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CHAPTER I
INTRODUCTION
1.1 The Problem to be Considered

A basic problem of estimating a signal from aAnoisy set of -data
occurs .in seismic exploration and in other-areas of science such as
communication and control theory.

A dynamite blast detonated near the surface of the earth or at a,
shallow depth in water gives .rise to a sharp seismic disturbance:. This
initial pulse will be followed closely in time by the reflection of the
source pulse from the surface of the.earth. In general, there will also
be near-surface multiple reflections, called reverberations, which are
caused by reflections between a shallow strong reflector and the surface.
of the earth. For example, in marine shooting, the water-earth interface
provides a strong change in acoustic impedance yielding a strong reflec-
tor and setting up multiple reflections in the water layer. In the case
of land prospecting, the first hundred feet of the earth is generally a
low velocity layer.compared to the first, more rigid rock encountered.
This top soil layer is referred to as the weathered layer and is the
cause of near surface reverberations. Therefore the input wavelet which
propagates into the seismic section of interest is the result of the
input pulse from the source plus all of the trailing near surface rever-
berations.

As this rather ringy, input wavelet propagates into the seismic.



section of interest, it will be reflected back to the surface of the
earth whenever a change in acoustical impedance is encountered, that is,
if the geology changes from, say, sand to shale. The amplitude of the.
returned wavelet depends on the reflection coefficient at the change in
geology, which in turn depends on the elastic properties of the rocks
involved. These reflected events.are detected on the. surface of the.
earth by geophones placed at predetermined distances and recorded as a
function of time, the record being called a seismogram. As a result of
this simple description of the seismic reflection process, the seismogram
can be modeled as the result of a weighted, delayed sum of this resulting
input wavelet. Such a weighted delayed sum is.a convolution of a result-
ing input wavelet with the impulse response of the seismic section of
interest. The impulse response consists of all primary reflections plus
all multiple reflections which occur between the many.different layers of
geology .at depth. The object of deconvolution then is to remove the
effect of this ringy, input wavelet and thereby get a better estimate of
the impulse response of the.seismic section of .interest.

This problem is a data processing one where either prediction,
filtering and/or smoothing can be applied depending on the time of
interest. Techniques are available .for treating prediction, filtering
and smoothing problems in both the time domain and the frequency domain
and attempts have been made in this-directione Wiener filter theory,
based on time invariant systems, have been implemented in the time domain
and is currently in widespread use. In this work, another time domain
approach, specifically a modified Kalman filter technique which assumes
that a random process can be modeled as the output of a linear system

driven by white noise is pursued. By using a state variable formulation



which is a time domain realization of the conventional transfer function
formulation, the problem of deconvolution is.formulated within a modern
time domain format. Though both, Wiener filtering as well as Kalman
filtering can be used in multichannel data acquisition problems (1), it
is in the;solution‘of time varying problems that the Kalman filter theory

holds greatest promise.,
1.2 The Approach

Given the autocorrelation function and the mean of .a random process,
a geophysical model is built which has this process as the output of a.
linear system excited by a white noise input. To do this, some basic
assumptions are'made. These are: (1) The wavelet is minimum phase time
function. This means. that thexwavélet is a one sided transient with its
energy concentrated around the zero time; and (2) the geology is unpre-
dictable, which means that the sharp knife-like impulses are mutually
uncorrelated. This leads to an interesting observation, namely, the.
autocorrelation function of the seismic trace is equal to the autocorela-
tion function of the wavelet, as the uncorrelated elements of the
impulses average out,

By using the above, a model has already been derived (14). However,
in most deconvolution problems, the parameters describing the system are
not completely defined. As for example, in a geophysical model, the
velocity of .the wavelet is a function of depth, while the reflection or
refraction or transmission that results depends on the nature of the
seismic layer it confronts: If these parameters randomly.change and they
are not measurable, then one has:.to rely on statistical data for modeling

the system.



The geophysical process which has been described is assumed to be.
modeled by a set of state variable candidate models to account‘for the
uncertainty. With the passage of time, as more data is obtained, the
undefined parameters hopefully are learned and the states estimated,
accomplishing the desired deconvolution.. Such techniques are called
system identification and adaptive filtering and are usually based on the
assumption that the right.model is one of the candidate models. Since
these data processing results are not required to be computed on-line,
another operation commonly known as smoothing can be used to achieve a
refined estimate of the states. This operation makes use of the filtered
estimates and the complete data set to improve the estimate of the
states. However, existing smoothing algorithms are not adequate to solve
the problem posed here. Therefore, an adaptive smoothing algofithm
scheme is derived, taking into consideration the different candidate
models as .in the filtering part. The above sequence of operations,
namely adaptive filtering and adaptive smoothing are simulated on the.
digital computer to test their performance in the task of deconvolution.
While theoretically the estimate obtained is the optimal estimate under
Gaussian conditions, the model for the seismic reflection process is
assumed to have poisson inputs and the estimates.are thus suboptimal.

For this reason, simulation is.especially important.
1.3 Objectives and Findings

There are three primary purposes of this work. The first is to
apply recently.developed adaptive time domain techniques to geophysical
models and verify that deconvolution is achieved. The second objective

is to develop new adaptive smoothing techniques to improve the accuracy



of the estimate. The third aim is to modify a previous mathematical
model of the seismic process under consideration, so that it is more:
realistic. This is done by using an input which is poisson distributed
in time with random amplitudes.

The first objective is accomplished directly by.applying an adaptive
filtering scheme, referred to as "Estimation Under Uncertainty'. This is.
a modification of Kalman filtering to account for model uncertainty. The
results show that after enough observations have been taken, system
identification seems to be achieved only in certain cases and is there-
fore not very reliable, although deconvolution is achieved with reason-
able accuracy. There seems to be no way of determining how many observa-
tions should be taken before the operation is to be terminated and it is
quite possible that a wrong model may be identified if enough data is not
taken. The second objective is seen to be an extension of the adaptive
filtering case and the results provide a marked improvement in the esti-
mation of the state. The third is achieved by using the fact that the
first two moments -of a random process sometimes gives ample statistical
knowledge of a linear system for simulation purposes. The results show
that with poisson inpﬁts, the estimates are quite accurate.

The work ‘is application oriented and is not intended as a rigorous
mathematical treatment of stochastic optimal estimation theory. The
works which are most directly related to this investigation are discussed

in Chapter II.
1.4 Organization

The remainder of this study is concerned with .accomplishing the

objectives and demonstrating the results mentioned in the previous



section. In Chapter II, the adaptive filter algorithms are reviewed and
the adaptive smoothing algorithms formulated. The geophysical model as
suggested by Bayless and Brigham (14) is described and improved upon.

The simulation of the model and the algorithms for different poisson
inputs are investigated in Chapter III under various uncertainty condi-
tions and circumstances. The filtered and smoothed results are shown and
compared. Chapter IV discusses the effects of improper modeling, in
which the true model is not one of the candidate models. An iterative
narrowing in procedure to remove.the uncertainties in the model is also
discussed. Chapter V contains a summary and conclusions.of the results
obtained in this work. Suggestions for further research are also

included in this chapter.



CHAPTER II
ADAPTIVE FILTERING, SMOOTHING AND DECONVOLUTION
2.1 Background

Of particular interest in the area of seismic exploration, has been
the need for restoring a signal to its original value by eliminating all
undesired noise and distortion effects. This task is sometimes referred
to as Deconvolution or Inverse Filtering. -

Wiener (2) several years ago investigated problems of least-squares-
estimation for stochastic processes and developed what has become.known
as Wiener Filter Theory., Later Kalman (3,4) investigated dynamical-
state-estimation problems by specifying not the autocorrelation of a.
signal process, but a '"model" for.it as a linear dynamical system driven
by white noise. The resulting filter is called the Kalman Filter.

Robinson (5,6), Rice (7), Kunetz (8), Robinson and Treitel (9),
Clarke (10), Peakcock and Treitel (11), and many others have approached
the deconvolution problem by using Wiener's method. Recently Treitel
(12) has introduced the complex Wiener approach. Ulrych (13) has inves-
tigated another technique called homomorphic filtering. While Wiener's
theory has been applied to time invariant systems, the solution of the
resulting integral equation is‘usualiy difficult. This is especially
true when extended to time varying cases.

Bayless and Brigham (14) and Crump (15) treated the deconvolution

problem by using continuous.and discrete Kalman filter techniques,



respectively. The use of state space methods to treat physical and math-
ematical models lends itself easily to digital computer simulations and
can solve many time varying problems as .well,

It is the Bayless and Brigham paper (14) that forms the basis of
this work. Hence it is appropriate here to consider this work in some

detail.

2.1.1 Deconvolution in Seismic Exploration

Deconvolution is a technique to remove-distortions to the signal in
the course of its path through the seismic media, geophones, amplifiers,
and recorders. In a sense, it is the filtering of the source that causes
distortion to the signal and hence, inverse filtering must be applied to
undo the effects of this undesired filtering. The schematic figure for

treating the deconvolution problem is shown in Figure 1.

Estimate of

Filtering Signal

Deconvolution

Signal Observations

Cat

Effects. Filter Source

Source

Figure 1. Basic Deconvolution Problem

Bayless and Brigham in their paper considered a basic wavelet model
to be a minimum phase function.

To explain the complicated nature of the seismogram, Ricker (16)
proposed the Ricker wavelet model. It is a time function and is the

response of the earth to a sharp seismic disturbance. Hence the basic



wavelet model is
hy(t) = e™F sin bt t >0 (2.1)

The seismic disturbance which creates the wavelet is an impulse,

approximated by.

hy (t) = e Ct t >0 (2.2)

and the.input u(t) is a sequence of rgndom‘poisson distributed impulses
of the form

®

u(t) = ) 8(t-t.) - Q (2.3)

i=-c
where E{u(t)u(t)} = Q8(t-1) and t, is a random poisson variable with
average time of occurrence, Q. . It‘is desired to estimate.the arrivél
times of these ‘impulses, u(t). Because the Kalman filter estimates a
state, the input u(t) is passed through an impulsive reflection generator
(2.2). Its.output,xl(t) is the desired state.to be estimated. Inci-
dentally xl(t) is in the form of sharply decaying exponential waves,
whose time of occurrence is required to be estimated. The simulation was
done using an analog computer, as the plant dynamics and‘obsquation
model were continuous in time. The schematic diagram of the Bayless and

Brigham model is shown in Figure 2.

v(t)
u(t) ‘ y(t) z(t)
_ 1 hy(t) : h, (t) —0O—
Impulse Reflection Wavelet
Geperator - . Model

Figure 2., Seismic Reflection Process Model
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For the system described above, in the impulsive generation model,

there is not enough impulse or energy to drive the wavelet model.

There—

fore the observation cannot even register the presence of an impulse.

Hence the reflection generator assumed by Bayless and Brigham is modified

in this development, and is assumed to be.

ct

hy (t) = ce” t >0
because
lim b (t) = lim ce "
t+0 t->0
=.C

For an impulse, the following must be satisfied;

t+e

[ s(t)dt =1
t-g.
and for the above
fce™tat=1.
0

is satisfied.

(2.4)

(2.5)

(2.6)

(2.7}

Hence hl(t) represents an impulse and theoretically as .t approaches

zero, the impulse magnitude should increase to an infinite value. This

is shown graphically in Figure 3. The modified model is indicated in

Figures 4 and 5.
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Time

Figure 3. Approximation of
‘ an Impulse

| « J(vcs)
W(s) c X, (s) b Y(s) . 7(s)
(s +c) ' (s + a}z w2 | - >O—

Figure 4. Modified Bayless and Brigham Model (Frequency Domain)

v(t)
Xl (t) xs.(t) Z(t)

w(t) xzct)

]

-(a2 + bz)

Figure 5. Modified Bayless and Brigham Model (StaTe Space Form)
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The dynamic equations describing the system are:

_ - o~ - - -
il(t) -c 0 0 xl(t) c
2,00) | =] b 0 -(a%bh) x, () |+ | 0 | wit) (2.8)
ié(t) _J 0 1 -2a xS(t) 0

where w(t) is a poisson distributed imput with zero mean and variance

equal to Q and the observation model .is

x, ()

z2(t) = [0 0 1]} x,(t) * v(t) (2.9)

! Xz (t)
' — -

where v(t) is zero mean Gaussian white noise with variance parameter R.

One of the problems with the Bayless and Brigham model is that it
does .not deal with random amplitude poisson distributed impulses. They
suggest but do not investigate a form of input defined by

(2]

u(t) = ) m, 6(t-t.) -E _2_ m, 8(t-t,) (2.10)

1= 1==

where_mi'sxare random variables and t.'s are.the poisson distributed

random variables.

2.1.2 Comment

The topics considered here make the application to the deconvolution

problem more general. The chief features to be considered in.the
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remainder of the work are: (1) Since model parameters are in most cases.
not known, adaptive schemes can be applied. (2) Adaptive smoothing tech-
niques can be incorporated as deconvolution is usually an off-line
computational process; and (3) random amplitude poisson distributed
impulses as defined in (2.10) can be implemented to make the model more
realistic.

These features are used to help identify the correct model and then
improve the estimate by applying the smoothing techniques. Thus even
with the moedel not known correctly, deconvolution can.still be achieved.
Before applying these techniques to the modified Bayless and Brigham
model, it is appropriate to give some consideration to the basic estima-

tion under uncertainty scheme.

