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CHAPTER I 

INTRODUCTION 

Bacterial blight of cotton is found throughout the Cotton Belt of 

the United States and in other areas of the world where cotton is grown. 

The causal organism, Xanthomonas malvacearum (E.F. Smith)Dowson, is a 

bacterium capable of infecting all above ground parts of the cotton 

plant. The source of inoculum for initial infection may come from over

wintering bacteria on the surface of the seed, from within the seed coat, 

or on residue left from the previous crop. Dissemination of the pathogen 

is primarily due to wind driven rai.n and sprinkler irrigation. 

Disease symptoms appear on the leaves as water-soaked angular 

lesions which later turn brown or black when dry. Boll infection re

sults in a round water-soaked sunken lesion which in time turns black.· 

St~ms and petioles may become black after infection in highly suscepti

ble varieties. Because of the various symptoms, the disease is often 

referred to as "angular leaf spot," "boll rot," orl!blackarm." 

Destruction of photosynthetic area and partial defoliation cause a 

lowering of yield, but probably the greatest economic loss is from boll 

infection where the bacterial slime may stain the fiber thus reducing 

its grade. The boll lesion may also provide a port of entry for $econd

ary invasion by other microorganisms. Severe overall infection of the. 

plant may hasten maturity but seldom results in death. 

Control has been achieved in some parts of the world through 

programs of quarantine and sanitation. Seed treatment has also been 
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employed, but the most recent emphasis has been on development of resis

tant varieties. 
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Unfortunately, almost as soon as resistant varieties were released 

and grown on a large scale under conditions that favored the disease, new 

virulence was recognized in the path~gen population and resistance was 

lost. Probably the best explanation for this phenomenon is that mutation 

in the pathogen population brings about a multiplicity of variants for 

virulence. Natural selection in the bacterial populat·ion while in the 

host medium favors the variant that has the best chance for survival, 

i.e., virulence on the host. If a virulent bacterium is thus selected, 

a compatible host-pathogen relationship is established and pathogenesis 

ensues. 

· Genotypes of host plants most vulnerable to this phenomenon are 

those whose level of resistance is conditioned by what Van der Plank _(54) 

has labeled "oligogenes. 11 These are genes of major effect that confer 

a certain level of 11 specific 11 resistance. Early resistant varieties 

relied heavily on this source of resistance. Another source of resis~ 

tance that has more.recently been given emphasis is the 11 non-specific" 

resistance conferred by genes of minor effect (Van der Plank's polygenes). 

A contrast in definition between specific and non-specific resistance is 

that specific resistance is effective only against certain strains of 

the pathogen, whereas non-specific resistance reacts the same against 

all strains. 

Within the past ten to 15 years, immunity to bacterial blight has 

been gained by combining these two kinds of resistance in a single host 

genotype. This resistance has been stable and extremely effective. If 

the basic mechanism for this combined resistance were known, more stable 
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and higher levels of resistance might be obtained for other diseases of. 

cotton, and also other crops and diseases. 

The objective of this study was to gather data to help characterize 

stable plant disease resistance and to develop antibiotic resistant 

cultures of!· malvacearum for further investigations. Experimentation 

reported here-in was performed during the summer and fall of 1974. 



CHAPTER II 

LITERATURE REVIEW 

Currently there are four species of Gossypium being used in cotton 

production around the world. §.. hirsutum L., a New World tetraploid, 

accounts for the vast majority of all cotton grown, especially in the 

United States. G. barbadense L., G. arboreum L., and §.. herbaceum L. 

are grown to a lesser extent (25). G. barbadense is generally highly 

susceptible to bacterial blight (5); the other three :species vary with 

susceptibility and different degrees of tolerance and resistance. 

R.L. Knight is probably the foremost pioneer in the research done 

in developing genetic resistance to bacterial blight in cotton. Be

ginning in 1935, Knight and Clouston (36,37) and Knight (31,32,33,35) 

surveyed cultivated and wild species of cotton in the Sudan. Knight and 

Hutchinson (38) between 1944 and 1948 extended the previous survey to 

include a world collection. Knight (34) postulated that blight resistance 

was due to one or a few genes of large effect based on evidence of resis

tance found in species originally grown where the disease was absent. 

He designated these genes of large effect as 11811 genes, each of which was 

large enough in effect that its segregation could be followed in his 

inheritance studies (34). He also recognized genes of lesser effect, 

usually associated with each source of resistance, whose segregation 

could not be followed. These genes were designated as minor genes. 

