IMPEDANCE MATCHING IN

AURAL PROSTHESIS

Bу

PAUL WAYNE WHALEY

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1971

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1973

OKLAHOMA STATE UNIVERSITI LIBRARY

OCT 9 1973

IMPEDANCE MATCHING IN

AURAL PROSTHESIS

Thesis Approved:

Adviser Thes M

Dean of the Graduate College

PREFACE

The purpose of this work was to determine whether impedance matching concepts could yield significant improvements in aural prosthesis. This did not imply the design of an appropriate device to achieve such a match.

One problem with considerations of impedance of human ears is the absence of reliable methods to measure impedance offered to hearing aids at high frequencies. For this reason, a device had to be developed that could be used to measure impedance at higher frequencies.

This work was supported by a Biomedical Sciences grant from the OSU Research Foundation and by the OSU Center for the Systems Science. This support made possible the purchase of equipment used in the experimental phase of the work. My special thanks go to my thesis adviser, Dr. Larry Zirkle, who provided many helpful suggestions and comments. Also, thanks are in order to the OSU Library and Computer Center for their assistance. My thanks go to Dr. Richard Lowery for his valuable assistance with the instrumentation. Special gratitude is extended to my wife, Karen Whaley, for her assistance with the rough draft copies and for her patience and sacrifice during the long hours spent in the laboratory. A note of thanks is given to Mrs. Lynn Danvers for her comments on the manuscript and preparation of the final copy.

TABLE OF CONTENTS

Chapter		Page
1.	INTRODUCTION	1
	Hearing Aid Fitting	1
	Impedance Matching , , . ,	2
	Objectives and Procedures	3
II.	MATHEMATICAL MODEL ,	7
	Physical Model	7
	Derivation of Equations	7
	Model Parameters	12
	Matching Impedances	13
III.	EXPERIMENTAL PROCEDURE	24
	Introduction	24
	Impedance Measuring Device	25
	Calibration Procedure	27
	Measurement Procedure	29
	Discussion of Results	33
IV.	CONCLUSIONS	39
	Summary	39
	Recommendations	40
SELECTEI	D BIBLIOGRAPHY ,,	42
APPENDIX	ES,,,,,,,	44
A.	COMPUTER PROGRAMS	45
в.	CALIBRATION CURVES AND MODEL IMPEDANCE	
	CURVES AS A FUNCTION OF DISTANCE	61

LIST OF FIGURES

Figure		Page
1.	Mathematical Model	8
2.	Parts of the Ear , , ,	8
3.	Free Body Diagram of Eardrum Model	11
4.	Acoustical Impedance for Mathematical Model in CGS Ohms	14
5.	Impedance Matching Device , ,	15
6.	Computer Results	2 1
7.	Performance of Impedance Matching Device ,	22
8.	Acoustical Impedance Measuring Device	26
9,	Calibration Procedure , ,	28
10.	Measurement Setup	30
11.	Photograph of Experimental Setup	30
12.	Wiring Diagram for Testing Session	31
13.	Acoustical Impedance of Human Ear for Two Different Sessions With Beat Phenomenon	34
14.	Acoustical Impedance of Human Ear for Two Sessions Without Beat Phenomenon	35
15.	Drawing Representing How Far Into the Ear Canal the Ear Mold Goes	36

NOMENCLATURE

k	spring constant in mathematical model
m	piston mass in mathematical model
Ъ	damping coefficient in mathematical model
P _i	incident pressure wave
Pr	reflected pressure wave
ω	radian frequency of pressure wave
c	speed of sound in air
K	wave number, ω/c
xx	distance from eardrum
U	volume velocity
A	area of piston in mathematical model
L	length of tube in mathematical model
Zo	input acoustical impedance of mathematical model
Α	amplitude of incident pressure wave
В	amplitude of reflected pressure wave
Ze	acoustical impedance at the piston of the mathematical
	model
al	length of acoustical impedance matching device
R _T	radius of acoustical impedance matching device

Rad	radius of hole drilled in wall of impedance matching
	device
λ	wave length of pressure wave
L	generalized inductance
C	generalized capacitance
v	volume
P	power
R _e	resistance of mathematical model
x _e	reactance of mathematical model
p _r	reference pressure
^p k	source calibration pressure
G _s (jw)	transfer function of source probe
Øs	phase angle between p_r and p_k
U _k	volume velocity through coupler cavity
^p m	microphone calibration pressure frequency response
$G_{m}^{(j_w)}$	probe microphone transfer function
Øm	phase angle between p_r and p_m
G _{mm} (j _ω)	overall measured transfer function for impedance
ø _{mm}	overall measured phase shift for impedance
^p e	pressure inside ear canal

CHAPTER I

INTRODUCTION

Hearing Aid Fitting

Conventional hearing aid fitting follows a procedure developed by Davis¹ in 1947. At the end of World War II many servicemen were returning home with hearing impairments, and there was no general technique of hearing aid fitting. The procedure that was developed was one which relied heavily on trial and error using audiogram data as a guide. All patients were fitted with hearing aids possessing the same basic types of frequency response curves, specified by slightly differing slopes.

Present-day hearing aid fitting is hampered by technical difficulties. It has been suggested that aural prosthesis should be accomplished with hearing aids having wider frequency ranges and less harmonic distortion.² This would provide better hearing aid performance for the patient whose hearing loss is in higher frequencies and would provide music enjoyment for the hard of hearing.³ Technical improvements are needed so that these improvements can be made possible. The performance characteristics of hearing aids are measured by connecting them to acoustical cavities which approximate the imaginary part of human ear impedance. These cavities, known as artificial ears, represent the average of many human ears, and any single person's hearing might not conform to that average. Consequently, the hearing aid may not perform the same in the real ear as it did in the artificial ear, and the audiologist may not really know whether the hearing aid is effective or not. Since artificial ears used in testing hearing aid esign indicates some consideration of the loading effect of the ear. This attempt is not successful, however, as artificial ears include only a reactive component of impedance. Basic considerations of impedance matching should be included in aural prosthesis.

Impedance Matching

Any sort of improvement in aural prosthesis must be undertaken from a scientific point of view as the human ear is an extremely complicated mechanism. Hearing is dynamic in nature and has been characterized as nonlinear and unsymmetric, qualities that can best be analyzed by engineering methods.⁴ Many peculiarities have been noted about the hearing mechanism, not the least of which is the wide range of sound intensities that can be heard by the healthy ear. The acoustic reflex protects the ear from extremely loud sounds by contraction of the middle ear muscles, and the middle ear ossicles are known to

vibrate in two distinct stable modes, ⁵ The human ear has three degrees of freedom for positive pressures and only one degree of freedom for negative pressures, ⁶ Such a complicated mechanism can have a large variety of things go wrong, and yet audiologists must attempt to correct this wide variety of defects with hearing aids of the same basic type.

When the output impedance of the hearing aid is matched to the input impedance of the ear, maximum power will be transferred. Experience has shown that this impedance match improves the performance of the entire system. Therefore, in addition to improvements in power requirements, there would be improvements in dynamic qualities. The power requirements of the hearing aid might be made smaller, its dynamic characteristics could be improved, and the audiologist would have more complete information regarding the performance of the hearing aid in the actual ear.

Objectives and Procedures

It is the intention of this thesis to determine if improvements in hearing aid performance are possible by means of impedance matching. This will be done by establishing a mathematical model of the human ear to determine those parameters that are important in input impedance to the human ear. The parameters of this model are determined from existing data on the properties of the middle ear, and then adjusted after computations to make the model more like a real ear.

The input acoustical impedance of a human ear is measured and compared to the input acoustical impedance of the mathematical model. Results show that the model impedance is similar to a real ear.

An acoustical device is proposed which might be used to match the output impedance of the transducer to the input impedance of the ear. This device is similar to the tubes that connect conventional hearing aid receivers to the ear with a few additions, so the resulting impedance match is representative of what probably exists in hearing aids. The impedance match is attempted by a curve fit on the computer to determine the properties of the proposed device that represent optimum behavior. The quality of the impedance match by this device is rather poor.

Chapter III describes the measurement of ear impedance on a human subject, and results are given which are similar to that found in the literature. Certain variables are suggested as an explanation for the wide discrepancies observed in ear impedance, and it becomes obvious that impedance matching must reflect these periodic fluctuations. Therefore, impedance matching becomes the fitting of the device into some acceptable band of impedances that are found by a statistical analysis of human ear impedance.

A nonlinear phenomenon was discovered during testing which has not been reported before. The subject heard beats when the stimulus signal was a pure tone, and it is believed that these beats result from either almost periodicity or the superposition of a subharmonic signal

on the primary signal to cause periodic fluctuations which sound like beats.

Chapter IV is a summary of the work done and conclusions that were reached. Recommendations are given for future research on impedance matching in aural prosthesis.

FOOTNOTES

¹H. Davis, <u>Hearing Aids: An Experimental Study of Design</u> Objectives, (Cambridge, Massachusetts, 1947).

^aAnne Harrison, "Better Amplifying Prosthesis," <u>Journal of the</u> <u>Audio Engineering Society</u>, Vol. 19, April, 1971, pp. 316-318.

³ Ibid.

⁴Georg Von Bekesy, "The Mechanical Properties of the Ear," in S. S. Stevens (ed.), <u>Handbook of Experimental Psychology</u> (New York, 1960), pp. 1086-1087.

⁵Ibid.

⁶Ibid.

CHAPTER II

MATHEMATICAL MODEL

Physical Model

The model that will be used here consists of a cylinder terminated at its right end with a piston that is connected to a spring and damper (Figure 1). Certainly the behavior of a membrane should be more like the real ear than that of a piston, but a damped inner boundary condition on a membrane model makes it difficult to solve the resulting eigenvalue problem. This simplification was necessary in order to obtain a solution to the resulting equations, and since the eardrum behaves like a piston at frequencies below 1000 hz., the simplification is justified.¹ It is felt that this model can be made to behave sufficiently like the real ear (Figure 2) by appropriate adjustment of the physical parameters. Although the ear is known to behave nonlinearly, this nonlinear effect is small for low intensities and may be neglected.

Derivation of Equations

The input acoustical impedance of the mathematical model may be determined in terms of known quantities in Figure 1. The

k = spring constant b = damping coefficient
m = piston mass xx = distance to eardrum
Figure 1. Mathematical Model

Figure 2. Parts of the Ear²

mechanical impedance at the right end is denoted by Z_e . When incident sound waves enter the cylinder, some are reflected from the right end and some are transmitted. Denoting those quantities incident by subscript i and those reflected by subscript r, the acoustical impedance at a distance x becomes

$$Z = \frac{\mathbf{P}_{i} + \mathbf{P}_{r}}{\mathbf{U}_{i} + \mathbf{U}_{r}}$$
(1)

where

 $P_{i} = A e^{j(\omega t - Kx)}$ $P_{r} = B e^{j(\omega t + Kx)}$ p = pressure $\omega = angular velocity$ $K = wave number, \omega/c$ xx = distance

The volume velocities may be related to the pressures for plane waves

as

$$U_{i} = \frac{P_{i}A_{1}}{\rho c} , U_{r} = \frac{-P_{r}A_{1}}{\rho c}$$

where

$$A_1 = area$$

 $\rho = density of air$
 $c = speed of sound in air$

The insertion of these relationships into Equation (1) yields

$$Z_{o} = \frac{Ae^{-jKx} + Be^{jKx}}{Ae^{-jKx} - Be^{jKx}}, \frac{\rho c}{A_{1}}$$
(2)

In terms of the coordinate system indicated, there are two equations that result from applying boundary conditions:

$$Z|_{\mathbf{x}=\mathbf{0}} = \frac{\mathbf{A} + \mathbf{B}}{\mathbf{A} - \mathbf{B}} \cdot \frac{\mathbf{\rho}\mathbf{c}}{\mathbf{A}_{\mathbf{1}}}$$
(3)

$$Z|_{\mathbf{x}=\boldsymbol{\ell}} = Z_{\mathbf{e}} = \frac{\mathbf{A} e^{-j\mathbf{K}\boldsymbol{\ell}} + \mathbf{B} e^{j\mathbf{K}\boldsymbol{\ell}}}{\mathbf{A} e^{-j\mathbf{K}\boldsymbol{\ell}} - \mathbf{B} e^{j\mathbf{K}\boldsymbol{\ell}}} \cdot \frac{\rho c}{\mathbf{A}_{\mathbf{1}}}$$
(4)

By combining Equations (3) and (4), the input impedance is determined in terms of known quantities and Z_{p}

$$Z_{o} = \frac{\rho c}{A_{1}} \cdot \frac{Z_{e} + j\frac{\rho c}{A_{1}} \tan K\ell}{\frac{\rho c}{A_{1}} + jZ_{e} \tan K\ell}$$
(5)

For further information see Kinsler and Frey (1962). Taking a free body diagram of the mass in Figure 1, the equation of motion may be obtained by using Newton's second law. This free body diagram is shown in Figure 3, and the resulting differential equation is:

$$\dot{\mathbf{mx}} + \dot{\mathbf{bx}} + \mathbf{kx} = \mathbf{P}\mathbf{A}_{1} e^{j\omega t}$$
(6)

To determine the steady state response assume $x = Xe^{j\omega t}$ and substitute into Equation (5).

$$-\omega^{2}mXe^{j\omega t} + bj\omega Xe^{j\omega t} + kXe^{j\omega t} = PA_{1}e^{j\omega t}$$

Solving for X, x may be determined in terms of the input pressure.

$$\mathbf{x} = \frac{\mathbf{P} \mathbf{A}_{1} e^{j\omega t}}{(\mathbf{k} - \omega^{2} \mathbf{m}) + jb\omega}$$
(7)

Differentiating Equation (7) and forming the ratio of PA_1 to \dot{x} , the

mechanical impedance results.

$$Z_{m} = b + j(\omega m - \frac{k}{\omega})$$

Figure 3. Free Body Diagram of Eardrum Model

The acoustical impedance may be obtained by dividing $\mathbf{Z}_{m}^{}$ by $\mathbf{A_{1}^{2}},$

$$Z_{e} = \frac{b}{A_{1}^{2}} + \frac{j(\omega m - \frac{k}{\omega})}{A_{1}^{2}}$$
(8)

Equation (5) represents the input acoustical impedance of the mathematical model in terms of known quantities and may be used to compute impedance for various distances from the eardrum,

Model Parameters

The model parameters may be approximated using existing information. Because of physical appearance it is felt that the principal mass effect is due to the malleus. This effect may be any combination of translational mass or rotational moment of inertia as is common knowledge in elementary dynamics. The mass to be used in the mathematical model may be approximated by an effective mass that includes the translational and rotational mass effects of the ossicles. Since the malleus is directly connected to the eardrum, its mass will be taken as a first guess for m. The mass of the malleus as determined by Bekesy³ is 23 mg.

