ADAPTIVE FILTERING AND SMOOTHING IN DECONVOLUTION

FOR SEISMIC PROCESSES

By
MELVILLE RONALD D'MELLO Bachelor of Electrical Engineering Aligarh Muslim University Aligarh, Uttar Pradesh, India 1972

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE
December, 1974

ADAPTIVE FILTERING AND SMOOTHING IN DECONVOLUTION FOR SEISMIC PROCESSES

Thesis Approved:

PREFACE

This study is concerned with the application of time domain techniques, specifically a form of Kalman Filter theory to the deconvolution problem in geophysical exploration processes. Primarily it is required to estimate the impulse response from the seismic trace.

I wish to express my thanks to Professor Craig S. Sims, my thesis adviser, for his invaluable guidance throughout this study. He has my sincere appreciation for devoting many hours of valuable time in discussing the problem.

Appreciation is also expressed to the other committee members, Dr . Rao Yarlagadda and Dr. Edward Shreve for their assistance in the preparation of the final manuscript. I would also like to thank Dr. Jerry Ware of CONOCO and Dr. Sven Treitel of AMOCO for their invaluable discussions during the various phases of this study.

In addition, appreciation is extended to my colleagues Mr . Y. W. Park and Dr. V. K. Bhandari for stimulating discussions on the subject. I would also like to acknowledge AMOCO, CONOCO and CITGO for their financial support. A special note of thanks to Mrs. Dixie Jennings is in order, for her excellent typing of the final copy.

Finally, I would like to express my gratitude to my parents, brother and sister for their understanding, encouragement, support and many sacrifices.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 The Problem to be Considered 1
1.2 The Approach 3
1.3 Objectives and Findings 4
1.4 Organization 6
II. ADAPTIVE FILTERING, SMOOTHING AND DECONVOLUTION. 7
2.1 Background 7
2.1.1 Deconvolution in Seismic Exploration. 8
2.1.2 Comment 12
2.1.3 Estimation Under Uncertainty 13
2.1.4 Fixed Interval Smoothing 19
2.2 Development of the Smoothing Algorithm 20
2.3 Application of Adaptive Processing to Deconvolution. 21
2.3.1 Filter Equations. 23
2.3.2 Smoothing Equations 25
III. SIMULATION RESULTS 28
3.1 Introduction 28
3.2 The Method of Simulation 28
3.2.1 Integration Method 30
3.2.2 Random Noise Generation 31
3.2.3 Parameter Selection 37
3.3 Comments 37
3.4 Case With Equal Amplitude Poisson Input 38
3.4.1 Effects of Uncertainty in the Model 38
3.4.2 Effects of Measurement Noise. 50
3.5 Case With Random Amplitude Poisson Input 54
3.5.1 Effects of Uncertainty in the Model 58
3.5.2 Effects of Measurement Noise. 64
3.6 Summary. 70
IV. EVALUATION 74
4.1 Introduction 74
4.2 Effects of Improper Modeling 74
4.3 Iterative Use. 78
4.4 Summary 79
Chapter Page
V. CONCLUSIONS AND RECOMMENDATIONS. 82
5.1 Summary 82
5.2 Suggestions for Further Research 83
5.3 Conclusions. 84
SELECTED BIBLIOGRAPHY 86
APPENDIX - COMPUTER PROGRAM FOR SIMULATING THE MODIFIED BAYLESS AND BRIGHAM MODEL USING ADAPTIVE KALMAN FILTERS. 89

LIST OF FIGURES

FigurePage

1. Basic Deconvolution Problem 8
2. Seismic Reflection Process Model 9
3. Approximation of an Impulse. 11
4. Modified Bayless and Brigham Model (Frequency Domain). 11
5. Modified Bayless and Brigham Model (State Space Form). 11
6. The Flow Chart for the Simulation of the Model 29
7. Transformation of a Random Variable. 33
8. True and Filtered Estimate of State x_{1} for EAP Input With Parameter 'a' Uncertain. 41
9. The a Posteriori Probability for the Four Candidate Models With 'a' Uncertain 42
10. True and Smoothed Estimate of State x_{1} for EAP Input With Parameter 'a' Uncertain. 43
11. The Observation set for Equal Amplitude Poisson Input 44
12. True, Filtered and Smoothed Estimate for EAP Input With 'a' Uncertain 45
13. True, Adaptive Filtered and Kalman Filtered Estimate for EAP Input With 'a' Uncertain 47
14. True, Adaptive Smoothed and Fixed Interval Smoothed Estimate for EAP Input With 'a' Uncertain 48
15. True and Filtered Estimate of State x_{1} for EAP Input With 'Q' Uncertain. 49
16. The a Posteriori Probability for the Four Candidate Models With 'Q' Uncertain 51
17. True and Smoothed Estimate of State x_{1} for EAP Input With 'Q' Uncertain. 52
Figure Page
18. True, Filtered and Smoothed Estimate for EAP Input With 'Q' Uncertain 53
19. True and Filtered Estimate for EAP Input With two Different Measurement Noise 55
20. The Observation set for EAP Input and Measurement Noise Variance $R=10^{-3}$ 56
21. True and Smoothed Estimate for EAP Input. With two Different Measurement Noise. 57
22. True and Filtered Estimate of State x_{1} for RAP Input With 'a' Uncertain 59
23. The a Posteriori Probability for the Four Candidate Models With 'a' Uncertain 60
24. True and Smoothed Estimate of State x_{1} for RAP Input With 'a' Uncertain 61
25. The Observation set for Random Amplitude Poisson Input 62
26. True, Filtered and Smoothed Estimate for RAP Input With 'a' Uncertain. 63
27. True and Filtered Estimate of State x_{1} for RAP Input With 'Q' Uncertain 65
28. The a Posteriori Probability for the Four Candidate Models With 'Q' Uncertain 66
29. True and Smoothed Estimate of State x_{1} for RAP Input With 'Q' Uncertain. 67
30. True, Filtered and Smoothed Estimate for RAP Input With 'Q' Uncertain 68
31. True, Adaptive Filtered and Kalman Filtered Estimate for RAP Input With ' Q ' Uncertain 69
32. True and Filtered Estimate for RAP Input With two Different Measurement Noise. 71
33. True and Smoothed Estimate for RAP Input With two Different Measurement Noise. 72
34. The a Posteriori Probabilities for the two Incorrect Models With EAP Input 76
35. True, Filtered and Smoothed Estimate of State x_{1} for the two Incorrect Models With EAP Input 77

Figure
Page
36. The a Posteriori Probabilities for the two Models With

EAP Input Having 'a! as 50. and 70.. 80

CHAPTER I

INTRODUCTION

1.1 The Problem to be Considered

A basic problem of estimating a signal from a noisy set of data occurs in seismic exploration and in other areas of science such as communication and control theory.

A dynamite blast detonated near the surface of the earth or at a shallow depth in water gives rise to a sharp seismic disturbance. This initial pulse will be followed closely in time by the reflection of the source pulse from the surface of the earth. In general, there will also be near-surface multiple reflections, called reverberations, which are caused by reflections between a shallow strong reflector and the surface of the earth. For example, in marine shooting, the water-earth interface provides a strong change in acoustic impedance yielding a strong reflector and setting up multiple reflections in the water layer. In the case of land prospecting, the first hundred feet of the earth is generally a low velocity layer compared to the first, more rigid rock encountered. This top soil layer is referred to as the weathered layer and is the cause of near surface reverberations. Therefore the input wavelet which propagates into the seismic section of interest is the result of the input pulse from the source plus all of the trailing near surface reverberations.

As this rather ringy, input wavelet propagates into the seismic
section of interest, it will be reflected back to the surface of the earth whenever a change in acoustical impedance is encountered, that is, if the geology changes from, say, sand to shale. The amplitude of the returned wavelet depends on the reflection coefficient at the change in geology, which in turn depends on the elastic properties of the rocks involved. These reflected events are detected on the surface of the earth by geophones placed at predetermined distances and recorded as a function of time, the record being called a seismogram. As a result of this simple description of the seismic reflection process, the seismogram can be modeled as the result of a weighted, delayed sum of this resulting input wavelet. Such a weighted delayed sum is a convolution of a resulting input wavelet with the impulse response of the seismic section of interest. The impulse response consists of all primary reflections plus all multiple reflections which occur between the many different layers of geology at depth. The object of deconvolution then is to remove the effect of this ringy, input wavelet and thereby get a better estimate of the impulse response of the seismic section of interest.

This problem is a data processing one where either prediction, filtering and/or smoothing can be applied depending on the time of interest. Techniques are available for treating prediction, filtering and smoothing problems in both the time domain and the frequency domain and attempts have been made in this direction. Wiener filter theory, based on time invariant systems, have been implemented in the time domain and is currently in widespread use. In this work, another time domain approach, specifically a modified Kalman filter technique which assumes that a random process can be modeled as the output of a linear system driven by white noise is pursued. By using a state variable formulation
which is a time domain realization of the conventional transfer function formulation, the problem of deconvolution is formulated within a modern time domain format. Though both; Wiener filtering as well as Kalman filtering can be used in multichannel data acquisition problems (1), it is in the solution of time varying problems that the Kalman filter theory holds greatest promise.

1.2 The Approach

Given the autocorrelation function and the mean of a random process, a geophysical model is built which has this process as the output of a linear system excited by a white noise input. To do this, some basic assumptions are made. These are: (1) The wavelet is minimum phase time function. This means that the wavelet is a one sided transient with its energy concentrated around the zero time; and (2) the geology is unpredictable, which means that the sharp knife-1ike impulses are mutually uncorrelated. This leads to an interesting observation, namely, the autocorrelation function of the seismic trace is equal to the autocorelation function of the wavelet, as the uncorrelated elements of the impulses average out.

By using the above, a model has already been derived (14). However, in most deconvolution problems, the parameters describing the system are not completely defined. As for example, in a geophysical model, the velocity of the wavelet is a function of depth, while the reflection or refraction or transmission that results depends on the nature of the seismic layer it confronts. If these parameters randomly change and they are not measurable, then one has to rely on statistical data for modeling the system.

The geophysical process which has been described is assumed to be modeled by a set of state variable candidate models to account for the uncertainty. With the passage of time, as more data is obtained, the undefined parameters hopefully are learned and the states estimated, accomplishing the desired deconvolution. Such techniques are called system identification and adaptive filtering and are usually based on the assumption that the right model is one of the candidate models. Since these data processing results are not required to be computed on-line, another operation commonly known as smoothing can be used to achieve a refined estimate of the states. This operation makes use of the filtered estimates and the complete data set to improve the estimate of the states. However, existing smoothing algorithms are not adequate to solve the problem posed here。 Therefore, an adaptive smoothing algorithm scheme is derived, taking into consideration the different candidate models as in the filtering part. The above sequence of operations, namely adaptive filtering and adaptive smoothing are simulated on the digital computer to test their performance in the task of deconvolution. While theoretically the estimate obtained is the optimal estimate under Gaussian conditions, the model for the seismic reflection process is assumed to have poisson inputs and the estimates are thus suboptimal. For this reason, simulation is especially important.

1.3 Objectives and Findings

There are three primary purposes of this work. The first is to apply recently developed adaptive time domain techniques to geophysical models and verify that deconvolution is achieved. The second objective is to develop new adaptive smoothing techniques to improve the accuracy
of the estimate. The third aim is to modify a previous mathematical model of the seismic process under consideration, so that it is more realistic. This is done by using an input which is poisson distributed in time with random amplitudes.

The first objective is accomplished directly by applying an adaptive filtering scheme, referred to as "Estimation Under Uncertainty"。. This is a modification of Kalman filtering to account for model uncertainty. The results show that after enough observations have been taken, system identification seems to be achieved only in certain cases and is therefore not very reliable, although deconvolution is achieved with reasonable accuracy. There seems to be no way of determining how many observations should be taken before the operation is to be terminated and it is quite possible that a wrong model may be identified if enough data is not taken. The second objective is seen to be an extension of the adaptive filtering case and the results provide a marked improvement in the estimation of the state. The third is achieved by using the fact that the first two moments of a random process sometimes gives ample statistical knowledge of a linear system for simulation purposes. The results show that with poisson inputs, the estimates are quite accurate.

The work is application oriented and is not intended as a rigorous mathematical treatment of stochastic optimal estimation theory. The works which are most directly related to this investigation are discussed in Chapter II.

1.4 Organization

The remainder of this study is concerned with accomplishing the objectives and demonstrating the results mentioned in the previous
section. In Chapter II, the adaptive filter algorithms are reviewed and the adaptive smoothing algorithms formulated. The geophysical model as suggested by Bayless and Brigham (14) is described and improved upon.

The simulation of the model and the algorithms for different poisson inputs are investigated in Chapter III under various uncertainty conditions and circumstances. The filtered and smoothed results are shown and compared. Chapter IV discusses the effects of improper modeling, in which the true model is not one of the candidate models. An iterative narrowing in procedure to remove the uncertainties in the model is also discussed. Chapter V contains a summary and conclusions of the results obtained in this work. Suggestions for further research are also included in this chapter.

CHAPTER II

ADAPTIVE FILTERING, SMOOTHING AND DECONVOLUTION

2.1 Background

Of particular interest in the area of seismic exploration, has been the need for restoring a signal to its original value by eliminating all undesired noise and distortion effects. This task is sometimes referred to as Deconvolution or Inverse Filtering.

Wiener (2) several years ago investigated problems of least-squaresestimation for stochastic processes and developed what has become known as Wiener Filter Theory. Later Kalman (3,4) investigated dynamical-state-estimation problems by specifying not the autocorrelation of a signal process, but a "model" for it as a linear dynamical system driven by white noise. The resulting filter is called the Kalman Filter.

Robinson $(5,6)$, Rice (7), Kunetz (8), Robinson and Treite1 (9), Clarke (10), Peakcock and Treitel (11), and many others have approached the deconvolution problem by using Wiener's method. Recently Treitel (12) has introduced the complex Wiener approach. Ulrych (13) has investigated another technique called homomorphic filtering. While Wiener's theory has been applied to time invariant systems, the solution of the resulting integral equation is usually difficult. This is especially true when extended to time varying cases.

Bayless and Brigham (14) and Crump (15) treated the deconvolution problem by using continuous and discrete Kalman filter techniques,
respectively. The use of state space methods to treat physical and mathematical models lends itself easily to digital computer simulations and can solve many time varying problems as well.

It is the Bayless and Brigham paper (14) that forms the basis of this work. Hence it is appropriate here to consider this work in some detail.

2.1.1 Deconvolution in Seismic Exploration

Deconvolution is a technique to remove distortions to the signal in the course of its path through the seismic media, geophones, amplifiers, and recorders. In a sense, it is the filtering of the source that causes distortion to the signal and hence, inverse filtering must be applied to undo the effects of this undesired filtering. The schematic figure for treating the deconvolution problem is shown in Figure 1.

Figure 1. Basic Deconvolution Problem

Bayless and Brigham in their paper considered a basic wavelet model to be a minimum phase function.

