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CHAPTER I 

INTRODUCTION 

1.1 The Problem to be Considered 

A basic problem of est:imating a signal from a.noisy set of data 

occurs.in seismic exploration and in other areas of science such as 

communication and control theory. 

A dynamite bla~t detonated n~ar t~e surface of the earth or at a 

shallow depth in water gives.,rise to a sharp seismic disturban~e; This 

initial pulse will be followed closely.in time by the reflection of the 

source pulse from the. surface of the ._earth, In_ general, ther~ will also 

be near-surface m~l tiple reflections, called_ reverberations, which are 

caused by reflections betiyeen a shallo\11 strong reflector and the surface 

of the earth, For exampl~, in marine shooting, the wa~er-~arth interface 

provides a strong ch~ge in acoustic impeq.an~e · yielding a stron_g reflec ... 

tor and setting up multiple reflections in the water )ayer. In the case 

of land pro~pectin~, the first hundred -feet,of the earth is generally a 

low velocity larer. compared to the first,. more rigid, rock encoun~ered, 

Th~_s -top soil layer is referred to as. the weathered -layer and is the 

cause of near surface reverberations. Therefore the input wavel~t which 

propagates into the seismic se.ction of· interest is the result of the 

inpu~ pulse from the source plus ail of _the trail~ng near surface rever­

berations. 

·As _this rather ringy, inpu~ wave,let ,propagat':ls into· the seismic 
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section of interest,. it will be. reflect~d back ·to the surface of the 

earth whenever a cha~~e in acoustical impedance is encountered, that is,_ 

if the geology changes.from, say, sand to shale, The amplit~de of the 

returned wave+et depends on the reflection coefficient at th~ change in 

geology, which in turn; depends on the elastic properties. of the rocks 

involved. These reflected events, are detected on the -surface of the._ 

earth by geophones placed at predetermined distances and recorded as a 

func~ion of time, the rec9rd being called a:seismogram. As a re~ult of 

2 

this simple description of the _seismic reflection process, the.seis~ogram 

can be modeled as.the result of a.weighted, delayed sum of this resulting 

input wavelet. Such a, weighted -delayed sum is, a convolution of a resul.t-

ing input wavelet with the.impulse response of the seisll).ic section of 

interest. The impulse response consists of all primary reflections plus 

all multiple reflections.which occur between_ the many.different layers of 

geology.at depth,. The object of deconvolution then.is to remove the 

effect of this rin.gy, input wavelet and thereby get. a better estimate of 

the.impulse response of the.seismic section of.interest. 

This problem is. a data proce~sing one _where eit}J.er prediction, 

filtering and/or smoothing can be applied d~pending on-the time of 

interest. Techniques are available-fo:r; treating prediction, filtering 

and smoothing problems in both the time domain and the freque~cy domain 

and attell).ptS have been made_ in. thi_s -direction. Wiener filter theory, 

based on time invariant systems, have been implemented in.the time domain 

and is currently i~ widespread use. In this work, an.other time dom1;1.in 

approach, specifically a modified K_alman fil te:r: technique which assumes 

that a random process.can be modeled as the output of a linear system 
\ ~ . 

driven by white noise is -pursued. By using a state variable formulation 
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which .is a time domain realization of·the conventional transfer function 

formulation. the ,problem of deconvolutfon is:form~lated within a modern 

time domain format. Though both,· Wiener filtering as.well as Kalman 

filtering can be usec;l in,multtchannel data acquisition problems (1}. it 

is in the.solution of time varying problems tha'!; the Kalman filter theory 

holds greatest promise. 

1.2 The Approac4 

Given the. aut<?correlation func'!;ion and the mean of a random proce~s. 

a geophysical m(?del is built which has this process as the output of a, 

linear system excited by a white n~ise input. To do this; some basic 

assumptions are made. These.are: (1) The wavelet is minimum phase time 

function, This mean~ that the.wavelet is a one sided transient with its 

energy concentrated around the z.ero time; and (2) the. geology is unpre­

dictable I which means that-the sharp knife-like impulses are mutually 

uncorrelated, This lead,s to an inte.resting observation, namely I the , 

autocorrelat~on function of the seis~ic trace is equal to the autocorela­

tion function of the .wavelet, as the uncorrelated elements of t4e 

impulses average out, 

By using the above, a model has already been derived.(14). However. 

in. most, decoi:i,volution problem~, the parameters describing the system are 

not_completely defined. As for e)!:ample 1 in a geophysical model, the 

velocity of .the wavelet is .a function of depth, while the reflection or 

refraction or transmi~sion that results .depends on the nature of the 

seismic layer it confronts; If the~e parameters randomly change and they 

are not measurable, then one has·;to rely on statistical data for modeling 

the system. 



The geophysical process which has bee.n described i~ assumed .. to be . 

modeled by a set of state.variable.candidate models to account.for the 

4 

uncertainty. Wi t.h the passage of time, a~ more data is obtained, the 

undefined pa~ameters hopefully are· learned; and the s~ates esti,mated, 

accomplishing the desired deconvolution •. Such techniques are called 

system identification and adaptive filtering and are usually based on the 

assumption .that, .the right, model is one of .the candidate models. Since 

these data process~ng results are not.required to be.computed on-line, 

another operation commQnly kno~n as smootl).ing can be used to achieve a 

refined estimate of the st.ates. Thi:s operat:i,.on m~kes use of the filtered 

estimates and the complete data set to improve the estimate of the 

states, However, existing smoothi;ng algorithms are not adequate to solve 

the .prob lern posed here,, TheI.7efore, an adaptive smoothing algorithm 

scheme is.derived, taking into consideration the different candidate 

models as.in th~ filtering part. T~e above sequence of operations, 

namely adaptive filtering and adaptive smoothing are simulated on the· 

digital cqmputer to test their performanc~ in the task of deconvolution. 

While theoretically .the estimate obtai.ned is the ,optimal estimate under 

Gaussian conditions, the model for th.~ seismic reflectiQn process is 

assumed to have ,Poisson inputs and· the estimates .. are thus suboptimal. 

For this reason, simulation is ,.especially important. 

1.3 Objective~ and Findings 

There are ,three primary purposes .of this -work. The first is to 

apply recently.developed adaptive time domain techniques to geophysical 

models ,and verify that. deconvolution is achieved. The·second objective 

is to develop new adaptive smoothing techniques to improve the accuracy 
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of the ·estimate. The third aim is to modify a previous mathematical 

model of the seismic process und1;ir consideration,, so that it ,is more, 

realistic. This is done by,using an i~put which is poisson distributed 

in time with random amplitudes, 

The first, objectixe is .accomplished directly ,by.applying an adaptive 

filtering scheme, refe:r;red to as, "Estimation Under Unc~rtainty'.' • . This· is , 

a modification of K~lman filtering to acco'lµlt for model uncertainty. The 

results show that after enough. observations ,,have. been taken, system 

identification seems to be achieyed only in certain case~ and is there-

fore.not very reliable, although decqi:i,volutio~ is achieved with reason-

able accuracy. There seems to be no.way of determining how many observa-

tions .should be taken before the operation is to be terminated and it is 

quite possible that a wrong model may be identified if e~ough data is not 

taken. The second objectiy-e is seen _to ·be an extension of the adaptive. 

filtering cas~ and the results provide a marked improvem~nt in the_esti-

mation of the. state. The third is achieve.cl by using the .. fact that the 

first two moments-of a random process ·sometimes gives ,ample statistical 

knowledge of a, linear system ,for simulation purposes, Th~ results show 

that with _poisson inputs, the est~mates are quite ac~urate. 

The work is application oriented a.nd is not intenqed as a rigorot,1s 

mathematical treatment of stochastic optimal estimation theory. The . , ~ ' . 

works which are most directly related to this-investigation are discussed 

in Chapter.II. 

1.4 Organi~ation 

The remainde.r -of this study is concerned with ,accomplishing the. 

ob,jectives and, demonst:r;ating the results ment~oned in the previous· 



section, In Chapter II, the adaptive filter algorithms a~e reviewed and 

the adaptive smoothing algorithms fo;mulated. The geophysical model as 

suggested by Bayless and Brigham (14) is described and improved upon. 

6 

The simulation of·the model and the algorithms for different poisson 

inputs are investigated in Chapter III under various uncertainty condi­

tions and circumstances~ The filtered and s~oothed results are shown and 

compared, Cha,pter IV discusses .. the effects of improper. modeling, in 

which the true model is not one of the canq.idate moq.els, An iterative 

narrowing in procedure to remove.the uncertainties in the model is also 

discussed. Cha:pter V contains a summary and can9lusions .,of the results . 

obtained in this.work. Suggestions for further rese~rch are also 

included in this chapter. 



CHAPTER II· 

ADAPTIVE FILTERING, SMOOTHING AND DECONVOLUTION 

2.1 Bac~ground 

Of part~cul~r interest in ,the area of seismic.exploration, .has been 

the need for rest9ri~g a signal to its origin~l value by eliminating all 

undesired noise and distortion effects, This task i.s sometimes re:f;erred 

to as Deconvolution or Inverse Filtering.· 

Wiener (2) several years.ago investigated probl~ms of lea.st-squares-

estimation for stoc4ast~c processes and developed what ha.s bec9me .known 

as Wiener Filter Theory. Later Kalma~ (3,4) investigated dynami~al-. 

state-estimation problems :by specifyini not tQe autocorrelation of a, 

signa;J process, but a "m9del" for. it as .a linear dynamical ,system driven .. 

by white noise. The resulting filter is called the Kalman Filter, 

Robinson (5,6), Rice (7), Kunetz (8), Robinson and Treitel (9), 

Clarke (10), Peakcock.and Treitel (11), and many others,have.approache.d 

the deconvolution problem by using Wiener's _method, Recen~ly Treitel 

(12) has introduced the complex Wiener approach .. Ulrych (13) has inves-

tigated another tec~nique called homomorphic f~ltering, While Wiener's 

theory.has been applied to time invariant systems, the.solution of the 

resulting in~egra.1 equati~n is usualiy difficult~ This is especially 

true when extended to time varying ca.ses. 

Bayless and Brigham (14) a.nd:Crump (15) treated the deconvolution 

problem by using continuous, and discrete Kalman filter techniques,, 

7 
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respectively. Theuse of sta1;e space m~thods to treat phfsical and.math-:: 

ematical models lends i tsel,f easily to· di~ital comi:,uter simulations. and 

can solve many ttme varying problel!ls as well~. 

It is the .. Bayless and Brigham paper (14) that forms the ba~is of 

this work. Hence it is appropriate here to constder this .wqrk.in some 

detail. 

2.1.1 Deconvolution .!!l. Seismic Exploration 

Deconvoluticm. is , a technique to , remove .. distortions to tq.e signal . in 

the course of its path through the seismic media, geophones, amplifiers, 

and recorders,. In a sense, it .is the. filtering of the source that causes 

distortion to the signal and h~p.ce, inve.rse . filtering must be applied, to 

undo .the effects of this .undesired filteri~g. The schematic figure for 

treating the deconvolution problem i~ shown in.Figure 1. 

Filtering Deconvolution Estimate of 
Signal 

~ Observations .... Signal 
Source Effects. Filter Source 

Figure 1. Basic Deconvolution Problem 

Bayle~s an.d Brigham in their paper .. considered a basic wavelet model 

to be.a minimum.phase function. 

To explain the coll)plicated nature of the seismogram,. Ricker (16) 

proposed the Ricker wavelet model. It is a time function and is the 

response of the earth to a sharp seismic di~turbance. Hence the ba~ic 
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wavelet model_ is 

h Ct) e -at Si'n bt 2 . = t > 0 (2 .1) 

The seis.mic. dist~rhance which .crea~es the wavelet is an impulse, 

approximated by. 

-ct e t > 0 (2, 2) 

and the.input u(t)·is a,. sequence of ra:ndom.pois~on distributed impulses 

of the form 

co 
u(t) -. l 

i=-co 
o (t-t.) - Q 

1. 
(2. 3) 

where E{u(t)u(,)} = Qo (t-,} an<;l ti is a random poisson vari,i:ible .with 

average time of occurre~ce, Q, It is desired to estima.te. the arrival 

tiil'\es of these ·impulses, u(t). Because the Kalman.filter estimates a 

stat~, th~ input u(t) is passed thl:'ough an illlpulsive reflection generator 

(2, 2). Its ,output .x1 (t) is the ,desired s~ate. to be estimated, Inci­

dentally x1 (t) is in the form of shi;i:rplf decaying exponentj,.al ~aves,. 

whose time of .occurrence is _requtred to be.estimated. The simulation was 

done using an analog computer, as the plant dynamics and obse.rvation 

model were continuous in time. The schematic diagram of the Bayless and 

Brigham model is shown in Figure 2, 
' . . 

u(t) __ .... Y_(t_)_..,,._. Iv v. (t) .. z(t) 
h1 Ct J 1------......_h_2_ct_)__, () 

Impulse Reflection 
Generator . .,, 

Wavelet 
Model 

Fi~ure 2, Seisrn:.ic Reflect:i,.on Proces~ Model 
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For the system d.escribed above, in .the impulsive generation model, 

there is not enough impulse or energy to drive the wavelet model, There-

fore the observation cannot even register .the presence of an impulse. 

Hence the reflection generator assumed by Bayle~s and Brigham is modifie.d 

in this developm~nt, and is assumed to be. 

because 

-ct = ce t > 0 

lim h1 (t) 
t+O 

= lim ce ~ct 
t+O 

=·C 

For an impulse, the following must be satisfied; 

t+E: 
f o(t)dt = 1 

t-€. 

and for the above 

co 

f -ct dt 1 ce = 
0 

is satisfied, 

(2 .4) 

(2,5) 

(2, 6) 

(2 0 7) 

Hence h1(t) represents an iJl!.pulse and theoretically as .t approaches 

zero, the impulse magnitude should increase to an inf~nite value, This 

is shown graphically in Figure 3, The modified model is indicated in 

Figures 4 and 5. 



W(s) c 

\ 
\ 
\ 

(s + c) · 

\ cl 
\ 
\ 
\ 
~ 

Time 

Figure 3, Approximation of 
a}1. Impulse 

b 

(s + aJ2 + b2 

V(s) 

y s z s 

Figure 4. Modified Bayless and Brigham:Model (Frequency Domain) 

11 

v(t) 

w(t) c b 
z (t) 

-c -2a 

2 2 
- (a + b ) 

Figure 5, Modified Bayless .and Brigham Model (Stare Space,Fo~m) 
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The dynamic equat~ons .describing the system are: 

x1ctJ -c 0 0 x1 (t) c 

x2 Ct) b 0 
2 2 = -(a+b) x2 (t) + 0 w(t) (2. 8.) 

x3 (t) ·O 1 -2a x3 (t) 0 

where w(t) is a poisscm 4istribut~d input with zero mean and variance 

equal tq Q and the.obse~ation mQdel is 

z(t) = [O O. 1] 

x1 (t) 

x2 (t) 

x3 (t) 

+ v(t) (2,9) 

where v(t) is zero mean Gaussian. whit~ noise with variance parameter R •. 

One -of the problems with the Bayless and.Brigham mqdel.is that it. 

does not deal with random amplitude po:i,.sson distributed impulses. They 

suggest .. but do not inve$tigate a. form, of input defined by 

u(t) = I m. o(t-:t.) -E[ I m. o(t-t.)J 1 1 . 1 'l 
i=-~ 1=~~ 

ci. 10) 

where mi's .are random variables and ti's are.the poisson distributed 

random variables. 

2.1..2 Comment 

The topics cqnsidered here !llake the application to the deconvolution 

problem_more,general.. The chief featt1re~ to be.considered in.the 
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remainder of the work are: (1) Since model parameters are in most cases 

not known, adaptive schemes can be applied? (2) Adaptive smoothing tech-

niques can be incorporated as deconvolution is usually an off-line 

computat~ona~ process; and (3) random amplitude poisson distributed 

impulses as defined in (2.10) can be implemented to make the model more 

realistic, 

These features are used to help identify the.correct m.odel and then 

improve the estimate by applying the smoothing techniques, Thus even 

with the. model not known correctly, deconvolution can still be achieved. 