Using Van der Plank's definitions (54), the 11 811 genes would be known as 
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oligogenes and the minor genes as polygenes. To date, 16 oligogenes have 

been described that confer blight resistance (6). 

Although Knight worked with the §_. barbadense genetic background in_ 

his inheritance studies, most of Knight's oligogenes have been transferred 

by Hunter and Brinkerhoff (23) from G. barbadense to the susceptible 

upland cul ti var ·Acal a 44 ·(§_. hirsutum). 

Burkholder and Starr (11) have described the genus X_anthomonas as 

being comprised of plant pathogens that produce abundant slimy, yellow 

growth on sugar-containing media and as being aerobic, gram negative, 

non-spore forming rods with a single polar flagellum~ !· malvacearum 

is closely related to other plant pathogenic xanthomonads (4,11,56), but 

is taxonomically distinct on the basis of its pathogenicity on cotton 

(17,42,56), and on the basis of enzyme patterns determined by acrylamide 

gel disc electrophoresis (18). Dye (16) in 1958 reported that beans were 

attacked by!· malvacearum and a number of other xanthomonads and con

cluded that host specificity was not a valid character in differentiating 

species of Xanthomonas. Logan (42) was unable to corroborate Dye's find

ings in 1960 when he was unable to "adapt"!· malvacearum to bean or to 

break the blight resistance of a current resistant variety. Schnathorst 

(46) too, took exception to Dye's report, however, later evidence (15,48) 

has shown!· malvacearum and!· phaseoli (E.F. Smith)Dowson, a bacterial 
• 

pathogen of beans, more closely related than other xanthomonads studied. 

Taxonomic descriptions of X. malvacearum at levels below species have 

been a problem for workers since the mid-1940 1 s, although other xantho

monads were known to be variable in pathogenicity as early as 1919 (3). 

In the period 1947-1949 when here-to-fore resistant varieties were at

tacked by!· malvacearum, it was postulated that different races of the 
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pathogen were responsible (2). Since then it has become a well establish

ed fact that!· malvacearum exists with a wide range of virulence (5,6,22). 

In 1968, Hunter et al. (24) developed a set of upland cotton differ

ential varieties for use in designating races of the pathogen based on 

the different disease reactions. To date, 17 races have been identified. 

Work done by Arnold and Brown (1) in Uganda led them to conclude that the 

continuous variation in virulence- of their isolates did not lend itself 

well to race designation, and that an attempt to define races would be of 

little value. However, Brinkerhoff (6) has suggested that the variation 

in virulence was possibly just a reflection of similar variation in the 

resistance of the hosts on which their isolates had evolved and stated 

that the chief value of designation of races lies in its use as a tool 

in screening for more stable resistance in the host. 

Historically, blight resistant cultivars with single oligogene 

resistance have been readily attacked. The predominant race on suscept

ible cultivars in the United States is race 1 (5). In New Mexico and 

West Texas where blight resistant cultivars were first grown, Hunter and 

Blank (22) in 1954 reported that resistance had been lost and a new ~ace 

was present. Work done by Chew et al. (12) published in 1969 showed 

that during the time Acalas with single gene resistance to race 1 were 

grown, 40-60% of all isolates were race 2 (virulent for the race l 

resistant gene). Subsequently, the percentage of race 2 isolates dropped 

with the introduction of a race 2 resistant cultivar. Similar reports 

have come from Missouri (43), India (2), Afrita (45), and Australia (19). 

Mutation is the most likely mechanism producing the differences in 

virulence in!· malvacearum; however, genetic recombination might pro

duce similar changes (5). Recombination mechanisms have been described 
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as transformation (21), conjugation (40), and transduction (58). Most 

of the work on recombination has been done with non-plant pathogens, but 

the findings will probably hold true for all bacterial species. Present 

information on the extent of the role played by recombination in genetic 

variability of!· malvacearum is lacking; however, Klein and Klein (28, 

29) transformed Agrobacterium tumefaciens (E.F. Sm. & Town.)Conn. for 

pathogenicity, and Corey and Starr (13,14) transformed f. phaseoli, a 

close relative of~- malvacearum, for different colony types and for 

streptomycin resistance. 

