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CHAPTER I 

INTRODUCTION 

The mathematical representation of the noise producing mechanisms 

has been the major obstacle to the development of a complete jet noise 

analysis. Lighthill 1 s (1, 2) classical analysis utilizes distributions 

of quadrupoles to represent the flow distrubances in a subsonic jet. The 

quadrupole source strength density is equal to a turbulence stress tensor 

T .. , which in most flows cannot be calculated but must be estimated. 
lJ 

Lighthill 1 s formulation was later extended to transonic and supersonic 

flow (for example, see Ffowcs Williams (3)). 

A new approach to the representation of the disturbances producing 

the sound in a jet has been an instability approach. Crow and Champagne 

(4) have observed latent orderly structure in a subsonic jet whose 

characterization can be aided with the help of the instability proper

ties of the jet. It has been suggested by Bishop, et al. (5) among 

others that the noise generating fluctuations in a supersonic jet may 

be even more organized than in the subsonic case. They are led to this 

conclusion upon viewing Schlieren and shadowgraphs which show distinct 

wavefronts that propagate in a similar manner to Mach waves. Phillips 

(6) and Ffowcs Williams (3) advocate that eddies moving supersonically 

produce these Mach waves. However, this has not been proven adequately 

since few definitive measurements have been made in a supersonic jet to 

determine the noise producing structure of the jet. 

1 
/ 
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Tam (7,8,9), Sedel 1 nikov (10), and Chan and Westley (11) have devel

oped analyses which represent the noise producing disturbances in the 

supersonic jet in terms of 1 inear stability theory. These theories pre

dict values for the growth rate and wavelength of a disturbance in the 

jet given the frequency of the disturbance. Tam 1 s analysis proceeds 

further to select the frequency of the dominant disturbance present in 

the jet. This selection is done by a complicated interaction between 

the instability waves and the cell structure of mean expansion and com

pression waves in the jet. Figure 1 shows the general characteristics 

of a supersonic jet including the mean flow cell structure. Tam, in 

particular, is applying a linear stability theory to high Reynolds num

ber jets under the assumption that some orderly structure from the tran

sition from laminar to turbulent flow will still be present in the jet. 

The major direction of-this research was to determine if,the 

initial instability process in a supersonic jet can be characterized by 

a linear stability theory. Since .a linear stability theory is most 

applicable for flow disturbances in a jet that is undergoing transition 

from laminar to turbulent flow, th_e jet in these experiments was run at 

low Reynolds numbers to stretch out the transition zone. To obtain 

these low Reynolds numbers, jets with exit diameters around 10 mm were 

exhausted into a chamber whose pressure was 1/30 of an atmosphere or 

less. The Mach numbers of the jets-were around 2.2. To _determine if a 

linear stability theory can be applied to the jet, the orientation, 

wavelength, frequency, wave speed and growth of the disturbance in the 

jet must be measured. Linear stability analysis assumes a solution for 

the flow disturbance in the form 

u(x, r, ~' t) = u*(r) exp i (kx-wt-n~) 
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for axisymmetric flow. To perform a complete stability analysis, 

measurements of the interdependance of the eigenvalues k and w corre

sponding to each azmuthal mode number n and the eigenfunction u*(r) for 

each n, k, and w combination should be made. Since Tam (7),Sedel 1 nikov 

(10}, and Chan and Westley (11} evaluate their theories1 in terms of 

spatially growing waves, this research will do the same. Therefore, the 

frequency, w, and the azmuthal mode number, n, are specified to be real 

numbers and k is complex such that k; kR + ik1 where kR is the wave num

ber in the x direction and -k1 is the amplification factor for expo

nential growth. 

In view of.the above discussion the following objectives were deter

mined for this study: 

1. To measure th!;! mean flow properties _of a low Reynolds number 

supersonic jet such as cell structure strength and profiles of the mean 

flow. 

2. To determine if the disturbances in a low Reynolds number sup

ersonic jet can be characterized by a linear.stability theory. For the 

disturbances ·to be characterized by a linear stability theory their 

initial fluctuation levels must be small compared to the local mean and 

the disturbance must grow exponentially. 

3. To determine the spectral content of the fluctuations present 

in the jet. 

4. To measure the wavelength and wave speed of some of the domi

nant spectral components. 

Calculations of Sedel 1 nikov (10} were performed for a hot jet while 

Chan and Westley 1 s (11} were for a helium jet. Therefore, their pub

lished results are not applicable to the cold jets used in t~is study. 
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However, Tam 1 s analysis (7) was performed for a cold jet and will, there

fore, be compared to the measurements made in this study. 



CHAPTER II 

EXPERIMENTAL APPARATUS AND PROCEDURE 

The experiments were performed in the Oklahoma State University free 

jet test facility. This test facility utilizes three axisymmetric 

supersonic de Laval nozzles with a design Mach number of 2.65 for in

visid flow. The exit diameter of th~ three nozzles .are 6.35, 9.52 and 

15.9 mm. The two smaller nozzles hawe conical contours with half angles 

of 1.60° and 2.28° for the 6.35 mm and 9.52 mm nozzles respectively. 