Before applying these techniques to the modified Bayless and Brigham 

model, it is appropriate to give some consideration to the basic estima-

tion under uncertainty scheme, 

2.1,3 Estimation Under Uncertainty 

In applications of Kalman filtering to seismic data processing, 

Bayless and Brigham have assumed the.system parameters .in the dynamic. 

model to be well defined. In practice it is unlikely that the system 

parameters would be known. Hence it seems appropriate enough to apply 

adaptive filter,ing to "learn" the.system para\neters, Using the m~thods 

first derived by Lainiotis (17) and modified by Lee and Sims (18), an 

attempt is .made. to apply adaptive filtering to seismic problems, Sj.nce 

the approach taken by Lee and Sims has an influence on this thesis, the 

method is summarized below, 

Given a set of candidate models, one of which is true, let e. index 
l 

the ith modeL The system dynamics are specified as 

e.: x. (t) = F. (t)x. (t) + G. (t)w. (t) 
l l l 1 · 1 . l 

(2, 11) 



where i = 1,2,···,N and N is finite; x. (t) is an n-dimensional vector 
1 

representing the st.ate of the system for the ith model; wi (t) is a qth 

order disturbance whose elements are zero mean white noise; F. (t) is a 
1 

nxn matrix for the ith model; and Gi(t) is a nxq matrix for the ith 

model, 
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The output of the ith model is a linear transfbrmation of the state. 

y. (t) = H. (t)x. (t) 
1 · 1 1 

(2,12) 

where H. (t) is an .mxn matrix for the i th. model, and y. (t) is an 
1 · 1 

m-dimensional output vector for the ith model, In general, F. (t), G. (t), 
1 1 

and H. (t) are functions of time and subject to uncertainty,. 
1 

The observation model is discrete and can be expressed as 

k = 1,2,···,N (2 .. 13) 

and depends on which model is active at a given time, where v(k) is a 

m-vector measurement noise for zero mean, discrete Gaussian process; z(k) 

is an m-vector observation at time tk' 

It is assumed that.the measurement noise and the plant noise under 

each hypothesis, ei, are independent Gaussian white noise sequences with 

zero mean and variances 

E{w. (t)w': ('r)} = Q. (t) o (t--r) 
1 1 1 

(2,14) 

E{v. (k)v~(j)} = R. (k)ok. 
1 i · 1 J 

(2.15) 

The expected value .of the initial condition for the state is 

(2,16) 

and the initial condition for the covariance of error is 



15 

{ - -T } = E x.-(t0)x. (t0) 
]. ]. . 

(2 .17) 

where V (t0) is an nxn matrix, and Q. (t), R. (t), x. (t0) and vx. (t0) are x. l. l. 1 
1 1 

_all subject to uncerta~nty. 

It is also assumed that xi(t0) is independent of the nois~ sequence 

{wi(t)} and {vi(k)L Also an a priori probability, pr(ei), is .assumed 

for each candidate model, The set of measurements available up to stage 

k is denoted as Zk = {z(l),z(2),···,z(k)}. 

The best estimate is determined by the conditional probability 

density p(x(t) IZk), The conditional mean_is 

for 

and from the fundament~l theorem of expectation, 

(I() 

x(t) = J x(t)p(x(t) lzk)dx(t) 
-00 

But the conditional density can_be described as 

and,hence 

00 

x(t) =.f x(t) l pr(e1 !Zk)p(x(t)!Zk,ei)dx(t) 
-00 

N co 

= I p (e. lzk) J x(t)p(x(t) lzk,e.)dx(t) 
. 1 r i i 
]_;::: - 00 

(2 .18) 

(2 0 19) 

(2,20) 
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where p (6. !Zk) is the a posteriori probability that the ith model is · r 1 . 

active at time t, and xi(t!Zk) is the conditional mean estimate of the 

ith candidate model expressed as. 

00 

= J x(t)p(x(t)!Zk,ei)dx(t). (2.21) 
-00 

Hence the estimate of the stat~ reduces to fincling the sum of the 

products. of the estimates and a posteriori.probabilities of each candi~ 

date model active at time t, given the observation set Zko The solution 

to the estimation problem can be obtained in a recursive manner 

consisting of three partso 

(1) Predictoro In between observations, the estimator acts as a 

predictor, The conditional ·mean estimate of the state for each model is 

F. ct)x. ct I zk) 
l l 

and the covariance of ·the errc:>r of each candidate model is . 

= Fi (t)Vx. (t!Zk) + Vx. (t!,Zk)Fi(t) 
l l. 

• for i = 1,2,···,N 

where ~i (t I Zk) is defined in Equation 2, 21 and 

vx. (t!Zk) = Var{xi(t)IZk} 
l; 

+ G.(t)Q. (t)G!(t) 
l l l 

" I " I T = E{ [x. (t) - x. (t Zk)] [x. (t) - x. (t Zk)] } 
l. l l ·]. 

(2.22) 

(2.23) 

The initial conditions for the state and covariance of error are indi-

cated by Equations 2, 16 and 2, 17, 

(2) Corrector. At time tk+l' a measurement zk+l is taken and the 
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updated mean and covariance are expressed as 

xi(tk+llzk+l) = xi(tk+llzk) + Ki(tk+l)[z(k+l) - Hixi(tk+llZk)] 

(2, 25) 
and 

= (I - K.-H. )V (tk 11 Zk)(I 1 1 x .. + · 
T T K .. H.) + K;R.K .. 

l. 1 1 1 1 
l. 

i = 1,2,•••N (2 0 26) 

where 

I T I T -1 K. (tk 1) = V (tk l Zk)H. [H.V (tk l Zk)H. + R.] 
1 · + X. + 1 1·X. + 1 1 

(2.27) 
1 l. 

is called the .Kalman gain, 

(~) Identifier. When a new measurement zk+l is obtained, the 

a posteriori probabqi ty Pr ~ei I Zk) is updated. This a posteriori. 

probability pr(ei lzk+l) provides .a measure of certainty of whether the 

model is the. true one.and is express~d as. 

[ 
I J-1 

N Pr(ej Zk) 
P Ce. I zk 1) = 1 + l L . . Ce I z ) r 1 + . 1 J1 p · k J= . r · 1 · 

j,!i 

where L .. defined as the likelihood ratio is, 
J1 

L .. = 
J1 

1 
T 2 

H.V H. + R. 
1 xi 1 1 1 

T exp {- 2 [•]} 
H.V H. + R. 

J x. J. J 
. J 

(2 0 28) 

(2.29) 
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and 

[.] ,.. I T T 1 "' I = [z(k+l) - H.x .. (tk l Zk)] [H.V H. + R.]- [z(k+l) - HJ.xJ. (tk+l Zk)] 
J J + J xj J J 

When the true model is included as a candidate model, then the. 

a posteriori probal;!ility of,that.model will converge to one wi~h a 

sufficiently large number of observat~ons~ while the probability of the 

other candidate models approach zero. 

This means that m9re weight is given to the correct model than to 

the others as the probability of the true model approaches one. In the 

event that the correct model has its a posteriori probability exactly·. 

equal to one, the adaptivity is removed as there is .nQ more uncertainty 

involved and ordinary Kalman filter theory can be applied (19), The 

above algorithm serves a useful purpose.in relation to the Bayless and 

Brigham paper in that if the.model parameters are not known exactly, then 

a number of candidate mode+s can be selected •. As more observations are 

obtained, the weighting for each candidate model changes and in the long 

run the correct model should have the highest a posteriori probability 

and hence have its estimate weighted the most. This can be considered in 

effect as making the uncertain parameters slowly be known and to approach 

that of the correct model. The theory suggests that the highest 

a posteriori probability mo4el be taken as.the right.one, because given 

an infinite number of observations; the right model should have its 

probability reach one. 

While the above algorithm applies to the case of Gaussian inputs, 

the model proposed should have.poisson distributed random noise inputs. 
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Hence tl').e estimates are only the best lin~ar estimates, conditioned on 

the individual candiates. Only an approximation to the conclitional mean 

is obtained. 

As the .computation is not required in re~l time, it is plaustble 

that smoothing techniques if applied could give a more accurate estimate, 

Hence it is appropriate to look into the process of smoothing. 

2,1,4 Fixed Interval Smoothing 

In smoothing, the estimate of the state is required at time t, given 

the.noisy measurement data over.the interval that includes the time t, 

While there are many methods.of smoothing, fixed interval smoothing will 

be considered here. 

One of.the first devel,opments .in smoothing was by Bryson and Frazier 

(20) who used the calculus of variations approach by treating the above 

as an optimization problem. Later Rauch (21) and Meditch (22) published 

different treatments .of smoothing. Then Fraser (23) and Mehra (24) 

developed a.new form of smoothing, combining two filters, the forward and 

the backward Kalman filter, Mehra and Bryson (25) and Bryson and 

Henrikson (26) extended the work.to colored noise for continuous 

discrete processes, respectively. Recently Kailath and Frost (27) have 

applied the innovations approach to leas~ squares estimation in smoothing. 

Matheml:!,tic~lly, the smoothing problem can be stated as, given the 

observation set Z (t2) = {Z ('r), t 0 ,::.. , < t 2}, find the estimate x (t1 I t 2) 

where t 1 < t 2. 

For the problem under consideration, the optimal linear fixed inter­

val smoothing algorithms cannot be used, Because of model uncertainty, 

an adaptive technique of smoothing is developed, As more data is 
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available, smoothing provides a better estimate than filtering. 

2,2 Development of.the Smoothing Algorithm 

The system dynamics an.d observation model are the same as considered 

in Section 2,1.3, with ei representing the ith model. As a result of 

adaptive filtering, the a posteriori probability p (8. IZN) as well as the 
r 1 

filtered estimates of each candidate model xi(tlZk) at each time interval 

tare known, 

Consider the conditional mean estimate at.time t based on the entire 

observation set ZN, 

E{x(t) lzN)} = E8 _ {E{x(t)IZN,ei}} (2 0 30) 
l 

This .can be written as the weighted sum of·the smoothed estimates, 

conditioned on the ith model being correct with the weighting indicated 

by the final a posteriori probability as stored in the filtered algorithm, 

N 
E{x(t)IZN} = l p (8. lzN)x. (ti ZN) 

i=l r 1 1 
(2,31) 

where ZN= {z(l),z(2),•••,z(N)} = the entire data set, 

xi(tlZN) is the .smoothed estimate of the ith candidate model at time 

However, it is known in the minimum mean square sense, that the best 

linear estimate is also the conditional mean estimate (27), Hence 

x(tlZN) = E{x(t) IZN} 

N 

= l Pr(eilZN)xi(tlZN) 
i=l 

(2,32) 

where x(t!ZN) is the best smoothec). estimate of the system states and is 
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an n dimensional vector. 

It is se,en that the smoothed estimate· is an extension of the.filter-

ing case except.now t4e we:i,.ghting for each model is cons:l,.dered a constant 

for each model and is the value at the last data poii:it z(N}, · 

The solution of,xi(tJZN) is obtained as follows (19), The smoothed 

estimate at time tis found from the equation 

i.(tlZN) = F.(t)x.(tJZN) + S.(t)[x.(.tlZN) - x.(t)] 
l 1 1 1 l l 

(2.33) 

where x. (t) is the optimal filtered estimate of the ith model at time t 
l 

and S. (t) is an nxn smoothing filter gain matrix for the ith model. 
1 

The terminal condit:i,.on 

implies that at the final time tN' the smoothed estimate equals the 

filtered estimate, 

The smoothing filter gain S. (t) for the ith model is 1. . 

s . ct) = G . ct) Q . ct ) G ! C t)V"' 1 ct I zk) 
1 1 1 1 · x. 

l 

(2,34) 

where v- 1 (tJZk) is the inverse covariance of the error a~ obtained, in the x. 
l 

filter algorithm for the i~h model at time t. 

2.3 Application of Adaptive Processing 

to Deconvolution 

In this section, the application of adaptive filtering and smoothing 

to the seismic processing problem of Bayless and Brigham is described, 

Consider the parameter 'a' in the F matrix of the Bayless and 



22 

Brigham model to be unknown, and also let the variance of plant noise Q 

be unknown. Let a. be the value of 'a' in the F matrix in the ith 1 . 

candidate model and let Qi be the value of Qin the ith model. Hence the 

model can be described as 

. 
0 0 xli -c xli 

. b 0 
2 2 

x2i = -(a.+b) x2i 1 . 
0 1 -2a. x3i 1 x3i 

where x. is the state when the ith model is active. 
1 

The observation is dis.crete and expressed as 

zk = [O O 1] 

c 

+ 0 

0 

where vk is rand9m white noise with zero mean and covariance 

E{v(k)v(j)} = Rokj 

and w(t) is defined as 

co 

w{t) = l o(t-t) - Q. 
k=J k 1 

which is a poisson distribution with zero mean and covariance 

E{w(t)w(,)} = Q.o(t-,) 
1 

w (2.35) 

(2,36) 

(2, 37) 

(2.38) 
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2.3.1 Filter ,Equations 

(1). Predictor. To be used when no observations ,are available. The 

state predictor equation is: 

. 
" xli 
~ 

x2i = 

~ 

x3i 

The variance equation is: 

+ 

vlli v12i vl3i 

v12i v22i v23i 

v13i v23i _ v33i 

vlli v12i v13i 

v12i v22i v23i 

v13i v23i v33i 

= 

-c 

b 

0 

0 

0 

1 

-c O 

b O 

0 1 

-c O 

b O 

0 1 

0 

2 2 
-(ai+Q) 

-2a. 
l. 

-2a. 
l. 

-2a. 
l. 

T 

" xli 

" (2. 39} X2'i 

"' 
x3i 

v11i v12i v13i 

v12i v22i v23i 

vi3i v23i v33i 

c 

Q. [c O O] 
l. 

+ 0 

0 

(2.40) 

The initial conditions for the state equations and the variance eq~ations 

are appropriat~ly given. . . . 

(2) Corrector. When the observation zk+l rs obtained, the Kalman 

gain at t = tk+l is 
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-1 

Kli vui v12i .vl3i 0 vui. v121 vl3i 0 

K2i = v12i v22i v23i 0 [O O 1] v12i v22i v23i 0 + R 

K3i vl3i v23i v33i 1 v13i v23i v33i 1 

(2. 41) 

The updated estimate at tk+l given the observation zk+l is 

" " Kli " xli xli xli 

" " K2i z (k+l) (0 0 1] " (2 o42) x2i = x2i + - x2i 

" " K3i " x3i x3i x3i 
* * 

where* denotes the predicted estimate at tk+l' The updated variance is 

= 

v11i v12i v13i 

v12i v22i v23i 

v13i v23i v33i 

1 0 0 

0 1 0 

0 0 1 

Kl. 
- l. 

K2i 

K3i 

Kl. l. . 

K2i (0 0 1] 

K3i 

! ....... 

T 

[O 0 ll 

vui v12i v13i 1 0 0 

v12i v22i v23i 0 1 0 

vl3i v23i v33i 0 0 1 

* 

Kli 

+ K2i R[Kli K2i K3i] (2o43) 

K3i 
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where* denotes the predicted variance at tk+l' 

(3) Ident;:ifier. The a priori pro9abqities are ass~med at th~ 

initial time and e~ch candidate model is assigned an a priori.proba-

bility. The a posteriori probal;>ility is .founq out as indicated in 

Equations (2.28) and (2.29} when a new observation is obtained. 

Finally the estimates of .the states of the moqel are 

x1 Ct). 
N 

xli Ct I zk+l) 

x2 Ct) = l P (e.) x2iCtlzk+l) (2 .44) r i i=l 
" x3i(tlzk+l) x3 (t) 

It should be.noted that the Kalman gain in.the corrector ,part as 

well as the variance of the .error in the predictor and correct.or parts 

can be precalculated as .they are i11:dependent of observations. 

2.3.2 Smoothing Equations 

From the filtering equations above, all the estimates of each 

candidate model from the initial ti~e t 0 to the final time tN as well as 

vx. (tjZk) for each model should be.stored. 
l. 