X. malvacearum also has been found to be variable in characters other 

than virulence. Brinkerhoff (5) found variants in nutrient agar colonies 

ranging from different type of growth (watery vs. viscid), pigmentation 

(mottled vs. normal), type of margins (irregular vs. smooth), and size 

and shape (large, appressed vs. normal, raised). He additionally found 

cultures resistant to the antibiotics streptomycin sulfate, penicillin G, 

and oxytetracycline. 

Resistance to the antibiotics was readily obtained by screening 

large populations off. malvacearuin on an agar medium containing the 

antibiotic. Brinkerhoff (5) found two types of resistance common: One 

type originated as multiple-step resistance and was unstable on host 

passage or when the organism was cultured on media without the antibiotic. 

The other type was thought to be a single-step resistance that was stable 

on host passage or when the organism was grown in the absence of the 

antibiotic. 

There are several reports (5,9,47,49) that virulent races buildup 

in resistant host tissue. Brinkerhoff (5) found that increased virulence 

in X. malvacearum for Knight's oligogenes followed a pattern similar to 



that observed for single-step mutations for resistance to antibiotics. 

After inoculation of a resistant host, resistant type lesions appeared. 

Then, after 10 days to several weeks, a few susceptible type lesions 

would appear. Isolates from these lesions were usually fully virulent 

for the host from which they were taken. Parallel inoculation with the 

parent Culture produced the same resistant type reaction as it did the 

first time. He found cultivars with single oligogene resistance sub

ject to this phenomenon. 

In some instances there appears to be a definite sequence in the 

buildup of virulence in the pathogen somewhat analogous to the buildup 

8 

of the presumed multi-step resistance to antibiotics. In work done by 

Brinkerhoff and Hunter (8) and Brinkerhoff (u·npublished data), avirulent 

cultures derived from a single cell produced mutants for virulence on 

the susceptible Acala 44 variety. Acala 44 strains with Knight's 

oligogenes were not attacked. But, once virulence for the susceptible 

host was obtained, mutants for virulence for hosts with the different 

oligogenes were isolated. Furthermore, after this level of virulence 

was reached by the pathogen, higher levels of virulence was identified. 

from single colony cultures from hosts with single oligogenes in a 

"tolerant" genotype, indicating virulence in X. malvacearum is enhanced 

by mutations for virulence on host polygenes (6). Brinkerhoff recovered 

only the parent race and avirulent isolates from i11111une plants. ·Cultures 

virulent for more than one host resistance gene were prone to revert to 

less virulent forms on synthetic media and under field environmental 

conditions that disfavored the pathogen. These cultures tended to revert 

to race l {back mutation) and generally survive only in the fully 

susceptible Acala 44. 
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Host-parasite compatibility probably follows a system much like that 

proposed by Flor (20): For each gene conferring resistance in the host, 

there is a gene conditioning virulence in the parasite. The disease 

reaction results from the interaction of the host gene system with the 

parasite gene system as affected by the environment upon each system 

and upon the interaction between these systems. 

Stability of resistance may be affected by environmental factors. 

Water-soaking of host tissue by wind driven rain ot sprinkler irrigation 

and mechanical injury with rain and high humidity greatly enhance disease 

severity (5,55). These conditions probably result in greater dissemina

tion, more efficient inoculation, and render the host physiologically 

more susceptible to invasion. These conditions have been shown to 

promote the occurrence of new races of the pathogen (5). 

High air temperatures (35-36 C) with and without high relative 

humidity increase disease severity in susceptible§_. barbadense lines 

(50,51,52). Brinkerhoff and Presley (10) found disease reaction was 

greater in susceptible and resistant upland cotton under conditions of 

low night temperatures (20 C and below) and moderate to high day temper

atures. Resistance conferred by single oligogenes either in a suscepti

ble or tolerant background was ineffective under low night and high day 

temperature regimes (i.e. 20 C or below and 36 C or'above, respectively). 

Temperature had no noticeable effect on immunity in immune types and 

blight reactions were less severe with high night and high day temper

atures. 

Arnold and Brown (1) estimated 44-83% of the variation in host

pathogen interaction in Uganda was due to differences in average temper

ature. They also reported differences in disease expression associated 



with variation in solar radiation and shading prior to or after inocula

tion. 
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There are many reports (10,39,41,55,57) of variance in disease reac

tion with the age and kind of host tissue. In general, young succulent 

tissue and bolls are most susceptible. Bolls seem to remain susceptible 

longer than stems or leaves. Leaf, stem, and boll reactions frequently 

do not appear to be correlated, especially for different host genes and 

different races of the pathogen (27). 

