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CHAPTER I 

INTRODUCTION 

Computer-aided design, known as CAD in the literature, 

means many things to many people. The term currently covers 

all engineering design tasks and certain manufacturing 

support functions which are assisted by computers. 

One of CAD's most successful applications to date is in 

automating much of the drafting and manual preparation of 

the "artwork" needed to make printed circuit boards. Pro

grams have been developed which optimize the layout (placement 

of components) of a circuit board in regard to conductor 

length and other constraints. 

To di;ital systems engineering, a more significant 

development occurred when device technologists learned to 

apply CAD programs similar to those used in circuit board 

design to their own integrated circuit (IC) artwork genera

tion. Results have been astounding although this started 

only within the past five years. Improvements in device 

processing and packaging per se (e.g., passivated silicon 

junction, epitaxy) had reached a ~lateau by 1967 or so. 

However, CAD was able to further reduce the cost of 

manufacturing IC's while permitting increases in device 

complexity and performance. Consequently there has been a 
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growing trend to find new applications of digital circuitry 

in traditional electronic equipment as well as in automotive, 

medical, vending machines, and other fields. 

CAD of digital components has therefore impacted on the 

logic design engineer in terms of what work there is to do; 

it is interesting to note that it is also affecting how to 

do it. On the matter of "how to do it," device technology 

today offers components which allow the designer to work at 

essentially two levels: at the gate/FF level, and at the 

register transfer or system level. In general, both design 

levels will be encountered since the former permits synthesis 

of functions not manufactured as standard IC modules, while 

the latter uses pre-designed building blocks or standard 

modules. 

Although as noted above CAD has been used profitably in 

digital device design and production, CAD programs for logic 

and digital system design and development are not as yet 

generally available. This may come as a surprise to the 

reader who knows that analog filter design programs may be 

purchased, or rented (along with computer time) via remote 

terminals. 

The present situation in regard to digital CAD programs 

(and particularly sets or systems of inter-related programs) 

is somewhat similar to the era when a new tool such as the 

oscilloscope, or perhaps the minicomputer, had just arrived 

on the scene. Initially they are expensive, and many 

potential users prefer to wait for a proven, mass produced 



model. Others find it more cost-effective to build their 

own. The author in doing this thesis project has joined 

with those in the builder category. 

Objectives and Results 

The goal of thi~ study was to implement a set of pro

grams applicable for the computer-aided design of small 

digital systems or subsystems. 

A survey of expected sources of CAD programs in the 

areas of logic and digital system design indicated that 

several synthesis and simulation programs were being used 
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in industry. With ~he limitations of this study in mind 

these programs were categorized as available and not avail

able. The former included low-cost library items such as 

graphical_ plotting routines, as well as logic simulators and 

filter design programs which may be accessed via remote 

terminals. In the not available class were two types of 

programs: proprietary (for owner company's internal use) 

and secondly, the few existing CAD software-hardware packages. 

From this project's viewpoint, the software-hardware systems 

were unavailable not only ·because of the.five-figure dollar 

amounts required for their l~ase but also due to their being 

primarily data base and documentation systems. 

Accordingly, the following objectives were considered: 

(1) Develop a computer program for designing 

synchronous sequential circuits. 



(2) To c~mplement item (1) develop a program suitable 

for system level design. 

(3) · Search for other programs that are available, in 

the sense defined previo~sly, for CAD adaptation. 

(4) Devise a procedure for applying these programs in 

CAD of digital systems. 

Addressing each of the cited objectives the results of 

.this study are as follo~s: 

4 

(1) A synchronous sequential logic synthesis program 

was written and "debugged. 11 It accepts as input a simple 

tabular representation of the state flow diagram of a 

specification. It outputs all equations needed to construct 

the circuit synthesized from the state diagram. The 

schematic may be drawn from the equation~ using JK 11ip-flops 

and IC gates as components. 

(2) A register transfer simulation program described 

in the literature was modified and improved. Although simu

lation is not synthesis, this simulator can aid the designer 

by allowing convenient experimentation and evaluation of 

tentative system configurations. The system structure is 

described to the program in building block format, while 

system behavior is simulated in terms of sequences of 

register transfers and related operations. 

(3} Computati6ns for non-digital aspects of the design 

problem, e.g. spectral analysis and filter design, may be 

handled with the aid of the fast Fourier transform or FFT 



{a library subroutine) and through commercial remote termi

nals, respectively. 

A gate/FF level simulator program was rented after 

familiarizing with a time-shared version. This program was 

used for verifying sequential logic designs. 

5 

(4) A methodology for computer-assisted design employ

ing the set of programs is reported in this thesis. A case 

study involving the detailed design of a digital frequency 

synthesizer is summarized therein. 

Overview 

The five chapters following the Introduction are 

organized as follows: 

Chapter II describes the approaches and algorithms 

required to implement the programs. A methodology for using 

these programs for computer-assisted design is also outlined. 

Topics introduced in Chapter II which may seem tangential 

include design language, system level and gate level simula

tion, and non-digital design aspects. Gate level simulation 

is explained with an example. Programming topics regarding 

major subroutines of original programs are relegated to 

Chapter V. 

Chapter III considers the design problem at the system 

level. A new type of frequency synthesizer is presented as 

a case study in digital system design, hence its functions 

and specifications are described. Next, the size of the 

memory word for the synthesizer is determined by analyzing 
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with the FFT the deterioration of the output waveform as 

word size is decreased. Feasibility of a proposed system 

configuration is then studied by simulation~ To this end, 

conversion of block diagrams into register transfer notation 

is illustrated. 

Chapter IV describes the synthesis of synchronous 

(clocked) sequential circuits. The first example consists 

of a control function. Subsequent examples deal with shift 

registers and counters. The remaining examples are concerned 

with minimization of output gating, and effects of state 

assignment.· All were used in designing the frequency 

synthesizer. 

Programming details, flow charts, listings of the logic 

synthesis programs, and samples of input coding and resulting 

printouts (and these comprise "documentation" as used by 

programmers) are contained in Chapter V and the appendices. 

For the convenience of the reader, a program which generates 

asynchronous logic and which served as the prototype for the 

program employed in Chapter IV is included in Appendix D. 



CHAPTER II 

APPROACH 

System Level CAD 

Given today's pre-packaged gate arrays, flip-flops, 

registers, adders, and other building blocks the task of 

design starts naturally with the consideration of system 

level structure and behavior. One may assume that a system 

can be constructed by (1) selecting a set of building blocks 

and interconnecting them, and (2) designing non-standard 

functional blocks, if any are needed, after the system 

structure has been developed. For this purpose it is con

venient to employ a simulator and its programming language. 

Design Language 

To simulate a digital system one needs to provide data 

to a simulator program which describes the system's organiza

tion. Additionally the data must convey .the details of the 

system's operations, timing, and control. For ease of 

preparation and readability, a digital system should be 

described via a design language. 

Duley, et al. [1] and Baray, et al. [2] have proposed 

languages in which programs containing design specifications 

may be written, and which serve as inputs for simulation and 

7 



synthesis. Chu [3] incorporated the register transfer 

concept in an Algol-like language that has seen actual use 

in computer design. 
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The language adapted in this study is a subset of Chu's 

Computer Design Language (COL). As will be shown in Chapter 

III it can define any register, decoder, memory, and other 

building blocks. It is easier to learn than Fortran since 

it is a higher order language. Compared to an equivalent 

Fortran program, a COL program would have considerably fewer 

statements. 

Register Transfer Simulation 

A COL description, in conjunction with test data, 

permits the simulator program to compute a system's behavior 

or response. The response is characterized primarily as a 

sequence of values of contents of registers belonging to the 

system ~eing simulated. 

The simulator program used in this study contains two 

sections: the translator section and simulator proper. The 

former translates the COL model of a system (in punched card 

form) into an internal compiler code and sets up various 

tables. The latter consists of four routines: Loader, 

Output, Switch, and Simulate. The Loader accepts the initi

alization and test data segments of the input card deck and 

stores them in simulated registers and memories. Results of 

the simulation are formatted for printing by the Output 

routine. Printout typically consists of the contents of 



certain registers and memory words evaluated at each clock 

time. Items to be printed are selected by the user. The 

Switch routine simulates manual switches. The Simulate 

routine executes the internal compiler code interpretively 

(i.e. the simulation is pe~form~d as though the input pro

gram were in machine language). 

Gate Level CAD: Synchronous 

Sequential Circuits 

Manual versus CAD Procedures 

A synthesis procedure for synchronous sequential 

9 

circuits, modelled as Moore machines, consists of five steps: 

(1) Make a flow table from the design specification. 

(2) Reduce the number of rows of the flow table. 

(3} Assign a binary code to each state. 

(4} Determine the flip-flop input equations. 

(5} Design the combinational logic for the output. 

We are justified in treating synchronous logic exclu-

sively since its preponderance over asynchronous sequential 

logic is well known. To a large degree this is due to the 

fact that the critical race problem does not exist in 

synchronous sequential circuits and so they are easier to 

design. When the Moore machine viewpoint is taken, designing 

the output gating is more straightforward 1compared with the 

Mealey model since the output function depends only on the 

internal state. Further, Friedmann andi Menon [4] have 



recently shown that this approach lends itself to more 

systematic production of test patterns (useful in manufac

turing and maintenance). 

10 

In practice, state assignment is usually done by trial. 

and error. Steps (2) and (4) also contain many tedious 

operations when more than a few input signals and internal 

states ar~ required. When done manual·ly step (5) may prove 

difficult if a large multi-output minimal cost network is 

desired. Hence the design procedure can benefit from CAD 

programs. 

The CAD programs that were developed assist the 

designer in performing steps (4) and (5). The name 

Synchronous Logic Synthesis Program is given to the set since 

logic equations are generated from which a schematic diagram 

may be drawn. Fo~ reasons to be explained later, methods 

intended for flow table reduction and state assignment were 

not programmed. 

The suggested CAD procedure follows the manual procedure 

with two modifications: 

(a) The flow table prepared for step (3) is converted 

into a state diagram. 

(b) Only JK flip-flops will be used. 

The state diagram of item (a) serves as the input to 

the synthesis program. Punched cards are easily prepared 

which convey the node and transition signal data in the form 

of a from- to table or "wire list." Regarding {b), the JK 

flip-flop is widely used so that specializing the present 
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version to a single flip-flop type in order to simplify the 

program seems justified. 

CAD Synthesis Algorithms 

The following algorithm is commonly used for determin

ing the flip-flop input equations of sequential circuits 

using JKFF's. (Notations of the form JKFF and FFA denote 

JK flip-flop and flip-flop A respectively.) 

(1) Make a state transition table for each JKFF to · 

be used. 

(2) Draw Karnaugh m~ps for each state transition table. 

(3} Derive the minimized JKFF input ·equations from 

the maps. 

The Synchronous Logic Synthesis Program mechanizes the 

above procedure. Corresponding to the first step, a "list" 

data structure is constructed and stored in memory when the 

data cards are read. Instead of the Karnaugh map, a sub

routine processes the list using a version of the Quine

McCluskey minimization algorithm. The minimal expressions 

(JA and KA for FFA, etc.} are then printed out. 

To illustrate the equation generation process, a control 

logic function will be synthesized by going through steps (1) 

to (3} manually. The results are then compared with the CAD 

program's output. 

The control logic function (Synchronization Indicator} 

is specified by the timing diagram shown in Fig~re 1. The 

diagram defines the behavior of the function's output for the 



CLOCK I I I I I I I I I I I I I I I > TIME 

INPUT 

OUTPIJT ~---' 

STATE o 1 2 2 3 3 4 3 3 4 5 6 o o o 

INIT. 

Figure 1. Timing Diagram for 
Synchronization 
Indicator Logic. 
Input= X 
Output= Fl 

_LE.,._: __ JliUP 1LT.J 

Figure 2. State Diagram of Syn
chronization 
Indicator 
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input signal given. Either a state diagram is drawn from a 

flow table derived from Figure 1, or made directly without 

benefit of formal state minimization techniques. 

Figure 2 shows a state diagram for the Synchronization 

Indicator having seven states and an optional state, S7. 

The label Fl on nodes S3 through S6 indicates that the output 

is true when the present state is in any of these nodes. 

The state transition table for FFA, Table I, was con

structed from the state diagram after making the state 

assignment: 

so 
000 

Sl 

110 

S2 

101 

S3 

100 

S4 

011 

SS 

010 

S6 

001 

S7 

111 

In Table I, the entries NC{O) and NC{l) in the Action 

Desired column mean "no change, state O" and "no change, 

state 1" respectively. The table gives the values required 

for inputs J,K to cause the actions set, reset, NC{O), and 

NC(l) to occur during the next clock period. For example 

in the first row of the table, the next state of FFA is given 

as 1 when X = 1. Hence FFA must be set and this requires J = 1 

and K = d, where d denotes don't care. 

In Figure 3 the Karnaugh maps for JA and KA are depicted. 

These maps were constructed by treating Table I as a table of 

combinations for the present state and input X. For example, 

cell 0100 of the maps contain the entries 1, d respectively. 

These were taken from row 3 of Table I with X = 0 columns 

indicating set A is the desired action. 
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TABLE I 

STATE TRANSITION TABLE FOR FFA OF SYNCHRONIZATION INDICATOR 

Present State Next State (FFA) Action Desired* 

FFA FFB FFC x = 0 x = 1 x = 0 X = 1 

000 0 1 NC(O) Set 

001 0 1 NC(O) Set 

010 1 0 Set NC(O) 

011 0 1 NC(O) Set 

100 1 0 NC(l) Reset 

101 1 1 NC (1) NC(l) 

110 1 1 .NC (1) NC (1) 

111 1 1 NC (1) NC (1) 

* Set :s> J = 1 ' K = d NC (0) ~ J = 0, K = d 

Reset => J = d, K = 1 NC(l) => J = d, K = 0 

ex ex 
JA 

00 01 11 10 
KA 

00 01 11 10 

AB 00 0 1 0 AB 00 d d d 

01 0 0 01 d d d d 

11 d d- 11 0 0 0- 0-

10 d d d 10 0 0 0 

Figure 3. Ka rnaugh Maps for FFA of Synchr6nization Indicator 



The mi~imal expressions derived from the loops of the 

JA, KA maps are: 

JA =sex+ ex+ ex 

KA= BCX 

15 

The CAD program when given the same state diagram and 

state assignment generates exactly the same equations for JA 

and KA. These equations as well as those for the two other 

FF's required are shown in the computer printouts of Appen

dix A. Note that the minterms cpmprising a loop are also 

displayed. 

and 

The equations for FFB and FFC are: 

JC= AX+ BX 

Kc= X +A+ B 

The foregoing equations are depicted in logic schematic 

form in Figure 4. 

The output gating in Figure 4 was obtained by making a 

truth table of the output function (Fl) from the timing 

diagram and minimizing it with another CAD program. This 

completed the design of the Synchronizei Indicator. 

Refer~ing again to Figure 3, cells 1111 and 1110 of both 

maps corit~in dashes, d's, and O's. The dashes are don 1 t care 

~ntries which apply when the unspecified state 57 is ignored. 
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Synchronization Indicator Logic 
Drawn from Equations Gene~ated 
by CAD Programs 
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The d's and O's apply when 57 is assigned binary code 111. 

Although the expressions generated are the same in either 

case, they may be different from each other for other state 

assignments. State assignment and output gating will be 

discussed further in later sections. 

Flow Table Reduction and State Assignment 

Taking into account that the present set of CAD programs 

do not perform flow table reduction and state a~signment, the 

following guidelines are suggested. 

Flow Table Reduction. Manually process a primitive flow 

table using a method intended for the type of table. Pro

cedures for reducing the number of rows have been detailed 

by Givone [5] for completely specified, incompletely speci

fied, and input restricted types. 

State Assignment. An algorithm is described in a recent 

paper by Story, Harrison, and Reinhard [6]. This and other 

methods known to the desigrier may be used to produce a number 

of state assignments for each problem. Since it is a simple 

matter to input these data to the CAD program, all these 

trials m~y be submitted in each run. The best solution 

(fewest number of input terms and/or number of gates) is 

then selected from the printouts. 

Many papers have appeared in the literature proposing 

schemes for flow table reduction and o~timal state assign

ment. These methods seem to have one or more problems such 

as incompatibility with don't care conditions, tedious to 



apply, not appropriate for synchronous logic, and use of a 

heuristic approach rather than algorithmic. 
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From the viewpoint of CAD program implementation, it is 

important that a procedure be definable as an algorithm. 

Experience has shown that a heuristic method sometimes 

defies conversion into a program having reasonable memory 

and running time requirements. 

Verification by Simulation 

As an approach to the problem of verification of a 

logic design, simulation at the gate/FF level is gaining 

acceptance. Like most CAD tools it is appreciated most when 

the design to be verified exceeds a few dozen gates and FF's. 

This is due to the fact that program setup time for the 

simulation becomes significantly less than the cost of a 

comparable breadboarding effort. Verifying designs with a 

good simulator (one which can include effects of gate delays 

and detect violations of loading rules) permits prototyping 

with confidence. Hence the need for prototype "kluges" is 

minimized. 

The simulator program employed in this study goes by 

the trade name of LOGSIM. Literature on its capabilities 

and an application manual are obtainable from Tymeshare, 

Inc. [7]. 

The maximum allowable number of gate-equivalents per 

simulation is 300, each JKFF being equivalent to 7-10 gates 

(depending on the particular commercial type). For example, 
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for a network containing 20 JKFF's, 140-200 gates would be 

allocated for modelling the JKFF's leaving 100-160 gates to 

be used as gates or inverters. Other simulators have com

parable characteristics and may be rated as to availability 

of gate delay and other modelling features, editing and file 

saving facilities, and run time and memory requirements. 

Table II indicates the coding format and language used 

for LOGSIM. The circuit modelled by the statements is an 

18-gate version of the Synchronization Indicator which 

resulted from one of several state assignments tried. 

The first three lines of Table II describe the flip

flops used in the circuit. For example, the significance 

of the symbols in line 1, 

1 JK (2, QA, NA, JA, KA, P, 0, 0 ) 

taken from left to right is: This statement is from card 

number 1 of the network's LOGSIM model. A JKFF is specified. 

There are two outputs, QA and NA. The synchronous inputs 

are JA, KA, and P. The initial condition for the asynchro

nous inputs (direct set and direct reset) are 0, 0, 

respectively. 

Lines 4 through 21 specify AND, OR, and inverter gates 

and the way they are connected. Line 5 is read 11 KA is the 

output of an OR gate whose inputs are AS and A2." AND gate 

and inverter declarations are read similarly. 

The clock pulse source, P, is declared in line 23. 

This clock is "connected" to any component where the name P 

is declared as an input. That is, the node associated with 



TABLE II 

LOGIC SIMULATOR INPUT CODING FOR SYNCHRONIZATION 
INDICATOR 

1 JKl2,QA,NA, JA,KA,P,0,01 
2 JKl2~QB,NB, JB,KB,P,O,Ol 
3 JK(2,0C,~C, JC,KC,P,O,Ol 
4 JA=OR(AN1,A2,A3,A4l 
5 KA= OR(A5,A2l 
6 ANl =ANO(QR,NC,NXl 
7 A2=ANO(NR,lCl 
8 A3=AI\IO{N'l,QC) 
9 A4=ANO(QC,Xl 

10 A5=AI\ID(NC,XI 
11 JB=OR(A6,QAI 
12 KB=OR(A7,A8l 
13 A6=AND(OC,Xl 
14 A7=AI\IDIOA,NC,XI 
15 A,=ANO(I\IA,OC,NXl 
16 JC=ANO(QA,OB,XI 
17 Kt•OR(Al0,All,A12l 
18 AlO=ANO(QA,NB,NXI 
19 All=ANO(NA,XI 
20 A12=AND (NA,QBl 
21 NX=INVERTIXl 
23 P=A(PULSEI 
25 Fl=OR(Al3,Al4,Al5l 
26 Al3=ANO(NA,QCI 
27 Al4=ANO(OA,QR,NCI 
28 Al5=ANDINH,QCJ 
29 JK(Z,W, NW, JW,KW, P,0,01 
30 JK(2,Al,NA1,W, NW, P,0,01 
31 JK(2,0Z,NZ, Y, NY, P,0,01 
32 JK(2, Y,NY, Al,NAl,P,O,Ol 
33 JK12, X,NQX,QZ,NZ, P,0,0) 
34 KW=INVERTIJWI 
35 J~=OR(AZO,A21,AZ2,A23,A24,A25l 
36 A20=ANO(NW,NA1,Y,QZ,Xl 
37 A21=ANDINW,Al,NY,Ql,XI 
38 AZ2=ANDINW,NA1,NY,Nl,XJ 
39 A23•AI\IO(NW,Al,Y,I\IZ,NQXI 
40 A24"·AN!l ( ~I, NAl, NY, QZ rX I 
41 A25•ANDIW,NQX,NY,NZI 

OUTPUTS AST, AST,P,AST, AST,QC,QB,QA,AST,JA,KA,AST 
OUTPUTS J3,KB,AST,JC,KC,AST,Fl,AST 
OUTPUTS AST,W,Al,Y,QZ,X,AST,AST,A20,A21,A22,A23,A24,A25 
END 

- - S I M U L A T I O N C O M M A N O DAT A - - PAGE :1 

Tl CLOCKED 'SYNCHRONIZER' USING J-K FFS (CAO SOL'NI 
l'l,ILSE 150,0 

ENO 
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a literal is connected to any component declaring it as an 

input signal, assuming of course that the format rules 

exemplified by the JKFF example are observed. 
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Lines 29-41 model a shift register which simulates the 

X-input sequence needed to test the design. It is not part 

of the logic function being verified. 