Smoothing can be considered a~ a prQces~ wor~ing backwards starting 

at the fi~al time tN and arriving at th~ initial time t 0• 

The equations for adaptive smoothing with terminal c9nditions 

are 
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.::. ,. 
xli -c 0 0 xli . 2 2 ,. 

b 0 
,. 

x2i = -(a.+b ) x2i ]. ' 

~ ,. 
x3i 0 1 -2a. x3i ]. 

5ui 512i 513i xli (ti ZN} - x1iCt) 

+ 512i 522i 523i x2i(t!ZN) - x2iCtl 

513i 823i 833i x3i(t!ZN) - x3iCt) 

The smoothing gain S. (t) is 
' ]. 

8ui 812i 813i c 

812i 522i 823i = 0 Qi[c 0 01v;~ctlzN) (2 .46) 
]. 

813i 823i 833i 0 
,, 

-1 I w~ere vx. (t ZN) is the inverse of the error covariance of.the ith model 
]. 

at time t. 

Finally the smoothed estimate is 

x1(t!ZN) 
N 

xli(t!ZN) 

x2 (tl,ZN) = l p ' ( ~· . I ZN) x2i (ti ZN) (2, 4 7) . 1 r 1 
1.= 

· X3 (t I ZN) x3i(tlZN) 

where pr(SilZN) is the final value of the .a posteriori probkQilities 

found out from the filter ~art for the ith ~~del, 

In this chapter the adaptive fi~tering and smoothing equations for 
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the Bayless and Brigham model have been given. To investigate the 

validity of the algorithms and to judge its performance when applied to 

seismic problems, computer simulations are carried out. The next chapter 

discusses these simulations. 



CHAPTER III 

SIMULATION RESULTS 

3.1 Introduction 

Simulation may be defi~ed as a technique for conducting experiments 

on an analog 1 .digital or hybri,d computer1 which involves .certain types of 

mathematic~l and logical models that describe the behavior of the system 

over a period of time. 

With computer simulation 1 insight.can be gained into complex sys-. 

tems 1 formulation and testing of theories 1 and the precl.iction of the. 

behavior of the systems .in th~ future. 

For the model of Bayless .and B1:igham, computer simulati9ns are 

carried out to see whether the adaptive algorithms described previously 1 

are adequate for the task of deconvolution and to evaluate the~r per-

formance under a variety of circumstances. In particular 1 simulation is 

important due.to the fact that the theory derived in Chapter II is not 

developed for poisson.inputs, Hence one cannot predict without experi-

mentation the performanc~ of the algorithm. 

3.2 The Method of Simulation 

The total simulation program is rather involved 1 incorporating many 

facets 1 such as the generation of both poisson and Gaussian noise and the 
. ! 

numerical integration of many equations. The simulation program (illus-

trated by the flow chart in Figure 6) is listed in the appendix 1 and some 
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Figure 6. The Flow Chart for Simulation of the Mo4el 
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of the important aspects of the program as well as experimental results 

are presented in the sequel. 

3.2.1 Integration Method 

The integration method used here is referred to as.the fourth order 

Runge-Kutta Method (28). • It is based on Simpson's Rule for finding the 

area under the given curve, There are,. however, a numb er of such methods 

having minor variations and most computer libraries contain one or more 

as general integration procedures. The method is summarized below, 

If a first order differential equation is 

y = f(x,y) 

where y is the derivative of y.with respect to x and 

then one computes 

k2 = 

k3 = 

Y(x ) = y n n 

k1 = hf (x ,y ) n n 

hf(x + 
h 
2'Yn n 

hf(xn 
h 

+ 2'Yn 

k2 
+ -) 

2 

k3 
= 2) 

(3, 1) 

(3.2) 

(3. 3) 

where h is the integration step size, The next val.ue of y is evaluated 

according to 

(3,4) 
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The Runge-Kutta methods.are self starting, have easy changes in step 

size and are particulal'.'ly straight forward to apply on digital computers, 

However, they require a number of evaluations of the slopes f(x,y) at 

each step, equal .to the order of the method. 

An important con.sideration for this method of integration ,is the 

choice of step size 'h'. If the step size is too large, the result will 

be inaccurate, but if it is too small, an excessive .amount of computer 

time is required, There are various ways of estimating 'h', One rule of 

the thumb is to select has 1/10 the smallest eigenval4e of the linearized 

system. Another scheme is simply run the program with two choices of 

step size of say .01 and .001 and compare. If the results are identical, 

then the larger step size is chosen. 

3,2,2 Random Noise Generation 

In the simulation, three kinds.of random noise inputs are considered, 

In one case the equal amplitude random poisson distribution is the input 

to the system. In the second case the random amplitude poisson (RAP) 

distribution is the input, Gaussian additive white noise corrupts the 

output to give the observation for the modeL In this section the gener-

ation of these noise disturbances .are discussed, 

(1) Equal Amplitude Poisson Distribution (EAP), A zero mean 

poisson ~istributed input of equal amplitude is represe~ted by 

00 

u(t) = l (3, 5) 
i= -00 

where t. 's are the random poisson variables 9 and Q is the average number 
1 

of occurrences per second. Let y1,y2 ,···,yn be random independent vari­

ables that have an exponential density function 



-QY PyCY) = Qe 

= 0 

y > 0 

otherwise 

Starting at an arbitrary time t = O, assume 

tl = Y1 

t2 = Y1 + Y2 

t3 = Y1 + Y2 + Y3 

t = y + y + .••• + y 
n 1 2 n 

Then it can be proved that the random variables ti are poisson in 

nature (29). 
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(3.6) 

(3.7) 

To realize an exponential distribution function from a.uniform dis-

tributed function between (0,1), a nonlinear transformation is required, 

This transformation is represent~d in.the block.diagram of Figure 7, 

where the random v~riable X has the density function 

0 < x < 1 
(3.8) 

= 0 otherwise 

and the random variable Y has the 4ensity function 

PyCY) =-Qe-Qy y~O 
(3,9) 

=.O othernise 

It is required tq find the transformation h = g(x). 
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x ~ h g(x) I 
y 

) 
Px(x) 

= 
Py(Y) 

Figure 7. Transformation of a.Random Variable 

If X and Y are related on a one-to-one,basis, then-equating the 

probabilities gives 

P(X ..::_ x) = P(Y ..::_ y) (3.10) 

or 
x Y.: 
J dx.= f Qe-Qy dy 
0 0 

or. 

or 

Y = -ln(l - x) = .-ln(x) 
Q Q' 

(3 .11) 

where Q is a parameter of the exponent~al process. 

Hence, by this nonlinear transformation, for various values of X, a 

sequence of random,variables Y are generated, These.random variables are 

inqependent and.possess the exponential density funct:ion, The poisson 

distributed inputs can then be obtained by Equat~on (3.7). 

The statistics. of the white noise process are 

E{u(t)} = 0 an.d E{u(t)u(T)} = Q8(t-T) (3.12) 

Therefore, given the .first and second moments of this random process, the 

equal amplitude pois son distribu.tion can be implemeJ?.ted, 
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(2) Random Amplitude P·gisson Distribution .CRAP). Th~ RAP .. distribu-

tion input can be e~pressed as 

u(t) = Y· m.8(t-t.) - E [ Y m.8(t-t.)J . 1 1 , 1 1 
i=-® i=-® 

C3, i:n 

where m., is a random distribution of mean m which reflects the intensity I. . ' ' 

of the impulses,. 

Of the statistics o:f random p:r;-ocesses, the first. and secoi:id moments 

are most useful, In fact first and second ordermoments provide 

necessary and sufficiel'}t information for problems; involving line.ar 

systems .and/or Gaussian random processes. As in the. prexious. case, 

ef~orts will be centered o~ deriving the first and second moments to 

obtain a statistical knowledge of impulse processes. 

Th~ first moment.is (30) 

E{u(t)} = E [l m. 8 ( t- t . ) ] 
1 1 

= l E[mi]E[8(t-ti)] 

= mQ 

where E{m.} = m and Q is the mean for the poisson process, 
1 

Th~ second moment is 

E{u(t)U(T)} = . l l 
i=l j=l 

T E[m.m.]E[o(t-t.-T)8(t-t.)] 
1 J 1 · J 

= Qp(0)8(t-t.) + Q l p(n)f (t-T) 
1 n=l n 

(3.14) 

(3.15) 

where p(i) = E{mk~+i}; fn is the probability density function associated 

with n consecutive intervals of poisson process ti; and Q is the variance. 

of the poisson process, 

If in the above, an assumption is made that the ranqom.variable m1 

is zero mean anq. independent,. then considerable simplification results. 



In fact if m. is uniformly distributed between -1 and 1, then its first 
1 

and second moments are O and 1/3, respectively, so that the first and 

second moment~ of the RAP distribution input are 

E{u(t)} = O 

and 
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E{u(t)u(T)} = i 8(t-T} (3.16) 

A little modification is required in the equal amplitude poisson 

distribution described in the previous section to get the RAP distribu-

tion. When the pulses are initiated onto the system in a poisson manner, 

the amplitude is made to vary according to the various values of the 

random variable m. 1 with the above, statistics, It is seen that the 
1 

previous section on the equal amplitude pois~on distribution problem is a 

particular case of the more,general RAP distribution problem. 

are no more random, but deterministic with a value of 1, 

The m. 's 
1 

(3) Gaussian Distribution, There are many applications in simula-

tion and al)alysis of dynamical systems which require large amounts of 

pseudo random numbers. There.has been a great interest in recent years 

in the generation of pseudo random numbers on a digital computer. Since 

these numbers are generated by deterministic means, the term pseudo 

random is applied to the generated numbers. Chambers (31) and many 

others, treat the subject of uniform.pseudo random sequences, 

The two most popular methods of generating uniform random num-

bers are the multiplicative method and the mixed congruential method, The 

first method can be described by the recurrence formula 

X. 1 = AX. (modulo M) 
1+ 1 
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The second is d.escrib~d by . 

Xi+l = AXi + C (modulo M) (3 .18) 

where A, M and:C are ,constants usually chosen to yield a long period and 

other.desirable statistical properties of the sequence. On division of. 

AX. or AX. + C by Mand taking the remainder, the next ran.darn number is 
1 1 , · · · 

obtained. As each random number is obtained, it can be ~ivided by M to 

be normalized to the unit interval. The numbers so obtained will 

approximate a uniform,distribution very,closely. 

Only the multiplicative method will be considered in this section, 

The·generator described in Equation (3.17) may be easily irnplerne:Q.ted on 

any digital computer, The multiplier A is always chosen as 8K+3 where K 

is a positive in't;eger. · Th~s is done ,to insure .a full period of M/4, 

Also the starting nurnqer x0 must ~e an odd integer t9 obtain a full. 

period. There are no other requirements except that A must be chosen to 

yield good stati~tical properties in the generated nµrnbers. 
! 

Brown,and Rowland (32) have obtained satisfactory statistical. 

properties from a pseudo ran.darn generator with A as 19971, M = 220 , and 

x0 _as 31571, Thes~ generated numbers are.uniformly distributed on (0,1). 

These can be co~verted into a zero mean, unity variance, Gaussian distri-. 

bution by·the exa~t closed form.relation developed by Box and Muller 
' 

(33).. These are 

zl = (-2 ln X )1/2 
1 Cos 2irX2 (3, 19) 

z2 = {-2 ln X )1/2 
L 

Sin 2irX2 (3.20) 

where x1 and x2 are uniformly distributed random variables and z1 and z2 

are Gaussian rand9rn variables. 
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3.2.3 Parameter Selection 

The Bayless ,and Brigham model being simulate4 has ,the same parameters 

chosen as is indicated in Section 2.1.1, except whe:r;e differences are 

allowed tQ account ,for mqdel .uncertainty .. However a question _arises as, 

to the value of the input impulse tQ the.model, 

The impulsi~e reflection generator described by.Equation (2.4) has 

at the instant the pulse is initiated onto the system~ an output of value 

c. It is seen that the input impulse amplitude is .a function of the type 

of integration done and the step size chosen. As the value of c for the 

model has been chosen to be 1000, this means a small step size must be 

selected for the iterations to work. Th~ choice was made to.be ,0001, 

Hence given the step size and the m~thod of integration (fourth order 

Runge-Kutta), it is seen that the input impulse magnitude required is 

approximately 104, Also tqe initia~ conditions for the states are at 

zero and the initial variance conditions ,are chosen to be zero except v11 

the variance of state x1, the out;put of the reflection .generat;or, This 

value is taken to be 1000, 

It is thought that.the points discuss~d in.this section are those 

which required some explanation. The remainder,of the program involves 

the mechanics of implementing the flow chart, 

3,3 Comments 

A mµnber of experiments were conducted, These experiments ,are moti­

vated by the fo~lowing quest~ons, 

(1) To what degree is system identification achieved? 

(2) How significant a role does adaptive smoothing play in the 

estimation of t~e state? 
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(3) How do the results of adaptive filtering under uncertainty com­

pare with ordinary Kalman filteri~g for a known m9del? 

(4) How does aclaptive smoot};ling compare with smoothing with certain 

knowledge.of the model? 

(5) What are the effects of the level of measurement noise on the. 

performance of the estimator? 

3,4 Case With Equal Amplitude Poisson Input 

The modified Bayless and Brigham model is used with the parameter 

'a' in the F matrix in Equation (2,8) uncertain and simulated on the 

computer. The poisson input is generated as explained in.the previous 

section as is the Gaussian white noise process, The integration method 

is the Runge-Kutta fourth order method as explained previously. In the 

simulation present~d below, the integration step size is 0,1 msec, and 

the observation is taken every 0,5 msec, 

3,4,l Effects of Uncertainty in the Model 

In this experiment four values of 'a' are possible for the candidate 

models, They are 'a' = . 150, 100, 50, and 10 while the pther parameters 

are fixed at b = lOOn, c = 1000 and Q = 500, The candidate models under 

consideration are: 

f(t) = 

-1000 

100,r 

0 

0 

0 

1 

0 

- (1502 + 1002i) 
-300 

f(t) + 

1000 

0 

0 

w (t) 



-1000 0 

-1007T 0 

0 1 

-1000 0 

0 

0 1 

-1000 0 

-1007T 0 

0 1 

0 

-c1002+1002i) 
-200 

0 

- C5o2+ioo21r2) 

-100 

0 

- c102 +1002i) 
-20 

1000 

!,Ct) + 0 wCt) 

0 

1000 

!_Ct) + 0 w(t) 

0 

1000 

0 wCt) 

0 

The model with 'a' as 50 or e3 is true. The output and the measurement 

are assumed as 

yCt) = [O O l]!_Ct) 

and 

zCk) = yCtk) + vCk) 

The covariance of the plant is 

E{wCt)wC,)} = QcCt-,) 

where.Q is 500 and wCt) is poisson distributed. The covariance of the 

measurement noise is 

39 

.. 



40 

-5 where R is 10 and v(k) is zero mean Gaussian white noise, The initial 

conditions xi(to) and vx. (to) are 
l. 

0 

0 

0 

1000 

0 

0 

The a priori probability assigned to each model.is 

p (8.) = 0.25 
r i 

for au i 

0 0 

0 0 

0 0 

Result l, The desired state to be.estimated is x1 , the spiked out~ 

put from the reflection generator, A typical single run is shown in 

Figure 8, where the estimated and the actual values are plotted. The 

associated identification capability is plotted in Figure 9, It is seen 

that adaptive filtering provides estimates of the impulses after a 

noticeable lag, This is because of the discrete observation model, An 

event that occurs between observations is not noticed until the next ob-

servation, Also the identification of 83 as the true model is indicated 

after a number of samples, by the greater a posteriori probability 

Res.ult 2. Th~ effect of adaptive smoothing is. seen on the estimate 

of x1 , as its true and smoothed values are plotted in.Figure 10. Also 

the pbservation set from which this estimate x1 is made is shown in 

Figure 11, To bring out the comparison between the adaptive smoothing 

and filtering operations, a plot of true, filtered and smoothed values 

for the first fifty observations is shown in Figure 12. It is clearly 

seen that the proce~s of adaptive smoothing removes the lag in the 
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estimate as.observed in the filtered results and hence makes for accurate 

results. 