The 15.9 mm nozzle has contoured walls designed by the method of char

acteristics for uniform parallel flow at the exit. Two millimeters up

stream of the exit of a nozzle is located a static pressure tap for 

measuring the nozzle exit pressure. 

The jet exits into a chamber that is lined with 1.5 cm thick 

acoustic tile as illustrated in Figure 2. The purpose of this acoustic 

tile is to reduce the amplitude of,the reflected sound waves. The pres

sure in the chamber is controlled by a .variable area diffuser and main

tained very close to the nozzle exit-pressure (around 0.5 cm of mercury). 

The diffuser exits into a 31.8 cubic meter vacuum storage tank which is 

evacuated by a Kinney vacuum pump. The tank serves effectively to damp 

out disturbances that migh~ propagate upstream from the vacuum pump and 

also enables short duration experiments wi-th large nozzles. 

The inlet of the supersonic jet consists of a stilling chamber that 

is vented to atmosphere by a valve which controls the jet stagnation 

5 
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pressure. There is a five cen~imeter thick section of·foam rubber fol

lowed by six fine screens in the. stilling chamber. In this.manner a flow 

that is relatively free of disturbances is produced. The cross section

al area of the 15 cm diameter stilling chamber is in all cases more than 

150 times larger than the nozzle exit area~ 

The test chamber is equipped with a two degree of freedom probe 

drive on which hot-wire, pitot pressure, static pressure and microphone 

probes are mounted. The drive traverses the jet in the x and r direc

tions passing through the centerline of the jet. 

Pressure probes were connected to either a silicone oil (specific 

gravity of 0.93) or a mercury manometer, both of which were referenced 

to a vacuum of 30 microns of mercury. If the pressure measured was less 

than 3.5 cm of mercury the silicone oil manometer was used for better 

resolution. The pitot probe is a square ended tube epoxied onto a brass 

wedge. In supersonic flow the pitot probe measures the stagnation pres

sure behind a normal shock. Matthews (12) calibrated this type of probe 

and at the Reynolds .number range of this study the viscous .correction 

was negligible. The static pressure probe was a slender cone probe with 

a diameter of 0.88 mm and is shown in Figure 3 along with the pitot 

probe. From Behrens 1 ( 13) ca 1 i br.at ion of a probe of this design, it was· 

determined that the viscous .correction is negligible for this applica

tion. Knowing the stagnation pressure behind a normal shock and the 

static pressure, one is able to calculate the Mach number at the location 

of the measurement. The Mach numbers presented in this paper were deter-. 

mined in this way. 

Disa 55A53 subminiature.hot-wire probes epoxied to brass wedges 

similar to the pressure probe wedges were used in this study. A Disa 



model 55001 constant temperature anemometer was used to operate the 

probes in conjunction with Oisa O.C. (55030) and RMS (55035) voltmeters 

and an auxilliary unit (55025) which contained a frequency band pass. 

Frequently a Multimetrics model AF 120 active filter was used to band

pass the signals. 

7 

Profiles·of mean hot-wire voltage were made by driving the probe 

across the jet with the radial probe drive which was coupled to a po

tentiometer to provide a D.C. voltage proportional to the position of 

the probe. This voltage was input into the y axis o.f a Moseley 2D x-y 

recorder and the mean bridge voltage was input into the x axis. In this 

manne~ the profile of the mean hot-wire voltage signal was obtained at 

several x/D locations. The same technique was used to obtain profiles 

of the hot-wire voltage fluctuations using a Ballentine AC to DC con

verter to convert the fluctuating hot-wire voltage to a DC voltage. 

An extensive calibration proced~re is required to decompose the 

hot-wire voltage fluctuations into temperature, velocity and density 

fluctuations as shown by Morkovin (14). When measurements are performed 

in a continuum flow (Re0 > 20) a data reduction scheme such as the one 

presented by Rose (15) may be used. According to Behrens (16) the flow 

around the hot-wire probe is in a transition from continuum to non

continuum flow for Re0 between 20 and 0.2. In this region the recovery 

factor (Trw/T0 ) is not constant. When coupled with the large end loss 

correction, the decomposition of the hot-wire signal is further compli

cated. Behrens (17) has suggested a reasonable accurate simplification 

which Will be incorporated in this study. For large overheat ratios, 

e 1 /E equals(~) m1 /m. By calibrating the hot-wire probe over the range 

of mass flux in which it is to be operated, the factor (Am) ; which is 



the local sensitivity of the curve of mass flux versus hot-wire mean 

voltage, can be determined. 