2.1.3 Estimation Under Uncertainty

In applications of Kalman filtering to seismic data proceséing,
Bayless and Brigham have assumed the system parameters .in the dynamic.
model to be well defined. In practice it is unlikely that the system
parameters would be known. Hence it seems appropriate enough to apply
adaptive filtering to 'learn'" the system parameters. Using the methods
first derived by Lainiotis (17) and modified by Lee and Sims (18), an
attempt is made to apply adaptive filtering to seismic problems. Since
the approach taken by Lee and Sims has an influence on this thesis, the
method is summarized below.

Given a set of candidate models, one of which is true, let ei index

the ith model.  The system dynamics are specified as

8.1 R () = F(£)x; (£) *+ G, (£)w, (t) t >t (2.11)

0
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where i = 1,2,°++,N and N is finite; xi(t) is an n-dimensional vector.
representing the state of the system for the ith model; wi(t) is a qth
order disturbance whose elements are zero mean white nbise; Fi(t) is a
nxn matrix for the ith model; and Gi(t).is a nxq matrix for the ith
model,

The output of the ith model is a linear transformation of the state.

y; (£) = H. (t)x, (t) (2.12)

where Hi(t) is an mxn matrix for the ith model, and yi(t) is an
m-dimensional output vector for the ith model. In general, Fi(t), Gi(t),
and Hi(t) are functions of time and subject to uncertainty.

The observation model is discrete and can be expressed as
z(k) = yl(tk) + v(k) k =1,2,+¢,N (2.13)

and depends on which model is active at a given time, where v(k) is a
m-vector measurement noise for zero mean, discrete Gaussian process; z(k)
is an m-vector observation at time e

It is assumed that the measurement noise and the plant noise under
each hypothesis, ei, are independent Gaussian white noise sequences with

zero mean and variances
Edw, (t)w; (1)} = Q (£)8(t-1) (2.14)
E{v, (K)v; (§)} = Ry (K85 , (2.15)
The expgcted value of the initial condition for the state is

Elx; (t))} = SEi(tO) (2.16)

o)

and the initial condition for the covariance of error is
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. _ E{X, (t)%; (tg)}
t t | (2.17)
BUIx; (tg) - R(e)TIx; (8g) - &; (e)1")

where in(to) is an nxn matrix, and Qi(t), Ri(t), xi(to) and in(to) are
.all subject to uncertainty.

It is also assumed that xi(to) is independent of the noise sequence
{wi(t)} and {vi(k)}c Also an a priori probability, pr(ei), is assumed
for each candidate model. The set of measurements available up to stage
k is denoted as Zk = {z(1),z(2),***,z(k)}.

The best estimate is determined by the conditional probability

density p(x(t)|Zk)c The conditional .mean is-

x(t) = E{.x(t)[Zk} fbr t, <t<t

k k+1

and from the fundamental theorem of expectation,

x(t) = [ x(®)px(£)|z,)dx(t) (2.18)

-0

But the conditional density can be described as
p(x(£)]2,) = ] p (8,2 )p(x(1)]Z,8,) (2.19)

and ‘hence

(o]

[ ox@® I p (e zp(x(0)]|2,,0,)dx(t)

- 00

x(t)

n

N oo
Zl p.(6,12,) {m x(t)p (x(t) |2, ,8,)dx(t)

i=

N
°Zi p.(8;|2)%, (t]Z) (2.20)

1=
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where pr(ei|Zk) is the a posteriori probability that the ith model is
active at time t, and ii(t|Zk) is the conditional mean estimate of the -

ith candidate model expressed as.

x; (t]2,) = Elx; (D)2, } = Elx(8)]6,,2, }

[ xpx(t)]|z,,8,)dx(t) : (2.21)

Hence_the estimate of the state reduces to finding the sum of the.
products.of the estimates and a posteriori probabilities of each candi-
date model active at time t, given the observation set Zkﬂ The solution
to the estimation problem can be obtained in a recursive manner
consisting of three parts.,

(1) Predictor. In between observations, the estimator acts as a

predictor. The conditional mean estimate of the state for each model is
xi(tlzk) = Fi(t)xi(tlzk) (2.22)
and the covariance of -the error of .each candidate model is -

Qxi(t[zk) = Fi(t)in(t|Zk) . vxi(thk)F{(t) + G, (£)Q; (£)G; (t)

for i = 1,2,+++,N (2.23)

where ii(t[Zk) is defined in Equation 2.21 and

be(tle)
i

Var{xi(t)|2k}

BOUx (8) - R, (£120T[x (8) - %, (e|z01")

The initial conditions for the state and covariance of error are indi-
cated by Equations 2.16 and 2.17.

(2) Corrector. At time tk+l’ a measurement Z1el is taken and the
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updated mean and covariance are expressed as

A

xi(tk+1|Zk+1) = ﬁi(tk+1|zk) + K, (ty, ) [2(k+1) - H.lii(tk+1]zk)]

(2.25)
and
U, CretlZen) = Vi, Gran 0 = K (DY (o 120
P i T T
= (I KiHi)in(tk+1|Zk)(I KH) o+ KR.K
i=1,2,e0N (2.26)
where
K. (t, ) =V (t,. |2 H[E.V. (t, |z )H + R.]7} (2.27)
1 Fren) ™ Ve B 1B T Vo, (g 120H Ry °

is called the Kalman gain.

(3) 1Identifier. When a new measurement Zri1 is obtained, the
a posteriori probability pr(GiIZk) is updated. This a posteriori.
probability pr(eilzk+l) provides.a measure of certainty of whether the

model is the true one.and is expressed as.

-1
©, |2, ) Px5 1 2) (2.28)
p. (9, |z = | 1+ L.. -—-17-- 2,28
v i Tk+1 521 ji pr(ei Zk)
j#i
where Lji defined as the likelihood ratio is
1
Hv HL + R, |?
i'x.1 i 1 }
L.. = exp {- > [-] (2.29)
Ji H.V H + R, 2
J X: g 3

J
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and

ko110

[] = [z(k+1) - Hjij(tk+l

T T -1 .
[zk)] [vaxjnj +-Rj] [z(k+1) - Hjxj(t

- T T -1 ~
- [z(k+1) - Hixi(tk+1|Zk)] [HiVXiHi + R 17T [z(k¢1) - Hixi(tk+1|Zk)]

When the true model is included as a candidate model, then the
a posteriori probability of that model will converge to one with a
sufficiently large number of observations, while the probability of the
other candidate models approach zero.

This means that more weight is given to the correct model than to
the others as the probability of the true model approaches one. In the
event that the correct model has its a posteriori probability exactly.
equal to one, the adaptivity is removed as there is no more uncertainty
involved and ordinary Kalman filter theory can be applied (19). The
above algorithm serves a useful purpose in relation to the Bayless and
Brigham paper in that if the model parameters are not known exactly, then
a number of candidate models can be selected. As more observations are
obtained, the weighting for eaéh candidate model changes and in the long
run the correct model should have the highest a posteriori probability
and hence have its estimate weighted the most., This can be considered in
effect as making the uncertain parameters slowly be known and to approach
that of the correct model. The theory suggests that the highest
a posteriori probability model be taken as .the right one, because given
an infinite number of observations; the right model should have its
probability reach one.

While the above algorithm applies to the case of Gaussian inputs,

the model proposed should have poisson distributed random noise inputs.
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Hence the estimates are only the best linear estimates, conditioned on
the individual candiates. Only an approximation to the conditional mean
is obtained.

As the. computation is not required in real time, it is plausible.
that smoothing techniques if applied could give a more accurate estimate.

Hence it is appropriate to look into the process of smoothing.

2.1.4 Fixed Interval Smoothing

In smoothing, the estimate of the state is required at time t, given
the noisy measurement data over. the interval that includes the time t.
While there are many methods.of smoothing, fixed interval smoothing will
be considered here.

One of the first developments in smoothing was by Bryson and Frazier
(20) who used the calculus of variations approach by treating the above
as an optimization problem. Later Rauch (21) and Meditch (22) published
different treatments of smoothing. Then Fraser (23) and Mehra (24)
developed a new form of smoothing, combining two filters, the forward and
the backward Kalman filter. Mehra and Bryson (25) and Bryson and
Henrikson (26) exténded the work.to colored noise for continuous
discrete processes, respectively. Recently Kailath and Frost (27) have
applied the innovations approach to least squares estimation in smoothing.

Mathematically, the smoothing problem can be stated as, given the

observation set Z(t,) = {Z(7), tO <7t < t,}, find the estimate i(t1|t2)

2)
< t,.
where t1 t2
For the problem under consideration, the optimal linear fixed inter-
val smoothing algorithms cannot be used. Because of model uncertainty,

an adaptive technique of smoothing is developed. As more data is
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available, smoothing provides a better estimate than filtering.
2.2 Development'of«the Smoothing Algorithm

The system dynamics and observation model are the same as considered
in Section 2.1.3, with ei representing the ith model. As a result of
adaptive filtering, the a posteriori probability pr(ei[ZN) as well as the.
filtered estimates of each candidate model ﬁi(t|Zk) at each time interval
t are known,

Consider the conditional mean estimate at time t based on the entire

observation set ZNc

E(x(t) ]2} = By {ELx(t)]Zy,0, 1} (2.30)
1

This can be written as the weighted sum of the smoothed estimates,
conditioned on the ith model being correct with the weighting indicated.

by the final a posteriori probability as stored in the filtered algorithm.
N A
E{x(t)[ZN} = igl pr(ei|zN)xigt|zN) (2.31)
where Z = {z(1),2(2),+++,z(N)} = the entire data set.

ﬁi(t|ZN) is the smoothed estimate of the ith candidate model at time

However, it is known in the minimum mean square sense, that the best

linear estimate is also the conditional mean estimate (27). Hence

i(tIZN) E{x(t)|ZN}

1
~12

L p,. (8, | 2%, (t]Z) (2.32)
1=

where ﬁ(t]ZN) is the best smoothed estimate of the system states and is
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an n dimensional vector.

It is seen that the smoothed estimate is an extension of the filter-
ing case except .now the weighting for each model is considered a constant
for each model and is the value at the last data point z(N).-

The solution of‘ii(tlZN) is obtained as follows (19). The smoothed

estimate at time t is found from the equation
x; (tlzy) = By (0)%; (t]z) + 85 ()R, (£]Z) - %; (8] (2.33)

for t <t<t

0 N

where ﬁi(t) is the optimal filtered estimate of the ith model at time t
and Si(t) is an nxn smoothing filter gain matrix for the ith model.

The terminal condition
x; (ty12y) = % (1)

implies that at the final time t_, the smoothed estimate equals the

N’
filtered estimate;
The smoothing filter gain Si(t) for the ith model is
5, (t) = G, (£)Q, (£36; (£)V " (t]Z,) (2.34)
i i i i X; k °
where V;l(tlzk) is the inverse covariance of the error as obtained in the
i
filter algorithm for the ith model at time t.

2.3 Application of Adaptive Processing

to Deconvolution

In this section, the application of adaptive filtering and smoothing
to the seismic processing problem of Bayless and Brigham is described.

Consider the parameter 'a' in the F matrix of the Bayless and
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Brigham model to be unknown, and also let the variance of plant noise Q
be unknown. Let a, be the value of 'a' in the F matrix in the ith
candidate model and let Qi be the value of Q in the ith model. Hence. the

model can be described as

== - " -1~ - r“‘""
xli -C 0 0 xli c
. 2.2
Xy = b 0 -(ai+b ) Xy + 0 W (2.35)
X, . 0 1 -2a. X, . 0
31 i 3i

where Xx. is the state when the ith model is active.

The observation is discrete and expressed as

1i

z, = [0 0 1] X,s * vy (2.36)

3i

where vk is random white noise with zero mean and covariance
EtvK)v(j)} = Rij (2.37)

and w(t) is defined as

w(t) = S (t-t,) - Q. (2.38)
kzl k i

which is a poisson distribution with zero mean and covariance

E{w(t)w(t)} = Q,8(t-1)



2,3.1 Filter Equations

oY)

state predictor equation is:

Predictor.

X, .
11
X =
21
X34
— -

The variance equation is:
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131

231

VSSi _J

0 0]

(2.40)

The initial conditions for the state equations and the variance equations

are appropridtely given.

(2)

Corrector.

gain at t = tk+l 1s

When the observation Zys

is obtained, the Kalman
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+ R

(2.42)

The updated variance is

(2.43)
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where * denotes the predicted variance at tk+l'
(3) Identifier. The a priori probabilities are assumed at the

initial time and each candidate model is assigned an a priori proba-

bility. The a posteriori probability is .found out as indicated in

Equations (2.28) and (2.29) when a new observation is obtained.

Finally the estimates of the states of the model are-

- - — -
x; () N X135 (8]2,0)
x,(t) | = igl p.(8;) | Xy (t]Z,, ) (2.44)
X, (t) Xqg: (]2, 1)

It should be noted that the Kalman gain in. the éorrector‘part as
well as the variance of the error in the predictor and corrector parts

can be precalculated as they are independent of observations.