The cross-sectional area and length of the ear canal are given as $.5 \text{ cm.}^3$ and 2.7 cm., respectively,⁴ The spring constant of the eardrum was approximated by Onchi⁵ as 5.49×10^6 dynes/cm.² so this value is taken for k. Bekesy⁶ measured the frictional forces in the middle ear over moderate frequencies as 100 gm./sec., so this value is taken for b. These parameters were used as an initial guess, and the input impedance was calculated for different distances from the eardrum. Comparisons with impedance data from other researchers indicated that the parameters were in error, so they were adjusted to make the mathematical model fit the real ear impedance more closely.⁷ The adjusted parameters were

$$m = 25, mg, \qquad l = 2.0 cm$$

$$k = 10^6$$
 dyne/cm. $A_1 = .5$ cm.²
b = 100 gm./sec.

The resulting curves of input acoustical impedance as a function of x are shown in Appendix B. The variation in impedance with distance from the eardrum indicates that this distance is important in impedance matching. For purposes of modeling, a representative distance will be chosen for use in deriving the criteria for impedance matching.

It is felt that since the hearing aid insert is closer to the eardrum than is the ear canal opening, then the distance for impedance matching should be less than ℓ . The values of xx = 1.5 is arbitrarily chosen as a representative distance for impedance matching purposes, and the impedance curves for this condition are shown in Figure 4.

Matching Impedances

The criterion for impedance matching is that a maximum power be transferred from the source to the load. The acoustical device shown in Figure 5a is similar to the receiver of conventional hearing aids. The equivalent electrical circuit is easier to work with and is shown in Figures 5b and 5c.

The equivalent electrical circuit is determined by a system of analogies. The acoustical volume is analogous to capacitance, acoustical resistance is analogous to resistance, and changes of area are analogous to inductance. Volume velocity is analogous to current, and

a.) Acoustical System

b.) Equivalent Electrical Circuit

c.) Simplified Equivalent Electrical Circuit

pressure is analogous to voltage. The conditions under which this equivalent electrical circuit is valid are that the physical dimensions of the acoustical transducer be small compared to a wavelength which means that the acoustical model may be considered as a lumped parameter model.⁸ The length of a tube must be less than a quarter wavelength, or resonance will occur. The limitations on dimensions that were used here are:

$$a\ell < \frac{\lambda}{4}$$
, Rad $< \frac{\lambda}{20}$, $R_T < \frac{\lambda}{20}$

where λ = wavelength of the incoming pressure wave. If the device is to be used up to a frequency of 8500 hz., these dimensions become:

 a_{ℓ} < 1.00 cm,, Rad < .2 cm., R_{T} < .2 cm.

This device may be thought of as one generating a constant volume velocity, and the lumped elements can be determined from the physical dimensions above.⁹

$$L = \frac{\rho L'}{\pi R_T}$$
, $C = \frac{V}{\rho c^2}$

where

 ρ = density of air

c = speed of sound in air

V = acoustical volume

C = equivalent capacitance

L = equivalent inductance

Substitution of L' = 16 Rad/ 3π and V = $\pi R_T^2 a\ell$ yields

$$L = \frac{16\rho \, \text{Rad}}{3\pi^2 R_{\text{T}}}$$

and

$$C = \frac{\pi R_T^{2al}}{\rho c^{2}}$$

For a more complete discussion of this, see Kinsler and Frey (1962).

The equivalent electrical circuit of Figure 5b is simplified to that shown in Figure 5c by summing admittances of parallel combinations. This makes it easier to solve for the conditions of maximum power transfer.

For the circuit shown in Figure 5c, the power delivered to the ear is

$$\overline{P} = L_2^2 R_e ,$$

$$L_2 = \frac{I |X_h(\omega)|}{\sqrt{(R + R_e)^2 + (X_h + X_e)^2}}$$

and

$$X_{h}(\omega) = \frac{j\omega L}{1 - \omega^{2} LC}$$

Combining these two expressions the power becomes

$$\overline{P} = \frac{I^{2}X_{h}(\omega)^{2}R_{e}}{(R + R_{e})^{2} + (X_{h}(\omega) + X_{e})^{2}}$$
(9)

Then using the concept of a circuit "Q", $Q = X_e / R_e$, the expression for power becomes

$$\overline{P} = \frac{I^2 X_h^2(\omega) R_e}{(R + R_e)^2 + (X + Q R_e)^2}$$
(10)

The conditions for maximum power transfer may be determined by taking the derivative of power with respect to R_e .

$$\frac{d\overline{P}}{dR_{e}} = \frac{I^{2}X_{h}^{2}(\omega) \left[(R+R_{e})^{2} + (X_{h}(\omega) + QR_{e})^{2} \right]}{\left[(R+R_{e})^{2} + (X_{h} + QR_{e})^{2} \right]^{2}}$$
$$- \frac{I^{2}X_{h}^{2}(\omega)R_{e} \left[2(R+R_{e}) + 2Q(X_{h}(\omega) + QR_{e}) \right]}{\left[(R+R_{e})^{2} + (X_{h} + QR_{e})^{2} \right]^{2}}$$

By solving this for the values of R_e which make this expression zero, the value of R_e is determined as

$$R_e = \frac{|Z|}{\sqrt{1+Q^2}}$$

where

$$Z = R + jX_{h}(\omega)$$

Substituting this expression into Equation (10) and simplifying, the result is

$$\overline{P}_{\max} = \frac{I^{2}X_{h}^{2}(\omega)}{2|Z|\sqrt{1+Q^{2}}+2(R+QX_{h}(\omega))}$$
(11)

The maximum value of \overline{P}_{max} may be determined by computing the derivative with respect to Q.

$$\frac{d\overline{P}_{max}}{dQ} = \frac{-I^{2} X_{h}(\omega)^{2} [2 | Z | \frac{Q}{\sqrt{1 + Q^{2}}} + 2 X_{h}(\omega)]}{[2 | Z | \sqrt{1 + Q^{2}} + 2 (R + Q X_{h}(\omega))]^{2}}$$

Solving for Q to make this expression zero, $Q = \pm X/R$. To determine which value to take, substitute back into Equation (11),

$$\overline{P}_{\max \max} = \frac{I^2 X_h^2(\omega) R}{2 |Z| \sqrt{R^2 + X_h^2(\omega)} + 2(R^2 \pm X_h^2(\omega))}$$

and it is obvious that Q = -X/R will result in more power being transferred. Then the following equations may be used to determine those conditions that are necessary for a maximum power transfer.

$$Q = \frac{-X_{h}(\omega)}{R}$$

$$R_{e} = \frac{\sqrt{R^{2} + X_{h}^{2}(\omega)}}{\sqrt{1 + \frac{X_{h}^{2}(\omega)}{R^{2}}}} = R$$

$$X_{e} = QR_{e} = -\frac{X}{R}R_{e} = -X$$

So these conditions are

$$R = R_e$$
, $X_h(\omega) = -X_e$

In order to achieve a perfect impedance match at any frequency, this condition must be met at that frequency. Since the resistance of the acoustical device is a constant over the entire frequency range and the resistance of the ear is not, it is obvious that this criterion cannot be met exactly at every frequency. In addition, for resonant circuits a perfect impedance match is possible only at a specific frequency. Therefore, the perfect impedance match is not possible, and the curve fitting process is the next best method to try to make the impedance match optimum. The indicated curve fit was performed on the computer using subroutine GRID4 with the performance index being the integral of the difference between the impedance curves of the mathematical model and the impedance curve calculated for the circuit shown in Figure 5c. An alternate performance index of maximizing power transfer was tried, but results indicated that this performance index was the best one. The physical parameters that resulted from the curve fit are shown in Figure 6a and the resulting reactance, power in, power, and sound pressure level produced in the ear are shown in Figures 6 and 7.

The success of the impedance match may be determined in Figures 6 and 7. First, considering the two power curves, the output power delivered to the ear is much less than that produced by the device. The optimum power delivered is half that produced by the source. On this basis, the impedance match is not very good (Schure, 1958). In addition, a comparison of the reactance curve of Figure 4 with the reactance curve of Figure 6 indicates a very poor reactance match. Improvements in the reactance match may be achieved by using a device whose reactance starts large and positive for low frequencies and decreases with increased frequency. Such a requirement cannot be met with passive elements whose reactances occur in the form k/w and wm. Active elements might be used to fit the reactance requirements.

.

Figure 6. Computer Results

a.) Output Sound Pressure Level Delivered to the Ear Model

b.) Power Transmitted to the Ear Model in DB

FOOTNOTES

¹Georg Von Bekesy, Experiments in Hearing (New York, 1960).

²Peter B. Denes and Elliot N. Rinson, <u>The Speech Chain</u> (Bell Telephone Laboratories, 1963), p. 68.

³Georg Von Bekesy, "Mechanical Properties of the Ear," <u>Handbook of Experimental Psychology</u>, in S. S. Stevens (ed.) (New York, 1960), p. 1079.

⁴Ibid.

⁵Y. Onchi, "Mechanisms of the Middle Ear," <u>Journal of the</u> <u>Acoustical Society of America</u>, Vol. 33, 1969, p. 802.

⁶Georg Von Bekesy, <u>Experiments in Hearing</u> (New York, 1960), p. 104.

⁷J. Y. Morton and R. A. Jones, "The Acoustical Impedance Presented by Some Human Ears to Hearing Aid Earphones of the Insert Type," <u>Acustica</u>, Vol. 6, 1956, p. 329.

⁸Lawrence E. Kinsler and Austin R. Frey, <u>Fundamentals of</u> Acoustics (New York, 1962), p. 186.

⁹Ibid., p. 191.

CHAPTER III

EXPERIMENTAL PROCEDURE

Introduction

The input acoustical impedance of the mathematical model described in Chapter II was compared to existing ear impedance measurements. However, these existing measurements do not include all frequencies encountered in speech so impedance data should be taken at higher frequencies. Individual testing should also indicate individual variations in ear impedance. For these reasons it is felt that input acoustical impedance to human ears should be measured in an attempt to further validate the mathematical model of Chapter II and determine other variables that may be present in ear impedance,

There are two basic methods that have been used to measure acoustical impedance: comparison and direct. A comparison method is similar to an electrical wheatstone bridge that compares an unknown impedance to a variable known impedance. By nulling the pressure difference between the two impedances the unknown impedance may be determined. A direct method depends on a source with a large enough internal impedance so that an approximately constant volume velocity can be generated. For further information concerning impedance measuring, see Ayers, Aspenall and Morton (1956).

Impedance Measuring Device

The direct method was chosen as the most appropriate for this application, because impedance measurements were required over a large frequency range and because of the lack of a dependable null reference. The problem of size is one that is always present in acoustical impedance measurement. The source must be small enough to fit in the human ear canal alongside a microphone, and still have large internal impedance. The only way this can be accomplished is by use of probe tubes. Since the mathematical model indicates that the impedance is a function of distance from the eardrum, it is desirable to measure ear impedance at different distances from the ear canal. This was not done because medical personnel were not available to assure the safety of measuring this distance on a subject and because of physical limitations on the device used.

A horn driver used on conventional loudspeakers was chosen as a sound source. An acoustic coupler shaped like a reversed exponential horn was used to connect the horn driver to a probe tube. This device had unreliable phase characteristics (see Appendix B), so a B&K onequarter inch condenser microphone was placed near the inlet to the probe tube, and the phase shift was measured between this microphone and the probe tube output. The measuring microphone used a B&K one-half inch condenser microphone, and a probe tube. A photograph of this device is shown in Figure 8. Henceforth in this study, the subscript s will signify the source reference microphone, and subscript m will signify the measuring microphone.

Figure 8. Acoustical Impedance Measuring Device

An adequate seal around the outside of the probe tubes was achieved using a receiver seal furnished by Beltone Hearing Aid Service. The receiver seal was then filled in with silicon rubber sealer, as it had to be sheared in order to insert the microphone probe tube. Both probe tubes were filled partially with steel wool damping material to smooth out the resonant peaks that occur in acoustical transmission tubes. Since the horn driver is so massive and the probe tube so small and highly damped, it is felt that the assumption of high internal source impedance is a good one,

Calibration Procedure

The calibration of the measuring probe tube consisted of finding a transfer function that could be used to relate actual pressures at the probe input to measured pressure at the probe tip. For the high impedance source the calibration consisted of relating measured pressures to volume velocity. The experimental setup and equivalent electrical circuit shown in Figure 9 were used to determine a source transfer function. Again, the equivalent electrical circuit is included to help understand the physical process.

The volume velocity going through the calibration volume will be approximately the same as that delivered to the ear because of the large internal impedance of the source. This volume is the standard artificial ear volume used with hearing aid earphones, so even if the source internal impedance were not large compared to the ear, the calibration impedance is similar to a real ear impedance, and the results can be expected to be reasonable. The assumption of lumped parameter acoustical elements can be used here to determine the volume velocity because the diameter of the coupler cavity is small compared to a wavelength.

a.) Experimental Setup

b.) Equivalent Electrical Circuit

When the calibration output pressure p_k is measured over the desired frequency range for any given reference pressure p_r , the following transfer function may be calculated:

$$\frac{P_k}{P_r} = |G_s(j\omega)| e^{j\emptyset_s}$$
(12)

The volume velocity may then be calculated by writing a loop equation for the pressure drop through the coupler cavity shown in Figure 9.
$$p_{k} = \frac{U_{k}}{j_{\omega}C}$$
(13)

where

$$C = \frac{V}{\rho c^2}$$

U_k = volume velocity.

Then the volume velocity may be computed in terms of the measured pressure by combining Equations (12) and (13).

$$U_{k} = j\omega Cp_{r} |G_{s}(j\omega)| e^{j\emptyset s}$$
(14)

A similar calibration procedure may be used for computing the probe microphone transfer function.

$$\frac{\mathbf{p}_{m}}{\mathbf{p}_{r}} = |\mathbf{G}_{m}(j\omega)| e^{j\boldsymbol{\emptyset}_{m}}$$
(15)

Using Equation (15), the measured pressure may be related to the actual pressure in the ear. These calibration curves are shown in Appendix B.

