity in the Edgeworth approximations, 

and to compare the uncorrected Edgeworth approximation to terms of order 

1/m2 to the corrected Edgeworth approxim~tion to terms of order 1/m. 



CHAPTER II 

DISTRIBUTION PROPERTIF.S 

The Null Distribution 

The number of ways in which the integers 1, 2, ••• , N may be par-

titioned into a set of m integers to be assigned as ranks to the X

values is (N). For each of these, there remains a second set of n 
m 

integers to be assigned as ranks to the Y-values; thus, there are 

N N 
( ) = ( ) ways in which the integers 1, 2, ••• , N may be partitioned 
n m 

into a set of n integers. Under the null hypothesis that the two popu-

lations sampled are identically distributed, each of these partitions is 

equally likely to occur. Thus, one may obtain the null distribution of 

each of the statistics Wx, Wy, Ux, and UY in the following manner. 

First, list each of the possible partitions of tpe integers 1, 2, ••• , N. 

Next, calculate the value of the desired statistic for each partition, 

then tabulate the frequency of occurrence for the distinct values of the 

statistic. (N) Finally, divide each frequency by m to obtain the relative 

frequency of occurrence for the range of values for the statistic. For 

N 
example, Pn,m(Ux = u) = fu/(m) for all integer values of u where fu is 

the number of partitions giving Ux = u. A similar statement may be made 

for each of the other statistics. 

The distribution of Wx (or Wy) under the null hypothesis was first 

given by Wilcoxon [12] in 1945. In terms of computing moments, however, 

9 
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it is easier to use the Mann-Whitney U statistic. Mann and Whitney [6] 

derived a recurrence relation for calculating the probability of a par-

ticular value of u for fixed m and n (under il:0 } to be as follows: 

P (U = u) = ....£.... P (U 
n,m x n+m n-1,m x 

=u-m)+--..!!!....P (U 
n+m n,m-1 x 

u) 

where p. (U = o) p .(U = o) = 1, P. .(U = u) .. O for 
1,0 X o,J x 1,J x 

u< o, and P. (U u) = p .(U = u) = 0 for u I o. Thus, the cumula-
1,0 x o,J x 

tive distributien function ef Ux under H0 is given by:. 

u 

P (U < u) = \ P (U z). 
n,m x - /_ n,m .x 

Z=O 

The abeve may be expressed in terms of cumulative frequencies and will 

be given explicitly in the next chapter. (See formula (3.1).) 

It may be shown that the statistics U and U are identically dis-
x y 

tributed under H0 and that the statistics Wx and WY are each identical 

to them except for a shift in scale values. That is: 

P(U u) P(U u) 
x y 

= P(W = u + m(in+l)/2) 
x 

= P(W = u + n(n+l)/2). (2.1) 
y 

The common probability in (2.1) is positive for O < u < mn and has value 

zero otherwise. Thus, it follows that 

P(U < u) = P(U < u) x- y-

P(W < u + m(m+l)/2) x-

P(W < u + n(n+l)/2) 
y-

(2.2) 



for all real numbers u. Due to the fact that each statistic is 

symmetric about its mean, it can be shown that 

P(U < u) = P(U > mn - u) x- x-

P(U > mn - u) y-

= P(W > m(N+n+l)/2 - u) x-

11 

P(W > n(N+m+l)/2 - u) y- (2.J) 

for all real numbers u. 

Moments 

Define zi as follows: 

z. 1 if the rank i is assigned to an X-value 
1 

= 0 otherwise. 

Then, the test introduced by Wilcoxon [:t2.J is based on Wx or WY where 
N 

Wx i~l i • Zi is the sum of the ranks assigned to X-values and 
N 

WY = ~ i(l- z.) is the sum of the ranks assigned to Y-values. As it 
i=l 1 

was assumed that the samples are random s~ples drawn from two indepen-

dent populations, the zi are mutually independent and, under the null 

hypothesis, are identically distributed. It follows that P(zi = 1) =m/N 

and P(zi = O) = n/N which implies 

E(zi) = m/N for all i, and 

- mn for all i. 
N2 

Therefore, 



N 
E(Wx) E( iE1 i • z.) m(N+1)/2, 

1 

N 
E(Wy) E[ ~ i(1 - z.) J n(N+1)/2, 

~=1 1 

E(U) E[W - m(m+1)/2] mn/2, and x x 

mn/2. 