2.3.2 Smoothing Equations

From the filtering equations above, all the estimates of each
candidate model from the initial time t, to the final time‘tN as well as

V. (t]|z,) for each model should be stored.
i

Smoothing can be considered as a process working backwards starting

at the final time ty and arriving at the initial time t

Oe

The equations for adaptive smoothing with terminal conditions

?ci(tN]ZN) = ?c(tN)

are
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-1
Qle 0 O]Vx.(tIZN) (2.46)

1

F:c 0 0 ili

=1 v 0 -(aisz) %)
0 1 -2a b
_ JL
-

S121 Syzi || %1p(El1Z) - x5 ()
Spai Sazi || %o (ElZ) - xp;(0)
Syzi Sz3i L;ﬁsi(tlZN) - Xz (£)

S131 c

Sp3g | =} O

S331 0

where‘V;l(t]ZN) is the inverse of the error covariance of the ith model

i
at time t.

Finally the smoothed estimate is

il(t[zN)
X, (t|Zy)

,x3(t|ZN)

_

i .
Il ~12

i=1

%5 elz)
%p; (ElZy)

Ry; (tl2)

o

(2.47)

where pr(ei[ZN) is the final value of the a posteriori probabilities

found out from the filter part for the ith model.

In this chapter the adaptive filtering and smoothing equations for
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the Bayless and Brigham model have been given. To investigate the
validity of the algorithms and to judge its performance when applied to
seismic problems, computer simulations are carried out. The next chapter

discusses these simulations.



CHAPTER III
SIMULATION RESULTS
3.1 Introduction

Simulation may be defined as a technique for conducting experiments
on an analog, digital or hybrid computer, which involves certain types of
mathematical and logical models that describe the behavior of the system
over a period of time.

With computer simulation, insight can be gained into complex sys-
tems, formulation and testing of theories, and the prediction of the.
behavior of the systems .in the future.

For the model of Bayless and Brigham, éomputer simulations are
carried out to see whether the adaptive algorithms described previously,
are adequate for the task of deconvolution and to evaluate their per-
formance under a variety of circumstances. In particular, simulation is
important due to the fact that the theory derived in Chapter II is not
developed for poisson.inputs. Hence one cannot predict without experi-

mentation the performance of the algorithm,
3.2 The Method of Simulation

The total simulation program is rather involved, incorporating many
facets, such as the generation of both poisson and Gaussian noise and the
numerical integration of many equations. The simulation program (illus-

trated by the flow chart in Figure 6) is listed in the appendix, and some

28
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of the important aspects of the program as well as experimental results

are presented in the sequel.

3.2.1 Integration Method

The integration method used here is referred to as the fourth order
Runge-Kutta Method (28).: It 'is based on Simpson's Rule for finding the
area under the given curve. There are, however, a number of such methods
having minor variations and most computer libraries contain one or more
as general integration procedures. The method is summarized below.

If a first order differential equation is
y = £(x,y) : (3.1)
where y is the derivative of y with respect to x and
y(x ) =y, (3.2)
then one computes

k, = hi(x ,y.)

k
B h 2
k2 = hf(xn * Yy + E—Q
. ks (3.3)
kg = hEC + 70y = 59)
k4 = hf(xn + h,yn + ks)

where h is the integration step size. The next value of y is evaluated

according to

_ 1
Ynse1 = Yn g (g * 2k, + Zkg v k) (3.4)
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The Runge-Kutta methods are self starting, have easy changes in step
size and are particularly straight forward to apply on digital computers.
However, they require a number of evaluations of the slopes f(x,y) at
each step, equal to the order of the method."

An important consideration for this method of integration is the
choice of step size 'h'. If the step size is too large, the result will
be inaccurate, but if it is .too small, an excessive amount of computer
time is required. There are various ways of estimating 'h', One rule of
the thumb is to select h as 1/10 the smallest eigenvalue of the linearized
system. Another scheme is simply run the program with two choices of
step size of say .0l and .00l and compare. If the results are identical,

then the larger step size is chosen.

3.2.2 Random Noise Generation

In the simulation, three kinds. of random noise inputs are considered.
In one case the equal amplitude random poisson distribution is the input
to the system. In the second case the random amplitude poisson (RAP)
distribution is the input. Gaussian additive white noise corrupts the
output to give the observation for the model. In this section the gener-
ation of ‘these noise disturbances are discussed.
(1) Equal Amplitude Poisson Distribution (EAP). A zero mean
poisson distributed input of equal amplitude is represented by
®
u(t) = 1 8(t-t;) - Q (3.5)
i=-c .
where,ti's are the random pdisson variables, and Q is the average number

of occurrences per second., Let Y1aYpsttosYy be random independent vari-

ables that have an exponential density function
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Py ) ¥ yso

=0 otherwise

Starting at an arbitrary time t = 0, assume

' =N
ARSI S
t =

35172t

TV Tty

Then it can be proved that the random variables t. are poisson in

nature (29).
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(3.6)

(3.7)

To realize an exponential distribution function from a.uniform dis-

tributed function between (0,1), a nonlinear transformation is required.

This transformation is represented in.the block diagram of Figure 7,

where the random variable X has the density function

\
[

px(X)‘ OiX<1

=0 otherwise

and the random variable Y has the density function

|
o
ol
o
<
<
v
o

=.0 otherwise

It is required to find the transformation h =.g(x).

(3.8)

(3.9)
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X o | y
Py (X) b= el MR

A 4

Figure 7. Transformation of a Random Variable

If X and Y are related on a one-to-one.basis, then equating the

probabilities gives

PX <x) =P <y) (3.10)
or

X y

fdx = { Qe"Qy dy

0 0
or

x= (1- e_QY)

or

o -in@ - x) _ -1n(x)
Q Q

(3.11)

where Q is a parameter of the exponential process.

Hence, by this nonlinear transformation, for various values of X, a
sequence of random variables Y are generated. These random variables are
independent and possess the exponential density function. The poisson
distributed inputs .can then be obtained by Equation (3.7).

The statistics of the white noise process are

E{fu(t)} =0 and E{u(t)u(t)} = Q8 (t-1) . (3.12)

Therefore, given the first and second moments of this random process, the

equal amplitude poisson distribution can be implemented.
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(2) Random Amplitude Peisson Distribution (RAP). The RAP distribu-
tion input can be expressed .as
® ®
u(t) = iz;m m,8(t-t,) - E iz_m m, 6 (t-t,) (3.13)
where mg is a random distribution of mean m which reflects the intensity
of the impulses.

Of~the statistics of random processes, the first and second moments
are most useful. In fact first and second order moments provide
necessary and sufficient information for problems involving linear
systems and/or Gaussian random processes. As in the previous case,
efforts will be centered on deriving the first and second moments to

obtain a statistical knowledge of impulse processes.

The first moment is (30)

E[] m. 8 (t-t;)]
) E[m, JE[8 (t-t,)] (3.14)

mQ

E{u(t)}

where E{m,} = m and Q is the mean for the poisson process.

The second moment is

Elu(t)u(t)} = [ ] Elmm ]E[8(t-t,-1)6 (t-t.)]
i=1 j=1 : J (3.15)
= Qe (0)8(t-t,) + Q 21 p ()£ (t-1)
n=
T

where p(i) = E{mkmk+

with n consecutive intervals of peisson process tss and Q is the variance.

i}; fn is the probability density function associated

of the poisson process.
If in the above, an assumption is made that the random.variable m,

is zero mean and independent, then considerable simplification results.
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In fact if m, is uniformly distributed between -1 and 1, then its first
and second moments are 0 and 1/3, respectively, so that the first and

second moments of the RAP distribution input are

E{u(t)} =0
and

E{u(t)u(t)} = % 8 (t-1) . (3.16)

A little modification is required in the equal amplitude poisson
distribution described in the previous section to get the RAP distribu-
tion. When the pulses are initiated onto the system in a poisson manner,
the amplitude is made to vary according to the various values of the
random variable m, , with the above statistics. It is seen that the
previous section on the equal amplitude poisson distribution problem is a
particular case of the more general RAP distribution problem. The mi‘s
are no more random, but deterministic with a value of 1.

(3) Gaussian Distribution. There are many applications in simula-
tion and analysis of dynamical systems which require large amounts of
pseudo random numbers. There has been a great interest in recent years
in the generation of pseudo random numbers on a digital computer. Since
these numbers are generated by deterministic means, the term pseudo
random is applied to the generated numbers. Chambers (31) and many
others, treat the subject of uniform.pseudo random sequences.

The two most popular methods of generating uniform random num-
bers are the multiplicative method and the mixed congruential method. The

first method can be described by the recurrence formula

Xi+1 = AXi (modulo M) .
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The second is described by

Xi+1'= AXi + C (modulo M) (3.18)

where A, M and C are constants usually chosen to yield a long period and
other desirable statistical properties of the sequence. On division of.
AXi or AXi + C by M and taking the remainder, the next random number is
obtained. bAs each random number is obtained, it can be divided by M to
be normalized to the unit interval. The numbers so obtained will
approximate a uniform distribution veryaclosely;

Only the multiplicative method will be considered in this section.
The generator described in Equation (3.17) may be easily implemented on
any digital computer. The multiplier A is always chosen as 8K+3 where K
is a positive integer. This is done.to insure a full period of M/4.

Also the starting number XO must be an odd integer to obtain a full
period. There are no other requirements except that A must be chosen to
yieldvgood,stati§tical properties in the generated numbers.

Brown . and Réwland (32) have obtained satisfactory statistical
properties from é pseudo random generator with A as 19971, M = 220, and
XO as 31571, Thése generated numbers are uniformly distributed on (0,1).
These can be converted into a zero mean, unity variance, Gaussian distri-

bution by-the exact closed form relation developed by Box and Muller

(33). These are

_ 1/2
Z1 = (-2 1In Xl) Cos 21TX2 (3.19)
7. = (-2 1n X.)*/? sin 2nx (3.20)
2 1 2 ’
where Xl and X2 are uniformly distributed random variables and Z1 and 22

are Gaussian random variables.
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3.2.3 Parameter Selection

The Bayless and Brigham model being simulated has the same parameters
chosen as is indicated in -Section 2.1.1, except where differences are
allowed to account for model uncertainty. However a question arises as.
to the value of the input impulse to the model.

The impulsive reflection generator described by Equation (2.4) has
at the instant the pulse is initiated onto the system, an output of value
c. It is seen that the input impulse amplitude is a function of the type
of integration done and the step size chosen. As the value of ¢ for the
model has been chosen to be 1000, this means a small step size must be
selected for the iterations to work. The choice was made to be .0001.
Hence given the step size and the method of integration (fourth order
Runge-Kutta), it is seen that the input impulse magnitude required is
approximately 1040 Also the initial conditions for the states are at
zero and the initial variance conditions are chosen to be zero except V

11

the variance of state x,, the output of the reflection generator. This

1.‘
value is taken to be 1000.
It is thought that the points discussed in.this section are those

which required some explanation. The remainder of the program involves

the mechanics of implementing the flow chart.
3.3 Comments

A number of experiments were conducted. These experiments .are moti-
vated by the following questions.

(1) To what degree is system identification achieved?

(2) How significant a role does adaptive smoothing play in the

estimation of the state?
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(3) How do the results of adaptive filtering under uncertainty com-
pare with ordinary Kalman filtering for a known model?

(4) How does adaptive smoothing compare with smoothing with certain
knowledge . of the model?

(5) What are the effects of the level of measurement noise on the

performance of the. estimator?
3.4 Case With Equal Amplitude Poisson Input

The modified Bayless and Brigham model is used with the parameter
'a' in the F matrix in Equation (2.8) uncertain and simulated on the
computer. The poisson input is generated as explained in the previous
section as is the Gaussian white noise process. The integration method
is the Runge-Kutta fourth order method as explained previously. In the
simulation presented below, the integration step size is 0.1 msec. and

the observation is taken every 0.5 msec.
3.4,1 Effects of Uncertainty in the Model

In this experiment four values of 'a' are possible for the candidate
models. They are 'a' = 150, 100, 50, and 10 while the\othervparameters
are fixed at b = 100w, ¢ = 1000 and Q = 500. The candidate models under

consideration are:

-1000 0 0 1000
: 2 .22 | :
B, X(t) = 100m 0 -(150“¢100“7°) | X(t) + 0 w(t)
! 0 1 -300 ] 0




-1000 0 0

o, : X(t) = | -100m 0 - (100%+100%7%)
0 1 ~200
-1000 0 0

6, ¢ X(t) = | -100m 0 - (50%+100%7%)
0 1 -100

- -

21000 0 0

o, : X(t) = | -1007 0 - (10%+100%7%)
0 1 220

1000

X(t) + 0 w(t)

X(t) + 0 w(t)

X+ |0 | W

The model with 'a' as 50 or 6, is true. The output and the measurement

3

are assumed as
y(t) = [0 0 1]X(t)
and
2(0) = y () + V()
‘The covariance of the plant is
E{w(t)w(t)} = Q8 (t-1)

where Q is 500 and w(t) is poisson distributed.

measurement noise is

T .oy
VIOV ()} = Re

The covariance of the

39
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where R is 10"5 and v(k) is zero mean Gaussian .white noise. The initial

conditions xi(to) and in(to) are

0 1000 0 0
X, (ty) = | © ; in(to) = 0 0 0
0 0 0 0

The a priori probability assigned to each model is
pr(ei) = 0,25 for all i .