Stability of resistance is probably closely related to the ability 

of the pathogen to multiply while inside the host. Perry (44) has shown 

population levels increase much slower in resistant cotton as opposed 

to susceptible. Brinkerhoff (unpublished data) has had similar results 

and found the overall buildup of the pathogen was greatly reduced in 

immune tissue. 

Variation in inoculum concentration too may vary the disease 

reaction (5,27,39,55). Induction of the macroscopic hypersensitive 

response (HR) has been shown to be directly related to the relative 

number of pathogen cells introduced into the host tissue (30). 

Brinkerhoff et al. (7) reported!· malvacearum inoculum levels of 3 X 

105 cells per milliliter were unable to cause macroscopic symptoms of 

hypersinsitive cell death in immune cotton, but microscopic examination 

showed the HR was occurring at the cellular level though. They also 

found the bacterial population increased 30-300 fold in the 4-8 days 

following the interval of plant cell ,death and the cells may remain 

viable for as long as 48 days. Inoculum levels of 108 cells/ml produced 

a confluent HR in immune cotton (2 genes plus modifiers?) in 18-48 hours, 

but was somewhat slower in resistant cotton (1 gene). Work reported by 



Turner and Novacky (53) with tobacco showed similar results. 

Other sources of variation in disease reaction are: method of 

inoculation (26)s plant spacing (10), available soil moisture (57), and 

host nutrition (57). 

11 



CHAPTER III 

HOST SPECIFICITY IN X. MALVACEARUM 

Materials and Methods 

Plants used in these experiments were started from seed planted in 

the Cotton Disease Nursery at the Plant Pathology Farm, Stillwater, 

Oklahoma on May 14, 1974. {See Table l for list of host lines.) The 

source of the seed was from self-pollinated plants grown in the nursery 

the previous season. All seed was acid delinted and treated with a 1:1 

mixture of Arasan and Captan fungicide just prior to planting. Planting 

was done in rows approximately 25 feet long with 3 feet spacing between 

rows. The entire population was surrounded with other cotton, grain 

sorghum, and sweet corn as an environmental buffer zone. After emergence, 

rows were thinned to one plant per foot. 

On July 3, when individual plants had four to eight true leaves, the 

whole test population was inoculated with!· malvacearum race 1. 

Inoculum was derived from a single colony isolated from naturally in

fected cotton leaf tissue collected at the Oklahoma Agricultural Experi

ment Station, Tipton, Oklahoma during the 1973 season. The leaf tissue 

was air dried and stored at 10 C. Isolation of the culture was made by 

a manner similar to the technique described below. Identification of the 

culture was made by L.A. Brinkerhoff, Plant Pathologist, Oklahoma State 

University and Langston University, using standard differentials {24). 

12 



TABLE I 

UPLAND COTTON ACALA 44 TYPE HOST LINES WITH 
CORRESPONDING BLIGHT RESISTANCE GENES 

13 

Host Lines Blight Resistance Genes ,. Acala 44 None 

2. Acala 121 b7 

3. Acal a 161 BN 

4. Acal a 13 82 

5. Acala s2 82 

6. Acala s3 B3 

7. Acal a B4 B4 

8. Acal a 85 85 

9. Irrmune 216 2 or 3 oligogenes + 
unknown modifiers? 

10. F62B unknown 

11. F64B unknown 

Lines 2-8 were obtained by crossing a parent containing the 
resistant gene with Acala 44, followed by four or more back
crosses to Acala 44. Immune 216 was derived from 101-1028, 
which in turn was derived from G. barbadense with multiple 
backcrosses to the G. hirsutum cultivar 11 Empire. 11 Lines lo 
and 11 are resistant inbred Acala 44 types selected from the 
cross Immune 216 X Acala 44. 
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Isolation Technique 

Two 6 nm diameter leaf discs were punched from previously inoculated 

host tissue, placed in a tea strainer, and washed 60 seconds under a 

stream of tap water to remove as much surface contamination as possible. 