"Housekeeping" statements which specify outputs to be 

printed out, the title heading, and number of clock pulses 

to be generated comprise the rest of the simulation input 

program. 

When the program of Table II is executed, the printout 

prepared by the LOGSIM simulator is shown in Table III. The 

left-most heading, TEST, denotes row or line number. The 

heading P identifies the column used for the clock pulses. 

Similarly QC, QB, QA, ... , A25 are for FF 1 s and gates 

specified by the user. The output values are printed 

alternately for P = 0 and P = 1 in Table III. The JKFF 1·s are 

shown to change state after a 1-0 transition. 

In the present example, Table III shows that the output 

Fl followed the timing diagram of Figure 1. Note also that 

the shift register (see columns W through X) produced the 

input signal sequence specified in the timing diagram. Thus 

the simulated circuit (or model) driven by a test pattern 

generated a printout from which the designer can infer that 

the logic specification was met. 
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TABLE III 

PRINTOUT FROM LOGIC SIMULATOR PROGRAM 

CLOCKED 'SYNCHRONIZER' USl~G J-K FFS 

P QQQ JK JK JK F WAYQX AAAAAA 
CBA AA ~B CC l l Z 227.222 

TE~T l",jPUT In 012345 

l **O**OOO*ll*OO*Ol*O**lllll•~oooooo 
2 *~l**OOO*ll*OO•OI•O**lllll**OOOOOO 
l **O**OOl*ll•ll•OO*O**Ollll•*OOOOOO 
4 **1*•001*11*11•00*0**01111**000000 
5 **O*•OlO*Ol•OO*Ol*O••OOlll•*IOOOOO 
6 **1*•010*01*00•01*0**00111**100000 
7 **O**O l O•Ol ,.00* 01 •0** l 0011 •·•00001 o 
8 **1**010•01*00*01*0*=10011~•000010 
q ~*O**OlO•Ol*OO*Ol*O**llJJl•*DOOOOO 

10 ••1••010•01•00•01•0••11001••000000 
II *•O*•OIO•lO*OJ*Dl*D**DllJO•*JOOlOO 
12 **l**OlO*lO~OO•Ol•O••Ol!OO•*OOOlOO 
ll *•O**Oll*IO*lO*OO•l••lOllO*•OOOOOO 
14 •*l**Oll•IO•lO*OO•l••lOllO~•oooooo 
15 **O**Oll~Ol*ll•lO*l**OlOll**OlOOOO 
lb •*l**Oll*Ol~ll*lO*l**Ol.011**110000 
17 **O*•IOO•il*lO*Ol*l**lOIJl*•OOOOOO 
18 **1**100•11•10*01*1**10101**000000 
19 **0**011•10•10*00•1**010!0•*000000 
70 **1**011•10•10•00*1**01010•*000000 
7.1 **0**011*01*11*10*1**00101•*000000 
22 **l**Oll~Ol*ll*lJ~l**OOlOl**OOOOOO 
7l **O**lOO•lO*Ol*OO•l**OOOlO·•oooooo 
24 **1**100*10*01*00•1**00010**000000 
75 **0**101*11*10*00*1**00001**001000 
?~ **l**lOl*ll*lO•OO*l**dOOOl**OOlOOO. 
27 **0**110*00*01*01*1**10000**000001 
2a ••1••110•00•01•01•1••10000~•000001 
2, **O*•OOO*OO•OO*OO•O**llJOO**OOOOOI 
lO **1**000*00*00*00*0**11000**000001 
31 **O**OOO*OO•OO*OO*O**lllOO**OOOOOO 
\2 **l**OOO*OO•OO*OO*O**lllao••oooJOO 
\l **0**000*00*00*00•0**01110**000000 
l4 **l**OOO*OO•OO*OO•O**OlllO**OOOOOO 
~; **0**000* l l*OO*Ol*O**OOl l 1**100000 
l6 **l**OOO*ll*OO•Ol*O**OOlll**lOOOOO 
37 **0**001*11*11•00*0**10011**000010 
lq **l**OOl*ll*ll*OO•O**lOOll**OOOOlO 
l9 **0**010*01*00*01*0**11001**000000 
40 **l**OlO*Ol*OO*Ol•O**llOOl**dOOOOO 
41 ••0••010•10~00•01•0••01~00••000100 
42 **1*•010*10*00•01*0**01100**000100 
43 **O**Oll•lO•lO*OO•l**lOllO**OOOOOO 
44 •* l *"011* 1 O• lO•OO•"l ** 10110**000000 
45 **0**011*01*11*10*1**01011**010000 



Gate Level CAD: Minimization of Output 

Gating 
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To obtain the minimized expression to be used for an 

output gating circuit, punched cards representing its truth 

table are tnput to LOGICMIN. This program is external to 

the Synchron-0us Logic Synthesis Program. These two programs 

were separated since some modification of the minimization 

algorithm and different printout formats were desired in 

each case. LOGICMIN may be used for any combinational 

switchini function provided its truth table has no more 

than 1024 rows and 32 literals. 

Single-Output Functions 

The algorithm used here is the well known Quine

McCluskey method which initially determines the prime 

implicants of a given function. The method then finds a 

set of irredundant expressions from which minimal expres

sions are formed. A hazard-free minimal sum is also computed 

for possible use with the asynchronous {direct set/reset) 

inputs of JKFF's. 

Multiple-Output Functions 

For this type of gating an extension of the Quine

McCluskey m~thod described by Givone [8] was used in LOGICMIN. 

The extension amounts to employing the original algorithm to 

process tagged product terms and using a mask (AND type) 

operati6n on the tags. 
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LOGICMIN computes several candidate solutions for each 

truth table. One set of solutions tends to optimize cost 

with respect to the number of input lines and gates. A 

second set has a different criterion namely that of using 

smaller (2-input or 3-input) gates rather than larger gates. 

To aid the user in drawing the logic schematic from the 

minimized gating expressions, cross-reference tables, print

plots, and binary code labels are included in the printout 

of results. 

Non-Digital Aspects 

Spectral Analysis with FFT 

The FFT is an efficient method of computing the discrete 

Fourier transform. Basore [9] has prepared a monograph 

explaining this computational short-cut. 

For CAD programming if the FFT is included in a com

puter library of subroutines, then it is simply called by 

the user's program. The version used in this study was 

written in Fortran and invoked by a statement of the form 

CALL COOL (N, ARRAY, -1) 

where N specifies the number of samples, ARRAY is the name 

of an array dimensioned as two rows and N columns, and -1 

signifies the direct transform (+1 would specify inverse). 

ARRAY stores the real and imaginary components computed by 

the subroutine. 
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The user's program typically provides for the reading 

in of the sampled data, subsequent conversion of the spectral 

components into db, and tabulation of results. 

Filter Design 

An analog filter synthesis program available through 

remote terminals was used in designing the low-pass filter 

specified in Chapter III. The program, designated MATCH by 

the Appl icon Company [10], employs the conjugate gradient 

approach for optimization. 

Methodology 

The CAD procedure suggested for systems consists of 

seven steps one or more of which may be optional. The 

choice of which step to by-pass and how many iterations to 

perform depends on the user's judgement. 

(1) Convert the block diagram and timing chart of a 

system into a register transfer description for input to 

the simulator program. Reconfigure and simulate again as 

necessary to refine and simplify the design. 

(2) Determine the standard and non-standard building 

blocks of the system developed in the first step. 

For each non-standard block do steps (3) to (7). 

(3) Input the state diagram data of a non-standard 

function to the Synchronous Logic Synthesis Program. 

(4) Input to LOGICMIN the truth table of the output 

gating function. 
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(5) Draw the schematic for the equations generated in 

step (3). Label the JKFF terminals to correspond with the 

state assignment used. Select one of the equations obtained 

in step (4) and draw its schematic. 

(6) Interconnect the output gating from step (5) to 

the JKFF's. 

(7) Verify the complete schematic of the non-standard 

function by gate level simulation. 

Following completion of the above, prototype hardware 

may be assembled from off-.the-shelf items and from the non

standard functions designed with the procedure. 

It is assumed that previous to step (1), non-digital 

aspects involving filters and related interface circuitry 

had been dealt with. As noted, CAD programs are commerci

ally available for this portion of the design task.· 



CHAPTER III 

SYSTEM LEVEL DESIGN 

A new approach which competes favorably with analog 

techniques fn the area of very stable frequency generation 

is described and used as a design example. The method 

computes a sequence of sinusoid samples with a simple table 

look-up scheme followed by interpolation by means of a low 

pass filter. Table look-up is practical since the number of 

samples is small, and low-cost read only memory (ROM} used 

to store the samples is now available. The technique is 

simpler than digital recursion and produces less noise [11]. 

The process generates a time series of sine wave 

samples represented by the expression 

{sin 2~fnT} n = 0 , 1 , 2 , . . . . 

where f = frequency to be generated, n = time index, and 

T = sampling interval. 

The lowest frequency, f 10 is synthesized when the total 

number of samples stored in the table, N, are used in each 

period. This is depicted in Figure 5a with N = 16. For a 

given T, 

f 10 = 1/NT. 
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Figure 5. Plot of Time Series of Samples 
Obtained from Read Only Memory 



To select a frequency we provide a frequency index k 

such that 

and the time series expression may be written 

{sin(2~nk/N)} k ~ N/4; n = 0,1,2, .... 
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The above indicates that the generated frequency can be 

set by index k. Due to the Nyquist condition, and for ease 

of filtering, the highest frequency is constrained to 

f = (N/4)f10 • 

Figure 5b shows the sequence of samples corresponding 

to k = 3. It also shows that after the third cycle the 

sequence repeats. This implies that as n increases, the 

product nk is treated modulo N. The generation of time 

series therefore involves accumulating multiples of k. In 

terms of the table look-up scheme, accumulated values of k 

are used as memory addresses and no other computations are 

needed. 

Digital Frequency Synthesizer Specification 

Being a case study in system level design pertinent 

characteristics of the synthesizer are specified as analog 

and digital. The analog specifications are: (1) number of 

frequencies= 32; (2) lowest frequency= 1 Hz; (3) maximum 

in-band noise referred to a generated frequency= - 40 db; 

(4) low pass filter transition band is from 32 to 64 Hz with 

out-of-band attenuation of 80 db. (See Figure 6). The 
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PASSBAND 
...._ 0-------------
....Ci 

~ 

TRANSITION BAND 

STOP BAND 

1 32. 

FREQUENCY (He) 

Figure 6. Characteristics of Low Pass Filter 

digital portion of the design specification follows. Binary 

arithmetic is to be used in implementing the block diagram 

of Figure 7. There are two modes of frequency selection: 

fixed and sweep. Provide a synchronizer indicator function. 

The timing charts of Figure 8 and Figure 9 are part of the 

specification. 

In Figure 7 the accumulation process for index k 

described earlier is done by an accumulator which consists 

of an address register that feeds back to in adder. The 

input register holds the value of the control word corre

sponding to index k for generating a constant frequency. 

Similarly~ .the frequency sweep up-counter serves as an 
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8 BITS 

ROM 
128 x 8 BITS 
READ ONLY MEM 
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SYNCH DETECTOR 
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IN SYNC 
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1-----1~--71,. 7 BITS CWCK SWEEP CONTROL 

(2 BITS) ___ .....__~_, 
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,~IIBGISTER 
~ITS 

l 
CONSTANT FREQUENCY 
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l -~ L 
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Figure 7. Block Diagram of Frequency 

Synthesizer 
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CLK 1 pulses 

New address ready c:::: 
New sum ready 

ROM word ready 

DAC sample ready 

CLK 2 edge (if present) [] 

Figure 8. Frequency Synthesizer Timing 
Chart 

CLK 1 pulses 

26 sum bit 

Address value 0 '.32. E.4 96 0 3Z Git 9S ...... ..... o 7 

CLK 2 

Advance sweep counter D 

---a- .'L 

Figure. 9. Timing Diagram for Sweap Mode, 
Initial f = 32f1 0 and Sweep 
Control set for 14 Cycles 
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input register except it increments the frequency during 

the sweep mode. 
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The table look-up operation is performed by the ROM 

and accumulator. The digital to analog converter DAC 

changes th~ binary coded samples into analog voltages which 

are then interpolated by the filter LPF. The sampling 

interval is determined by the clock CLK1 since the address 

decoder gets the next address after each CLKl pulse. The 

box labelled ~synch detector•• has a logic function whith 

determines if an external pulse train is in synchronism 

with CLK2. 

The cycle counter in Figure 7 controls how long a 

frequency stays fixed during the sweep mode. It contains 

a+ 7 counter in series with a variable-modulo counter 

(+ 2, 4, 6, 8 depending on sweep control word). Hence 

CLK2 pulses are derived from transitions of the 26 bit of 

the adder di·vided by 14, 28, 42, or 56. In turn, the 

frequency sweep up-counter supplies k index values 7, 8, 9, 

10, 11, 7, .... Since CLK2 drives this counter, the output 

frequency will be 7f10 , 8f10 , ..••. and will remain fixed 

for 14, 28, 42, or 56 cycles before changing (sweep mode 

only). 

Figure 8 gives the timing relationship between the 

operations which occur in the Frequency Synthesizer. After 

each CLKl pulse enables the address register a new address 

is loaded into the address decoder. The next sum is ready 

after a slight delay needed for adding the k index and the 



present sum. The time allowed for reading out the ROM and 

for analog conversion must be short enough so that the 

analog sample is ready before the next CLKl pulse. 

Some details of fixed and sweep mode operation are 

depicted in Figure 9. Initially the fixed mode applies, 

and the selected frequency is assumed to be 32f10 . The 

diagram shows that the 26 sum bit indicates overflow after 

every four samples. The address values are shown to be 

0, 32, 64, 96, 0, .... (modulo 128). Because the sweep 

control is set to permit 14 cycles to be generated, CLK2 

is shown to fall after 56 CLKl pulses. The figure also 

assumes that the sweep mode was selected at this time, and 

that the sweep register (or sweep up-counter) w~s enabled 

to the adder when it contained the value 7. 

The ROM used for storing the sine wave samples is 

described in Figure 7 as having 128 x 8 bit words. This 

means that the number of words, N, is double that required 

by the Nyquist criterion for a maximum frequency of 32 Hz. 

The 8-bit word size was obtained by taking the worst case 

error as being equal to the least significant bit. This 

gives for an 8-bit word (7 bits magnitude plus sign) 

20 log 2- 7 or -42 db. This is less than the -40 db speci

fication for in-band noise. The 8-bit word length will be 

validated later by means of the FFT. 

Only 7 bits of the adder in Figure 7 are connected to 
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the address register. That is, the sum bi'ts 2° to 26 are used 

thereby converting the accumulated k index values modulo 128. 



Effects of Truncation and Sampling Errors 

on Memory Word Length 
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Determining the correct word length is important since 

too small a word could result in failing to meet the noise 

specification due to truncation (round off) effects. Too 

large a word causes extra power dissipated due to unneces

sarily large registers and adders. Further, ROM modules are 

relatively expensive due to the additional process of 

''programming" the values to be stored into the module. 

Hence a change of word size means that a completely new ROM 

must be programmed. 

The effect of word size on spectral purity was studied 

empirically by using the FFT to compute spectra of samples 

having different word lengths. For simplicity it was 

assumed that the synthesizer had a total of 16 samples and 

that word lengths can be adjusted to 4, 7, and 31 bits. 

The results from a 32-point transform are shown in 

Table IV for 7-bit and 31-bit samples. The 31-bit case 

was called non-truncated since this is the full word size 

for single-precision arithmetic. Only the positive 16 

samples are shown. The table is fo~ the case when the 

lowest frequency, f 10 was selected. 

Table V presents the data of Table IV in db referred 

to f 10 . Additional data for the 4-bit case were included. 

Similarly, Tables VI and VII give the results for 5f10 and 

6f10 respectively. 



TABLE IV 

PRINTOUT FROM FFT PROGRAM AFTER PROCESSING THIRTY 
. TWO SAMPLES OF NON-TRUNCATED DATA {TOP) 

AND SEVEN BIT DATA {BOTTOM) 

LINE NO. MAGNITUDE SAMPLED DATA 

0 0.4192E-06 o.o 
1 0.4976E 00 o.o 
2 0.7764E--06 0.3826830 
3 0.4079E-06 0.3826830 
4 O. 3.128E-06 0.1011062 
-5 0.2016E-06 0.7071062 
6 0.2020E-06 0.9238790 
7 0.4142E-06 0.9238790 
8 0.1489E-06 1.0000000 
9 0.2300E-06 1.0000000 

10 0.1350E-06 0.9238603 
11 0.1661E-06 o. 923880·3 
12 0.1296E-06 0.7071087 
13 0.9045E-07 0.7071087 
14 0.1544E-06 o.3826867 
15 0.4901E-Ol 0.3826867 

0 o.o o.o 
1 0.4968E 00 o.o 
2 o.o 0.3828125 
3 O. l 795E-02 o.3a2a125 
4 o.o 0.7109375 
5 0.1263E-02 o. 7109375° 
6 o.o 0.9218750 
7 O.ll69E-03 0.9218750 
8 o.o 0.9921875 
9 0.9601E-04 o.9921875 

10 o.o 0.9218750 
11 0.6750E-03 0.9218750 
12 o.o 0.7109375 
13 0.5444E-03 0.7109375 
14 o.o 0.3828125 
15 0.4894E-Ol 0.3828125 
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Harmonic* 

H1 

H3 

HS 

H1 

Hs 

H 1 1 

H 1 3 

His 

TABLE V 

SPECTRAL ANALYSIS USING FFT FOR TRUNCATED AND NON-TRUNCATED SAMPLES 
CASE I SYNTHESIZER SET TO LOWEST FREQUENCY 

No Truncation 7-bit Samples 4-bit Samples 

Magnitude H i/Hn db Magnitude Hi/Hn db Magnitude H1/Hn db 

0.4976 0.0 0.4968 0.0 0.475 0.0 

0.4079E-6 121. 7 0.1795E-2 48.8 0.696E-2 36.7 

0.2016E-6 127.8 0.1263E-2 51. 9 0.130E-2 51. 3 

0.4142E-6 121. 6 0.1169E-3 72.6 0.694E-3 56.7 

0.2300E-6 126.7 0.9601E-4 74.3 0.569E-3 58.4 

0.1661E-6 129.5 0.6750E-3 57.3 0.693E-3 56.7 

0.9045E-7 134.8 0.5444E-3 59.2 0.211E-2 4 7. 0 

0.4901E-1 2 0. 1 0.4894E-1 20.1 0.467E-1 20.1 

* H1 = fl O • The zero and even order harmonics vanish for truncated data and less than 
10- s for non-truncated data. 

w 
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H1 

H3 

Hs 

H1 

Hg 

H11 

H 1 3 

H 1 s 

TABLE VI 

SPECTRAL ANALYSIS USING FFT FOR TRUNCATED AND NON-TRUNCATED SAMPLES 
CASE II SYNTHESIZER SET TO FIVE TIMES LOWEST FREQUENCY 

No Truncation 7-bit Samples 4-bit Samples 

Magnitude Hs/Hn db Magnitude Hs/H 0 db Magnitude Hs/Hn 

0.240E-6 125.3 0.187E-2 47.4 0.724E-2 35.3 

0.532E-6 118.4 0.145E-3 69.6 0.859E-3 53.8 

0.441 0.0 0.440 0.0 0.421 0.0 

0.272E-6 124.2 O.lllE-2 . 52. 0 0.114E-2 51. 3 

0.182E-6 127.7 0.909E-3 53.7 0.933E-3 53.1 

0.236 5.4 0.235 5.4 0.225 5.4 

0.183E-7 147.6 0.439E-4 80.0 0.260E-3 64.2 

0.417E-7 140.5 0. 184E-3 67.6 0.713E-3 55.4 

db 

* H = f10· The zero and even order harmonics vanish for truncated data and less than 
10- 5 for non-truncated data. 

w 
co 



TABLE VII 

SPECTRAL ANALYSIS USING FFT FOR TRUNCATED AND NON-TRUNCATED SAMPLES 
CASE III SYNTHESIZER SET TO SIX TIMES LOWEST FREQUENCY 

Harmonic*· No Truncation 7-bit Samples 4-bit Samples 

Magnitude H3/Hn db Magnitude H3/Hn db Magnitude H3/Hn 

Hi 0.545E-6 117.3 0.433E-3 59.2 0.566E-2 36.9 

H3 0.398 0.0 0.397 0.0 0.397 0.0 

HS 0.245 4.2 0.245 4.2 0.233 4.6 

H1 0.422E-7 139.5 0.668E-4 75.5 0.875E-3 53. 1 

* 

db 



TABLE VIII 

STRENGTH IN DB OF LARGEST UNDESIRED FREQUENCY WITHIN PASS BAND 
VERSUS SAMPLE SIZE 

Size of Samples Output Frequency Setting in Bits 

flo 5flo ~ 

4 - 36.7 (3f10 ) - 35.3 ( f 1 o) - 36.9 (2f10 ) 

7 - 51. 9 (5f 10 ) - 47.4 (f,o) - 59.2 (2f10 ) 

31 -122 (3f10 ) -118 (3f10 ) -117 (2f10 ) 
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In Table VIII in~band noise frequencies were collected 

from Tables V, VI, and VII. In-band is defined here as 

coincident with the pass band of a low pass filter having a 

corner frequency of 5f10 . The entry in the 4-bit row and 

under column f 10 is read "the strength of the strongest 

noise in the pass band is -36.7 db (referre~ to f 10 ) and 

its frequency is 3f10 ." 