Result 1. The desired state to be estimated is x,, the spiked out-

1°
put from the reflection generator. A typical single run is shown in
Figure 8, where the estimated and the actual values are plotted. The
associated identification capability is plotted in Figure 9. It is seen
that adaptive filtering provides estimates of the impulses after a
noticeable lag, This is because of the discrete observation model. An
event that occurs between observations .is not noticed until the next ob-

servation. Also the identification of 6, as the true model is indicated

3

after a number of samples, by the greater a posteriori probability
Py (85]2;) .

Result 2. The effect of adaptive smoothing is .seen on the estimate
of X), as its true and smoothed values are plotted in Figure 10. Also
the observation set from which this estimate x

1

Figure 11, To bring out the comparison between the adaptive smoothing

is made is shown in

and filtering operations, a plot of true, filtered and smoothed values
for the first fifty observations is shown in Figure 12. It is clearly

seen that the process of adaptive smoothing removes the lag in the
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estimate as .observed in the filtered results -and hence makes for accurate
results., |

Result 3. To demonstrate the effects of adaptive filtering when
compared with ordinary Kalman filtering for a known model, the true value,
adaptive estimate, and Kalman estimate are plotted in Figure 13. Even
with uncertainty in the model, the adaptive filtered estimate is almost
the same as the Kalman filtered estimate., This result is significant,
since it shows that one can accomplish accurate deconvolution even with
model uncertainty.

Result 4, It is important to judge the effects of adaptive
smoothing as compared with nonadaptive smoothing, or smoothing under
uncertainty. Figure 14 is a plot of the true value, the adaptive, and

nonadaptive smoothed estimates of x, for the first fifty observations.

1
There seems to be very little difference in the results of the smoothing
methods and model unﬁertainty does not impair the estimate of the state
X,
Result 5. Another experiment conducted is based on the assumption

that there is uncertainty in the frequency of occurrence, Q, of impulses
for the poisson input, instead of uncertainty in the model. The model is
fixed with the parameters of the model given as a = 50, b = 100w,

c = 1000, while Q has four possible values: 900, 700, 500, and 100. The

third candidate model indexed by 6, is the actual model, and has a value

3
of Q = 500. Each model is given the same initial conditions as in the
previous experiments and the same a priori probabilities. A single run
is made and the actual and filtered values of X1 is plotted in Figure 15.

Again a lag is noticed in the filtered estimate as was seen in the case

of uncertainty in the parameter 'a'. Also the identification capability



lQDQj ' ——— T True Value
4+ F  Adaptive Filtered Estimate
F' Kalman Filtered Estimate
T
500
0
-500 ¢
-1000 +
0 ,002 .004 : .006 .008 .01

- Time

Figure 13, True, Adaptive Filtered and Kalman Filtered Estimate
‘ for EAP Input With 'a' Uncertain

AT



21504

T True Value
S Fixed Interval Smoothed Estimate
S' Adaptive Smoothed Estimate
1650
T
1150
1
650 %
150+t
a \
3
-350 J h
-850 lpe .
,004 .008 .012 .016 ' 0.02

Time

Figure 14. True, Adaptive Smoothed and Fixed Interval Smoothed
Estimate for EAP Input With 'a' Uncertain



2150

T  True Value
—— F Filtered Estimate
1650
1150
|
\
650 iy .$ b
y ‘ - j
150 “\ \ b Il - |
LU I iy
-350 / WW
T
-850
.0 .01 .02 .03 .04 .05 .06 07 . .08 .09 0.
Time
Figure 15, True and Filtered Estimate of State x, for EAP Input With 'Q' Uncertain

1

1

6V



50

is seen in Figure 16 as the correct model reaches the highest
a posteriori probability. It is noticed, however, that the number of
samples required for the system identification to take place is larger.
It is thought that the degree of uncertainty in the system due to the
unknown Q has a second order effect and consequently, a larger amount of
data needs to be taken. The shape of some of the probability curves
resemble a saw-tooth curve and if the observation is curtailed at say .08
secs. the wrong model will have a higher a posteriori probability. Hence
it can be inferred that system identification is not very reliable.
However, even when the posterior probabilities are misleading, accurate
deconvolution is accomplished.

Result 6, Adaptive smoothing is carried out for the above case.

Figure 17 shows a plot of true and smoothed values of the state x In

1°
order to compare the adaptive smoothing and the adaptive filtering esti-
mates, a plot of all three, the true, filtered, and smoothed values is
shown in Figure 18 for the first fifty observations. As is evidenced,

there is a definite improvement due to the process of adaptive smoothing

in obtaining the estimate of X

3.4.2 Effects of Measurement Noise

In the experiments conducted so far, the measurement noise has been
assumed to be very low (R =.10-5j. However, in practical situations, the
level of noise is larger. It is.of importance, therefore, to examine the
effect of noise on-the system performance. Hence, in the following
experiment, the level of measurement noise is raised by a factor of 100
to R = 107> and is compared with R = 107> where R is the varianée;of the

noise.
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The system has the uncertain parameter 'a' in the model and has four
possible values specified as 150, 100, 50 and 10. The other parameters
are fixed as before.

Result 1. A plot has been shown in Figure 19 of the true value and
the filtered estimate of X; with two different levels of noise. It is
seen that with larger noise the estimate is poorer than with the case of
less noise. In other words, the ratio of signal to noise is made smaller
and the effect is seen to degrade the estimate, If the noise level is
further increased, there is a point where the signal to ratio is such-
that the noise prevails and the filter cannot do accurate deconvolution.
Figure 20 shows the observation that is processed by the filters to ob-
tain the desired estimates. It is seen that the noise is high enough to
be noticeable when R = 107°.

Result 2. Adaptive smoothing is also conducted with two different
levels of measurement noise. As can be observed in Figure 21, the

adaptive smoothing process for the larger level of measurement noise does

not do as .well as when the level of noise is smaller.
3.5  Case With Random Amplitude Poisson Input

For the model to be more realistic, it is necessary that the input
be RAP .distributed. The method of generation for this distribution has
already been described in Section 3.2.2. The method of integration and
the method of obtaining Gaussian measurement noise remain the same, The

observations are at time intervals of .5 msecs.
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3.5.1 Effects.of Uncertainty in the Model

The same experiments are conducted on the modified Bayless and
Brigham model as in Section 3.4 with the parameter 'a' having possible
values.of 150, 100, 50 and 10, while the other parameters are fixed as
before. The same initial conditions are used and each model is given an
equal a priori probability. “

Result 1. A single stage run is made and the filtered results com-.
pared with the actual values in Figure 22, It is seen, however,_that‘to
achieve a satisfactory system identification, the number of observétions
must be.greatly increased. This is shown.in Figure 23. It is only in
the last few hundred iterations of the 400 observations taken, that the
correct model did achieve a respectable probability. In spite of the
lack of reliability of system identification, the estimated values ob- .
tained are quite satisfactory. As seen in the previous section, the
estimated values lag behind the true state X715 due to the discrete
observation.

Result 2. . Adaptive smoothing is implemented next and the results

plotted along with the true values of the state x, in Figure 24. Since

1
the results are cluttered up, a magnified version of the first 200 itera-
tions is plotted in-Figure.26, showing the true, filtered and smoothed
estimates. As in the previous experiments, it is observed that the
smoothing results show a remarkable improvement in the estimates, re-
moving much of the lag. Figure 25 shows a plot of the observation set
from which these estimates have been made.

Result 3. For the case of an RAP distributed input, an experiment

is conducted where the Q of the model, namely the frequency of occurrence

of the impulses in the input are uncertain and the other model parameters
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are known at values specified by Bayless and Brigham. In other words,
the four candidate models have values .of Q as 900, 700, 500 and 100, the
third model representing the true one. Figure 27 is a plot of the true
value of X when compared with the adaptive filtered estimate. There is
a definite lag in the estimated values as compared with the true values.
The system identification capability is seen in:£he plot shown. in Figure .
28,

Result 4. Adaptive smoothing when applied to the above model with
uncertain Q gives results as plotted in Figure 29. A closer observation
of the effect of adaptive smoothing as compared with filtering can be
seen in Figure 30 for the first 200 iterations. The process of adaptive
smoothing reduces the lag in the filtered results to a great extent.

Result 5. To compare Kalman filtering under certainty with adaptive
filtering, an experiment is conducted with the model being fixed and the
Q of the input being uncertain as described above. In Figure 31, plots
of the true value, the Kalman estimate, and the adaptive filtered esti-
mate of x, are shown. It is seen that the difference in the estimates is
minimal and hence model uncertainty does not significantly degrade the
results. This seems important because even though the model is uncertain,

the estimation scheme does nearly as well as in the case where the model

is completely known,

3.5.2 Effects 9£ Measurement Noise

It is important to see the effect of measurement noise on adaptive
filtering and smoothing given a RAP input. As in Section 3.4.2, the two
levels of measurement noise are chosen to be R = 10-3 and R =,10-5 where

R is the variance parameter of noise. The experiment is conducted with
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the Q of the plant noise having four possible values: 900, 700, 500 and
100. The other parameters are fixed, and known with certainty.

Result 1. A single run for the two levels of measurement neise is
made and adaptive filtering applied. In Figure 32 the effects of the
larger measurement noise are seen. As the measurement noise is increased,
a certain amount of degradation sets in and the estimate is worse than
with the case of less measurement noise. It should be noted that if the
noise level is raised excessively, the signal to noise ratio may be so
poor that the operation of filtering is useless.

Result 2. Adaptive smoothing for the two levels of measurement
noise is conducted and the results shown in Figure 33. As seen earlier,
the effect of the higher measurement noise level is to cause a deteriora-
tion in the estimate when compared with the small measurement noise
having R = 10—5. However, for this-level of measurement noise, estima-

tion of the state x, is still satisfactory, though the magnitude of the

1
estimates has dropped due to smaller Kalman gains K as a result of the

measurement noise increase.
3.6 Summary-

A geophysical model has been simulated for the case of equal ampli-
tude poisson inputs and RAP inputs., It has been seen that though the
theory has been developed for Gaussian inputs, the estimation scheme
worked well for the above inputs., Deconvolution was achieved for the
case of model uncertainty and the estimation was.not hampered due to the
fact that the parameters of the model were unknown. Adaptive smoothing
was very effective in improving the estimate of the state. System

identification, however, was not very reliable though adequate estimation
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was . always achieved. Even for higher levels of measurement noise,
deconvolution seemed to work, although the signal to noise ratio had to
be reasonable so as to make the filtering effective. It is also possible
to obtain from the same algorithm described herein, the predictive
operator X, or the basic wavelet shape so that its inverse operator can
be found out.and the impulse response obtained.

It may so happen that the correct model is not one of the candidate
models because it is unknown, The next chapter discusses .the effects

this has on the estimation scheme proposed.



CHAPTER IV
EVALUATION
4,1 Introduction

The idea. of adaptive filtering as described in the previous chapters
uses the underlying assumption that the true model must be one of the.
candidate models. Ordinarily in practice, the parameters in.the model.
are unknown -and one has to rely on judgement‘in selecting the candidates.
It must be expected that the parameter set chosen for the candidate
models may not include the true one. It is interesting then, to observe
the effects this will have on the system. The motivating questions. for
the following experiments are: (1) Will the estimation scheme identify
the model closest to the true one? (2) If it does, will there be any

degradation in the estimate?
4,2 Effects of Improper Modeling

The basic Bayless and Brigham model has been taken and two candidafe
models chosen with parameters 'a' as 60. and 30. The true value of 'a’
in the model is known to be 50. Each is assigned an a priori probability
of 0.5 and the same initial conditions are specified as in the previous -
experiments.

The candidate model equations can be written as
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- 1 T
-1000 O 0 1000
y 2 22
61 1 X = -100m O -(607+100°77) X + 0 W (4.1)
0, 1 -120 0
— - — -
-1000 O 0 1000
y 2 22
62 1 X = -100m O -(307+100717) X + 0 W (4.2)
0 1 -60 0

The observation model is
Z=[0 0 1] X+v (4.3)

where v is a zero mean white noise with variance 10-5

Result 1. A single run is made with the above two candidate models
assumed. Figure 34 shows the identification capability of the two
models., It is seen that as more data are obtained the model with the
unknown parameter closest to the true value approaches a probability of
one. At the end of 2000 iterations the model with 'a' as 60. has a
probability of .83 while 'a' as 30. has a probability of .17.

Result 2. A plot of the true, filtered and smoothed estimates of

the state x, has been shown in Figure 35 for 200 iterations. As evi-

1
denced, smoothing gives a more accurate estimate and inspite of improper
modeling, deconvolution is achieved. This is quite significant because
even though the model may not have exact parameters, estimation can still
succeed.

When adaptive filtering is applied and the correct model is not

included as a.candidate model, then the model that most closely
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represents the true model hopefully achieves the highest a posteriori
probability. In effect, it is possible to narrow down on the unknown
parameters from a number of possible values to those centered around the
parameters of the ﬁodel with the highest a .posteriori probability. This

is discussed in the next section.:
4,3 Iterative Use

In conducting the last experiment, it has been seen that the candi-
date model with 'a' as 60. had a higher a posteriori probability than the
candidate model with 'a' as 30.0. Hence, it can be inferred that the
correct calue of 'a' is nearer to a value of 60.0. One.can repeat the.
process with candidate models centered about 'a' as 60.0,

In the following experiment, two values of 'a' are selected. These
are 50. and 70., respectively.