Measurement Procedure

The ear mold was inserted into the subject's ear, and the pressures in the reference microphone and measuring microphone were measured. The relationship between the measured pressures and phase angles and the desired ear impedance may be obtained by using the transfer functions indicated in Figure 10.

a.) Block Diagram Representation

b.) Arrangement of Probes in Subject's Ear

Figure 11. Photograph of Experimental Setup

It was difficult at first to get an adequate seal, and the subject had to learn how to insert the ear mold himself. There was a slight problem with inserting the probes because the ear canal opening is not perpendicular to the head. If the probes are not inserted straight, the microphone probe tube may be closed off. This problem was corrected by having the subject tilt his head slightly. A photograph of the device and subject is shown in Figure 11, and the list of equipment used, along with wiring details, is described in Figure 12.

Figure 12. Wiring Diagram for Testing Session

The overall measured transfer function described in Figure 10 can be expressed as

$$\frac{p_{m}}{p_{r}} = |G_{mm}(j\omega)|e^{j\emptyset_{mm}}$$
(16)

The pressure in the ear may be computed in terms of Equation (16) as

$$\frac{\mathbf{p}_{m}}{\mathbf{p}_{e}} = |\mathbf{G}_{m}(\mathbf{j}_{w})| e^{\mathbf{j}\boldsymbol{\emptyset}_{m}}$$
(17)

and the relationship between p_p and p_m becomes

$$\frac{P_{e}}{P_{r}} = \frac{|G_{mm}(j\omega)|}{|G_{m}(j\omega)|} e^{j(\emptyset_{mm} - \emptyset_{m})}$$
(18)

upon combining Equations (16) and (17). Since the volume velocity may be computed using Equation (14), the ear impedance becomes

$$Z_{e} = \frac{P_{e}}{U_{e}} = \frac{|G_{mm}(j\omega)|e^{j(\emptyset_{mm} - \emptyset_{m} - \emptyset_{s})}}{|j\omega c|G_{m}(j\omega)||G_{s}(j\omega)|} .$$
(19)

The ear impedance in Equation (19) was computed using the computer program shown in Appendix A for several test sessions. The device is unreliable above about 5000 hz., which is no surprise because of the unreliable phase characteristics at those frequencies. This is because the assumption of lumped parameter modeling became invalid above a certain frequency, and the effect of reflected waves was no longer negligible. Experimental accuracy also proved to be a problem which is easily recognizable whenever the resistance becomes negative. This is due to slight error which pushes the ear impedance phase angle from the first to the fourth quadrant making the sine function change signs. When this happens, the calculated resistance may be assumed to be zero, and the reactance is not affected very much.

Discussion of Results

The test subject reported hearing a beat phenomenon which depended both on stimulus intensity and frequency. The beats were noticed every time the intensity exceeded about 105 DB and the frequency of the beat changed with the frequency of the stimulus. Since ear nonlinearity becomes more pronounced with increased intensity, it is likely that this phenomenon is associated with the ear's nonlinearity (Bekesy, 1960a). Since it is desirable to obtain data for impedance both with and without this phenomenon present, data was collected for two testing sessions at each intensity level. The results are shown in Figures 13 and 14.

There are several human variables associated with ear impedance that can affect the results of this experiment. It is known that ear impedance may change if the testing session lasts too long.¹ This may be due to fatiguing of muscles or adaptation of the ear to a new environment. Consequently, testing sessions were limited to about 15 minutes each.

Notice in Figures 13 and 14 that the ear impedance varies with the different testing sessions. These changes are quite large and are most noticeable for frequencies below about 1000 hz. Since the

Frequency in Cycles/Sec.

Figure 13. Acoustical Impedance of Human Ear for Two Different Sessions With Beat Phenomenon

Figure 14. Acoustical Impedance of Human Ear for Two Sessions Without Beat Phenomenon

impedance calculated on the mathematical model indicates a change in impedance with a change in the distance to the eardrum, it seems logical to consider differences in the extension of the ear mold as an explanation for these differences. However, since the ear mold is of constant size, it seems that it was always inserted approximately the same distance as indicated in Figure 15. Therefore, this may not be an explanation for large fluctuations.

Figure 15. Drawing Representing How Far Into the Ear Canal the Ear Mold Goes

In further attempts to explain the variations, the subject was questioned concerning his state of fatigue, mental activity, and tension. During the first testing session the subject was extremely tired. During the second testing session the subject reported excessive mental activity and tension. During the third and fourth testing sessions, the subject was rested and mental activity was controlled. It seems that all these factors may be involved in ear impedance, but on the basis of the work here, it is not possible to relate specific impedance changes to the factors mentioned above. Further controlled experiments must be undertaken to determine whether fatigue, mental activity, and tension affect ear impedance, and if so, how.

The impedance curves that result from measurement look similar in shape to the impedance curves calculated from the mathematical model. The hump in the resistance curve and the inflection in the reactance curve consistently appear at about 500 hz. Other researchers have not observed these factors when using lower stimulus intensity, so it is likely that they are related to the properties of the ear at higher intensity.² The reason for this similarity is that the real eardrum behaves like a piston for lower frequencies.³

The wide variation in measured impedance indicates that impedance matching will involve the fitting of device impedance into acceptable bands of ear impedance. Further testing is necessary in order to determine the properties of these bands based on the variation of ear impedance for a particular person and based on variation of ear impedance between persons.

FOOTNOTES

¹J. Y. Morton and R. A. Jones, "The Acoustical Impedance Presented by Some Human Ears to Hearing Aid Earphones of the Insert Type," <u>Acustica</u>, Vol. 6, 1956, p. 329.

²Ibid.

³Georg Von Bekesy, <u>Experiments in Hearing</u> (New York, 1960), p. 102.

CHAPTER IV

CONCLUSIONS

Summary

A mathematical model was developed which approximates the input acoustical impedance to the human ear. An acoustical device similar to what is used in conventional hearing aids was proposed as a means of impedance matching, and the impedance match was performed by a curve fit on the computer. Results indicate that this impedance match is not very good.

Passive elements cannot provide very much improvement in impedance matching because of requirements on the reactance. Reactive components must start large and positive for low frequency and decrease with an increase in frequency in order to fit the criteria developed. The conclusion is that improvements in aural prosthesis are possible by consideration of impedance matching, but such improvements require active devices as passive devices fail to satisfy the reactive requirement.

The input acoustical impedance of the human ear was measured, and variations were noted which make an exact impedance match impossible. These variations may be caused by fatigue, tension, and mental activity, factors which are difficult to control. This means that any attempts at impedance matching will never exactly fit the criterion but must settle for fitting into some acceptable band of impedance requirements.

Recommendations

A beat phenomenon was discovered during testing which should be studied further. Since this phenomenon occurred only at higher intensities, it is likely that it is associated with ear nonlinearity. Nonlinear systems have been known to exhibit almost periodic behavior which can cause beats, and subharmonics can superimpose themselves on the primary signal to generate sounds like beats. A nonlinear analysis of hearing should be used to characterize and study this phenomenon.

Although the acoustical device that was used here did not match impedances very well, other devices might represent significant improvements. A comparison of the reactances of the proposed device and the ear indicates that they are the reason for the poor curve fit. This problem is common with resonant circuits, but if a device could be found whose reactance is more similar in shape to ear reactance, then significant improvements might result. If more work is to be done with this idea, more testing will be required in order to characterize the acceptable bands for the impedance of human ears. This will involve improvements in the impedance measuring device in order to make measurements at higher frequencies more reliable. In the course of carrying out this study it was observed that conventional artificial ears used in earphone calibration procedures attempt to approximate ear impedance with a reactive component alone. An improvement in artificial ears could be achieved by including a resistive component in the form of a damper and piston similar to the mathematical model that was included here. Certainly this would represent a more accurate picture of what the hearing aid sees when it is fitted to a human ear. Using conventional artificial ears for testing, the hearing aid sees a load that does not dissipate power. Certainly the ear does dissipate power, so the inclusion of resistance would come closer to the real ear. This improvement in artificial ears might give audiologists a better idea of the true performance of hearing aids. The improved artificial ear might be built similar to the mathematical model of the ear proposed here which does include damping,

SELECTED BIBLIOGRAPHY

Ayers, E. W., E. Aspinall, and J. Y. Morton.

- 1956 "An Impedance Measuring Set for Electrical, Acoustical, and Mechanical Impedances." <u>Acustica</u>, Vol. 6, pp. 11-16.
- Bekesy, G. V.
 - 1960 <u>Experiments in Hearing</u>. New York: McGraw-Hill Publishing Company.

Bekesy, G. V., and W. A. Rosenblith.

1960 "The Mechanical Properties of the Ear." In S. S. Stevens (ed.), <u>Handbook of Experimental Psychology</u>, New York: Wiley.

Carhart, R.

1946 "Selection of Hearing Aids," <u>Archives of Otolaryngology</u>, Vol. 44, pp. 1-18.

Davis, H.

1946 "The Selection of Hearing Aids." Laryngoscope, Vol. 56, pp. 85-115.

Ithell, A. H.

1963 "The Measurement of the Acoustical Input Impedance of Human Ears." Acustica, Vol. 13, pp. 140, 311.

Kinsler, L. E., and A. R. Frey.

1962 Fundamentals of Acoustics. New York: Wiley.

Metz, O.

1946	"The Acoustic]	Impedance	Measured or	n Norma	l and Patho-
	logical Ears,"	Acta Oto-	Laryngology	, Vol. 6	3.

Morton, J. Y., and R. A. Jones.

1956 "The Acoustical Impedance Presented by Some Human Ears to Hearing Aid Earphones of the Insert Type." Acustica, Vol. 6, p. 329.

Nielsen, A. K.

1954 "The Design of an Acoustic Impedance Meter," <u>Acustica</u>, Vol. 4, p. 120.

Onchi, Y.

- 1949 "A Study of the Mechanism of the Middle Ear." <u>Acous-</u> <u>tical Society of America Journal</u>, Vol. 21, p. 404.
- 1961 "Mechanisms of the Middle Ear." Journal of the Acoustical Society of America, Vol. 33, p. 802.

Reddell, R. C., and D. R. Calvert.

1966 "Selecting a Hearing Aid by Interpreting Audiological Data." Journal of Audio Research, Vol. 6, pp. 445-452.

Schure, Alexander.

1958 Impedance Matching, New York: J. F. Rider.

APPENDIXES

APPENDIX A

COMPUTER PROGRAMS

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
С
C COMPUTER PROGRAM TO COMPUTE THE INPUT ACOUSTICAL IMPEDANCE TO THE
C
 HUMAN EAR.
C DEFINITION OF PARAMETERS.
 R=DAMPING COEFFICIENT.
 S = CROSS SECTIONAL AREA OF EAR CANAL.
RK = SPRING CONSTANT ON EARDRUM MODEL.
  RM = EQUIVALENT MASS OF MALLEUS, INCUS, STAPES.
 CA= WAVE PROPOGATION VELOCITY OF AIR.
 DENS= DENSITY OF AIR.
1
  RL= LENGTH OF EAR CANAL.
 DELXX= STEP IN LONGITUDINAL DIRECTION IN EAR CANAL.
 DELFRQ= FREQUENCY STEP.
      DIMENSION ZI(10,100),ZR(10,100)
      DIMENSION XARRAY (101), YARRAY (101)
      READ(5,100) R,S,RM,RK,CA,DENS,RL ;DELXX ,DELFRQ
      WRITE(6,150) R.S.RM, RK, CA, DENS
      L=99
      XX=RL
      DO 6 I=1,10
      FRQ=100.
     DO 7 K=1,L
      KK = K - 1
2
      FRR=FRQ*(2.*3.141592)
      CHAR=(DENS*CA)/S
      RE=R7(S*S)
      XE=(FRR*RM-RK/FRR)/(S*S)
      VAL 1=ABS((FRR*XX/CA)-(.5*3.141592))
      VAL2=ABS((FRR*XX/CA)+(1.5*3.141592))
      IF(VAL1.LT.1.00E-02.0R.VAL2.LT.1.00E-02) GO. TO 5
      DUF=(CHAR-XE*TAN(FRR*XX/CA))*(CHAR-XE*TAN(FRR*XX/CA))
     1 + (RE*TAN(FRR*XX/CA))*(RE*TAN(FRR*XX/CA)).
      ZR(I,K)=CHAR*CHAR*RE*(1.+(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/DUF
C
      ZI(I,K)=(XE*CHAR+(XE*XE+RE*RE)*TAN(FRR*XX/CA)+
     1 CHAR*(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/DUF
      IF(VAL1.GE.1.00 E-02.AND.VAL2.GE.1.00E-02) G0 T0 7
    5 ZR(I,K)=ZR(I,KK)
      ZI(I,K)=ZI(I,KK)
    7 FRQ=FRQ+DELFRQ
    6 XX=XX-DELXX
С
C GENERATE XARRAY FOR CALCOMP PLOT.
      FRQ=100.
      DO 4 K=1.L
      XARRAY(K)=ALOGIO(FRQ)
    4 FRQ=FRQ+DELFRQ
      XX=RL
      CALL PLOTS
     DO 8 I=1,10
```