Due to the fact that the statistics W, W, U , and U are identically 
x y x y 

distributed except for a shift in the scale value, the central moments 

of order r (denotedµ) are equal for all of the statistics, 
r 

12 

r = 2, 3, •••. Due to the symmetry of each of the statistics about its 

mean, all odd moments will be zero; that is,µ = 0 for 
2r+1 

r = 1, 2, •••• Thus, each statistic has the common variance given by: 

2 
I!] 

N 

l 
i=1 

mn(N+1)/12. 

Mann and Whitney [6] derived the even moments to be as follows: 

r 
1 l n+m 

0:.=0 

2~- 2r-2o:,J + mn -·.!!; . (U-mn/2) . 
n,m-1 

for r 1, 2, • • •. 

The Normal Approximation 

The limiting distribution of U where U denotes either U or U was 
x y 

proved by Mann and Whitney [6] to be asymptotically normal as m and n 

become infinitely large. In general, their method of proof consists of 
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showing by the method of undetermined coefficients that the central 

moment µ 2r contains a polynomial in m and n of degree Jr which is 

divisible by mn(N+1), considering the ratio of µ 2r toµ;, and taking the 

limit of this ratio as m and n approach infinity in any arbitrary manneL 

Due to the results of Mann and Whitney [6], the cumulative distri-

bution function of U may be approximated by evaluating the standard 

normal cumulative distribution function as follows: 

P(U < u) • F(x) Ix ~ 2 
-~(1/2TI) exp(-v /2)dv 

where x now denotes the standardized value of u given by 

x 
u - E(U) 

/Var(U) 

u - mn/2 

/mn(N+1)/12 

In general, the cumulative distribution function of any one of the 

(2.4) 

statistics may be approximated in the same manner. Letting T denote 

any one of the statistics, then P(T < t) ~ F(t) where F(t) is as given 

in formula (2.4) and 

x 
t - E(T) 

/Var(T) 

t - E(T) 

/mn(N+1)/12 

Employing the usual correction for continuity, the standardized u-value 

becomes 

x 
c 

u-E(U)+~ 

/Var(U) 

u - mn/2 + ~ 

/mn(N+1)/12 
(2.6) 

Thus, F(x) will be referred to as the uncorrected normal approximation 

when xis as given by formula (2.5) and referred to as the corrected 



14 

normal approximation when xis as given by formula (2.6). 

The Edgeworth Approximation 

As discussed earlier, Fix and Hodges [4] sought to improve the 

normal approximation by using the Edgeworth series to terms of order 

2 
1/m. Due to the accuracy obtained by the Edgeworth approximation to 

terms of order 1/m (see Verdooren [10]), both versions of the approxima-

tion are considered in this research. 

Fix and Hodges [4] give the Edgeworth approximation to terms of 

order 1/m to be 

where F(x) is the normal approximation as given by formula (2.4), and x 

is either the uncorrected or the corrected standardized u-value as given 

by formula 

(J) 
where e 

n,m 

( 2 • 5 ) or ( 2. 6 ) • 

= (µ4/µ~ - J)/4! 

The term 

and 

e(J) is the Edgeworth coefficient 
n ,rn 

E(U - mn/2)k. Mann and.Whitney. [6] 

give the values of~ fork= 2 and 4 as µ2 = rnn(N+1)/;t.2and 

Thus, Fix and Hodges [4] give the Edgeworth coefficient to be 

( 3) 
e 
n,m 

-Cm2 + n 2 + mn + N]/[20mn(N+1)]. (2.8) 

(J) 
The term f (x) is the third derivative of the s_tandard normal density 

function; thus, 

-~ 3 2 -(2TT) (x - Jx)exp(-x /2). 
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2 
The Edgeworth approximation to terms of order 1/m is given by Fix 

and Hodges [4] to be 

P(U < u) 

where 

and 

( 5) 
e 

n,m 

e (7) = 35(µ I 2 . )2/8 
n ,m 4: µ2 - 3 ' ! • 

Mann and Whitney [6] give µ6 to be as follows: 

[ 2 2 2 2 3 3 ] µ6 = mn(N+1) 35m n (m +n) + ?Om n + P(m,n) /4032 

where 

P(m,n) 

2 2 2 2 3 3 
52mn(m +n) - 43m n + 32(m +n) 

2 2 
+ 14mnN + 8(m +n) + 16mn - 8N. 