Result 3. To demonstrate the effects of adaptive filtering when 

compar~d with ordinary Kalman filtering for a known model, the true value, 

adaptive estimate, and Kalman estimate are plotted in ·Figure 13. Even 

with uncertainty in the model, the adaptive filtered estimate is almost 

the same as the Kalman filtered estimate. This result is significant, 

since it shows that one can accomplish accurate deconvolution even with 

model uncertainty. 

Result 4. It is important to judge the effects of adaptive 

smoothing as compared with nonadaptive smoothing, or smoothing under 

uncertainty. Figure 14 is a plot of the true value, .the adaptive, and 

nonadaptive smoothed estimates of x1 for the first fifty observations. 

There.seems to be very little difference in the results of the smoothing 

methods and model uncertainty does not impair the estimate of the state 

xi. 

Re~ult 5. Another experiment conducted is based on the assumption 

that there is uncertainty in th~ frequency of occurrence, Q, of i~pulses 

for the pois son. input, instead of uncertainty in the model. The model is 

fixed with the parameters of the model given as a= 50, b = 100TI, 

c = 1000, while Q has four possible values: 900, 700, 500, and 100. The 

third candidate model ind.axed by e3 is the actual model, and has a value 

of Q = 500. E~ch model.is given the same in~tial conditions as in the 

previous experiments and the same a priori probabilities. A single run 

is made and the actual and filtered values of x1 is plotted in Figure 15. 

Again a lag is noticed in the ,filtered estimate as was seen in the case 

of uncertainty in the paramete~ 'a'. Also the fdentification capability 
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so 

is seen in Figure 16 as the correct model reaches the ,highest 

a posteriori probability. It is noticed, however, that the number of . . ' . ' 

samples required for the sy~tem identificatiqn to.take place is larger. 

It is though~ that the degree of uncertainty in the ._system due to the 

unknown Q has a second order effect and consequent~y, a larger amount of 

data needs to be taken. The shape of sqme of the probability curves 

resemble a saw-tooth curve and if the observat~on is curtailed at say . 08. 

secs. the wrong model will have a higher a posteriori probability. Hence 

it can be in~erred that system identification is.not very reliable. 

However, even when the poste:r:ior probabilities are misleading, accurate 

deconvolution .is accomplished. 

Result 6. Adaptive smoot~ing is carried out.for t}J.e above case. 

Figure 17 shows a plot of true .. and smoothed values of tl).e state xI. In 

order to compare th~ adaptive smoothing and the .adaptive filtering esti­

mates, a plot of all three, the true, filtered, and smoothed values is 

shown in Figure 18 for the first fifty observations. As is evidenced, 

there is a definite improvement due to the;, process of adaptive smoothing 

in obtaining the estimate of xI. 

3.4.2 Effects of Measurement Noise. 

In the experiments conducted so far, the.measurement noise has been 

-5· assumed to be vezy low (R = _10 ), However, in practical situations, the 

level of noise is larger. It is of importance, therefore, to examine the 

effect of noise on the system performance. Hence, in the following 

experiment, the leve,1 of .meas4rement noise is raised by a factor of 100 

3 -5 to R = 10- and is compared with R = 10 where R is the variance.of the 

noise. 
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The system has the uncertain parameter 'a' in the model and has,four 

possible.values specified as 150, 100,. 50 and 10 .. The othe17 parameters 

are fixed as qefore. 

Result 1. A plot has.been shown in Figure 19 of the _true value and. 

the filtered estimate of x1 wi.th two different levels of noise. It is 

seen that with larger noise the estimate is poorer than with the case of 

less noise. In othez: words, the ratio of signal to nohe is made.smaller 

and the effect is seen to degrade the estimate. If the noise leve~ is 

further increased, the.re is a point where. the signal to ratio is such· 

that the noi~e prevails and the filter cannot _do accurate deconvolution, . 

Figure 20 shows the _observation that is pro·cessed by the filters to ob­

tain the desired estimates. It is seen that the noise is high enough to 

be noticeable when R = 10-3. 

Result 2 .. Adaptive smoothing is also conducted with two different 

levels of meas~reme.nt noise. As can be .observed in Figure _21, the 

adaptive smoothing process for the .larger level of measurement noise does 

not do as ,well as when the level of noise is smaller, 

3.5 Case With Random.Amplitude Poisson.Input 

For the model . to be, more .. real~stic ,. it is necessary that the input 

be RAP,distributed. The method of gl;}neration for this distribution has 

already been described in Section 3.2,2. The method of integration and 

the method of obtaining Gaussian measurement noi.se remain the same i The 

observations are at time intervals of .5 m~ecs. 
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3. 5 .1 Effects.,~ Uncert1;1.inty in the Model 

The same experiments.are C(?nducted on the modified Bayless and 

Brigham model as in Se.ct ion 3. 4 with the _parameter 'a' having possible 

values.of 150, 100, 50 and 10, while the other p1;1.rameters are.fixed as 

58 

before. The. same initial conditic;ms are used and each .model is given an 

equal a, priori probabi 1i ty, 

Result 1. A single stage run is made and the filtereq. results com-. 

pared with the ,actual· val.ues , in Figure 22, I~ is seen, however, that to 
. ~-

achieve a satisfactory system identification, the number.of observations 

must be.greatly incre~sed. This is shown,in Figure 2~. It is only in 

the ,last few hundred iterations .of the 400 observations taken, that the 

correct _model did achieve a respectable probaQility. In spite of the 

lack of reliability .of system identification, t:1].e estimated values ob- .. 

tained are quite satisfactory. As seen in the pr~vious section, the 

estimated values )ag behind the true state Xp due tQ the _discrete . 

observation. 

Result 2 •. Adaptive smoothing is implement~d next and the results 

plotted along with the t~e values of the stl:!,te x1 in Figure 24. Since 

the results are cluttered up, a magnified vers~on of the ,first 200 itera-

tions is plotted in Figure26, showing the true, filter~d and smoothed 

estimates. As in the previous experiments, it .is observed that the 

smoothing results show a remarkable_improvement in the ,estimates, re-

moving much of the lag •. Figure 25 shows a plot of the observation set 

from which these estimates -.have been made, . . 

Result 3.. For the case of an RAP distributeq. input, an experiment 

is conducted where the Q of the _model, namely.the frequency of occurrence. 

of the impulses in the input are uncert1;1.in and the other-model parameters 
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are known at values specified by Bayless and Brigham. In-other words, 

the four candidate.modeis have values,of Q as 900, 700, 500 and 100, the 

third model repr~senting the true one. Figure 27 is a plot of the true 

value of x1 when compared with the a4aptive filtered estimate. There is 

a definite lag in: the.estimated values as compared with the .true valu~s. 

The system identification capability is seen in. the plot shown. in· Figure. 

28. 

Result 4. Adaptive smoot4ing when.applied to the.above model with 

uncertijin Q gives results as plotted in Figure 29. A closer oqservation 

of the effect of a4aptive smoothing as. compared with filtering can be 

seen_in Figure 30 for the first 200 iterations. The pre>cess of adaptive 

smoothing reduces the lag in the filtered result~ to a.great extent, 

Result S. To compare Kalman filtering under certainty with adaptive 

filtering, an experin:ient.is conducted with the inoc!,el being fixed and the 

Q of the input be~ng uncertain as descriqed above. In Figure 31, plots 

of the true value, the .Kalm~n estimate, and the adaptive filtered .esti-

mate of x1 are shown. It is seen that the difference in the estimates is 

minimal and hence mqdel unce~tainty does not significantly degrade the 

results. This seems import~t b~cause·even though.the model.is uncert~in, 

the estimation scheme does nearly as well ·as in the case where the model . \ '' ' 

is completely known, 

3.5.2 Effects of Measurement Noise 

It is important to see the effect of measurement noise on adaptive 

filtering and.smoothing given a RAP input. As in.Section 3~4.2, the two 

-3 -5 levels of measurement nqise are chosen to be R = 10 and R =.10 · where 

R is the variance parameter of noise. The experiment is conducted with 
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the Q of the plant noise having four possible values: 900, 700, 500 and 

100. The oth~r parameters,are fixed; and known with certainty. 

Result 1. A single run for the two levels of measurement noise is 

made and adapti,..ve filtei:ing applied. , In Figure 32 the effects , of the 

larger measurement noise are seen, ~ the _measurement noise .is increased, 

a certain amount of degradation sets in and the estimate is worse than 

with th~ case of less measurement noise. It sh~uld be noted that if the 

noise level is. raised excessively, the, sisnal to noise ratio may be .so 

poor that the operation of filtering i.s usele~s, 

Result 2.. Adaptive smoothing for the two levels of measure~ent 

noise is conducted and the re~ults shown in Figu~e 33, As seen earlier, 

the effect of the higher measurement noise level is to.cause a deteriora-

tion in the estimate when compared with the small measure~ent noise 

h . -5 aving R =. 10 • However, for this,level of measurement no~se, estima-

t:i,.on of the .state x1 is still satisfacto:i;y, though the.magnitude of the 

estimates has dropped due.to smaller Kalman gains Kasa result of the 

measu:i;eme~t noise incre~se. 

3.6 Summary· 

A geophysical model has been simulated for the case of equal ampli­

tude po:i,.sson inputs an,d RAP inputs. It has been seen that though the 

theory.has been developed for Gauss:i,.an inputs, the estimation scheme 

worked well for the aboye inputs,, Deccmvoiution was achieved for the 

case of model unc_ertainty and the estimation was, not hampered due to the 

fact that the parame~ers of the model were unknawn. Adaptive smoothing 

was very effective _in improvirig the estimate of the state. System 

identification, however, was not verr reliable though adequate estimation 
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was .. always achieved. Even for higher levels of measurement noise,. 

deconvolution seemed to wofk, .a~though the signal to noise ratio had to 

be reasonable so as to make the filtering effective.. It is also possible 

to obtain from the same algorithm described herein, the predictive . . . 

operator x3, or the basic wavelet shape so that its inverse operator can 

be found out .,and the impulse respons~ obtaine~. 

It may so happen that the correct model is not o~e of the candi4ate. 

models because it is unknown, The next.chapter discusses .the effects 

this has on the estimation sche~e proposed. 



CHAPTER IV· 

EVALQATION 

4.1 Introduction 

The idea.of adaptive filtering as described in.the previous c~apters 

uses the unclerlying assumption that the true model must be one of the 

candidate models. Ordinarqy in.practice, the parameters in the model. 

are unknown ancl one .has t(? rely on judgement in selecti't).g the candidates,. 

It must be expected that the,paramete:r; set chosen for the candidate 

models may not include the true one. It is interesting then, to observe 

the effects this will have on the system. ThE:! motivating questions.for 

the following experiments·are: (1) Will the estimation scheme identify 

the model closest to the .true one? (2) If it does, will there be aIJ,y 

degradation irt the estimate? 

4.2 Effects of Improper Modeling 

The basic Bayless and Brigham_model has been taken and two candiclate 

models chosen withparan_ieters 'a' as 60. and 30. The true value of 'a' 

in the model is known to be ·50. Each is assigned an a priori probability 

of 0.5 and the same initial conditions are specified as in the previous· 

experiments. 

The candidate model equat~ons can be written as 
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-1000 0 0 1000 

el x = -100,r 0 -(602 +1002ir2) x + 0 w (4 .1) 

1 -120 0 

-1000 0 0 1000 

-100,r 0 - (302 +1002ir2) x + 0 w (4. 2) 

0 1 -60 0 

The observation model is 

Z = [O 0 1] X +.v (4 .3) 

where vis a zero mean white noise with variance 10-5 , 

Result 1. A single run is made with the above two candidate models 

assumed. Figure 34 shows the identification c~pability of the two 

models. It is seen that as more data are obtained the _model with the 

unknown parameter closest to the true value approac4es a probability of 

one. At the end of 2000 iterations the model with 'a' as 60, has a 

probability of .83 while 'a' as 30, has a probability of .17. 

Result 2. A plot of the true, filtered and smoothed estimates of 

the state x1 has been shown.in Figure 35 for 200 iterations, As evi­

denced, smoothing gives a more,accurate estimate and inspite of improper 

modeling, deconvolution is achieved. This is quite significant because 

even though the model may not have exact parameters, estimation can still 

succeed. 

When adaptive filtering is applied and the correct model is not 

included as a candidate model, then the model that most closely 
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represents the true model hopefully achieve.s the highest a posteriori 

probaQility. In effect, it is possible to narrow down.on the unknown 

parameters from a number of possiqle values, to 1:hose . centered aro~d the 

parameters of the. medel with the highe.st a .posteriori probability. This 

is. discussed in the next sectic;m. · 

4.3 ~terative Use 

In conducting the ,last experiment, it has been seen that the candi-

date model wit,h 'a' as 60. had a higher a posteriori probability than the 

candidate model with 'a' as 30.0. Hen~e; it can be inferred that the 

correct calue of 'a' is nearer to a value of 60.0. One.can repea~ the 

process with candidate models centered about .. 'a' as 60.0. 

In the following expe:r~ment, two values ·Of '.a' are selected. These 

are SO. and 70., respecttvely. 

The candidate model equat~ons.are 

-1000 

. 
x = -1007T. 

0 

-1000 

-1007T 

0 

0 

0 

1 

0 

0 

1 

0 

-cso2+10021r2 ) 

-100 

0 

-(702+10027T2) 

-140 

1000. 

x + 0 w 

0 

1000 

x + 0 w 

0 

with the same observation model anq initial conditions as before. 

(4. 4) 

(4.5) 

Result 1. For a single run,. the system identifJ_cation capability 
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has been. observed in Figure 36. As can be seen, the candidate model with 

'a' as SO. reached a higher probability when the ob:servation set was. 

curtailed and the.experiment stqpped. On runn:i,.ng th.e above two models, 

for a.longer-period, it was found t~at the a posteriori probability of 

the correct model dropped off to a very low value. However, on observing 

the estimation of the state and comparing with the true value, it was 

found that,good estimation was still achieved. Hence one may conclude 

that the system identification cannot be relied upon though the. 

deconvolution capability seems reliable 1 

It has been proved, that for the case of Gaussian inputs, the true 

mqdel will eventually converge to ,an a posterior~ probability of-one given 

enough data (18). However, for the geophysical process being modeled, 

the inP,uts.are a sequence of random poisson d:i,.stribut~d impulses and con':' 

vergence has not been proved for this·case. One reason for the .conver­

gence.not being obtained in this-experiment,may be attributed to a 

certain sequence of noise ,that.was implemented to generate the observa­

t:i,.ons, The fact . that_ the in,puts are .. non:-Gaussian seems to be a possible 

reason. 

To show the reliability of the filter, a Monte Carlo analysis should 

be conducted for different noise sequences. Then a statistical evalua­

tion for these various noisy observations could be made. However, due to 

the inherent expense of Mont~ Carlo si11R1la~ion, these experiments were 

not.conducted.· 

4.4 Summary 

It has been observed that even, with some of the paramc:;,ters in the 

model unknown, by a method of reducti9n and iteratiqn, tQe parameter 
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values can be_identified, though not reliably, Estimation of the 

desired state is achie~ed, and the algori~hm seems a promising way to 

accomplish deconvolution. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

In this work, a new technique for solving the deconvolution problem 

for seismic processes in the time domain has been postulated. The tech­

nique proposed is a modified version of Kalman filter theory which re­

quires a state space formulation, wherein a model is built to represent 

the seismic reflection process. While acknowledging the fact that this 

model is only a simplified version of the rather complex seismic problem, 

nevertheless, it gives an indication as to whether the technique being 

pursued is feasible. 

Some of the model parameters have been assumed unknown as often 

happens in practical seismic problems. It has been shown that the 

adaptive filtering scheme proposed in this work accomplishes accurate 

deconvolution in spite of model uncertainty. 

This data processing problem is basically a post experimental 

analysis type problem and therefore, on line processing is not required. 