```
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
     CALL PLOTC(0.0,-11.,-3)
C DO-LOOP TO PLOT REACTANCE AT DISCRETE PDINTS ALONG EAR CANAL.
     DD 9 K=1,L
      YARRAY(K) = ZI(I,K)
    9 CONT INUE
     CALL PLOTC (0.0,5.5,2)
     CALL PLOTC(8.5,5.5,3)
      CALL PLOTC(8.5,0.0,2)
     CALL PLUTC(0.0,0.0,2)
     CALL PLOTC (0.0, 1.5,-3)
     CALL PLOTC(2.0,0.0,-3)
3
 SCALE VALUES AND DRAW AXES
     CALL SCALE(XARRAY, 5.0, 99, 1)
     CALL SCALE(YARRAY,2.0,99,1)
     CALL AXIS(0.0,0.0, LOG FREQUENCY ,-13, 5. 0, 0. 0, XARRAY (100),
     1 XARRAY(101))
     CALL AXIS(0.0,0.0, REACTANCE',9,2.0,90.0, YARRAY(100), YARRAY(101))
     CALL LINE(XARRAY, YARRAY, 99,1,10,75)
     CALL PLOTC(-2.0,4.0,-3)
C DO -LOOP TO PLOT RESISTANCE AT DISCRETE POINTS ALONG EAR CANAL.
     DO 10 K=1,L
     YARRAY(K) = ZR(I,K)
   10 CONTINUE
     CALL PLOTC(0.0,5.5,2)
     CALL PLOTC(8.5,5.5,3)
     CALL PLOTC(8.5,0.0,2)
     CALL PLOTC(0.0,0.0,2)
     CALL PLOTC(0.0,1.5,-3)
     CALL PLOTC(2.0,0.0,-3)
2
 SCALE VALUES AND DRAW AXES
     CALL SCALE (XARRAY, 5.0,99,1)
     CALL SCALE(YARRAY, 2.0,99,1)
     CALL AXIS (0.0,0.0, "LOG FREQUENCY", -13, 5.0, 0.0, XARRAY( 100),
     1 XARRAY(101))
     CALL AXIS(0.0,0.0, 'RESISTANCE', 10,2.0,90.0, YARRAY(100), YARRAY(101)
    11
C PLOT POINTS.
     CALL LINE(XARRAY, YARRAY, 99, 1, 10, 75)
     CALL SYMBOL (4.00,2.00,.14, XX=*,0.0,3)
     CALL NUMBER (4.50,2.00,.14,XX,0.0,2)
     CALL PLOTC(8.0,-6.5,-3)
    8 XX=XX-DELXX
  100 FORMAT(4E15.4/4E15.4/E15.4)
 150 FORMAT(10H DAMPING= E10.4,20H AREA OF EAR CANAL= E10.4//
     1 5H RM= E10.4,5H RK= E10.4,5H CA= E10.4,7H DENS= E10.4//)
     STOP
      E ND
```

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
      DIMENSION XL(9), XR(9), XLOW(9), XHIGH(9), X(9)
      N=4
      READ(5,100) (XL(I),XR(I),I=1,N)
      MPRINT=1
      MPRINT=0
      F=.1
      F=.01
      R=.667
      CALL GRID4(N, MPRINT, XL, XR, F, R, Y, X, XLOW, XHIGH, NN)
      WRITE(6,48) Y,NN,F
   48 FOR MAT(//
     254H NUMBER OF FUNCTION EVALUATIONS USED DURING SEARCH ..., 115/
     354H FRACT. REDUCTION IN INTERVAL OF UNCERTAINTY EXTANT ..., E15.8/)
      DO 101 I=1,N
  101 WRITE(6,102) XLOW(I),X(I),XHIGH(I)
  100 FORMAT(8E10.2)
  102 FORMAT (5HXLOW=E15.8, 2X, 2HX=E15.8, 2X, 6HXHIGH=E15.8)
      STOP
      END
      SUBROUT INE MER IT4(U,Y)
      DIMENSION ZI(100), ZR(100), YI(100), YR(100), XI(100), XH(100)
      DIMENSION U(1)
C DEFINITION OF PARAMETERS.
C R=DAMPING COEFFICIENT.
C S = CROSS SECTIONAL AREA OF EAR CANAL.
C RK = SPRING CONSTANT ON EARDRUM MODEL.
C RM = EQUIVALENT MASS OF MALLEUS, INCUS, STAPES.
C CA= WAVE PROPOGATION VELOCITY OF AIR.
C DENS= DENSITY OF AIR.
C RL= LENGTH OF EAR CANAL.
C DELXX= STEP IN LONGITUDINAL DIRECTION IN EAR CANAL.
C DELFRQ= FREQUENCY STEP.
C RH=RESISTANCE OF HEARING AID IMPEDANCE MATCHING DEVICE.
C RAD=RADIUS OF HOLE DRILLED IN TUBE OF IMPEDANCE MATCHING DEVICE.
C AL =LENGTH OF ACOUSTICAL COMPLIANCE.
C RT=RADIUS OF ACOUSTICAL COMPLIANCE.
      U(1)=RA
Ċ
      U(2)=RAD
C
С
      U(3)=AL
С
      U(4)=RT
      R=1.00E 02
      S=5.00E-01
      RM=2.50E-02
      RK=1.00E 06
      CA=3.62E 04
      DENS=1.23E-03
      RL=1.5
      DEL FRQ=1.00E 02
С
      L=99
      XX = RL
      FRQ=100.
      00 7 K=1,L
```

•

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 KK=K-1 С FRR=FRQ*(2.*3.141592) CHAR=(DENS*CA)/S RE=R/(S*S) XE=(FRR*RM-RK/FRR)/(S*S) VAL 1=ABS((FRR*XX/CA)-(,5*3.141592)) VAL 2= ABS((FRR *XX/CA)-(1.5*3.141592)) IF(VAL1.LT.1.00E-02.0R.VAL2.LT.1.00E-02) GD TO 5 DUF={CHAR-XE*TAN(FRR*XX/CA))*{CHAR-XE*TAN(FRR*XX/CA)} 1 + (RE*TAN(FRR*XX/CA))*(RE*TAN(FRR*XX/CA)) ZR(K) =CHAR*CHAR*RE*(1.+(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/DUF С ZI(K) = (XE*CHAR-{XE*XE+RE*RE}*TAN(FRR*XX/CA)+ 1 CHAR*(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/DUF IF(VAL1.GE.1.00E-02.AND.VAL2.GE.1.00E-02) GO TO 6 5 ZR(K) = ZR(KK)ZI(K)=ZI(KK)6 CONTINUE RH=U(1) XH(K)=FRR*DENS*1.7*U(2)/(3.141592*U(2)*U(2) 1-FRR*FRR*1.7*U(2)*((3.141592*U(4)*U(4)*U(3))/(CA*CA))) 7 FRQ=DELFRQ+FRQ Z = 1 + ABS(ZR(20) - RA)Z2=1 + ABS(ZI(20)+XH(20)) PI=Z1+Z2Y=1./PI RETURN END SUBROUTINE GRID4(N, MPRINT, XL, XR, F, R, Y, X, XLOW, XHIGH, NN) GRI 0010 SUBROUTINE GRID4(N, MPRINT, XL, XR, F, R, Y, X, XLON, XHIGH, NN) GRI CCCC С GRID SEARCH C GRI CCCC C C GRI CCCC THIS SUBROUTINE EXERCISES A GRID SEARCH IN A MERIT HYPERSURFACE GRI CCCC С OF UPTO EIGHT DIMENSIONS BY CALLING SUBROUTINE MERIT4(X,Y) GRI CCCC С GRI CCCC Ċ CALLING PROGRAM REQUIREMENTS GRI CCCC С GRI CCCC С PROVIDE A DIMENSION STATEMENT AS FOLLOWS. GRI CCCC C C GRI CCCC DIMENSION XL(9), XR(9), XLOW(9), XHIGH(9), X(9) GRI CCCC GRI CCCC C С NOMENCLATURE GRI CCCC ., R. С GRI CCCC Č N = NUMBER OF INDEPENDENT VARIABLES GRI CCCC MPRINT = 0 CONVERGENCE MONITOR DOES NOT PRINT С GRI CCCC С = 1 CONVERGENCE MONITOR WILL PRINT GRI CCCC XL = ORIGINAL LOWER EXTREMITY OF INTERVAL OF UNCERTAINTY XR = ORIGINAL UPPER EXTREMITY OF INTERVAL OF UNCERTAINTY C GRI CCCC GRI CCCC C F = FRACTIONAL REDUCTION IN INTERVAL OF UNCERTAINTY DESIRED GRI CCCC С C R = FRACTIONAL GRID REDUCTION UTILIZED GRI CCCC С Y = EXTREME ORDINATE TO MERIT SURFACE DISCOVERED BY GRID SEARCH GRI CCCC X = COLUMN VECTOR OF ABSCISSAS CORRESPONDING TO Y XLOW = FINAL LOWER EXTREMITY OF INTERVAL OF UNCERTAINTY GRI CCCC GRI CCCC С r