8 

Characterization of the orientation, wavelength,and wave speed of 

spectral components of the instability requires phase measurements. The 

technique chosen in this investigation consists of artificially exciting 

the instability and using the excitation signal for a reference from 

which to make phase measurements. In the two smaller nozzles a tungsten 

electrode was mounted on the wall opposite the pressure tap two milli

meters from the exit. The electrode was used to excite the jet arti

ficially with an oscillating glow discharge in a manner similar to the 

technique used by Kendall (18). The glow discharge is produced by ap

plying a 800 volt peak to peak alternating voltage biased to a negative 

potential of 450 volts. In this manner an oscillating glow is estab-

1 i shed. 

To determine if the glow discharge had any effect on the hot-wire 

signal, such as residual heat being convected downstream by the jet, 

the electrode was mounted directly upstream of the hot-wire probe so 

that the flow passing through the glow also passed over the hot-wire 

probe. The electrode was then mounted on the opposite side of the jet. 

It was determined that the glow had no appreciable effect on the hot

wire signal. This would be expected since the total energy flux of the 

jet is 100 times larger than the energy flux introduced into the flow 

by the glow discharge apparatus. 

Phase shift between the glow exciter input signal and the hot-wire 

voltage fluctuations were evaluated from oscilloscope traces of the 

two signals for several x/D locations to determine the wavelength of the 

distrubance in the x direction. 
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Frequency spectra of hot-wire voltage fluctuations were obtained 

using a Hewlet Packard model 302A wave analyzer with a constant band 

width of 6 Hertz and a sweep rate of 1000 Hertz per minute. The spectra 

from the 302A wave analyzer were compared with the spectra from a General 

Radio model 1910A wave analyzer with a constant band width of 100 Hertz. 

The output from the wave analyzer was recorded on a Moseley 20 x-y re

corder. Frequently data was recorded on either a Sanborn 2000 or an 

Ampex FR 1300 tape recorder, both with frequency re,s.ponse we 11 above 

60,000 Hertz. A General Radio 1523-P4 wave analyzer was use.d in the 100 

Hertz bandwidth mode to band pass hot-wire voltage fluctuation signals 

in order to determine the change in amplitude of the fluctuations about 

one frequency as the prob~ is progressed downstream. In this manner the 

growth of the disturbance at that frequency can be determined. 



CHAPTER III 

EXPERIMENTAL RESULTS 

Mean Flow Measurements 

Pitot pressure and static pressure measurements were made along 

the centerline of the 6.35 and 9.52 mm jets. It was found that even 

when the nozzle exit pressure was approximately the same as the chamber 

pressure (Pn/Pc = 1.01) there was a cell structure of expansion and com

pression waves present. Figure 4 illustrates how the static and pitot 

pressure measurements vary along the axis of the 6.35 rrun jet at a Rey

nolds number of 12,100. Assuming isentropic flow down the centerline of 

the jet it is possible to calculate a local Mach number of the jet from 

each of the three ratios PP/P0 , Ps/P0 and Ps/Pp. The variations in 

pitot pressure measurements (Pp/P0 ) indicate a larger variation in Mach 

number as one moves downstream than the variations in static pressure 

measurements (Ps/P0 ) do. This may be explained by the fact that the 

static probe is long and effects the flow before the flow reaches the 

measuring orifices on the probe. It is therefore possible that the 

static probe tends to smooth the flow thus decreasing the magnitude of 

the variations in the static pressure measurements slightly. 

It has been determined that the stagnation pressure decreases as the 

air flows through the nozzle. Therefore, one must evaluate the local 

Mach number from the local measurement of Ps and Pp. When one takes into 

10 
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account the smoothing effect of the static pressure probe and combines 

the static and pitot pressure measurements (P/Pp} it can be determined 

that the Mach number varies+ 3.5% ~n the centerline of tbe jet. This 

corresponds to a+ 6% variatioQ in mass flux along the centerline of the 

jet. 

It was observed that the ratio P/P0 changed slightly from day to 

day with corresponding change in Mach number. This variation seems to 

be caused by changes in the amount of moisture in the air. Days with 

more moisture in the air yield higher values of Pn/P0 , and hence indi

cate a lower Mach number. Better measurement and control of the humidity 

in the flow facility is needed to fully determine the effect of humidity 

upon the ratio of Pn/P0 • 

The data in Figure 4 was used in conjunction with other measurements 

of the same type to determine an average Mach number of-2.2 for the 6.35 

mm jet. An average Mach number for the 9.52 rrm jet was calculated to be 

2. 3. From hot.-wi re measurements it was estimated that the Mach number 

for the 15.9 mm jet was 2.5. The difference in Mach number from the de

sign Mach number of 2.65 is attributed to viscous effects in the nozzles 

since the area ratio in all three nozzles is 3.036. 