To explain the complicated nature of the seismogram, Ricker (16) proposed the Ricker wavelet model. It is a time function and is the response of the earth to a sharp seismic disturbance. Hence the basic
wavelet model is

$$
\begin{equation*}
h_{2}(t)=e^{-a t} \sin b t \quad t \geq 0 \tag{2.1}
\end{equation*}
$$

The seismic disturbance which creates the wavelet is an impulse, approximated by

$$
\begin{equation*}
h_{1}(t)_{i}=e^{-c t} \quad t \geq 0 \tag{2.2}
\end{equation*}
$$

and the input $u(t)$ is a sequence of random poisson distributed impulses of the form

$$
\begin{equation*}
u(t)=\sum_{i=-\infty}^{\infty} \delta\left(t-t_{i}\right)-Q \tag{2.3}
\end{equation*}
$$

where $E\{u(t) u(\tau)\}=Q \delta(t-\tau)$ and t_{i} is a random poisson variable with average time of occurrence, Q_{0}. It is desired to estimate the arrival times of these impulses, $u(t)$. Because the Kalman filter estimates a state, the input $u(t)$ is passed through an impulsive reflection generator (2.2). Its output $x_{1}(t)$ is the desired state to be estimated. Incidentally $x_{1}(t)$ is in the form of sharply decaying exponential waves, whose time of occurrence is required to be estimated. The simulation was done using an analog computer, as the plant dynamics and observation model were continuous in time. The schematic diagram of the Bayless and Brigham model is shown in Figure 2.

Figure 2. Seismic Reflection Process Model

For the system described above, in the impulsive generation model, there is not enough impulse or energy to drive the wavelet model. Therefore the observation cannot even register the presence of an impulse. Hence the reflection generator assumed by Bayless and Brigham is modified in this development, and is assumed to be

$$
\begin{equation*}
h_{1}(t)=c e^{-c t} \quad t \geq 0 \tag{2.4}
\end{equation*}
$$

because

$$
\begin{align*}
\lim _{t \rightarrow 0} h_{1}(t) & =\lim _{t \rightarrow 0} c e^{-c t} \tag{2.5}\\
& =c
\end{align*}
$$

For an impulse, the following must be satisfied;

$$
\begin{equation*}
\int_{t-\varepsilon}^{t+\varepsilon} \delta(t) d t=1 \tag{2,6}
\end{equation*}
$$

and for the above

$$
\begin{equation*}
\int_{0}^{\infty} c e^{-c t} d t=1 . \tag{2.7}
\end{equation*}
$$

is satisfied.
Hence $h_{1}(t)$ represents an impulse and theoretically as t approaches zero, the impulse magnitude should increase to an infinite value. This is shown graphically in Figure 3. The modified model is indicated in Figures 4 and 5.

Figure 3. Approximation of an Impulse

Figure 4. Modified Bayless and Brigham Model (Frequency Domain)

Figure 5. Modified Bayless and Brigham Model (State Space Form)

The dynamic equations describing the system are:

$$
\left[\begin{array}{l}
\dot{x}_{1}(t) \tag{2.8}\\
\dot{x}_{2}(t) \\
\dot{x}_{3}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a^{2}+b^{2}\right) \\
0 & 1 & -2 a
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right] w(t)
$$

where $w(t)$ is a poisson distributed imput with zero mean and variance equal tọ Q and the observation model is

$$
z(t)=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \tag{2.9}\\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]+v(t)
$$

where $v(t)$ is zero mean Gaussian white noise with variance parameter R.
One of the problems with the Bayless and Brigham model is that it does not deal with random amplitude poisson distributed impulses. They suggest but do not investigate a form of input defined by

$$
\begin{equation*}
u(t)=\sum_{i=-\infty}^{\infty} m_{i} \delta\left(t-t_{i}\right)-E\left[\sum_{i=-\infty}^{\infty} m_{i} \delta\left(t-t_{i}\right)\right] \tag{2.10}
\end{equation*}
$$

where m_{i} 's are random variables and t_{i} 's are the poisson distributed random variables.

2.1.2 Comment

The topics considered here make the application to the deconvolution problem more general. The chief features to be considered in the
remainder of the work are: (1) Since model parameters are in most cases not known, adaptive schemes can be applied. (2) Adaptive smoothing techniques can be incorporated as deconvolution is usually an off-line computational process; and (3) random amplitude poisson distributed impulses as defined in (2.10) can be implemented to make the model more realistic.

These features are used to help identify the correct model and then improve the estimate by applying the smoothing techniques. Thus even with the model not known correctly, deconvolution can still be achieved. Before applying these techniques to the modified Bayless and Brigham model, it is appropriate to give some consideration to the basic estimation under uncertainty scheme.

2.1.3 Estimation Under Uncertainty

In applications of Kalman filtering to seismic data processing, Bayless and Brigham have assumed the system parameters in the dynamic model to be well defined. In practice it is unlikely that the system parameters would be known. Hence it seems appropriate enough to apply adaptive filtering to "learn" the system parameters. Using the methods first derived by Lainiotis (17) and modified by Lee and Sims (18), an attempt is made to apply adaptive filtering to seismic problems. Since the approach taken by Lee and Sims has an influence on this thesis, the method is summarized below.

Given a set of candidate models, one of which is true, let θ_{i} index the ith model. The system dynamics are specified as

$$
\begin{equation*}
\theta_{i}: \quad \dot{x}_{i}(t)=F_{i}(t) x_{i}(t)+G_{i}(t) w_{i}(t) \quad t \geq t_{0} \tag{2.11}
\end{equation*}
$$

where $i=1,2, \cdots, N$ and N is finite; $x_{i}(t)$ is an n-dimensional vector representing the state of the system for the ith model; $w_{i}(t)$ is a qth order disturbance whose elements are zero mean white noise; $F_{i}(t)$ is a nxn matrix for the ith model; and $G_{i}(t)$ is a nxq matrix for the ith model.

The output of the ith model is a linear transformation of the state

$$
\begin{equation*}
y_{i}(t)=H_{i}(t) x_{i}(t) \tag{2.12}
\end{equation*}
$$

where $H_{i}(t)$ is an mxn matrix for the ith model, and $y_{i}(t)$ is an m-dimensional output vector for the ith model. In general, $F_{i}(t), G_{i}(t)$, and $H_{i}(t)$ are functions of time and subject to uncertainty.

The observation model is discrete and can be expressed as

$$
\begin{equation*}
z(k)=y_{i}\left(t_{k}\right)+v(k) \quad k=1,2, \cdots, N \tag{2.13}
\end{equation*}
$$

and depends on which model is active at a given time, where $v(k)$ is a m-vector measurement noise for zero mean, discrete Gaussian process; $z(k)$ is an m-vector observation at time t_{k} 。

It is assumed that the measurement noise and the plant noise under each hypothesis, θ_{i}, are independent Gaussian white noise sequences with zero mean and variances

$$
\begin{align*}
& E\left\{w_{i}(t) w_{i}^{T}(\tau)\right\}=Q_{i}(t) \delta(t-\tau) \tag{2.14}\\
& E\left\{v_{i}(k) v_{i}^{T}(j)\right\}=R_{i}(k) \delta_{k j} \tag{2.15}
\end{align*}
$$

The expected value of the initial condition for the state is

$$
\begin{equation*}
E\left\{x_{i}\left(t_{0}\right)\right\}=\bar{x}_{i}\left(t_{0}\right) \tag{2.16}
\end{equation*}
$$

and the initial condition for the covariance of error is

$$
\begin{align*}
\operatorname{Var}_{x_{i}}\left(t_{0}\right)=V_{x_{i}}\left(t_{0}\right) & =E\left\{\tilde{x}_{i}\left(t_{0}\right) \tilde{x}_{i}^{T}\left(t_{0}\right)\right\} \tag{2.17}\\
& =E\left\{\left[x_{i}\left(t_{0}\right)-\hat{x}\left(t_{0}\right)\right]\left[x_{i}\left(t_{0}\right)-\hat{x}_{i}\left(t_{0}\right)\right]^{T}\right\}
\end{align*}
$$

where $V_{x_{i}}\left(t_{0}\right)$ is an nxn matrix, and $Q_{i}(t), R_{i}(t), x_{i}\left(t_{0}\right)$ and $V_{x_{i}}\left(t_{0}\right)$ are all subject to uncertainty.

It is also assumed that $X_{i}\left(t_{0}\right)$ is independent of the noise sequence $\left\{w_{i}(t)\right\}$ and $\left\{v_{i}(k)\right\}$. Also an a priori probability, $p_{r}\left(\theta_{i}\right)$, is assumed for each candidate model. The set of measurements available up to stage k is denoted as $Z_{k}=\{z(1), z(2), \cdots, z(k)\}$.

The best estimate is determined by the conditional probability density $p\left(x(t) \mid Z_{k}\right)$. The conditional mean is

$$
\hat{x}(t)=E\left\{x(t) \mid z_{k}\right\} \quad \text { for } \quad t_{k}<t<t_{k+1}
$$

and from the fundamental theorem of expectation,

$$
\begin{equation*}
\hat{x}(t)=\int_{-\infty}^{\infty} x(t) p\left(x(t) \mid z_{k}\right) d x(t) \tag{2.18}
\end{equation*}
$$

But the conditional density can be described as

$$
\begin{equation*}
p\left(x(t) \mid z_{k}\right)=\sum p_{r}\left(\theta_{i} \mid z_{k}\right) p\left(x(t) \mid z_{k}, \theta_{i}\right) \tag{2,19}
\end{equation*}
$$

and hence

$$
\begin{align*}
\hat{x}(t) & =\int_{-\infty}^{\infty} x(t) \sum p_{r}\left(\theta_{i} \mid z_{k}\right) p\left(x(t) \mid z_{k}, \theta_{i}\right) d x(t) \\
& =\sum_{i=1}^{N} p_{r}\left(\theta_{i} \mid z_{k}\right) \int_{-\infty}^{\infty} x(t) p\left(x(t) \mid z_{k}, \theta_{i}\right) d x(t) \\
& =\sum_{i=1}^{N} p_{r}\left(\theta_{i} \mid z_{k}\right) \hat{x}_{i}\left(t \mid z_{k}\right) \tag{2.20}
\end{align*}
$$

where $p_{r}\left(\theta_{i} \mid z_{k}\right)$ is the a posteriori probability that the ith model is active at time t, and $\hat{x}_{i}\left(t \mid Z_{k}\right)$ is the conditional mean estimate of the ith candidate model expressed as

$$
\begin{align*}
\hat{x}_{i}\left(t \mid z_{k}\right) & =E\left\{x_{i}(t) \mid z_{k}\right\}=E\left\{x(t) \mid \theta_{i}, z_{k}\right\} \\
& =\int_{-\infty}^{\infty} x(t) p\left(x(t) \mid z_{k}, \theta_{i}\right) d x(t) \tag{2.21}
\end{align*}
$$

Hence the estimate of the state reduces to finding the sum of the products of the estimates and a posteriori probabilities of each candidate model active at time t, given the observation set Z_{k}. The solution to the estimation problem can be obtained in a recursive manner consisting of three parts.
(1) Predictor. In between observations, the estimator acts as a predictor. The conditional mean estimate of the state for each model is

$$
\begin{equation*}
\dot{\hat{x}}_{i}\left(t \mid z_{k}\right)=F_{i}(t) \hat{x}_{i}\left(t \mid z_{k}\right) \tag{2.22}
\end{equation*}
$$

and the covariance of the error of each candidate model is

$$
\begin{gather*}
\dot{V}_{x_{i}}\left(t \mid z_{k}\right)=F_{i}(t) V_{x_{i}}\left(t \mid z_{k}\right)+V_{x_{i}}\left(t \mid z_{k}\right) F_{i}^{T}(t)+G_{i}(t) Q_{i}(t) G_{i}^{T}(t) \\
\text { for } i=1,2, \cdots, N \tag{2,23}
\end{gather*}
$$

where $\hat{x}_{i}\left(t \mid z_{k}\right)$ is defined in Equation 2.21 and

$$
\begin{aligned}
V_{x_{i}}\left(t \mid z_{k}\right) & =\operatorname{Var}\left\{x_{i}(t) \mid z_{k}\right\} \\
& =E\left\{\left[x_{i}(t)-\hat{x}_{i}\left(t \mid z_{k}\right)\right]\left[x_{i}(t)-\hat{x}_{i}\left(t \mid z_{k}\right)\right]^{T}\right\}
\end{aligned}
$$

The initial conditions for the state and covariance of error are indicated by Equations 2.16 and 2.17.
(2) Corrector. At time t_{k+1}, a measurement z_{k+1} is taken and the
updated mean and covariance are expressed as

$$
\begin{equation*}
\hat{x}_{i}\left(t_{k+1} \mid z_{k+1}\right)=\hat{x}_{i}\left(t_{k+1} \mid z_{k}\right)+K_{i}\left(t_{k+1}\right)\left[z(k+1)-H_{i} \hat{x}_{i}\left(t_{k+1} \mid z_{k}\right)\right] \tag{2.25}
\end{equation*}
$$

and

$$
\begin{align*}
& v_{x_{i}}\left(t_{k+1} \mid z_{k+1}\right)= v_{x_{i}}\left(t_{k+1} \mid z_{k}\right)-K_{i}\left(t_{k+1}\right) H_{i} V_{x_{i}}\left(t_{k+1} \mid z_{k}\right) \\
&=\left(I-K_{i} \cdot H_{i}\right) V_{x_{i}}\left(t_{k+1} \mid z_{k}\right)\left(I-K_{i} H_{i}\right)^{T}+K_{i} R_{i} K_{i}^{T} \\
& i=1,2, \cdots N \tag{2.26}
\end{align*}
$$

where

$$
\begin{equation*}
K_{i}\left(t_{k+1}\right)=V_{x_{i}}\left(t_{k+1} \mid z_{k}\right) H_{i}^{T}\left[H_{i} V_{x_{i}}\left(t_{k+1} \mid z_{k}\right) H_{i}^{T}+R_{i}\right]^{-1} \tag{2.27}
\end{equation*}
$$

is called the Kalman gain.
(3) Identifier. When a new measurement z_{k+1} is obtained, the a posteriori probability $p_{r}\left(\theta_{i} \mid z_{k}\right)$ is updated. This a posteriori probability $p_{r}\left(\theta_{i} \mid Z_{k+1}\right)$ provides a measure of certainty of whether the model is the true one and is expressed as

$$
\begin{equation*}
p_{r}\left(\theta_{i} \mid z_{k+1}\right)=\left[1+\sum_{\substack{j=1 \\ j \neq i}}^{N} L_{j i} \frac{p_{r}\left(\theta_{j} \mid z_{k}\right)}{p_{r}\left(\theta_{i} \mid Z_{k}\right)}\right]^{-1} \tag{2.28}
\end{equation*}
$$

where $L_{j i}$ defined as the likelihood ratio is

$$
\begin{equation*}
L_{j i}=\left|\frac{H_{i} V_{x_{i}} H_{i}^{T}+R_{i}}{H_{j} V_{x_{j}} H_{j}^{T}+R_{j}}\right|^{\frac{1}{2}} \quad \exp \left\{-\frac{1}{2}[\cdot]\right\} \tag{2.29}
\end{equation*}
$$

and

$$
\begin{aligned}
& {[\cdot]=\left[z(k+1)-H_{j} \hat{x}_{j}\left(t_{k+1} \mid z_{k}\right)\right]^{T}\left[H_{j} V_{x_{j}} H_{j}^{T}+R_{j}\right]^{-1}\left[z(k+1)-H_{j} \hat{x}_{j}\left(t_{k+1} \mid z_{k}\right)\right]} \\
& -\left[z(k+1)-H_{i} \hat{x}_{i}\left(t_{k+1} \mid z_{k}\right)\right]^{T}\left[H_{i} V_{x_{i}} H_{i}^{T}+R_{i}\right]^{-1}\left[z(k+1)-H_{i} \hat{x}_{i}\left(t_{k+1} \mid z_{k}\right)\right] .
\end{aligned}
$$

When the true model is included as a candidate model, then the a posteriori probability of that model will converge to one with a sufficiently large number of observations, while the probability of the other candidate models approach zero.