0:000000001111111111112222222222333333333444444444	89/80 LIST	
C XHIGH = FINAL UPPER EXTREMITY OF INTERVAL OF UNCERTAINTY NN = NUMBER OF FUNCTION EVALUATIONS EXPENDED IN GRID SEARCH GRI CCCC DIMENSION XL(9), XR(9), XI(9), XLOM(9), XHIGH(9), CENTER(9), SAVEX(9) GRI CCCC IF(N-8)11,11,12 ICCC IF(N-8)11,11,12 ICCCC IF(N-8)11,11,12 IZ WRITE(6,13) IS FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0050 IS HAITE(6,13) IN HIF=1,10)14,14,15 IS WRITE(6,16)F IN HITE(6,16)F IN HITE(6,16)F IN HITE(6,16)F IN HITE(6,16)F IN FRURN IN AS=,E15.8,16H GREATER THAN 8.) RETURN IN FRURN IN AS=,E15.8,16H GREATER THAN 1.) RETURN IN FRURN IN FRURN	000000000111111111122222222233333333333	77777778 34567890
C GRI D220 GRI D220 C DIMENSION XL(9),XR(9),XL(9),XL(DM(9),XHIGH(9),CENTER(9),SAVEX(9) GRI D220 C GRI CCCC GRI CCCC C IF(N=8)11,11,12 GRI D020 12 WRITE(6,13)N GRI D020 13 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI D050 19 H II=,13,16H GREATER THAN 8.) GRI D050 19 H II=,13,16H GREATER THAN 8.) GRI D070 11 FF(F=1,0)14,14,15 GRI D070 GRI D010 15 WRITE(6,16)F GRI D010 GRI D010 16 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI D120 14 D0 50 I = 1,N GRI D120 GRI D120 15 WRITE(6,52)I,XLL,1,XR GRI D150 GRI 0150 11 STE(6,52)I,XLL,1,XR GRI D150 GRI 0150 19 H A3,11,2H)=,FI5.8,16H GREATER THAN A4(,I1,2H)=,EI5.8) GRI 0210 19 H A3,11,2H)=,FI5.8,16H GREATER THAN A4(,I1,2H)=,EI5.8) GRI 0120 19 H A3,11,2H)=,FI5.8,16H GREATER THAN A4(,I1,2H)=,EI5.8) GRI 0210 19 H A3,11,2H)=,FI5.8,16H GREATER THAN A4(,I1,2H)=,EI5.8) GRI 0210 19 A GRETURN GRI 0220 GRI 0220 <td>C XHIGH = FINAL UPPER EXTREMITY OF INTERVAL OF UNCERTAINTY C NN = NUMBER OF FUNCTION EVALUATIONS EXPENDED IN GRID SEARCH</td> <td>GRI CCCC GRI CCCC</td>	C XHIGH = FINAL UPPER EXTREMITY OF INTERVAL OF UNCERTAINTY C NN = NUMBER OF FUNCTION EVALUATIONS EXPENDED IN GRID SEARCH	GRI CCCC GRI CCCC
C PROTECTION GRI CCCC C IF(N-B)11.11.12 GRI CCCC 12 WRITE(6,13)N GRI 0040 13 FORMAT(64)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0050 19 II=,13.16H GREATER THAN 8.) GRI 0050 19H II=,13.16H GREATER THAN 8.) GRI 0050 19H II=,13.16H GREATER THAN 8.) GRI 0050 10H AGRI 0.120 GRI 0.010 10H AGRI 0.120 GRI 0.020 14 DO 50 I = 1.N GRI 0.120 110H AS=,EI5.8.16H GREATER THAN 1.) GRI 0.120 110H AS=,EI5.8.16H GREATER THAN 1.) GRI 0.120 110H AS=,EI5.8.16H GREATER THAN 1.) GRI 0.120 110H AS GRI 0.120 GRI 0.120 110H AS GRI 0.120 <td>C DIMENSION XL(9),XR(9),X(9),XLOW(9),XHIGH(9),CENTER(9),SAVEX(9)</td> <td>GRI CCCC GRI 0020 GRI CCCC</td>	C DIMENSION XL(9),XR(9),X(9),XLOW(9),XHIGH(9),CENTER(9),SAVEX(9)	GRI CCCC GRI 0020 GRI CCCC
IF(N=8)11,11,12 GRI 0030 12 WRITE(6,13)N GRI 0040 13 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0050 GRI 0060 19 II=,13,16H GREATER THAN 8.) GRI 0077 11 IF(F-1,0)14,14,15 GRI 0070 15 WRITE(6,16)F GRI 0070 16 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0100 REI 0070 110H A5=,E15.8,16H GREATER THAN 1.) GRI 0100 100F A5=,E15.8,15H,5G GRI 0100 110H A5=,E15.8,15H,5G GRI 0120 14 0D 50 I = 1,N GRI 0120 GRI 0130 15 WRITE(6,52)1,XLL,1,XRR GRI 0150 GRI 0150 12 RETURN GRI 0170 GRI 0160 19 A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0180 19 A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0220 50 C0HTINUE GRI 0220 GRI 0220 10 FIR-2,073,0153,54,54 GRI 0220 51 SRR GRI 0220 GRI 0220 52 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0220 GRI 0220 53 WRITE(6,5),53 F3 GRI 0220 GRI 0220 54 IF(R-1,0)58,58,53 GRI 0240 <t< td=""><td>C PROTECTION</td><td>GRI CCCC GRI CCCC</td></t<>	C PROTECTION	GRI CCCC GRI CCCC
13 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0050 19 H 11=,13,164 GREATER THAN 8.) GRI 0060 RETURN GRI 0070 11 F(F-1,0)14,14,15 GRI 0070 15 WRITE(6,16)F GRI 0070 16 FORMAT(4)H ****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0100 10H A5=,E15.8,16H GREATER THAN 1.) GRI 0100 10H A5=,E15.8,16H GREATER THAN 1.) GRI 0110 RETURN GRI 0120 GRI 0120 14 DD 50 I = 1,N GRI 0130 GRI 0140 15 XRT = XR(1) GRI 0150 GRI 0150 xLL = XL(1) GRI 0160 GRI 0170 52 FORMAT(4)H *****FRROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0180 19H A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0210 refurn GRI 0220 GRI 0220 GRI 0220 54 IF(R-1.0)58,58,53 GRI 0220 GRI 0220 55 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0220 64 OTNINWE GRI 0220 GRI 0220 55 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0220 56 ONTINWE GRI 0220 GRI 0220 <	IF(N-8)11,11,12 12 WRITE(6,13)N	GRI 0030 GRI 0040
RETURN GRI 0079 11 IFFF-1.0]14,14,15 GRI 0080 15 WRITE(6,16)F GRI 0090 16 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0100 100H A5=,E15.8,16H GREATER THAN 1.) GRI 0120 14 D0 50 I = 1,N GRI 0120 14 D0 50 I = 1,N GRI 0120 15 XRT = XR(1) GRI 0150 XLL = XL(1) GRI 0160 WR = XR(1) GRI 0170 52 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0170 52 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0220 54 IF(R-1.0)58,58,53 GRI 0220 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0220 54 IF(R-1.0)58,58,53 GRI 0220 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0220 76 GRI 0220 GRI 0220 77 GRI 0220 GRI 0220 78 WITE(6,52)R GRI 0220 GRI 0220 79 M A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 70 IF(MPRINT)1.3,1 GRI 0220 GRI 0220 71 MITILIZE ***** GRI 0320 IIIA (4N NN SIDE Y X(1) X(2) X(3) X(4) GRI 0330	13 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4******// 19H I1=,I3,16H GREATER THAN 8.)	GRI 0050 GRI 0060
16 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0100 10H A5=,E15.8,16H GREATER THAN 1.) GRI 0120 14 DO 50 I = 1.N GRI 0120 14 DO 50 I = 1.N GRI 0130 15 KRR = XR(1) GRI 0150 16 F(R(1)-X(1))51,51,50 GRI 0160 17 F(R(1)-X(1))51,51,50 GRI 0160 19 M A3,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0180 19 M A3,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0190 19 M A3,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0220 50 CONTINUE 17 (R-2,0/3,0)53,54,54 GRI 0220 53 WRITE(6,55)R GRI 0220 54 IF(R-1,0)58,58,53 GRI 0220 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0220 19 M A6=,E15.8,33H DDES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 C INITILIZE GRI CCCC 58 NN = 0 GRI CCC	RETURN 11 IF(F-1.0)14,14,15 15 HPITE(6.16)E	GRI 0070 GRI 0080 GRI 0090
RETURN GRI 0120 14 00 50 I = 1,N GRI 0130 If(XR(I)-XL(I))51,51,50 GRI 0140 51 XRR = XR(I) GRI 0150 xRITE(6,52)I,XLL,IXRR GRI 0160 wRITE(6,52)I,XLL,IXRR GRI 0170 94 A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0180 194 A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0200 95 COMTINUE GRI 0210 16(RI 0220 GRI 0220 95 COMTINUE GRI 0220 16(RI 0220 GRI 0220 95 COMTINUE GRI 0220 17(R1C,10,3,153,54,54 GRI 0220 96 C GRI 0250 194 A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0250 97 CC GRI 0250 98 NN = 0 GRI 0220 98 NN = 0 GRI 0220 98 NN = 0 GRI 0220 99 NATE(6,2) X(1) 90 SIDE = 1.0 GRI 0220 91 HWITE(6,2) GRI 0300 92 C AMAT(37HICONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0310 93 D0 4 I=1,N GRI 0320 94 I124H NN SIDE Y X(1) <	16 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4*****/, 110H A5=,E15.8,16H GREATER THAN 1.)	GRI 0100 GRI 0110
IF{XR(1)-XL(1))51,51,50 GRI 0140 51 XRP = XR(1) GRI 0150 XLL = XL(1) GRI 0150 WRITE(6,52)I,XLL,I,XRR GRI 0170 PH A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0190 19H A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0200 50 CONTINUE GRI 0220 GRI 0220 19H A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0220 51 KRE GRI 0220 GRI 0220 51 KRE GRI 0220 GRI 0220 52 FORMAT(4LH *****ERDR MESSAGE SUBROUTINE GRID4*****,/, GRI 0220 53 WPITE(6,55)R GRI 0240 54 IF(R-1,0)58,58,53 GRI 0250 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0260 RETURN GRI 0270 GRI 0270 C INITILIZE GRI 0280 SIDE = 1.0 GRI 0280 IF(MPRINT)1,3,1 GRI 0280 GRI 0280 INTE(6,2) X(1) X(2) X(3) 2 K(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0320 2 K(5) X(RETURN 14 DO 50 I = 1,N	GRI 0120 GRI 0130
ALL - ALTI GRI 0100 WRITE(6,52) I,XLL,I,XRR GRI 0170 52 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0190 19H A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) GRI 0190 19K GRI 0200 GRI 0200 50 CONTINUE GRI 0210 GRI 0220 54 IF(R-2,0/3,0)53,54,54 GRI 0220 54 IF(R-1.0)58,58,53 GRI 0230 55 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4****,/, GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0250 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES	IF(XR(I)-XL(I))51,51,50 51 XRR = XR(I)	GRI 0140 GRI 0150 GRI 0160
19H A3(,11,2H)=,F15.8,16HGREATER THAN A4(,11,2H)=,F15.8) GRI 0190 RETURN GRI 0200 50 CONTINUE GRI 0220 154 IF(R-2.0/3.0)53,54,54 GRI 0220 54 IF(R-1.0)59,58,53 GRI 0220 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRI 0240 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRI 0240 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRI 0250 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0260 RETURN GRI 0250 GRI 0220 GRI 0220 GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 19H A6=,E15.8,33H DOES GRI 0220 GRI 0220 GRI 0220	XLL = XLVIJ WRITE(6,52)I,XLL,I,XRR 52 FORMAT(4)H *****ERROR MESSAGE SUBROUTINE GRID4******/.	GRI 0170 GRI 0180
50 CONTINUE GRI 0210 IF(R-2.0/3.0)53,54,54 GRI 0220 54 IF(R-1.0)58,58,53 GRI 0230 53 WRITE(6,55)R GRI 0240 55 FORMAT(41H *****ERDOR MESSAGE SUBROUTINE GRID4*****,/, GRI 0250 GRI 0240 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0260 RETURN GRI CCCC GRI CCCC C INITILIZE GRI 0220 S5 NN = 0 GRI 0270 GRI 0220 S1DE = 1.0 GRI 0220 GRI 0220 IH(MPRINT)1,3,1 GRI 0290 GRI 0290 IF(MPRINT)1,3,1 GRI 0310 GRI 0320 114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0330 2 X(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0350 C CNTER(1) = 0.5 GRI 0350 GRI 0350 GRI 0350 GRI 0350 JJ = 0 GRI 0200 GRI 0220 GRI 0390 GRI 0350 GRI 0350 C LL UNNORM(N,XL,XR,CENTER) GRI 0400 GRI 0400 GRI 0400 GRI 0400 GRI 0400 CALL REGION(N,XL,XR,CENTER) GRI 0410 GRI 0410	19H A3(,11,2H)=,E15.8,16HGREATER THAN A4(,11,2H)=,E15.8) RETURN	GRI 0190 GRI 0200
54 IF(R-1.0758,58,53) GRI 0230 53 WRITE(6,55)R GRI 0240 55 FORMAT(41H *****ERROR MESSAGE SUBROUTINE GRID4*****,/, GRI 0250 19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0220 RETURN GRI 0220 C INITILIZE GRI 0220 SIDE = 1.0 GRI 0220 If(MPRINT)1.3,1 GRI 0290 IF(MPRINT)1.3,1 GRI 0210 102 FORMAT(37H1CONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) 112H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0320 2 FORMAT(37H1CONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0320 GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0320 2 STOR X(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0340 GRI 0340 3 DO 4 I=1,N GRI 0320 GRI 0320 GRI 0320 GRI 0320 GRI 0360	50 CONTINUE IF(R-2.0/3.0)53,54,54	GRI 0210 GRI 0220
19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) GRI 0260 RETURN GRI 0270 C GRI 0270 C GRI CCCC C GRI CCCC 58 NN = 0 SIDE = 1.0 GRI 0280 If(MPRINT)1.3,1 GRI 0290 IF(MPRINT)1.3,1 GRI 0300 1 WRITE(6,2) GRI 0310 2 FORMAT(37H1CONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) 2 X(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0340 3 DO 4 I=1,N GRI 0350 GRI 0350 GRI 0350 C CONTINUE	54 IF(R=1+0)58,58,53 53 WRITE(6,55)R 55 FORMAT(41H ★★★★★FRROR MESSAGE SUBROUTINE GRID4★★★★★./.	GRI 0250 GRI 0240 GRI 0250
C INITILIZE GRI CCCC C GRI CCCC GRI CCCC 58 NN = 0 GRI 0280 SIDE = 1.0 GRI 0290 IF(MPRINT)1.3.1 GRI 0300 1 WRITE(6.2) GRI 0310 2 FORMAT(37HICONVERGENCE MONITOR SUBROUTINE GRID4.//, GRI 0320 GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) 2 X(5) X(6) X(7) 3 D0 4 I=1.N GRI 0340 CENTER(I) = 0.5 GRI 0350 JJ = 0	19H A6=,E15.8,33H DOES NOT LIE BETWEEN 2/3 AND 1.0) RETURN	GRI 0260 GRI 0270
58 NN = 0 GRI 0280 SIDE = 1.0 GRI 0290 IF(MPRINT)1.3,1 GRI 0300 1 WRITE(6,2) GRI 0310 2 FORMAT(37H1CONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0320 2 X(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0340 3 D0 4 I=1,N GRI 0350 GRI 0350 GRI 0350 C ENTER(I) = 0.5 GRI 0350 GRI 0350 JJ = 0 GRI 0360 GRI 0370 JJ = 0 GRI 0320 GRI 0380 C JJ = 0 GRI 0220 CALL UNNORM(N,XL,XR,CENTER) GRI 0220 CALL WNORM(N,XL,XR,CENTER) GRI 0390 CALL MERIT4(CENTER, YMID) GRI 0410 NN = NN + 1 GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0430	C INITILIZE	GRI CCCC GRI CCCC
IF(MPRINT)1,3,1 GRI 0300 1 WRITE(6,2) GRI 0310 2 FORMAT(37HICONVERGENCE MONITOR SUBROUTINE GRID4,//, GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0330 2 X(5) X(6) X(7) X(8) BIGGEST Y,/) GRI 0340 3 DD 4 I=1,N GRI 0350 GRI 0350 GRI 0350 CENTER(I) = 0.5 GRI 0360 GRI 0360 JJ = 0 GRI 0380 GRI 0380 C JJ = 0 GRI 0380 C JJ = 0 GRI 020 C DETERMINE CENTRAL MERIT ORDINATE GRI 0380 C JJ = 0 GRI 020 C DETERMINE CENTRAL MERIT ORDINATE GRI 0200 C DETERMINE CENTRAL MERIT ORDINATE GRI 0200 CALL REGION(N,XL,XR,CENTER) GRI 0400 GRI 0400 CALL MERIT4(CENTER, YMID) GRI 0410 GRI 0420 NN = NN + 1 GRI 0420 GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0430	58 NN = 0 $SIDE = 1.0$	GRI 0280 GRI 0290
2 FORMAT(3)HICONVERGENCE MUNITOR SOBROUTINE GRID4,77, GRI 0320 1114H NN SIDE Y X(1) X(2) X(3) X(4) GRI 0330 2 X(5) X(6) X(7) X(8) BIGGEST Y,7) GRI 0340 3 D0 4 I=1,N GRI 0350 GRI 0350 GRI 0350 CENTER(I) = ^.5 GRI 0360 GRI 0370 JJ = 0 GRI 0380 GRI 0380 C JJ = 0 GRI 0380 C DE TERMINE CENTRAL MERIT ORDINATE GRI 0200 C ALL REGION(N,XL,XR,CENTER) GRI 0400 GRI 0400 CALL MERIT4(CENTER, YMID) GRI 0410 GRI 0410 NN = NN + 1 GRI 0420 GRI 0430 CALL NORMAL(N,XL,XR,CENTER) GRI 0430 GRI 0430	IF(MPRINT)1,3,1 1 WRITE(6,2)	GRI 0300 GRI 0310
3 D0 4 I=1,N GRI 0350 CENTER(I) = ^.5 GRI 0360 4 CONTINUE GRI 0370 JJ = 0 GRI 0380 C JJ = 0 C DETERMINE CENTRAL MERIT ORDINATE C GRI CCCC C GRI 0390 CALL REGION(N,XL,XR,CENTER) GRI 0400 CALL MERIT4(CENTER,YMID) GRI 0410 NN = NN + 1 GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0430	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GRI 0320 GRI 0330 GRI 0340
4 CONTINUE GRI 0370 JJ = 0 GRI 0380 C JJ = 0 C DETERMINE CENTRAL MERIT ORDINATE C GRI CCCC GRI CCCC GRI CCCC C GRI CCCC C GRI CCCC C GRI 0390 CALL NNORM(N,XL,XR,CENTER) GRI 0390 CALL REGION(N,XL,XR,CENTER) GRI 0400 CALL MERIT4(CENTER,YMID) GRI 0410 NN = NN + 1 GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0430	3 DO 4 I=1.N CENTER(I) = 0.5	GRI 0350 GRI 0360
CJJ = 77GRI CCCCC DETERMINE CENTRAL MERIT ORDINATEGRI CCCCCGRI CCCCGRI CCCCCCALL UNNORM(N,XL,XR,CENTER)GRI 0390CALL REGION(N,XL,XR,CENTER)GRI 0400CALL MERIT4(CENTER,YMID)GRI 0410NN = NN + 1GRI 0420CALL NORMAL(N,XL,XR,CENTER)GRI 0430	4 CONTINUE JJ = 0	GRI 0370 GRI 0380 GRI 6666
CALL UNNORM(N,XL,XR,CENTER) GRI 0390 CALL REGION(N,XL,XR,CENTER) GRI 0400 CALL MERIT4(CENTER, YMID) GRI 0410 NN = NN + 1 GRI 0420 CALL NORMAL(N,XL,XR,CENTER) GRI 0430	C DETERMINE CENTRAL MERIT ORDINATE	GRI CCCC
CALL MERIT4(CENTER, YMID)GRI 0410NN = NN + 1GRI 0420CALL NORMAL(N,XL,XR,CENTER)GRI 0430	CALL UNNORM(N,XL,XR,CENTER) CALL REGION(N,XL,XR,CENTER)	GRI 0390 GRI 0400
	CALL MERIT4(CENTER,YMID) NN = NN + 1 CALL NORMAL(N-XL-XR-CENTER)	GRI 0410 GRI 0420 GRI 0430
		with the second