Mean hot-wire measurements _were made along the centerline to deter

mine the magnitude of the cell structure in the 6.35 mm and 9.25 mm jets 

at different pressure balance conditions. Figure 5 parts (a} and (b} 

show mean hot-wire voltage measurements in the 6.35 mm jet when the ratio 

of the nozzle exit pressure to the chamber pressure is 1.01 and 1.5. As 

to be expected, the cell structure of compression and expansion waves is 

stronger when the pressure ratio is 1.5. The arbitrary linear scales 

presented are the same in all three parts of Figure 5. Part (c) of the 
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figure presents mean ~at-wire voltage ffleasurements along the centerline 

of the 9.52 mm jet ope-rating in the perfectly balanced condition (P/Pc 

= 1.01). The data was taken with the same ~at-wire probe operating at 

the same overheat ratio as in parts (a) and (b). The cell structure in 

the 9.52 mm perfectly expanded jet is much stronger.than in the 6.35 mm 

perfectly expanded jet. This may be due to the larger divergence angle 

of the 9.52 mm nozzle. The cell length of the two jets in the perfectly 

expanded condition are both approximately equal to 2.0 D. When under

expanded the cell length elongates .to 2.5 Di Figure 6 illustrates the 

elongation process in the 9,52 mm jet. The cells elongate in a contin

uous fashion with no apparent discontinuities as the pressure ratio 

Pn/Pc is increased. 

Mean hot-wire voltage profiles are presented in Fig'Ure 7 at various 

x/D locations for the 6.35 mm and 9.52 mm jets. These were included to 

demonstrate that the profiles can be approximated by top hat profiles 

for at least the first four.diameters of flow •. The top hat profile was 

used in the development of the instability theories mentioned earlier. 

Frequency Spectra 

Figure 8 pres~nts·representative hot-wire voltage fluctuation fre

quency spectra for the three nozzles used in this study operating in the 

perfectly expanded condition. The frequency is nondimensionalized by 

U/d to yield a Strauhal number where U is the mean velocity of the jet 

and dis the effective diameter •. The effective diameter is the diameter 

of the nozzle minus twice the displacement thickness of the boundary 

layer. The hot-wire probe is located five diameters downstream of the 

exit in the bottom shear layer at the point of maximum fluctuations. 
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Since there is a major mode in all three frequency spectra at a Strauhal 

number of St~ 0.18,we must conclude that this frequency is characteris

tic of the supersonic jet flow. The 15.9 mm jet also has two modes pre

sent at Strauhal numbers of 0.27 and 0.28. The exact reason for the 

modes at higher Strauhal numbers is not known at the present time. The. 

spectras in the smaller nozzles all drop off drastically in magnitude 

above a Strauhal number of 0.20 but sometimes contain a minor peak at a 

Strauhal number of 0.36 (twice the frequency of the donimant mode). This 

decrease in magnitude is not due to the lack of hot-wire frequency re-

sponse. 

After recording over 50 spectra at various locations in the jet for 

various mean fl ow conditions, it has bee_n determined that very few are 
,. 

exactly the same. However, virtually all of the spectra of the 6.35 mm 

jet have recurring dominant modes at St= 0.148, 0.176 and 0.185. In 

numerous cases (but not all) the 9.52 mm jet has only one dominant mode 

at St= 0.17 provided that the probe is upstream of x/D = 5. It has 

also been observed that the exact characteristics of a frequency spectrum 

depend upon the pressure balance condition and on the humidity of the 

air. 

Figure 9 illustrates the effect of increasing the Reynolds number 

on the hot-wire spectra of the 9.52 mm jet. All spectra were taken at 

x/D = 5 at the point of maximl.lm fluctuation. The dominant oscillation 

remains present but other frequencies increase in amplitude compared to 

the peak spectral component as the Reynolds number is increased. The 

Strauhal number of the peak decreases slightly as the Reynolds number is 

increased. 
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Hot-Wire Fluctuation Amplitude Measurements 

Profiles of hot-wire voltage fluctuations are shown in Figure 10 

for the 9.52 mm naturally excited jet. Note that the potential core· 

{area of negligible fluctuations in the center of.the jet) lasts for only 

about 6 diameters for this Reynolds number range. Hot-wire voltage 

fluctuation measurements made at the .point of maximum fluctuations on. 

the bottom shear layer of the 6.35 mm jet are shown in Figure 11 for 

various x/D locations. The values for m'rms/m were obtained utilizing 

the hot-wire calibration technique described before in this paper 

I ;- - l I /E m rms m - Am e rms • 

The sensitivity coefficient Am was determined by direct calibration in 

mean flow measurements. 

It was.observed that near the exit of the nozzle a majority of the 

fluctuations were caused by low frequency disturbances {St< 0.01). 

These low frequencies are enhanced by the resonance of the test chamber 

and, therefore,do not give a true representation of a free field jet. 

When the same data was reduced using l KHz high pass filter to eliminate 

the low frequency components, the axial distributions of mass flux fluc

tuations in Figure 12 were obtained. The per cent fluctuations at x/D 

= l are less than four per cent of the local mean. 