The candidate model equations .are

-1000 0 0 1000
v 2 22
61 : X = -100w 0 - (507+100%1™) X + 0 W (4.4)
0 1 -100 0
-1000 0 0 1000
. 2 2.2
62 : X = -100m 0 -(707+100%77) X + 0 w (4.5)
0 1 -140 0

with the same observation model and initial conditions as before.

Result 1. For a singie run, the system identification capability
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has been observed in Figure 36. As can be seen, the candidate model with
'a' as 50. reached a higher probability when the observation set was.
curtailed and the experiment stopped. On running the above two models
for a longer period, it was found that the a posteriori brobability of
the correct model dropped off to a very low value. However, on observing
the estimation of the state and comparing with the true value, it was
found that good estimation was still achieved. Hence one may conclude
that the system identification cannot be relied upon though the
deconvolution capability seems reliable,

It has been proved, that for the case of Gaussian inputs, the true
model will eventually converge to an a posteriori probability of.one given
enough data (18). However, for the geophysical process being modeled,
the inputs are a sequence .of random poisson distributed impulses and con-
vergence has not been proved for this-case. One reason for the conver-
gence not being obtained in this-experiment may be attributed to a
certain sequence of noise that was implemented to generate the observa-
tions. The fact that the inputs afelnoneGaussian seems to be a possible
reason,

To show the reliability of the filter, a Monte Carlo analysis should
be conducted for different noise sequences. Then a statistical evalua-
tion for these various noisy observations could be made. However, due to.
the inherent expense of Monte Carlo simulation, these experiments were

not . conducted.
4.4 Summary

It has been observed thét even with some of the parameters in the

model unknown, by a method of reduction and iteration, the parameter
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values can be identified, though not reliably. Estimation of the
desired state is achieved, and the algorithm seems a promising way to

accomplish deconvolution.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

In this work, a new technique for solving the deconvolution problem
for seismic processes in the time domain has been postulated. The tech-
nique proposed is a modified version of Kalman filter theory which re-
quires a state space formulation, wherein a model is built to represent
the seismic reflection process. While acknowledging the fact that this
model is only a simplified version of the rather complex seismic problem,
nevertheless, it gives an indication as to whether the technique being
pursued is feasible.

Some of the model parameters have been assumed unknown as often
happens in practical seismic problems. It has been shown that the
adaptive filtering scheme proposed in.this work accomplishes accurate
deconvolution in spite of model uncertainty.

This data processing problem is basically a post experimental
analysis type problem and therefore, on line processing is not required.
A smoothing operation was.derived to improve results. The smoothing and
filtering techniques presented here are derived on the basis of inputs
that are Gaussian white noise. Since the inputs to the geophysical model
are more accurately modeled as poisson in nature, digital simulations
were conducted to check whether the algorithms proposed are adequate for

the task of deconvolution.
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The algorithms that have been presented have an advantage over those
presently used in that they are valid for both time invariant systems and
time varying systems. A number of experiments have been conducted to
demonstrate the performance of the methods presented here under a variety
of conditions for deconvolution. These include a variation in measure-
ment noise intensity, uncertainty in the plant noise and the model
parameters, comparison of adaptive and non-adaptive filtering and smooth-
ing and the effects of incorrect modeling., In all cases the deconvolu-
tion capabilities of the algorithm seemed adequate under reasonable
signal to noise levels. The algorithm did not learn the true values of
the unknown parameters with any degree of reliability, as was previously

hoped for. This may be attributed to the use of poisson inputs,
5.2 Suggestions for Further Research

In this research, emphasis has been on demonstrating the applicabil-
ity of the Kalman filter theory under various circumstances and uncer-
tainties in the model, rather than on the theoretical aspects of
modeling. Research in obtaining a suitable dynamic structure to repre-
sent the seismic reflection process should be rewarding. The choice of
the proper number of states to adequately model a given process is not an
easy one. While there is a definite need to assume a more random wavelet
rather than a fixed configuration taken in this work, the order of the
system dynamics should not be increased to such an extent as to make it
computationally inefficient.

The method of obtaining a suitable model to represent the seismic
problem seems to involve taking a closer look at the physics of the

seismic reflection process. This involves the propagation of waves in an
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elastic media and the reflection and transmission coefficients that arise
as well as the angle of incidence at the point of impact with the seismic
layer.

The method of deriving an appropriate model by taking a state space
model consistent with the covariance information is also possible, but
the state of the art is not developed sufficiently enough for the time
variant case.

When a suitable state space model has been developed, which involves
constant parameters (time invariant systems), then there are recursive
algorithms that avoid solving the Riccati equations, thereby obtaining
significant computational advantages. These procedures involve the so-
called Chandrasekhar type algorithms (34).

In the work done, only synthetic data has been used. A comparison
with other methods of solving the deconvolution problem such as minimum
phase filtering, homomorphic filtering and maximum entropy methods is
suggested using the synthetic data.

Finally real field data could be used and the versatility of the
filtering and smoothing operations developed here verified and compared

with the existing techniques mentioned above.

5.3 Conclusions

The problem of deconvolution using the Kalman filter theory with
uncertain modeling knowledge has been proposed and solved.

It has been seen that even for cases of model uncertainty, that is,
even when the parameters in the model are not clearly defined that the
filtering gives good estimates. However the effect of smoothing, pro-

posed as a process to follow the filtering operation has been shown to
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refine the estimates to a great extent.

It is significant to point out that the results were not degraded
excessively due to model uncertainty in both adaptive filtering and
adaptive smoothing operations.

System identification seems to be unreliable and there is no way of
determining exactly when to curtail the use of data in filtering. How-
ever, in spite of this, the estimates obtained did verify that the
deconvolution problem can be solved using the suggested method.

Also, as a matter of interest, the wavelet input could also be
estimated from the filtering and smoothing algorithms. This wavelet is
called the predictive operator in minimum phase filtering from which the
inverse operator is designed and implemented.

Thus the objectives mentioned in the beginning of this work have
been met. Further work in the deconvolution problem using this approach

should be rewarding.
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APPENDIX

COMPUTER PROGRAM FOR SIMULATING THE MODIFIED
BAYLESS AND BRIGHAM MODEL.USING

ADAPTIVE KALMAN FILTERS
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cx
¢
C*
s
C
C*%
Cx
Cx

C*
C*

e
E

Cx
(&3
C*
C
=
Cx

[

C*

LR R L T R R R T T
THIS PROGRAM FINDS THE IMPULSE RESPONSE OF THE EARTH XHAT(1,1)
AFTER GENERATING A SEISMIC TRACEe. THIS IS FOR AN EQUAL

AMPLITUDF PCTSSGN "INPUT. FOUR. MODELS ARE CHOSEN AND THE
PAKAMETERS IN THE MICEL ARE FIXED EXCEPT ALPHA WHICH ‘HAS VALUES OF
159, 10C, 5G, 1G.

THE ITERATION IS DONE EVERY Q.1 MSECS. WHILE THE OBSERVATION IS
TAKEN EVERY 0% MSECS.

COVARIANCE GF THE PLANT =500,

COVARTIANCE OF THE MEASUREMENT NOISE R= 10** -5

X 1S TRUE STATE,

AFAT IS FILTERED STATE ESTIMATE,

XSAT IS SMCOTH=C STATE.ESTIMATE,

VAR IS THE CCVARIANCE CF THE ERRGOR.

FOR THE CASE JF KANDOM AMPLITUDE POISSON INPUT , CHANGE
PULSEL=10%%6%Y¢ WHERE YG IS A RANDOM VARIABLE HAVING THE FIRST
Twl MOMENTS AS O AND 1/3, THE COVARIANCE OF THE PLANT NQISE 1§
CRANGED T Q/3. ’

THE SUBRCLTINES USEL ARE RANDU, RMGN, MODEL, RKUT, ADAPT, CHANGE
SMIOTH

I EESEE L T E R E RS REETE R L S T

DIMENSIGN TIME(2G0C)y TIMEL(200) 5 TIMM(200C) 9 XHAT(10s1) +XHAT1(1041),
CXHAT201091) +XRHAT3(10s1 )y XHAT4{10,1)+20BS( 1000} ,VARL(10,10),

CCVARZ(10,13),VAR3 (10,100 ,VAR4(10,10),YF(1000},VAR(1041)+X(10,101),

CXD(10, 10y ARR( 10} 4BNNOVI10),APROB(10) yALR(10,10),ALKR(10},
CYMATI (1021 ) yYFAT2 (1091 )y YHATB (10,41 )y YHAT4(10,1),COVARL(L20,10),
CCOVAR2(10,1C),COVAR3(10,410),COVAR4(10,410),2(1000),XSAT(10,1),
CXUSAT(20 1)+ X1(10C0}9X2(1000), X2(1000) y XX1(1000) » XX2(1000} »
CXX3(100U) 9 XXX {LOGU D o XXX2 (1000} s XXX3(1000)¢XSAT1(10,1),
CAAL(1000),AAZ(100G) yAA3(1C00),B81(1000) ,882(1000) ,BB3(1000),
CCCL{1000)+CCZ2(1000),CC3(10001,D01(1000),002(1000),D03(10001},
CTTLOLOCO}»TT2(1003)TT3(1D00),TT4(1200),TTS5(1000),TT6(1000),
CUULT10G0),ULZ(1C0CH,UU3(1000) 4UL4(1000} »ULS(1000) ,LUE(1000),
Cvvlil1uu0),VV2{1U00},VvV3(1000),vV4{1000),¥V5(1000),VV6(1000),

CCHALEL00D) ywhZ{100C) yWW3(1000) ywws (10001 ,WK5(1000) ,WW6 (1000),

CXOSATL( 10Uy 1 ) gASATZ(1091) 9 XDSAT2(10,51) ¢ XSAT3(10s1) 4 XDSATA(1041),
CXSAT4(1uU 1) 4XDSATA(10+1)
CIMMON/VARTES/VTRLE( 3,3)
CONMIN/PARAM/ AV e NXyNY »RRRy ANNOV4E
CUMNON/NEL/HTY93) 4HT (341 )Ry ZZyAJ(10, 10)
CUMMON/COEFF/Q 9 ALPHA

CONMMCN/KKKKK/ZIORS

CCMMON/PPPP/EULSEL

COMMON /K ALMAN/AKGAING10,1)
COMMON/SMEETR/SMGAINGS 33 )y Ng AMGAIN(3,3)
=, 0500 '
YMEAN=Q 4y

KR=Y,0/0%%5

SIG2=SQRTI{KM)

K=RR

hY=3

NX=2

NV=12

AVI=AV+L

NXL=NX+1

NYLl=NY+1

IN=0

1285=5%

ALPHA=50.0

gp



akal

bt
[t

14

15

20

TIME(l)=0.0

M=1

MX=8143

CALL RANCU (FMXyMY,YFL) . ’
MX=MY

Q=E030,.

wi=1l.0/Q
LOBS(M)=~QUu*ALCG(la=YFL)
TIME(M#1)=ZCBS{M)+TIME(M)
TOLFF=TINE(M+1)=-T IME(M)

IF (TDIFFeLF.Js0001) GC TO 1
IF {TIME(M)W.GE+Qe 1} GO TO 2
TIMEL(M}=TIME(M)

M=p+]

G TO 1

CCAT INUE

CHANGS THE RANDCM FUNMTION TC A POISSON DISTRIBUTED FUNCTION.
Ca 3 I=1,4
x{141)=0.0
DO 5 I=1,4
APRCB(L)=0425
DO 10 1=),4.
XHAT1(I,1)=C.C
XHAT2(I,11=0.0
XHAT3(1,1)=C.C

XEAT4(1,13=Ce0
h{ly1)=0.0
H{1,2}=0.C
H{1,31=1,0
DO 14 I=1,3
HT(L,1)=H{1,1)
L0 15 1=1,3
D3 15 J=1,3
VARI(I,4)=C.C
VARZ(I1,+J4)=0.0
VAR3(] 4J}=Cal

VAR4(1,J)=Ca 0
VART(1,11)=1000.
VARZ(1,131=1CCJ.
VAR2I(1,1})=1CCC,
VAR4 (141)=1000.
KK=209
IX=31571
DUM=0.1
MM =2
CN 20 I=1,473
CC 20 J=1,3
AJ(I4d)=C.0
A (T,1)=140
CALL RMGN (YNMEAN,SIG2,IXysDUMyKKyYF)
DO 70 N=1,1GCC0Q
TIMM(MM) =ABS(TIMEL{MM)=N*E}
IF (TIMM{NMM) L LELD.09I05) GC TO 21
GO TO 22
PULSE1L=10%%4
MM=MM+ 1
GO TO 25
PULSEL==5030.