This means that more weight is given to the correct model than to the others as the probability of the true model approaches one. In the event that the correct model has its a posteriori probability exactly equal to one, the adaptivity is removed as there is no more uncertainty involved and ordinary Kalman filter theory can be applied (19). The above algorithm serves a useful purpose in relation to the Bayless and Brigham paper in that if the model parameters are not known exactly, then a number of candidate models can be selected. As more observations are obtained, the weighting for each candidate model changes and in the long run the correct model should have the highest a posteriori probability and hence have its estimate weighted the most. This can be considered in effect as making the uncertain parameters slowly be known and to approach that of the correct model. The theory suggests that the highest a posteriori probability model be taken as the right one, because given an infinite number of observations; the right model should have its probability reach one.

While the above algorithm applies to the case of Gaussian inputs, the model proposed should have poisson distributed random noise inputs.

Hence the estimates are only the best linear estimates, conditioned on the individual candiates. Only an approximation to the conditional mean is obtained.

As the computation is not required in real time, it is plausible that smoothing techniques if applied could give a more accurate estimate Hence it is appropriate to look into the process of smoothing.
2.1.4 Fixed Interval Smoothing

In smoothing, the estimate of the state is required at time t, given the noisy measurement data over the interval that includes the time t. While there are many methods of smoothing, fixed interval smoothing will be considered here.

One of the first developments in smoothing was by Bryson and Frazier (20) who used the calculus of variations approach by treating the above as an optimization problem. Later Rauch (21) and Meditch (22) published different treatments of smoothing. Then Fraser (23) and Mehra (24) developed a new form of smoothing, combining two filters, the forward and the backward Kalman filter. Mehra and Bryson (25) and Bryson and Henrikson (26) extended the work to colored noise for continuous discrete processes, respectively. Recently Kailath and Frost (27) have applied the innovations approach to least squares estimation in smoothing.

Mathematically, the smoothing problem can be stated as, given the observation set $Z\left(t_{2}\right)=\left\{Z(\tau), t_{0} \leq \tau<t_{2}\right\}$, find the estimate $\hat{x}\left(t_{1} \mid t_{2}\right)$ where $t_{1}<t_{2}$.

For the problem under consideration, the optimal linear fixed interval smoothing algorithms cannot be used. Because of model uncertainty, an adaptive technique of smoothing is developed. As more data is
available，smoothing provides a better estimate than filtering．

2．2 Development of the Smoothing Algorithm

The system dynamics and observation model are the same as considered in Section 2.1 .3 ，with θ_{i} representing the i th model．As a result of adaptive filtering，the a posteriori probability $p_{r}\left(\theta_{i} \mid z_{N}\right)$ as well as the filtered estimates of each candidate model $\hat{x}_{i}\left(t \mid Z_{k}\right)$ at each time interval t are known．

Consider the conditional mean estimate at time t based on the entire observation set Z_{N} 。

$$
\begin{equation*}
\left.E\left\{x(t) \mid Z_{N}\right)\right\}=E_{\theta_{i}}\left\{E\left\{x(t) \mid Z_{N} ; \theta_{i}\right\}\right\} \tag{2.30}
\end{equation*}
$$

This can be written as the weighted sum of the smoothed estimates， conditioned on the ith model being correct with the weighting indicated by the final a posteriori probability as stored in the filtered algorithm。

$$
\begin{equation*}
E\left\{x(t) \mid z_{N}\right\}=\sum_{i=1}^{N} p_{r}\left(\theta_{i} \mid z_{N}\right) \hat{x}_{i}\left(t \mid z_{N}\right) \tag{2.31}
\end{equation*}
$$

where $Z_{N}=\{z(1), z(2), \cdots, z(N)\}=$ the entire data set．
$\hat{x}_{i}\left(t \mid Z_{N}\right)$ is the smoothed estimate of the i th candidate model at time t 。

However，it is known in the minimum mean square sense；that the best linear estimate is also the conditional mean estimate（27）．Hence

$$
\begin{align*}
\hat{x}\left(t \mid z_{N}\right) & =E\left\{x(t) \mid z_{N}\right\} \\
& =\sum_{i=1}^{N} p_{r}\left(\theta_{i} \mid z_{N}\right) \hat{x}_{i}\left(t \mid z_{N}\right) \tag{2,32}
\end{align*}
$$

where $\hat{x}\left(t \mid z_{N}\right)$ is the best smoothed estimate of the system states and is
an n dimensional vector.
It is seen that the smoothed estimate is an extension of the filtering case except now the weighting for each model is considered a constant for each model and is the value at the last data point $z(N)$.

The solution of $\hat{x}_{i}\left(t \mid Z_{N}\right)$ is obtained as follows (19). The smoothed estimate at time t is found from the equation

$$
\begin{gather*}
\dot{\hat{x}}_{i}\left(t \mid z_{N}\right)=F_{i}(t) \hat{x}_{i}\left(t \mid z_{N}\right)+S_{i}(t)\left[\hat{x}_{i}\left(t \mid z_{N}\right)-\hat{x}_{i}(t)\right] \tag{2.33}\\
\text { for } t_{0} \leq t<t_{N}
\end{gather*}
$$

where $\hat{x}_{i}(t)$ is the optimal filtered estimate of the ith model at time t and $S_{i}(t)$ is an nxn smoothing filter gain matrix for the ith model.

The terminal condition

$$
\hat{x}_{i}\left(t_{N} \mid z_{N}\right)=\hat{x}_{i}\left(t_{N}\right)
$$

implies that at the final time t_{N}, the smoothed estimate equals the filtered estimate。

The smoothing filter gain $S_{i}(t)$ for the ith model is

$$
\begin{equation*}
S_{i}(t)=G_{i}(t) Q_{i}(t) G_{i}^{T}(t) V_{X_{i}}^{-1}\left(t \mid Z_{k}\right) \tag{2,34}
\end{equation*}
$$

where $V_{x_{i}}^{-1}\left(t \mid Z_{k}\right)$ is the inverse covariance of the error as obtained in the filter algorithm for the ith model at time t.

> 2.3 Application of Adaptive Processing
> to Deconvolution

In this section, the application of adaptive filtering and smoothing to the seismic processing problem of Bayless and Brigham is described.

Consider the parameter 'a' in the F matrix of the Bayless and

Brigham model to be unknown, and also let the variance of plant noise Q be unknown. Let a_{i} be the value of 'a' in the F matrix in the ith candidate model and let Q_{i} be the value of Q in the ith model. Hence the model can be described as

$$
\left[\begin{array}{c}
\dot{x}_{1 i} \tag{2.35}\\
\dot{x}_{2 i} \\
\dot{x}_{3 i}
\end{array}\right]=\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a_{i}^{2}+b^{2}\right) \\
0 & 1 & -2 a_{i}
\end{array}\right]\left[\begin{array}{l}
x_{1 i} \\
x_{2 i} \\
x_{3 i}
\end{array}\right]+\left[\begin{array}{c}
c \\
0 \\
0
\end{array}\right] w
$$

where x_{i} is the state when the ith model is active.
The observation is discrete and expressed as

$$
z_{k}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1 i} \tag{2.36}\\
x_{2 i} \\
x_{3 i}
\end{array}\right]+v_{k}
$$

where v_{k} is random white noise with zero mean and covariance

$$
\begin{equation*}
E\{v(k) v(j)\}=R \delta_{k j} \tag{2,37}
\end{equation*}
$$

and $w(t)$ is defined as

$$
\begin{equation*}
w(t)=\sum_{k=1}^{\infty} \delta\left(t-t_{k}\right)-Q_{i} \tag{2,38}
\end{equation*}
$$

which is a poisson distribution with zero mean and covariance

$$
E\{w(t) w(\tau)\}=Q_{i} \delta(t-\tau)
$$

2.3.1 Filter Equations

(1) Predictor. To be used when no observations are available. The state predictor equation is:

$$
\left[\begin{array}{c}
\dot{\hat{x}}_{1 i} \tag{2.39}\\
\dot{\hat{x}}_{2 i} \\
\dot{\hat{x}}_{3 i}
\end{array}\right]=\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a_{i}^{2}+b^{2}\right) \\
0 & 1 & -2 a_{i}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1 i} \\
\hat{x}_{2 i} \\
\hat{x}_{3 i}
\end{array}\right]
$$

The variance equation is:

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{lll}
v_{11 i} & v_{12 i} & v_{13 i} \\
v_{12 i} & v_{22 i} & v_{23 i} \\
v_{13 i} & v_{23 i} & v_{33 i}
\end{array}\right]=\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a_{i}^{2}+b^{2}\right) \\
0 & 1 & -2 a_{i}
\end{array}\right]\left[\begin{array}{ccc}
v_{11 i} & v_{12 i} & v_{13 i} \\
v_{12 i} & v_{22 i} & v_{23 i} \\
v_{13 i} & v_{23 i} & v_{33 i}
\end{array}\right]} \\
+\left[\begin{array}{lll}
v_{11 i} & v_{12 i} & v_{13 i} \\
v_{12 i} & v_{22 i} & v_{23 i} \\
v_{13 i} & v_{23 i} & v_{33 i}
\end{array}\right]\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a_{i}^{2}+b^{2}\right) \\
0 & 1 & -2 a_{i}
\end{array}\right]+\left[\begin{array}{c}
c \\
0 \\
0
\end{array}\right] Q_{i}^{[c} 0 \tag{2.40}
\end{array}\right] \quad 0\right] .
$$

The initial conditions for the state equations and the variance equations are appropriately given.
(2) Corrector. When the observation z_{k+1} is obtained, the Kalman gain at $t=t_{k+1}$ is
$\left[\begin{array}{c}K_{1 i} \\ K_{2 i} \\ K_{3 i}\end{array}\right]=\left[\begin{array}{lll}v_{11 i} & v_{12 i} & v_{13 i} \\ v_{12 i} & v_{22 i} & v_{23 i} \\ v_{13 i} & v_{23 i} & v_{33 i}\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\left\{\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}v_{11 i} & v_{12 i} & v_{13 i} \\ v_{12 i} & v_{22 i} & v_{23 i} \\ v_{13 i} & v_{23 i} & v_{33 i}\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1\end{array}\right]+R\right\}^{-1}$
(2.41)

The updated estimate at t_{k+1} given the observation z_{k+1} is

$$
\left[\begin{array}{c}
\hat{x}_{1 i} \tag{2.42}\\
\hat{x}_{2 i} \\
\hat{x}_{3 i}
\end{array}\right]=\left[\begin{array}{c}
\hat{x}_{1 i} \\
\hat{x}_{2 i} \\
\hat{x}_{3 i}
\end{array}\right]_{*}+\left[\begin{array}{c}
K_{1 i} \\
K_{2 i} \\
K_{3 i}
\end{array}\right]\left[\begin{array}{lll}
z(k+1)-\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1 i} \\
\hat{x}_{2 i} \\
\hat{x}_{3 i}
\end{array}\right]
\end{array}\right]
$$

where * denotes the predicted estimate at t_{k+1}. The updated variance is

$$
\left[\begin{array}{lll}
v_{11 i} & v_{12 i} & v_{13 i} \\
v_{12 i} & v_{22 i} & v_{23 i} \\
v_{13 i} & v_{23 i} & v_{33 i}
\end{array}\right]
$$

$$
=\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{c}
K_{1 i} \\
K_{2 i} \\
K_{3 i}
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\right\}\left[\begin{array}{lll}
\mathrm{V}_{11 i} & v_{12 i} & v_{13 i} \\
\mathrm{~V}_{12 i} & \mathrm{v}_{22 i} & \mathrm{v}_{23 i} \\
\mathrm{~V}_{13 i} & \mathrm{v}_{23 i} & \mathrm{~V}_{33 i}
\end{array}\right]_{*}\left\{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

$$
\left.-\left[\begin{array}{l}
K_{1 i} \tag{2.43}\\
K_{2 i} \\
K_{3 i}
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\right\}^{T}+\left[\begin{array}{l}
K_{1 i} \\
K_{2 i} \\
K_{3 i}
\end{array}\right] \mathrm{R}\left[K_{1 i} K_{2 i} K_{3 i}\right]
$$

where * denotes the predicted variance at t_{k+1}.
(3) Identifier. The a priori probabilities are assumed at the initial time and each candidate model is assigned an a priori probability. The a posteriori probability is found out as indicated in Equations (2.28) and (2.29) when a new observation is obtained.

Finally the estimates of the states of the model are

$$
\left[\begin{array}{l}
\hat{x}_{1}(t) \tag{2.44}\\
\hat{x}_{2}(t) \\
\hat{x}_{3}(t)
\end{array}\right]=\sum_{i=1}^{N} p_{r}\left(\theta_{i}\right)\left[\begin{array}{l}
\hat{x}_{1 i}\left(t \mid z_{k+1}\right) \\
\hat{x}_{2 i}\left(t \mid z_{k+1}\right) \\
\hat{x}_{3 i}\left(t \mid z_{k+1}\right)
\end{array}\right]
$$

It should be noted that the Kalman gain in the corrector part as well as the variance of the error in the predictor and corrector parts can be precalculated as they are independent of observations.

2.3.2 Smoothing Equations

From the filtering equations above, all the estimates of each candidate model from the initial time t_{0} to the final time t_{N} as well as $V_{x_{i}}\left(t \mid Z_{k}\right)$ for each model should be stored.

Smoothing can be considered as a process working backwards starting at the final time t_{N} and arriving at the initial time t_{0}.

The equations for adaptive smoothing with terminal conditions

$$
\hat{x}_{i}\left(t_{N} \mid z_{N}\right)=\hat{x}\left(t_{N}\right)
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\hat{x}}_{1 i} \\
\dot{\hat{x}}_{2 i} \\
\dot{\hat{x}}_{3 i}
\end{array}\right]=\left[\begin{array}{ccc}
-c & 0 & 0 \\
b & 0 & -\left(a_{i}^{2}+b^{2}\right) \\
0 & 1 & -2 a_{i}
\end{array}\right]\left[\begin{array}{c}
\hat{x}_{1 i} \\
\hat{x}_{2 i} \\
\hat{x}_{3 i}
\end{array}\right]} \\
& +\left[\begin{array}{lll}
S_{11 i} & S_{12 i} & S_{13 i} \\
S_{12 i} & S_{22 i} & S_{23 i} \\
S_{13 i} & S_{23 i} & S_{33 i}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1 i}\left(t \mid z_{N}\right)-\hat{x}_{1 i}(t) \\
\hat{x}_{2 i}\left(t \mid z_{N}\right)-\hat{x}_{2 i}(t) \\
\hat{x}_{3 i}\left(t \mid z_{N}\right)-\hat{x}_{3 i}(t)
\end{array}\right]
\end{aligned}
$$

The smoothing gain $S_{i}(t)$ is

$$
\left[\begin{array}{lll}
s_{11 i} & s_{12 i} & s_{13 i} \tag{2.46}\\
s_{12 i} & s_{22 i} & s_{23 i} \\
s_{13 i} & s_{23 i} & s_{33 i}
\end{array}\right]=\left[\begin{array}{l}
c \\
0 \\
0
\end{array}\right] Q_{i}\left[\begin{array}{lll}
c & 0 & 0
\end{array}\right] v_{x_{i}}^{-1}\left(t \mid z_{N}\right)
$$

where $V_{x_{i}}^{-1}\left(t \mid Z_{N}\right)$ is the inverse of the error covariance of the i th model at time t 。

Finally the smoothed estimate is

$$
\left[\begin{array}{l}
\hat{x}_{1}\left(t \mid z_{N}\right) \tag{2.47}\\
\hat{x}_{2}\left(t \mid z_{N}\right) \\
\hat{x}_{3}\left(t \mid z_{N}\right)
\end{array}\right]=\sum_{i=1}^{N} p_{r}\left(\theta_{i} \mid z_{N}\right)\left[\begin{array}{c}
\hat{x}_{1 i}\left(t \mid z_{N}\right) \\
\hat{x}_{2 i}\left(t \mid z_{N}\right) \\
\hat{x}_{3 i}\left(t \mid z_{N}\right)
\end{array}\right]
$$

where $p_{r}\left(\theta_{i} \mid Z_{N}\right)$ is the final value of the a posteriori probabilities found out from the filter part for the ith model.