In order to obtain growth rates for a single spectral component, 

the hot-wire signal was bandpassed about the frequency to be observed 

with a 100 Hertz wide bandpass. This technique,was utilized fo.r the 

frequencies .of 15.4, 18.2 and 19.l KHz, which correspond to major peaks 

in the naturally occ1,1rring spectra. The resulting graphs for m• rm/in 

versus x/D are shown in Figure 13. These measurements were performed at 
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the radial location of maximum fluctuation for the entire spectrum of 

disturbances present. This position may not coincide with the position 

of maximum fluctuation for a given spectral component. Therefore, the. 

growth rates derive~ from them are only a preliminary indication of how 

the disturbances grow. 

Using the linear stability theory assumed solution form for the mass 

flux fluctuation 

m' = Real {m{r) exp i {kx - wt- nt)) 

one is able to determine that 

-k d = d{ln(m'~m)) I d(x/d .• 

From this equation and the data in Figure 13 one is able to determine 

the amplific~tion factor, -k1d, for the region of exponential growth. 

The disturbances grow exponentially .for about five diameters where the 

spectral component reaches approximately 5% of the local mean. Here 

non-1 inear effects begin to dominate the flow. 

The mass flux fluctuation data plotted in Figure 13 are for the 6.35 

mm jet at a Reynolds number of 28,900. Similar measurements were made 

at Re= 9,600 and Re= 19,300, and the growth,rates were all within 30% 

of each other with no systematic Reynolds number dependence evidenced. 

However, measurements indicate that for a Reynolds number of 3,600 the 

instabilities in the 6.35 mm jet did not grow and the jet remained com-

pletely laminar for at least ten diameters. 

Comparison of numerical values of growth rates at Re= 28,900 with 

theoretical predictions are shown in Table I. Recalling from Figure 13 

that the St= 0.148 mode has the largest amplitude, it is encouraging 
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that Tam 1 s theory (7) does a good job of predicting its growth rate. 

More measurements are needed to better explain the behavior of the other 

modes. 

In summary it was found that the disturbances in th.e jet originate 

with small fluctuation amplitudes and grow exponentially for the first 

five diameters of flow. Since this is in accordance with linear.stabil-

ity theory,we conclude that the flow disturbances are in fact instability 

waves. 

Wavelength and Wave Speed Measurements 

The 6.35 mm jet was.artifically excited at three different fre

quencies to determine the wavel~ngtn (and wave speed) of the disturbance 

at that frequency. It is, therefore, important to determine the effect 

of this excitation upon the naturally developing instability process in 

the jet. Figure 14 contains a naturally excited spectra and three arti-

ficially excited at 15.5 (St= 0.15), 19.4 (St= 0.18) and 22.3 (St= 

0.21) KHz. The arbitrary linear scale is the same in all four parts of 

the figure. These four spectra were recorded on a humid day. The major 

effect of the higher humidity was that the multimodal characteristics of 

the naturally occurring spectra were suppressed. However, more data needs 
' ' ' 

to be taken before any conclusive correlations can be drawn between the 

humidity and the resulting spectra. The 19.4 Khz excitation frequency 

corresponds to the dominant natural mode of St= 0.18. The 15.5 KHz 

was a major mode that was usually present in hot-wire frequency spectra. 

The 22.3 KHz mode.was not a major mode in any spectra but was excited 

since it responded favorably to-excitation. 
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It was.found that it was possible to excite the jet with the glow 

discharge at many different frequencies. As one swept through the fre

quencies there would intermittantly be instabilities that would responq 

by phase locking onto. the exciter. When the 19 .4 KHz mode was excited, 

spectra like the one in Figure 14(b) were obtained in all cases no mat

ter what the humidity was. The multimodal Gharacteristic of the.jet is 

suppressed when excited at the dominant natural mode in all cases. How

ever, when exciting at 22.3 KHz, the results differed somewhat. In most 

cases the 19.4 KHz mode was suppressed, but the rest of the spectra was 

the same as the naturally occurring spectra except for the added peak at 

22.3 KHz. 

When the jet was excited at 15.5 KHz; the spectrum in Figure 14(d) 

was obtained. This excitation frequency did not diminish the peak at 

19.4 KHz appreciably but did add a peak at 15.5 KHz, 4 KHz and 12 KHz. 

The two harmonic modes, 4 and 12 KHz, no doubt relate to the work done 

by Miksad (19) in a subsonic free shear layer that was artificially ex

cited at two frequencies (f1 and f2). He found that the instabilities 

produced by the excitation caused other disturbances to be present-with 

frequencies of the form f = (nf2/m ±. (pf1/q) where n, p = 1, 2, 3, .•• 

and m, q = 1, 2. In this cas~ the jet was naturally excited at 19.4 KHz 

and artificially excited at 15.5 KHz. The two resultant frequencies in 

the spectra are represented by f2 - f1 and f2 - ~fl where f2 = 19,400 Hz 

and f1 = 15,500 Hz. Sato (20) also observed this type of phenomena in 

a two dimensional wake. The harmonic modes appear to be due to non

linear interaction between f1 and f2• The reason for the 22.3 KHz ex

citation not resulting in the same non-linear effect is not known. The 
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fact:that,excitation at different spectral ~omponents does not result in 
i 

the same non-linear interaction shows that there is still a good deal to· 

be learned about-the instability process. 