The discs were then placed in 3-4 ml of sterile water and macerated with 

a mortar and pestle. One ml of the supernatant was then serially dilut

ed to 10-9 original concentration with one ml sterile pipettes in 9 ml 

sterile water in perfume bottles with plastic caps. One-half ml each of 

the dilutions from 10-3 through ,o-9 were spread over the surface of 

Difeo Bacto Nutrient Agar in petri dishes with aluminum covers contain

ing absorbant paper discs. The plates were then put in plastic bags and 

stored at room temperature (approx. 24 C). The paper discs prevented 

condensation and subsequent smearing of the surface, while storage of the 

plates in plastic bags prevented excessive drying and was a safeguard 

against invasion by "culture mites." A duplicate series of plates was 

made in each isolation to render a sufficient surface area for single 

colonies to grow without coalescing and to allow for contamination if it 

occurred. 

Preparation of Inoculum 

Five days after the petri dishes had been inoculated, single 

colonies were picked from the agar surface with a sterile wire hook and 

transferred to perfume bottles containing 9 ml Difeo Bacto Nutrient 

Broth. The cultures were then incubated overnight in a Eberbach mech

anical shaker at room temperature and taken to the field for inoculation 

the next morning. The inoculum used in the original field inoculation 



was diluted to ca. 106 cells/ml. Inoculum used subsequent to this was 

full strength, average number of cells/ml ca. 108-109 by plate count 

method. 

Inoctilation Technique 

15 

The first inoculation of the total test population was made with a 

spray gun operated at about 300 p.s.i. driven by a tractor power-take

off. Plants were blown to the ground by the spray stream and the leaves 

partially infiltrated to give a water-soaked appearance. Care was taken 

to produce as little mechanical damage to the plant tissue as possible. 

The adjustment of the spray stream was more critical for successful 

water-soaking than was the pressure; a coarse spray water-soaked more 

readily when the stomata were open. 

Succeeding inoculations were made by hand employing Monoject dispos

able plastic syringes without needles. The syringe tip was placed firmly 

against the underside of the leaf and injected until water-soaking could 

be seen at the contact point. Each leaf used in the experiments was in

oculated 25 times, and, in order to keep track of each individual 

inoculation, they were made in a specific order (Fig. 1). Individual 

plants and leaves were selected with an effort made to use young 

vigorous leaves and to avoid plants showing excessi~e mechanical damage 

or signs of Verticillium wilt or bacterial blight. Due to the great 

number of inoculations, syringes had to be used over and over again. To 

avoid mixing cultures and contamination, the syringes were washed with a 

1:10 Chlorox-water solution followed by a 3:10 ethanol-water solution 

and then rinsed in tap water and air dried; all these steps were carried 

out in the field. 
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Figure l. Order of Inoculations on Underside of Cotton Leaf. 
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Classification of Disease Reactions 

Disease reactions were classified as compatible or incompatible. 

The compatible reaction was marked by water-soaking which often spread 

beyond the inoculated area and sometimes accompanied partial necrosis of 

inoculated tissue. Incompatible reactions were differentiated mainly by 

the absence of water-soaked tissue at the point of inoculation. Reactions 

showing chlorosis and/or dry brown necrotic tissue with no water-soaking 

were graded as incompatible. No visible reaction was also graded as 

incompatible. Lesion size was not a criterion for this system of 

classification since concentrated inoculum usually does not produce 

individual lesions (5). Additional explanation of materials and methods 

are given with specific experiments. 

Host Specificity in X. malvacearumAfter 6 Days 

Incubation in Host Tissue 

On July 9, 6 days after the general field inoculation with race 1, 

host tissue was collected from varieties Acala 44, Acala 13, Acala B2, 

and Acala 121. One hundred single colony isolates were obtained from 

each variety for a total of 400 isolates. They were increased in 

nutrient broth and on July 15-16, each of the cultures was inoculated 

into each of the host lines: Acal a 44, Acal a 13, Acala B2, and Acala 121. 

The inoculations were replicated twice making a total of 3,200 single 

inoculations. Six days after host inoculations were completed, disease 

readings were made. 

Host Specificity in X. malvacearum After 20 Days 

Incubation in Host Tissue 

On July 23, 20 days after initial inoculation with race 1, 100 
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single colony isolates were obtained from each of the four test lines as 

before. At this time, 11mutant lesions 111 were developing on some plants 

in the population, but these lesions were deliberately avoided in 

punching out leaf discs since the cultures derived from them·would likely 

be 100% virulent for the host from which they were obtained. The object 

of the experiment was to check the virulence of cultures obtained from 

areas where no active disease symptoms had yet appeared at the this point .;. 

in time. Inoculum was prepared as before, inoculations made July 29- Aug· 

2, and disease readings taken Aug 7. 