In this chapter the adaptive filtering and smoothing equations for
the Bayless and Brigham model have been given. To investigate the validity of the algorithms and to judge its performance when applied to seismic problems, computer simulations are carried out. The next chapter discusses these simulations.

CHAPTER III

SIMULATION RESULTS

3.1 Introduction

Simulation may be defined as a technique for conducting experiments on an analog, digital or hybrid computer, which involves certain types of mathematical and logical models that describe the behavior of the system over a period of time.

With computer simulation, insight can be gained into complex systems, formulation and testing of theories, and the prediction of the behavior of the systems in the future.

For the model of Bayless and Brigham, computer simulations are carried out to see whether the adaptive algorithms described previously, are adequate for the task of deconvolution and to evaluate their performance under a variety of circumstances. In particular, simulation is important due to the fact that the theory derived in Chapter II is not developed for poisson inputs. Hence one cannot predict without experimentation the performance of the algorithm.

3.2 The Method of Simulation

The total simulation program is rather involved, incorporating many facets, such as the generation of both poisson and Gaussian noise and the numerical integration of many equations. The simulation program (illustrated by the flow chart in Figure 6) is listed in the appendix, and some

Figure 6. The Flow Chart for Simulation of the Model
of the important aspects of the program as well as experimental results are presented in the sequel.

3.2.1 Integration Method

The integration method used here is referred to as the fourth order Runge-Kutta Method (28). It is based on Simpson's Rule for finding the area under the given curve. There are, however, a number of such methods having minor variations and most computer libraries contain one or more as general integration procedures. The method is summarized below.

If a first order differential equation is

$$
\begin{equation*}
\dot{y}=f(x, y) \tag{3,1}
\end{equation*}
$$

where \dot{y} is the derivative of y with respect to x and

$$
\begin{equation*}
y\left(x_{n}\right)=y_{n} \tag{3.2}
\end{equation*}
$$

then one computes

$$
\begin{gather*}
k_{1}=h f\left(x_{n}, y_{n}\right) \\
k_{2}=h f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{k_{2}}{2}\right) \\
k_{3}=h f\left(x_{n}+\frac{h}{2}, y_{n}=\frac{k_{3}}{2}\right) \tag{3.3}\\
k_{4}=h f\left(x_{n}+h, y_{n}+k_{3}\right)
\end{gather*}
$$

where h is the integration step size. The next value of y is evaluated according to

$$
\begin{equation*}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{3.4}
\end{equation*}
$$

The Runge-Kutta methods are self starting, have easy changes in step size and are particularly straight forward to apply on digital computers. However, they require a number of evaluations of the slopes $f(x, y)$ at each step, equal to the order of the method.

An important consideration for this method of integration is the choice of step size 'h'. If the step size is too large, the result will be inaccurate, but if it is too small, an excessive amount of computer time is required. There are various ways of estimating ' h '. One rule of the thumb is to select h as $1 / 10$ the smallest eigenvalue of the linearized system. Another scheme is simply run the program with two choices of step size of say . 01 and .001 and compare. If the results are identical, then the larger step size is chosen.

3.2.2 Random Noise Generation

In the simulation, three kinds of random noise inputs are considered. In one case the equal amplitude random poisson distribution is the input to the system. In the second case the random amplitude poisson (RAP) distribution is the input. Gaussian additive white noise corrupts the output to give the observation for the model. In this section the generation of these noise disturbances are discussed.
(1) Equal Amplitude Poisson Distribution (EAP). A zero mean poisson distributed input of equal amplitude is represented by

$$
\begin{equation*}
u(t)=\sum_{i=-\infty}^{\infty} \delta\left(t-t_{i}\right)-Q \tag{3.5}
\end{equation*}
$$

where t_{i} 's are the random poisson variables, and Q is the average number of occurrences per second. Let $y_{1}, y_{2}, \cdots, y_{n}$ be random independent variables that have an exponential density function

$$
\begin{align*}
P_{Y}(y) & =Q e^{-Q Y} & & y>0 \tag{3,6}\\
& =0 & & \text { otherwise }
\end{align*}
$$

Starting at an arbitrary time $t=0$, assume

$$
\begin{align*}
& t_{1}=y_{1} \\
& t_{2}=y_{1}+y_{2} \\
& t_{3}=y_{1}+y_{2}+y_{3} \tag{3.7}\\
& \vdots \\
& t_{n}=y_{1}+y_{2}+\cdots+y_{n}
\end{align*}
$$

Then it can be proved that the random variables t_{i} are poisson in nature (29).

To realize an exponential distribution function from a uniform distributed function between $(0,1)$, a nonlinear transformation is required. This transformation is represented in the block diagram of Figure 7, where the random variable X has the density function

$$
\begin{align*}
p_{X}(x) & =1 & & 0 \leq x<1 \tag{3,8}\\
& =0 & & \text { otherwise }
\end{align*}
$$

and the random variable Y has the density function

$$
\begin{align*}
P_{Y}(y) & =Q e^{-Q y} & & y \geq 0 \tag{3.9}\\
& =0 & & \text { otherwise }
\end{align*}
$$

It is required to find the transformation $h=g(x)$.

Figure 7. Transformation of a Random Variable

If X and Y are related on a one-to-one basis, then equating the probabilities gives

$$
\begin{equation*}
P(X \leq x)=P(Y \leq y) \tag{3.10}
\end{equation*}
$$

or

$$
\int_{0}^{x} \mathrm{dx}=\int_{0}^{y} Q e^{-Q y} d y
$$

or

$$
x=\left(1-e^{-Q y}\right)
$$

or

$$
\begin{equation*}
y=\frac{-\ln (1-x)}{Q}=\frac{-\ln (x)}{Q} \tag{3.11}
\end{equation*}
$$

where Q is a parameter of the exponential process.
Hence, by this nonlinear transformation, for various values of X, a sequence of random variables Y are generated. These random variables are independent and possess the exponential density function. The poisson distributed inputs can then be obtained by Equation (3.7).

The statistics of the white noise process are

$$
\begin{equation*}
E\{u(t)\}=0 \quad \text { and } \quad E\{u(t) u(\tau)\}=Q \delta(t-\tau) . \tag{3,12}
\end{equation*}
$$

Therefore, given the first and second moments of this random process, the equal amplitude poisson distribution can be implemented.
(2) Random Amplitude Poisson Distribution (RAP). The RAP distribution input can be expressed as

$$
\begin{equation*}
u(t)=\sum_{i=-\infty}^{\infty} m_{i} \delta\left(t-t_{i}\right)-E\left[\sum_{i=-\infty}^{\infty} m_{i} \delta\left(t-t_{i}\right)\right] \tag{3.13}
\end{equation*}
$$

where m_{i} is a random distribution of mean m which reflects the intensity of the impulses.

Of the statistics of random processes, the first and second moments are most useful. In fact first and second order moments provide necessary and sufficient information for problems involving linear systems and/or Gaussian random processes. As in the previous case, efforts will be centered on deriving the first and second moments to obtain a statistical knowledge of impulse processes.

The first moment is (30)

$$
\begin{align*}
E\{u(t)\} & =E\left[\sum m_{i} \delta\left(t-t_{i}\right)\right] \\
& =\sum E\left[m_{i}\right] E\left[\delta\left(t-t_{i}\right)\right] \tag{3.14}\\
& =m Q
\end{align*}
$$

where $E\left\{m_{i}\right\}=m$ and Q is the mean for the poisson process.
The second moment is

$$
\begin{align*}
E\{u(t) u(\tau)\} & =\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} E\left[m_{i} m_{j}^{T}\right] E\left[\delta\left(t-t_{i}-\tau\right) \delta\left(t-t_{j}\right)\right] \tag{3.15}\\
& =Q \rho(0) \delta\left(t-t_{i}\right)+Q \sum_{n=1}^{\infty} \rho(n) f_{n}(t-\tau)
\end{align*}
$$

where $\rho(i)=E\left\{m_{k} m_{k+i}^{T}\right\} ; f_{n}$ is the probability density function associated with n consecutive intervals of poisson process t_{i}; and Q is the variance of the poisson process.

If in the above, an assumption is made that the random variable m_{i} is zero mean and independent, then considerable simplification results.

In fact if m_{i} is uniformly distributed between -1 and 1 , then its first and second moments are 0 and $1 / 3$, respectively, so that the first and second moments of the RAP distribution input are

$$
E\{u(t)\}=0
$$

and

$$
\begin{equation*}
E\{u(t) u(\tau)\}=\frac{Q}{3} \delta(t-\tau) \tag{3.16}
\end{equation*}
$$

A little modification is required in the equal amplitude poisson distribution described in the previous section to get the RAP distribution. When the pulses are initiated onto the system in a poisson manner, the amplitude is made to vary according to the various values of the random variable m_{i}, with the above statistics. It is seen that the previous section on the equal amplitude poisson distribution problem is a particular case of the more general RAP distribution problem. The m_{i} 's are no more random, but deterministic with a value of 1 .
(3) Gaussian Distribution. There are many applications in simulation and analysis of dynamical systems which require large amounts of pseudo random numbers. There has been a great interest in recent years in the generation of pseudo random numbers on a digital computer. Since these numbers are generated by deterministic means, the term pseudo random is applied to the generated numbers. Chambers (31) and many others, treat the subject of uniform pseudo random sequences.

The two most popular methods of generating uniform random numbers are the multiplicative method and the mixed congruential method. The first method can be described by the recurrence formula

$$
X_{i+1}=A X_{i}(\text { modulo } M)
$$

The second is described by

$$
\begin{equation*}
x_{i+1}=A X_{i}+C(\text { modulo } M) \tag{3.18}
\end{equation*}
$$

where A, M and C are constants usually chosen to yield a long period and other desirable statistical properties of the sequence. On division of $A X_{i}$ or $A X_{i}+C$ by M and taking the remainder, the next random number is obtained. As each random number is obtained, it can be divided by M to be normalized to the unit interval. The numbers so obtained will approximate a uniform distribution very closely.

Only the multiplicative method will be considered in this section. The generator described in Equation (3.17) may be easily implemented on any digital computer. The multiplier A is always chosen as $8 \mathrm{~K}+3$ where K is a positive integer. This is done to insure a full period of $M / 4$. Also the starting number X_{0} must be an odd integer to obtain a full period. There are no other requirements except that A must be chosen to yield good statistical properties in the generated numbers.

Brown and Rowland (32) have obtained satisfactory statistical properties from a pseudo random generator with A as 19971, $M=2^{20}$, and X_{0} as 31571 . These generated numbers are uniformly distributed on $(0,1)$. These can be converted into a zero mean, unity variance, Gaussian distribution by the exact closed form relation developed by Box and Muller (33). These are

$$
\begin{align*}
& z_{1}=\left(-2 \ln x_{1}\right)^{1 / 2} \cos 2 \pi x_{2} \tag{3.19}\\
& z_{2}=\left(-2 \ln x_{1}\right)^{1 / 2} \sin 2 \pi x_{2} \tag{3.20}
\end{align*}
$$

where X_{1} and X_{2} are uniformly distributed random variables and z_{1} and z_{2} are Gaussian random variables.

3.2.3 Parameter Selection

The Bayless and Brigham model being simulated has the same parameters chosen as is indicated in Section 2.1.1, except where differences are allowed to account for model uncertainty. However a question arises as to the value of the input impulse to the model.

The impulsive reflection generator described by Equation (2.4) has at the instant the pulse is initiated onto the system, an output of value c. It is seen that the input impulse amplitude is a function of the type of integration done and the step size chosen. As the value of c for the model has been chosen to be 1000 , this means a small step size must be selected for the iterations to work. The choice was made to be .0001 . Hence given the step size and the method of integration (fourth order Runge-Kutta), it is seen that the input impulse magnitude required is approximately 10^{4}. Also the initial conditions for the states are at zero and the initial variance conditions are chosen to be zero except V_{11} the variance of state x_{1}, the output of the reflection generator. This value is taken to be 1000 .

It is thought that the points discussed in this section are those which required some explanation. The remainder of the program involves the mechanics of implementing the flow chart.

3. 3 Comments

A number of experiments were conducted. These experiments are motivated by the following questions.
(1) To what degree is system identification achieved?
(2) How significant a role does adaptive smoothing play in the estimation of the state?
(3) How do the results of adaptive filtering under uncertainty compare with ordinary Kalman filtering for a known model?
(4) How does adaptive smoothing compare with smoothing with certain knowledge of the model?
(5) What are the effects of the level of measurement noise on the performance of the estimator?

3.4 Case With Equal Amplitude Poisson Input

The modified Bayless and Brigham model is used with the parameter 'a' in the F matrix in Equation (2.8) uncertain and simulated on the computer. The poisson input is generated as explained in the previous section as is the Gaussian white noise process. The integration method is the Runge-Kutta fourth order method as explained previously. In the simulation presented below, the integration step size is 0.1 msec and the observation is taken every 0.5 msec 。

3.4.1 Effects of Uncertainty in the Model

In this experiment four values of 'a' are possible for the candidate models. They are 'a' $=150,100,50$, and 10 while the other parameters are fixed at $b=100 \pi, c=1000$ and $Q=500$. The candidate models under consideration are:

$$
\theta_{1}: \underline{\dot{x}}(t)=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
100 \pi & 0 & -\left(150^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -300
\end{array}\right] \underline{x}(t)+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w(t)
$$

$$
\begin{aligned}
& \theta_{2}: \underline{\dot{x}}(t)=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(100^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -200
\end{array}\right] \underline{x}(t)+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w(t) \\
& \theta_{3}: \underline{\underline{x}}(t)=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(50^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -100
\end{array}\right] \underline{x}(t)+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w(t) \\
& \theta_{4}: \underline{\dot{x}}(t)=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(10^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -20
\end{array}\right] \underline{x}(t)+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w(t)
\end{aligned}
$$

The model with 'a' as 50 or θ_{3} is true. The output and the measurement are assumed as

$$
y(t)=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \underline{x}(t)
$$

and

$$
z(k)=y\left(t_{k}\right)+v(k)
$$

The covariance of the plant is

$$
E\{w(t) w(\tau)\}=Q \delta(t-\tau)
$$

where Q is 500 and $w(t)$ is poisson distributed. The covariance of the measurement noise is

$$
E\left\{v(k) v^{T}(j)\right\}=R \delta_{k j}
$$

where R is 10^{-5} and $v(k)$ is zero mean Gaussian white noise. The initial conditions $\bar{x}_{i}\left(t_{0}\right)$ and $V_{x_{i}}\left(t_{0}\right)$ are

$$
\bar{x}_{i}\left(t_{0}\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad ; \quad v_{x_{i}}\left(t_{0}\right)=\left[\begin{array}{ccc}
1000 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The a priori probability assigned to each model is

$$
p_{r}\left(\theta_{i}\right)=0.25 \quad \text { for all } \mathbf{i}
$$

Result 1. The desired state to be estimated is x_{1}, the spiked output from the reflection generator. A typical single run is shown in Figure 8, where the estimated and the actual values are plotted. The associated identification capability is plotted in Figure 9。 It is seen that adaptive filtering provides estimates of the impulses after a noticeable lag. This is because of the discrete observation model. An event that occurs between observations is not noticed until the next observation. Also the identification of θ_{3} as the true model is indicated after a number of samples, by the greater a posteriori probability $\mathrm{p}_{\mathrm{r}}\left(\theta_{3} \mid z_{\mathrm{k}}\right)$.