The variation of .. phase between the glow exciter signal and the hot-
• ·' . , I 

wire voltage fluctuation as one progresses in the x direction was mea

sured from oscilloscope traces like the one in Figure 15. This photo

graph is a 1/5 second time history of the signc~ls with the hot-wire probe 

located at x/D = 5. Phase measurements were not made unless this degree 

of. locking between the exciter an~ the hot-wire signal ·was obtained. By 

plotting phase angle <l>:versus x/D one is ableto d~termine the wave

length, Ax' in the x.direction. 

Values of Ax were determined for the 9.52 mm jet by exciting the jet 

at its natural dominant,mode (St =:0.17) and plotting the phase measure

ments versus x/D (Figure 16). By using a least squares linear regression 

analysis, it was determined. that the wavelength. (A/D) for this ·data was 

3.36 ±. 0.15 which .includes only random error uncertainty. The error band 

is the 95.% confidence interval. Ax varied from day to day so additional 

phase shift. data was taken on different days and the best estimate of 

A/Dis 3.30 ±_0.3 where the uncertainty limits incl.ude random and sys~ 

tematit.errors. 

Usfog the 6.35 mm jet it was pos~ible to excite the jet at many 

different fr~quenc i es. Figure l7 sh.ows , th.e phase plots for the jet being 

excited at.(a} St =-0.18. (b) St= .21, and St= 0.15. Presented in 

(a) is data from-three different days. The absissa intercept changes 

froll) day to.day. It .is possible that this is·due to the manner in which 

the glow exciter electrode erodes with time changing the geometric con

figuration of the glow and thus ·altering the phase of the instability 
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wave at the exciter. A complicated interaction with the moisture in the 

air is also a possible cause for the changing intercept. We believe the 

changing humidity to be the cause of the wavelength changing from day to 

day. Using the least squares linear regression analysis, it was found 

that the following wavelengths (;\/D) are present in Figure 17(a): 

3.18 ! 0.18, 3.34 ! 0.16, 3.03 ! 0.12, where the error is the 95% con

fidence interval for each measurement. The best estimate of the average 

wavelength (A /D) is 3.2 + 0.3. x -
Part (b) of the figure is a phase plot when the 6.35 mm jet was 

excited at St= 0.21. The wavelength in this case was determined to be 

2.57 + 0.18. In Part (b) the jet was also excited at St= 0.15 and this 

wavelength was determined to be 3.88 ! 0.16. The wavelengths in part 

(b) also varied day to day so best estimates of the wavelengths (A /D) x 

average are 3.8 ! 0.30 and 2.55 + 0.25 for St= 0.15 and St= 0.21 re-

spectively. When one computes the wave speed of the disturbance in the 

x direction (C = Axf) for all three modes, it was found that they are 

equal within the aGcuracy of the measurements (10%). The wave speeds 

were as follows: St= 0.15, C = 0.70U; St= 0.18, C = 0.73U and St= 

0.21, C = 0.68U. Therefore, over the range of excitation that was used 

in this study, it is evident that the waves travel downstream in the jet 

at the same convection speed regardless of their frequency, within the 

accuracy of the measurements. 

The change in Ax (Figure 17(a)) does not seem to be a Reynolds 

number effect since the Reynolds number was essentially the same for all 

three days. Variation in the pressure balance Pn/Pc was eliminated since 

the same pressure balance was ma.i nta i ned on the different days. It has 

been observed that the wavelength seems to shorten as the humidity is 
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increased. This would seem reasonable since increases in hu.midity also 

seem to increase the ratio P/P0 • An increase in Pn/P0 indicates a de

crease in Mach number, and since the disturbances seem to propagate at a 

given percentage of the velocity, the wavelength would shorten if excited 

at one given frequency (canst. = C/U; canst= Axf/U). However, this 

correlation does not always hold true for all measurements but is only 

a general trend. 

Hot-wire measurements in the 6.35 mm and 9.52 mm jet indicate that 

the relative phase <I> differs by 180° at a given x/D locati.on between the 

upper and lower shear layer. This was.observed for the St= 0.18 and 

St= 0.15 modes in the 6.35 mm jet and for the St= 0.17 -mode in the 9.52 

mm jet. Although this evidence is not conclusive, the data strongly in

dicates that the major modes have an n = 1 azmuthal mode depenaence. 