A smoothing operation was,derived to improve results. The smoothing and 

filtering techniques presented here are derived on the basis of inputs 

that are Gaussian white noise. Since the inputs to the geophysical model 

are more accurately modeled as poisson in nature, digital simulations 

were conducted to check whether the algorithms proposed are adequate for 

the task of deconvolution. 
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The algorithms that have been presented have an advantage over those 

presently used in that they are valid for both time invariant systems and 

time varying systems. A number of experiments have been conducted to 

demonstrate the performance of the methods presented here under a variety 

of conditions for deconvolution. These include a variation in measure­

ment noise intensity, uncertainty in the plant noise and the model 

parameters, comparison of adaptive and non-adaptive filtering and smooth­

ing and the effects of incorrect modeling. In all cases the deconvolu­

tion capabilities of the algorithm seemed adequate under reasonable 

signal to noise levels. The algorithm did not learn the true values of 

the unknown parameters with any degree of reliability, as was previously 

hoped for. This may be attributed to the use of poisson inputs. 

5.2 Suggestions for Further Research 

In this research, emphasis has been on demonstrating the applicabil­

ity of the Kalman filter theory under various circumstances and uncer­

tainties in the model, rather than on the theoretical aspects of 

modeling. Research in obtaining a suitable dynamic structure to repre­

sent the seismic reflection process should be rewarding. The choice of 

the proper number of states to adequately model a given process is not an 

easy one. While there is a definite need to assume a more random wavelet 

rather than a fixed configuration taken in this work, the order of the 

system dynamics should not be increased to such an extent as to make it 

computationally inefficient. 

The method of obtaining a suitable model to represent the seismic 

problem seems to involve taking a closer look at the physics of the 

seismic reflection process. This involves the propagation of waves in an 
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elastic media and the reflection and transmission coefficients that arise 

as well as the angle of incidence at the point of impact with the seismic 

layer. 

The method of deriving an appropriate model by taking a state space 

model consistent with the covariance information is also possible, but 

the state of the art is not developed sufficiently enough for the time 

variant case. 

When a suitable state space model has been developed, which involves 

constant parameters (time invariant systems), then there are recursive 

algorithms that avoid solving the Riccati equations, thereby obtaining 

significant computational advantages. These procedures involve the so­

called Chandrasekhar type algorithms (34). 

In the work done, only synthetic data has been used. A comparison 

with other methods of solving the deconvolution problem such as minimum 

phase filtering, homomorphic filtering and maxinrum entropy methods is 

suggested using the synthetic data. 

Finally real field data could be used and the versatility of.the 

filtering and smoothing operations developed here verified and compared 

with the existing techniques mentioned above. 

5.3 Conclusions 

The problem of deconvolution using the Kalman filter theory with 

uncertain modeling knowledge has been proposed and solved. 

It has been seen that even for c~ses of model uncertainty, that is, 

even when the parameters in the model are not clearly defined that the 

filtering gives good estimates. However the effect of smoothing, pro­

posed as a process to follow the filtering operation has been shown to 



refine the estimates to a great extent. 

It is significant to point out.that the results were not degraded 

excessively due to model uncertainty in both adaptive filtering and 

adaptive smoothing operations. 
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System identification seems to be unreliable and there is no way of 

determining exactly when to curtail the use of data in filtering. How­

ever,, in spite of this, the estimates obtained did verify that the 

deconvolution problem can be solved using the suggested method. 

Also, as a matter of interest, the wavelet input could also be 

estimated from the filtering and smoothing algorithms. This wavelet is 

called the predictive operator in minimum phase filtering from which the 

inverse operator is designed and implemented. 

Thus the objectives mentioned in the beginning of this work have 

been met. Further work in the deconvolution problem using this approach 

should be rewarding. 



SELECTED BIBLIOGRAPHY 

(1) Wiggins, R, A., and E. A. Robinson. "Recursive Solution to the 
Multichannel Filtering Problem." Journal of Geophysical 
Research, Vol. 70, No. 8 (1965), 1885-1891. 

(2) Wiener, N. Extrapolation, Ipterpolation and Smoothin& of Stationary 
Time Series. New York: John Wiley and Sons, Inc., 1970. 

(3) Kalman, R. E., and R. S. Bucy. "New Results in Linear Filtering and 
Prediction Theory." ASME Transactions: Journal of Basic 
Engg., Vol. 830 (1961~5-108. 

(4) Kalman, R. E. "A New Approach to Linear Filtering and Prediction 
Problems." ~ Transactions: Journal of Basic~·, Vol, 

· 820 (1960), 35-45. 

(5) Robinson, E. A. "Predictive Decomposition of Seismic Traces." 
Geophysics, Vol. 22 (1957), 767-778. 

(6) Robinson, E. A. "Mathematical Development of Discrete Filters for 
the Det~ction of Nuclear Explosions . 11 Journal ~ Geophysical 
Research, Vol. 68, No. 19 (1963), 5559-5567~ 

(7) Rice, R. B. "Inverse Convolution Filters." Geophysics, Vol. 27 
(1962), 4-12. 

(8) Kunetz, G. "Essaid' analyse de traces seimiques." Geophysical 
Prospecting, Vol. 9 (1962), 317-341. 

(9) Robinson, E. A., and S. TreiteL "Principles of Digital Wiener 
Filtering." Geophysical Prospecting, Vol, 15 (1967), 311-333. 

(10) Clarke, G. K. C. "Time Varying Deconvolution Filters." Geophysics, 
Vol. 33 (1968), 936-944. 

(11) Peacock, K. L., and S. Treitel. "Predictive Deconvolution:Theory 
and Practice." Geophysics, Vol. 34 (1969), 155-169. 

(12) Treitel, S. "The Complex Weiner Filter." Geophysics, Vol. 39 
(1974), 169-173. 

(13) Ulrych, T. J. "Application of Homomorphic Filtering to Seismology." 
Geophysics, Vol. 36 (1971), 650-660. 

86 



(14) 

(15) 

(16) 

(17) 

(18) 

87 

Bayless, J. W., and E. D. Brigham. "Application of Kalman Filtering 
to Continuous Signal Restoration." Geophysics, Vol: 35 (1970), 
2-23. 

Norman, N. D. 11A Kalman Filter Approach to the Deconvolution of 
Seismic Signals." Geophysics, Vol. 39 (1974), 1-13. 

Ricker, .N. "The Form and Nature of Seismic Waves and the Structure 
of Seismograms. 11 Geophysics, Vol. 5 (1940), 348-366. 

Hilborn, C. G., and Lainiotis, D. G. "Optimal Est.imation in 
Presence of Unknown Parameters." IEEE Transactions£!!.. Systems 
Science and Cybernetics, Vol. CCS-5 (1969), 109-115. 

Lee., A. Y., and C. S. Sims. "Adaptive Estimation and Stochastic 
Control for Uncertain Models." International Journal of 
Control, Vol. 19 (1974), 625-640. 

(19) Meditch, J, S. Stochastic Optimal Linear Estimation and Control. 
McGraw HiU Inc., 1969. 

(20) 

(21) 

New·York: 

Bryson, A. E., Jr., and M. Frazier. "Smoothing for Linear and Non­
Linear Dynamic Systems. 11 Proc •. £!!._ Optimal System Synthesis 
Conf., Sept. 11-13, 1962, Wright Patterson and APB, Ohio. 

Rauch, H. E, "Solution to the Linear Smoothing Problem, 11 IEEE 
Transactions on Automatic Control, Vol. AC-8 (1963), 37i='372, 

(22) Meditch, J. S. "On.Optimal Linear Smoothing Theory." Information 
and Control, Vol, 10 (1961), 598-615. 

(23) 

(24) 

(25) 

Fraser, D. C. "On the Application of Optimal Linear Smoothing Tech­
. niques to Linear and Non Linear Dynamic Systems." (Unpub, 

Ph.D. thesis, M.I.T., January, 1967). 

Mehra, R. K. "On Optimal and Suboptimal Linear Smoothing." Proc. 
National Electronics~·, (1968), 119-124. 

Mehra, R. K., and A. E. Bryson, Jr. "Linear Smoothing Using Meas­
urements Containing Noise With an Application to Inertial 
Navigation." IEEE Transactions on Automatic Control, Vol. 
AC-13 (1968), 496-503. ~ . 

(26) Bryson, A. E., Jr,, and L, J. Henrikson. "Estimation Using Sampled 
Data Containing Sequentially Correlated Noise." Tech. Report, 
Harvard Univ. Div. of Applied Engg. and Physics, Cambridge, 
Mass. , (1967). 

(27) Kaila th, T., and P. Frost, "An Innovations Approach to Least 
Squares Estimation-Part 11 Linear Smoothing in Additive Noise." 
IEEE Transactions on Automatic Control, Vol, AC-13 (1968), 
655-660. 



(28) Hamming) R. W. Numerical Methods !2!_ Scientists and Engineers. 

(29) 

(30) 

New York: McGraw Hill Inc.;·· 1962. · · 

Papou1is, A. Probability) Random Variables and Stochastic 
Processes. New York: McGraw Hill Inc.:-T965. . 

Beutler) L. J., and 0, A. Z. Leneman. "The _Spectral Analysis of 
· Impulse Process~s." Inf9rrnation . and Control, Vol. 12 (1968) J 

236-258. · 

88 

(31) Chambers, R. P. "Random Number Generation." IEEE Spectrum, Vol. 4 
(1967). 

(32) Brown, R. J,, and J. · R. Rowland, "Autocorrelation Significance iµ 
Digital Pseudo Random Number Generation." Internal Tech. 
Report, School of Electrical Engg., Georgia Institute of Tech­
nology, Atlanta, Georgia, (1970), 1-20. 

(33) Box~. G. E. P., and M. E. Muller. "A Note on the Generation of 
Normal Deviates." Annals of Mathematical Statistics, _Vol. 28 
(1958), 610~611. 

(34) Kailath, T. "Some New Algorithms for Recursive Estimation in 
Constant Linear Systems." IEEE Transaction on Information 
Theorr, Vol. IT-19 (1973), 756:"760, 

• 



APPENDIX 

COMPUTER PROGRAM FOR SIMULATING THE MODIFIED 

BAYLESS AND BRIGHAM MODEL, USING 

ADAPTIVE KALMAN FILTERS 
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c~, 
c,, 
c• **************•********** 
C* THIS PROGRAM FINDS t~E IMPULSE kESPONSE OF THE EARTH XHATll,11 
c,, AFTER GENERAT!f.G A SEISMIC TRACE. THIS IS FOR AN EQUAL 
C* .!\MPLITUDF PC'ISSJN 'INPUT. FOUR MODELS ARE CHOSEN AND THE 
C* PAKAMETER$ IN THE MJCEL ARE FIXED EXCEPT ALPHA WHICH 'HAS VALUES OF 
c,, l~·J, lOC, 5C, 1.G. 
C* TI-E ITERATION IS DONE EVERY O. l MSECS • .iHI LE: THE OBSERVATION IS 
C* TAKEN EVERY 0.5 MSECS, 
c,, COVAR IANC~ OF THE PLANT -='500. 
C* CC:VAR JAN CE Of Tt-<E MEASUREMENT NOISE R=l0**-5 
C* XIS TRL~ STATE. 
C• XI-AT IS FILTEREU STATE ESTIMATE. 
("' XSAT IS SMOOTl--=c STAT~·ESTIMATE. 
C* VAR IS THE CCVAR!A~CE CF THE ERROR. 
(;' FCtl. TH[ CASE •Jf KANOOM AMPLITUDE POISSON·INPLIT, CHANGE 
c,:, PULSE1=10**4*h wl-lERE v.G IS A RANDOM VARIABLE HAVING THE FIRST 
c,, H.O MOMElvTS ,\S •J A~U 1/3. THE COVARIANCE OF THE PLAl,;T NOISE IS 
C* CI-ANGED 10 ~/3, 
c~ THE SudµCLTl~ES USEC ARE RANDU, RMGN, MODEL, RKUT, ADAPT, CHANGE 
C* SMJOTH. 
c• •••••••••••••*4********** 
c,., 

lJ l Ml" NS IU t, Tl 'I H 2 CC I , T 11-lE l( 200 I , lI MM ( 2 00 I , l<HATI 1 O, 11 , XHATl 110, 11, 
ex HAT 2 I 10 , 1. I , X 1-<A T 3 11 O, l 1, XHA T 4 I 10, l I, lO B SI 1000 I , VAR 11 10, 101 , 
C VA;, 2 Cl O, l QI , \/AA 3 ( 10, i. 0 I , VAR4 ( l O, 10 I , YF ( 10 00 I, VAR ( l O, l), X ( 10, 10 I, 
CXO ( 1 0, 10 ! , Ak R ( 10 I ,BNNO VI 10 I , APR OB I 101 , ALR ( 10, 101 , ALKR 110 I , 
C Yh A Tl I l u, l I , Y !-< AT 2 110, 11 , Y HAT 3 ( 10, 11, YHAT 4 ( 10, 11 , CO VAR l( 10, 101 , 
C UJ V,\R 2 I t O, l C) , CO V AR3 I l O, 10 I , C OVAR4 I l0, 10 I , Z 11000 I , XS AT (10, 1), 
ex I) 5 ,H ( lJ , 1 I , X 11 1 O col, X 21 1000 I , X 31 l 0001 , xx 11 1000 l , XX2 I l 0001 , 
CXX3(100Ul,XXXl(lOCO),XXX21lOOOl,XXX3(lOOOl,XSAT1110,ll, 
CM l( 1000 I ,,111;:1 lOOGI ,AA31 lOOdl ,BBll 1000),BB2(10001 ,BB3(10001, 
CCC l ( 10 OU 1, C Ct ll 00 0 I , CC3 I 1000 I, DD 11 1000 1,002( 1000 I , 00 311000 I , 
C TT 1 ( lo CO I , T 12 ( l 00 0 I , T T3 11000 I , T T4 I l 000 I, TT5 I 1000 I , TT6 C 1000 1, 
CUUl( lOuO I ,UlJ2( lCOCI ,UU3( 10001 ,UL4( 10001 ,Ut.,5( 10001 ,l.JU6(1000I, 
C VV 1 I l I.ii.ill I , V v 2 ( t UO U I , VV3 I 1000 I , V V '+I 1000 I, V V 5110001 , VV61 10001, 
Cw ,H ( 1000) , ;; ~2 ( l 00 C) , w loi3 ( l 000) , II w4 I 100'0 I , WW5 (l 000 I , WW6 (1000 1, 
ex us ,IT l( l O, l I , X SAT 21 l O, 11 , XO SAT 2( 10, 11 , XSA T3 I i'o, 11 , XO SA T3 (l O ,11 , 
CXSAT4(1u,l) ,XDSAT4(1:J,ll 

c;J•IMIJN/VAR!F~/~TRL~( 3,31 
co~~JN/PARAM/NV,NX,NY,RRR,ANNOV,E 
CC..,~ON/~EL/H (~ ,3) ,HT13 ,11, R, ZZ, AJ (10,101 
CUMMON/COEFF/~,ALFHA 
r.o~~CI\/KKKKK/!OeS 
CC~MGN/PPPP/FULSEl 
lO~MON/KALMtN/AKGl!N(IO,ll 
cc~MCN/S~FETI-/S~GA!N(j,]l,N,AMGAIN(3,3l 
r= c:. cor:, 
Y'1EAN=U.v 
Fi<=l .0/1 O**o 
S !G2=SQR TC "I· I 
"=RR 
t..Y=3 
NX=3 
NV=3 
~Vl=~V+l 
I\Xl =I\X+l 
NYl:NY+l 
I~=O 
I Ol:I S =5 
·ALPHA= 50. C 

io 



TIMEll l:aO.O 
11=1 
MX:a8l43 

l CALL RAI\CU (f'X,MY,YFL I 
i"X=l'Y 

c 
c; 

10 

15 

20 

21 

2? 
,C 
c 
c 

CJ=~oo. 
~loi=l eO/Q 
ZOBSIMl=-QQ*ALCG!l.-YFLI 
TIME(M+lJ:aZCHS(Ml+TIME(Ml 
TDIFF=T ll'E(l'+l l-T 11'-IE(Ml 
IF ITDifF.L~.J.00011 GC TO 1 
IF ITIME(MI.GE.0.11 GO TO 2 
TI~EllMJ:aTl~EIMI 
1'1=1"+ l 
GO TO l 
COT INUE 

CHANG~ THE RANDCM FU~CTION TO A POISSON DISTRIBUTED FUNCTION. 
co 3 l=l,4 
XII,11=0.0 
DO 5 I=l.,4 
APRCel I l=0.2S 
DlJ 1.iJ I =l ,4 . 
XHAT 11 I, ll=C. C 
XHAT2( 1,11=0.0 
XH AT 3 I I , 11 = C. C 

Xi-'AT4( I, l ):aC .O 
h(l,ll=O.O 
H( 1, 21=0.0 
t-;(l,31=1.0 
DO 14 I=l ,3 
HTC! ,ll=Hll,IJ 
co 15 I=l,3 
DJ 15 J=l,3 
IJARUl,J):aC.C 
VAP2(1,Jl=O.O 
IJAFi3(I ,Jl=C.C 
VH4( I,Jl=C.O 

VAP-1 ll ,l. J:alOOO. 
VAR211,ll=1CCJ. 
VAR3C 1, l l=lCCC. 
VAR4 ll ,l J=ll.lOO. 
KK=2CO 
IX=31571 
DUIY=O.l 
MM=2 
cri 20 1,.1,, 
DC 20 J=l ,3 
AJ(I,JJ=O.O 
/lJ I 1, I I= 1.0 
CALL RMGI\ (Yf'IEAl\,SIG2,IX,DUM,KK,YFI 
DO 70 N=l,lCCQ 
Tlf'IM(MMl=ABS(TlMEl(MMI-N*EI 
IF (TIMM(f'IMl,LE,O~OOU051 GO TO 21 
GO TO 22 
PULSE1=10**4 
MM=MM+ l 
GU TO 25 
PULS 1:1 =-500, 

PULSE SHOULD APPEAR CNLY AT THE TIME OF ITERATIGN,CORRESPONDING TO 
TO TH~ INTEGRATION GOING ON.THIS TIME HAS ALREADY BEEN CALCULATED 
PREVIOlJSLY FCF A FIXED,. 