Result 2. The effect of adaptive smoothing is seen on the estimate of x_{1}, as its true and smoothed values are plotted in Figure 10. Also the observation set from which this estimate x_{1} is made is shown in Figure 11. To bring out the comparison between the adaptive smoothing and filtering operations, a plot of true, filtered and smoothed values for the first fifty observations is shown in Figure 12. It is clearly seen that the process of adaptive smoothing removes the lag in the

Figure 8. True and Filtered Estimate of State x_{1} for EAP Input With Parameter 'a' Uncertain

Figure 9. The a Posteriori Probability for the Four Candidate Mode1s With 'a' Uncertain

Figure 10. True and Smoothed Estimate of State x_{1} for EAP Input With Parameter 'a' Uncertain

Figure 11. The Observation set for Equal Amplitude Poisson Input

Figure 42. True, Filtered and Smoothed Estimate for EAP Input With
estimate as observed in the filtered results and hence makes for accurate results.

Result 3. To demonstrate the effects of adaptive filtering when compared with ordinary Kalman filtering for a known model, the true value, adaptive estimate, and Kalman estimate are plotted in Figure 13. Even with uncertainty in the model, the adaptive filtered estimate is almost the same as the Kalman filtered estimate. This result is significant, since it shows that one can accomplish accurate deconvolution even with model uncertainty.

Result 4. It is important to judge the effects of adaptive smoothing as compared with nonadaptive smoothing, or smoothing under uncertainty. Figure 14 is a plot of the true value, the adaptive, and nonadaptive smoothed estimates of x_{1} for the first fifty observations. There seems to be very little difference in the results of the smoothing methods and model uncertainty does not impair the estimate of the state x_{1}.

Result 5. Another experiment conducted is based on the assumption that there is uncertainty in the frequency of occurrence, Q, of impulses for the poisson input, instead of uncertainty in the model. The model is fixed with the parameters of the model given as $\mathrm{a}=50, \mathrm{~b}=100 \pi$, $\mathrm{c}=1000$, while Q has four possible values: $900,700,500$, and 100 . The third candidate model indexed by θ_{3} is the actual model, and has a value of $Q=500$. Each model is given the same initial conditions as in the previous experiments and the same a priori probabilities. A single run is made and the actual and filtered values of x_{1} is plotted in Figure 15 . Again a lag is noticed in the filtered estimate as was seen in the case of uncertainty in the parameter 'a'。 Also the identification capability

Figure 13. True, Adaptive Filtered and Kalman Filtered Estimate for EAP Input With 'a' Uncertain

Figure 14. True, Adaptive Smoothed and Fixed Interval Smoothed Estimate for EAP Input With 'a' Uncertain

Figure 15. True and Filtered Estimate of State x_{1} for EAP Input With ' Q ' Uncertain
is seen in Figure 16 as the correct model reaches the highest a posteriori probability. It is noticed, however, that the number of samples required for the system identification to take place is larger. It is thought that the degree of uncertainty in the system due to the unknown Q has a second order effect and consequently, a larger amount of data needs to be taken. The shape of some of the probability curves resemble a saw-tooth curve and if the observation is curtailed at say .08 secs. the wrong model will have a higher a posteriori probability. Hence it can be inferred that system identification is not very reliable. However, even when the posterior probabilities are misleading, accurate deconvolution is accomplished.

Result 6. Adaptive smoothing is carried out for the above case. Figure 17 shows a plot of true and smoothed values of the state x_{1}. In order to compare the adaptive smoothing and the adaptive filtering estimates, a plot of all three, the true, filtered, and smoothed values is shown in Figure 18 for the first fifty observations. As is evidenced, there is a definite improvement due to the process of adaptive smoothing in obtaining the estimate of x_{1}.

3.4.2 Effects of Measurement Noise

In the experiments conducted so far, the measurement noise has been assumed to be very low ($R=10^{-5}$). However, in practical situations, the level of noise is larger. It is of importance, therefore, to examine the effect of noise on the system performance. Hence, in the following experiment, the level of measurement noise is raised by a factor of 100 to $R=10^{-3}$ and is compared with $R=10^{-5}$ where R is the variance of the noise.

Figure 16. The a Posteriori Probability for the Four Candidate Models With 'Q' Uncertain

Figure 17. True and Smoothed Estimate of State x_{1} for EAP Input With 'Q' Uncertain

Figure 18. True, Filtered and Smoothed Estimate for EAP Input With 'Q' Uncertain

The system has the uncertain parameter 'a' in the model and has four possible.values specified as $150,100,50$ and 10 . The other parameters are fixed as before.

Result 1. A plot has been shown in Figure 19 of the true value and the filtered estimate of x_{1} with two different levels of noise. It is seen that with larger noise the estimate is poorer than with the case of less noise. In other words, the ratio of signal to noise is made smaller and the effect is seen to degrade the estimate. If the noise level is further increased, there is a point where the signal to ratio is such that the noise prevails and the filter cannot do accurate deconvolution. Figure 20 shows the observation that is processed by the filters to obtain the desired estimates. It is seen that the noise is high enough to be noticeable when $R=10^{-3}$.

Result 2. Adaptive smoothing is also conducted with two different levels of measurement noise. As can be observed in Figure 21, the adaptive smoothing process for the larger level of measurement noise does not do as well as when the level of noise is smaller.

3.5 Case With Random Amplitude Poisson Input

For the model to be more realistic, it is necessary that the input be RAP distributed. The method of generation for this distribution has already been described in Section 3.2.2. The method of integration and the method of obtaining Gaussian measurement noise remain the same. The observations are at time intervals of .5 msecs .

Figure 19. True and Filtered Estimate for EAP Input With two Different Measurement Noise

Figure 20. The Observation set for EAP Input and Measurement Noise Variance $\mathrm{R}=10^{-3}$

Figure 21. True and Smoothed Estimate for EAP Input With two Different Measurement Noise

3.5.1 Effects of Uncertainty in the Model

The same experiments are conducted on the modified Bayless and Brigham model as in Section 3.4 with the parameter ' a ' having possible values of $150,100,50$ and 10 , while the other parameters are fixed as before. The same initial conditions are used and each model is given an equal a priori probability.

Result 1 . A single stage run is made and the filtered results compared with the actual values in Figure 22. It is seen, however, that to achieve a satisfactory system identification, the number of observations must be greatly increased. This is shown,in Figure 23. It is only in the last few hundred iterations of the 400 observations taken, that the correct model did achieve a respectable probability. In spite of the lack of reliability of system identification, the estimated values obtained are quite satisfactory. As seen in the previous section, the estimated values lag behind the true state x_{1}, due to the discrete observation.

Result 2. Adaptive smoothing is implemented next and the results plotted along with the true values of the state x_{1} in Figure 24. Since the results are cluttered up, a magnified version of the first 200 iterations is plotted in Figure 26, showing the true, filtered and smoothed estimates. As in the previous experiments, it is observed that the smoothing results show a remarkable improvement in the estimates, removing much of the lag. Figure 25 shows a plot of the observation set from which these estimates have been made.

Result 3. For the case of an RAP distributed input, an experiment is conducted where the Q of the model, namely the frequency of occurrence of the impulses in the input are uncertain and the other model parameters

Figure 22. True and Filtered Estimate of State x_{1} for RAP Input With 'a' Uncertain

Figure 23. The a Posteriori Probability for the Four Candidate Models With 'a' Uncertain

Figure 24. True and Smoothed Estimate of State x_{1} for RAP Input With 'a' Uncertain

Figure 25. The Observation set for Random Amplitude Poisson Input

Figure 26. True, Filtered and Smoothed Estimate for RAP Input With 'a' Uncertain
are known at values specified by Bayless and Brigham. In other words, the four candidate models have values of Q as $900,700,500$ and 100 , the third model representing the true one. Figure 27 is a plot of the true value of x_{1} when compared with the adaptive filtered estimate. There is a definite lag in the estimated values as compared with the true values. The system identification capability is seen in the plot shown in Figure 28.

Result 4. Adaptive smoothing when applied to the above model with uncertain Q gives results as plotted in Figure 29. A closer observation of the effect of adaptive smoothing as compared with filtering can be seen in Figure 30 for the first 200 iterations. The process of adaptive smoothing reduces the lag in the filtered results to a great extent.

Result 5. To compare Kalman filtering under certainty with adaptive filtering, an experiment is conducted with the model being fixed and the Q of the input being uncertain as described above. In Figure 31, plots of the true value, the Kalman estimate, and the adaptive filtered estimate of x_{1} are shown. It is seen that the difference in the estimates is minimal and hence model uncertainty does not significantly degrade the results. This seems important because even though the model is uncertain, the estimation scheme does nearly as well as in the case where the model is completely known.

3.5.2 Effects of Measurement Noise

It is important to see the effect of measurement noise on adaptive filtering and smoothing given a RAP input. As in Section 3.4.2, the two levels of measurement noise are chosen to be $R=10^{-3}$ and $R=10^{-5}$ where R is the variance parameter of noise. The experiment is conducted with

Figure 27. True and Filtered Estimate of State x_{1} for RAP Input With ' Q ' Uncertain

Figure 28. The a Posteriori Probability for the Four Candidate Models With 'Q' Uncertain

Figure 29. True and Smoothed Estimate of State x_{1} for RAP Input With 'Q' Uncertain

Figure 30. True, Filtered and Smoothed Estimate for RAP Input With 'Q' Uncertain

Figure 31. True, Adaptive Filtered and Kalman Filtered Estimate for RAP Input With 'Q' Uncertain
the Q of the plant noise having four possible values: $900,700,500$ and 100. The other parameters are fixed, and known with certainty.

Result 1. A single run for the two levels of measurement noise is made and adaptive filtering applied. In Figure 32 the effects of the larger measurement noise are seen. As the measurement noise is increased, a certain amount of degradation sets in and the estimate is worse than with the case of less measurement noise. It should be noted that if the noise level is raised excessively, the signal to noise ratio may be so poor that the operation of filtering is useless.

Result 2. Adaptive smoothing for the two levels of measurement noise is conducted and the results shown in Figure 33 . As seen earlier, the effect of the higher measurement noise level is to cause a deterioration in the estimate when compared with the small measurement noise having $R=10^{-5}$. However, for this level of measurement noise, estimation of the state x_{1} is still satisfactory, though the magnitude of the estimates has dropped due to smaller Kalman gains K as a result of the measurement noise increase.

3.6 Summary

A geophysical model has been simulated for the case of equal amplitude poisson inputs and RAP inputs. It has been seen that though the theory has been developed for Gaussian inputs, the estimation scheme worked well for the above inputs. Deconvolution was achieved for the case of model uncertainty and the estimation was not hampered due to the fact that the parameters of the model were unknown. Adaptive smoothing was very effective in improving the estimate of the state. System identification, however, was not very reliable though adequate estimation

Figure 32. True and Filtered Estimate for RAP Input With two Different Measurement Noise

Figure 33. True and Smoothed Estimate for RAP Input With two Different Measurement Noise
was always achieved. Even for higher levels of measurement noise, deconvolution seemed to work, although the signal to noise ratio had to be reasonable so as to make the filtering effective. It is also possible to obtain from the same algorithm described herein, the predictive operator x_{3}, or the basic wavelet shape so that its inverse operator can be found out and the impulse response obtained.

It may so happen that the correct model is not one of the candidate models because it is unknown. The next chapter discusses the effects this has on the estimation scheme proposed.

CHAPTER IV

EVALUATION

4.1 Introduction

The idea of adaptive filtering as described in the previous chapters uses the underlying assumption that the true model must be one of the candidate models. Ordinarily in practice, the parameters in the model are unknown and one has to rely on judgement in selecting the candidates. It must be expected that the parameter set chosen for the candidate models may not include the true one. It is interesting then, to observe the effects this will have on the system. The motivating questions for the following experiments are: (1) Will the estimation scheme identify the model closest to the true one? (2) If it does, will there be any degradation in the estimate?

4.2 Effects of Improper Modeling

The basic Bayless and Brigham model has been taken and two candidate models chosen with parameters 'a' as 60 . and 30 . The true value of 'a' in the model is known to be 50. Each is assigned an a priori probability of 0.5 and the same initial conditions are specified as in the previous experiments.

The candidate model equations can be written as

$$
\begin{align*}
& \theta_{1}: \underline{\dot{x}}=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(60^{2}+100^{2} \pi^{2}\right) \\
0, & 1 & -120
\end{array}\right] \underline{x}+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w \tag{4.1}\\
& \theta_{2}: \underline{\dot{x}}=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(30^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -60
\end{array}\right] \underline{x}+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] \tag{4.2}
\end{align*}
$$

The observation model is

$$
Z=\left[\begin{array}{lll}
0 & 0 & 1 \tag{4.3}
\end{array}\right] \underline{x}+v
$$

where v is a zero mean white noise with variance 10^{-5}.
Result 1. A single run is made with the above two candidate models assumed. Figure 34 shows the identification capability of the two models. It is seen that as more data are obtained the model with the unknown parameter closest to the true value approaches a probability of one. At the end of 2000 iterations the model with 'a' as 60 。has a probability of .83 while 'a' as 30 . has a probability of .17 .

Result 2. A plot of the true, filtered and smoothed estimates of the state x_{1} has been shown in Figure 35 for 200 iterations. As evidenced, smoothing gives a more accurate estimate and inspite of improper modeling, deconvolution is achieved. This is quite significant because even though the model may not have exact parameters, estimation can still succeed.

When adaptive filtering is applied and the correct model is not included as a candidate model, then the model that most closely

Figure 34. The a Posteriori Probabilities for the two Incorrect Models With EAP Input

Figure 35. True, Filtered and Smoothed Estimate of State x_{1} for the two Incorrect Models With EAP Input
represents the true model hopefully achieves the highest a posteriori probability. In effect, it is possible to narrow down on the unknown parameters from a number of possible values to those centered around the parameters of the model with the highest a posteriori probability. This is discussed in the next section.

4.3 Iterative Use

In conducting the last experiment, it has been seen that the candidate model with 'a' as 60. had a higher a posteriori probability than the candidate model with 'a' as 30.0 . Hence, it can be inferred that the correct calue of 'a' is nearer to a value of 60.0 . One can repeat the process with candidate models centered about 'a' as 60.0 .

In the following experiment, two values of 'a' are selected. These are 50. and 70., respectively.

The candidate model equations are

$$
\begin{align*}
& \theta_{1}: \underline{\dot{x}}=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(50^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -100
\end{array}\right] \underline{x}+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] \mathrm{w} \tag{4,4}\\
& \theta_{2}: \underline{\dot{x}}=\left[\begin{array}{ccc}
-1000 & 0 & 0 \\
-100 \pi & 0 & -\left(70^{2}+100^{2} \pi^{2}\right) \\
0 & 1 & -140
\end{array}\right] \underline{x}+\left[\begin{array}{c}
1000 \\
0 \\
0
\end{array}\right] w \tag{4.5}
\end{align*}
$$

with the same observation model and initial conditions as before.
Result 1. For a single run, the system identification capability
has been observed in Figure 36. As can be seen, the candidate model with ' a ' as 50 . reached a higher probability when the ob'servation set was curtailed and the experiment stopped. On running the above two models for a longer period, it was found that the a posteriori probability of the correct model dropped off to a very low value. However, on observing the estimation of the state and comparing with the true value, it was found that good estimation was still achieved. Hence one may conclude that the system identification cannot be relied upon though the deconvolution capability seems reliable.

It has been proved, that for the case of Gaussian inputs, the true model will eventually converge to an a posteriori probability of one given enough data (18). However, for the geophysical process being modeled, the inputs are a sequence of random poisson distributed impulses and convergence has not been proved for this case. One reason for the convergence not being obtained in this experiment may be attributed to a certain sequence of noise that was implemented to generate the observations. The fact that the inputs are non-Gaussian seems to be a possible reason.