Host Specificity of X. malvacearum Isolated from 

Different·-Sources of Resistance 

On Aug 21, leaf and boll tissue showing mutant lesions -was collected. 

On Aug 22, isolations were made. Instead of selecting single colonies 
. . 

for use in preparation of inoculum, smears or mass transfers were made by 

drawing a culture transfer needle across the surface of the agar through 

many colonies. It was thought that this would indicate the average 

virulence of the mutant bacteria causing the mutant lesion. This had 

proven to be true for race land race 2 cultures isolated from dry leaf 

tissue by Brinkerhoff (unpublished data). Host inoculations were made 

Aug 27-28. Disease readings were made at 7 and 10 days later. 

1The term 11mutant lesion 11 is used to.describe a lesion presumed to 
be caused by bacterial mutants. The lesion has a water-soaked appearance 
indicating full susceptibility of host tissue and usua.lly occurs singly 
amony many other dried brown resistant type lesions.. The mutant bacteria 
must undergo many cell divisions in order to attain sufficient numbers 
to cause macroscopic disease symptoms. 



Results and Discussion 

Host Specificity in X. malvacearum After 6 and 

20 Days Incubation in Host Tissue 

19 . 

All 400 isolates obtained 6 days after inoculation with race 1 

incited typical .race 1 reactions on the host 1 ines tested (Table II). 

Only Acala 44, the susceptible strain, was attacked indicating no 

apparent change in host specificity in 6 days time. 

Host specificity of isolates obtained 20 days after initial 

inoculation with race 1 remained typical of race 1 (Table 111). All 400 

isolates were virulent on Acala 44 but incompatible with Acala 13, Acala 

121, and Acala B2~ 

The results of the first two tests indicate that under the 

experimental conditions that prevailed,!· malvacearum remained host 

specific at the race level for as long as 20 days. The unchanged host 

specificity at 6 days is complementary to results obtained by other 

workers. However, Brinkerhoff in unpublished but similar experiments 

has found shifts in host specificity at 14, 28, and 48 days subsequent 

to original inoculation. Schnathorst (47) found no change at 14 days 

but reported 77% of the isolates recovered 8 weeks after inoculation with 

race 1 were race 2. Although mutant lesions were developing in the test 

population, indicating a change in virulence in the pathogen, no new 

virulence was found in isolates obtained from outside the J11Jtant lesions. 

No simple explanation is known that can account for the contrast in 

results. Perhaps chance in sampling is responsible, but if the sample 

size were much larger, it would be difficult for one person to do the 

work in the span of time that allows for best experimental uniformity. 



Host Source 
of 

Isolates 

Acala 44 

Acala 13 

Acala 121 

Acala s2 

TABLE II 

DISEASE REACTIONS OF 400 SINGLE COLONY ISOLATES OBTAINED 6 DAYS 
AFTER INOCULATION OF X. MALVACEARUM INTO HOST TISSUES1 

Blight 
Resistance · Host Lines 

Genes Acala 44 Acala 13 Acala 121 

None 100 (+)2 100 (-) 2 100 (-) 

82 100 (+) 100 (-) 100 (-) 

b7 100 (+) 100 (-) 100 (-) 

82 100 ( +) 100 (-) 100 (-) 

1Experiment replicated twice, both replications yielded same results. 

2compatible reaction indicated by(+); incompatible reaction indicated by(-). 

Acala s2 

100 (-) 

100 (-) 

100 (-) 

100 (-) 

N 
0 



Host Source 
of 

Isolates 

Acala 44 

Acala 13 

Acala 121 

Acala s2 

TABLE III 

DISEASE REACTIONS OF 400 SINGLE COLONY ISOLATES OBTAINED 20 DAYS 
AFTER INOCULATION OF X. MALVACEARUM INTO HOST TISSUES1 

Blight Host Lines Resistance 
Genes Acala 44 Acala 13 Acala 121 

None l 00 { + )2 l 00 {-/ 100 {-) 

B2 100 {+) 100 (-) 100 {-) 

b7 100 {+) 100 {-) 100 {-) 

B2 100 {+) 1 oo C-) 100 (-) 

1Experiment replicated twice, both replications yielded same results. 