CONT INlJE 
Q='iOO • 
ALPHA=50.0 

DO 35 J=l,4 
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CALL MCDEL (X,XDI 
35 CALL Rl<UT { J,f. ,I\X ,X,XO,X(4,1.I ! 

If (IDBS.EQ.51 GO TO 40 
GC TC 45 

4lJ IN =IN+ l 
ZI IN l=XI 3, l l+YF( IN) 
ZZ;=ZIHd 
IOBS=l 
GO TO 50 

45 IOBS=ICBS+l 
~O CONTINLE 

c 

ALPHA= 150 .O 
CALL ACAPT IXHATl,VARl,YHATl,CCVARll 
AkRI ll=RRR 
i:JNNUVI l l=AN!\CV 
TTllNl=IITRUE(l ,11 
TT2(Nl=VTRUE( l,21 
TT3(Nl=VTAU~ll,31 
TT41Nl=IITRUE<2,21 
TT5(Nl=VTPUE12,:I 
TT6INl=VTRUEl3,31 

C ALPHA IS GIVEN A VALLE OF 150. AND THE INVEl<SE COVARIANCE OF .THE 
C fRRC~ IS STCREC IN T~E TT ARRAYS. 
r 

c 

ALPHA=tcc •. o 
CALL ADAPT {XHAT2,VAR2,Yt,,AT2,COVAR21 
AR.R(2l=RRR 
BNNOV( 21=AN'10i 
UUllNl=VTRUEll,11 
UU21Nl=VTAUE(l,21 
UU3{Nl=VTRUE ( l, ~.) 
UU4(Nl=IITRUl(2421 
UU51Nl=VTRUEl2,3l 
UU61Nl=VTRUE13,3l 

C ALPHA IS GlVEI\ A VALUE OF 100. ANO THE INVERSE COVARIANCE OF THE 
C ~RAOR IS STOREC IN T~E UU ARRAYS. 
c 

c 

ALPHA=5o.o 
CALL ADAPT (Xt<AT3,VAR3 1 YHAT3,COVAR31 
ARR( 31 =RRR. 
BNNOVl?l=ANNIJV 
VVl(Nl=VTRUFll,11 
VV21Nl=IITRGell,21 
VV 31N l=VTRUEI 1, 31 
VV4 ( l\·I =\/TRUE It ,.21 
VVS(Nl=VTRUEIZ,31 
VV61Nl=VTRUEl3,JI 

C ALPHA IS GIVEN A VALLE OF 50. AND THE INVERSE COVARIAI\CE OF THE 
C ERROR IS STOREC IN T~E VV ARRAYS. 
c 

c 

ALPMA=lOeO 
CALL ADAPT IXHAT4,VA~4,YHAT4,COVAR41 
ARR(41=RRR 
BNNOV(41=ANI\CV 
WWllNl=VTRUEll,11 

W~2 IN I =VTRLE 11 ,2 I 
l>iW3(NI =vTRUE"l l ,31 
WW4(Nl=VTRUEl2121 
~w5(Nl=vTRUE12,31 
w~61Nl=vTRL[(3,?l 

C ALPHA IS GlvEN A VALLE CF 10. AND THE INVERSE COVARIANCE OF THE 
C ERROR IS STOREC IN T~E WW ARRAYS. 



c 
00' 210 l=l,'• 
XHATH I, ll=YH.Hl( I,11 
XHAT2 (I, l l=Yt-AT2 C 1, 1) 
XHAT3( I ,ll=HIAT3( I,11 
XtiAT4( I, 11=YHT4( I,11 

210 CCI\TINUE . 
c 
C T~E ESTIMATfS OF THE FOUR MODELS ARE PLACED IN XHAT ARR~YS TO BE 
C USED IN THE NEAT UPDATE. 

DO 250 .!=1,3 
cu 250 J=l, 3 
VA?l( I ,Jl=CCVARlC !,JI 
VAR21 I ,J l=CC~I\R2( I ,JI 
VAR3( I ,J l=CCVAi-!3( l,J I 
VA R't I I , JI =C (VA R4 ( I , JI 

250 CONTINUE 
C Tt-E CCVAflIA~CE Cf Tt;E ERROR OF THE FOUR MODELS ARE PLACED IN VAR 
C ARRAYS TO BE USED!~ THE NEXT UPCATEo 

I F ( IClll S .NE • 1 I GO TO 3 5 5 
c 
C CI\LY UPDATE THE PROBABILITY WHEN T~E OBSERVATION IS TAKEN. 
c 

:10 

320 
c 

CC 320 I=l,4 
DO 320 J=l,4 
IF II.NE.JI GQ TU 310 
GC TC 320 

. ALI< ( J, l l = I ARR ( J II ARR (II IO() .5*EXP(-0.5*BNNOV (JI **2*ARR IJ )+o'.5* 
CBI\JNOV( I l>1-*2*A~R( ! II 

CCI\Tll\Uf 

C HAVE ORTAINEC ThE LIKELIHUOD RATIO. 
c 

33'.J 
330 

350 
c 

DO 330 I=l,'• 
ALKH( 1 l=C.O 
DO 330 J=l,4 
IF (I.NE.JI GC.TO .335 
GO TO 33C 

ALKRl!l=ALKR(ll+ALKIJ,Il*IAPROB(JI/APROB(III 
CONTINUE 
co 350 l=l, 4 
AP~OBlll=l.0/11.0+ALKR(,J)I 

C HAVE UPOAT.EC T~E 
c 

~ POSTERIORI PROSABILITV OF THE CANDIDATE MODELS~ 

!55 CO'-iT!Nl..F 
C'l 360 I=l, 3 
XHAT( I ,1 l=XbHl I· J, l I *AP RCS I 11 +XHAT 21 I, ll*APROB( 21 +XHAT3( 1, U* 

CIP~OBl31+XHAT41!,ll*APR08141 
3t,O CJNT !NU~ 

X\ IN l·=i< ( 1 ,11 
X21N l=XI 2, 11 
X 3. 11\ I =X ( 3, 11 

360 .<XllNl=XHAT 11,ll 

c 

XX2CNl=XHATI 2, 11 
AX31Nl=XbAT13,1.I 

C PLACED THE ESTIMATES lN ARR/\YS FOR USE (N PLCTT!f-<G ANO STORAGE. 
c 

AAllM=XHATllt,11 
AA21Nl=XHAT!12,ll 
AA3 C 1\1 =XHi\Tl 13, 11 
B8l(Nl=XHAT211,11 
882CNl=X~AT212,ll 
BIB(Nl=XbAT2(3,11 
CClCNl=XHAT:I 1,11 
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CC2CNl=X~AT312,ll 
CC31Nl•XHAT313,11 
DO .U N I• XHA T 4 I t, 11 
DD2(N)=XHllT412,11 
OU3INl•XHAT413,11 

70 CONTINUE 

c 

XSAT 14 ,l l•O.]. 
EE=-0,0001· 

C HAVE TC INTEGKtTE BACKwARDS FOR THE SMOORTHING PROCESS. 
c 

XSATl! 1, Jl=,\A l( lOCCI 
XSAT1(2,ll=ftt2110001 
XSATll 3, 11 =Atdl lOCCI 
XSAT211, ll=tlbll 10001 
XSAT212.,ll=i::E2110001 
XSAT213,li•BA!llOCCI 
XS AT 311, 1 l=CCll lOCO I 
XSAT312,ll=CC?llOGOI 
XSAT313, ll=CC31 lOCCI 
XSAT4!1,ll=ODlllOCOl 
XSAT412,ll=OClllOCOI 
XSAT4!3,li=003110CCI 

C THE T~RMlNAL CCNCITICN IS SATISFIED. 
c 

1005 

lUlO 
c 

DO 1070 M=l,<;'79 
N=lOOO-M 

Q=5(h). 
ALPHA= 15Co 
CALL C~ANGE IUUl,i.JU2,UU3,UU4,UlJ5,l.iUcl 
00 l.005 !=l. ,3 . 
DO 1005 J=l,~ 
SMGAIN(I,Jl=Al"GAINI !,JI 
DO 1010 J=l,4 
CALL SMOOTH l)SAT1,XDSAT1,AA1,AA2,AA31 

CALL RKUT IJ,EE,NX,XSAT1,XDSATl,XSATl4,l II 

c FOR ALPHA=l:C, lHE SMOOTHED ESTIMATE IS OBTAINED. 
c 

J.Ol. 5 

1 u? o 
c 

XSAT(4,ll=X~ATl4,11-EE 
ALPHA= lOCoO 
CALL CHANGE ITT1,TT2,TT3,TT4,TT5,TT61 
DD 1015 ·l=l d . 
ro 1015 J=l, 3 

SMGAl~II,J1=A~GA!N(l,JI 
DO 1020 J=l,4 . 

CALL SMCGT~ IXSAT2,XCSAT2,BBl,BB2~BB31 
CALL R Kl. T I J ,·EE:,NX ,XSAT2 ,XDSAT2 ,XSAT 14, 111 

c FOR IILP~.A=l.00, Tt-E S~OUTHED ESTIMATE IS OBTAINED. 
c 

1025 

l ·J iO 
( 

XSATl4,ll=X~AT14,ll-EE 
ALPHh5v.O 
CALL CHI\NGF I\/Vl,VV2,V113,\/V4,\/V5,VV61 
0') 1025 !=1, 3 
DC 1025 J=l ,3 
SMGAINI I ,JI =A~GAI NI I ,Jl 
CQ 1030 J= l, 4 
CALL SMCCTH IXSAT3,XDSAT3,CC1,CC2,CC31 

CALL RKLT IJ,EE,NX,XSAT3,XDSAT3,XSAT(4,lll 

c FCR ALPHA=50,T~E $MUCT~ED ESTIMATE IS OBTAINED. 
c 

XSAT 14, I l=XSAT( 4, I I-EE 
IILPHA=l O • 0 
CALL CHANGE (Wkl,~W2,hW3,WW4,Wh5,WW&I 

-~ 



I 'J4J 
c 

DO 1035 l=l,3 
GO l 035 J=l ,3 
,.~1,A lr-.il 1,Jl=A1'1GAI I\( I ,JI 
en 1040 J=l,4 
CALL SMCCTH IXSAT4,XDSAT4,0Dl,DC2,D031 
CALL RKUT (J,~E,NX,XSAT4,XDSAT4,XSAT(4,lll 

c FCR ALPHA=lO,ThE S~CCThED ESTIMATE IS GBTAINEO. 
c 

1Jl·5 
c 

i;o 1045 I=l,3 
XS HI I ,11 =APRCi.l 11 l*XSATl (I, l l+APROB( 21 *XS llT2 I I, 11 + 

LAP KllB ( 31 * X Sil T 3 I I, 11 +A PROB ( 41 * XSAT4 ( l , 11 
COI\T 11\UE 

c 
c 

~OUNJ THE SMOOTH~U ESTIMATES BY THE WEIGHTED SUM OF THE CANDIDATE 
MCD!L ESTI~llTES. 

c 

c 

XXXl(Nl=XSAT(l,11 
XXX2(Nl=XSATC2,ll 

XXX3(1\l=XSATl3,ll 

c TH S'IOOTHC VAUJES ARE STORED IN ARRAYS FOR FURTHER liSE. 
c 
1-)7) CiJNTINLE 

XXX 1 ClOl>O l=XX 111000 I 
c 
c 

APPROPRIATE kR!TE STATEMEI\TS MUST BE PUT WhEREVER NECESSARY. 