الم المراجع الم

	00 5 I+1 N	CD T	0440
	$X_{10} = 1$	COT	0440
5		COT	0440
	CONTINUE	GRI	00000
	YBIG = YMID	GRT	0470
		GRI	0000
	DETERMINE MERIT ORDINATES IN GRID. NOTE LARGEST	GRI	0000
10	STEP = SIDE/3.0	GRI	0480
		GRI	2222
	AT EVERY GRID REDUCTION OCCASION, ALTERNATE BETWEEN A	 GR I	CCCC
	SQUARE SURVEY PATTERN AND A STAR SURVEY PATTERN,	 GRI	CCCC
		GR I	2222
	DEPENDING ON OODNESS OR EVENNESS OF JJ.	 GR I	CCCC
	IF(JJ/2+2-JJ)600,510,600	GRI	0490
		GR I	CCCC
	SQUARE GRID SURVEY	 GR I	C CC C
		GRI	CCCC
51.0	DD 500 I=1,N	GR I	0500
	X(I) = XLOW(I)	GRI	0510
500	CONTINUE	GRI	0520
_	GO TO (71,72,73,74,75,76,77,78),N	GR I	0530
78	18 = 0	GRI	0540
88	I8 = I8 + 1	GRI	0550
	X(8) = X(8) + STEP	GRI	0560
11		GRI	0570
87	1/=1/+1	GRI	0580
	X(I) = X(I) + SIEP	GRI	0590
10	10 = 11	GRI	0600
80	10 = 10 + 1	GRI	0610
75	X(0) = X(0) + S(0)	GKI	0620
12	15 = 0	COL	0650
69	10 - 10 + 1 1(5) - 1(5) + (5)	CPT	0640
74	$\frac{1}{16} = 0$	CPT	0660
94	14 = 16	CPT	0670
94	Y(4) = Y(4) + STEP	GRI	0680
73	$\mathbf{I3} = 0$	GRI	0690
83	13 = 13 + 1	GRI	0700
	X(3) = X(3) + STEP	GRI	0710
72	I2 = 0	GRI	072 0
82	12 = 12 + 1	GR I	0730
	X(2) = X(2) + STEP	GRI	0740
71	$\mathbf{I1} = 0$	GR I	0750
81	I1 = I1 + 1	GR I	0760
	X(1) = X(1) + STEP	GR I	0770
	CALL UNNORM(N,XL,XR,X)	GR I	0780
	CALL REGION(N,XL,XR,X)	GR I	0790
	CALL MERITA(X,Y1)	GRI	0800
	NN = NN + 1	GR T	0810
	CALL NORMAL(N,XL,XR,X)	GRI	0820
	CALL NORMAL(N,XL,XR,X) IF(Y1-YBIG) 171,171,6	GRI GRI	0820
6	CALL NORMAL(N,XL,XR,X) IF(Y1+YBIG) 171,171,6 YBIG = Y1	GRI GRI GRI	0820 0830 0840

۰. ۱

30	CONTINUE						GRÍ	0870
	IF(I1.EQ.2) GO TO 171					1 e	GRI	0880
	GO TO 81						GRÌ	0890
171	X(1) = XLOW(1)						GRÍ	0900
	IF(N.EQ.1) GO TO 501						GR I	0910
	IF(I2,EQ.2) GO TO 172	,					GRI	0920
	GO TO 82						GRI	0930
172	X(2) = XLDW(2)			• •			GR I	0940
	IF(N.EQ.2) GO TO 501						GRI	0950
	IF(I3.EQ.2) GO TO 173						GR I	0960
	GD TO 83	· .		¥ .			GRI	0970
173	X(3) = XLOW(3)						GRI	0980
	IF(N.EQ.3) GO TO 501						GR I	0990
	IF(14.EQ.2) GO TO 174		•				GRI	1000
	GO TO 84						GRI	1010
174	X(4) = XLOW(4)						GRI	1020
	IF(N.EQ.4) GO TO 501						GRI	1030
	IF(15.EQ.2) GO TO 175	100 A.					GRI	1040
							GRI	1050
175	$X(\mathbf{D}) = \mathbf{X} \mathbf{L} \mathbf{U} \mathbf{W} \mathbf{D} \mathbf{J}$						GRI	1060
	IF(N.EQ.5) GU TU 501						GRI	10/0
	IFLID-EQ-27 GU TO 176						GKI	1080
17/							GRI	1100
110	ALOF = ALUMIOJ TE(N EG 4) CO TO 501						GKI CÖT	1110
	171N-EQ-07 60 10 571						GRI	1120
	17117+CQ+23 60 10 177 -	1					G KI CD T	1120
177	V(7) ~ V(04(7)						CDT	1140
111	ALTJ = ALUMITJ 15(N 50 71 CD 10 501						CDT	1150
	171114EQUIT OU TO 291 16/19 EO 21 CO TO 179						CDT	1160
	TO TO 88						CPT	1170
179	V(8) = VINW(8)						GPT	1190
1.0	60 TO 501						GRI	1190
	00 10 211						GRI	1113
	STAR SHRVEY PATTERN						GRI	0000
		•					GRI	0000
600	00 601 I=1.N						GRT	1200
.	X(T) = CENTER(T)						GRI	1210
601	CONTINUE	:					GRI	1220
	D0 620 I=1.N						GRI	1230
	X(I) = CENTER(I)+STEP						GRI	1240
	CALL REGION (N, XL . XR . X)						GRI	1250
	CALL UNNORM (N, XL, XR, X)						GRÍ	1260
	CALL MERIT4(X,YPLUS)						GR I	1270
	NN = NN + 1						GRI	1280
	CALL NORMAL(N,XL,XR,X)						GRI	1290
	IF(YPLUS-YBIG) 611,611,610						GR I	1300
610	YBIG = YPLUS						GRI	1310
	DO 612 K=1,N						GRI	1320
	SAVEX(K) = X(K)						GRI	1330
612	CONT INUE						GRI	1340
611	X(I) = CENTER(I) - STEP						GR I	1350
	CALL UNNORM(N,XL,XR,X)						GR I	1360
	CALL REGION(N,XL,XR,X)						GRI	1370
					•			