(2.10) 

(2.11) 

(2.12) 

After substitution and simplification of the above, Fix and Hodges [4] 

give 

and 

(7) 
e 
n,m 

(m2 + n2 + mn + N) 2 

800 m2n2 (N+1) 2 

(2.13) 

(2.14) 
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It follows that 

(5) -~ 5 J 2 
f (x) = -(2TI) (x - 10x + 15x)exp(-x /2) and (2.15) 

(2.16) 



CHAPTER III 

PROCEDURES AND ACCURACY 

Calculation of the Exact Cumulative Probabilities 

The exact cumulative probabilities of the Mann-Whitney U statistic 

under the null hypothesis were calculated for the lower half of the 

distribution, m ::S, n ~ JO. It is not necessary to calculate the upper 

half of the distribution as the U statistic is symmetric about its mean 

for all m and n. Although a non-recurrence procedure exists for con-

structing the exact cumulative probabilities (see van der Vaart [9]), 

its application is limited due to the tedium involved in the computa-

tions. The method used here involved the recurrence relation given by 

Owen [8]. He found that 

F (u) = F 1 (u-m) + F 1 (u) 
n,m n- ,m n,m-

(J.1) 

where F (u) denotes the cumulative frequency of .the event U < u where 
n,m 

the sample from the first population is of size m and the sample from 

the second population is of size n. The following conditions are given 

for this recurrence relation: 

F (u) = 0 for all u < o, n,m 

F (u) F (u) = 1 for u o, 
n,o o,m 

F (u) = F (u) O for u > 1, and 
n,o o,m 

17 
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F (u) = F (u) for all u. 
n,m m,n 

The recurrence relation as stated above can be derived from the 

probability recurrence relation given by Mann and Whitney [6]. 

For each value of u, 0 ~ u :S. mn/2, the normal approximation was 

calculated using formula (2.4) employing both the uncorrected and cor-

:i;-ected standardized u-value as given by formulas (2.5) and (2.6). In 

the same manner, using both the uncorrected and corrected standardized 

u-value, the Edgeworth approximations to terms of order 1/m and to terms 

of order 1/m2 were calculated, as given by formulas (2.7) and (2.10), 

respectively. The exact cumulative probabilities and the six approxima-

tions as described above were calculated form< n = 15, 17, 20, 22, 25, 

27, and JO. 

To measure the effectiveness of each of the appreximations, the 

percent relative error (PRE) was calculated for each approximate prob-

ability obtained where 

PRE (Approximated Prebability) - (Exact Probability) • lOO. 
(Exact Prabability) 

(J.2) 

A positive value obtained for the PRE represents an over-estimation by 

the approximation, and a negative value represents an under-estimation 

by the approximation. The behavior of the percent relative error func-

tion for each of the approximations is summarized in the following 

chapter. 

Computational Accuracy 

All computations were performed on the IBM J60, Model 65 Computer 

at the Oklahoma State University Computer Cente~. All computations were 
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performed in double precision, and the DERF/DERFC algorithm [3] was used 

to evaluate the standard normal distribution function F(x). 

In addition, the .05 one-sided critical values and probability 

levels reported by Wilcoxon, Katti, and Wilcox [14] were verified for 

the values of m and n given above. However, in comparison to the cor

rected normal and Edgeworth (to terms of order 1/m) approximations given 

by Verdooren [10], several inconsistencies arose in the Edgeworth approx

imations. The differences were never by more than .0001, and it is felt 

that the inconsistencies arose as a result of computational techniques. 

For example, Verdooren presented his results in 1963, but the DERF/DERFC 

algorithm [3] used in this research to evaluate the standard normal dis

tribution function was not available until 1969. 



CHAPTER IV 

SUMMARY OF FINDINGS 

It is the purpose of this chapter to summarize the general behavior 

of the PRE incurred as a function of the exact cumulative probability a 

being approximated for each of the approximations considered. This 

summary will be made with the help of graphs which will also serve to 

illustrate the fact that the magnitude of PRE incurred tends to be a 

decreasing function of either morn for fixed a. Also, attention is 

given to the question of whether or not to include the usual correction 

for continuity. The reader is asked to keep in mind that each PRE 

"curve" represents a series of discrete points. 