Analyzing Table VIII further, for any output frequency 

setting the noise_decreases as the sample size is increased. 

The 4-bit word case would fail a -40 db noise specification, 

while the 7-bit word would pass. The number of samples (and 

this goes inversely with the output frequency) seems to have 

no effect on in-band noise. This implies that sampling. 

effects appear to have no bearing on word size. 

Simulation at the Register Transfer Level 

Programming Considerations 

The following comments are concerned with the format 

and language conventions for modelling the Frequency 

Synthesizer. 

A source program deck is composed of statement, control, 

and data cards. Statement cards provide a description of a 

digital process or sequence. Control cards specify the 

user's commands and options to the simulator program. Data 

cards supply values for initialization and testing. 
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There are two types of statements: configuration 

statements~and sequence description statements. The former 

declare the types of components to be used in the model. 

The latter are executable statements which define operations. 

Logic operators .AND., .OR., .NOT. are used with 

multi-bit operands s~ch as register contents. Incrementing 

by 1 is done with the .COUNT. operator. 

Counters, data buses, and address lines are declared 
' as registers. Constants and subscripts must be integers. 

Models and Source Programs 

The block diagram of Figure 7 may be considered as a 

tentative system configuration. We can model it in register 

transfer language in order to simulate operations needed for 

selecting a frequency and for table look-up. These test 

the correctness of the size of registers and adders and also 

indicate if a sinusoidal sequence of samples is being read 

out. 

A flow chart (Figure 10) was drawn after studying 

Figure 7 and the timing charts of Figure 8, 9. The flow 

chart is a guide for writing the regi~ter transfer descrip-

tion. It is mainly used for sequence statements and need 

not contain configuration data. 

Based on the flow chart of Figure 10 a source program 

was written (see Table IX for listing). The configuration 

statements come before the sequence description statements. 

Following these are the options and commands from the 
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Increment SWEEP UPCCUNTER,,,,,,,,/K(4)*P/ 

Transfer SWEEP register contents 
to adder input register 

Simulate SWEEP interval 

End ot simulation? 
{Specified by control card) 

Figure 10. Flow Chart Used to 
Construct 
Register Transfer 
Description 
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TABLE IX 
REGISTER TRANSFER DESCRIPTION USED AS THE SYSTEM SIMULATION PROGRAM 

c- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r: 
C "FREQUENCY SYNTHESIZER" (SIMPLIFIED MOOELI 
c 
c- - - - - - - - - - - - - - - - - - - - - - - - - - -
c 
C < CUNFIGURATION STATEMF.NTS > 
c 

REGISTER, AORS(0-61, OAC(0-61, INC(0-41, 
l STEP(0-31, CYCL(0-51, SWEEP(0-31 
r. 
( DECLARE 

REGISTFR, 
c 

OFCOflF'{, 
c 

TERMINAL, 
r. 

MEMOQY, 
c 

SWITCH, 
r: 

CLOC:K, 
c 

INPUT AND ADDRESS LINES AS REGISTERS: 
IN 110-4 l, Ail US ( 0-5 l 

K ( l -4 l = STEP 

5UM = ADRS .ADO. INC 

ROM(AHUSI = ROM(0-63,0-61 

START(ONJ 

p 

c 
c 

< SFQUENCE DESCRIPTIONS > 

/SThRT(ONJ/ 

c 

STFP=l, AORS=O, 
CYCL=O, SWEEP=7, OAC=l, 
lNC=INl 

C (hflR<; REGISTFR STROBE PULSE OCCURS AT K(ll*P TIME) 
c 

/K([J<,P/ 

c 
/K(ZJ>tP/ 

r: 

ADRS=SUM, 
A~US=ADRS(l-61, STFP=Z 

DAC=ROM(ABUSl, 

C ~lRS(O) M5R 
c 

r: 
/K(3l*P/ 

c 
/K(4l"'P/ 

c 

IF(AnRS(Ol.EQ.11 THEN(STEP=3l ELSE ( STEP=l l 

CYCL=CYCL .COUNT., AORS(Ol=O, 
IF I CYCL .EQ. 141 THEN( STEP=4,CYCL=O ELSE( STEP=l ) 

SWFEP=SWEEP .COUNT., STEP=l, INC=SWEEP, 
IF( SWtFP .EQ. lll THEN ( SHEEP =l I 

CflNTIUlL SEOIJENCE STOPS WHO! NO._ OF CLOCI( PERIODS SPECIFIED IN CONTROL 
caRn IS fXCEEDED. 
r 

iSl"'ULhTF 
IN Sl.,ULATE DHASr 

-•[1UTDUT 
«<;Id fCH 
*l[1 h1) 

SIMULATION CONTROL CARDS: 

CL8CK(ll=ADRS,OAC,STEP,CYCLE,SHEEP,ABUS,INC 
l, START=UN 

IN!= 16 

R,JM ( G-) =1,?, 3, 4, 5, 6, 7, 8, 9, 16, 

RIJM(l0-)=17,lH,19,20,21,22,23,24,25,32, 

ROM(Z0-)=31,34,15,36,37,38,39,40,41,48, 

QI I 'I ( 3()- ) =It'), :,Q, :, l , '., 2 , 5 3, 54, 5 5, 5 6, 5 7, 64, 

D"M(40-l=65,66,67,68,69,70,7l,72,73,80, 

R,j,_,( 50-) =Bl,d2,83, 84, 85, 86,87,88,89,96, 

KnM(60-l=9J,gq,99,IOO 
"SI" 5CJ0,3 



control cards and finally the values specified by data 

cards. 
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Components declared in the configuration statements of 

Table IX are identified as follows: 

ADRS (0 - 6} signifies that ADRS is the name given to 

the address register in Figure 7, that it is 7 bits long, 

and the most significant bit is at the left end of the 

register (bit position 0). The input register and its 

input bus are named INC and INl respectively. (NOTE: These 

were declared 5 bits instead of 6 bits. The ROM was 

decreased to 64 words. The adder was shortened to 6 bits 

for proper overflow (modulo 64}. These valid changes were 

made to simplify the model.} 

ABUS is the address bus. CYCL and SWEEP are registers 

for simulating the cycle counter and sweep up-count~r 

respectively. 

The DECODER declaration provides sequencing and branch

ing capabilities. The statement 

K (1-4} = STEP 

provides for four control steps. These are shown as 

/K (l}*P/ through /K(4}*P/ in the flow chart. The variable 

STEP assigned to decoder K takes values 1-4 from the 

sequ~nce description statements and thus selects K(l) 

through K(4}. 

The TERMINAL declaration defines a variable SUM and 

assigns to it the sum of the contents of the registers 



represented by ADRS and INC. Note that operator .ADD. is 

used in place of 11 + 11 • 

The MEMORY statement declares a ROM whose address 

values are taken from ABUS and contains 64 7-bit words. 

The SWITCH declaration permits a start label to be 

used for initialization as required in Figure 10. 

"CLOCK, P" defines a 1-phase clock, P. Figure 9 

indicates that two clock sources are needed. CLK2 is 

derived from CLKl and hence clock Pis sufficient. 

Sequence description cards. This part of Table IX 

corresponds 1:1 with Figure 10, the register transfer 

statements replacing the legends of the flow chart. 

/START(ON)/ initialized registers at the start of a 

run to the values listed. This may be checked against the 

first line of the simulation printout, Table X. 

The labels /K(l)*P/ through /K(4)*P/ have the same 

purpose as statement numbers in Fortran. That is, STEP=2 

may cause a branch to the statement with label /K(2)*P/ 
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at clock time. Note that the equal sign is used in STEP=2, 

while the operator .EQ. is used for specifying logical tests 

as in IF(CYCL .EQ. 14) THEN ... Parallel operation is 

assumed whenever several statements are given under one 

1 abe 1 . 

Near the end of Table IX we have *SIMULATE which calls 

the simulator program. The next two lines are messages and 

do not represent control cards. 



TABLE X 
SAMPLE OUTPUT FROM SYSTEM SIMULATION 

I I 
RFGISTER TRANSFER I SIMULATION I PRINTOUT 

I I 

TI TLF: "FREQUENCY SYNTHESIZER MODEL" (FOR USER'S MANUAL) /BP/ FE8'73 

>WITCH INT!=RRUPT 
ST AR = ON 

AIJPS = •• oo DAC = • • 0 l S TEf' = ••• l CYCL = •• oo SWEF = ••• 7 ABUS = •• oo INC = •• l O 
- - - - - -1- - - - - -1- -1- - - - - -1- -1- - - - - -1- - - - -

LABFL CYCLE ACTIVE LABELS CLOCK TIME = l 
/K ( l l*PI 

AflR'i = •• l O OAC = •• 0 l STEP ••• 2 CYCL •• oo SWEE = ••• 7 Ail US = •• 00 INC = •• 10 
- - - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1-

LA AFL CYCLE ?. ACTIVE LABELS CLOCK TIME = 2 
IK(2 )*Pl 

l\llR <; = •• 10 OAC = •• 0 l STEP ••• l C YCL •• oo SWEE = ••• 7 ABUS = •• oo INC = •• l O 
-1- - - - - -1- - - -:- - -1- - - - - - - - -1- - - - - -1- -1- - - - -

UBFL CYCLE 3 ACT I VF LA BEL S CLOCK TIME = 3 
/K ( l l*PI 

fl!JRS = •• 20 DAC = •• 01 STEP ••• 2 CYCL •• oo SWEE = ••• 1 AtlUS = •• 10 INC = •·• l O 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LABFL CYCLE 4 ACTIVE LABEL 5 CLOCK TI ME = 4 
/K(2 )*Pl 

flflRS = •• 20 fl AC = •• l 7 STEP ••• 1 CYCL •• oo SWEE = ••• 7 Af\US = •• 10 !NC = •• l O 
- - - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -

LAtHL CYCl I: 5 ACTIVE LABELS CLOCK TIME = 5 
/K 11 l•P/ 

\!lR <; = •• 30 DAC = •• 1 7 STEP ••• 2 CYCL •• oo SWEE = ••• 7 ABUS = •• 20 INC = •• l O 
- - - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

L fl RFL CYCLF 6 ACTIVE L AREL S CLOCK Tl ME = I, 

IKl2 )*Pl 
~IJR S = •• ~o OAC = •• 13 STEP ••• l CYCL •• ()0 SWEE = ••• 7 ABUS = •• 20 INC = •• t O 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LABFL CYCLF 7 ACTIVE LAAELS CLOCK Tl ME = 7 

/Kil )*Pl 
AIJRS = •• 40 fl AC = •• 33 STEP ••• 2 CYCL •• oo SWEE = ••• 7 ABUS = •• 30 INC = •• 1 0 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1-
LABFL CYCLF 8 ACTIVE LABFLS CLOCK Tl ME = 8 

IKl2 )*Pl 
AORS = •• 40 DAC = •• 49 STEP ••• 3 CYCL •• 00 SWEE = .••• 7 ABUS =. •• 30 INC •• t O 
- - - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LA RFL CYCLE 9 ACTIVE LA BF.LS CLOCK TIME = 9 
/K(3 l*PI 

AflR<; ~ •• oo DAC = •• 49 STEP =. ••• 1 CYCL •• 01 SWEE . ••• 7 ABUS . •• 30 INC = •• 10 ..,::,. 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - _,_ - - - - '-J 



TABLE x (CONTINUED) 

-1- - - - - - - - -1- - - - - - - - -1-. - - - - - - - -1- - - - - - - - -1- - - - - - - - -1- - - - -
LABFL CYCLF 133 ACTIVE LABELS CLOCK Tl ME = 133 

/K ( l l *Pl 
l\DPS = •• 40 OAC = •• 33 STEP ••• 2 CYCL •• o E S\olEE = .••• 7 AEIUS = •• 30 INC = •• 10 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LABFL CYO E 134 ACT! VE LABELS CLOCK Tl ME = 134 

/K(Z I *Pl 
.,1JRS = •• 40 OAC •• 49 STEP ••• 3 CYCL •• OE SljEE = ••• 7 ABUS = •• 30 INC = •• 10 
- - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAf'FL CYCLE 135 ACTIVE LABFLS CLUCK Tl ME = 135 
/K(3 l*P/ 

ADRS = •• oo DAC = •• 49 STEP ••• 4 CYCL •• oo SWEE = ••• 7 ABUS = •• 30 I NC = •• 10 
-1- - - - - -1- - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAE1H CYCLF 136 ACT! VE LABELS CLOCK TIME = 136 
/KC4 J "'P/ 

AllRS = •• oo OAC = •• 49 STEP ••• l CYCL •• oo SwEE = ••• a ABUS = •• 30 INC = •• 07 
-1- - - - - -1- - - - - -1- - - - - - -1- - - - - -1- -1- - - - -

LA8FL CYCLE 137 ACTIVE LAi3ELS CLOCK Tl ME = 137 
/K 11 l*P/ 

ArJRS = •• 01 DAC = •• 49 STEP ••• 2 CYCL •• oo SwEE = ••• a ABUS = •• 00 INC = •• 0 7 
- - - - -1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAB FL CYCLf na ACTIVE LABELS CLOCK Tl ME = 138 
/KC2 )*Pl 

4DPS = •• 01 DAC = •• 01 STEP ••• l CYCL •• oo SlolEE = ••• a AflUS = •• 00 INC = • • 01 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

L~BFL CYCLE 139 ACT! VE LABELS CLOCK Tl MF. = 139 
/Kl l l*P/ 

AflRS = •• OE DAC = •• 01 STEP ••• 2 CYCL •• oo S\olEE = ••• 8 ABUS = •• 07 INC = •• 07 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAA FL CYCLE 140 ACTIVE LABELS CLOCK Tl ME = 140 
/K(2 l*P/ 

AflR~ = •• OE OAC = •• 08 STEP ••• l CYCL •• oo S\olEE = ••• 8 ABUS = •• 07 INC = •• 07 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LARfL CYCLE 141 ACTIVE LABELS CLOCK Tl ME = 141 
/K(l ) *f>/ 

~;lRS = •• 15 OAC = •• 08 STEP ••• 2 CYCL •• oo SWEE = ••• 8 ABUS = •• OE INC = •• 0 7 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -

L Aflf L C:Yr.t E 142 ACTIVE LA BF.LS CLOCK Tl ME = 142 
/KC2 ) *f'/ 

Af1K'> = •• 15 OAC = •• 15 STEP ••• 1 CYCL •• oo SWEE = ••• 0 ABUS = •• OE INC = •• 07 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LMlFL CYCLE 143 ACTIVE LABELS CLOCK Tl ME = 143 
/Kl l l*P/ 

A fl HS = •• 1c OAC = •• 15 STEP ••• 2 CYCL •• oo SWEE = ••• 8 ABUS = •• 15 I NC = •• 07 
-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAHEL CY(LF 144 ACTIVE LAEIELS CLOCK Tl ME = 144 
/K(2 l*P/ 

Af1P S = •• 1c 01\C = •• 22 STEP ••• l CYCL •• oo S\olEE = ••• 8 ABUS = •• 15 INC = •• 0 7 
-1- - - - - -1- - - -1- - - - - - - -1- - - - - -1- - - - - -1- - - - -

LAf\FL CYf.LF 145 ACT! VE LABELS CLOCK Tl ME = 145 
/K ( l l*P/ 

Af1P~ = •• 23 01\C = •• 22 STEP = ••• 2 CYCL •• oo SWEF " ••• a ABUS = •• l c INC = •• 0 7 ~ 

-1- - - - - -1- - - - - -1- - - - - -1- - - - - -1- -1- - - - - ():) 



TABLE x (CONTINUED) 

-1- - - - - - - - -1- - - - - - - - -1- - - - - - - - -1- - - - - - - - -1- - - - - - - - -1- - - - -
LA REL CYCLE 418 ACTIVE LABELS CLOCK TI ME = HR 

IK(2 )*Pl 
AllR<; = •• 2A DAC = •• 36 STEP ••• l CYCL •• o E SWEE = ••• 8 ABUS = •• 23 INC = •• 07 

~1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LARFL GYCLF 41 <J ACTIVE LABELS CLOCK Tl "'E = 419 

IK( 1 )*Pl 
AORS = •• 31 f)AC = •• 16 STEP ••• 2 CYCL •• 0 E SWEF = ••• 8 A8US = •• 2A I NC = •• 07 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LAl.\f L CYCLF 420 ACTIVE LABFL S CLOCK TI ME = 420 

IK(2 l*PI 
,\ORS = •• 31 DAC = •• 4, STEP ••• l CYCL •• o E SWEF = ••• B ABUS = •• 2A I NC = •• 07 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -
LABEL CYCLE 421 ACTIVE LABELS CLOCK TI ME = 421 

IK ( 1 )*Pl 
/\!JPS = •• 38 'JAC = •• 43 S fFP ••• 2 CYCL •• 0 E SWH = ••• 8 AKUS = •• 31 INC = •• J 7 

-1- - - - - -1- - - - - -1- - - ·- - - - - -1- - - - - -1- - - - - -1- - - - -
1.ARFL CYCLF 422 ACTIVE LA BEL S CLOCK TI ME = 422 

IKC2 l*PI 
!\fJR S = •• 38 DAC = •• 50 STEP ••• 1 CYCL •• 0 E SWEE = ••• 8 ABUS = •• 31 INC = •• 01 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -
LARFL CYCLE 421 ACTIVE LABELS CLOCK TI ME = 423 

IK ( 1 . l *Pl 
/\ORS = •• 1F DAC = •• so STEP ••• 2 CYCL • • ~ E SWEE = ••• 8 ARUS = •• 38 I NC = •• 0 1 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LAA El CYCL ': 424 ACT! VE LABELS CLOCK TI ME = 424 

IK<Z l*PI 
A'.JRS = •• 1F DAC = •• 57 STEP ••• 1 CYCL •• OE SWEE = ••• 8 AGUS = •• 3 8 I NC = •• ,1 7 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LAIWL CY Cl E 425 ACTIVE LA!3ELS CLOCK Tl ,~E = 425 

IK ( 1 )*DI 
ADRS = • • 46 OAC = •• 5 7 STEP ••• 2 CYCL •• OE SWEE = ••• 8 Ao US = •• 3E INC = •• 0 7 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -
LAR[L CYCL F 426 ACTIVE LARELS CLOCK TIME = 426 

IKC2 )*Pl 
ArlRS = •• 46 DAC = •• 64 STEP ••• 3 CYCL •• 0 E SWEE = ••• 8 ABUS = •• 3 F I NC ~ •• .) 7 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- -1- - - - -
Lf,l'F L CYCLE '•2 7 ACTIVE LABELS CLOCK TI ME = 427 

IKC3 l*P/ 
Ar>RS = •• 06 DAC = •• 64 STEP ••• 4 CYCL •• oo SWEE = ••• 8 ABUS = •• 3F I NC = •• l) 7 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LAB FL CYCLE 4?8 ACTIVE LAtlfl S CLOCK Tl ME = 428 

IK(4 l*PI 
Al:W S = •• 06 DAC = •• 64 STEP ••• l CYCL •• oo SWEE = ••• 9 ABUS = •• 3F I NC = •• () t! 