and the second secon

CALL MERITA (X,YMINUS) GRI 1380 NN = NN + 1 GRI 1390 CALL NORMAL(N,XL,XR,X) GRI 1400 TF(YMINUS-YEIG614,616,613) GRI 1410 GIJ YDIG = YMINUS GRI 1420 OD 615 K=1,N GRI 1420 SAVEX(K) = X(K) GRI 1440 GIJ K=1,N GRI 1440 GIJ G = YMINUS GRI 1440 GIJ (= CENTER(I) GRI 1440 GZ CONTINUE GRI 1440 GZ MERCK DASSELF NOT SUFFICIENTLY SMALL SELECT LARGEST GRI 1200 GZ MERCK DASSELF NOT SUFFICIENTLY SMALL SELECT LARGEST GRI 1200 GZ MERCK DASSELF NOT SUFFICIENTLY SMALL SELECT LARGEST GRI 1200 GZ MERCK DASSELF NOT SUFFICIENTLY SMALL SELECT LARGEST GRI 1200 GZ MERCK DASSELF NOT	96 12	00000 23450	00001111111112222222222223333333333444444444	23450	7778 57890
NN = NN + 1 GR 1390 CALL NORMALIN, XL, XR, XL GR 1400 13 YBIG = YMINUS GR 1410 613 YBIG = YMINUS GR 1440 00 615 K=1,N GR 1440 615 CONTINUE GR 1440 614 CONTINUE GR 1460 620 CONTINUE GR 1460 621 CONTINUE GR 1460 622 CONTINUE GR 1460 623 CONTINUE GR 1460 624 CONTINUE GR 1460 627 CONTINUE GR 1460 628 CONTINUE GR 1250 629 CONTINUE GR 1250 620 CONTINUE GR 1250 621 SIZE NOT SUFFICIENTLY SMALL SELECT LARGEST GR 1250 631 SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GR 1250 641 SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GR 1250 7 GR 1510 GR 1510 7 GR 1510 GR 1510 7 GR 1510 GR 1510 7 GR 1510 GR 1520 7 GR 1510 GR 1520 7 GR 1510			CALL MERTTA (X. YN INUS)	GRI	1380
"ALL NORMAL(W,XL,XR,X) GRT 1400 1613 WBIG = YMINUS GRT 1410 013 WBIG = YMINUS GRT 1420 02 015 K=1,N GRT 1420 03 WBIG = YMINUS GRT 1420 04 CONTINUE GRT 1440 614 CONTINUE GRT 1440 614 CONTINUE GRT 1440 620 CONTINUE GRT 1440 621 CONTINUE GRT 1440 621 CONTINUE GRT 1440 621 CONTINUE GRT 1440 631 F(THSTG-YMID144,444,453 GRT 1440 631 F(TYBIG-YMID144,44,433 GRT 1520 73 YMID = YBIG GRT 1520 74 CONTINUE GRT 1540 75 CONTINUE GRT 1540 76 CONTINUE GRT 1540 77 GRT 44,44,43,41 GRT 1540 78 MID = YBIG GRT 1540 79 CONTINUE GRT 1540 70 CONTINUE GRT 1550				CPT	1390
CEL UNDER DIG 1614,613 GRI 1410 613 Y01G = YHNUS GRI 1410 00 G15 K=1,N GRI 1420 SAVEX(K) = X(K) GRI 1430 614 CONTINUE GRI 1430 614 CONTINUE GRI 1440 614 CONTINUE GRI 1440 614 CONTINUE GRI 1470 627 GRI 14170 637 GRI 1440 64 GRI 1440 66 GRI 1470 67 GRI 1470 68 GRI 1470 67 GRI 1470 68 GRI 1470 67 GRI 1470 68 GRI 1470 68 GRI 1470 67 GRI 1470 68 GRI 1470 67 GRI 1417 68 GRI 14170 67 GRI 14170 68 GRI 14170 67 GRI 1500 68 GRI 1500 68 GRI 1500 69 GRI 1510 70 GRI 1510			A = A = A = A = A = A = A = A = A = A =	COT	1400
613 Y01G = YMINUS GRI 1420 613 Y01G = YMINUS GRI 1420 00 615 K=1,N GRI 1420 614 CONTINUE GRI 1440 615 CONTINUE GRI 1440 614 CONTINUE GRI 1440 620 CONTINUE GRI 1440 611 FINDER GRI 1440 620 CONTINUE GRI 1440 621 CONTINUE GRI 1440 622 CONTINUE GRI 1440 623 CONTINUE GRI 1440 624 CONTINUE GRI 1640 625 CONTINUE GRI 1520 626 CONTINUE GRI 1520 627 CONTINUE GRI 1520 628 CONTINUE GRI 1520 629 CONTINUE			CALL NORMALINJALJANJAJ	CPT	1410
01 01 01 51 K=1,N GRI 1420 01 02 51 K=1,N GRI 1430 5AVEX(K) = X(K) GRI 1440 615 CONTINUE GRI 1440 614 CONTINUE GRI 1440 614 CONTINUE GRI 1440 617 CONTINUE GRI 1440 618 CONTINUE GRI 1440 617 CONTINUE GRI 1440 618 CONTINUE GRI 1440 619 CONTINUE GRI 1440 610 CONTINUE GRI 1440 611 J = JJ+1 GRI 1470 617 CONTINUE GRI 1440 618 CONTINUE GRI 1450 619 CONTINUE GRI 1460 610 J = JJ+1 GRI 1450 611 IF(FSIDEJ32,45,45 GRI 1500 611 IF(FSIDEJ32,45,45 GRI 1500 611 ISCONTINUE GRI 1500 611 ISCONTINUE GRI 1510 731 YHD = YBIC GRI 1520 741 CALL UNNDRIN, XL, XR, CENTER) GRI 1520 741 CALL UNNDRIN, XL, XR, CENTER) GRI 1520 751 GALL UNNRAL(N, XL, XR, CENTER) GRI 1520 752 CALL UNNRAL(N, XL, XR, CENTER) GRI 1620 753 SIDE = SIDE*R GRI 1620		(1)		CDT	1410
DD 015 M21,W GRI 1430 615 CONTINUE GRI 1440 616 CONTINUE GRI 1450 620 CONTINUE GRI 1460 620 CONTINUE GRI 1460 620 CONTINUE GRI 1470 620 CONTINUE GRI 1470 620 CONTINUE GRI 1470 620 CONTINUE GRI 1470 621 CONTINUE GRI 1470 622 CONTINUE GRI 1470 620 CONTINUE GRI 1470 621 CONTINUE GRI 1470 622 CONTINUE GRI 1470 621 CONTINUE GRI 1470 621 CONTINUE GRI 1470 621 CONTINUE GRI 1490 621 CONTINUE GRI 1500 621 CONTINUE GRI 1500 621 CONTINUE GRI 1500 622 CONTINUE GRI 1500 622 CONTINUE GRI 1510 7 SMILER GRID ABOUT THIS POINT. GRI 1520 7 GRI 1510 GRI 1520 7 GRI 1520 GRI 1520 7 GRI 1530 GRI 1520 7 GRI 1550 GRI 1550 7		012		GRI	1420
SAVENTIAUE GRI 1440 615 CONTINUE GRI 1450 614 CONTINUE GRI 1450 620 CONTINUE GRI 1460 615 CONTINUE GRI 1470 620 CONTINUE GRI 1470 615 CONTINUE GRI 1470 62 CHECK TO SEE IF GRID SIZE IS SMALL ENOUGH GRI CCCC 501 JJ = JJ+1 GRI CCCC 701 JF - SIDE 32,455,455 GRI 1490 71 GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRI CCCC 71 ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC 72 IF(YBIG-YMID)44,44,33 GRI 1520 73 YMID = YBIG GRI 1520 74 O CONTINUE GRI 1540 75 OCTTER(K) = SAVEX(K) GRI 1540 76 CONTINUE GRI 1540 77 CONTINUE GRI 1540 78 GRI 1541 GRI 1540 79 CONTINUE GRI 1540 70 CONTINUE GRI 1540 70 CONTINUE GRI 1540 70 CONTINUE GRI 1540 71 CALL UNDRMIN, XL, XR, CENTER) GRI 1550 72 CALL UNDRMIN, XL, XR, CENTER) GRI 1560 73 SIDE = SIDERR				GRI	1430
G19 CONTINUE GRI 1450 G14 CONTINUE GRI 1460 X(I) = CENTER(I) GRI 1470 G20 CONTINUE GRI CCCC G21 GUARDANE LOCATION FROM GRID AND CENTER NEXT GRI 1500 G21 F19BG-YMID) 44,44,33 GRI 1490 G22 F19BG-YMID) 44,444,33 GRI 1510 G23 IF19BG-YMID) 44,444,33 GRI 1520 G2 OU 40 K=1,N GRI 1520 G2 OUT TNUE GRI 1520 G3 YMID = YBIG GRI 1520 G4 CONTINUE GRI 1530 G2 OUT TNUE GRI 1520 G1 CCCC GRI 1530 G2 OUT TNUE GRI 1520 G1 CCCC GRI 1550 G2 OUT TNUE GRI 1550 G2 OUT TNUE		4 1 E	SAVEXINJ = X(N)	GRI	1440
bitCUNTINUEGRI 1400x(1) = CENTER(1)GRI 147062 CHECK TO SEE IF GRID SIZE IS SMALL ENOUGHGRI 1470c GRIC CCCGRI CCCC501 JJ = JJ+1GRI 1490GRI CCCC GRID SIZE MOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CONTINUE GRI CCCC ORDINATE LOCATION FROM GRID AND CONTINUE SEARCH GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SO GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SO GRI CCCC ALDUCE SIZE OF GRID AND CONTINUE SEARCHGRI 1550 REDUCE SIZE OF GRID AND CONTINUE SEARCHGRI 1600 REDUCE SIZE OF GRID AND CONTINUE SEARCHGRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCHGRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCHGRI 1620<	· .	012		GRI	1420
All J = CENTER(1)GR I 1440620 CONTINUEGR I CCCC621 CONTINUEGR I CCCC622 CONTINUEGR I CCCC623 CONTINUEGR I CCCC624 CONTINUEGR I CCCC625 CONTINUEGR I CCCC626 CONTINUEGR I CCCC627 CONTINUEGR I CCCC628 CONTINUEGR I S10629 CONTINUEGR I S20629 CONTINUEGR I S50620 CONTINUEGR I S50620 CONTINUEGR I S50621 CCCCGR I S50622 CONTINUEGR I S50629 CONTINUEGR I S50620 CONTINUEGR I S50620 CONTINUEGR I S50621 CCCCGR I S50622 CONTANTE SIDE/YMID, (CENTER(1), I=1, 8), YB IG622 CONTANTE SIDE/YMID, (CENTER(1), I=1, 8), YB IG620 CONTINUE621 CCCC63 SIDE = SIDE*R631 CCCC63 SIDE = SIDE*R641 CALL UNNORMIN, XL, XR, CENTER)652 CONTINUE653 CALL UNNORMIN, XL, XR, XLOWI654 CONTINUE6550 CALL UNNORMIN, XL, XR, XLOWI651 CCCC650 CONTINUE650 CALL UNNORMIN, XL, XR, XLOWI651 CALL UNNORMIN, XL, XR, XLOWI655 CALL UNNORMIN, XL, XR, XLOWI655 CALL UNNORMIN, XL, XR, XLOWI750 CALL NORMAL (N, XL, XR, XLOWI751 CALL NORMAL (N, XL, XR, SAVEX) <td></td> <td>014</td> <td></td> <td>GRI</td> <td>1400</td>		014		GRI	1400
CV CM I 1400 GR I 1400 C CHECK TO SEE IF GRID SIZE IS SMALL ENDUGH GR I CCCC 501 JJ = JJ+1 GR I 1400 IF(F-SIDE)32,45,45 GR I 1500 C GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC C GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC C GRID ADDUT THIS PDINT. C GRI CCCC 32 IF(YBIG-YWID) 44,44,33 GR I 1510 GR I 1520 DD 40 K=1,N GR I 1520 C ENTER(K) = SAVEX(K) GR I 1530 GR I CCCC GR I 1540 GR I 1540 GR I 1550 C IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DO SD GR I CCCC G ALL NUNDRM(N,XL,XR,CENTER) GR I 1550 MR ITE16,42 INN,SIDE,YMID,(CENTER (I),I=1,B),YBIG GR I 1560 GAL NORMAL(N,XL,XR,CENTER) GR I 1560 GAL NORMAL(N,XL,XR,CENTER) GR I 1660 CALL NORMAL(N,XL,XR,CENTER) GR I 1660 CALL NORMAL(N,XL,XR,CENTER) GR I 1660 CALL NORMAL(N,XL,XR,XLOH) GR I 1620 SD 502 CONTINUE CALL NORMAL(N,XL,XR,XHGH) <		($\lambda(1) = \text{Center(1)}$	GKI	1470
C CHECK TO SEE IF GRID SIZE IS SMALL ENOUGHGRI CCCC501 JJ = JJ+1GRI CCCCIF(F-SIDE)32,45,45GRI 1500C GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC SMALLER GRID ABOUT THIS PDINT GRI CCCC SMALLER GRID ABOUT THIS PDINT GRI CCCC STALLER GRID AABOUT THIS PDINT GRI CCCC STALLER GRID AABOUT THIS PDINT GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1600CALL UNNORMI(N,XL,XR,XLOW)CALL UNNORMI(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XLOW)CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720 </td <td>6</td> <td>0217</td> <td></td> <td>GRI</td> <td>1480</td>	6	0217		GRI	1480
501 JJ = JJ+1 GRI CCCC 501 JJ = JJ+1 GRI CCCC 1F(F-SIDE)32,45,45 GRI 1500 C GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRID GUT THIS POINT. 32 IF(YBIG-YHID)44,44,33 33 GRI 1520 00 40 K=1,N GRI 1520 CENTER(K) = SAVEXIK) GRI 1520 GC 0NTINUE GRI 1520 CENTER(K) = SAVEXIK) GRI 1550 GC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DO SD GRI CCCC GRI 1560 GRI 1560 GRI 1560 GRI 1570 GRI 1560 GRI 1560 GRI 1560 GRI	L.			GRI	
501 JJ = JJ+1 GRI 1490 IF(F-SIDE)32,45,45 GRI 1500 GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRI CCCC GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRI CCCC GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC GRI CCCC SMALLER GRID ABOUT THIS POINT. GRI 1510 SMALLER GRID ABOUT THIS POINT. GRI 1520 SMALLER GRID ABOUT THIS POINT. GRI 1520 IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DD SD GRI CCCC GRI 1560 IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DD SD GRI CCCC GRI 1560 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1560 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620	ž		CHECK TO SEE IF GRID SIZE IS SHALL ENDUGH	GKI	
Dif JJ = JJ1 GRI 1500 IF(F-SIDE J32,45,45 GRI 1500 C GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC SMALLER GRID AADUT THIS POINT. GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCC OF PRINTIAL (N, 44,44,33 GRID SIZE NOT SUFFICIENTLY SMALL GRID SIZE NOT SUFFICIENTLY SMALL GRID SIZE NOT SUFFICIENTLY GRID CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTIAL, XR, CENTER) GRI 1550 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1600 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GR	1	ċ.e.t		GRI	
IF(F-SIDE J32, 49, 45)GRI 1500GRI DSIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCCGRI CCCC GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST GRI CCCCGRI CCCC GRID ARE LOCATION FROM GRID AND CENTER NEXT GRI CCCCGRI CCCC32 IF(YBIG-YMID) 44, 44, 33GRI 151033 YMID = YBIGGRI 1520DO 40 K=1, NGRI 1530CENTER(K) = SAVEX(K)GRI 1530CENTER(K) = SAVEX(K)GRI 1540GRI CCCCGRI 1540C IF PRINTING DF CONVERGENCE MONITOR IS REQUIRED, DD SD GRI CCCC44 IF(MPRINT)41, 43, 41GRI 1560WRITE(6, 42) NN, SIDE, YMID, (CENTER(I), I=1, 8), YB IGGRI 1580GRI CCCCGRI 156042 FORMAT(1X, IS, 11E10.3)GRI 1600CALL NORMAL(N, XL, XR, CENTER)GRI 1600CALL NORMAL(N, XL, XR, CENTER)GRI 1600CALL NORMAL(N, XL, XR, CENTER)GRI 1620AXIDH(1) = CENTER(I)-SIDE/2.0GRI 1620XLOW(I) = CENTER(I)-SIDE/2.0GRI 1640SIDE = SIDE*RGRI 1620CALL UNNORM(N, XL, XR, XLOW)GRI 1640CALL NORMAL(N, XL, XR, XLOW)GRI 1640CALL NORMAL(N, XL, XR, XLOW)GRI 1640CALL NORMAL(N, XL, XR, SAVEX)GRI 1700CALL NORMAL(N, XL, XR, SAVEX)GRI 1720C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHC43 SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHCGRI 1720CGRI 1720CALL NORMAL(N, XL, XR, SAVEX)GRI 1720CGRID SIZE S		201	11 = 11 + 12	GRI	1490
GRI CCCC GRI CC	~		1+(+-510) 132,49,49	GRI	1500
ORID SIZE NOT SUPFICIENTLY SMALL, SELECT LAXGEST GRI CCCC ORDINATE LOCATION FROM GRID AND CENTER NEXT GRI CCCC SMALLER GRID ABOUT THIS POINT GRI CCCC SMALLER GRID ABOUT THIS POINT GRI CCCC GRID CCCC GRI CCCC GRID CCCC GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, CD SD GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1620 REDUCE SIZE OF GRID AND CONTINUE SEARCH REDUCE SIZE OF GRID AND CONTINUE SEARCH REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 1640 GRI 1650 GRI 1650 GRI 1650.	2			GRI	
SMALLER GRID ABOUT THIS POINT.GRI CCCC32 IF(YBIG-YMID)44,44,33GRI 151033 YMID = YBIGGRI 1520DD 40 K=1,NGRI 1520CENTER(K) = SAVEX(K)GRI 1530CENTER(K) = SAVEX(K)GRI 1530CENTER(K) = SAVEX(K)GRI 1550GONT INUEGRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DD SD GRI CCCC41 FI MPRINT)41,43,41GRI 1570WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIGGRI 1570WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIGGRI 1590CALL NORMAL(N,XL,XR,CENTER)GRI 1600CALL NORMAL (N,XL,XR,CENTER)GRI 1600CALL NORMAL (N,XL,XR,CENTER)GRI 1620XLOW(I) = CENTER(I)-SIDE/2.0GRI 1630XHIGH(I) = CENTER(I)-SIDE/2.0GRI 1630XHIGH(I) = CENTER(I)-SIDE/2.0GRI 1640CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL NORMAL(N,XL,XR,XHIGH)GRI 1700CALL NORMAL(N,XL,XR,XHIGH)GRI 1710CALL NORMAL(N,XL,XR,XHIGH)GRI 1720GO TO 10GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XHIGH)GRI 1720CALL NORMAL(N,XL,XR,XANGW)GRI 1720CALL NORMAL(N,XL,XR,XANGW)GRI 1720CALL NORMAL(N,XL,XR,XANGW)GRI 1720CALL NORMAL(N,XL,XR,XANGW)GRI 1720CALL NORMAL(N,XL,XR,XANGW)GRI 1720CALL REGION(N,X	ž		GRID SIZE NOT SUFFICIENTLY SMALL, SELECT LARGEST	GRI	