To enhance the readability of the section on Edgeworth approxima

tions, the Edgeworth approximation to terms of order 1/m will be denoted 

by EE1, and the Edgeworth approximations to terms of order 1/m2 will be 

denoted by EE2. 

As tables are readily available which give the lower-tail critical 

values of W or U for max(m, n) ::s_ 20, the approximations are discussed 

for min(m, n) ~ 20 and max(m, n) ~ JO. It is felt that under these 

restrictions on m and n, a suf.ficient amount of data was generated on 

which to base this paper. 

The Normal Approximation 

The general behavior of the PRE incurred as a function of the exact 

20 
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probability may be seen in Figure 1 for the uncorrected normal approxi

mation. Note the change in the PRE scale at 10 percent in Figure 1(a) 

and the change in scale from Figure 1(a) to Figure 1(b). The PRE is 

extremely large for small exact probability levels, and decreases very 

rapidly to zero corresponding to an exact probability level between .015 

and .020. The PRE then becomes negative, bottoms out for a between .09 

and .10, and then decreases in absolute value to a value between O and 

-1.1 percent at a= .50. For example, whert m = n = 20, the -PRE for the 

uncorrected normal approximation is almost 100 percent for a= .0005, 

becomes negative at a= .0158, bottoms out to -J.5 percent at a= .0913, 

and then decreases in absolute value to -1.1 percerit at a= .50. 

As is illustrated by Figure 1, the magnitude of PRE corresponding 

to the uncorrected normal approximation is a decreasing function of 

either morn for fixed a. An exception to this statement is noted in 

the neighborhood of a= .015 where the PRE changes sign from positive to 

negative. Although only three sets of sample size are presented in 

Figure 1, intermediate sample sizes were graphed by the author, and the 

general behavior of the PRE function is consistent with the behavior 

exemplified by Figure 1. 

Figure 2 compares the behavior of the PRE incurred using the uncor

rected normal approximation to that using the corrected normal approxi

mation for fixed m and n. As is suggested by Figure 2, it is 

advantageous to use the usual correction for continuity for a greater 

than about .025 and omit it otherwise. Within the scope of this study, 

a reasonable rule of thumb would be to omit the correction for continu

ity only for values of the statistic which do not exceed the .025 level 

critical value~ It is worth noting that the exact probability level 
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at which the corrected normal approximation becomes advantageous over 

the uncorrected approximation increases for increasing sample sizes. 

For example, when m = n = 20 the corrected normal approximation becomes 

more advantageous at a.= .0245, at a= .0253 when m = n = 25 and at 

a.= .0266 when m = n = JO. 

Another point of interest is the probability level at which the 

uncorrected and corrected normal approximations ·change sign. The 

uncorrected normal approximation changes sign at about the probability 

level a= .017, and the corrected normal approximation changes sign at 

about the probability level a= .042. For example, the uncorrected nor

mal approximation changes sign at the probability level a= .0157 when 

m n ,= 20, at about a.= .0173 when m = n = 25, and at about 

a .0183 when m = n = JO. The corrected normal approximation changes 

sign at about the probability level a.= .0418 when m = n 20, at about 

a= .0416 when m = n = 25, and at about a= .0416 when m = n = JO. 

It was also observed that the PRE for the normal approximation over 

the entire distribution decreases in magnitude when the sample size m 

increases while n and a remain fixed. This can be seen graphically in 

Figure J for the corrected normal approximation form= 20, 25, JO and 

n = JO. (Of course, this result also extends to the uncorrected normal 

approximation.) For all possible exact probability levels, the effec-

tiveness of either normal approximation increases as one of the sample 

sizes increases while the other sample size remains fixed. 

The Edgeworth Approximation 

One would expect many of the properties of the normal approximation 

discussed in the previous section to extend to the Edgeworth 



approximation, the reason being that the first term of the Edg·eworth 

approximation is the normal approximation. However, somewhat different 

results were obtained. These results will be discussed in this section. 