STOP 
f-NO 

SUJROUT!Ni ~COEL (X,XOI 

************************* 
THIS PROGRAM GIVES THE STATE SPACE MODEL OF THE GEOPHYSICAL 
SYSTEM FkC~ w~!CH ThE OBSERVATIONS ARE OBTAINED. 
Xll,11 IS THE STATE THAT IS DESIRED IN DECCNVOLUT[ON. IT [S THE 
IMPULSE ~~SP.JNSE Of THE EARTH. 
The PRDGKAM IS FCR A MAXIMUM CF TEN FIRST ORCER DIFFERENTIAL 
FQU~TIONS. IF ~ORE ARE REQUIRED THEN REDIMENSION THE X AND XDo 
******************~****** 

OIMENSICN X(lO,lCI ,XD00,101 
CUMMON/COEFF/J,ALPHA 
C Cl'"CN/ P PFPll'ULS ~ l 
XO( 1,11=-lOC!...*·X( l,ll+lOOOo*PULSEl 
X DI 2, 11 = 31.4 • 7 *XI l , 11-1 O* * 5 *XI 3, 11 

XO I 3, 1 I =XI 2 , l 1-2 • *AL PHA*X (3, ll 
Ki:TURN 
ENC 

MDELOOlO 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDELCCCC 
MDEL0020 
MOEL0030 
MDEL0040 
MDEL0050 
MDEL0060 
MOEL0070 
MOEL0080 
MDEL0090 
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SUBROUTINf R~41KUTTA,OT,NX,X,DX,TMJ RK4 0010 
C RK4 CCCC 
L ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••RK4 CCCC 
C SU BROuT INF RK4 IIH EGR A TES Uf>TO 50 Fl RS T ORDER 01 FFE RE NTI AL EQUATIONS RK4 CCCC 

lf\ lHE FC~M OF t TEC\ ev FIVE ARR.av. . RK4 cccc 
C IF MORE AII.E REWL!II.ED THEN WE NEED TC REDIMEC\SION XA,DXA ARRAYS. RK4 CCCC 
C THIS ROUTINF USi:S RUNGE KUTTA FOURTH ORDER INTEGRATION TECHNIQUE. RK4 CCCC 
C KUTTA TAKES THF VALUES 1,2,3,4. RK4 CCCC 
COT 15 THE STEP SllE OF INTEGRATICN. RK4 CCCC 
C ~X I~ T~E NU~H~R 0F EQUATIONS TO BE INTEGRATED. RK4 CCCC 
C XIS THE STATE VECTOR REPRESENTING SET OF FIRST ORDER DIFFERENTIAL RK4 CCCC 
C EWUAT!UNS TU Bf INTEGRATED. RK4 CCCC 
C RK4 CCCC 
C JX IS THE DfR!v~TIVE CF X. RK4 £CCC 
C lM IS THE CU1{1i. f',T VALl.E UF TIME. THE INOEPENDE'H VARIABLE. RK4 CCCC 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••RK4 CCCC 
c RK4 tccc 

") 

4U 

r:L~i:NSl'JN X(1lJ,51,XA(l0,51,0Xl10,51,DXA(lC,51 
G' I T W ll. 0, 3 C ,5 J, 7 0 I , KUTT A 
HJT=0.5*GT 
CO 20 I=l.,NX 
[.(1 20 J=.1 ,I 
XA I I, J I= XI I , JI 
DXAI I,Jl=CXI 1,Jl 
Xll ,Jl=XII ,Jl+HDT*DXII,JI 
TM= TM +l,C~ 
f<ETUl<N 
1)0 40 1=1. ,C\X 
en 40 J=,, 1 
L X A I I, JI= ex-~ I 1, J l +·1 DX 11, J l +DX I I, J l I 
Xll,JJ=XAII,JJ+HDl*DXII,JI 
I< ~TURN 
r:c 1>0 l=l ,NX 
L"·1 60 J= 1, l 
CXAI I,J l=DXlll I,J I +IDXI 1,Jl+DXI I ,JI I 
" ( I ' JI =X A ( I 'JI + DT •ox ( I 'JI 
TM= TM+HOT 
f.ETUi<N 
lt'lT=DT*u.l6cc:o67 
Oil 80 I= l, N X 
or:: ao J=1.,1 
X I I , JI = x A I I , J I +VD l * I OX A I I , J I + OX I I , J I l 
.~ !:TURN 

ENO 

RK4 0020 
RK4 0030 
RK4 0040 
RK4 0050 
RK4 0060 
'<K4 0()70 
f.<K4 0080 
RK4 0090 
RK4 0100 · 
RK4 0110 
RK4 0120 
RK4 0130 
RK4 0140 
RK4 0150 
RK4 0160 
RK4 0170 
PK4 0180 
RK4 0190 

· RK4 0200 
RK4 0210 
RK4 0220 
RK4 0230 
RK4 0240 
RK4 0250 
RK4 0260 
RK4 0270 
RK4 0280 
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C* 
(* 

c: 
c 
c 
c 
c 
c 
c 
c 
C* 
(* 

410 
41.2 

SUBROUTihE R~GNIX~EAN,SIG•IX,OUM,K,VFLI 
************************* 

SUBROUTINE R~GN••••••••••••••••• 
GENERATl~G PS~UOC RANDCM NUMBERS WITH MEAN EQUAL TO XMEAN, 
AND STANDARD DEVIATION EQUAL TO S!Go 
IA=l9971 IX=31571 M=2**20= 1048576 
ZIK+ll~ IA*ZIKI (~ODULO MI 
VALUES TD BE SPECIFIED FIRST TIME••••••••••••• 
1. OUM=u.l 2• IX=31571 3. K NUMBER OF RANDOM 
YFL IS ARRAY CF RANDCM NUMBERS GENERATEC CF DIMENSION Ko 

**************~***~****** 
DIMENSION Y~Llll 
IA= 19971 
DC l I =l , K 
IV= IA*IX 
IYP= IV/ 1048570 
IX= IV-IYP*lu48576 
AX=IX 
U=AX/104857<':. 
IF(Ul41Ll,4iJ,4l2 
U=-U 
CCNTINUE 
I X-=I Y 
Tl= SQRT(-2.C*ALOGIDUMll*SIG 
XNCRM= TZ*COSlbo283l8*Ul+XMEAN 
DUM=U 
Y FL( I I= )(N(HM 
RE TURN 
END 

SUBROUTINE VARIN IX,XDl 

************************* 

RHGNOOlO 
RHGNCCCC 
RMGNCCCC 

.RMGNCCCC 
RMGNCCCC 
RMGNCCCC 
RMGNCCCC 
RHGNCCCC 
RMGN.CCCC 

NUMBERMGNCCCC 
RMGNCCCC 
RMGNCCCC 
RMGNCCCC 
RHGN0020 
RMGN0030 
RMGN0040 
RMGN0050 
RMGN0060 
RMGN0070 
RMGNOOBO 
RMGN0090 
~MGNOlOO 
RMGNOUO 
RMGN0120 
RMGNQ130 
RMGN0140 
RMGN0150 
RMGN0160 
RMGN0.170 
RMGNOlBO 
RHGN0190 

THIS PROGRAM IS TO SOLVE THE VARIANCE EQUATIO~ OF THE ~REOICTOR 
PIIRT IN ACAPT 11/E FILTER ING. 

VARIOOlO 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARICCCC 
VARI0020 
VARI0030 
VAR [ 0040 
VARI0050 
VARI0060 
VARl0070 
VARIOOBO 
VARI0090 
liARI 0100 
VAR IO 110 

alPHA AND' AAE VARIABLE. 
T~E PROGRAM IS FOR HUNDRED FIRST ORDER DIFFERENTIAL EQUATIONS. 
IF MCRE A~F P.E~UIREC THEN REDIME~S!ON X ANC XO. 
************************** 

Cl~E~SIC~ A(lJ,101,XD(l0,101 
COMMON/( OFF f- /J ,ALPHA 
XD1l,11=-2UO(lo*Xll,ll+l0**6*Q 
xoci,ll=-lUOO.*X12,11+314.7*Xll,ll-10**5*Xl3rll 
XD( .3,11=-lOCC.*XI :,ll+XI 2,ll-2.*ALPHA*X(3 ,11 
XD12,21=629,4*Xl2,11-2.*l0**5*Xl3,21 

XD(3,21=X(2,21+314.7*X(3,11-l0**5*Xl3,31-2o*~LPHA*X(3,21 
XOl3,31=2o*XI ~,21-4o*ALPHA*Xl3,!I 
RETURN 
FND 
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suaROUTINE RKUT (KUTTA,DT,NX,X,DX,TMI RKUTOOlO 
RKUTCCCC 

f ••••••••••••••••••••••••••••~•••••••••••••••••••••••••••••••••••••••••R~UTCCCC 
C SUBROUTINE RKUT IJ\TEGAATES UPTO 50 FIRST ORCE~ DIFFERENTIAL EQUATIONS RKUTCCCC 
C IN THE FORM CF. A COLLMN VEPOR FiFTY B\' ONE~ RKUTCCCC 
C IF MCRE ARE Rt~Ul~EC T~EN WE NEED TO REOIMENSION XA,DXA .ARRAYS. RKUTCCCC 
C THIS RiJUTINE USES RUii.GE KUTTA FOURTH ORCER INTEGRATION TECHNIQUE. RKUTCCCC 
C K~TTA TAKES T~E VALUES 1,2,3,4. . R~UTctcc 
C DT IS THE STEP SllE Cf INTEGRATION. RKUTCCCC 
C NX IS THE NUMBER Cf ~'UATIONS TO d~ INTEGRATED. RKUTCCCC 
CA IS T~E STATF VECTOk REPRESENtlNG SET OF FIRST ORDER DIFFERENTIAL RKUTCCCC 
C UJLATICNS TC EE IJ\HG~ATED. RKUTCCCC 
C RKUTCCCC 
c ex IS T~E DERIVATIVE CF x. RKUTCCCC 
C TM IS THE CURPEJ\T VALUE CF TIME.ThE INDEPENDENT VARIABLE. RkUTCCCC 
c 
c 
c 

10 

40 

~ ') 

t;, L 

70 

80 

••••·••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••RKUTCCCC 

OIMFNS ION XI 50, 11 ,XAI 50,11 ,OX( 50,11,DXA(SO,ll 
J=l 
GO TO ll0,3t,50,7Cl,KUTTA 
HUT= O. 5*0T 
DG 20 I=I ,t-.X 
X!III ,Jl=XI ! ,JI 
DXAI 1,J l=OX( I,J I 
XII,Jl=XII ,Jl+hDT*DXll,JI 

TM=TM+HDT. 
~ :TURN 
DC 40 I=!. ,NX 
DXA I I, JI =DXII I l , JI+ ID XI 1 , JI +DX I I , JI I 
XI 1,JJ=XA( l,Jl+HOHOXII,JJ 
RF.TURN 

Oil 60 1=1,1',X 
CXAI 1, Jl=DX~ I I,J l+IDXI l,J l+DXU,J 11 
X(I ,Jl=XAl! ,Jl+DT'*DXll,JI 

TM=TM+HOT 
R ':: TlJ RN 
VDT=DT*0.1~ct667 
O;l 80 I= 1, N X 
XI I , JI =X A I I , JI +V OT* I r.x A I I, JI +l)X I I, J 11 
RE:TURN 
ENC 

'.iLBPOUTINE PRt:U IX,XCI 

*************~****~****** 
TH15 PRCG~AM GIVES THE PREDICTCR STATES FDR THE ADAPTIV~ FILTERING 
PROCESS. 
ALPHA IS VARIAdLE. 
THE PROGHAM JS FCR TEN FIRST CRCER DIFFERENTIAL EQUATIONS. 
If MOMf ARE REJUIREO THEN REDUMENSION X ANO XDo 

u!MENSICJ\ XllO,lCl,XOll0,101 
CO~MON/COEFF/~,ALPHA 
XOll ,11=-luuO.•Xll,11 
XJ(2, 1l =1l4. 7*X( l ,l 1-l0**5*XI 1,ll 
X C 13, 11 = XI 2, l 1-2 • *AL PHA*XI 3, 11 
RETURN 
E'~lf) 

RKUTCCCC 
RKUTCCCC 
RKUT0020 
RKUT0030 
RKUT0040. 
RKUT0050 
RKUT0060 
.RKUT0070 
RKUTOOBO 
RKUT0090 
RKUTOlOO 
RKUTOllO 
RKUT0120 
RKUT0130 
RKUT0140 
RKUT0150 
RKUT0160 
RKUT0170 
RKUT0180 

. RKUTOl90 
RKUT0200 
RKUT0210 
RKUT0220 
RKUT0230 
RKUT0240 
RKUT0250 

PREOOOlO. 
PREOCCCC 
PREOCCCC 
PRE DC CCC 
PREDCCCC 
PREDCCCC 
PREOCCCC 
PREDCCCC 
PREOCCCC 
PRE00020 
PRE00030 
PRED0040 
PRE00050 
PRE00060 
PRE00070 
PREDOOBO 



SUBROUTINE INVIA,~A,CET,LI 
C* **************~********** 
C* 
C* THIS SUBRCUTINE FI~OS THE INVERSE Of A MATRIX. 
C* A IS THE INPUT MATRIX TO BE INVERTED • IT IS DESTROYED IN 
C* COMPUTATICI\ ANC REPLACED BY A RE SUL TANT MATRIX •. 
C* NA IS THE CRDER CF THE .MATRIX.NAil) IS THE NUM!ER,f:l'f.R'ows;, 
C• AND NAl21 IS THE NUMBER OF COLUMNS. 
C* 0 IS THE RESULTANT CETERMINANT. 
C* LIS A wORK vECTCR CF LENGTH 2N. 
C* THE STANDARD G~USS-JORDAN METHOD JS USED. THE DETER~INANT IS 
C* CALCULATED. ~ CETERMINANT OF ZERO: INDICATES THAT THE MATRIX IS 
C* SINGULAR. 
C* 
C* ************************* 

DIMENSION Alli, Lill ,NAl21 
C SEARCH FOR LARGEST ELEMENT 

DE T= 1 • 
N=NAI 11 
NSQ=N*N 
fllK = - I\ 
[,Q 80 K= 1, N 
NK = NK + N 
LI Kl = K 
LI N+Kl=K 
l<K = NK + K 
BIGA = All<KI 
DO 20 J= K, N 
I Z = N* I J - 1. I 
DO 20I=K,N 
IJ = I Z + I 

10 IF IABSIBIGAI-AESIA(IJIII 15,20,20 
15 BIGA = A(IJI 

LIKI = I 
LIN+Kl=J 

20 CONTINUE 
C JNTERC~ANGE RO~S 

J = LIKI 
IFIJ - Kl 35, 35, 25 

25 Kl = K - N 
DO 30 I : l , N 
KI = KI + .N 
HOLD = -ACK 11 
JI= Kl - I<+ J 
AIKII = AIJII 

30 AIJII = 1-CLC 
C INTERCHANGE CCLU~NS 

:l5 J=LIN+KI 
IF II - Kl 4!'>, 45, 38 

3e JP= N*II - ll 
DD 40 J= 1, N 
JK : NK + J 
JI= JP+ J 
HDLD = -A(JKl 
AIJKI = HJII 

40AIJII =HOLD 
C DIVIDE COLUMN dY MINUS PIVOTIVALUE Of PIVCT ELEMENTS IS CONTAINED 
C IN f:IIGAI 

45 If (BIGAI 4fl, 46, 48 
46 DE T = O. 

KKK=KK-1 
wRITE 16,10461 ~KK 

1046 FORMAT I I INV ERROR DETERMINANT Of A•C.. RANK OF Az• ,141 

INV 0010 
INV CCC( 
INV ·cccc 
INV CCCG 
INV ccct 
I t:JV CCCC 
INV CCC<i 
INV ccct 
INV ccct 
INV CCCC 
INV CCCC 
I NV CCCC 
INV CCCC 
INV CCCC 
I NV CCCC 
INV 0020 
I NV CCCC 
INV 0030 
INV 0040 
INV 0050 
I NV 0060 
INV 0070 
INV OOBO 
INV 0090 
INV 0100 
INV 0110 
INV 0120 
INV 0130 
INV 0140 
INV 0150 
INV 0160 

. I NV 1fJ.'7'o 
INV 0180 
INV 0190. 
INV 0200 

··INV 0210 
INV CCCC 
I NV 0220 
INV 0230 
I NV 0240 
INV 025Q 
INV 0260 
INV 0270 
INV 0280 
INV 0290 
I NV 0300 
INV CCCC 
INV 0310 
INV 0320 
INV 0330 
INV 0340 
INV 0350 
INV 0360 
INV 0370 
INV 0380 
INV 0390 
INV CCCC 
INV CCCC 
INV 0400 
INV 0410 
INV 0420 
INV 0430 
INV 0440 
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Rl:TURN 
4 E U-'J 5 5 I = 1 , I\ 

IF I I - K I ~ C, 5,, 5 0-
5 0 I K = NK + I 

Al !Kl =-Al !Kl/(BIGAI 
55 CONT.INUE 

C REDUCE ~ATRJX 
DO 6 5 I=. 1, I\ 
I K = NK f I 
HOLD = A II KI 
IJ - I - N 
CD 6 5 J= 1 t I\ 
IJ=!J+N 
!Fil - K I cO, 6~, 6C 

t:O IFIJ- Kl 62, 65, 62 
62 KJ = !J -I+ K 

Al TJ I = t,OLD* A(KJI + A( IJI 
65 COf\T lNUE 

c DlvlDE RCW ~v PIVCT 
KJ = K - N 
!JO 75 J= 1, I\ 
KJ = KJ +.N 
IF(J - KI 7~, 7~, 7C 

7C A(KJI = A(KJl/BlGA 
75 CUNTINliE 

C PRUOUCT OF U!VOTS 
U:'T=DET*BIG:1 

C REPLACE P!VCT BV RECIPROCAL· 
A(t<Ki : 1./-l!GA 

RC CiJI\TiNUE 
C FINAL ROW ANJ COLLMN INT~RCHANGE 

I< = I\ 
lJOK=K-1 

IF IK I 15G, l~C, 1C5 
105 I = LIKI 

IF II - K I 12'), 12<.l, 108 
108 JQ = N*( K - 11 

JR= N*ll- 1) 
DO llO J= l , ~ 

JK = J Q + J 
HOLD= A(JK) 
JI= JR+ J 
A(JKI = - A(Jll 

tlC AIJI I = hCLC 
120 J=LI 1'l+KI 

ll'IJ - KI l.CU, lOG, 125 
125 Kl : K - I\ 

DrJ 130 l = 1, N 
KJ=Kl+N 
H:JLD = AIKII 
JI = KI - K + J 
AIKII = - AIJO 

UC AIJII = HCLC 
Gtl TO luO 

150 RETURN 
F:ND 

INV 0450 
INV 0460 
INV 0470 
INV 0480 
INV 0490 
I NV 0500 
INV CCCC 
INV 0510 
INV 0520 
INV 0530 
INV 0540 
INV 0550 
INV 0560 
INV 0570 
I NV 0580 
INV 0590 
INV 0600 
INV 0610 
HW CCCC 
INV 0620 
INV 0630 
INV Q640 
INV 0650 
I NV 0660 
INV 0670 
INV -CCCC 
I NV 0680 
I NV CCCC 
I NV 0690 
INV 0700 
INV CCCC 
INV 0710 
INV 0720 
INV 0730 
INV 0740 
INV 0750 
INV 0760 
I NV 0770 