2compatible reaction indicated by(+); incompatible reaction indicated by (-). 

Acala s2 

100 {-) 

100 {-) 

100 {-) 

l 00 {-) 

N __, 
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Another possibility is of course environmental effects. As shown in the 

review of literature, the environment may affect the disease reaction 

considerably. Disease developmental conditions during the course of the 

first two experiments were not optimum, but were definitely favorable. 

Host Specificity of X. malvacearum Cultures Isolated 

From Different Sources of Resistance 

Graphic results of the host specificity test comparing isolates from 

mutant lesions from cotton lines with different genes for resistance are 

shown in Table IV. Most of the inoculum was virulent as indicated by 

compatible reactions on Acala 44, but in three cases the inoculum was 

apparently avirulent. Many of the isolates obtained from mutant lesions 

were not virulent on the host from which they came. There were some 

disagreements between disease readings made in Replicate 1 and Replicate 

2 even though the inoculum came from the same syringe and the leaves were 

on the same plant. In a few instances, the decision as to compatibility 

or incompatibility almost became arbitrary due to the lack of definitive 

symptoms. Possibly the technique used to prepare the inoculum caused the 

unexpected variability in readings. In making the mass transfers when 

preparing inoculum, cells from many colonies were undoubtedly inoculated 

into the broth culture. Maybe avirulent cells were favored in the growth 

medium or perhaps some variants acted in a "cross protective" capacity 

when put into the host medium. 

Environmental factors may have played a role in causing the variation 

of results too. With a frontal passage the day inoculations began, cool 

temperatures prevailed for several days. The cool temperatures, in 

addition to the direct effect it may have had on the development of 



Acala 44 
Acala 161 
Acala 161 + 
Acala 161 + 
82 Cross 
82 Cross 
82 Cross 
Acala 82 
Acala 83 
F628 

Acala B4 

+ 

+ 

+ 
+ 

+ 

+ 
+ 

TABLE IV 

HOST SPECIFICITY OF X. MALVACEARUM CULTURES ISOLATED FROM 
DIFFERENT SOURCES OF RESISTANCE1 

+ 

+ 

+ 
+ 

+ 
+ 

+ 
+ 

Host Lines 

+ + 

+ 

+ 
+ + 

+ 



TABLE IV (CONTINUED) 

s3 Cross + 
s3 Cross + + + 

Acala 121 + + + 

Acal a 13 + 
Acal a B5 + + 
Acal a B5 + 

1Experiment replicated twice. 

2Two separate lots of these host lines were tested. 

3Host lines with (1.2)(2.3) indicated were segregating for different levels of blight resistance. 
(1.2) and (2.3) represent their disease grades according to Brinkerhoff's system (5)~ 

4Host sources with the word "cross" are hosts whose genotype contains one of Knight's "B" genes as 
indicated. 
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bacterial blight, also made evident symptoms of Verticillium wilt in some 

of the blight-inoculated plants. Verticillium wilt tends to obscure 

bacterial blight symptoms. 



CHAPTER IV 

ACQUISITION OF CULTURES RESISTANT TO ANTIBIOTICS 

Materials and Methods 

Some experiments with X. malvacearum involve a long period of time, 

have special parameters, or require a high degree of accuracy. With the 

threat of unwanted!_. malvacearum contaminants ever present, especially 

in facilities or areas where the organism is being experimented with, 

a method is sometimes needed to help assure that the original culture 

or its clonal descendants are maintained throughout an experiment. 

Brinkerhoff (5) used streptomycin resistance as a genetic marker in 

his earlier experiments. To carry this method one step further and to 

give greater certainty in future experimentation, the author designed 

experiments with the objective in mind of obtaining cultures of!· 

malvacearum 11marked 11 by simultaneous resistance to two antibiotics. 

The plan was to develop the cultures achieving resistance to one 

antibiotic at a time. First, leaf tissue from Acala _44 was collected 

and isolation made from a lesion showing a fully susceptible disease 

reaction. From the dilution plate series, a single large colony. was 

selected and increased as done in the previous experiments. 