To show the reliability of the filter, a Monte Carlo analysis should be conducted for different noise sequences. Then a statistical evaluation for these various noisy observations could be made. However, due to the inherent expense of Monte Carlo simulation, these experiments were not conducted.

4.4 Summary

It has been observed that even with some of the parameters in the model unknown, by a method of reduction and iteration, the parameter

Figure 36. The a Posteriori Probabilities for the two Models With EAP Input Having 'a' as 50, and 70.
values can be identified, though not reliably. Estimation of the desired state is achieved, and the algorithm seems a promising way to accomplish deconvolution.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In this work, a new technique for solving the deconvolution problem for seismic processes in the time domain has been postulated. The technique proposed is a modified version of Kalman filter theory which requires a state space formulation, wherein a model is built to represent the seismic reflection process. While acknowledging the fact that this model is only a simplified version of the rather complex seismic problem, nevertheless, it gives an indication as to whether the technique being pursued is feasible.

Some of the model parameters have been assumed unknown as often happens in practical seismic problems. It has been shown that the adaptive filtering scheme proposed in this work accomplishes accurate deconvolution in spite of model uncertainty.

This data processing problem is basically a post experimental analysis type problem and therefore, on line processing is not required. A smoothing operation was derived to improve results. The smoothing and filtering techniques presented here are derived on the basis of inputs that are Gaussian white noise. Since the inputs to the geophysical model are more accurately modeled as poisson in nature, digital simulations were conducted to check whether the algorithms proposed are adequate for the task of deconvolution.

The algorithms that have been presented have an advantage over those presently used in that they are valid for both time invariant systems and time varying systems. A number of experiments have been conducted to demonstrate the performance of the methods presented here under a variety of conditions for deconvolution. These include a variation in measurement noise intensity, uncertainty in the plant noise and the model parameters, comparison of adaptive and non-adaptive filtering and smoothing and the effects of incorrect modeling. In all cases the deconvolution capabilities of the algorithm seemed adequate under reasonable signal to noise levels. The algorithm did not learn the true values of the unknown parameters with any degree of reliability, as was previously hoped for. This may be attributed to the use of poisson inputs.

5.2 Suggestions for Further Research

In this research, emphasis has been on demonstrating the applicability of the Kalman filter theory under various circumstances and uncertainties in the model, rather than on the theoretical aspects of modeling. Research in obtaining a suitable dynamic structure to represent the seismic reflection process should be rewarding. The choice of the proper number of states to adequately model a given process is not an easy one. While there is a definite need to assume a more random wavelet rather than a fixed configuration taken in this work, the order of the system dynamics should not be increased to such an extent as to make it computationally inefficient.

The method of obtaining a suitable model to represent the seismic problem seems to involve taking a closer look at the physics of the seismic reflection process. This involves the propagation of waves in an
elastic media and the reflection and transmission coefficients that arise as well as the angle of incidence at the point of impact with the seismic layer.

The method of deriving an appropriate model by taking a state space model consistent with the covariance information is also possible, but the state of the art is not developed sufficiently enough for the time variant case.

When a suitable state space model has been developed, which involves constant parameters (time invariant systems), then there are recursive algorithms that avoid solving the Riccati equations, thereby obtaining significant computational advantages. These procedures involve the socalled Chandrasekhar type algorithms (34).

In the work done, only synthetic data has been used. A comparison with other methods of solving the deconvolution problem such as minimum phase filtering, homomorphic filtering and maximum entropy methods is suggested using the synthetic data.

Finally real field data could be used and the versatility of the filtering and smoothing operations developed here verified and compared with the existing techniques mentioned above.

5.3 Conclusions

The problem of deconvolution using the Kalman filter theory with uncertain modeling knowledge has been proposed and solved.

It has been seen that even for cases of model uncertainty, that is, even when the parameters in the model are not clearly defined that the filtering gives good estimates. However the effect of smoothing, proposed as a process to follow the filtering operation has been shown to
refine the estimates to a great extent.
It is significant to point out that the results were not degraded excessively due to model uncertainty in both adaptive filtering and adaptive smoothing operations.

System identification seems to be unreliable and there is no way of determining exactly when to curtail the use of data in filtering. However, in spite of this, the estimates obtained did verify that the deconvolution problem can be solved using the suggested method.

Also, as a matter of interest, the wavelet input could also be estimated from the filtering and smoothing algorithms. This wavelet is called the predictive operator in minimum phase filtering from which the inverse operator is designed and implemented.

Thus the objectives mentioned in the beginning of this work have been met. Further work in the deconvolution problem using this approach should be rewarding.
(1) Wiggins, R. A., and E. A. Robinson. "Recursive Solution to the Multichannel Filtering Problem." Journal of Geophysical Research, Vol. 70, No. 8 (1965), 1885-1891.
(2) Wiener, N. Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York: John Wiley and Sons, Inc., 1970.
(3) Kalman, R. E., and R. S. Bucy. "New Results in Linear Filtering and Prediction Theory." ASME Transactions: Journal of Basic Engg., Vo1. 83D (1961), 95-108.
(4) Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." ASME Transactions: Journal of Basic Engg., Vol, 82D (1960), $35-45$.
(5) Robinson, E. A. "Predictive Decomposition of Seismic Traces." Geophysics, Vol. 22 (1957), 767-778.
(6) Robinson, E. A. "Mathematical Development of Discrete Filters for the Detection of Nuclear Explosions," Journal of Geophysical Research, Vol. 68, No. 19 (1963), 5559-5567.
(7) Rice, R. B. "Inverse Convolution Filters." Geophysics, Vol. 27 (1962), 4-12.
(8) Kunetz, G. "Essai d' analyse de traces seimiques." Geophysical Prospecting, Vol. 9 (1962), 317-341.
(9) Robinson, E.A., and S. Treitel. "Principles of Digital Wiener Filtering." Geophysical Prospecting, Vol. 15 (1967), 311-333.
(10) Clarke, G. K. C. "Time Varying Deconvolution Filters." Geophysics, Vol. 33 (1968), 936-944.
(11) Peacock, K. L., and S. Treitel. "Predictive Deconvolution:Theory and Practice." Geophysics, Vol. 34 (1969), 155-169.
(12) Treitel, S. "The Complex Weiner Filter." Geophysics, Vol. 39 (1974), 169-173.
(13) Ulrych, T. J. "Application of Homomorphic Filtering to Seismology." Geophysics, Vol. 36 (1971), 650-660.
（14）Bayless，J．W．，and E．D．Brigham．＂Application of Kalman Filtering to Continuous Signal Restoration．＂Geophysics，Vol． 35 （1970）， 2－23．
（15）Norman，N．D．＂A Kalman Filter Approach to the Deconvolution of Seismic Signals。＂Geophysics，Vol． 39 （1974），1－13．
（16）Ricker，N．＂The Form and Nature of Seismic Waves and the Structure of Seismograms．＂Geophysics，Vol． 5 （1940），348－366．
（17）Hilborn，C．G．，and Lainiotis，D．G．＂Optimal Estimation in Presence of Unknown Parameters．＂IEEE Transactions on Systems Science and Cybernetics，Vol．CCS－5（1969），109－115．
（18）Lee，A．Y．，and C．S．Sims．＂Adaptive Estimation and Stochastic Control for Uncertain Models．＂International Journal of Control，Vol． 19 （1974），625－640．
（19）Meditch，J．S．Stochastic Optimal Linear Estimation and Control． New York：McGraw Hill Inc．， 1969.
（20）Bryson，A．E．，Jr．，and M．Frazier．＂Smoothing for Linear and Non－ Linear Dynamic Systems．＂Proc．on Optimal System Synthesis Conf．，Sept．11－13，1962，Wright Patterson and APB，Ohio．
（21）Rauch，H．E．＂Solution to the Linear Smoothing Problem。＂IEEE Transactions on Automatic Control，Vol．AC－8（1963），371－372．
（22）Meditch，J．S．＂On Optimal Linear Smoothing Theory．＂Information and Control，Vol． 10 （1961），598－615．
（23）Fraser，D．C．＂On the Application of Optimal Linear Smoothing Tech－ niques to Linear and Non Linear Dynamic Systems．＂（Unpub． Ph．D．thesis，M．I．T．，January，1967）．
（24）Mehra，R．K．＂On Optimal and Suboptimal Linear Smoothing．＂Proc． National Electronics Conf．，（1968），119－124．
（25）Mehra，R．K．，and A．E．Bryson，Jr．＂Linear Smoothing Using Meas－ urements Containing Noise With an Application to Inertial Navigation．＂IEEE Transactions on Automatic Control，Vol． AC－13（1968），496－503．
（26）Bryson，A．E．，Jro，and L．J．Henrikson。＂Estimation Using Sampled Data Containing Sequentially Correlated Noise．＂Tech．Report， Harvard Univ．Div．of Applied Engg．and Physics，Cambridge， Mass．，（1967）．
（27）Kailath，T．，and P．Frost．＂An Innovations Approach to Least Squares Estimation－Part 11 Linear Smoothing in Additive Noise．＂ IEEE Transactions on Automatic Control，Vol．AC－13（1968）， 655－660．
(28) Hamming, R. W. Numerical Methods for Scientists and Engineers. New York: McGraw Hill Inc., 1962 .
(29) Papoulis, A. Probability, Random Variables and Stochastic Processes. New York: McGraw Hill Inc., 1965.
(30) Beutler, L. J., and O.A. Z. Leneman. "The Spectral Analysis of Impu1se Processes." Information and Control, Vol. 12 (1968), 236-258.
(31) Chambers, R. P. "Random Number Generation." IEEE Spectrum, Vol. 4 (1967).
(32) Brown, R. J., and J. R. Rowland, "Autocorrelation Significance in Digital Pseudo Random Number Generation." Internal Tech. Report, School of Electrical Engg., Georgia Institute of Technology, Atlanta, Georgia, (1970), 1-20.
(33) Box, G. E. P., and M. E. Muller. "A Note on the Generation of Normal Deviates." Annals of Mathematical Statistics, Vol. 28 (1958), 610-611.
(34) Kailath, T. "Some New Algorithms for Recursive Estimation in Constant Linear Systems." IEEE Transaction on Information Theory, Vol. IT-19 (1973), $\overline{750-760 .}$