-1- - - - - -1- - - - - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
L~ ~FL CYCL F 429 ACTIVE LABELS CLOCK TI ME = 429 

IK ( 1 )*Pl 
ADR5 = •• OE DAC = •• 64 STEP ••• 2 CYCL •• oo SWEF = ••• 9 ARUS ; •• 06 I NC = • • 0 ,1 

-1- - - - - -1- - --- - -1- - - - - - - - -1- - - - - -1- - - - - -1- - - - -
LAR[L CYCLF 430 ACTIVE LA BEL S CLOCK TI ME = 430 

/K(2 l*PI 
IIOR5 = •• OE OAC = •• 07 STEP ••• l CYCL •• oo SWEE = ••• 9 ABUS ; •• 06 INC ; ... )., _,_ - - - - -1- - - - - -1- - - - - - - - -1- - - - - _,_ - - - - _,_ - - - - .J:::,, 

~ 
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The *OUTPUT card contains a list of variables to be 

printed out as in Table X. *SWITCH initiates the operation 

of a manual switch. 11 1, START(ON) 11 specifies the Label 

Cycle before which the switch operates. In the example, 

11 111 is supplied and any larger number N would constitute 

simulating a delayed operation (turn on woul~ wait for the 

N-1 th Label Cycle). 

*LOAD tells the simulator to enter the constants 

listed. In the example, register INl will be initialized 

to 16, while the 64 ROM words are to be assigned the values 

listed. Thus 11 ROM(0-)=1,2,3 .... 11 means that address O will 

contain a 1, etc. The values in the example are not sine 

wave samples for simplicity but were chosen to force decimal 

digits to be printed for DAC. 

11 *SIM 500,3 11 is the last card and specifies that the 

simulation shall run for 500 Label Cycles. The 3 specifies 

that simulation would stop if in any three consecutive Label 

Cycles, the same group of labels were activated. This 

feature prevents 11 infinite loops 11 from wasting computer 

time and paper. 

Simulation Results 

Table X shows three of the five pages of results 

printed out after executing the source program. To verify 

the model, the contents of registers and other components 

at certain clock times are obtained from the table. (For 

compactness register values are printed in hexadecimal. 



Thus in the row ma'rked Label Cycle 1 of Table X, INC 

contains the initial value 10 which is 16 in decimal.) 
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By examining a few values in each column of the print

out one may be able to determine if the flow chart of 

Figure 10 was followed. If it was, then the printout is 

assumed valid and further analysis may be done. Proceeding 

with the address register ADRS, a new value should come 

every /K(l)*P/ time. This is seen in every row where 

/K(l)*P/ is active, e.g. Label Cycles 1,3,5 and so on. It 

is clear that the contents of INC are being transferred and 

accumulated in ADRS. Label Cycles 136 and 428 depict the 

condition when INC changes value. The effect on ADRS may 

be seen in the next clock period. 

The time series of samples are represented by the DAC 

sequence. Updating occurs at /K(2)*P/ as may be seen in 

Label Cycle 2. Label Cycle 128 shows that the DAC sequence 

is cyclic. This is due to the address sequence being cyclic 

also (modulo 64). (DAC numbers are read as decimal due to 

the way the ROM words were initialized.) 

CYCL is incremented at Label Cycles 9 and 135 for the 

pages included in Table X. In each case the DAC values 

show that the end of a cycle occurred. In Label Cycle 427, 

after counting to 14, CYCL is reset to zero as required. 

Simulation of the sweep mode is shown partially at 

Labels 136 and 428. Here the active label is /K(4)*P/. 

INC replaces its previously constant value with 07 in Label 
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Cycle 136, while it is incremented by 1 in Label Cycle 428. 

The latter cycle indicates the start of the "frequency 

sweep" action required in this mode. 



CHAPTER IV 

SYNCHRONOUS LOGIC DESIGK 

In this chapter we use CAD Programs to design the 

non-standard functions of the digital frequency synthesizer 

discussed in Chapter III. These functions are the 

synchronization indicator, frequency sweep up-counter, 

and cycle counter. 

All the examples to be discussed are used to implement 

the non-standard functions. In practice they would be 

assembled from gate level components known in the industry 

as small scale integrated (SSI) circuits. The other 

functional blocks in the system block diagram may be 

conveniently built from pre-designed medium scale integrated 

(MSI) circuits. 

Input Formats 

The set of punched cards needed to input a state 

diagram's data to the Sequential Logic Synthesis Program 

consists of a title card, node/transition cards (one per 

state), *STATES card, state assignment cards (one per state)~ 

and an "end" card containing a single* They must be 

submitted in that order. 
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The title card contains in columns 6-45 any text for 

identifying the printout. 
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A node/transition card has three fields which are used 

as follows: column 1-16. for the name of a node, column 

21-36 for successor node name, column 41-80 for the transi

tion signal or a Boolean expression of several signals. 

The *STATES card marks the beginning of the state 

assignment cards. 

A state assignment card has two fields for defining 

the binary code assigned to a node. The octal equivalent 

of the code is punched in column 1-2, while column 21-36 

is for the name of the node involved. 

In the case of program LOGICMIN, one card is punched 

for each row of a truth table. The first card of a set 

specifies the number of input variables (columns 2-5) and 

also serves as a title card (columns 6-45 for text). The 

number of outputs is not declared. 

The format of the truth table data card is as follows: 

INPUT STATE/OUTPUT STATE 

For a 4-variable problem for example, 12/-01 denotes a 

row of the truth table with the inputs (W,X,Y,2)=1100 and 

outputs (Fl,F2,F3)=-0l. A second format option allows 

coding the input n-tuple in octal for rows with minterms, 

and binary-dash notation for rows with don't cares. The 

output is always in binary-dash. 
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Control Logic Design Example 

The synchronization indicator of the Frequency Syn

thesizer detects synchronism between an external signal and 

CLK2 (see Figure 7}. Its output may be used to stop the 

frequency sweep up-counter. Introduced in Chapter II, its 

state diagram (Figure 2) and schematic (Figure 4) are found 

therein. 

As shown in Appendix A the printout from the Synchro

nous Logic Synthesis Program includes a record of the state 

diagram data sub~itted. In this regard the clock signal is 

implicit and is not AND-ed with the input variable X. Note 

that because of the don't care condition for the S7 to 51 

transition, Line 12 of the present exam~le does not have an 

input signal. 

The second page of the printout contains the JKFF input 

equations from which the logic schematic of Figure 4 was 

drawn. A small table labell~d "Input Summary" is provided 

for documentation. 

The output gating expression was minimized by LOGICMIN. 

The four data cards which encoded the truth table were 

punched as 4/1, 3/2, 2/1, 1/1. The output expression 

returned by the program was 

Fl= ABC+ Ac+ AB. 



Shift Registers 

The shift register in this example is a pattern 

generator. It shifts out a pattern used to test the 

synchronization indicator. As such it may be included 

in the actual hardware as a built in test signal source. 

The circuit shown in Figur~ 11 was designed for RSFF 

type. The front-end JKFF was therefore provided with an 

inverter. This circuit resulted from coding the state 

transition table as a 5-variable single-output gating 

function and then submitted to LOGICMIN. 

Counters 
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The CYCL counter divides its clock pulses by 14,28,42, 

or 56 depending on a 2-bit control word. Instead of being 

designed as a single counter with six JKFF's, it was par

titioned into a variable-modulo (+ 2, 4, 6, 8) counter and 

a+ 7 counter. Because the former is basically a binary 

counter the pair may have fewer gates than a single non

binary counter. Further the small counters may be used 

separately as building blocks. 

The frequency sweep up-counter supplies the values 

7, 8, 9, 10, 11, 7, .... in binary to an accumulator. A 

modulo-5 counter and output gating may be used. 

Variable-Modulo 

With input variables V, W selection of a modulo is 

depicted in Figure 12. The printout of results is included 



AN.D( NW1 NAL I Y, 1:, X ) 
AND(NW1 A1,NY, 'l, X ) 
AND(NW1 NA1,NY, N!,X) 

---ANP(NW1Ai,Y, Nl..,NQX) 
_ __,,...., ·ANl>{W,NA1,NY,Z,X) 

AND (N'l1 NY, NQX, W) 

Figure 11. Shift Register for Testing 
Synchronization Indicator 
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INITIAL. 

Figure 12. 

"1" 

JA QA 

l{A NA 

(A) 

•·vw• K 
CONTMI

WOl!I• 

State Diagram Specifying 
Variable Modulo Counter 

NA 
Ne. 

JB Qs (e) Jc Q, 

(p.) 
Ke, Ne 

(e.) Kc Ne 

a.«r p ~~----....._ ____ ___. 
··----·--·· ---·· 

(c) 

(c) 

Figure 13. Synchronous Variable Modulo Counter 
Logic Diagram Drawn from Equations 
Generated by CAD Program 
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in Appendix A starting with the third page. In this page 

the state diagram data from Figure 12 is shown along witn 

state assignments. The fourth. page gives the design equa

tions for the counter of Figure 13. 
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The output gating is just one 3-input NAND gate whose 

output is used as the clock for the+ 7 counter (not shown 

in Figure 13). The inputs of the NAND gate go 1:1 with the 

complimented outputs of the JKFF. 

Divide-by-7 

Figure 14 is a state diagram with nodes labelled 

according to the state assignment. This assignment produced 

the equations 

JA =BC= KA 

J B = C = KB 

JC= A+ B 

Kc= 1. 

The logic diagram for the above equations is shown in 

Figure 15. The output is taken directly from the flip-flop 

FFA. 

Modulo 5 

Given the state diagram of Figure 16 the program 

generated the equations 



Figure 14. State Diagram 
Specifying 
Divide-by-7 
Counter 

Ks B " i". 

----. - p ____ ,___ ___________ ~ 

Jc. c. 

Kc G 

Figure 15. Divide-by-7 Counter 
Obtained from CAD 
Equations 
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INITIAL 

Figure 16. State Assignment for 
Modulo-5 Counter 
Used in Frequency 
Sweep Logic 

A 
e. 

& ....lA A 

c 
KA A Ke 8 

p 

c 

Figure 17. Modulo-5 Counter with No 
Latch Up States 
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JA = KA = BC 

JB = AC 

KB = c 

Jc = A + B 

Kc = 1 . 

Figure 17 i s the logic diagram of a counter drawn from 

the above equations. This counter has no latch up states 

because there is always a next state for any present state. 

This is in contrast with designs where an unused state could 

be entered due to noise. 

Output Gating 

The output gating of the modulo-5 counter must encode 

the 3-bit internal state into 4-bit words. This makes it 

into a frequency sweep up-counter. 

The truth table of the output gating is given in the 

second page of Appendix B. Two solutions from a set of six 

are included in the third page. The literals XYZ correspond 

to ABC in Figure 18 where the two solutions have been drawn 

as logic diagrams. 

Part (a) of Figure 18 differs from part (b) in number 

of input lines, gate count, and size of gates. The first 

solution has fewer input lines and gates than the second. 

However the second uses mostly 2-input gates compared to 

mostly 3-input and one 4-input gate for the first. In 

other words the solutions are based on two different cost 



A 
~1 8 

c 
A i F2. 
B c c 

A 
8 F3 
c 
A F't i 
c 

a.) Minimized with Respect to Type 1 
Criterion 

A 
8 
c A 

c Ft 
i 
B 

~o > FZ 
e 

! 
c F3 

A i F4 B c c 

b.) Minimized under Type 2 Criterion 

Figure 18. Frequency Sweep Output 
Gating Obtained from 
Multiple Output 
Prime Implicants 
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criteria, and the user selects the one which applies to the 

problem at hand. 

If the gating were a single-output function the print

out from LOGICMIN would be in the form shown in the last 

page of Appendix B. 

State Assignment 

Because the state assignment can be easily changed and 

a number of these trials submitted at the same time, the 

Synchronous Logic Synthesis Program may be used to search 

for improved assignments. Since evaluation i~ by inspection 

(compare equations of each solution) the number of trials 

will be finite. This number (and the speed involved) is 

still large in comparison with what one gets by paper and 

pencil methods. 

An example of how a cluster of possible trials may 

develop in state assignment may be made by considering the 

rule: 

Two or more states having the same state for 

a given input state should be made adjacent. 

In practice, for the medium size design range of 4 - 7 

FF's with 2 or 3 input signals one may see several nodes of 

a state diagram where the rule may be applied, and dozens of 

ways to make the affected pairs (or sets) of states adjacent. 



CHAPTER V 

COMPUTER PROGRAM DOCUMENTATION 

Three programs were implemented in this study: 

Synchronous Logic Synthesis, LOGICMIN, and Register Transfer 

Simulator. Because most of the programming effort was 

invested in it and due to space requirements, only the 

synthesis program and related routines have been listed. 

Synchronous Logic Synthesis Program 

The flow chart of this program is depicted in Figure 19. 

Appendix C contains the listing. This version is in Fortran 

IV and ran on the IBM 360/65. The flow chart and listing 

refer to certain techniques and data structures used in 

another program (see below). 

Asynchronous Logic Synthesis Program 

This program was based on the so-called Cube Logic 

Technique of Senders and Lucchesi [12]. The flow chart of 

Figure 20 is quite detailed and displays statement numbers 

used in the program (Appendix D). These items are supple

mentary to· Appendix C. 
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Error NO 
message 

STOP 

Form Set/Reset minterms 
as in Cube Logic. 

SUBR 
ISYMBL 

log.:i. (max. no. of states) 

Include input signal 
variables in mintenns 

SUBR 
PRmm 
Drop subsuming 

terms 

Figure 19. Flow Chart of Syn
chronous Logic 
Synthesis 
Prdgram 
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Error 

Figure 20. 

L START ) 

J 
Read 

control 
card 

minimum no. 
of stor~ge 
elements 

log~ (no. nodes)+l 

14 

Print 1FRct+-TOJ 
list and 
list of 

node names 

Search 'FR<J,!·TO' 
data looking for 

closed l.oop& of 
flow and all 

remaining segments 
of f'.lL,w 

300 
Assign mapping 

priority to loops 
and segments 

Highest-long closed 
loops 

Lowest•short open 
segments 

Convert 
octal state 
value to 
internal 
binary 

Flow Chart of Asynchrono~s Logic Synthesis 
Program 

67 



Ma-p \ 
state•flow 

segment onto / 
cube ~ 

Initialize 
i'or mapping 

410 ··--,-.,_,,.~--

' 

Pick highest 

Subroutine 
SEGMAP 

NO· 

or. next hi.ghest 
priority loop 

·or segment 

460 YES 
,,,__r,;;:-,.__ tlO ---<Mapping'> 
~-~ complete 

600 

YES 

""''. ··7 and 'RFSF.l" 
equation for 
each stor11ge 

element 

Figure 20. 

YES 

If $state 
awitch on, 
fill in 
assigr,ed 
states 

Subroutine 
LOPMAP 

Increase 
priority 

NO of i'siling 
loop or segment 

500 '-... <Maximum no. Incre11se storage 
storage elements NO elements by l reached ______ ,____, (add one more 

YES dimension to 
hypercube) 

(Continued) 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

This study was concerned with implementing a set of 

programs applicable for the computer-aided design (CAD) of 

small digital systems. Three areas of design for which CAD 

tools were desired are system level, gate level, and non

digital aspects. The thesis summarizes (1} approaches used 

to implement programs that were not available (2} a method

ology for using these and· existing programs {3} application 

of the method and prografus in designing a digital frequency 

synthesizer. 

Programs wete written for the synthesis of a synchro

nous sequential circuit specified by its state diagram. A 

register transfer simulator program was also implemented. 

Gate level simulators and programs for servicing non-digital 

aspects are available commercially. With the digital 

frequency synthesizer as a case study it was found that the 

programs can assist the designer in synthesis of non-standard 

functions, verifying designs by simulation, and in dealing 

with analog oriented problems. 
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Recommendations for Further Study 

Synthesis techniques at the system level seem to be 

non-existent. As an extension of the register transfer 

concept and using a design language, it should be possible 

to devise a synthesis procedure which operates on register 

transfer modules. 

70 

There appears to be an absence of efficient algorithms 

for flow table reduction and state assignment. Consequently 

the logic synthesis program can be improved if automatic 

state minimization and optimal assignment capabilities were 

added. 
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APPENDIX A 

SAMPLE INPUT CODING AND PROGRAM PRINTOUT: 

SYNCHRONIZATION INDICATOR AND VARIABLE 

MODULO COUNTER 
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"SYNCHRONISM INDICATOR" LOGIC IJ-K Ff'S THIE• 2l.23.45 DATE• 73.135 

INPUT DATA 

1 FROM= so TO= Sl INPUT SIGNALS= x 
2 FROM= Sl TO= 52 INPUT SIGNALS= x 
3 FROM= Sl TO= 53 INPUT SIGNALS= ,x 
4 FROM= 52 TO= S3 INPUT SIGNALS= ,x 
5 FROM= 53 TO= S4 INPUT SIGNALS= x 
6 FR0'4= 54 TO= 53 INPUT SIGNALS= x 
7 FROM= 54 TO= 55 INPUT SIGNALS= ,x 
8 FROM= 55 TO= 53 INPUT SIGNALS= ,x 
9 FROM= 55 TO= 56 INPUT SIGNALS= x 

10 FROIWI= 56 TO= 53 INPUT SIGNALS= )( 

11 FROIWI= S6 TO= so INPUT SIGNALS= ,)( 

. 12 FROM= 57 TO= Sl INPUT SIGNALS= 

*STATE 

ASSIGNED STATEIOCTAL I= 0 NODE NAME so 
ASSIGNED STATECOCTAL I= 6 NOOE NAME Sl 
ASSIGNED STATEIOCTALI= 5 NODE NA'4E 52 
ASSIGNED STA TE IOCTALI = 4 NODE NAME 53 
ASSIGNED STATE' IOCTALJ= 3 NOD!; NAME S4 
ASSIGNED STATE IOCTAL I= 2 NODE NA'4E 55 
ASSIGNED STATE IOCTALI = l NODE NAME 56 
ASSIGNED STATE IOCTAL I= 7 NODE NAME 57 
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INPUT SU'l"IARY 

3 J/K FLIP-FLOPS REQUIRED 

12 INPUT FRUM-TO CARDS 

8 STATF-FLOW NUDES 

INPUT SIGNAL VARIABLES 

NODE NAME ASSIGNED STATE 

1 so 000 1-.A-.B,C I 
2 Sl 110 IAB-.CI 
3 S2 10 l IA-.BCI 
4 51 100 IA-.B-.CI 
5 54 011 1-.ABCI 
6 55 010 1-.AB-.Cl 
7 S6 001 l~A,BCI 
B S7 111 IABCI 

INPUT VARI ABLES 
KB = ,AX + -.c 

x 0--1 --0-

J/K FLIP FLOP EQUATION J/K FLIP FLOP 3 EQUATION 
-1)01 11-1 
-111 10-1 
-100 
-011 

01-1 

JC = AX + BX 
JA = B-.c-.x +,BX+ ex 1--1 -1-1 

-100 -0-1 --11 
J/K FLIP FLOP 3 EQUATION 2 

J/K FL IP FLOP EQUAHON 2 10-0 
-001 01-1 

01-0 
KA = -.B-.CX 00-1 

-001 00-0 

J/K FLl·P FLOP 2 EQUATION 
11--

0-01 KC = -.x + ,A + 8 
1-01 ---o o--- -1--

JB = -.ex 
--01 

J/K Fll P FLOP 2 EQUATION 2 
1-01 
1-00 
0-11 
o-oo 
0-01 



"V/\'{lf\ 1-l,Lr: ·-1Ul)JLLJ cuur-JT[R". TIME= 23.45.53 DATE= 13. 135 

F ~f'M= V'-1:J TO= VMl INPUT SIGNALS= ,v.,w 
r 1J ··1 "-~= VMO TO= VMl INPUT SIGNALS= ,v.w 
rr<(;lM-; V'I•) HI= VM5 INPUT SIGNALS= v.,w 

4 f.-= ~{ (lM= V'-10 TO= VM7 INPUT SIGNALS= v.w 
r, ~ Dfl/-lz v·, 7 TU= VMI> INPUT SIGNALS= 

i:: ~r,·-•= v·~o TO= VM5 INPUT SI GNAU·= 
l=R11V-= V"'5 TO= VM4 INPUT SIGNALS= 
F ~l •1M= v Vl 1t TO= V.'H INPUT SIGNALS= 

9 i:1111M,= V"' I TU= VM2 INPUT SIGNIILS= 
l) F-R!l~= v ..,? TO= VMl INPUT SIGNALS= 
11 Fll>JM= VMl TO= VMO INPUT SIGNALS= 

•STA TFS 

ASSTG'Hl <;T~Tr(<JCfALI= () NOOF NAMF VMO 
A~ SJ ,;;.JF r1 ST I\ Tr ( 0( I Al I= 4 NODF NAMF VMl 
'\~~I !;I\JF ) <;T :\FI re 1 Al I= 2 NODF NAME V'l2 
'\S s T (;"-1 f fl ST.~F(1iCTAL I= I, NfJDF NIIMF VM3 
.~s s I r.·irrJ <;T.H"(IJCTAL I= 'WOE N<\'IE VM4 
.~S SI GrJf'll STAH (f!(TAL l= NODF NA'I[ VMS 
ASS!G',F·J <;TATF(IJCTAL)= NODF NA"1E V% 
•5 SI G',FD ST A Tt (OCTAL I= NOOF NAME VM7 



lt;PUT SU"1'1A~Y 

3 J/K FLIP-FLOPS RF.QUIREn 

11 INPUT FROM-TO CAROS 

8 STATF-FLOW NOOES 

l 
2 
3 
4 
5 
b 
1 
8 

? INPUT SIGNAL VARIABLES 

Nlli1': 

v:~o 
V'H 
V'13 
V~5 
V'-17 
V'16 
V'14 
V'l2 

NA'lE ASSIGNED STATE 

000 I ,A,B,C I 
100 [A,B,CI 
110 CAB,CI 
101 CA,8CI 
111 I AiiC I 
011 I ,ABC l 
001 I ,A..;BC I 
Ol'J (,A\l,CI 

INPUT VAR.11\'lLFS 

v 
w 

J/K FLIP FL'lP 
-0001) 
-OJOl 
-01)10 
-')011 
-11--
-01--
-10--

J." = l 

J/K FLIP FLIJP 
-11--
-01--
-10--
-oo--

Kii = l 

J/K F'LI P FLOP 
0-001 
0-011 
0-1--

JB = ,AW + ,,\C 

El)UATION 1 

EQUATION 2 

2 fcQUAT IOFI! 
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,J---1 0-1--

J/1( FL! D FLQP ;, fl)UAT !UN ;> 
0-1--
o-o--

K 1.l = ,A 
()----

J/K fl IP FLrJn fQUAT ION 
00-10 
00-11 

JC = ,A,FIV 
00-1-

J/K FLIP FLOP -3 [QU/\T ION 2 
oo---

KC = ..,A..,B 

oo---



APPENDIX B 

SPECIMEN PROGRAM OUTPUTS FROM LOGICMIN 
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PROGRAM LOGICMIN 

T~IS PROG~A~ FINDS THE SINGLE OR MULTIPLE~OUTPUT MINIMAL SUMS 
GI VEN Tiff INPUT MINT!:RMS OF II SUM OF BOOLEAN PRODUCTS AND THE 
CORRFSPONOING OUTPUT STATES. DON'T CARE STATES ARE ALLOWED 
A~D ARE RFPR~SFNTFO BY II DASH •-•. 