· INV 0780 
INV 0790 
I NV 08.00 
INV 0810 
INV 0820 
I NV 0830 
INV 0840 
I NV 0850 
INV 0860 
INV 0870 
I NV 0880 
INV 0890 
INV 0900 
I NV 0910 
INV 0920 
INV 0930 
INV oq40 
INV 0950 

:1:i_ 
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SUBROUTINE AD~PT (XHAT,VAR,YHAT,COVARI AOAPOOlO 
C ADAPCCCC 
C ADAPCCCC 
C* ************************* ADAPCCCC 
C* ACAPCCCC 
C* Th!S SUBRDUTI~" SOLVES THE CORRECTOR PART OF ADAPTIVE FILTERING. ADAPCCCC 
C* IT FINDS CUT THE ESTIMATE ANO VARIANCE OF A SYSTEM, GlVEN THE AOAPCCCC 
C* ObSERVAT!UN, H MATRIX,, ITS TRANSPOSE, THE COVARIANCE OF THE AOAPCCCC 
C• OBSERVATICN ~CISE R, THE COVARIANCE OF THE PLANT NOISE Q.lT UPDATESADAPCCCC 
C* TH~ ESTI~ATE EveRY JOBS VALUES, WHICH I~ THIS PROGRAM IS FIVE. ADAPCCCC 
C• IT JS USEC FO~ A S•STEM OF ORDER TfN. IF MCRE ARE REQUIRED ACAPCCCC 
c,:, THEt\ REDii"Et\SICN HE PROGRAM. AOAPCCCC 
C* XHATC4,l) IS lrlE TIME, ADAPCCCC 
c,, VAf.(7,11 IS H': TIME. ADAPCCCC 
C* VA~ IS THE lt\lTIAL VARIANCE. AOAPCCCC 
L* COVAR IS THE L~DATED VARIANCE, ADAPCCCC 
(o X~AT IS T~E LLD ESTIMATE. ADAPCCCC 
C* YHAT IS THE UFCATEC ESTIMATED. ADAPCCCC 
c,, E IS THE INCRE'4ENT FOR THE INTEGRATION • ACAPCCCC 
C* NF~, ANt\CV APE RETAINED FOR USF IN THE MAIN PROGRAM. ADAPCCCC 
c• THf SUBPROGRA~S uSEC ARE PRED, RKUT, VARIN, RK4, INV. ADAPCCCC 
c~ ADAPCCCC 
C• ******************~****** ADAPCCCC 
C ADAPCCCC 

Li !MENS ION X( lJ, 101,XDHATC 10, lOI ,VARll0,101 ,VARDllO ,101 ,CVARCl0,11, ADAP0020 
CCO RR (l O, 11, XK GA IN 110, 11, AK G( 10, lU I, ADEN TC 10, 10 I ,CO VAR ( 10, 101 , ADA P003 D 
CXHAT(lO,ll,YbAT(lC,11,XD(lO,lUl,BKGAIN(l,101,CKGAlN(l,101, ADAP0040 
CCKGA IN( 10, lC 1,BDENT( 10,101,ENTER( 10 ,101 ,EENTE ll0,101 ,NA(21 ,ll6 I ADAP0050 

CCf'MCN/VI\RI ES/VTPUE(3 ,31 ADAP006.0 
CUMMON/PARAM/NV,~X,NY,RRR,ANNCV,E AOAP0070 
CJMMON/COEFF/~,ALPHA AOAPOD80 
Ct:MMON/i<KKK~/lCBS AOAP.0090 
cnMMON/KALMnt\/AKGAIN(l0,11 ADAP0095 
r~M~CN/MEL/~11,31,HTC3,11,R,ZZ,AJllO,lOI ADAPOlOO 
NAC1)=3 ADAPOllO 
N-\ ( 21= ! . ADAP0120 
C8 46 J=l,4 ADAP0l30 
CALL PRED (XHAT,XCHAT) ADAP0140 

4t, CALL RKUT IJ,~,NY,XH4T,XOHAT,XHAT(4,ll) ADAP0150 
C ~CLVED ThF PRECICTOR EQUATONS. ADAPCCCC 
C XMAT14,l) IS 1hi: Tl~E ADAPCCCC 

VARC7,ll=H.!\T(4 1 ll-:: ADAPOl60 
1.: 1 47 J=l ,4 ADAPOl 70 
C~LL VARlt\ (~4R,VIRO) ADAPOl80 

47 ~4LL RK4 (J,f,NV,VAR,VARO,VAR!7,lll ADAP0l90 
C SCLV[~ THE VARIANCE E,UATIO~S. ADAPCCCC 
C VARC7,U IS THC TIM[. AOAPCCCC 

DC 49 !=l,3 ADAP0200 
GU 49 J=l ,3 ADAP0210 
VTRUE( 1,J)=VA;l.( !,JI AOAP0220 
VTR.UE( J, I l=VHUE( I,J I ADAP0230 

~c VAR(! 1 Jl=~Ak(J,Il ADAP0240 
CALL INV ( VTRUE,NA,DET ,LI ADAP0250 

C fCUNO OUT THE !~VERSE CF THE ERRCR COVARIANCE TO BE USED IN THE ADAPCCCC 
( SMCOTHING ALGORITHM. AOAPCCCC 

IF IIOBS.NC,llGG TO 96 ADAP0260 
DO 50 I=l,3 ADAP0270 
CVANC!,l)=O~C ACAP0280 
on 50 K=l,3 ADAP0290 

~G CVAR(I ,J.1:C\11'>R(I,ll+VARII,Kl*HT(K,ll ADAP0300 
CCVAR=O,O AOAP0310 
en 55 K=l,3 AOAP0320 

5S CCVAR=CCVAR+~Cl,Kl*CVARCK,11 ADAP0330 
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""il.=1.0/(CCVAi<+R I 
CiJ 60 I=l ,3 

f.l -\KGAINII,U=CVAR(l,ll*RRR 
C S8L VEC THE KAL~1\N GA IN EQUATIONS. 
C AKGf,INII,ll ARC THE THRCE VALUES CF THE KALMAN GAIN 

LHJ 62 l.=l,3 
o2 EKGAINtl,Il=MGA!r.lI,11 

DU 63 1=1 ,3 
6'\ CKGAIN(l,11=,HBKGAIN(l,II 

DO 64 I=l,3 
1)0 64 J=l,3 

b4 CKu~IN( I,Jl=AKGAIN( 1,ll*CKGAIN( l,JI 
HX =O .O 
UCI 65 J=l,3 

t.:, 1-<X=tiX+t<( l,J l'IXHAT(J, 11 
ANNOV=ZZ-HX 

C SGLVEU FOR TO G~T THE INNOVATICJ\So 
cc 70 l=t,3 
CiJ,,R(I ,ll=AKGAIJ\( I,ll*ANfl.OV 

7ll 'tHAT (I, l l=XHA Tl 1, ll+CORR I I, 11 
YHATl4,ll=X~tr(4,ll 

C SOLVED FOR LPCAT:C ~STIMATE WHERE CORR IS THE COFRECTOR PART ADDEO 
r:o '75 I= l, 3 
(j[ 75 J=l,3 

75 .AKG(l,Jl=AKG,\IN( I ,ll•Hll. ,JI 
C;J Bil I=l, 3 
co 8() J=l ,3 

f..J AD!:NTC I ,Jl=IAJI I ,,.)-AKG( I,Jl I 
co tH l=l.,3 
U;J 81 J=l ,3 

~-1 l:lO"NTIJ,Il=IIU:-NTll,Jl 
DO '.l 2 I= l , 3 
llll 82 J=l ,3 
E'NTERI 1,Jl=C.ll 
CO 82 K=l,3 

fl2 Fl'HER( 1, JI =~J\TERI 1,Jl+VARCI ,l<l*BOE"lT (K,JI 
co 8 3 I= l, 3 . 
DO 8j J=l,3 
[::!';TE:( I, J l:C, 'l 
[.() 83 K=l ,3 

H E:NTE(l,J)=[EI\TE( 1,Jl+ADENT(l,Kl*ENTER(K,JI 
IJO 8 5 I= 1, 3 
{)[) 85 J=l,3 

~~ Cflv,~RI I, JI =":.I\TEI 1,Jl+OKGAlNI I ,JI 
C ui,>C,ATl:D THF VAi, l.\NCE EQUATIONS. 

GO TO 99 
Gt 00 97 l•t,4 
97 'tHATII,ll=HAT(l,11 

~l<l<=O.O 
ANNOV=C.C 
C'1 98 1=1,3 
{.)0 98 J=l ,3 

9t• C JVAi,( I ,JI =VAii( 1, JI 
'-1', ~':TURN 

END 

AOAP0340 
AOAP0350 
ADAPQ360 
AOAPCCCC 
AOAPCCCC 
ACAP0370 
ADAP0380 
ADAP0390 
ACAP0400 
AOAP0410 
AOAP0420 
AOAP0430 
ADAP0440 
AOAP0450 
AOAP0460 
ADAP0470 
AOAPCCCC 
ADAP0480 
AOAP0490 
ADAPOSOO 
AOAP0510 

ONAOAPCCCC 
AOAP0520 
AOAP0530 
ADAP0540 
AOAP0550 
AOAP0560 
ADAP0570 
AOAP0580 
AOAP0590 
ADAP0600 
AOAP0610 
AOAP0620 
ADAP0630 
AOAP0640 
AOAP0650 
AOAP0660 
AOAP0670 

'AOAP0680 
AOAP0690 
AOAP0700 
ADAP0110 
AOAP0720 
AOAP0130 
AOAPCCCC 
AOAP0740 
ADAP0750 
AOAP0760 
AOAP0770 
ADAP0780 
AOAP0790 
AOAP0800 
AOAP0810 
AOAP0820 
ADAP 0830 
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c 
C* 
C* 
c• 
c• 
C* 
C* 
c• c,, 
c• 
C* 
c 

2 

SUBROUTINE (~ANGE (SS1 1 SS2,SS3,SS4,SS5,SS61 

************~************ 
Th!S PROGRAM TAKES Ti;iE ONE DIMENSIONAL INVER SF. COVARIANCE MATRi X 
ALAEAD~ PRECC~PUTEC iN fHE .FILTERING PART AND CHANGES IT TO A 
TWO DIMENSIO"-AL ARRAY AND: FINDS THE SMOOTHED FILTER GAIN. 
SS IS THE iNvtii.SE CF THE ERROR COVARIANCE IN A SINGLE ARRAY. IT 
IS CHANGED TC I TWC DIMENSIONAL ARRAY TVVR. . 
TVVR IS TI-E INVERSE COVARIANCE OF ERROR • 
AM~AIN IS THE SMCOT~ED GAIN O~TAINEO.,TO BE USED IN THE 
SMOOTHED ESTI~ATE. 
Th!S PROGRAM ~·JRKS FOK HUNDRED VALUES OF THE INVERSE COVARIANCE 
CF ERROR~ . 

************************* 
DI MENS ION SS l( 10001, s·s2< 10001, SS311000 I, SS4(.10001 , SS5( 10001 , 

CS% ( l 00,J I , H'vR (10 ,10 I , BQB UO, 10 I 
COMMON/COEFF/J,ALFHA 
CC~MCN/SMEET~/SMGAIN(3,31,N,AMGAIN(3,31 

TVVR( 1, 11 =551( "-1 
TV VR ( 1, 2 I= SS 2 ( N I 
TVVR<l ,3 l=SS3(NI 
TVVR(2,21=SS4INI 
TVVR(2,3l=SS5(Nl 
rvvi.i(3,3l=SS6Hl 
DO l I= 1, 3 
C01J=1,3 
TVIIR(J,ll=TVVll(l,Jl 
DO 2 I =1, 3 
co 2 J=l,3 
HQB( 1, JI =O. o· 
BQB(l,ll=lO**t*Q 
CG 3 l=t,3 
DO 3 J=l ,3 
A.%fllN( 1,Jl=C.O 
DC.3 K=l,3 .. 
AM\iAIN<l ,Jl =A1'GAH\I 1,Jl+SQB( 1,K)*TV,VRCK,.J l 
RETURN 
O.D 

lOS 

CHANOOlO 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHA NC CCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHANCCCC 
CHAN0020 
CHAN0030 
CHAN0040 
CHAN0050 
CHAN0060 
CHAN0070 
CHANOOBO 
CHAN0090 
CHANOlOO 
CHANOllO 
CHAN0120 
CHAN0130 
CHAN0140 
CHAN0150 
CHANOl60 · 
CHAN0170 
CHAN0180 
CHAN0l90 
CHAN'0200 . 
CHAN0210 
CHAN0220 
CHAN0230 

. CHAN0240 
CHAN0250 



15 

SUdROUT U~E SM~OTh IXSAT,XOSAT,XX1,XX2,XX31 

THIS SU~RCUTI~E CALCULATES THE ADAPTIVE SMOOThEO EST[MATES OF THE 
SlATES, GlvEN THE SMCOTHEO FILTER GAIN AND THE FILTERED EST[M.ATES 
AT ThE TIME OF CCMFUTATION. 
XXl, XX2, XX1 ,\RE THE FILTERED STATES STORED FROM THE ADAPTIVE 
FILTERING ALGC~ITHM. 
SMGAIN IS ThE SMOOThEO GAIN MATRIX FROM SUBROUTINE CHANGE. 
ALPHA IS VAR!tBLEo 

DIMENS!Dh XSAT(lO,ll,XOSAT(l0,11,AAA(lOl,SMCCRR(lOI, 
CX,01 lOOG 1, XX 21100 CI, XX31 1000 I 

cc,MCN/S,EET~/SMGi[N(3,3),N,AMGAIN13,3) 
CJ~MON/COEFF/J,ALFHA 
.HA I t I =XS AT I 1, 1 I-XX 1( NI 
A~Al21=XSAT12,l)-XX21N) 
MAI 31=X~ATI ?,ll-llX3INI 
CO 15 [=1, j 

SMCORRII l=O.J 
o,J 15 J=l,::: 
SMCORRI 11=$1>'.(CRRI I l+SMGAIN I 1,J )•AAAIJI 
C.JNTI NUE 
XOSATI 1, 11=-lCCCo*XSATC 1,ll+SMCORRI 11 
XJSIT(2,11=31~.1•xsAt11,11-1u•*5*XSAT(3,ll+SMCORRl21 
XJ 511 Tl 3, 1.1 =X 5A H2 ,l 1-2.*ALPHA*XSATl3 ,11 +S "CORF!l3 I 
k ~TURN 
FI\D 

SMOOOOlO 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SMOOCCCC 
SM000020 
SMOQ0030 
SM000040 
SM000050 
SM000060 
SM000070 
5111000080 
SM00009u 
SMOOOlOO 
SMOOOllO 
sr-000120 
SMOOOl30 
SM000140 
SM000150 
SMOOOl60 
SM000170 
SMOOOlBO 
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