The general behavior of the PRE function for the Edgeworth approxi

mation is quite different from the PRE function for the normal approxi

mation. In general, its behavior depends upon whether or not the usual 

correction for continuity is employed. The PRE for the normal approxi

mation is quite large for extremely small exact probability levels. In 

contrast, either corrected Edgeworth approximation gives PRE's which are 

negative with moderately large magnitudes for.extremely small probability 

levels. The algebraic values of the PRE function increase rapidly to a 

maximum near a= .002 having become positive near a= .0006. The PRE 

function for EE1 then slowly decreases and changes sign in a neighbor-

hood of GX. .05. It attains its minimum algebraic value in a neighbor-

hood of a= .075, then decreases in magnitude to almost zero for 

GX. = .50. After attaining its maximum positive PRE near EX.= .002, the 

PRE function for EE2 slowly decreased to almost zero (but, remaining 

positive) as the exact probability level increases from about 

a= .002 to a= .50. 

Not only is there a significant difference in the general behavior 

of the PRE for the normal and the Edgeworth approximations, there is 

also a significant difference in the magnitude of the PRE for each. 

Verdooren [10] in 1963 compared the corrected normal approximation as 

given by formula (2.4) to the corrected EE1 as given by formula (2.7). 

Each approximation employed the usual correction for continuity as given 

by formula (2.6). The comparisons were made for six selected sets of 

values of m and n and at. the significance levels GX. = .001_, .005, .010, 



.025, .050, and .10. From his results, it can be clearly seen that the 

normal approximation "is subject to large percentage errars at the 

higher significance levels, while use of the correction term in f( 3 )(x) 

improves the accuracy cansiderably. 11 One needs only ta compare the PRE 

"curves" of the normal approximations as seen on Figures 1 and 2 to the 

PRE "curves" of EE1, Figure 4:. For example, when m = n = 20 and 

a= .005, the PRE incurred by the uncorrected normal approximation is 

about 37 percent, 4:3 percent for the corrected normal approximation, but 

only about .32 percent for the corrected EE1. 

As discussed in Chapter I, it seems intuitively appealing to com-

pare the PRE incurred by the corrected EE1 to the PRE incurred by the 

uncorrected EE2. Fix and Hodges [3] state that the corrected EE2 is 

accurate to about four decimal places. Thus, we would expect the uncor-

rected EE2 to be accurate to at most four decimal places. As can be 

seen by the results given by Verdooren [9], the corrected EE1 is also 

accurate to about four decimal places. Comparing the two approximations 

brings a rather interesting result ta light. The m~gnitude of PRE 

incurred by the uncorrected EE2 .is at least six times greater than that 

incurred by the corrected EE1 (see Figure 5). Thus, it is more advanta

geous to employ the usual correction for continuity in EE1 than ta 

campute the additional terms required for the uncorrected EE2. 

It was surprising to note that in comparing the three uncarrected 

approximations, the smallest magnitudes of PRE are associated with EE1 

for .005 ~a~ .01 and with the normal approximation for .01 ~a< .04:. 

For a> .04:, the PRE for EE1 and EE2 are virtually identical, and their 

magnitudes of PRE are at least two-thirds of the carresponding magni-

tudes for the normal approximation. 
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The advantage of using the continuity correction is quite evident 

and will be discussed in more detail later in this section. In the case 

of the corrected EE1 when m = n = 20, the PRE is about zero at a= .0004, 

attains its maximum (for a> .0004) of .91 percent at a .0015, and 

attains its minimum algebraic value of -.035 percent at a .09. Thus, 

for a> .0004, the PRE for the corrected EE1 is always less than 1 per

cent. In the case of the corrected EE2 when m = n = 20, the PRE is 

about zero at a= .0006 and reaches its absolute maximum of .• 09 percent 

at a= .009. Thus, for a> .0006, the PRE for the corrected EE2 is 

always less than .1 percent (see Figure 4). Undoubtedly, the magnitude 

of the PRE for the Edgeworth approximations is quite small in comparison 

to the magnitude of the PRE for the normal approximation. 

As would be expected (and is demonstrated in Figure 6), the PRE 

function for the Edgeworth approximation decreases for increasing sample 

sizes. Although only the corrected EE2 is considered in Figure 6, the 

result is general whether EE1 or EE2 is used and whether or not the cor

rection for continuity is employed in the approximation. Likewise, only 

three particular sets of sample sizes are considered in Figure 6, but 

the result extends to all intermediate values of m and n. 