This means that the wavefronts are helicies rather than axisymmetric_ 

disturbances.as measured in the subsonic jet by Crow and Champagne (4). 

Tam 1 s analysis (7) has the capability to predict the real part of 

the wave number (kR = 2w/Ax) when the frequency of the disturbance is 

given. Therefore, this theory will be compared to the measured values 

of kRd for the three modes excited in the 6.35 mm jet and the one mode 

excited in the 9.52 mm jet. Tabl.e II contains all of these values along 

with the Strauhal number of the dominant mode predicted by Tam 1 s analy

sis. The value of kRd which corresponds to the predicted dominant mode 1 s 

frequency is presented in parenthesis below the Strauhal number of that 

mode. The comparison of kRd shows reasonably good agreement between the 

measurements and Tam 1 s theoretical predictions. The analysis does not 
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predict the multimodal process present in the jet. However, the domin

ant frequency predicted by Tam 1 s analysis is in the range of the major 

modes present in the jet. 



CHAPTER IV 

CONCLUSIONS 

The mean flow properties of a supersonic axisynmetric low Reynolds 

number jet were measured. It was determined that the mean flow can be 

approximated by a top hat profile for at least the first four diameters 

of the flow. The disturbances in the jet can be characterized as fn

stability waves since they grow exponentially and originate with small 

fluctuation amplitudes compared to the local mean. This is in accor

dance with linear stability theory. 

The measured growth rates for the largest amplitude dominant mode 

was in good agreement with the predicted value of Tam. Little Reynolds 

number dependence in the growth rate was observed except that below 

Re= 3,600 the jet remained completely laminar for over ten diameters. 

From hot-wire frequency spectra it was concluded that in the 9.52 

mm jet there is a major mode present whose Strauhal number is 0.17. In 

the 6.35 mm jet, which is multimodal, there were recurrent major spectral 

components present at St= O. 148, 0. 176 and Q.185. Thus, In general, 

Tam 1 s single frequency selection mechanism is not verified by experiment. 

However, the predicted single frequency does fall among the several fre

quencies measured in the 6.35 mm jet. 

The wavelengths of some of the dominant spectral components were 

measured. The wave speed calculated from them indicates that these dis

turbances were all propagating down the jet at about 70% of the mean jet 
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velocity. The wavelengths predicted by Tam agree favorably with the 

measured values. 
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CHAPTER V 

OBSERVATIONS AND RECOMMENDATIONS FOR FUTURE WORK 

This section will present some aspects of the research that were not 

presented earlier since they did not directly apply to the major ob

jectives of the thesis and some of the measurements are preliminary in 

nature. The multimodal characteristics of the 6.35 mm jet was the major 

question left unsolved in the thesis. In an effort to determine the 

reason for the 6.35 mm jet being single modal the following measurements 

were made. 

All frequency spectra presented until now in the thesis have been 

for the perfectly expanded jet. Hot-wire spectra of the 6.35 and 9.52 

mm jets operating in both perfectly expanded and underexpanded conditions 
' (Pn/Pc = 1.5) are presented in Figure 18. In the underexpanded case the 

multimodal feature of the 6.35 mm jet has diminished in that there are 

less major modes, the modes present are grouped closer together and at a 

lower range of frequencies. In Figures 5 and 6 it was seen that in the 

underexpanded condition the strength of the cell structure not only in

creased but the lehgth of the cells also increased. If the selection 

mechanism hypothesized by Tam is correct, the elongation of these cells 

which select the frequency of the disturbance would increase the wave

length of the disturbance. Assuming that the wave speed of the dis

turbance is a constant percentage of the mean velocity of the jet and 

that the cell length and the wavelength of the disturbance vary 
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linearly, the increase in the wavelength due to underexpanding the jet 

would decrease the frequency of the disturbance. The measurements de

finitely indicate a decrease in the frequency of the group of modes. 
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It was observed that the strength of the mean cell structure was the 

only major difference in the mean flow characteristics of. the ~- 52 and 

6.35 mm jets. If one assumes that the strength of the mean cell struc

ture was the determining factor for multimodal or single modal character

istics of the jet, then increasing the strength of the cell structure in 

the 6.35 mm jet would produce a single modal jet. However, when the cell 

structure strength of the 6.35 mm jet is increased by underexpanding the 

jet to values larger than those present in the 9.52 mm perfectly expanded 

jet only the spread of the modes is decreased slightly. The picture is 

further clouded by the fact that on humid days, which correspond to days 

of hi~her values for Pn/P0 , spectra of the 6.35 mm jet perfectly expanded 

have been obtained which are single modal. For example, see Figure 14(a). 

The exact reason for the spectra changing from multimodal to single modal 

is not understood, but there are indications that the changing humidity 

has some effect on the spectra. Th~ multimodal spectra in Figure 8(a) 

was taken on a day when the ratio of pounds of moisture in the air to the 

pounds of dry air was 0.0142 while for the spectra in Figure 14(a) the 

ratio was 0.0205. There was a1so evidence of a slight drift in the dom

inant mode I s frequency from day to day, but it was only on the order of 5%. 