PUL SE SHOULD APPEAR CNLY AT THE TIME.OF ITERATICNy CORRESPONDING TO
TO THE INTEGRATION GOING ON.THIS TIME HAS ALREADY BEEN CALCULATED

PREVICUSLY FCF A FIXED G.
CONTINUE
G=500.,
ALPHA=50.0
DO 35 J=1,4
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40U

tn

hNeNaNal

[aFaNaNel

OMNCO

C

C "ALPHA IS GIVEN A VALLE CF 10. AND THE INVERSE CGVARIANCE OF THE
- C

CALL MCDEL (X,yXD)

CALL RKUT (urBoNX X9 XDy X {441} )
IF (T0BS.EQ.5) GO TO 40
GC TC 45

IN=IN+1
ZUIN)=X{2,1)+YFUIN)
2L=2(IN)

108S=1

Gl T SC

1CBS=1CB8S+]

CONTINLE

ALPRA=15040

CALL ACAPT (XEAT1,VAR1,YHATL,CCVARL)
AKR( 1) =RRR
ENNOV (1) =ANRCY

TTL{N) =vTRUE(],1)
TT2(NI=VTRUE (1, 2)
TT3(N)=VTRUE(1,3)
TT4(N) =VIRUE(2,2)
TTS(N)=VTRUE(Z2,2)
TT6(N)=VTRUE(3,3)

ALPKA IS GIVEN A VALULZ OF 150. AND THE INVERSE COVARIANCE OF THE

ERRECR IS STCREC IN THE TT ARRAYS.,

ALPHA=1CC.0

CALL ADAPT (XHATZ,VAR2,YhAT2,COVAR 2]
ARR(2) =RRR

BNNOV( 2)=ANNOGY

UULINI=VTRUE(]1,1)

UUZIN)=VvTRUE(142)

UU3(N)I=VTRUE{ 1y 3)

UU4 (N} =VTRUE(2,42)

UUSIN)=VTRUE (2, 23)

UUG6IN)=VTRUE(3,3)

ALPHA IS GLIVEN A VALUE OF 100. AND THE INVERSE COVARTANCE OF THE

ZRRCGR IS STORELC IN TFHE UU ARRAYS.

ALPHA=50.,0

CALL ADAPT (XHAT3,VAR3,YHAT3,COVAR3}
ARR{3) =RRR.

BNNOV{ 2)=ANNUV

VVIIN)=VTRUE(1,1)

VV2(N)=VTRUE (1,2)

VV3{N)=VTRUE( 1,3}

VV4 (N =VTRUE(2,42)

VVS(N)=VTIRUE(2,43)

VVO6(N)=VTRUE( 3, 3)

ALPHA IS GIVEN A VALLE OF 50. AND THE INVERSE COVARTIANCE OF THE

FRROR IS STOREL IN TRE vV ARRAYS,

ALPHA=10,.,0
CALL ADAPT (XHAT4,VAR4,YHAT4,COVARS)
ARR(4)=RRR :
BNNOV({4) =ANNCV
WA LINI=VTRUE(L1,1)
Whw2 (N} =VTRLE(L 2
KA 2(N)=VTRUE(1,3)
Wna (N)=VTRUE(2)2)
WS {N}=VTRUE(2,3)
WAB{N)=VTIRUE(3,3)

ERROR IS STOREC IN THE WW ARRAYS,
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DO 210 I=144
XHATI( I, 1)=YHAT1(1,]
XHAT2(I,1)=YFAT2(],1
XHAT3(I41}=YHAT3(Iy1
XHATG( Iy 1i=YFATG4( Iyl
CGNTINUE

)
)
)
}

vy
<

THE ESTIMATES OF THE FOUR -MODELS ARE PLACED IN XHAT ARRAYS TQ BE
USEL IN THE NEAT UPDATE.

DO 280 I=1,2

Cd 250 J=1,2

VARI{I,J1=CCLVARL(I+J)

VAR2( T +J1=COVARZ( [ +J)

VARZ(I,J1=CCVARS( 1,41}

VAQ#(I,J)‘(CVAR4(I;J)
59 CONTINUE . .
TrE CCVARIANCE CF THE ERROR OF THE FOUR MODELS ARE PLACED IN VAR
ARRAYS TG BE ULSED IN THE NEXT UPCATE.

IF {(I0BS.NEe1) GU TO 355

OO0 N

[ NaY V]

CALY UPDATE THE PRCBABILITY WHEN THE CBSERVATION IS TAKEN.

OO

LT 320 I=1,4
DO 220 J=1,4
IF (I«NEJJ} G2 TO 210
GC TC 320
210 L ALR(JI) =(ARR(JIZARRLI ) )20 e 5HEXP (=05 %BNNOV (J) %% 2%ARR (J ) +0°, 5%
CBNNOV( T} %#22ARR( T )}
320 CCATINUE
C
C HAVE ORTAINEC ThE LIKELIHUOD RATIO,.
C
DO 330 I=1,4
ALKR(I)=C.C
DC 330 J=1,4
IF (I.NEsJ) GC TG 335
GO TO 33¢C
ALKR{T)=ALKR{TI}¢ALR(Jy 1) *(APROB(J)/APROB{I})
CONTINUE
CO 350 I=1,4
PROBAI}=140/(1aO+ALKR(I))

W ot
A e
[CRe

v
<

HAVE UPDATEC THE A POSTERIORI PROBABILITY OF THE CANDIDATE MUDELS.

WO OO W

£ CINTINLF
L7 360 [=1,3
XHATA(I 41} XhATl(I.IJ*APRGB(l)OXHATZ(I,l)*APROB(Z)fXHATB(I;l)*
CAPROBII)+XHATA (1,4 1) *APROB(4)
360 CINT INUS
XU{N}=X{1,1)
X2(N)=X{Zy1}
K3INI=X{3,1)
366 AXLIN)=XHAT(1,1)
XX2{MN})=XHAT{Z,1)
AX3(N)=XRAT{(3,1)
[+
C PLACED THE ESTIMATES IN ARRAYS FOR USE [N PLCTTIAG AND STORAGE.
C
AST{N) =XHATI(1,1)
AB2{N)=XHAT1{ 2, 1)
AR (NI =XHATL1 (3,1}
BBL1{N)=XHATZ{(1,1}
BBZIN)I=XFAT2(2,1)
BBI(N)=XRAT2(3,1)
CCLIN)=XHATZ(1,1)



CC2INI=XFAT2(2,1)
CCAIN) =XHAT2{3,1)
DOLIN)I=XHAT4(1,1)
DD2(N)=XHAT4 (2411}
DD3(N) =XHAT4(35,1)
7G CONT INUE

XSAT (441)=0.1
EE=-0,00C01

C HAVE TC INTEGRATE BACKWARDS FOR THE SMOORTHING PROCESS.

XSAT1{1,1)=AA1{10CC)
XSAT1(2,1)=2£22(10G0)
XSAT1(3,11=243(10C0)
XSAT2(1,1)=851(10C0}
XSAT21(2,1)=EE2(10G0)
XSAT2(3,1)=BB2(10C0C)
XSAT3(1,1)}=CCLl(10GC0}
XSAT3(2,1)=CC2(10C0)
XSAT3{3,1)=CC3{1C(C)
XSAT4(1,1)=DC1{10GC0}
XSAT4(2,1)=0C2(10C0)}
XSAT4(3,1)=002(10(C)
THE TERMINAL COCNCITICN IS SATISFIED.

O o0

B0 1070 M=1,569

N=1000-M

Q=5C0.

ALPHA=15C,

CALL CHEANGE (UU1,UU2,UU3,UU%UUS5,UUE)

DO 1005 1=1,3

DO 1005 =1, -
105  SMGAIN(I1,Jd)=ANGAIN(T,J)

00 1010 J=1,4

CALL SMOQTH (XSAT1,XDSAT1,AA1,AA2,AA3)
1010 CALL RKUT (J,EE,NXyXSATLyXDSAT1,XSAT(4,)))
c
C FOR ALPHA=1:C, THE SMOOTHED ESTIMATE IS OBTAINED.
c

XSAT(4,1)=XSAT(4,1)-EE

M PHA=10C.0

CALL CHANGE (TT1,TT72,TT3,TT4,T75,TT6}

D 1015 I=1,3

£ 1018 J=1,2
1GL5  SMGAINCI,NJ)=ANGAIN(I,J)

DO 102G J=1,4 '

CALL SMCCTF (XSAT2,XCSAT2,881,882+8B3)

16?0 CALL RKLT (J9EE AKX XSAT2,XDSATZ,XSAT (4,1))
C .
¢ FGR ALPHA=100, THE SMOUTHED ESTIMATE IS OBTAINEOD.
C

XSAT(491)=XSAT(4,1)~EE

ALPHA=5U 0

CALL CHANGF (VV1 ,VVZ,VV3, VV4,VV5,VV6)

D3 1025 I=1,2

bC 1025 J=1,3
1325 SMGAIN(I,J)=AYGAIN(],J)

L0 1030 J=1,4

CALL SMCCTH (XSAT3,XCSAT3,CC1,CC2,CC3)
330 CALL RKLT (JyEE ¢NXyXSAT3,XDSAT3 4 XSAT (4,11)

1
C
C FCR ALPHA=%0,TFE SMUCTHED ESTIMATE IS OBTAINED.
C .
XSAT{4,1)=XSAT{4,1)-EE

ALPHA=10.0
CALL CHANGE (WhlyhW2 yhW3 yhind ynk5,WW6}
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CO 1035 I=1,3
£0 1035 J=1,3
1035 SAGAINT L, J}=AMGAINIT 4 4)
£O 1040 Jd=1,4
CALL SMGCTH (XSAT4,XDSAT4,001,0C2,D03)
D43 CALL RKUT [ JySEWNXyXSAT4L 4 XDSAT4yXSAT(4,1))

1
C
C FCR ALPHA=1Q,THE SNCCTHEC ESTIMATE IS CBTAINED.
C
L 1045 I=1,2

XSATCI 41 1=APRUB (1 1EXSATI(I,1)+APROBI(2}%XSAT2{I,1)+
CAPRUOB(2)*XSAT3(1,1)+APROB{4)®*XSAT4{1,])

1045 CONT INUE

c

C +CUNO THE SMOOTHRD ESTIMATES BY THE WEIGHTED SUM OF THE CANDICATE
C MCDSL ESTIMATES,

C

XXXLIN)=XSAT(1,1)
AXX2(N)=XSAT(2,1)
XXX2{N) =XSAT(3,1)

C
C T+F SHAROTHEL VALUJES ARE STURED IN ARRAYS FOR FURTHER USE.
C
1372 CUNTINUE
XAX1{100G)1=Xxx1(10G0O)
C  APPEOPRIATE WRITE STATEMENTS MUST BE PUT WHEREVER NECESSARY.
C
STOP
FND
SUBROUTINE MCDEL (X, XD)
C £
C* 25 e e el ok ook ok Ao ol ak ok ok Kk
[ THIS PRQOGRAM GIVES THE STATE SPACE MODEL OF THE GEOPHYSICAL

Cx SYSTEM FwrC™M wtICH THE OBSERVATIUNS ARE ORBTAINED.

Cx X{1,1) IS TH® STATE THAT IS DESIRED IN DECCNVCLUTIONe. IT IS THE
C» IMPULSE ?RSPUNSE OF THE EARTH.

Ox THE PRUGRAM IS FCR A MAXIMUM CF TEN FIRST CORCER DIFFERENTIAL

L FQUATIONS, IF MUORE AKE REQUIRED THEN REDIMENSIGN THE X AND XD
C EERERAX AL AR R A AR AR RS
Cx

OIMENSICN X(13,1C),XD(10,10)
CIOMMON/COEFF/ 29 ALPHA
CIMMOCN/FPPP/FULSED
XO(1s1)=-10CLa%*X(1,1)+410004*%PULSFEL
X0(291)=214,7#X(141)=10*%5%X( 3, 1)

XOU3,10=X(2,1)-2 *ALPHA*X (3,1)
=& TURN
ENC

MDELQO10
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MBELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELCCCC
MDELOQOQ20
MDELOO30
MDEL 0040
MOEL0O050
MDELOO60
MDELO0O70
MDELO0080
MDELQOS0

a5



NN OO OO0

[ale ]

SUBRDUTINE FK4TKUTTABTyNXyXsDXyTM) KK

RK&
!l..‘......l...l.Il...I.00.00...lI‘..00.00'l.O..0.0.'.00.0.0...0...000RK4
SUBRCUTINF RK4 INTEGRATES UPTO 50 FIRST DRDER DIFFERENTIAL EQUATIONS RK&
IN THE FCRM GF & TEN BY FIVE ARRAY. RK&
{F MURE ARE REQUIRED THEN WE NFED TG REDIMENSION XA,OXA ARRAYS. RK&
THIS ROUTINF USES RUNGE KUTTA FOURTH ORDER INTEGRATION TECHNIQUE. RK&
KUTTA TAKES THF VALUES 1421314 RK&
DT IS THE STEP SIZE GF INTEGRATICN, RK &
NX IS ThE NUMBRR )F EQUATIONS TO BE INTEGRATED. QK4
% IS THE STATE VECTOR REPRESENTING SET OF FIRST ORDER DIFFERENTIAL RK &
EWUATIONS T BE INTEGRATED. ) RK4
RK4&

SX 1S THE DEXIVATIVE CF X. “RK&
THM IS THE CUMRENT VALLE UF TIME.THF INDEPENDENT VARIABLE. RK&
'l.....tl....l....0.'.l..'............l...0..0.'..'0.0....0..000.0'...RK4
RK4