INPUT TO THF. PPOGRAM HAS THE FOLLOWING FORMAT FOR THE PUNCHEn 
CAR OS. 

nFCIMIIL EQUIVALENT OF MINTERM_ I FUNCTION OUTPUT STATES 

EXI\MPI.F. 

INPUT 
VAQ I ABLES 

,I x y z 
0 0 1 0 
1 l () 0 

I 
I 
I 

OUTPUT 
Fl F2 

0 
0 0 

STATES. 
F3 
1 
1 

CARDS PUNCHED 
4 IPRO~. !DENT.I 

2/-01 
121001 

WHERF O REPRESENTS A COMPLEMENTED VARIABLE 
1 RFPRESFNTS AN UNCOMPLEMENTEO VARIABLE 
- RFPRESENTS DON'T CARE 

A MAXIMUM OF 32 INPUT VARIABLES AND 32 OUTPUTS ALLOWED 

THE FIRST CARD FOR EACH PROBLEM MUST CONTAIN THE FOLLOWING 
CC 2-5 THF NUMBER OF INPUT VARIABLES 
re b-45 A PROBLEM IDENTIFICATION 

1UTPUT cROM THE PROGRAM CONSISTS OF THE FOLLOWING 

1. FOR SINGLF OUTPUT PROBLEMS 
A. A LIST OF THF PRIME IMPLICANTS 
~. PRIME IMPLICANT TABLE (NOT NECESSARILY FREE FROM HAZARDS) 
r:. PR IMF l"1PLICANT TABLE FOR HAZARD FREE OESIGN.S 
D. THE PllSSIRLE MINIMAL SUMS ~ASEn ON TABLE B. 

7 ._ FllR MULTIPLE-OUTPUT PRO BL EMS 
II. A LIST OF THE PRIME IMPLICANTS ANO THE OUTPUT FUNCTIONS IMPLIED 
B. THE POSSIBLE MINIMAL SUMS (NOT NECESSARILY HAZARO-F~EEI 

I. MINl"1/IL SUMS FROM MULTIPLE~OUTPUT PRIMf IMPLICANTS 
II. MINIMAL SUMS /IFTF.R ADDITIONAL MINIMIZATION OF EACH OUTPUT FUNCTION 
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RAMP Gr:N. r,11TING tn ~\MP ~; t:'; j • GATI~~.-; ~ i 

CARD INPUT I NPliT M l'H~Q ·~< I MULT(PLE-FUN(flON 

0/ 0111 
,I x y I ~ ~ r F 

1/1000 
., l 4 

2/1001 
3/1010 

() 0 0 I 0 I 

4/1011 
0 0 l I l u I) 0 
0 l 0 I l ll () l 

4 ;) l I I l CJ l •1 
'> 1 J () I l (J l l 

~ \Ml> GF~:. G/\T I NG "3 

PR I MF ll'PLICA"lfS I OUTPUT FUNCTIIJ,.;'S IMPLIED 

w l( y I F F ~ F 
l 2 3 4 

l 0 0 o I 0 l l 1 
2 0 1 0 I 1 0 0 1 
3 0 1 1 I 1 0 1 0 
4 l 0 0 I l 0 l 1 
5 0 - 0 I 1 
6 - 0 0 I l 
1 0 - l I 1 
8 0 l - I 1 - ...:. -



RAMP GEN. GATING i3 

I. MINIMAL SUMS FROM MULIIP(E-OUTPUT PRIME IMPLICANTS 
WITH RES~F.CT TO SEVERAL CRITERIA 

P-FIJ"Jr:T I ON TERM FXPANDED = 2 3 4 7 

F .,wx,v + ,WXY + w,x,v + ,wv 
010 011 100 0-1 

F 2 .... 1,,,1 .... x...,v 
010 

F 3 ,w,x,v + ,.ixv + w,x,v 
01)0 IJ 11 100 

F 4 ,\J,X,Y + ,wx,v + vhX,Y 
0()1) 010 100 

CROSS RFffPENCE ~INIMAL SUM MINTERMS WITH FUNCTIJN USAGE 

·~J NTFRM<; FUNCTION CROSS RfFERENCE 

010 1 4 
') 11 1 3 
100 1 l 4 
1)-1 l 
000 ~ l 4 

II. ~l"JJMAL SUMS AFTER AODITIONAL MINIMIZATION OF EACH OUTPUT FUNCTION 

F w-,x...,y + ,.;y + ,wx 
100 0-1 01-

F ;, ... ~ ... x .... v 
010 

F 3 ,~XY + ..... x,v 
011 -00 

F 4 ... w ... v + ,x,Y 
0-0 -00 

CROS<; REFE~FNCE MINIMAL SUM MINTFRMS WITH FUNCTION USAGE 

·~I NTFRM<; 

100 
!)-1 
•11-
)00 
111 

1 
1 
1 
2 
3 

-(JI) 4 

FUNCTION CROSS REFFRENCE 

0-0 4 
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FX-OR TEST 

PR I Mf: l'lf>L I CANTS 

w x y z 

I 0 0 0 
? () 0 I 
~ 0 l Q 

4 1 Q 0 

'11NJEqM<; 
I l f <;S f'. C. l 

000 I 
·)010 
·1100 
1000 

I 
0 
Q 

0 

3 

I 

I 

I 
I 
I 
I 

x 

OUTPUT FUNCTIONS IMPLIED 

F 
l 

EX-OR TEST 3 

PRIME IMPLICANTS 
2 3 4 

x 
x 

x 

snLUTlO•, NUMBFR EX-OR TFST 3 

I. '11N[MAL SUMS FRO'! SINGLE-OUTPUT PRIME IMPLICANTS 

W!TH RESPECT TO SEVERAL CRITFRIA 

"-FIHKT!O•J TFRM FXPANOEIJ = 2 4 

F 1 = ,w,x,vz • ,w,xv,z + ,wx,v,z + w,x,v~z 
n101 0010 11JO 1000 

DPJME !'1PLJCANT TABLE <QR EX-OR TFST 3 

THIS TA~LF FOR HAZARD FREE GATING 

'II NTE~r~c; 
(LFSS D.C. l 

0001 
0010 
0100 
!OO·'l 

x 

PR !MF IMPL !CANTS 
2 3 4 

x 
x 

x 



APPENDIX C 

COMPUTER LISTING OF SYNCHRONOUS LOGIC 

DESIGN PROGRAM 

82 



c 
c 
c 
r. 
c 
c 
c 
c 
c 
c 
c. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r. 
r. 

THIS PROGRAM lS FOR SYNTHES(S OF SYNCHRONOUS DIGITAL CIRCUITS 
USING J/K FKIP FLUPS. THE GENERATED CfRCUIT EQUATION~ ARF 
MINIMIZFD IN A (OM~IIIIATORIAL SENSF TO ARRIVE AT ~INIMUM GATING. 

INPUT TO THE PROGRAM IS 'lY PUNCt·ffo CARDS ANO HAS THE FOLLOWING 
.FORMAT. 

CAPO CARO 
COL. 

1 b-45 
2 1-16 

2l-3b 
41-80 

3 REPEAT 

N 1-7 
N+l 1-20 

21-36 
N+2 REPF.AT 

M 

CllNTFNTS 

ANY DESIRED PROBLEM TITLE 
FROM IIIODF NAMF OF STATE-FLOW FROM-TO 
TO MlOE NAM~ OF STATE-FLOW FROM-TO 
A BOOLl:AN EXPRFS~ION FfJR THE INPiJT SIGNALS TH/\T 

CAUSES TH~ l=PllM-TO TRANSITION (THIS FIEL•J ~~y BE 
t~LANK. I 

TYPf 2 CARDS UNTIL STATE-FLOW FROM-TO'S AL( nc~CRIAED 

•STATES 
THE l~TERNAL FLlP FLOP STATE FOR THIS NOOE. THIS 

NUMBER IS IN OCTAL. (EX~ A,dCD IN LIHl<AL FiJRM 
1011 IN dlNA?Y FORM= 13 1111 OCTAL FORM.I 

NUDE NAME FOM THIS STATE-FLOW NOnE. 
AS ~EQUIREn. 

* (~A~KS END OF A PROALFM. ADDITIONAL PROALEMS 
MAY ~E STACKED FOLLOWING *I 

A MAXIMUM OF 32 FLIP FLOPS+ INPUT ~ARIABLFS ARE ALLO~ED. 

OUTPUT CONSISTS OF AN INPUT SUM~ARY AND THE MINIMIZED J,K 
CIRCUIT EQUATIONS. 

***• **** **** **** **** •••• •••• **** 
~NO*<--*Nl*~*N2*"4--*llll*~*N4*-E--*N5*-E--*Nb*~*N7* 
:r*** **** •*** •*** •••* **** *•** 
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OLlOI 
()l')IJ;> 

01)0'1 
0)04 

()105 
0!)06 
0'107 

c 
c 
c 
c 
c 
c 
c 
c 
c 
r; 
c 
c 
c 
c 
c 

·c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
C· 
c 
c 
c 
c 
c 
c 
r; 
c 
c 
c 

000 100 010 

0 4 2 

INPUT CARDS FOR 
1 1 

6 1 6 

SAMPLE !'ROBL EM 
NO 
NO 
NO 
NO 
N7 
1116 
N5 
1\14. 
N3 
1\12 
Nl 
•STATES 
0 
4 
2. 
6 
1 
5 
3 
7 
* 

llO 

6 

FXAMPLE 
2 2 
1 6 

Tl TLE 
Nl 
N3 
N5 
N7 
N6 
N5 
"14 
N3 
1\12 
Nl 
"10 

NO 
•u 
N2 
'J3 
N4 
\15 
\16 
N7 

001 101 011 

5 3 

(CARD COLUMI\IS FOLLOW! 
~ 3 4 
l 6 I 

-.v.-.w 
,v.w 
v.,w 

"·" 

111 · 

7 

B. Pl'RAL TA DPT 522 MARCH 73 49137-2 

PRIOR PROGRAMS 

LOGICAL LCOM 

11384 - CUBE LOGIC 
11539 - LOGICMIN 

INTEGF.R SIGLEN, KRf)FRM(lbl, KRDTf)(l6l, KROSIG(40l 
Ol~ENSION KAR0(80l 
EQUIVALENCE (KAPD(ll,KRDFRM(lll, (KARDl211,KRDTO(lll, 

A (KARfl(411,KRDSIGllll 
. INTEG~R OSTRNG(801, INSYM814,321, LENEQ(l281 

INTEGER WQRK(J32l 

INTERNAL 
STATE 

me TALI 

DIMENSION NODN~M 14,1281, NXFROMl1281, NXTO(l28J, NXSIG(40,1ZBI 
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FllPTRA"I 

0008 
O·J()q 
0010 
0011 
0012 
0013 
0014 
0')15 
OOlb 
0017 

0')18 
0019 
0070 
0021 
0()72 
00?'1 
0074 
0075 
002b 
00?7 
OrJ21l 
0')29 
0010 
'JOH 
003? 

OOB 
')()'14 
00~5 
O'l'lo 
0017 
o:ns 
f)O~q 

0040. 
0041 
014?. 
')!)Id 

1)]44 
0')45 

l)!J4b 
0047 

IV G LEVEL 21 M·AlN DATE = 73135 

DIMFNSION NODEl12BI, JTFRMO(l2Bl,JTERMDl1281 
OIMFNSION. JFUNOl1281,· JFUND(i2BI, IEQPIZ5bl,IEQOlDl25bl 
DIMENSION IUNASNl1281 
DIMENSlnN KTERMOl1?.81 1 ~TERMD(l2Bl,KFUNOl1281 1 KFU"l011281 
DIM~NSION TITLE! 101 
REU*B. DATE,TIME 
DATA l~LNK/ 1 1 / 

flAT'A ILEFT,IRIGHT / 1 1','I'/ 
DAT~ IOR,INUT / 1 +',','/. 

21/lb/38 

I ~TFGF.R l VAR ( 32, ! 1 A', 1 8 1 , 'C 1 , 1 0 1 , 1 E' , 1 F •, 'G 1 , 1 H 1 , 1 I •, • J •, 1 K 1 , 'L 1 , 

1 'M','N','0','P','Q','R','S','T','U','V','W','X','Y','Z','0 1 ,'l', 
2 '2','3','4','5 1 / 

4 

c 

CALL TIMEX (TIME,DATEI 
I I ~=5 
!OUT=6 
MAXFTX=l28 
MAXNll0=128 
MXTERM=l28 
NAMLE"l=l6 
SIGLEN=40 
I END=O 
NXFTO=O 
NSYMB=O 
IFRR.=0 
DO l 1=1,MAXNOD 
NOflElll=-1 
C!l'IITl"IUE 

C START DATA INPUT. READ STATE-FLOW FROM TO'S WITH l"IPUT SIGNALS. 
C BUILD NOOE SYMBOL Ti~LE A§ INPUT ACCEPTEfl SAVIN~ INPUT SIGNALS. 
c 

c 

READ IIIN,ll50,FN0•9901 TITLE 
1150 FOPMAT 15X,IOA41 

WRITF I IOUT,11511 TITLE, TIME, DATE 
1151 FOR.MAT 11Hl,lOA4 1 ' TIME= ',AB,' DATE= ',AB/I 

WRITE IIOUT,11901 
1190 FORMAT I' INPUT OATA 1 /I 

j NXFTJ=NXFTO+l 
IF INXFTO .LE. MAXFTXI GO TO 7 
WRITE IIOUT,11951 MAXFTX 

1195 FORMAT 1 1 0*** STATE-FLOW FROM-TO''S EXCEED',151 
GO TO 999 

7 
1200 

c 

READ IIIN,1200,EN0=9991 KARO 
FORMAT 180All 

CHECK FOR'*' IN COLUMN l 
IF ILCOMIKAllDI 11, '*', 11 I GO TO 70 
WRITE IIOUT,12051 NXFTO,KARD 
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01148 

l),Jl1-9 

()050 
fl'J5 l 
0052 
00">1 
0054 
U055 

Q:)5(., 

')15 7 
0058 
0050 
'))f,() 

0,)61 
r,0t,7 
0063 

0%4 
0065 
OOol, 

0()(,7 
0'.)68 
0'16q 
ono 

O·'.J71 
0'.17 2 
0011 
0074 

0075 
0076 
f):)77 

!)071:1 
OOH 

0!)30 
00 111 
0087. 
o.('.JA3 
00~4 
0085 

c 
c 

c 

c 

c 

c 
c 

c 

c 

1205 FORMAT llX,15, 1 FROM= ',20Al,'T0= 1 ,20A1,'\NPUT SIGNALS= ',40All 

1220 

20 

21 

1230 

30 
31 

70 

l 772 

75 

1175 

BUILD NODF. NAME TABLE CFROM STATE-FLOW NODE) 
CALL I.SYMBL (NAMLEN, KROFRM ,NOS,!)STRNG,NSYMB,NOONAM,MAXNOD,IERI 
IF I I ER .EO. 0 .AND. NOS.EQ.41 GO'TO 20 
WRITE IIOUT,12201 
FORMAT I' *** ERROR IN ''FROM'' STATE-FLOW NOOE NAME 1 1 
IF.PR=l 
NXFROMINXFTOl=O 
GO TO 21 

PICK OFF NAME ADDRESS 
NXFROMINXFTOI =OSTRNGl~l 

PICK UP 'TO' NAME 
CALL ISYMBL INAMLEN, KRDTO, NOS,OSTRNG 1 NSYMB,NOONAM,MAXNOD,IER) 
IF I IER .eo.o .ANO. NOS.EQ.4) GO TO 30 .· 
WRITE IIOUT,12301 
FO~MAT ( 1 *** ERROR IN ''TO'' STATE-FLOW NODE NAME'I 
IF'lR=l 
NXHJI NXFTOl=O 
GO TO 3l 

PICK OFF NA~E ADDRESS 
NXTOCNXFTOI =OSTRNGl31 
CALL MOVE I NXSIGll,NXFTOl,KROSIG,4*SIGLENl 
GO TO 5 

CHECK FOR' '*STATES' CARO 

l\iMAX=O 
IF I.NOT.LCOMIKARDlll,'* S T A T E ',2411 GO TO 90 
~PlTF IIOUT,17721 KARO 
FIJRMAT 1 1 0' ,BOAl/1 

YES IT IS. READ STATE ASSIGNMENT CARDS 
REAi) II l"l,1200,EN0.=~91 KARI) 
IF I LCOM(KAROlll,'*',ll I GO TO 90 
WPITE IIOUT,17751 KARO 
FORMAT I' ASSIGNEIJ STATEIOCTAL)= ',20Al,' NODE NA~E • ',60All 

CONVERT STATE ASSIGNMENT IN OCTAL TO INTERNAL BINARY 
NSTATE=O 
DO 11 l=l,20 
11'•21-1 
IF IKARDCIEI .NE. IBLNKI GO TO 78 

77 CONTINUE' 
C ERROR. STATE ASSIGNMENT BLANK 

WRITE (IOUT,17771 . 
1777 FUR'1AT I' **• ERROR. STATE ASSIGNMENT BLANK' I 

IFP.R•l 
GO TO 80 

78 DO 79 I= 1.-H' --=+· ·----···· 
79 CALL MPUf C IUTAff: st' 'le;<l.lt KMfliJIIE+l-lt, S, J) 
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0086 
0087 
OO·lll 

ooBq 
0090 
0091 
il09?. 
OJ91 

0004 
0095 
0()96 
0')17 

01)98 
00'19 
0100 
0101 

0102 
01')3 
11104 
01"':i 

0106 

0107 
O!fJg 
0109 
OllO 

n 111 
0112 
11113 

0114 
0115 
01 lo 

C CHECK NODE NAME 
80 NS=NSYHB 

CALL JSYMBL ( NAMLEN, KARO( 211, NOS, OSTRNG, NSYM8 ,NOONAM, MAXNOO, I ER I 
IF INS.FO.NSYMR .AND. IER.EQ.O .AND. NOS.EQ.41 GO TO 82 

C FR~OR IN NOOE NAME 

c 

WRITE IIOUT,17801 
1780 FORMAT(' **~ ERROR IN NOOE NAME'I 

IFRR=l 
NSY"IB=NS 
GI) TO 75 

C SAVE STATE DATA 

c 
c 

c 

c 
c 

c 
c 
c 

c 
c 
c 

c 

82 N=OSTRNGl31 
NOJ)f:(NI ~ NSTATE 

89 
90 

1191 

95 

N"IAX = MAXOINMAX,NSTATEI 
GU TO 75 

CHECK IF ANY NODE NAMES HAVE UNASSIGNED STATES 
I END= 1 
NXF TO=NXF T0-1 
nn 95 1=1,NSYMij 
IF I NOOE( 11 .fllE. -1 I GO TO 95 

ERP OR 
WRITE IIOUT,11911 (NOONAMIJ,11,J=l,41 
FO~MAT I' *** P•Roq. NO ASSIGNED STATE ~o~ NOOE NAME 
I Fi:\R= l 
CONTINUF 

MFF 
OETPRMINF. NUM8FR OF FLIP-FLOPS REQUIRED 

l.442695*ALOG(FLOAT(NMAXII + l. 