It is evident that more measurements need to be made of the spectral 

components in the jets with some control over the humidity. In this man

ner the mode switching characteristics of the jet may be better under

stood. In addition, the non-linear interaction observed in Figure 14(d) 

when the 6.35 mm: jet was artificially excited at St= 0.148 needs to be 
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investigated more closely. Measurements should be made when the jet is 

excited at different frequencies to determine if the non-linear inter

action occurs for different excitation frequencies other than St= 

0.148. This may give some insight to the structure of the multimodal 

jet and how the disturbances present in the jet interact. 

In conjunction with a more extensive multimodal investigation, more 

measurements on the growth rates of individual spectra components are 

needed. The growth rates presented in the th~sis were specified as being 

preliminary since the fluctuation measurements were made at the radial 

position of maximum fluctuation for the entire spectrum of frequencies 

present in the jet. Therefore, the spatial distribution (radial) of the 

fluctuations of a given spectral component needs to be determined and 

growth rates based upon the maximum fluctuation at each x/D location 

should be made. It may be desirable to perform these measurements with 

zero percent humidity in order to diminish the tendency of the naturally 

occuring spectral components to vary in amplitude from day to day. 

This study is part of an overall research of the aerodynamic noise 

of.a supersonic jet. In addition to stability measurements, microphone 

measurements in the acoustic field of the jet have been made by Troutt 

( 21 ) • 

Figure 19 consists of microphone spectra for the three jets oper

ating in the perfectly expanded condition. These spectra were made by 

Troutt (21) in the same flow facility as the present me~surements. The 

Strauhal numbers of the major acoustic modes in each jet correspond to 

approximately the same Strauhal number of the major modes in the hot

wire spectra of Figure 8. This indicates that flow disturbances in the 

jet are radiating sound at the same Strauhal number as the disturbances. 
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For the 6.35 mm and 15.9 mm jets the microphone spectra do not contain 

all of the major modes p~esent in the hot-wire spectra. This indicates 

that not all of the modes !re interacting with the surrounding air in 

the same manner since appar~ntly some of the modes are more efficient 

acoustic emitters than others. The microphone spectra of the 9.35 mm 

jet contains only the single mode of Strouhal number 0.17 as was the 

case with the hot-wire spectra for the same nozzle. 

Acoustic phase measurements similar to the hot-wire phase measure

ments were performed in the 6.35 mm jet by Troutt (21). He found that 

the acoustic wavelength in the x direction is approximately the same as 

the instability disturbance wavelength. The acoustic wavelength (t, /D) is . x 

3.25 ±. 0.30 compared to an instability wavelength of 3.20 ±. 0.30. Troutt 

measured the angle eat which the acoustic wave fronts propagate away from 

the jet and determined the angle to be 57.5° ±. 4°. This angle is in 

agreement with the Mach wave concept in that a Mach angle computed from 

the wave speed C yields a Mach angle of 60.2° ±. 2°. 

These measurements show that the instability waves present in the 

jet are generating a major portion of. the sound radiated by a low 

Reynolds number supersonic jet. Thus the motivation for better under

standing the instabilities is clearly established. 
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Figure 14. Effect of Excitation on the Hot-Wire Frequency Spectrum 



Figure 15. Oscilloscope Trace of Exciter 
(Upper Trace) and Instaneous 
Hot-Wire Signal (Lower Trace) 
Showing a Typcial Phase Lock 
Situation; D = 6.35 nm, 
(x/D)probe = 5, Sweep Rate= 
10µ sec/cm 
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Figure 16. Axial Distribution of Hot-Wire Phase; 
D = 9.52 mm, Re= 14,700, St= 0.17 
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Figure 18. Effect of Underexpansion on the Hot-Wire Voltage Fluctuation Frequency Spectra 
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APPENDIX B 

TABLES 
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TABLE I 

COMPARISON OF MEASURED TO PR~DICTED GROWTH 
RATES FOR THE 6.35 mm JET, M = 2.2 

Growth Rate -K1d 

St Measured Tam Prediction 

0.148 0.58 0.64 

0. 176 - 0.44 0.76 

0. 185 0.44 0.82 
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D 
(mm) 

6.35 

6.35 

6.35 

9.52 

TABLE II 

COMPARISON OF MEASURED VALUES OF kR AND 
St TO VALUES PREDICTED BY TAM 

Measured Predicted by Tam 

St kRd k d St R (dominant) 

0.148 1. 34 1. 10 

0. 185 1.60 1.42 0. 193 
(k:Rd'=l . 47) 

0.213 1. 99 1. 66 

0.170 1.65 1.28 0. 198 
{k:Rd=l.50) 
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