CIMENS TN X(1045) 4 XA010,45), DX(lC.S!vDXA(lc 5) RK&

G T (10493C+5047U0)KUTTA RK &
HOT=Gae5%0T RK4&

CO 20 I=1,NX RK&

L3 20 J=1,1 RK&
XACLydd=x(14d}) QK4
DXALT JY=CX(1,J) RK&

X{1 9 d) =X{1 4 J) +HDTHDX(I,4J) : RK 4

TM= TM+RCT RK&
KETUKN : RK&

DO 40 I=1,Ax : . RK&

(F) 40 J=1,1 RK&
LXA{T4d)= Lxﬁ(I.J)+(DX(I'J)4DX(IoJ)) RK&
XCLyJ}=XAL1 yJ}+HD TRDX (1 4 J) RK &
KETURN RK&

LG 60 I=1,Nx . RK&

LY &Q J=1,1 PK4
CXACTJ1=0XA0 T, d ) 4(DXUT,J)+DXL1,J)) RK&
AL JI=XA(T43)40T2DX {1 ,4d) “RKG

TM= TM4+HDT RK &
LETURN RK&4

VI T=DTR0.166E507 RK &

DI} B8O 1=1,NX ' RK&

Lo 80 J=1,1 RK&
XULodi=XA(1 31 e VO TR (OXA(T, ) +DX (1, d)) RK &
RETURN . RK&
END RK4&

0010
ccce
ccce
ccec
cccc
cccc
cccc
cccce
ccce
cccce

‘€cce

ccce
cccc
€ccc
cccc
ccce
ccec
0020
0030
Q040
Q050
0060
0070
0080
0030

0100 -

0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
02290
0230
0240
0250
0260
0270
0280
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SUBROUTINE RVGN(XMEAN.SIGs IXsDUMeK s YFL) RMGNOOL O
T ke Xox %0 B e s e ax ke e R ok Aok R gk Ak RMGNCCCC
RMGNCCCC

SUBROUTINE R¥(Neasesasssaccccens . RMGNCCCC
GENERATING PSEUBC RANDGM NUMBERS WITH MEAN EQUAL TG XMEAN, RMGNCCCC
AND STANODARD DEVIATION EQUAL TO SIGe RMGNCCCC
1A=19971 IX=31571 M=2%%20= 1048576 RMGNCCCC
ZUK+L)= TA%Z{K) {MODULD M) RMGNCCCC
VALUES TO BE SPECIFIED FIRST TIME ecesosescsces RMGNCCCC
l. DUM=J.1 2. IX=31571 3. K NUMBER OF RANDOM NUMBERMGNCCCC
YEL IS ARRAY GF &ANDGCM NUMBERS GENERATED CF DIMENS ION K. RMGNCCCC
RMGNCCCC

AR R R R R R Rk SRR RMGNCCCC
DIMENSION YFL{1) RMGN0Q20
IA= 19671 RMGNOO30
0L 1 I=1,K RMGN0040
IY= TA*IX RMGN0O050
IYP=1Y/1048576 RMGNOO60
[A= [Y=-1YP*1U48576 RMGNOO70
AX=1X RMGNOOBD
U=AX/1064857¢4. RMGNO090
IF(UI410 441 0,412 IMGNO100
U=-U RMGNO110
CTNTINUE RMGNO120
1X=1Y RMGNO130
TZ= SQRT(-2,0%ALUGIOUM) )*SIG RMGNO140
XNCRM= T2%C0S(6.28318%U ) +XMEAN RMGNO150
DUM=U : ‘ RMGNO160
YFLOI)= XNDRM RMGNO170
KETURN RMGNO180
END RMGNO190
SUBROUTINE VAR IN (XyXD) VAR 10010
VARICCCC

¢ A ¥ e o R e oo 3tk sl vk ok Xk e o \ VARICCCC
THIS PRKDGRAM IS TO SOLVE THE VARIANCE EQUATION OF THE PREDICTOR VARICCCC
PART IN ACAPTIVE FILTERING. VARICCCC
ALPHA AND G ARE VARIABLE, VARICCCC
THE PROGKAM IS FOR HUNDRED FIRST DRDER DIFFERENTIAL EQUATICNS. VARICCCC
IFf MCRE ARF REQUIREC THEN REDIMENSION X ANC XO. VARICCCC
ok R ek RO R R R R Rk VARICCCC
VARICCCC

CIMENSICAN A(1U,10)4XD{10,10) VAR10020
COMMON/COFFE /JALPHA VAR10030
XD(1g1)==2000e#X (1, L)+10%%E%( VAR10040
X0(231)==10C0e%K(2,1)+314,7%X{1,1)~10%*5xX{3,1) VAR10050
XO(3,1)==10CCe*X{ 2,1)+X(2,1) -2, ¥ALPHA*X(3 ,1) VARIO060
XD(242)=62944%X{2,1)=2.%10%%5%X(3,2) VARI 0070
KDE392)=X(2,2)43144T%X{3,1)-10%K5%X(3,3)=2,¥ALPHARX(3,2) VARI0080
X0{3,3)=24%X( 3, 2)=4s#ALPHAXX(3,2) VARI0090
RETURN VARI 0100
FND VARIOL10
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SUBRCUTINE RKUT (KUTTA DTy NX Xy DXy TH) RKUTO010

’ RKUTCCCC
P T (A [ o A
SUBRGUTINE RKUT INTEGRATES UPTQ 50 FIRST ORCER DIFFERENTIAL EQUATIONS RKUTCCCC.
IN THE FORM CF A COLLMN VECTOR FIFTY BY ONE, RKUTCCCC
IF MCRE ARE REQUIREC THEN WE NEEL TO REDIMENSION XA,DXA ARRAYS. RKUTCCCC
THIS ROUTINE USES RUNGE KUTTA FOURTH ORCER INTEGRATION FECHNIQUE. RKUTCCCC
KUTTA TAKES THE VALUES 1,243,4, RKUTCCCC
CT 1S THE STEP SIZE CF INTEGRATION. RKUTCCCC
NX IS THE NUMBER CF EGUATIUNS TO 8t INTEGRATEC. . RKUTCCCC
A IS THE STATE VECTOR REPRESENTING SET OF FIRST ORDER DIFFERENTIAL RKUTCCCC
EQUATICNS TC BE INTEGRATED. RKUTCCCC
RKUTCCCC

UA IS THE DERIVATIVE CF X. RKUTCCCC
TM IS THE CURRENT VALUE CF TIME.THE INDEPENCSENT VARIABLE,. RKUTCCCC
l......0-....'0.0'...'0.,l...l.cl...............0'.........!‘...‘....QRKUTCCCC
' RKUTCCCC

RKUTCCCC

DIMENSION X{5041) yXA(50+1) sDX(5051) sDXA(50,1} RKUT0020

J=1 RKUT0030

GG TG (10,3C,50,70),KUTTA RKUT0040
HOT=0,5%0T RKUT0050

DG 20 I=1,NX RKUT0060
XA(T yd)=X{1,J) RKUTO0070
DXACLyd)=CX(14d) RKUT0080

XL ad3=X{1 I +hDTRDX (1 44) RKUT0090
TM=TM+HD T . RKUTO100

K ETURN RKUTO110

DT 40 I=1,NX RKUTO120
DAAC Ty J)=DXA(T 3 J)+{DX(L 4 J)+DX (1,4 d) 1} RKUTO130
X(I3d)=XA{1,J)+HDT2DX(1,4) RKUT0140
RETURN . AKUTO150

NG 60 I=1,NX : RKUTO160
CRACLyJ3=0XA{T1,J)+(DX(1,J)I4DX(L1eJd}} RKUTO0170

KU1 9 ) =XA{T1 s J)+0T*DX (1, J) RKUTO180
TM=TM+HDT "RKUTO190
RETURN RKUT0200
VOT=DT#0,166¢£67 : RKUTO0210

D3 80 I=1,NX i RKUT0220
XELgd)=X 201, 0 ) eVOTH(NXALTy ) +UXLT, ) RKUTG230
RETURN . RKUT0240

ENC RKUT0250
SUBRUOUTINE PRED (XyxC) : PREDOOLO
PREDBCCCC

BAGBRER R UB R A BB P RR AR HEENR ' PREDCCCC
THIS PRCGKAM GIVES THE PREDICTCR STATES FOR THE ADAPTIV: FILTERING PREDCCCC
PROCESS. ’ . PREDCCCC
ALPHA IS VARIASLE. PREDCCCC
THE PROGRAM TS FCR TEN FIRST CRCER DIFFERENTTAL EQUATIONS. PREDCCCC

IF MORE ARE REJUIKED THEN REDUMENSION X ANC XDe PREDCCCC
PREDCCCC

DIMENSICN X(10,13),X0(13,10) . PRED0020
COYMON/COEFF/ Qe ALPHA PREDOO30
XD(141)==1000+%X{1,1} . PREDOO40
X3(2y11=324,T%X(1 1)1 -10%*%5%X (3,1} PREDOOS0
AKC(351)=X(251)~2e *ALPHARX{ 3y 1) PREDO06D
RETURN PREDOOTO

END PREDOO8O
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SUBRGUTINE INV{A,M,CET,L)
RS EEEL ISR L RS LI Ll

THIS SUBRGUTINE FIADS THE INVERSE OF A MATRIX.
A IS THE INPUT MATRIX TO BE INVERTED .
COMPUTATICN ANL REPLACED BY A RESULTANT MATRIXe . )

NA IS THE CRDCER CF THE MATRIX.NA(Ll) IS THE NUMBER OF ROWS,

AND NAC2) IS THE NUMBER OF COLUMNS.
O IS THE RESULTANT CETERMINANT,
L IS A WORK VECTCR CF LENGTH 2N

THE STANDARD GAUSS-JORDAN METHOD IS USED.
CALCULATEC. 2 CETERMINANT OF ZERD INDICATES THAT THE MATRIX IS

SINGULAR.

Ak ok e Rk ok Mk ok ol b ol o o o ook stk
DIMENSION A1), L{1),NA(2)
SEARCH FOR LARGEST ELEMENT
DET= 1.

N=NA(1)

NS Q=N*N

KK = = N

00 80 K= 1, N

NK = NK + N

L{K} = K

LIN+K) =K

KK = NK + K

BIGA = A(KK)

00 20 J= Ky N

1Z = N*x(§ - 1}

[8]8] 20 I= Ky N

I = 12 + 1

IF (ABS(BIGA)-ABS(A(IJ))) 15,20,20
BIGA = A(]J)}

L(K) = 1

LIN+K) =J

CONTINUE
INTERCHANGE RIOWS

J = LK)

IF(y - K) 32, 35, 25
KI = K = N

DO 301 =1, N

KI = KI + N

HOLD = ~A(KI}

JI = KI - K + J
A{KI) = A(JT)

A(JI) = FCLC
INTERCHANGE CCLLUMNAS
I=L{N+K}

IF (I - K} 4%, 45, 38
JP = N¥{] =~ 1}

DO 40 J= 1, N

JK = NK + J

JI = JP + J

CIVIDE COLUMN BY MINUS PIVOT(VALUE OF PIVCT ELEMENTS IS CONTAI

HOLD = =A(JK)

A(JK) = 2(JT)

A(JI) = HOLD

IN BIGA}

IF(BIGA) 48, 46, 48
DET = Q.

KKK=KK-1

WRITE (£,1045) KKK

FORMAT (' INv ERROR DETERMINANY OF A=0

IT IS DESTROYED IN

THE DETERNINANT IS

RANK OF A=*,I14)

INV
INV
INV
INV
INV
INV
NV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV

0010
ccce
ccee
cceo
ccec
ccee
ccee
cect
ccec
ccee
ceec
ceee
ceee
ccee
cece
0020
ccce
0030
0040
0050
0060
0070
0080
0090
0100
o110
0120
0130
0140
0150
0160

INV T1'70

INV
INV
INV

~INV

INV
INV
INV
INV
INV
INV
INV
INV
INV
I[NV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV

0180
0190
0200
0210
ccec
0220
0230
0240
0254
0260
0274
0280
0290
0300
ceee
0310
0320
0330
0340
0350
0360
0370
0380

0390

cccc
ccce
0400
0410
0420
0430
0440
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48

50

&0
62

65

RETURN

V3 585 I= 1, N

IF (I'- K} =Cy B5, 20
IK = NK + I

ACIK) ==A(TIK}/(BIGA)
CONT INUE

RECUCE MATRIX

Bd 65 I="1, N

IK = NK + 1

HOLD = A(IKI}

I =1 ~-N

CO o5 J= 1, N

IJ =1J + N

IF(1 - K ) €0, €%, 6C
IF(d= K) 62y €5y £2
KJ = IJd -1 + K

A(TJ) = HOLD* A(KJ) + A(IJ}
CONT INUE

DIVIDE RCW RY PIVCT
K = K = N

U0 75 J= 1, N

KJ = KJ + N .