ADO FLIP FLOP VARIAqlE NAMES TO SYMBOL TABLE 

no 97 l=l,NFF 
INSYM8(1,ll=IVARIII 
on 97 J=2,4 

97 INSYMBIJ,ll=IBLNK 

FORM SYMBOL TABLE OF INPUT SIGNAL VARIABLES 

JNP=O 
DO 100 l=l,NXFTO 
CALL ISYMijL (' SIGLEN,NXS!Gll,11,NOS,OSTRNG,INP, 

A INSYMBll,NFF+II, 32-NFF, IERJ 
IF IIER.PQ.21 IERR=l 
LENF.QIIJ=NDS 
IFINOS.EQ.01 GO TO 100 

5AVF. PARTIALLY PROCESSED INPUT SIGNAL EQUATION 

1 ,4A41 
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0117 
01 l 8 

0119 
f1l?i) 

Ol?l 

01?2 
01?1 

0124 
01 ?.5 
0126 
0177 
0178 
01?'1 
.'.ll 30 

ont 
0132 
O l, 3 
0114 

'll35 
01 'I(, 

rJ I 3 t 

0138 

01 JC) 
fll40 
'l 141 
O l 1t2 
0143 
0144 

0145 
0146 

c 

c 
c 
c 

c 

c 
c 
c 

( 

c 

c 

IF (NOS .GE. SIGLENI WRITE (IOUT,1?101 I, SIGLEN 
1210 FORMAT I' *** ERROR. INPUT SIGNAL FQUATION ON LINE',13, 1 EXCEEDS', 

A 13,' AFTER ISYMBL PROCESSING') 
NU~= MINO'INOS,SIGLF.Nl 

.CALL MOVF ( NXSIGIL,11, OSTRNG, 4*NOSI 
100 CONTINUE 

WRITE (IOUT,12211 'IFF,NXFTO,NSYHB, !NP 
ll21 FORMAT ('l!NPUT SU'4'1ARY'/ 

A'0',15,' J/K FLIP-FLOPf REQUIRED'/ 
ll'0',15,' INPUT FR0'-1-TO CARDS'/ 

175 
ll6 

120 

1319 

C' 0' , I 5, ' ST ATE-FL 0.1 NODES I I 
0'0',15,' INPUT SIGNAL VARIABLES'/ 
F I 

PLACE I I AROU'-10 VARIABLE NAMES GRFATF.R THAN 1 CHAR 

DO 120 1=1,INP 
CALL CVA4Al (INSYM8(l,l+NFFl,l,4,WORKl21,1,NAMLFN,IERI 
00 175 J=l,NAMLEN 
JJ=NA'1LEN+2-J 
IF IW(JRK(JJJ .NE. IRLNKI GO TO l2b 
CO'ITINUF 
IF IJJ .LE. 21 GO TO 120 

Ni:FD PARANS 
WORK(ll = ILF.PT 
WfJRK(JJ+ll = !RIGHT 
CALL CVA1A4 (WORK,1,NAMLEN,INSYMBIL,l+NFFJ,L,4.IERI 
CONTINUE 

PRINT STATE-FLOW NODES 

WRITE (IOUT,131QI 
FORMAT 1/// 1 0 NOOF. NAME ASSIGNED STATE (LITERAL FOR'4l 

A' II 
00 130 I=l,NSYMB 

CONVERT NOOE STATE TO 0,1,- FORM 
CALL TERMOT (NFF , NOOE(ll,O,WORKI 

CONVERT NODE STATE TO LITERAL FORM 
WORK(NFF+ll = IBLNK 
wORK(NFF+21 = !LEFT 
N0Sl=NFF+2 
00 13, J=l,NFF 
CALL PBTST 14,NODEIII, 31-NFF +J,IVALI 
IF I !VAL .EQ. 11 GO TO 136 

COMPLEMENTED VARIABLE 
NOSl=NOSi+l 
WOPK(i'.JOSl l=INOT 
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Jl'.7 
:) l 1t ,:~ 

') 14° 
') l )0 
'.11 ~ 1 
01 ')? 
015 3 

0154 

0156 

D l ·j 7 

01~8 
r)l sq 
nl 1)0 
()I i,I 

') 1'· 2 
1 l!, ·1 

C'164 

'.1165 
n 1.,6 
Jl61 

Ol(>'l 
01',o 

"I 70 
0 l 7 I 
O l 7?. 

017:l 

01 74 
0175 
0176 
0177 

c UNCOMPLEMENTEO VARIABLE 
l 36 ,-.r;S1=Noq+1 

,;tJP.K(NOSl) = IVAR(JI 
!JS C1l•'JTINUE 

NnSJ = NO~l+l 
WIJRK(NOSl)=IRIGHT 
1-;QJTE IIOUT,13201 I,INOONAMIJ,11,J=l,41, (WORK(Jl,J=l,NOSU 

I rn CilNTlNUE 
1320 f.JRMAT (IX,14,2X,4A4,2X,l00Al) 

c 
c 
r; 

c 

c 
c 
r. 

PRINT INPUT VARIABLES 

IF (!NP .GT. 0) 
•r\,RIH (IOUT,1340) (([NSYMl31J,l+NFF),J=l;4),l=l,INP) 

1140 FORMAT l/// 1 0INPUT VARIABLES'// llX,4A4)1 

IF l !ERR .GT. O) GO TO 999 

FINO UNASSIGNED STATES 

NS=2•*NFF 
\JJN=O 
"n !S:J !=!,'IS 
1~A=l-l 
OD 15 2 J = 1 , ill~ Y M~ 

IF ( N1l')E(JI .FQ. 'I~) G[J TO 150 
152 C:JH[NUE 

C FJUND IJNF 

c 

c 

r. 
r.: 
c 
c 

1 ~ (iJUN .LT. MXTfR'') GO TU 153 
wo r TE < r nur, 1152 > 

ll52 frJR~H ( 'cl*""'f.RQOR, UNAS51Gt,ED STATES EXCESSIVE, PROCESSING BYl'AS 
J\ s fl). ) 

>JIJN=O 
GO Til 155 

153 NUN='·HN+l 
IUNASN("lUN)=NA 

150 CU'H I \JUF 

1:.5 CU'HINUE 

SHIFT FF sr,TE OVER TO ACCU~MOOATE INPUT VARIABLES 

!'1ULT=2•*1N~ 
"'l 16 J f = 1, I·/, Y Mt! 
N11 1lF(I) = "J1lDE(ll•1'1ULT 

160 CONTINUE' 
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01 7ii 
()l7<J 

Ol;Ji) 

fJ l •l 1 
<HR2 
01\U 

.11;14 
lll >l5 
IJ l •36 
Ol>i7 
OldH 

0191 

0194 
0195 

01% 

0196 
01 ·~9 
0200 

c 

IF (NUN .FO. 01 GO TO 162 
DO 161 1=1,NUN 

161 lUNASNIII = IUNASNlll*IMULT 

C PROCESS INPUT SIGNAL EQUATIONS TO SUM OF PRODUCTS FORM 
162 llO 1900 l=l,NXFTO 

C:ALL FlfJOLEQ I LENEiJIII, NXSIGll,11, WORK I 
1900 CONTI "'JUE 

( 

r: 
C FURM SET I RESET EQUATIONS FROM STATE-FLOW FRDM-TO'S 

c 
c 

( 

IRITS = "'JFF + !NP 
IOSFT=O 
IF ([NP .LF. 01 GU TO 2001 
00 2000 1=1, [NP 

2000 CALL P9TST 11, IOSET, 32-11 

7001 UO 2?00 N=l,"'JFF 
"'lN=31-IFll TS+'l 

C THE FULLOW!"'JG LOOD INSERTED FOR AOOITIO"'JAL ASSIGNMENT Of 
C 'JUN IT CAi{E STA TES TO ALLOW FURTHER Ml "'JIM l l AT !UN 
C "!JO 22JO" l"'JHIBITED TE~PORARILY WITH COL. 1 "C". 
C 'JO 2200 NFS=l,2 
C FOPM Fl~ST SFT THEN RESET EQUATION 

c 
c 
L 

c 

'JO 2199 rlJFQ=l,2 

'JO 2100 LOOP SEARCHS FOR TRANSITIONS OF FF IN QUESfIDN 

'JTQ"='.l 
~O '100 KK=l,NXFTO 

C (HECK IF FF IS CHANGING 
2110 CALL ~FlTST I 4, NODEl"'JXFROM(KKII, NN, [VALi 

CALL PoTST I 4, rlJODE(NXTOIKKll, NN, JVALI 
C CHECK FOR R[JUNOA"'JT SET I RESET TERMS (SAME STATE MAINTAINDI 

rr I [VAL .FO. JV,\ll GO TO 2100 
C GO TO ?100 . 
C IF I !VAL .FIJ. '!OO(NE0,211 GO TO 2120 
C CHFCK F~Q ~ET I RESET TERM 

1111 IF 2•1VAL + JVAL .NE. "'JEQ I GO TO 2100 
c 
( 

c 
l12:J 

·_7121 

ADO T~RM Tn SET I RESET EOU4TION 

J='.) 
NTRM=NTRM+l 
JT~RM')("'JTRMI NDDEINXFROMIKKII 
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()201 

010? 
02 1n 
<P04 
()2()5 

O?Ob 
1)2'.J7 

0?08 

,1209 

0210 
() ?l l 
0?12 
0213 
0214 
0215 

0216 
0217 
O?t~ 
oz l <) 

0220 
072 l 

O?U 
()273 
nz;:,4 
0225 
02?b 
0227 
one 
0229 

0?. 30 
0231 

JTERMDINTRMl IDSET 
C AOD DASH INTO THIS FF 1 S RIT POSITION TO ELIMINATE 
C FLIP FLOP RFOUNDENCIES 

CALL PRTST (1,JTERMO(NTRMl,NN,IVALl 
CALL PBTST (l,JTERMO(NTRMl,NN,IVALl 
JFUNO(NTRMl=l 
JFUI\ID(NTR'll=O 

C INCLUDE INPUT VARIAflLES IN MINTFRM (INTERNAL O,l,-1 
212? J=J+l 

IF LI .GT. LfNEQIKKII GO TO 2100 
C JF OR EI\ICOUNTE'<ED IN INPUT SIGNAL EQUATION. AO() ANOTHER TERM 

IF I LCOMINXSIGIJ,K'<I, '+', 11 I GO TO 2121 
C CHECK FOP 1\1:JT ',' 

IF .NOT. LCOM(NXSIGIJ,KKl, ,,,, ll l GO TO 2126 
C COMPLEMENTEO VARIABLE 

J=J+l 
IF I NXSIGIJ,KKI .GT. 100001 GO TO 2130 
NB=31-INP+NXSIGIJ,KKl 
CALL PiHST ( 3, JTFl<MOINTRMI, 1\18, I VALi 
CALL PBTST ( 1, JTfRMO(I\ITRMI, ~B, IVALl 
GO TO 2130 

C UNCOMPLEMENTEn VARIABLE 
2126 IF I NXS!GlJ,KKl .GT. 100001 GO TO 2130 

NB=31-INP+NXSIGIJ,KKI 

c 
2130 
2100 

c 
c 
c 

8010 

8005 
8000 

c 
c 
c 
r. 

c 
c 

CALL PBT5T ( 1, JTERMO(NTPMI, NB, IVALI 
CALL P~TST ( 1 1 JTE"-MD(NTRMl, l\lfl, !VAL) 

GO TO 2122 
COI\ITINUE 

PRINT TERMS GEI\IERATEn 

WRITE (6,80101 N, NEQ 
FORMAT ('0 J/K FLIP FLOP 1 ,13,' fQUATION ',12 l 
NB= NFF+INP 
DO 8000 KQ = 1,NTRM 
CALL TERMOTI NB, JTERMOIKQI, JTERMO(KQI, KARDI 
WRITE 16,800~1 IKARDIKNl,KN=l,NBI 
FORMAT I 5X, BOA! I 
CONTINUF 

SUBROUTINE EX~NDC EXPANDS MINTERM DON'T CARES INTO 
APP~OPRIATE 0,1 MINTERMS 

CALL EXMNDC I IBITS,I\ITR~,MXTERM,JTERMO,JTERMD,JFUNO,JFUND,lERI 
IF llcR .GE.21 GO TO 999 

INCLUDE AODITIONAL UNASSIGNED STATES IF NFS=2 
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02l2 
02H 
0234 
0235 
o.> 3b 

0237 

0238 
O?l9 
0240 
0241 

0?42 
07.43 

U:VEL 

c 

c 

c 

c: 
c 
c 

530 

21 MAIN 

IF INES .NE. 21 GO TO 540 
NT=NTRM+l 
IDS= I DSET 
CALL PRTST 11,IDS,NN,IVALI 

DATE 73135 21116/38 

CALL ADTRME l!BITS,NFF,NTRM,HXTERH,JTENMO,JTERMO,NUN,1UNASN, 
A IDS ,!ERi 

IF (!ER .NE. 01 GO TO 999 
FILL IN FUNCTIONAL ARRAYS FOR HINTERMS JUST ADDEO 

IF (NTRM .LT. NTI GO TO 2200 
00 530 KQ=NT,NT~M 
JFUNOIKOl=l 
JFUNDIKQl=O 

~XPANO MINTFRH DON'T CARES 
CALL FXMNOC (IBITS,NTRM,MXTERM,JTERMO,JTFRMD,JFUNO,JFUND,1ERJ 
IF (!ER .GF. 21 GO TO 999 . 

C FINO PRIME IMPLICANTS FOR EACH FUNCTIUN· I IE, Ml~IHIZE TERMS FOR 
C FOR SINGLE OUTPUT FUNCTION I 
c 

0244 540 CALL PPIMIM (IBITS,NTRM,JTERMO,JTERMO,JFUNO,JFUNO 

0245 
0246 
0247 
0?4A 
0249 
0250 

02'il 
02'i2 
0253 
0254 

0255 
0?56 
0?57 

0758 
0259 
021>0 
0~61 

c 
c 

c 
c 
c 

542 

546 
5461 

c: 

A ,NPRIM, KTERMO,KTERHD,KFUNO,KFUND,IRETI 

PRINT MINIMIZED FUNCTION 
00 542 KQ=l,?56 
IEQP(KQI = IBLNK 
IEQO!DIKQl=IBLNK 
NOS! = 0 
DO 549 KS= 1,NPRIH 
KSW=O 

CHECK IF THIS SINGLE OUTPUT PRIME IMPLICANT SUBSUMES ANY OF THE 
FOLLOWING PiUMF IMPL [CANTS. IF IT DOES, 00 NOT INCLUDE IT IN 
THE EQUATION STRING. 

KT=KS+l 
IF (KT .GT. NPRIM I GO TO 5461 
on 546 KR=KT,NPRIM 
CALL SUBSUM (IRITS,KTERMO(KSl,KTERMO(KSl,KTERHO(KRl,KTERMOIKRI, 

A IRFTI 
IF IIRET .EQ. 11 GO TO 549 
CONTINUE 
CONTINUF 

NS=NOSl+l 
on 548 L~l,IBITS 
LL=31-IBI TS+L 
CALL PBTST 14,KTERMDIKSl,LL,IVALI 
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FORTRAN IVG LEVEL 21 MAIN O.\TE 73135 

02!>2 

0263 
0264 

0265 
0266 

0267 
0268 

0269 
0270 
0771 
0272 
0,?73 
on4 

0275 

0276 

0277 
0278 
0279 
0280 

o;,B 1 
0282 
ozn 
0Zfl4 

0285 
07% 
'123 7 
07~8 

0290 
'1290 
0 2°11 
'1?92 

IF (!VAL .EQ. 11 Gn Tn 548 
CALL PBTST 14,KTERMOIKSl,LL,IVALI 
IF (!VAL .EQ. 11 GO TO 547 

C COMPLEMENTED VARIABLE 
NOS! = NllSld 
IF.JPINOSl l = !NOT 

C UNCOMPLEMENTEO VARIABLE 
547 NOSl=NOSl+l 

CALL CVA4Al ( INSVM811,Ll,1,4, IEQPINOSll, l,NAMLE"I, IERI 
C SUPPRESS TRAILING 8LANKS 

KSW=l 
NOSl=NOSl+NAMLEN-1 
on 5471 KO=l,NAMLEN 
IF I IFQP(NflSll .NE. IRLNKI GO TO 548 

5471 NO~l=NOSl-1 
548 CONTINUE 

( IF TERM WAS ALL •-•, FILL 11\1 WITH A 'l' 
IF (KSW.FQ.01 CALL MO\/E IIEQPINCSl+ll,'l',11 

C FILL IN 0,1,- LINE OF EQUIVALENTS 
CALL HR'IOT I IBITS,KTE'RMOIKSI ,KTERHOIKSI, IEQOlDl"ISI I 

C PUT IN ' + ' 

c 

N0Sl=MAXOINOS1+2,NS+IBITSI 
IEUP(NCSl I= !OR 
WJS l=NDS l+l 

549 UINTINUE 

C FORM EQUATION IDFNTIFIER 
ID = IBLNK 
CALL MPUT (ID,24,IVAR(/\11,0,81 
IF INEQ .EQ. II CALL MPUT IID,16,'J',0,81 
IF (NEO .EQ. 21 CALL MPUT 110,16,'K',O,BI 

C PRINT EQUATION 

c 
c 
c 

CALL JKPRNT (IO,NOSl-2,IEQP,IEQOlDI 
? 199 CUNT! IIIUE 
2200 CONTINUF. 

IF I IENOI 4,4,990 

RUN ABORTED. PRINT TERMINATION MESSAGE. 

999 WRITE (IOUT,19991 
1999 fORMAT 1'0 EXEC.UTIUIII TERMINATED BECAUSE OF ERRDR'I 

990 STOP 
END 

93 

21/16/38 



FORTRAN IVG LEVEL 21 I.DTR"'E DATE = 73135 ll/l&/38 

0001 

0:,02 
0003 
QCHJ4 
0005 
0')0& 
0007 

0008 

0009 
0'110 
0011 
()()l? 
0'113 
0014 
0015 
Jill(, 
0017 
'hll8 
0019 
0020 
Ofl?l 
OV2 
llfl21 
')11?4 

00?5 
(](]76 

'1077 
(j,)78 

O:J?9 

00~0 
0031 
003? 
0133 
0'134 
00~5 
0'1% 

O<JH 
u•11~ 
()019 
()140 
') )4 l 
·1042 

0()43 

001t4 
004~ 
1104& 
,104 7 
0048 

c 
c 
c 
c 
c 
c 

c 
.C 

SUllROUTINE ADTRMElldlT<;,NFF,NTERM,MXTERM,JTFRMO,Jr°ERMD, NUN 
A ,IUNASN, IDSET,IRETI 

THIS SUBROUTINE AODS UNSPECIFIED MINTfRMS TO THE GlVEN 
INPUT LIST. AN EXHAUSTIVE APPROACH IS USED, TH~ CHECK MADE 
IS THAT AN AODFD TERM MUST BE ADJACFNT TO AN EXISTING TERM. 
PRESFNTLY ONLY INTE~NAL STATES ARE CCNSlOFPEO, 

DIMFNSION TFMPllOI 
Dl'lfNSION JTFRM.1111,·JTERMOlll, lU!liAStllll 
IRET=O 
Kl=l 

5 IA\IY=O 
K2=NTER"l+l 

START LOOP THROUGH UNASSIGNED STATES 
DO 50 l=l,NUN 

C CHECK If ADJACENT TO ANY EXISTING TERM 
NT=NTERM 
on 40 J=Kl,NT 
M=O 
00 30 K=l ,NFF 
NN=31-l!:IITS+K 
CALL PnTST (4,JTERMOIJl,NN, IVALl 
IF I !VAL ,EQ. ll GO TO 30 
CALL PIHST 14, IDSET,NN, IVAL I 
IF (!VAL .EO. 11 r,u TO 3u 
CALL PBTST (4,JTER"l:JIJl,NN, !VALi 
CALL PRTST 14,IU~ASN(ll,NN, JVALl 
IF I !VAL .EQ. JVALI GO TU 30 
"="+l 
IF I M .GT, 11 GO TO 40 

30 CONTINUE 
IF P<! .LT., 11 GO TU 40 

C SEARCH LIST FOR LIKE TERMS, 00 NOT ADD IF ONE FOUND. 
JO=llJNIISNIII 
CAIL PaTST(ll,JO,IOSET,IVALI 
00 32 KQ=l,NTERM 
IF (JTERMOIK~I.EO.JO .AND, JTERMD(KQl,EO.IDSETI GO TO 40 

,2 CONTINUE 
C ADD TERM 

c 
c 

IF I NTERM .LT. MXTERMI GO TO 35 
WRITE 16,1001 MXTFRM 

100 FORMAT c•o .. ~•ERROR. MINTERM LIST EXCEEOS',15) 
IRET=l 
RETURN 

35 IANY=l 
NTER'4=NTERH+l 

JTERHOINTERM) • JO 
JTERMO(NTERMI • IDSET 
CALL TERMOT CIRITS,JTERMO(NTF.RMl,JTERMO(NTERHl,TEMPI 
WRITE l&,10001 (TE~PCKOl,KO=l,IRITSI 

1000 FORMAT I' UNASSIGNED TERM AODEO = ',lOAll 
GO TO 50 

40 C:ONTINlJE 

50 CONTINUE 
Kl=K2 
IF (IANY .El~. 11 GO TO 5 
RETURN 
ENrJ 
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APPENDIX D 

COMPUTER LISTING OF CUBE LOGIC OR 

ASYNCHRONOUS DESIGN PROGRAM 

95 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c • c 
c 
c 
c 
c 
c 
c 
c 
r: 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SQLGSYN SEQUENTIAL LOGIC SYNTHESIS PROGRAM 

REFEPENCES 
l. 'Df:SIGN OF SEQUENTIAL SWITCHING CIRCUITS wlTH THE CUBE LOGIC 

TFCH"IIQUF', s.L. SENDERS ANO J.R. LUCCHESI ([BMI, C[)MPUTFR 
l)f·SIGN, APRIL 1971, PP.59-64 

THE FULLOW!NG ARRAYS CONTAIN DATA ABOUT NOD.ES ON THF STATE FLflW 
O!AGRAM AND THE !NTER"IAL CUBE NODES. 