As mentioned previously in this section, the advantage of using the 

usual correction for continuity in the Edgeworth approximation is quite 

evident. This holds true for both EE1 and EE2. The magnitude of PRE 

incurred by the uncorrected Edgeworth approximation will always exceed 

the magnitude of PRE incurred by the. corrected Edgeworth approximation. 

Graphically, this can be seen in Figure 7 which compares the uncorrected 

EE2 to the corrected EE2 form n = 20 and m = n = JO. In fact, for 

m = n = 20 and a> .00013, the PRE incurre1 by the corrected EE2 will 
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always be less than one-tenth the PRE incurred by the uncorrected EE2. 

Due to the significant advantage of using the continuity correction 

in the Edgeworth approximation, the comparison of EE1 to EE2 will be 

limited to only the corrected versions of eacha Figure 4 compares EE1 

to EE2 (both corrected) form= n = 20 and m = n = JO. It is evident 

that for a> .0005 the PRE incurred by EE1 will always exceed the PRE 

incurred by EE2 everywhere except in a small neighborhood of the exact 

probability level at which EE1 changes sign. The exact probability level 

at which EE1 changes sign is~= .0428 form= n = 20, a= .0421 for 

m = n = 25, and~= .0415 form n = JO. 

General Guidelines 

This section is intended to be a guide for the researcher in 

selecting the approximation which meets his requirements and/or limita

tions. However, it is the responsibility of the researcher to determine 

the accuracy desired, and thus the amount of effort he is willing to put 

forth in computing a particular probability level. 

After reading most of the literature on the Wilcoxon-Mann-Whitney 

test procedure, it becomes apparent that there are no compelling reasons 

for preferring the Wilcoxon text statistic over the Mann-Whitney test 

statistic, or vice versa. For example, the test procedure has been 

discussed in terms of the Wilcoxon test statistic by Verdooren [10], 

White [11], Wilcoxon [12 and 1J], and Wilcoxon, Katti, and Wilcox [16], 

whereas it has been discussed in terms of the Mann-Whitney test statis

tic by Buckle, Kraft, and van Eeden [1], Conover [2], Fix and Hodges [4], 

Mann and Whitney [6], Milton [7], and van der Yaart [9]. It was shown 

in Chapter II the relations between the Wilcoxon and the Mann-Whitney 
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test statistics are simple as they are identically distributed except 

for a shift in the scale values. For these reasons, selection of a 

particular test statistic is based largely on the personal preference of 

the researcher. 

As was shown in this chapter, the PRE incurred by the normal 

approximation is quite large for small exact probability levels. Thus, 

the normal approximation should be used only when the Edgeworth approxi

mation is too difficult to compute. It would seem that in this era of 

advanced electronics (calculators and computers) this would seldom b~ 

the case. However, should the researcher decide to use the normal 

approximation, several points should be kept in mind. For exact prob

ability levels greater than .025, always use the corrected normal 

approximation. Otherwise, use the uncorrected normal approximation. 

For a> .025, the PRE incurred by the corrected normal approximation 

will never exceed 1.5 percent in absolute value (min(m, n) _::: 20). If 

the researcher desires only to solve for a critical value of U for which 

to reject his null hypotnesis, the inverse procedure may be applied to 

the normal approximation. This procedure is particularly appealing at 

two exact probability levels. At Ge. = .017, the PRE incurred by the 

uncorrected normal approximation is close to zero. The same is true for 

the PRE incurred by the corrected normal approximation at a= .0~2. 

It is without doubt that the Edgeworth approxi!llations are more 

efficient than the normal approximation. The most important result to 

bear in mind is that the usual correctiop for continuity will always 

increase the efficiency of either Edgeworth expansion. Also, it will 

always be more advantageous to use EE2 over EE1. The best possible 

approximation obtainable is the corrected EE2. For exact probability 
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levels greater than .005, the PRE incurred by the corrected EE2 will 

never exceed 0.09 percent for 20 < m < n. 

In view of the accuracy observed for the corrected Edgeworth 

2 
approximation to terms of order 1/m. , it would seem highly unlikely 

that the expense involved in extending the tabulations of cumulative 

probabilities and critical values for Wx1 and Ux could be justified. 

This is particularly true since the approximations discussed in this 

thesis are quite easy to program for calculation by a computer. 
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