IF(d - K) T¢y 78, 7C
A(KJ) = A(KJI/BIGA

 CONTINGE

PRUCUCT OF »IVOTS
DET=DET*BIGA

REPLACE PIVCT oY RECIPRCCAL
A{KK) = 1./73168

5 CONTINUE .
FINAL ROW AND CDLUMN INTERCHANGE

K = N

K =K -1

IF(K) 158G, 1&8¢, 1CS
1 = LK)

IF (I - K ) 122, 120, 108
JQ = N*¥( K - 1)

JR = N¥(I- 1}

DA 110 J= 14 N

JK = JQ + J

HOLD = ALJK)

JI = JR + J

A(JK ) = = A(JI)
A(JI} = kCLE
J=LIN+K)

IF(J - K) 1CGy 10GC, 125
KI = K = N

03 120 I= 1, N

KI = KI + N

HJILD = A(KI)

JI = KI = K + J
ALKI) = - A(JT}
A(JI) = HCLD

GO TO 1G¢
KETURN

END

INV
INV
I
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV

~ INV

INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV
INV

0450
0460
0470
0480
0490
0500
cccce
0510
05290
0530
0540
0550
0560
0570
0580
0590
0600
0610
ccee
0620
0630
0640
0650
0660
0670

€ccce

0680
ccec
0690
0700
cCcce
0710
0720
0730
0740
0750
0760
Q770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
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SUBROUTINE ADAPT (XHAT,VAR,YHAT,COVAR)

e e e ok X Are o AR Nt ook N o ok Rk

THIS SUBRGUT ING SOLVES THE CORRECTOR PART OF ADAPTIVE FILTERING.

IT FINDS CuT THZ ESTIMATE AND VARIANCE OF A SYSTEM, GIVEN THE
DBSERVATIUNy W MATRIX,y 1TS TRANSPOSE, THE COVARIANCE OF THE

ADAP0010
ADAPCCCC
ADAPCCCC
ADAPCCCC
ACAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC

CBSERVATICN NUISE Ry THE COVARTANCE OF THE PLANT NOISE Q.1T UPDATESADAPCCCC

TH: €STIMATE EVERY J0BS  VALUES, WHICH IN THIS PROGRAM IS FIVE.

IT IS USEC FOR A SYSTEM OF ORDER TENe IF MCRE ARE REQUIRED
THEN REDIMENSICN THE PROGRAM,

XHAT(4,1) IS THE TIME,

VAL (T41) IS THZ TIME,.

VAR IS THE INITIAL VARIANCE,

COVAR 1S THE LPDATED VARIANCE.

XFAT IS THE (LD ESTIMATE.

YHAT IS THE UFCATEC ESTIMATED,

£ 1S THE INCREVENT FOR THE INTEGRATION o

KF=y ANNCV ARE RETAINED FOR USFE IN THE MAIN PROGRAM.
THE SUBPROGRAMS USEC ARE PREDy RKUT, VARIN, RK&y INV,

KR E AR RN H h A AR A KK

DIMENSION X(1J910)9yXDHAT(10,10)4VAR(10,+10) 4VARD(10,+10) +CVAR(10,1),

CCORRE1Oy 1}y XKGAIN(L0, 1)y AKG( LUy RO}, ADENT(10,10),COVAR{ 10,10},
CXHAT(LOs1 )y YEAT(LCy1 ) 4XD(13,20)BKGAIN(1,10),CKGAIN{1,10),

COKGAIN(CY0,1C )y BDENT(10,10) yENTER(LO 4100 JEENTE(10,10) 4NA(2) 4L (6)

CCNMCN/VARTES/VTRUE(3,3)
COMMON/PARAN/NVyNX9gNY oRRR yANNCY HE
CJIMMON/ COEFF/ 3y ALPHA

CCMMON/KKKKK/1CBS
COMMON/KALMAN/AKGAIN(L1O0,1)
CUMMCN/MEL/FU143)4yHT(3,109R9Z2Z,A4(10,10)
NA(L1) =3

NA(2)=2

CU 46 J=ly4

CALL PRED (XHAT,XLCHAT)

CALL RKUT (Jy£oNY ¢ XHAT ¢ XDHAT 9 XHAT(441) )

SCLVED ThF PRECICTUR EGUATONS.
XHAT(4,41) 1S ThE TIME

VAR(Ty L )=XtAT(&,1)-C

) 47 J=l 4
CALL VARIN [VAR,yVARD)

CALL RK4 (JyE9NV VAR, VARD VAR Ty1})

SGLVED THE VARIANCE ECUATIONS.
VAR(7y1) IS THI TIMC.

DiZ 49 I=1,3

pu 49 J=1,3
VIRUE( Iy J)=VAR( T, J)
VIRUE(Jy I)=VTRUE( 14J)
VAR(T g Jl=VAK(Jy 1)

CALL INV (VTRUE,NA,DET,L)

FCUND GUT THE TAVERSE CF THE ERACR COVARIANCE TO BE USED IN THE
SMODTHING ALGURI THM. : '

IF (I0BSWNEL1)GG TO 96
3 50 I=1,3
CVAR(T41)=0C,C
DT 50 K=1,3
CVAR(T 31 =CVAR(Ty 1) +VAR( T KIEHT (Ky1)
CCVAR=0.0
CO 55 K=1,3
CCVAR=CCVAR+HT1 ,K I*CVAR(K,1}

ADAPCCCC
AQAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC
ADAPCCCC
AQAPCCCC
ADAPCCCC

 ADAPCCCC

ADAPCCCC
ADAPCCCC
ADAPCCCC
ADAP0O20
ADAPGO30
ADAPQQ40
ADAPOOS0
ADAPQO6O
ADAPOQTO
ADAPQO80
ADAPQ0Q90
ADAPOO95
ADAPO100
ADAPO110

"ACAPO120

ADAPO130
ADAPO140
ADAPO150
ADAPCCCC
ADAPCCCC
ADAPO160
ADAPOLTO
ADAPO180
ADAPO190
ADAPCCCC
ADAPCCCC
ADAPO0200
ADAPO210
ADAP0220
ADAPQ230
ADAP0240
ADAP0250
ADAPCCCC
ADAPCCCC
ADAPO260
ADAPO270
ACAP0280
ADAP0290
ADAPQ300
ACAPO310
ADAPO320
ADAP0330
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[}
C
C

o2

D]

[T

rRR=140/{CCVARR )
L3 60 [=1,3
AKGAINET 1} =CVAR(] y11%*RRR

SOLVEC THE KALMAN GAIN EQUATIONS.
AKGAIN{I,1) AREZ THE THRCE VALUES CF THE KALMAN GAIN

D3 62 1=1,2

EKCAIN(L, [)=AKGAIN{T,1)
Di} 63 I=1,3
CKGAIN(L s I1=R¥BKGAINTI 141}
GO 64 I=1,3

L3 &4 J=1,3
CKGAINC(TyJ)=AKGAIN( T YI*CKGAIN{1,4J)
HX=0,0

DO £S5 J=1,2

FX=RX 4Ry J )FAHAT {Jy 1)
ANNOV=Z2Z2-HX

SGLVED FOR  TO G#T THE INNOVATICAS,.

CC 70 I=1,3

CORRBLT g1 )=AKGAIN{ [,1)*ANNOV
YHAT (I 1 }=XHAT{ T,y 1) +CORR{T 1)
YHAT (49 L)=XFHAT {4y 1)

Fey 78 I=1,3
8 75 J=1,3

AKG (T JY=AKGATNCT s1)%H{Y 4 J)

L3 80 I=1,3

£ BY J=1,3

ADENT(T yd)=(ad( Ty} -AKG(I4Jd))

o 81 I=1,3

L} BY J=1,3 _
BOSNT(Jy I b=A0ENT(T,4)

PO 32 I=1,3

By 82 J=1,3

ENTER(I,J)=CsU

[0 32 K=1,3

ENTER(I g J)=ENTER( [y JI+VAR(I yK)%BDENT (K, J)
CO 33 I=1,2

DG 83 J=1,3

EENTE(T,J1=C42

L 83 K=1,
EENTE(I 4 J)
DO B [=1,43
£0 385 J=1,3

COVARCI ¢ J)=FENTE( 1,J)+DKGAIN(IJ)

» W

EENTE(TyJ)+ADENT (I 9K )*ENTER(Ky d)

UPOATED THF VARIANCE EQUATIONS.

GC TU 99

07 8T I=1,4
YHAT{I,13=XFAT{1,1)
KRR=0,0

ANNUIV=C,C

[N 98 I=1,43

U0 98 J=1,3
CIVAR( By d)=VAR(T 4 J)
SETURN

END

ADAPO3240
ADAP0350
AGAP0360
ADAPCCCC
ADAPCCCC
ACAPO370
ADAPO380
ADAP 0390
ADAP0400
ADAP 0410
ADAP0420
ADAPO430
ADAPO440
ADAPO450
ADAPO460
ADAP 0470
ADAPCCCC
ADAPO480
ADAP 0490
ACAPQ500
ADAPO510

SCLVED FCR UPCATC ESTIMATE WHERE COKR IS THE COFRECTOR PART ADDED ONADAPCCCC

ADAP0S20
ADAPG530
ADAPOQO540
ADAPOS50
ADAPOS60
ADAPOS70
ADAPOS5 80
ADAP 0599
ADAPQ600
ADAPQ610
ADAP 0620
ACAPO630
ADAP0640
ADAP0650
ADAPQ660
ADAPO670

"ADAPO68O

ADAP0690
ADAPOTQ0
ADAPOT10
ADAPQT20
ADAPO730
ADAPCCCC
ADAPOT4U
ADAPO750
ADAPOT60
ADAPOT70
ADAPOT80
ADAPO790
ADAPOS8OQ
ADAPOBLO
ADAPOB20
ADAPOE30
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SUBROUTINE CFANGE (S5S519552+5534554, 5551556’

bk ko ko koK b 8 ok Aok R R Rk
THIS PROGRAM TAKES THE ONE DIMENSIDNAL INVERSE COVARIANCE MATRIX
ALREADY PRECCNMPUTEC IN THE FILTERING PART AND CHANGES IT TO A
TwO DIMENSIONAL ARRAY AND FINDS THE SMOOTHED FILTER GAIN, )
SS IS THE INVERSE CF THE ERROR COVARIANCE IN A SINGLE ARRAY. IT
1S CHANGED TC A TwC DIMENSIONAL ARRAY TVVR.
TvvR IS T+E INVERSE COVARIANCE OF ERROR .
AMGAIN IS THE SMCOTEHED GAIN OBTAINED 4TO BE USED IN THE
SMONTHED ESTIMATE,
THIS PROGRAM wIRKS FOKR HUNDRED VALUES OF THE INVERSE COVARIANCE
CF ERROR.

EEREE LR AR AL LRSS 2 3

DIHENS ION 551(100031552(1000)1553(1000)1554(1000)1555(1000,v
CSS6{LU03)yTVVR{10,10),8GB(10,10)

COMMON/COEFF /Gy ALFHA

CCMMCN/SMEETH/SHMGAIN(3,3)) Ny AMGAIN(3,3)

TYVR(1,1)=SSL(N)

TYVR(1,2)}=SS2(N)

TVVRI1 3 1=SS3 (N}

TVVR(2,2)=5S34(N)

TYVR (2,3)=SSE(N)

TVVR(3,3)=5SS6(M)

D31 I=1,3

£o 1 J=1,2

TVVR(J,yI1)= TVVP([!J)

00 2 I=1,

Co 2 J4=1, 3

5QB(LsJ) =00

BRB(L, 1'—10**6*U

LS 3 I=1,2

Dd 3 J=1,3

L4GA[N(['J)

B3 K=1,3

AMbAIN(IvJ)’AVGAIN([yJ'*BQB(['K)*TVVR(K'J)

RETURN

END

CHANOOYO
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANCCCC
CHANOG20
CHANOO30
CHANOQ40
CHANOO50
CHANO0O60
CHANOOT0
CHANOOSO
CHANOO90
CHANO100
CHANOI110
CHANO120
CHANO130
CHANO140
CHANO150
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CHANO160 -

CHANO170
CHANO1890
CHANQ130

CHANDQ200 -

CHANO210
CHANO0220
CHANO230

"CHANO240

CHANG250
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SUBROUT IRE $400TH (XSAT9XDSAT XX1yXX2yXX2)

LR T LR e T L R TR e

THIS SUBRCUTINE CALCULATES THE ACAPT IVE SMODTHED ESTIMATES OF THE
STATES, GIVEN THE SMCOTHED FILTER GAIN AND THE FILTERED ESTIMATES
AT THE TIME OF CCMFUTATION,.

XXy XX2¢ XX3 ARE THE FILTERED STATES STORED FROM THE ADAPTIVE
FILTERING ALGLRITH¥,

SMGAIN IS THE SMOOTHED GAIN MATRIX FROM SUBRAUTINE CHANGE.

ALPHA IS VARI2BLE,.

LIRSS 22 R L E R REEEREEEE TS T 0 2]

DIMENSION XSAT(10,1) 4XUSAT(10,1)+AAA(L0),SMCCGRRI(2D},
CXATC100C e XXx2{100C) , XX3( 1000}
COMMON/SVMEETH/SMG2AIN(3,43) 9Ny AMGAIN(3,3)
C JMMON/CGEEF /4y ALFHA
ABALL)=XSAT{1,1)=-XX1{N}
AAA(Z2)=XSAT(2,1)-XX2(N)
AAA(3)=XSAT(2,1)-XX3(N)
£ 15 I=1,3
SMCORR(T} =040
D3 15 Jd=1,2
SMCORR(T)=SMCLRRITI+SMGAIN (I, J)*AAA(Y)
CUNTINUE
XOSAT(1,1)==1CCCe#xSAT{1,1)+SMCORR(1)
XOSAT (291 )=231 34 T*XSAT(Ly1)=10%%5%XSAT( 3,41 )+SMCORR( 2}
XOSATE 3,1 =xXSAT(2,1)-2.%ALPHA%XXSAT(3,1)+SVCORR(3)
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