Petri dishes were prepared containing nutrient agar and 100 ppm 

of the antibiotic to be tested. (See Table V for a list of antibiotics 

screened.) The correct amount of the antibiotic was weighed, dissolved 

in 10 ml sterile water and added to the nutrient agar 5 minutes after it 

26 



TABLE V 

INITIAL SCREENING FOR RESISTANCE TO ANTIBIOTICS 

No. of Colonies1 Colony Colony 
Antibiotic at 12 Days Colo'f' Morphology 

Neomycin (Lot 1) 1.3 White. Rough 
Neomycin (Lot 2) l l.6 White Rough 
Acriflavin 200 plus Yellow Smooth 
Penicillin G 20.3 Yellow Rough 
Chloramphenicol 38.8 Yellow Smooth 
Streptomycin (Lot 1) 8.0 White Rough 
Streptomycin (Lot 2) 0.0 
Oxytetracycline 0.0 
Control (no anti- Colonies over- Yellow Smooth biotic) ran pl ates in 

4 days 

1Average based on 8 petri plate replicates. 
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had been removed from the autoclave. After the _agar had solidified in 

the petri dishes, 0.8 ml of a 24 hour broth shake culture (ca. 108-109 

bacterial cells/ml) was delivered by pipette and spread over the surface 

of the medium. As a check, two plates of nutrient agar without anti

biotic were inoculated also. Petri dishes were placed in plastic bags 

and incubated at room temperature for 12 days. At this point, data 

were recorded as to number of colonies per plate and colony morphology. 

A pathogenicity trial was also made to see if the cultures had lost 

virulence while being maintained on the synthetic media. Inoculum was 

prepared by washing the colonies off the surface of the growth medium 

with 50 ml sterile water, mixing well, and inoculating the Acala 44 

host by the syringe technique described earlier. Disease readings were 

made 6 days later and showed all inoculations resulted in compatible 

reactions. Bacteria were recovered from lesions produced by isolating 

with the previously described technique. One hundred ppm of antibiotic 

to which the bacteria had resistance was included in the growth medium. 

This gave some degree of assurance that contaminants would not be 

isolated. 

In 5 days time, sufficient growth had occurred and cultures were 

ready to be screened for resistance to the second antibiotic. Petri 

dishes were prepared containing nutrient agar and 100 ppm each of two 

antibiotics. Mass transfers were made from plates containing bacteria 

with single-antibiotic resistance and spread over the surface. The 

plates were incubated 12 days, then a pathogenicity trial was made as 

before using Acala 44 as the host. 

One week later disease readings were made; all reactions were 

compatible. Diseased leaf tissue was collected and isolations made by 



dilution series on plates containing nutrient agar with the two anti

biotics on which the cultures had been derived. 
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Finally, after single colonies had developed, host inoculations 

were again made (Acala 44); this time using single colonies as the 

source of inoculum. Using a sterile knife blade, the colony was lifted 

from the agar surface, put into a sterile syringe, thoroughly mixed with 

3 ml sterile water, and injected as described in earlier experiments. 

Results and Discussion 

Final inoculations resulted in fully compatible disease reactions 

and host tissue was collected, air dried, and stored at 10 C. Cultures 

of X. malvacearum are now available for further use that have simulta

neous resistance to two antibiotics in the following combinations: 

streptomycin-acriflavin; streptomycin-penicillin G; streptomycin

neomycin; streptomycin-chloramphenicol; and penicillin G-neomycin. 

The attempt was made to incorporate streptomycin resistance as one 

of the genetic markers because of its proven stability in previous work 

with cultures of!_. malvacearum (5). 

Although no quantitative data were collected to support such a 

statement, acquisition of antibiotic resistance seemed to occur faster 

when streptomycin resistance was aquired first. The drugs had an effect 

on the colony morphology and color as shown in Table V, but had no 

apparent effect on virulence. 



CHAPTER V 

SUMMARY 

1. Historically, resistant cotton varieties have readily been attacked 

by new virulent races of Xanthomonas malvacearum. 

2. Cotton strains most susceptible to this phenomenon are those whose 

resistance to bacterial blight is conditioned by a single major gene. 

3. The host specificity off. malvacearum has been reported to change 

at the race level while inside resistant host tissue. 

4. Host specificity was not found to change after either six or 20 

days incubation in host tissue under the environmental conditions of 

these tests. 

5. Environmental factors play a major role in disease expression, and 

probably also in the occurrance of mutants in resistant cotton. 

6. X. malvacearum can be readily screened and selected for resistance 

to antibiotics. 
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