NODE - CONTAINS CUBE VCRTEX NUMBER FOR NODE IN NODNAM ARRAY 
N(lONAM - CUNTAJNS ALL UNIQUF NODE NAMES 
NOOAOR - FACH ELEMENT REPRESENTS ONE VERTEX OF THE CURE ANO 

CONTAINS A POINTER TO THE Nooe, NUONAM, AND NUOUSE 
ARRAYS. 

JODE - A DUPLICAT~ OF ARRAY 'NOOE'. USED AS A WORK AREA. 
JODAOR - A DUPLICATE OF ARRAY 'NODADR'. USED AS A WO"~ AREA. 
NOOUSE - COUNT OF THE NUMBER OF TIMES NODNAM APPEARS IN THE STATE 

-FLOW FROM-TO LIST. 
NOOPRI - PRIORITY OF NODE ~ITH RESPECT TO MAPPING (HIGHER NUM~ERS 

GET MAPPED FIRSTI 

THE FOLLDWING ARRAYS CONTAIN DATA ON FROM-TO RELATIONSHIPS OF 
THF STATE-FLOW DIAGRAM 

NXFROM 
NXTO 
NXSIG 

NXSTAT 

- FROM NOOE OF STATE-FLOW FROM-JO'S 
- TU NOOE OF STATE-FLOW FROM-TO'S 
- SIGNALS PRESENT FOR TRANSITION OF FROM-T0 1 S 

[MAY BE BOOLEAN EXPRESSION! 
- STATUS OF CORRESPONDING STATE-FLOW FROM-TO 

=O NOT YET MAPPED ONTO CUBE 
=l MAPPED ONTO CUBE 
=2 USED IN PRINTING EQUATIONS 

THE FOLLOWING ARRAYS CONTAIN DATA ON THE INTERNAL CUBE MAPPING 

NDFROM - FROM CUijE VERTEX NUMBER FOR THIS FROM-TO 
NOTO - TO CUBE VERTEX NUMBER FOR THIS FROM-TO 

THE CONTENTS OF NOFROM ANO NOTO CONTAIN POINTERS TO THE 
NOOAOR ARRAY WHICrl IN TURN POINTS TO STATE-FLOw NODES OR 
DUMMY NOOE S. 

THE FOLLOWING ARRAYS CONTAIN DATA ABOUT INPUT ASSIGNED STATES 

NSTATF 
NSTAOR 
is ST AT 

NFF 
MIIXNCHJ 

- CONTAINS THE STATE ASSIGNMENTS 
- CONTAINS ADDRESS OF THE NOOE NAME FOR EACH ASSIGNMENT 
- NOT AN ARRAY BUT CONTAINS COUNT OF NUMBER OF ASSIGNED 

STA TFS 

- NUMBER OF STORAGE ELEMENTS REQUIRED 
- MAXIMUM NUMBER DF STATE-FLOW+ DUMMY NODES ALLOWED 
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c 
c 
c 
c 
c 
c 
c 

l 

·~A XFT X 
MAXFTO 
NCIJUNT 
NX F TO 
NDFTO 
NOflDUM 

- MAXIMUM NUMRER OF STATE-FLOW FROM-T0 1 S 
- MAXIMUM NUMBER OF INTERNAL fROM-T0 1 S 
- NUMBER OF STATE-FLOW+ DUMMY NODES 
- NUMSER OF STATE-FLOW FROM-TO•S 
- NUMBER OF INTERNAL FRDM-T0 1 S 
- FIRST DUMMY NOOE IN NODE ARRAYS 

COMMON /COMMAP/ .NFF, NXFTO, NDFTO, 
NODDUM, MAXNOD, MAXF TO, 

JODADR( 1281, 

NCOUNT, 
!TRACE, 

MAXFTX, 

;> JrlDEI 1281, 
4 NUOE:11281, NODNAMI 16, 1281,NODAORI 1281, NODPRI 11281, 
5 NOOUSEl1281, 
~ NXFkOM(641, NXT0(641, NXSIGl40,641,· NXSTATl641, 
7 . NDF~UMl12BI, NDTOl1281 

Dl~ENSION ITAGAl1281 
nI~ENSION NSTATEl1281, NSTADRl1281 
LOGICAL $STATE 
INTEGFR IVAR(32t/'A','B','C','D','E'·,'F','G','H','1','J','K' ,'L', 

1 'M','N','LJ','P','Q','R','S','T','U','V','W','X','Y','Z','tJ','l', 
2 • 2 I' I 3 I' • 4 1·, • 5. I 

PlfEGER IDUMl61/ 1 D','U','M','M','Y',' 'I 
INTEGtR SIGLFN,KROTOl161,KRDSIGl401 

C LOOPLN - LENGTH OF LOO~S OR SEGMENTS 
C NXLDlJP - HOLDS CLOSED NUN-SELF-INTERSECTING LOOPS OF ST<\TE-FLOW 
C DIAGRAM 
C LOIJPMI - HOLDS MAPPING PRIORITY OF LOOP OR SEGMENT 

OIMFNSION NXLOOPl24,321,LOOPMll321,LOOPLNC321,LOPTAGl321 
Ol"ENSION KARDl80) 

c 

DIMENSION ISET(2401 
F(,)lJIVALF.NCE IKMDl211,KRDTfllll I, IKAROl411,KROSIG( 111 
IJIITA 11\ST /'•'/ 
llflTA IBLNK, IOR,INOT,ILEFT,IRIGHT /' ','+',',','I ','I'/ 
~SfTµIKSFTI = MOD(KSET-1,2401 + l 

C IO UNIT NUMBERS 
r. 

c 

I I Ill = 5 
!OUT = 6 
lfND=O 

C MAXNFF - MAXIMUM NUMBER OF STORAGE ELEMENTS TO BE CONSIDERED 
C MAXTRY - MAXIMUM NUMBER OF TRIALS AT MAPPING AT PRESENT NUMSER 
C OF STORAGE ELEMENTS 
C MSUCES - NUMBER OF SUCCESSFUL SOLUTIONS DESIRED 
C !TRACE - TRACE OF MAPPING 
c. =O FINAL PRINTOUTS ONLY 
C =l PRINTOUTS AFTER EACH SUCCESSFUL & UNSUCCESSFUL 
C MAP~fNG IN THE MAIN PROGRAM 
C =2 SAME AS =l llUT INCLUDES UNSUCCESSFUL ATTEMPTS 
C AT LOWER LEVELS 
c 

1 READ IIIN,11BO,EN0=9991 MAXNFF,MAXTRY,MSUCES,ITRACE 
1180 FUQMAT (4151 

WR[TF (IOUT,11701 MAXNFF,MAXTRY,MSUCES,ITRACE 
1170 FORMAT l'l SQLGSYN - SEQUENTIAL LOGIC CIRCUIT SYNTHESES'// 

I IX,15,' - M4XIMUM NUMBER OF STORAGE ELEMENTS TO BE USED FOR SOLUT 
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c 

c 
c 

c 

c 

c 

15 

70 

1210 

22 

n 

1221) 

24 

IF INCOUNT .EO. 01 GO TO 20 
00 15 I = l,NCOUNT 
IF IICUMPR INODNAMll,11,KARDlll,4*NAMLENII 15,25,15 
CC1NTINUE 

NEW NODE NAME. CHECK IF ROOM FOR IT 
IF INCOUNT .LT. MAXNODI GO TO 22 
WRITE (IOUT,12101 MAXNOD 
FIJRMAT 1'0"*"' NUMBER UF STATE-FLOW NODES EXCEED ', 151 
GO TO 999 

CHECK FOR All BLANKS FOR FROM NODE NAME 
DO 23 K = l,NAMLFN 
IF IKAl<DIKI .NE. IRLNK I GIJ TO 24 
CONTINUE 
WRITE l IOUT,12201 
FORMAT ('0"'** FROM NODE NAME All RLANKS. TRY AGAIN.'I 
IE~R = l 

SAVE NOOE NAME 
~ruuNT = NCOUNT + l 
I = NCOliNT 
00 21 K• l,NAMLEN 

21 N!JDNAM I K, 11 = KAROi Kl 

25 NODUSEIII = NODUSF.111 + l 
NXFROMINXFTOI = 1 

C· CHECK IF STATE-FLOW TO NODE NAME IS NEW 
c 

90 30 l=l,NCOUNT 
IF (ICOMPRl~DONAMl1,ll,KR.DTIJ,4*NAMLENII 30,45,30 

30 f.ONTINUE 
C NEW NODE NAME. CHECK IF ROOM FOR IT. 

IF INCOUNT .LT. MAXNODI GO TO 35 
WPITE (IDUT,12101 MAXNOD 
GO TO 999 

C CHECK FOP ALL BLA~KS IN TO NODE NAME 
35 00 40 K=l,NAMLEN 

IF (KR.;JTO(Kl .NE. IBLNKI GO TO 42 
40 CONT I NUE 

~RITE l!OUT,12301 
1230 FORMAT l'O*** TO NODE NAME All BLANKS. TRY AGAIN. 1 1 

I EPR = l 
47 NCOUNT = NCOUNT + l 

I = NCOUNT 
00 44 K = l,NAMLEN 

44 NnONAMIK,11 = KRDTO(Kl 
C BUMP USAGE COUNT ANO SET POINTER 

45 NODUSEIII = NODUSEIII + l 
NXTOI NXFTOI = I 

c 
C SAVE EXTERNAL SIGNALISI OR BOOLEAN EXPRESSION. 
c 

c 

DO 50 K = 1,SIGLEN 
50 NXSIGIK,NXFTOI = KRDSIGIKI 

GO TO 5 
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r. 

r. 

210N' // 
3 l X, 15,' 
4PHS'// 

MAXIMUM VALUE OF TRIALS FOR EACH NUMBER OF STORAGE ELEM 

5 lX,15,' - NUMBER OF SOLUTIONS DESIRED'// 
b lX,15,' - TII.ACE PARAMETER'! 

NAMLEN lb 
SI GLEN 40 
IEQR = 0 
MAXNOO 128 
MAXFTX b4 
Mi\XFTO 121! 
NCOUNT O 
NXFTQ = 0 
NOFTO = 0 
SSTATE=.FALSE. 

C INITIALIZf ARRAYS 
c 

r. 

on 4 I = 1,MAXNOD 
NODE I I I = -1 
NODADRI 11 = 0 
NOOUSf 111 = 0 
NUOPR 111 I = 0 
DO 4 J = 1,NAMLEN 

4 NOONAMIJ,11 = IBLNK 
00 2 I =l,MAXFTX 
NXFROMI I I = 0 
NXTO I I I = 0 
NX ST A Tl I I = 0 
1)0 2 J=l,SIGLEN 

2 NXSIGIJ, I I = IBLNK 
OU 3 I= I , MA XF TO 
N'lFII.OMI I I = 0 

- 3 NOTO( 11 = 0 

C qEAD STATE-FLOW FROM-TO LIST 
C PICK OUT ALL UNIQUE STATE-FLOW NODE NAMES AND COUNT.HOW MANY TIME 
C S EACH APPEARS. 
c 

1190 
5 

1195 

7 
1200 

c 

1205 
c 
c ,. 

WRITE IIOUT,11901 
FORMAT l'l INPUT DATA'/) 
NXFTO = NXFTO + l 
IF INXFTO .LE. MAXFTXI GO_ TO 7 
WRITE IIOUT,11951 MAXFTX 
FORMAT ( 1 0*** STATE-FLOW FROM-TO''S EXCEED',151 
GD TO 999 
READ IIIN,1200,ENO=B91 KARO 
FORMAT IBOAll 

CHECK FOR '*' 
IF IKIIRD( 11 .EQ. IASTI GO TO 70 
WRITE IIOUT,12051 NXFTO,KARD 
FORMAT llX,15,' FROM= ',20Al,'T0• 1 ,20Al,'SIGNALISI= ',40All 

CHECK IF FROM STATE-FLOW NODE IS NEW 
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C CHFCK FOR '*STATES' CARO 
c 

70 IF (JCnMPR(KARD(ll, '* S T A T E ',241 I 90,72,90 
C YFS IT IS. READ STATE ASSIGNMENT CARDS 

12 $STATE= .TRUE. 
NSTAT=O 
WR!TF {IOUT,17721 KARO 

75 R[A!J (I IN,1200,END=89) KARO 
J 772 H1PMAT I' 0' ,BOAl/) 

IF (KAµ!)( l) .EQ. !AST) GO TO 90 
wPIT" {IOUT,17751 KARO 

1775 FOµMAT I' ASSIGNED STATE(OCTAL) = ',20Al, 1 NODF NAME= ',60All 
C CONVERT STATE ASSIGNMENT {IN OCTAL) TO INTERNAL BINARY 

NSTAT=NSTAT+l 
NSTATFINSTAT)=O 
fJO 77 I= l, 20 
IE = 21-1 
IF {KAR'){ !El .NE. IBLNK) GO TO 78 

71 CONT I MUF 
C ERROR. STATE ASSIGNMENT BLANK. 

WRITE IIOUT,1777) 
1777 FDR..,AT I '0•** ERROR. STATE ASSIGNMENT BLANK') 

ltRR=l 
GU TO 80 

78 DO 7 9 I= 1, I E 
79 CALL MPUT I NSTATFINSTATI, 32-3*1, KAROi IE+l-1 I, 5, 3) 

C CHECK IF NOOE NAME NEW 
80 DO 82 I=l,NCOUNT 

IF IICUMPR (NOONAM{l,1),KARDl21), 4*NAMLFN )) 82,85,82 
82 CtlNTINUE 

C ERROR. NEW NAME 

c 

WRITE IIOUT,17821 
1782 FUR'1AT I I O**" ERROR. NOOE NAME ON ABOVE CARD NOT ON ANY FROM-TO CA 

ARD 1 /I 
[FPR=I 
Gf) rn 75 

C SAVE ASSIGNED STATE DATA 
85 NSTADRINSTAT) = I , 

GO TO 75 
c 
C DETERMINF. MINIMUM NUMBER OF STORAGE ELEMENTS 
C NEEDED FOR NUMBER OF STATE-FLOW NODES. 
c 

c 
c 

89 I ENO= l 
90 NFF = 32 

IF INCDUNT .EQ. 0 .OR. NXFTO .EQ. 11 GO TO 900 
fln 91 K=l,32 
CALL PBTST (4,NCOUNT-1,K-1,IVALI 
IF IIVAL .EQ. 11 GO TO 92 

91 NFF = NFF - I 
92 NXFTO = NXFTO - 1 

NOODUM = NCOUNT+I 

FILL IN DUMMY NODE NAMES 
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c 

IF INODOUM .GT. MAXNODI GO TO 101 
N = l 
00 100 l=NOODUM,MAXNOD 
DO 105 J = 1,6 

105 NOONAMIJ,11 = IDUMIJI 
CALL CNVIAl INODNAM(l,Il,6,B,N,IERI 

l 00 N = N + l 
101 MAXNOD = 2**NFF 

CALL LOGIC INFFI 
WRITF l IOUT,12401 NXFTO,NCOUNT,NFF 

1240 Fn~MAT l'l SOLGSYN SEQUENTIAL LOGIC CIRCUIT SYNTHESIS'/ 
l '0 STATE-FLOW DIAGRAM FROM-TO RECORDS= ',15/ 
2 1 0 ~TATE-FLOW DIAGRAM NODES= ',15/ 
3 1 0 MINIMUM NUMBER OF STORAGE ELEMENTS= ',151 

WRIT[ (IOUT,12501 ll,INOONAMIK,NXFROM(II 1,K=l,NAMLENl,NXFRUMl!I, 
l (NOONAMIK,NXTO( l 11,K•l,NAMLENI ,NXTlll I I, 
2 I N XS l G ( J , I I , J = l , S I GL f N I , I = l , N X F TO I 

1250 FnRMAT 1 1 1 STORED STATE-FLOW FROM-TO LIST'/ 
l 1 0NiJ. fROM',22X,'TIJ',24X,'51GNAL 1 // 

2 llX,14,2X,16Al, 1 1 1 ,l3,'l',4X,l6Al,' l',13,'·.1',4X,40Alll 

C FOR FIRST PASS A~SIGN PRIORITY BASFO ON NODUSE ARRAY 
c 

c 
c 
c 

<: 
c 
c 
c 

c 

c 
c 

<: 

c 

CALL TAGSRT CNCOUNT, NOOUSE, ITAGAI 
on 110 J = l,NCOUNT 

I l O NOOPR I I IT AG A I J II = J 

126() 

1270· 

145 

l~O 

155 

160 

PRINT LIST OF STATF.-FLOW NODES 

WRITE l!OUT,12601 
FURMAT ('l STATE-FLOW NOOES'// 1 NO. NAME',12X, 1 CNT PRl'/1 
,iQ I Tl' l [()UT ,12701 I l, (NOQ•'lAMCK,l I ,K=l,NAMLENI ,NODUSE( 11,.NODPR Ill I, 

l I= l, NCOUNT I 
FOR'-IAT I lX, l4,2X, l6Al,2151 
IF (!FRR .EQ. 11 GO TO 900 

OFTERMINE LOOPS ANO SEGMENTS IN STATE FLOW DIAGRAM 

NLOOP - COUNT OF NUMBER OF LOOPS IN NXLOOP 
NLOIJP O 

USE HIGHEST PRIORITY NOOE AS A CONVENIENT STARTING POINT 
KIJOE = ITAGA(NCOUNTI 

SEARCH STATE FLOW FROM'S FOR THIS NOOE 
on 150 I = 1,NXFTO 
IF (NXFROM( I I .EQ. KOOE .ANO. NXSTAT( I I .EQ. 01 GO TO 160 
<:ONTINUE 

ELSE START AT FIRST AVAILABLE FROM-TO 
00 155 I = l,NXFTO 
IF INXSTAT(ll .EQ. 01 GO TO 160 
CONTINUE 
GO TO 300 

START LOOP 
NLOOP = NLOOP + l 
NXLOOP(l,NLOOPI NXFROM(ll 
NXLOOPl2,NLOOPI = NXTO(ll 
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c 
c 

c 

2. OPEN SEGMENTS - LENGTH 

300 CALL TAGSRT (NLOOP.LOOPLN,LOPTAGI 
N = 0 
DO 310 I'= l,NLOOP 
K = LOPTAG( 11 
IF (NXLOUP(l,KI .EQ. NXLQOPILOOPLN(Kl,KII GO TO 310 
N = N + l 
LOOPRIIKI = N 

110 CONTINUE 
ao 3?0 I= 1,NLOOP 
K = L!!PTAG( 11 
IF (NXLOOPI 1,KI .NE. NXLOOP(LOOP.LNIKI ,Kl I GO TO 320 
N = N + l 
LOOPR I (KI = N 

320 CONTINUE 

C PRINT LOOPS ANO SEGMENTS FOUND. 
c 

WRITE (IOUT,13001 
1300 FORMAT ( 1 1 LOOPS AND SEG~ENTS IN STATE-FLOW FROM-TO LIST 1 /I 

on 350 I= 1,NLOOP 
W~ITE (IOUT,13101 1,LOOPRl(II 

1110 FORMAT l'OLOOP NUMBER =',14,6X,'INITIAL PRIORITY=',14// 
l 20X, 1 NOOE 1 /I . 

WRITE IIOUT,13201 (NODNAMIJ,NXLOOP(l,111,J=l,NAMLENl,NXLOOP(l,11 
1320 FORMAT (lOX, 1 FROM 1 ,5X,16Al,1X, 1 ( 1 ,13,'l'I 

NN = LiJnPLNI I I 
00 330 K = 2,NN 
WRITE (IOUT,13301 INODNAMIJ,NXLOOPIK,lll,J=l,NAMLENl,NXLOOPIK,11 

1310 roRMAT llOX,' T0 1 ,5X,16Al,1X, 1 ( 1 ,13,'1 1 1 
H:J CONTINUE 
350 CONflNLIE 

C n~~•u•o******* *************~*********************•*************•• 
C ~AP LOOPS AND SEGMENTS ONTO CUBE 
c 

c 

NC = NCOUNT 
NSUCl:'S = 0 
IHRY = 0 

400 00 401 l=l,MAXNOD 
'-JODE ( 11 = -1 

401 NOOAOR(II = 0 
NCUUNT = NC 
i~OFTO = 0 
NTRY = NTRY + 

C CHECK FOR INPUT ASSIGNED STATES 
c 

IF (.NOT. SST~TEI GO TO 409 
C THERE ARE ASSIGNED INPUT STATES. FILL IN NODE AND NOOADR 
C ARRAYS TO REFLECT INPUT ASSlGNEO STATES. 

c 
c 

on 405 1=1,NSTAT 
N[)OE(NSTAOR(III = NSTATE(ll 

405 NUOAOR(NSTATElll+ll = NSTAOR(II 
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LOOPLNINLOOPI = 2 
~IXSTAT( I l = l 

165 KFROM = NXTOIII 
161, Kl = l 

rJREM = 0 
C SEARCH FOR A CONTINUATION OF THIS LOOP 

167 IF (Kl .GT. NXFTOI GO TO 175 
00 170 I = Kl,NXFTO 
IF INXSTATIII .NE. 01 GO TO 170 
NRFM = NPEM. + l 
IF (NXFKO"II II .EQ. KFROMI GO TO 180 

170 CONT I NU E 
C CNrJ OF LOOP PROUSSING 

175 IF INPFM .EQ. 01 GO TO 300 
GO TO 145 

C LOOP CONTINUATION FOUND. CHFCK IF THIS NODE ALREADY IN 
C l OOP. 