APPENDIX

COMPUTER PROGRAM FOR SIMULATING THE MODIFIED BAYLESS AND BRIGHAM MODEL USING ADAPTIVE KALMAN FILTERS

```
%
C*
*###########****************
C*
C*
C*
C* TAKEN EVERY O.'j MSECS.
C* COVIRIANCE OF THE PLANT =500.
C* COVARIANCE OF THE MEASUREMENT NOISE R=10**-5
C% \ IS TRLE STATE.
C* XHAT IS FILTERED STATE ESTIMATE.
CK XSAT IS SMCOTHEC STATE.ESTIMATE.
C* Var IS the ccvariance cf the error.
C* FOR THE CASE IJF RANDOM AMPLITUDE POISSON INPUT, CHANGE
C* PULSEl=1O**4*YE WHERE YG IS A RANDOM VARIABLE HAVING THE FIRST
C* TWU MOMENTS AS O ANU 1/3. THE COVARIANCE OF THE PLANT NOISE IS
C* CHANGED TT Q/3.
C: ThE SUBRCLTINES uSEC AFE RANDU, RMGN, MOCEL, RKUT, AOAPT, CHANGE
c% SMJUTH.
C%
*
    DIMFNSIGNY TIME(2OC),TIME 1(200),TIMM(200), XHAT(10,1),XHATI(10,1),
EXHAT 2(10,1),XHAT3(10,1), XHAT4(10,1), 20BS(1000),VAR1(10,10),
CVAR2(10,10),VAR3(10,10),VAR4(10,10),YF(1000),VAR(10,1), X(10,10),
CXO(10,101,AKR(10),BNNOV(10),APROB(10),ALR(10,10),ALKR(10),
CYHAT1(10,1),YHAT 2(10,1),YHAT3(10,1),YHAT4(10,1),COVAR1(10,10),
CCLVAR2(10,1C),CEVAR3(10,10), COVAR4(10,10),2(1000),XSAT(10,1),
CX1DSAT(10,1),X1(10C0),X2(1000), X2(1.000), XX1(1000), XX2(1000),
CXX3(1000), XXX)(1000),XXX2(1000), XXX3(1000), X5AT1(10,1),
CAA1(1000),NAこ(1000),AA3(1C00),BB1(1000), BB2(1000), BB3(1000),
CCC1(1000),CC(11000),CC3(1000),001(1000),002(1000),003(1000),
CTT1(1000),TT2(1001),TT3(1000),TT4(1000),TT5(1000),TT611000),
CNU1(10GO),UU2(1COC),UU3(1000),UL4(1000),UL5(1000),UU6(1000).
CVV1(luUu), VV2(lu0ul,VV3(100u),VV4(1000),VV5(1000),VV6(1000),
CwWl(1000),wh2(100C),Ww3(1000),ww4(1000),Wh5(1000), WW6(1000),
CXUSAT1(1U,1), XSAT 2(10,1), XDSAT 2(10,1), XSAT 3(10,1), XDSAT3(10,1),
EXSAT4(1U,1),XDSAT4(1),1)
    COMMDN/VARIES/VTRLE\3,3)
    CUッMON/PARAM/IV,NX,NY,RRR, ANNQV,E
    CUMNGN/NEL/H(!,3),HT(3,1),R,Z2,AJ(10,10)
    CUMMON/CUEFF/N,ALFHA
    CONNCN/KKKKK/IQES
    CCNMON/PPPP/PULSE1
    CGMMON/KALM/NN/AKGAIN(10,1)
    CCNHEN/SNFFTR/SNGAIN(3,3),N,AMGAIN(3,3)
    r=0.0OC!
    YMEAN=O,U
    HR=2.0/10%##5
    SIG2=SORT(AK)
    H=RR
    H.Y=3
    NX=3
    NV=3
    NV1=NV+1
    AXI=NX+1
    NYl=NY+1
    IN=0
    103S =5
    ALPHA=50.C
```

```
    TINE(1)=0.0
    N=1
    MX=8143
1 CALL RANCU (NX,MY,YFL)
    NX=NY
    G=500.
    6id=1.0/0
    \angleOBS(M)=-QG*ALCG(I.-YFL)
    TIME (M+1)=ZCBS(M)+TIME(M)
    TOIFF=TINE(N+I)-TIME(M)
    IF \TDIFF.1E.J.0001\ GC TO 1
    IF (TIME(M).GE.O.11 GO TO 2
    TIMEI(M)=TINE(M)
    M=N+1
    GO TO 1
2 cCNTINUE
C
C CHANGE THE RANOEM FUNCTIDN TO A POISSQN DISTRIBUTED FUNCTION.
    CO 3 I=1,4
    x(I,1)=0.0
    DO 5 I =1,4
    APRCB(1)=0.25
    00 20 1=1,4
    XHAT|I,1)=C.0
    XHAT ?(I,I)=0.0
    XHAT3(I,1)=C.C
    XHAT4(I, 1:=C.0
    h(I,1)=0.0
    H(1,2)=0.0
    H(1,3)=1.0
    DO 14 I=1,3
14 HT(I,I)=H(1,I)
    CO) 15 I=1,3
    DO 15 J=1,3
    VARI(I,J)=C.C
    VAR2(I,J)=0.0
    VAR3(1,J)=C.C
    VAR4(I,J)=C.0
    VAr!(1, 1)=1000.
    VAR2(1,1)=1CCJ.
    VAR3(1,1)=1CCC.
    VAR4(1,1)=1000.
    kK=200
    IX=31571
    DUN=0.1
    MM=?
    CT 20 I=1,3
    OC 20 J=1,3
    AJ(I,J)=0.0
    AJ (I,I)=1.0
    CALL RMGN (YMEAA,SIGZ,IX,OUM,KK,YF)
    DO 70 N=1,100U
    TINM(MM)=ABG(TIMEI(MM)-N#E)
    IF (TINN(NN).LE.0.0.JO5) GO TO 21
    GO TO 22
2! PULSEL=10##4
    MM=MM+1
    GO TO 25
    PULSEI=-500.
CULSE SHOULD APPEAR ENLY AT THE TIME OF ITERATICN, CORRESPONDING TO
c TO THE INTEGRATION GOING ON.THIS TImE HAS ALREADY bEEN CALCULATED
C TO THE INTEGRATION GOING
ze coivtiNuE
            G=500.
            ALPHA=50.0
            00 35 J=1.4
```

```
        CALL MEDEL (X,XD)
        CALL RK(T (J,E,NX,X,X0,X(4,1,))
        IF (IOBS.EQ.5) GO TO 40
        GC TC 45
40 IN=IN+1.
    Z(IN)=X(2,1)+YF(IN)
        ZZ=Z(IN)
        IOBS=1
        G% T0 5C
        ICBS=ICBS+I
sO CONTINLE
        ALPHA=150.0
        (ALL ACAFT (XHAT1,VAR1,YHAT1,CCVAR1)
        AKR(1)=RRR
        ENnOV(1)=anacV
        TT1(N)=VTRUE(l,1)
        TT2(N)=vTR(JE:(!,2)
        TT3(N)=VTRUE (1,3)
        TT4(N)=VTRUE(2,2)
        TTS(N)=VTRUE(2,3)
        TTG(N)=VTRUE (3,3)
c
C ALPHA IS GIVEN a VALLE OF 150. AND THE INVERSE COVARIANCE OF THE
C fREC{
?
        ALPHA=10C.O
        CALL ADAPT (XHATZ,VAR2,YHAT2,COVAR2)
        ARR(2)=RRR
        BNNOV(2)=ANNOV
        UUl(N)=VTRUE(1,I)
        UUZ(N)=VTRUE(1,2)
        UU3(N)=VTRUE(1,3)
        LU4(N)=VTRUE (?,2)
        UUS(N)=VTRUE (2,3)
        UUG(N)=VTKUE (3,3)
C
C ALPHA IS GIVER A VALUE OF 100. AND THE INVERSE COVARIANCE OF THE
C ERROR IS STOREC IN THE UU ARRAYS.
C
    ALPHA =50.0
        CALL ADAFT (XHAT 3,VAR3,YHAT3,COVAR 3)
        ARR(3)=RFR.
        BNNOV (2)=ANNOV
        VV1(N)=VTRUE(1,1)
        VV2(N)=VTRUF(l,2)
        V G(N)=VTRUE(1,3)
        VV4(A)=VTRUE (2,2)
        VV5(N)=VTRUE(2,3)
        VVG(N)=VTRUE(3.3)
c
C ALPHA IS GIVEN A VALLE OF 50. AND THE INVERSE COVARIANCE OF THE
C ERROR IS STOREC IN THE VV ARRAYS.
C
    ALPHA=10.0
    CALL ADAPT (XHAT4,VAR4,YHAT4,COVAR4)
    ARR(4)=RRR
    BNNOV(4)=ANNCV
    WW1(N)=VTRUE(1,1)
        WW?(N)=VTRLE (1,2)
        Ww3(N)=VTRUE (1,3)
        Wn4(N)=VTRUE(2,2)
        Wn5(N)=VTRUE(2,3)
        VWG(N)=VTRUE(2, ב)
C
C alpha is given a valle cF 10. ano the inverse covariance df the
C ERRUR IS STOREC IN TFE WW ARRAYS.
```

```
c
    0O 210 I =1,4
    XHAT1(I, l)= YHAT1(1,1)
    XHAT2(I,I)=YFAT2(I,1)
    XHAT3(I,1)=YHAT3(I,1)
        XHAT4(I,1)=YFAT4(1,1)
    CCNTINLE
21.0
C
c tre estimates of the four models are placed in xhat arrays to be
C USEO IN THF. NEXT UPDATE.
    00 250 I =1,3
    [u) 250 J=1,3
    VARI([,J)=C[VARI(I,J)
    VAR2(I,J)=C[VAR2([,J)
    VAR3(I,J)=C(VAR3(I,J)
    VAR4(I,J) =C(VAR4(I,J)
250 CONTINUE
C Tre covariance cf the error of the four models are placed in var
C ARRAYS TO BE USED IA THE NEXT UPCATE.
    IF(IOBS.NE.1) GO TO 355
C
C EMly lipdate thE frgeaEIlity WhEN tre cbSERVATION IS takEN.
C
    CC 320 I=1,4
    DO 320 J=1,4
    IF (I.NE.J) GO TU 2!0
    GC TC 320
210. ALR(J,I)=(\DeltaRन(J)/ARR(I))**O.5*EXP(-0.5*日NNOV(J)**2*ARR(J)+0.5*
    (BNNOV(I)**2*ARR(I)|
320 CCNTINUE
C
c have obtainec tre likelihuod ratio.
    D0 330 I=1,4
    ALKR(II)=C.O
    DC 330 J=1,4
    IF (I.NE.J) GC TG 335
    CO TD 33C
        ALKR(I)=ALKR(I)+ALK(J,I)*(APROB(J)/APROB(I))
        continue
        CO 350 I=1,4
        APRCB(I)=!.0/(1.0+ALKR(!))
C
C have updatec tre, posteriori probability of the candidate models.
C
#5s COVTINLF
    c) 360 I=1,3
        XHAT(I,!)=XHATI(I,1)*APRCB(1)+XHAT 2(I,1)*APROB(2)+XHAT3(I, 1)*
        CAP2OB(3)+XHNT4(I,!)*APROB(4)
    CJNT INUE
        x!(N)=x(1,1)
        x\geq(N)=x(2,1)
        x 3(N)=x(3,1)
            XXI(N)=XHAT(1,1)
            XX?(N)=XHAT( (2,1)
            XX3(N)=XF-AT (3,1)
c
c placed the estimates in arrays for uSe in pletting and storage.
C
    AA1(N)=XHAT1(1,!)
    ADZ(N)=XHAT 1(Z,1)
    AA3(A)=XHAT1(3,1)
    YB1(N)=XHAT2(1,1)
    BB2(N)=X+AT2(2,1)
    6B3(N)=xHAT2 (3,1)
    CC1(N)=XHAT =(1,1)
```

```
    CC2(N)=x+AT 3(2,1)
    CC3(N)=XHAT3(3,1)
    001(N)=XHAT4(1,1)
    OO2(N)=XHAT4(2,1)
    DO3(N)=XHAT4(3,1)
7 0
    cont Inve
    XS\DeltaT (4,1)=0.1.
    EE=-0.0001
c
C HAVE TC INTEGRATE EACKWARDS FOR THE SMOORTHING PROCESS.
    XSAT1(1,1)=AA1(10CC)
    XSAT1(2,1)=AE2(1000)
    XSAT1(3,1)=A43(10CO)
    XSAT2(1, 1)= BE1(1000)
    XSAT2 (2,1)=EE2(1000)
    XSAT2(2,1)=BR3(10CO)
    XSAT 3(1,1)=CC1(1000)
    XSAT3(2,1)=CC2(1000)
    XSAT3(3,1)=CC3(10CC)
    XSAT4(1,1)=DC1(10CO)
    XSAT4(2,1)=DC2(10CO)
    XSAT4(3,1)=003(10(0)
C The terminal crncitiln is satisfied.
C
    00 1070 N=1,599
    N=1000-M
        Q=500.
    ALPHA=15C.
    CALL CFANGE (UU1,UU2,UU3,UU4,UU5,UUG)
    UO 1.005 I=1,3
    DO 1005 1=1, 2
lUOS SMGAIN(I,J)=ANGAIN(I,J)
    DO 1010 J=1,4
    CALL SMOOTH (XSAT1,XOSAT1,AA1,AA2,AA3)
1Ul0 CALL RKUT (J,EE,NX,XSATI, XDSAT1,XSAT(4,1))
C
C FOR ALPHA=1EC, THE SMOOTHED ESTIMATE IS OBTAINED.
    XSAT(4,1)=XSAT(4,1)-EE
    ALPHA=10C.0
    CALL Change (TT1,TT2,TT3,TT4,TT5,TTG)
    00 101.5 I=1,3
    [0 1015 J=1,3
        SMGAIN(I,J)=AMGAIN(I,J)
    OO 102C J=1,4
        CALL SMCCTY (XSAT2,XCSAT2,BB1,BB2,BB3)
    1,30 CALL RKLT (J,EE,AX,XSAT2,XOSAT2,XSAT (4,1))
C
C fGf ALpHA=100, the smLHTHED ESTIMATE IS OBTAINEO.
C
    XSAT(4,l)=XSAT(4,1)-EE
    ALPHA=5U.0
    CALL CHAAGF (VVI,,VV2,VV3,VV4,VV5,VVGI
    D] 1025 I= 1,3
    DC 1025 J=1,3
025 SMGAIN(I,J)=ANGAIN(I,J)
    C0 1030 J=1,4
    CALL SMCCTH (XSAT 3,XCSAT3,CC1,CC2,CC3)
13,0 CALL RKLT {J,EE,NX,XSAT3,XDSAT3,XSAT(4,1))
c
C FCR ALPHA=50,THE SMUCTHED ESTIMATE IS OBTAINED.
    XSAT(4,1)=XSAT(4,1)-EE
    OLPHA=10.0
    CALL CHANGE (WH1,WW2,WW3,WW4,nW5,WWG)
```

```
        C0) 1035 [=1,3
        C0 1035 J=1,3
10j5 gMigAIN(I,N)=ANGAIN(I,N)
    CO 1040 j=1,4
        CALL SMCCTH (XSAT4,XOSAT4,OD1,DC2,DO3)
1:44) CALL RKUT (J,EE,NX,XSAT4,XOSAT4,XSAT(4,1))
C
C FER ALPHA=1O,THE SNCCTHEC ESTIMATE IS CBTAINED.
            L0 1045 I=1,3
            XSAT(I,I)=APRGB(1)*XSAT1(1,1)+APROB(2)#XSAT2(I,1)t
            (APROB(3)#XSAT3(1,1)+APROB(4)*XSAT4(1,1)
1.1/5
            CONTINUS
T
HGUNu the smoqthfo estimates by the welghted sum of the candicate
MCDCL ESTINATES.
        XXX:(N)=XSAT(1,1)
        xXx2(N)=XSAT(2,1)
        XXX2(N)=XS4T(3,1)
C
C thF SAOOTHEC VALJES ARE STORED IN ARRAYS FOR fuRTHER lSE.
197J CENTINLE
        Xx\times1(1000)=x\times1(1000)
C APPFOPRIATE hRITE STATEMENTS MUST EE PUT WHEREVER NECESSARY.
c
        STOP
        Fivg
        SUOROUTINE ACOEL (X,XU) MDELOOIO
C% M
C%
C%
C%
C%
C%
C%
C%
    DIMENSICN x(10,10),XD(10,10)
    COMMON/COEFF/R,ALPHA
    CONM[N/fFFP/FULSE]
    x)(1,1)=-10CL.*x(1,1)+1000.*PULSE1
    x0(2,1)=314.7*X(1,1)-10##5*x(3,1)
    XO(3,1)=x(2,1)-2.*\DeltaLPHA*X(3,1)
    kETURN
    ENC
MDELCCCE
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDEL0020
MDELOO3O
MDE L.0040
MDEL0050
MDEL0060
MDE L0070
TM
MDE L0090
```


SUBROUTINE VARIN $(X, X D)$

VARIOO10
VARICCCC

C THIS PGOGRAM IS TO SULVE THE VARIANCE EQUATIUN OF THE PREDICTQR
$\begin{array}{ll}C * & \text { THIS PKOGRAM IS TO SLLVE THE } \\ \text { C: PART IN ACAPTIVE FILTERING. }\end{array}$
VARICCCC
VARICCCC
VARICCCC
ALTHA ANE G ARE VARIABLE.
VARICCCC
[* THE PROGRSM IS FOR HUNDRED FIRST ORDER OIFFERENTIAL EQUATIONS.
VARICCCC
VARICCCC
C I IF NCRE AFF HEGUIREC THEN REDIMENSION X ANE XD.

VARICCCC
C

VARICCCC
VARI 0020
VARI0030
VARI 0040
VARI 0050
VARI 10060
VARI 0070
VARIO080
VARI0090
VARI0090
VARI 0100
VARIO110

C
c

```
```

```
        PETURN
```

```
        PETURN
    4&0% 55 I= 1.N
    4&0% 55 I= 1.N
    IF (I - K) =0, 55, 50
    IF (I - K) =0, 55, 50
    50 IK = NK + I
    50 IK = NK + I
        A(IK) =-A(IK)/(BIGA)
        A(IK) =-A(IK)/(BIGA)
    55 CONTINUE
    55 CONTINUE
    RECUCE MATRIX
    RECUCE MATRIX
        DG 65I = 1,N
        DG 65I = 1,N
        IK = NK + I
        IK = NK + I
        HOLD = A(IK)
        HOLD = A(IK)
        IJ=I-N
        IJ=I-N
        CO 65 J= 1, A
        CO 65 J= 1, A
        IJ=IJ +N
        IJ=IJ +N
        IFII - K) 6O, 6E, 6C
        IFII - K) 6O, 6E, 6C
    00 IF(J-K) 62, 65, &2
    00 IF(J-K) 62, 65, &2
    62 kJ = IJ -I + K
    62 kJ = IJ -I + K
        A(TJ) = HOLO* A(KJ) + A(IJ)
        A(TJ) = HOLO* A(KJ) + A(IJ)
    65 CONTINUE
    65 CONTINUE
    DIVIOE RCW PY PIVCT
    DIVIOE RCW PY PIVCT
    KJ = K - N
    KJ = K - N
        0075 J=1, n
        0075 J=1, n
        KJ=KJ +N
        KJ=KJ +N
        IF(J-K)7L,75,7C
        IF(J-K)7L,75,7C
    7CA(KJ)=A(KJ)/EIGA
    7CA(KJ)=A(KJ)/EIGA
    7E CONTINLE
    7E CONTINLE
    PROCUCT DF yIVOTS
    PROCUCT DF yIVOTS
    UET=DET*BIGG
    UET=DET*BIGG
    GEPLACE PIVET BY RECIPRCCAL
    GEPLACE PIVET BY RECIPRCCAL
        A(KK) = 1./410A
        A(KK) = 1./410A
    8C CUNTINLE
    8C CUNTINLE
    FINAL ROW ANI COLLMN INTERCHANGE
    FINAL ROW ANI COLLMN INTERCHANGE
    k=N
    k=N
    100 k=k - ?
    100 k=k - ?
    IF(K) 150, 1EC, 1CE.
    IF(K) 150, 1EC, 1CE.
    105I = L(K)
    105I = L(K)
    IF II - K , 12?, 120, 108
    IF II - K , 12?, 120, 108
    108 JQ = N*(K - 1)
    108 JQ = N*(K - 1)
    JR=N*(I-1)
    JR=N*(I-1)
    DO 110J=1,N
    DO 110J=1,N
    JK=JQ +J
    JK=JQ +J
    HOLD = A(JK)
    HOLD = A(JK)
    JI= JR +J
    JI= JR +J
    A(JK) = - A(JI)
    A(JK) = - A(JI)
IIC A(JI)= RELC
IIC A(JI)= RELC
120 J=L(N+K)
120 J=L(N+K)
    IF(J - K) 1C0, 10C, 125
    IF(J - K) 1C0, 10C, 125
125 KI = K-N
125 KI = K-N
    01 130 I = 1,N
    01 130 I = 1,N
    KI=KI +N
    KI=KI +N
    HOLD=A(KI)
    HOLD=A(KI)
    JI=KI - K +J
    JI=KI - K +J
    \Delta(KI) = - A(JI)
    \Delta(KI) = - A(JI)
130 A(JI) = HCLC
130 A(JI) = HCLC
    gu TO 1GO
    gu TO 1GO
150 KETURN
150 KETURN
    FNO
```

 FNO
    ```


INV 0450
    INV 0460
    INV 0470
INV 0480
INV 0490
INV 0500
INV 0500
INV CCCC
INV 0510
INV 0520
INV 0530
INV 0540
INV 0550
INV 0560
INV 0560
INV 0570
INV 0580
INV 0590
INV 0600
INV 0600
INV 0610
INV 0610
INV CCCC
INV 0620
INV 0630
INV 0630
INV 0640
INV 0640
INV 0650
INV 0660
INV 0670
INV CCCC
INV 0680
NV 0680
\(\begin{array}{ll}\text { INV CCCC } \\ \text { INV } & 0690\end{array}\)
INV
INV
0690
INV
INV 0700
INV CCCC
INV 0710
INV 0710
inv 0720
INV 0730
\(\begin{array}{ll}\text { INV } & 0740 \\ \text { INV } & 0750\end{array}\)
INV 0750
INV 0760
INV 0770
INV 0780
INV 0790
INV 0800
INV 0810
INV 0820
\(\begin{array}{ll}\text { INV } & 0820 \\ \text { INV } & 0830\end{array}\)
INV 0830
INV 0840
\(\begin{array}{ll}\text { INV } & 0840 \\ \text { I NV } & 0850\end{array}\)
INV 0860
INV 0870
\(\begin{array}{ll}\text { INV } & 0880 \\ \text { INV } & 0890\end{array}\)
INV 0890
INV 0900
INV 0900
INV 0910
INV 0920
INV 0930
INV 0940
INV 0950
\begin{tabular}{|c|c|c|}
\hline & SURROUTINE ADAPT (Xhat, VAR,yHAT, COVAR) & ADAP0010 \\
\hline C & & ADAPCCCC \\
\hline C & & ADAPCCCC \\
\hline C. \% &  & ADAPCCCC \\
\hline C* & & ACAPCCCC \\
\hline C* & this subfigut in: solves the cofrector part of adaptive filtering. & ADAPCCCC \\
\hline C* & It finds cut the estimate and variance of a system, given the & ADAPCCCC \\
\hline C* & DuSERVATIUN, H MATRIX, ITS TRANSPOSE, THE COVARIANCE DF THE & \(\triangle C A P C C C C\) \\
\hline c & CbSERVATICN vicise r, the coval iance of the plant noise g.it updatesa & SADAPCCCC \\
\hline C* & THE ESTINATE EVERY IOBS VALUES, WHICH IA THIS PROGRAM IS FIVE. \(\because\) & ADAPCCCC \\
\hline C* & It IS USEC FOR A SYSTEM OF QROER TEN. IF MCRE ARE REQUIRED & ACAPCCCC \\
\hline C\% & Then redinensicn the program. & ADAPCCCC \\
\hline C*: & XHAT(4,1) IS THE TINE. & ADAPCCCC \\
\hline C* & VAE(7,1) IS TrE TIME. & ADAPCCCC \\
\hline C* & Vari is the initial variance. & ADA PCCCC \\
\hline \(6 *\) & Covar is the lodated variance. & ADAPCCCC \\
\hline C\% & xrat is tre llo estimate. & ADA PCCCC \\
\hline C* & YHAT IS ThE UFCATEC ESTJMATED. & ADAPCCCC \\
\hline C* & \(\varepsilon\) IS the Increqent for. The integration & ACAPCCCC \\
\hline C\% & KFP, ANNLV ARE RETAINED FOR USE IN THE MAIN PROGRAM. & ADAPCCCC \\
\hline C* & THE SLUPRROGRAMS LSEC ARE PRED, RKUT, VARIN, RK4, INV. & ADAPCCCC \\
\hline C* & & ADAPCCCC \\
\hline (\% &  & ADAPCCCC \\
\hline c & & ADAPCCCC \\
\hline & OIMENSION X (1, 10 10, XDHAT(10,10), VAR(10,10), VARD(10,10), CVAR(10,1), & - ADAPOO20 \\
\hline & CCORR(10, 11, XKGAIN (10, 1), AKG(10, 10), \(\operatorname{ADENT}(10,10)\), COVAR (10,10), & ADA P0030 \\
\hline & CXHAT (10,1), YFAT(1C,1), XD (10, 10), BKGAIN(1, 10), CKGAIA(1, 10), & ADAP 0040 \\
\hline & CCKGAIN(10,1C), BDENT (10,1.0), ENTER(10,10), EENTE (1.0,10), NA (2) , L (6) & ADAP0050 \\
\hline & C CNMCN/VARIES/VTRUE (3,3) & ADAP0060 \\
\hline & CDMMON/PARAN/NV,NX,NY,RRR, ANNCV,E & ADAP0070 \\
\hline & CJMMON/CDEFF/R, ALPHA & ADAP0080 \\
\hline & CLMMON/KKKKK/ICBS & ADAP0090 \\
\hline & CGMMON/KALMAA/AKGAIN(10,1) & ADAP0095 \\
\hline & CLNMCN/MEL/F(1,3),HT(3,1),R,ZZ,AJ (10,10) & ADAPO100 \\
\hline & \(\mathrm{NA}(1)=3\) & ADAP 0110 \\
\hline & \(N A(2)=3\) & ADAP0120 \\
\hline & Cul \(46 \mathrm{~J}=1,4\) & ADAP0130 \\
\hline & CALL PRED (XHAT,XCHAT) & ADAP 0140 \\
\hline 40 & CALL RKUT (J,E,NY,XHAT, XDHAT, XHAT(4,1)) & ADAPO150 \\
\hline c & SCLVED ThF PRECICTUR EGUATONS. & ADA PCCCC \\
\hline C & xhat (4,1) IS the tine & ADAPCCCC \\
\hline & \(\checkmark \operatorname{AR}(7,1)=\mathrm{X}+\operatorname{Ar}(4,1)-\) E & ADAPO 160 \\
\hline & に \(47 \mathrm{~J}=1,4\) & ADAP0170 \\
\hline & CALL VARIN (VAR,VARU) & ADAPO180 \\
\hline 47 & こALL PK 4 (J, E,NV,VAR,VARD,VAR(7,11) & ADAPO19 \\
\hline C & SCLVE? ThE VARIANCE EGUATIDNS. & ADAPCCCC \\
\hline c & VAR(7,1) IS THE TIME. & ADAPCCCC \\
\hline & \(\mathrm{OC} 49 \quad \mathrm{I}=1,3\) & ADAP0200 \\
\hline & Lu \(49 \mathrm{~J}=1,3\) & ADAP0210 \\
\hline & \(\operatorname{VTqUE}(I, J)=\operatorname{Var}(I, J)\) & ADAPO220 \\
\hline & Vtrue (J, I) = Vtrue (l, J) & ADAP0230 \\
\hline \(4 \%\) & VAP(I, J) = VAK (J, I ) & ADAPO240 \\
\hline & CALL INV (VTRUE,NA, DET,L) & ADAPO250 \\
\hline c & fClivo mut the inverse cf the errcr covariance to be used in the & ADAPCCCC \\
\hline c & SMCOTHING ALGORITHM. & ADAPCCCC \\
\hline & IF (IDES.NS.l) 6 T0 96 & ADAP0260 \\
\hline & [0] \(50 \mathrm{I}=1,3\) & ADAP 0270 \\
\hline & \(\operatorname{CVAR}(1,1)=0 . \mathrm{C}\) & ACAP0280 \\
\hline & OH \(50 \mathrm{~K}=1,3\) & ADAP 0290 \\
\hline 50 & \(\operatorname{CVAR}(1,1)=C V A R(I, 1)+V A R(I, K) * H T(K, 1)\) & ADAP 0300 \\
\hline & CCVAR \(=0.0\) & ADAP0310 \\
\hline & Co \(55 \mathrm{k}=1,3\) & ADAP0320 \\
\hline 55 & \(\operatorname{CCVAR}=\operatorname{CCVAR+Fil,~K)*CVAR(K,~1)~}\) & ADAP0330 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & SUbroutine Change (SS1,SS2,SS3,S54,SS5,SS6) & CHANOOIO \\
\hline C & \#\#\#\#\#\#\#\#\#**************** & CHANCCCC \\
\hline C\% & tris program takes the one dimensional inverse covariance matrix & CHANCCCC \\
\hline C* & ALQEADY PRECCNPUTEC IN THE FILTERING PART ANO CHANGES IT TO A & CHANCCCC \\
\hline C* & TWO dimensional array and finds the smoothed filter gain. & CHANCCCC \\
\hline C* & SS IS the inverse cf the error covariance in a single array. It & CHANCCCC \\
\hline C\% & IS Changed tc a thi oinensional array tivr. & CHANCCCC \\
\hline ( \({ }^{\text {+ }}\) & TVVr is tre livverse covariance of error - & CHANCCCC \\
\hline C. & AMGAIN IS THE SMCOTHED GAIN OBTAINED TO be used in the & CHANCCCC \\
\hline C* & SMOUTHED ESTIMATE. & CHANCCCC \\
\hline C* & THIS PROGRAM WJRKS FUR HUNDRED VALUES OF THE INVERSE COVARIANCE & CHANCCCC \\
\hline C* & CF ERROR. & CHANCCCC \\
\hline C & \#\#************************ & CHANCCCC \\
\hline & DIMENS IDN SS1(1000), SS \(2(1000)\), SS \(3(1000)\), SS4(1000), SS5 (1000), & CHANOO20 \\
\hline & CSSb(1003), TVVR(10,10), \(\mathrm{BCB}(10,10)\) & CHAN0030 \\
\hline & COMMON/COEFF/W, AL FHA & CHANOO40 \\
\hline & CCNMCN/SMEETH/SIMGAIN ( 3,3\(), N, \operatorname{AMGAIN}(3,3)\) & CHANOO50 \\
\hline \(\cdots\) & TVVR(1, 1 ) = SSI( N\()\) & CHAN0060 \\
\hline & \(\operatorname{TVVR}(1,2)=S S 2(N)\) & CHAN0070 \\
\hline & TVVR(1,3) \(=553(\mathrm{~N})\) & CHAN0080 \\
\hline & \(T V V R(2,2)=554(N)\) & CHANOO90 \\
\hline & \(\operatorname{TVVR}(2,3)=S S S(N)\) & CHANO 100 \\
\hline & \(\operatorname{TVVR}(3,3)=556(A)\) & CHANOI 10 \\
\hline & DO \(1 \quad 1=1,3\) & CHANOI20 \\
\hline & [ \(? ~ J=1,3\) & CHANO130 \\
\hline 1 & TVVR(J,I) \(=\) TVVA(I, \({ }^{\text {d }}\) ) & CHANOI 40 \\
\hline & OP \(21=1\), 3 & CHANOI 50 \\
\hline & CO \(2 \mathrm{~J}=1,3\) & CHANO160 \\
\hline 2 & BQB ( \(1, \mathrm{~J}\) ) \(=0.0\) & CHANO170 \\
\hline &  & CHANO180 \\
\hline & \(\left[\begin{array}{lll}0 & 3\end{array} \mathrm{I}=1,3\right.\) & CHANO190 \\
\hline & [0] \(3 \mathrm{~J}=1,3\) & CHANO200 \\
\hline & LMGAIN(I, J) \(=0.0\) & CHANO210 \\
\hline & [C. \(3 \mathrm{~K}=1,3\) & CHANO220 \\
\hline 3 & \(\triangle M G A I N(I, J)=\triangle N G A I A(I, J)+B Q B(I, K) * T V V R(K, J)\) & CHAN0230 \\
\hline & RETURN & CHANO240 \\
\hline & cio & CHANO250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline &  & SM000010 \\
\hline \(C\) & & SMOOCCCC \\
\hline C* &  & SMOOCCCC \\
\hline C* & & SmOOCCCC \\
\hline c* & this surbcutine galculates the agapt ive smouthed estimates of the & SMOOCCCC \\
\hline C* & States, given the smcothed filter gain and the filtered estimates & SMOOCCCC \\
\hline 6 & at the time of comfutation. & SmOOCCCC \\
\hline [** &  & SMOOCCCC \\
\hline C* & FILTERING ALgCmithn. & SMOOCCCC \\
\hline c* & SMGAIN IS THE SMOOTHED GAIN MATRIX FROM SUBROUTINE CHANGE. & SMOOCCCC \\
\hline C* & ALPHA IS VARIABLE. & SmOOCCCC \\
\hline C* & & SMOOCCCC \\
\hline C* &  & SMOOCCCC \\
\hline C & & SMOOCCCC \\
\hline & D)MENSIOF XSAT(10,1), XUSAT(10,1), AAAC(10), SMCGRR(10), & SMOO0020 \\
\hline & CXX1(1000), X \(\times 2(1000\) ), X \(\times 3(1000\) ) & SM000030 \\
\hline & CCNMCN/SNEETF/SNGAIN(3,3), N, \(\triangle\) MGAIN(3, 3) & \$M000040 \\
\hline & C JMmon/coeffid. ALFHA & SM000050 \\
\hline & ASA(1) \(=\times S \triangle T(1,1)-\times \times 1(N)\) & SM000060 \\
\hline & \(A A A(2)=X \operatorname{SAT}(2,1)-\times \times 2\) (N) & SM000070 \\
\hline & \(A A+3)=X \leqslant A T(2,1)-X \times 3(N)\) & SM000080 \\
\hline & Co \(15 \mathrm{I}=1,3\) & SM000090 \\
\hline & \(S M C O R R(I)=0.0\) & SM000100 \\
\hline & Di] \(15 \mathrm{~J}=1\), 3 & SM000110 \\
\hline & SMCORR(I) \(=\) SNCCRR(I)+SMGAIN(I,J)*AAA(J) & SM000120 \\
\hline 15 & Guntinue & SM000130 \\
\hline & XOSAT(1,1)=-10CC.**SAT(1,11+SMCORR(1) & SMOOO 140 \\
\hline &  & SM000150 \\
\hline & \(\left.X_{0}\right)\) SAT 3,1\()=x \leq A T(2,1)-2\) *ALPHA*XSAT \((3,1)+S N C C R R(3)\) & SM000 160 \\
\hline & kETURN & SM000170 \\
\hline & fal & SMOOO1 80 \\
\hline
\end{tabular}

\title{
VITA \(\gamma\)
}

\author{
Melville Ronald D'Mello \\ Candidate for the Degree of \\ Master of Science
}

Thesis: ADAPTIVE FILTERING AND SMOOTHING IN DECONVOLUTION FOR SEISMIC PROCESSES

Major Field: Electrical Engineering
Biographical:
Personal Data: Born in Goa, India, February 21, 1949, the son of Mr . and Mrs. Claro D'Mello.

Education: Graduated from St. Joseph's European High School, Bangalore, India in March, 1966; received the Bachelor of Electrical Engineering degree from Aligarh Muslim University, Aligarh, India, in September, 1972; completed requirements for the Master of Science degree at Oklahoma State University, Stillwater, Oklahoma, in December, 1974.

Professional Experience: Engineer Trainee, Kirloskar Electrical Company, Bangalore, India, from May to August, 1968; Research Assistant, School of Electrical Engineering and Center for Systems Science from January to August, 1974.```