180 NN = LOOPLNINLOOP) 
IJO 190 K=l,111111 
IF INXLOOP(K,NLOOPI .EQ. NXTOIIII GO TO 200 

190 CONTINUE 
C OK. SAVE IT 

LOOPLNIIIILOOP) = LOOPLNINLOOPI + l 
NXLOOP(LOOPLN(NLOOP),NLOOP) NXTO(II 
'-iXSTATI I l = 1 
GO TO 165 

c 
C IF LOOPS TO IM~EDIATELY PRECEDING NODE, THEN OK. 

200 IF I K • 'IE. NN-1 l GO TO 210 
C THE SKIPPED STATE-FLOW FROM-TO Will BE PICKED UP LATER 
C Kl IS SET HERE SO THAT THE FROM-TO NEXT EXAMINED Will BE 
C THE FIRST ONE FOLLOWING THE LAST ONE PROCESSED. 

Kl I+ l 
GO TO 167 

C IF LOOP TO FIRST NODE IN LOOP, SAVE IT ANO GO TO NEXT LOOP 
?10 IF (K .NE. 11 GO TO 220 

LOOPLNINLOOPI = LOOPLN(NLOOPI + 1 
NXLUOPILOOPLNINLOOPl,NLOOPl = NXTOIII 
NXSTAT(( I = 1 
GO T[J 145 

C APPARENTLY A SMALLER LOOP FOUND. SAVE BEGINNING SECTION 
?20 00 230 J = 1,K 
?10 NXLOOPIJ,NLOOP+ll = NXLOOPIJ,NLOOPI 

LOOPLNINLOOP+ll = K 
KFROM = NXLOOPIK,NLOOP+ll 

C SHIFT NLOOP STRING OVER 

c 

fJn ?40 J = K,NN 
?40 NXLOOP(J-K+l,NLOOPI = NXLOOPIJ,NLOOP) 

LOOPLNINLOOPI = LOOPLNINLOOPJ - K + 2 
'IXLOOP(LOOPLNINLOOPl,NLOOPI = NXTOIII 
NXSTAT (II= l 
NLOOP = NLOOP + 
GO TO 166 

C ASSIGN INITIAL LOOP PRIORITY 
C 1. CLUSEIJ LIJOPS - LENGTH 
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c 
c 
c 
c: 
c 

c 
c 
c 

SUCCESSFUL SOLUTION. PRINT SOME PARAMETERS 

600 NSUCES = NSUCES + l 
~RITF (IOUT,1610) NSUCES,NFF,NCOUNT,MAXNOD,NTRY 

1610 FO~MAT ('l RESULTS OF SOLUTION NUMf\ER',14// 
l IX, 15, 1 STORAGE ELEMENTS USE:D'// 
2 IX,15, 1 STATES USED OUT l1F',15,' TOTAL STATES AVAILAflLE'// 
3 lX,15,' TRIALS THIS NUMAER OF STORAGE ELEMENTS'///) 

PRINT NOOE MAP. 

WRITE I IOUT,1620) 
1620 FOP~AT ( •o• ,lOX,'NODE MAP 1 //7X,'NODE NAME•,qx,'STATE (LITERAL FORM 

Al' /l 
!HJ 650 I = 1,NCOUNT 
CALL TF~MOT (NFF,NODE(I l,O,KARD) 

C CONVERT INTERNAL NODE TO A,B,C'5 
KARD(NFF+ll=IBLNK 

KARD(NFF+21=1LEFT 
K=NFf +2 
nn 610 NN = l,NFF 
CALL f>f\TST 14,NOOE( 11,31-NFF+NN, lfll 
If II~ .El). ll GO TO 625 
KARD(K+l l (NUT 
KARO(K+2l IVAR(NNI 
K = K+2 
GCJ TCJ 630 

625 KARD(K+ll IVAR(NNI 
K = K+l 

630 CrJNTINUE 
K=K+l 
KAR fl (10 = IR I GHT 
~Riff IIOUT,16301 1,INODf.l!IM(J,11,J=l,NAMLENl,IKAROIJ),J=l,KI 

163,) FOR"\AT (IX,14,2X ,16Al,2X,80All 
050 CnNTINUE 

c 
C PRINT INTERNAL FROM-TO MAPPING 
c 

WRITE I IOUT,16601 
1660 FORMAT 1•1•,1ox,•FROM-TO TABLE'/' FROM NODE',19X,'TO NOOE'/1 

on 670 I = 1,NOFTO 
w<slTE llfJUT,1670) INOONAM(J,NOOAOR(NOFROM(ll+lll,J=l,NAMLENI, 

l NOOAO~(NDFROM(Il+ll, 
l I NQONAM( J ,NOOAOR I NOTO I 11 +111, J=l ,NAMLENI 
2 ,NODAO~INIHOI I 1+11 

167() FORMAT (lX,16Al,lX,'1',13,'l',6X,16Al,lXt'l',13,'l'I 
670 CONTINUE 

c ****~~*******•*********************•******•*********************** 
C FORM SET AND RESET EQUATIONS FOR STORAGE ELEMENTS 
c 

r 

WRITE (lfJUT,10901 
1oqo FORMAT llHll 
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c ~ORT INTO PRIORITY 
409 CALL TAGSRT 1-NLOOP,LOOPRl,ITAGAI 

IF IITRACE .GE. 11 WRITE IIOUT,14001 INTRY,NFF,l=l,1881 
1400 FORMAT llHl/41' BEGIN TRIAL=',13,' FOR NFF=',1311 

Nll = 1 
410 NL= ITAGAINLLI 

C CHF.CK FOR CLOSED LOOPS 
IF INXLOOPll,NLI .Nf. NXLOOP(LOOPLN(NLl,NLII GO TO 420 

C YES CLOSED. GO MAP IT 

c 

f.ALL LOPMAP ILOOPLNINLl-1, NXLOOP(l,NLl,IRETI 
IF (!KET .GT. 01 GO TO 480 
GO TfJ 460 

C ~AP SEGMENT 

c 

420 CALL SFGMA~ ILOOPLNINLl,NXLOOPll,NLl,lRETI 
IF l!RcT .GT. 01 GO TO 490 

C- SET UP FOR NEXT LOOP OR SEGMENT 

c 
c 
c 
c 

c 

460 NLL = NLL + l 
IF I !TRACE .GE. 11 WRITE I !OUT,14601 NL 

1460 FORMAT I 1 1 THE FOLLOWING NODE MAP IS FOR LUOP',14,' WHICH WAS sue 
lCESSfULLY MAPPED'/) 

!~ (!TRACE .GE. 11 CALL ERRPRT 
IF INLL .GT. NLOOPI GO TO 600 
GO TO 410 

MAPPING UNSUCCESSFUL. UP PRIORITY OF LAST LOOP OR 
SEG~ENT TO GFT IT MAPPED SOONER. 

4BO IF (IT~ACE .GE. 11 WRITE (!OUT,14801 NL,NTRY 
1480 FORMAT I'*** MAPPING Of LOOP OR SEGMENT',!3, 1 UNSUCCESSFUL. NUMBE 

lR OF TRIF.S= 1 ,141 
If (NTQY .GE. MAXTRYI GO TO 500 

C BUMP PRIORITY OF LOOP THAT FAILED 

r. 

!TEMP= LOOPRl(NLI 
LOOPRIINLI = LOOPRIINLI + l 
IF IITRACE .GE. U WRITE IIOUT,14821 NL,LOOPRIINLl,ITEMP 

l4H2 FORMAT 1 1 0*** LOOP',14, 1 PRIORITY NOW=',14 1 1 WAS=',141 
485 IF IITRACE .LT. 11 GO TO 400 

CALL ERRPRT 
WRITE IIOUT,14811 

1481 FORMAT 1 1 0 STATUS OF MAPPING AT FAILURE PRECEDES THIS MESSAGE'/ 
l lX, 1201 '*' 1/1 

GO Tll 400 

C TRY RUMPING NFF BY ONE 
c 

500 NFF = NFF + l 
IF INFF .GT. MAXNFFI GO TO 900 
WRITE IIOUT,15001 NFF 

1500 FOPMAT l'O••• STORAGE ELEMENTS INCREASED TO 1 ,14/1 
MAXNOD = 2**NFF 
CALL LOGIC INFFI 
NTRY = 0 
Gn TO 485 
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IF INOl'lADR(KTO+ll .LT. NODilUHI GO TO 2125 
C CONTINUE DUMMY PATH 

NP= 0 
KS= KTO 
na 2121 NN=l,NOFTO 
IF IN11FQOM(NNI .NE. KTOI GO TO 2121 
NP = IIIP + I 
JTO = NOTOlNNI 

2121 CUIIITINUE 
IF (NP-ll 2122,2119,2123 

C NO APPARENT PATH (HAZARD) 
21?.2 wRITF (IQUT,121221 KS 

12122 FORMAT l'0',1201'*'11' PROBABLE HAZARD AT CUBE NOOE= ',l~I 
l 1X,l201'•'1l 
r,o TIJ ?125 

C ..,ULT(PLE PATHS FROM A DUMMY NOOE (PRORARLE RACEI. 
2121 WRITE (IOUT,121231 KS 

l?.ln FO~..,AT l'0',1201 1 •'11' PRIJBABLE RACE AT CUBE NOOE= ',ZS/ 
l lX,1201'*'11 

GO TO 2119 
2125 CONTINUE 

c 
.c 

00 2130 NN=l,NXFTO 
IF lNOOEINXFROMINNII .NE. NDFROMIKKI .OR. NODEINXTOINNI I .NE. 

l KTQI GO TO 2130 
C FOUNO SIGNAL. SC~N FIELD BACKWARDS TO FLIMINATE BLANKS 

no 2131 l=l ,SIGLEIII 
IK = SlGLEN+l - I 
IF INXSIG(IK 1 NNI .NE. IRLNKI GO TO 2132 

2131 CONTl"'UE 
c 

7132 

2no 
c 
c 

c 

210'> 
?109 

c 
·2100 
c 

ISETIKSETR(KSET+lll ILEFT 
KSET = KSET + 1 
.)O 2133 I= l , I K 
KSFT = KSET + 1 
ISFTIKSETRIKSETII NXSIGll,NNI 
KSFT = KSET + l 
15ETIKSFTRIKSETII IRIGHT 
CrJNTlNUE 

CHECK FOR PRINT LINE OVERFLOW 
ARRAY ISET IS TREATED AS CIRCULAR 

IF IKSET - IQBEG .LT. 1201 GO TO 2100 
PRINT FROM IQBEG TO KORSET 

IF'(KPR .GT. 01 GO TO 2105 
KPR = l 
IF IN.EQ .EQ. U WRITEIIOUT,11001 IVARINl,IISETIKSETRllll,l=IQBEG, 

l KI.JRSl:TI 
IF INEQ .EQ. 21 WRITE(IOUT,11101 IVARINl,IISETIKSETRllll,l=IQREG, 

l KOR SETI 
GO Tn 2109 
WRITE l!OUT,11051 IISETIKSETRllll,l=IQBEG,KORSETI 
IQBEti = KORSET+l 

CONTINUE 
PRINT REMAINING PORTION OF THE EQUATION 
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C START SCAN OF VARIABLES (NOOE BIT 31 IS FIRSTI 
c 

00 2200 N=l,NFF 
C LGUP TO 21qq TO PICK FIRST SET THEN RESET EQUATIONS 

c 

no 2119 NEQ = 1,2 
KSFT = 0 
!)/) 2101 l=l,240 

?101 ISFTIII = IBLNK 
'<(WSFT = 0 
I 'JllEG = 1 
KPR = 0 

C on 2100 LOOP MATCHES ALL INTERNAL FROM.TO'S WITH FACH OTHFR LOOKING 
C FOR ONES WHICH DIFFER ONLY IN THE VA~IAllLE IN QUESTION 
c 

c 
c 
c 

c 

no 2100 KK=l,NOFTO 
C~LL NODFC~ INOFROMIKKl,NDT01KKl,32-N,IVALI 
IF CIVAL .NF. NEQI GO TO 2100 

4UD TERMS TO EQUATIONS. NEO=l FOR SET. NE0=2 FOR RESET 

I F 11( S [ T • E O. 0 I GO TO 2111 
OR TERMS AFTER FIRST 

IF IK5ET-IQ~EG-108EG .LT. 1201 KORSET 
ISETIKS~TRIKSET+21l = [OR 
l(SET = K~ET + 3 

KSET 

2ll 1 
c 

no 2120 NN=l,NFF 
IF T~E SET OR RESET EQUATION BEING WRITTEN IS FO~ THE SAME 
INTERNAL VARIABLE I IE, N=NNI, THEN THE VARIAbLE IS 
PRO~ABLY REDUNDANT. A CHECK IS PERFORMED TO DFTECT IF 
THIS .FROM-TO MAPPING IS PART OF AN EDGE LOOP. IF IT IS, 
RETAIN THE FULL PRESENT STATE MINTERM. 

c 
c 
c 
r, 

IF IN .NF.. NNI GO TO 2114 
2112 KQ=l,NDFTO fl[) 

I~ 
A 

2112 

INOF~OMIKKI .EQ. NDTOIKQI .ANO. NOTOIKKI .EQ. NDFROMIKQ)I 
G'.l TO 2114 

.r.rJNT I NUE 

?114 
GfJ TO 2120 
CALL PKTST 14,NOFROMIKKl,31-NFF+NN,181 
IF Cle .EQ. 11 GO TO 2115 
IS[TIKSETRIKSET+lll !NOT 
ISETl~SETRIKSET+21l = IVA~INNl 
K5[T = KSET + 2 
(;U TO 2120 

c. 
7115 ISETIKSETRIKSET+lll = IVARINNI 

KSFT = KSET + 1 
21io 

c 
c 
c 
c 
c 
c 

CONTINUE 
LOOK FOR EXTERNAL SIGNALS TO BE AND 1 ED WIT~ THIS TERM 

IF NOTO(KKI IS A DUMMY NODE, THEN FOLLOW DUMMY PATH UNTIL AN 
EXTERNAL NOOE IS REACHED. IF THERE ARE TWO POSSIBLE PATHS TO 
FOLLOW, PRINT ERROR MESSAGE TO THAT EFFECT (PROBABLE RACEI. 

JTO NOTO( KK I 
z11q KTO = JTO 
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f. CHECK IF KFROH AND KTO ARE NEIGHBORS 
CALL NABOR INFF,KFROH,KTO,HI 

C IF ONLY ONE BIT OIFFERENT, NOOE HAPPING SUFFICIENT 
IF (M .N~. 11 GO TO 120 

C CHECK IF APPROPRIATE FROM-TO IN TABLES 
IF (Nl)FTO .LE. 01 GO TO 111 . 
1)0 110 JF=l,NOfTO 
IF (KFRO~ .E~. NOFROM(JFI .AND. KTO .EQ. NDTO(JFII GO TO 90b 

110 CONT I "JUE 
C NOT FOUND. ADO IT. 

c 

111 NOFTO = NOFTO + l 
NDF~OMIN1FTOI = KFROH 
NOTO(NDFTOI = KTO 
GO TO 900 

C MORE THAN ONE CURE NODE AWAY. CHECK IF ANY EXISTING 
C DUMMY PATHS LEAD TO NODE KTO. 

120 IF (M .EQ. 01 GO TO 900 
CALL DUMXST IKTO,N,NODSAVI 
IF IN .NE. Ol GO TO 250 

c 
c NO DUMMY PATHS EXIST. ROUTE ONE 

JTO = KTfJ 
I SW = l 

130 no 150 MAX=l,NFF 
!FROM = l(FROM 
IH! = JTfJ 

140 !PREF = 0 
IF (2*MAX .LE. NFFl IPREF = LXOR(IFROM,ITOl 
CALL NSfLCT (IFROM,IPREF,NFF,JODADR,NEIGH,IERRI 
If IIE~R .GT. 01 GO TO 145 

C AOO DUMMY NODE 
C CHECK FOR NODE ARRAY OVERFLOW 

IF INCDU"lT .GE. MAXNODl GO TO 145 
Nf.OUNT = NCOUNT + l 
JODEINCOUNTI = NEIGH 
JODAOR(NFIGH+ll ~ NCOUNT 
IJDFTO = 'IIDF TO + l 
NOF~OM(NOFTOl = IFROM 
NDTO(NDFTOI = NEIGH 

C CHECK IF ROUTING COMPLETE 
CALL NABOR INFF,NEIGH,JTO,MI 
IF CM .E,). 11 GO TO 160 
JFROM = NEIGH 
GCJ TO 140 

C SET UP TO TRY ANOTHER PATH 
145 NN = NCA + l 

IF INN .GT. NCOUNTI GO TO 149 
C RESTORE ARRAYS 

c 
c 

c 

DO 148 J=NN,NCOUNT 
JOOADR(JOOEIJl+ll = 0 

148 JODEIJI = -1 
149 NOFTD = NOA 

NCCJUNT = NCA 
150 f.ONTINUE 

IF (KPR .GT. 01 GO TO 2205 
IF INFQ.EQ.11 WRlTEIIOUT,11001 IVARINI ,I ISET(KSETRllll,l=IQBEG, 

l KSET I 
1100 FORMAT ('0 SET ',Al,' = ',120All 

IF (NEQ.EQ.21 WRITEIIOUT,11101 IVARINl,IISET(KSE'TRllll,l=IQBEG, 
1 KSFT l 

1110 FORMAT('ORESET '~Al,'= 1 ,120All 
GtJ TO 2199 

2205 WR IH I IOUT,11051 I ISETIKSl:TRI 111,I=IOBEG,KSETI 
1105 FOKMAT 111X,120All 
?199 C!l'lTINUF 

271)0 CONTINUE 
W~IT~ (IOUT,10901 
IF INSUCES .LT. MSUCESI GO TO 400 
IF (IENOI 1,1,999 

C RUN UNSUCCESSFUL. PRINT MESSAGE. 
900 WR!Tf (IOUT,19001 

lqQJ FO~MAT ('l RUN UNSUCCESSFUL') 
GO TO 999 

'1'19 STOP 
[1111) 
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