31 SMALLER GRID ABOUT THIS POINT. GRI CCCC 32 IF(YBIG-YMID)44,44,33 GRI 1510 33 YMID = YBIG GRI 1520 DD 40 K=1,N GRI 1520 CENTER(K) = SAVEX(K) GRI 1540 40 CONTINUE GRI CCCC IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DD SD GRI CCCC GRI CCCC 41 IF(MPINT)41,43,41 GRI 1560 42 IF(MPINT)41,43,41 GRI 1560 41 CALL UNNORM(N,xL, XR, CENTER) GRI 1570 WRITE(6,421)NN,SIDE,YMID, (CENTER(I), I=1,8),YBIG GRI 1580 42 FORMAT(1X,15,11E10.3) GRI 16600 GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI CCCC 43 SIDE = SIDE*R GRI 1610 DD 502 I=1,N GRI 1620 XLIGH(I) = CENTER(I)-SIDE/2.0 GRI 1640 SO2 CONTINUE GRI 1640 GAL UNNORM(N,XL,XR,XLOW) GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XHIGH) GRI 1690 CALL UNNORM(N,XL,XR,XHIGH) </td <td>5</td> <td></td> <td> URDINATE LUCATION FROM GRID AND CENTER NEXT</td> <td>GRI</td> <td></td>	5		URDINATE LUCATION FROM GRID AND CENTER NEXT	GRI	
32 IF(YBIG-YMID)44,44,33 GRI LCCC 33 YMID = YBIG GRI 1520 DD 40 K=1,N GRI 1520 CENTER(K) = SAVEX(K) GRI 1530 40 CONTINUE GRI 1550 60 GRI CCCC GRI CCCC 41 IF(MPRINT)41,43,41 GRI 1560 41 CALL UNNORM(N,XL,XR,CENTER) GRI 1560 41 GALL UNNORMIN,XL,XR,CENTER) GRI 1560 42 FORMAT(1X,15,11E10.3) GRI 1600 64 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 67 CCCC GRI CCCC 43 SIDE = SIDE*R GRI 1600 70 SO 502 ICI+N GRI CCCC 43 SIDE = SIDE*R GRI 1610 70 SO 502 ICONTINUE GRI 1620 71 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 72 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1660 73 SIDE = SIDE*R GRI 1660 74 GRI 10N(N,XL,XR,XLOW) GRI 1660 752 CONTINUE GRI 1660 764 CALL NORMAL(N,XL,XR,XLOW) GRI 1660			••••• SMALLER GRID ABOUT THIS PUINT.	GRI	
32 IF(YBIG-YMID) 44,44,33 GRI 1510 33 YMID = YBIG GRI 1520 D0 40 K=1,N GRI 1530 CENTER(K) = SAVEX(K) GRI 1550 40 CONTINUE GRI 1550 IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DO SD GRI CCCC GRI CCCC 41 CALL UNNORMIN,XL,XR,CENTER) GRI 1560 wRITE(6,42)NN,SIDE,YMID, (CENTER(I),I=1,8),YBIG GRI 1580 42 FORMAT(IX,IS,IEG,YMID, (CENTER)) GRI 1590 CALL NORMAL(N,XL,XR,CENTER) GRI 1590 cALL NORMAL(N,XL,XR,CENTER) GRI 1600 GRI CCCC GRI 1600 502 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 value GRI 10 AND CONTINUE SEARCH GRI 1600 502 GRI 10 AND CONTINUE SEARCH GRI 1620 XLDW(I) = CENTER(I)-SIDE/2.0 GRI 1630 GRI 1640 XLUGUNIN,XL,XR,XLOWI GRI 1650 GRI 1660 CALL UNNORM(N,XL,XR,XLOWI) GRI 1660 GRI 1670 CALL UNNORM(N,XL,XR,XLOWI) GRI 1660 GRI 1700 CALL NORMAL(N,XL,XR,XLOWI) GRI 1660 GRI 1700 CALL NORMAL(N,XL,XR,XLOWI)	3			GRI	CCCC
33 YMID = YBIG GRI 1520 D0 40 K=1,N GRI 1530 CENTER(K) = SAVEX(K) GRI 1550 40 CONTINUE GRI 1550 GRI 1550 GRI 1550 GRI CCCC GRI CCCC 41 CALL UNNORM(N,XL,XR,CENTER) GRI 1550 WRITE(6,42)NN,SIDE,YMID, (CENTER(I),I=1,B),YBIG GRI 1550 42 FORMAT(IX,IS,IIE0,3) GRI 1550 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 WRITE(6,42)NN,SIDE,YMID, (CENTER(I),I=1,B),YBIG GRI 1590 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 GRI CCCC GRI 1600 CALL NORMAL(N,XL,XR,CENTER) GRI 1620 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1610 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL REGIDN(N,XL,XR,XLOW) GRI 1660 CALL NORMAL(N,XL,XR,XLOW)		32	IF(YBIG-YMID) 44,44,33	GRI	1510
DU 40 K=1,N GRI 1530 CENTER(K) = SAVEX(K) GRI 1550 40 CONTINUE GRI 1550 center(K) = SAVEX(K) GRI 1550 GRI 1550 GRI 1550 center(K) = SAVEX(K) GRI 1550 GRI 1550 GRI 1550 center(K) = SAVEX(K) GRI 1550 GRI 1560 GRI 1560 GRI 1561 GRI 1560 GRI 1570 GRI 1560 write(6,42)NN,SIDE,YMI0,(CENTER(I),I=1,8),YBIG GRI 1580 42 FORMAT(1x,I5,11E10,3) GRI 1600 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 call to NORMAL(N,XL,XR,CENTER) GRI 1600 call to SIDE = SIDE*R GRI 1620 D0 502 I=1,N GRI 1620 xLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 xHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL NORMAL(N,XL,XR,XLOW) GRI 1660 CALL NORMAL(N,XL,XR,XLOW) GRI 1660 CALL NORMAL(N,XL,XR,XLOW) GRI		33	YMID = YBIG	GRI	1520
CENTER(K) = SAVEX(K) 60 CONTINUE 60 CALL NORMAL(N,XL,XR,CENTER) 60 CALL NORMAL(N,XL,XR,XLOW) 60 CALL NORMAL(N,XL,XR,XLOW) 60 CALL NORMAL(N,XL,XR,XLOW) 60 CALL NORMAL(N,XL,XR,XLOW) 60 CALL REGION(N,XL,XR,XHIGH) 60 CALL NORMAL(N,XL,XR,XHIGH) 60 CALL NORMAL(N,XL,XR,XAVEX) 60 CALL NORMAL(N,XL,XR,SAVEX) 60 CALL NORMA			DU 40 K=1 •N	GRI	1530
40CUNTINUEGRI 155061GRI CCCCGRI CCCC62GRI CCCCGRI CCCC64IF(MPRINT)41,43,41GRI 156061CALL UNNORM(N,XL,XR,CENTER)GRI 157062WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIGGRI 158062FORMAT(1X,I5,11E10.3)GRI 160062GRI MDRMAL(N,XL,CENTER)GRI 160063GIDE = SIDE*RGRI CCCC64SIDE = SIDE*RGRI 161070D0 502 I=1,NGRI 162071XLOW(1) = CENTER(1)-SIDE/2,0GRI 164072SOZ CONTINUEGRI 164074GIDNNRM(N,XL,XR,XLOW)GRI 164075CALL UNNORM(N,XL,XR,XLOW)GRI 167074CALL NORMAL(N,XL,XR,XLOW)GRI 167075CALL NORMAL(N,XL,XR,XHIGH)GRI 170076GRI D SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHGRI 772076CALL UNNORM(N,XL,XR,SAVEX)GRI 1740			CENTER(K) = SAVEX(K)	GRI	1540
GRI CCCC 44 IF(MPRINT)41,43,41 41 CALL UNNORM(N,XL,XR,CENTER) WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIG 42 FORMAT(1X,I5,11E10.3) CALL NORMAL(N,XL,XR,CENTER) 42 FORMAT(1X,I5,11E10.3) CALL NORMAL(N,XL,XR,CENTER) 43 SIDE = SIDE*R DO 502 I=1,N XLOW(I) = CENTER(I)-SIDE/2.0 XLOW(I) = CENTER(I)-SIDE/2.0 XHIGH(1) = CENTER(I)-SIDE/2.0 CALL UNNORM(N,XL,XR,XLOW) CALL UNNORM(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XR,XLOW) CALL NORMAL(N,XL,XR,XR,XLOW) CALL NORMAL(N,XL,XR,XR,XLOW) CALL NORMAL(N,XL,XR,XR,XLOW) CALL NORMAL(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,XR,SAVEX) CALL REGION(N,XL,XR,XR,SAVEX) CALL REGION(N,XL,XR,XR,SAVEX) CALL REGION(N,XL,XR,XR,YAVEX) CALL REGION(N,XL,XR,YAVEX) CALL NORMAL(N,XL,XR,YAVEX) CALL NORMAL(N,XL,XR,YAVEX) CALL NORMAL(N,XL,YR,YAVEX) CALL NORMAL(N,XL,YR,YAVEX) CALL NORMAL(N,XL,YR,YAVEX) CALL NORMAL(N,XL,YR,YAVEX) CALL NORMAL(N,XL,	-	40	CONTINUE	GRI	1550
C IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DU SD GRI CCCC GRI CCCC 44 IF(MPRINT)41,43,41 41 CALL UNNORM(N,XL,XR,CENTER) WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIG 62 FORMAT(IX,I5,ILEIO.3) CALL NORMAL(N,XL,XR,CENTER) GRI 1580 CALL NORMAL(N,XL,XR,CENTER) GRI CCCC 43 SIDE = SIDE*R DO 502 I=1,N XLOW(I) = CENTER(I)-SIDE/2.0 XHIGH(I) = CENTER(I)-SIDE/2.0 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1630 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1660 CALL UNNORM(N,XL,XR,XLOW) CALL UNNORM(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XHIGH) CALL NORMAL(N,XL,XR,XHIGH) CALL NORMAL(N,XL,XR,XHIGH) GRI 1670 CALL NORMAL(N,XL,XR,XHIGH) GRI 1670 CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GRI 1710 GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740	2			GR I	CCCC
C GRI CCCC 44 IF(MPRINT)41,43,41 GRI 1560 41 CALL UNNORM(N,XL,XR,CENTER) GRI 1570 WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIG GRI 1580 42 FORMAT(1X,I5,11E10.3) GRI 1590 CALL NORMAL(N,XL,XR,CENTER) GRI CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI CCCC 43 SIDE = SIDE*R GRI COCC GRI COCC 43 SIDE = SIDE*R GRI 1610 DO 502 I=1,N GRI 1620 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1620 XLOW(I) = CENTER(I)+SIDE/2.0 GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XHIGH) GRI 1660 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1720 GRI 1720 GRI CCCC GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730	C		IF PRINTING OF CONVERGENCE MONITOR IS REQUIRED, DO SO	GRI	CCCC
44 IF(MPRINT)41,43,41 GRI 1560 41 CALL UNNORM(N,XL,XR,CENTER) GRI 1570 wRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIG GRI 1580 42 FORMAT(1X,I5,11E10.3) GRI 1590 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 CALL NORMAL(N,XL,XR,CENTER) GRI 1600 CALL NORMAL(N,XL,XR,CENTER) GRI 0CCCC REDUCE SIZE OF GRID AND CONTINUE SEARCH GRI 0CCCC 43 SIDE = SIDE*R GRI 1610 D0 502 I=1,N GRI 1620 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XHIGH) GRI 1660 CALL NORMAL(N,XL,XR,XLOW) GRI 1660 CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GO TO 10 GRI 1710 CALL NORMAL(N,XL,XR,SAVEX) GRI 1720 GRI 1730 GRI 1730 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 GRI 1730 GRI 1730	C			GRI	CCCC
41 CALL UNNORM(N,XL,XR,CENTER) WRITE(6,42)NN,SIDE,YMID,(CENTER(I),I=1,8),YBIGGRI 1570 GRI 158042 FORMAT(1X,IS,IE10,3) CALL NDRMAL(N,XL,XR,CENTER)GRI 1600 GRI 160064 COLL NORMAL(N,XL,XR,CENTER)GRI 1600 GRI CCCC65 COLL NORMAL(N,XL,XR,CENTER)GRI 1610 GRI CCCC67 GRI CCCC GRI CCCCGRI 1610 GRI 161070 STOR E SIDE * R DO 502 I = 1, N XLOW(I) = CENTER(I) - SIDE/2.0 XLOW(I) = CENTER(I) - SIDE/2.0 GRI 1630 CALL UNNORM(N,XL,XR,XLOW) CALL UNNORM(N,XL,XR,XLOW) GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GALL REGIDN(N,XL,XR,XLOW) GALL REGIDN(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XHIGH) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XLOW) GALL NORMAL(N,XL,XR,XALOW) GALL NORMAL(N,XL,XR,SAVEX) GALL REGION(N,XL,XR,SAVEX)GRI 1720 GRI 1720 GRI 1730 GRI 1730		44	IF(MPRINT)41,43,41	GR I	1560
WRITE(6,42)NN,SIDE,YMID, (CENTER(I), I=1,8),YBIG GRI 1580 42 FORMAT(1x,I5,11E10.3) GRI 1590 CALL NDRMAL(N,XL,XR,CENTER) GRI 1600 CALL NDRMAL(N,XL,XR,CENTER) GRI CCCC 43 SIDE = SIDE*R GRI 1610 D0 502 I=1,N GRI 1620 XLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XLOW) GRI 1670 CALL NORMAL(N,XL,XR,XLOW) GRI 1670 CALL NORMAL(N,XL,XR,XLOW) GRI 1670 CALL NORMAL(N,XL,XR,XLOW) GRI 1670 CALL NORMAL(N,XL,XR,XLOW) GRI 1710 GO TO 10 GRI 1710 C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740		41	CALL UNNORM(N,XL,XR,CENTER)	GRI	1570
42FOR MAT(1x,15,11E10.3)GRI 1590CALL NORMAL(N,XL,XR,CENTER)GRI 1600CALL NORMAL(N,XL,XR,CENTER)GRI CCCC43SIDE = SIDE*RGRI CCCC43SIDE = SIDE*RGRI 1610D0 502I=1,NGRI 1620XLOW(I) = CENTER(I)-SIDE/2.0GRI 1640XHIGH(I) = CENTER(I)+SIDE/2.0GRI 1650502CONTINUEGRI 1660CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1690CALL NORMAL(N,XL,XR,XHIGH)GRI 1710GO TO 10GRI 1710GO TO 10GRI 1720C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHGRI CCCC45CALL UNNORM(N,XL,XR,SAVEX)GRI 1730CALL REGION(N,XL,XR,SAVEX)GRI 1740			WRITE(6,42)NN,SIDE,YMID, (CENTER(I),I=1,8),YBIG	GRI	1580
CALL NDRMAL(N,XL,XR,CENTER)GRI 1600GRI CCCCGRI CCCCGRI CCCCGRI CCCC43 SIDE = SIDE*RGRI 1610D0 502 I=1,NGRI 1620XLOW(I) = CENTER(I)-SIDE/2.0GRI 1620XHIGH(I) = CENTER(I)+SIDE/2.0GRI 1650CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1680CALL NORMAL(N,XL,XR,XLOW)GRI 1690CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1700CALL NORMAL(N,XL,XR,XLOW)GRI 1710GO TO 10GRI 1700C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHC GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHC GRI SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHC		42	FOR MAT(1X, I5, 11E10.3)	GR I	1590
GRI CCCC ••••• REDUCE SIZE OF GRID AND CONTINUE SEARCH •••••• GRI CCCC •3 SIDE = SIDE*R DO 502 I=1,N XLOW(I) = CENTER(I)-SIDE/2.0 XLOW(I) = CENTER(I)+SIDE/2.0 GRI 1630 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1650 CALL UNNORM(N,XL,XR,XLOW) CALL NORM(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XHIGH) GRI 1680 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1700 GRI 1700 GRI 1700 GRI 1720 GRI 1720 GRI CCCC ••••• GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH •••••• GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1740			CALL NORMAL (N, XL, XR, CENTER)	GRI	1600
c REDUCE SIZE OF GRID AND CONTINUE SEARCHGRI CCCC43 SIDE = SIDE*RGRI 1610D0 502 I=1,NGRI 1620XLOW(I) = CENTER(I)-SIDE/2.0GRI 1630XHIGH(I) = CENTER(I)+SIDE/2.0GRI 1640502 CONTINUEGRI 1660CALL UNNORM(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1660CALL REGION(N,XL,XR,XLOW)GRI 1660CALL NORMAL(N,XL,XR,XLOW)GRI 1690CALL NORMAL(N,XL,XR,XLOW)GRI 1690CALL NORMAL(N,XL,XR,XLOW)GRI 1670CALL NORMAL(N,XL,XR,XHIGH)GRI 1690CALL NORMAL(N,XL,XR,XHIGH)GRI 1700GO TO 10GRI 1720C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCHC GRID SIZE SUFFICIENTLY SMALLC GRI 1730C	2		· · · · · · · · · · · · · · · · · · ·	GRI	0000
C GRI CCCC 43 SIDE = SIDE*R GRI 1610 D0 502 I=1,N GRI 1620 xLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 xHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XHIGH) GRI 1660 CALL REGION(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1700 GO TO 10 GRI 1710 GO TO 10 GRI 1720 C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740	2		••••• REDUCE SIZE OF GRID AND CONTINUE SEARCH •••••	GR I	CCCC
43 SIDE = SIDE*R GRI 1610 D0 502 I=1,N GRI 1620 xLOW(I) = CENTER(I)-SIDE/2.0 GRI 1630 xHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XLOW) GRI 1660 CALL REGION(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 GO TO 10 GRI 1700 C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C	0			GRI	CCCC
DO 502 I=1,N XLOW(I) = CENTER(I)-SIDE/2.0 XHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE CALL UNNORM(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XLOW) CALL REGION(N,XL,XR,XHIGH) CALL REGION(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XLOW) CALL NORMAL(N,XL,XR,XHIGH) GO TO 10 CALL NORMAL(N,XL,XR,XHIGH) GO TO 10 C C 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 GRI 1740 GRI 1740 GRI 1740 GRI 1740		43	SIDE = SIDE R	GR I	1610
xLOW(1) = CENTER(1)-SIDE/2.0 GRI 1630 xHIGH(I) = CENTER(I)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1670 CALL REGION(N,XL,XR,XLOW) GRI 1680 CALL REGION(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 CALL NORMAL(N,XL,XR,XLOW) GRI 1710 GO TO 10 GRI 1720 C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C			DO 502 I=1,N	GR I	1620
XHIGH(1) = CENTER(1)+SIDE/2.0 GRI 1640 502 CONTINUE GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XLOW) GRI 1670 CALL REGION(N,XL,XR,XLOW) GRI 1680 CALL REGION(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GO TO 10 GRI 1720 C GRI D SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740			XLOW(I) = CENTER(I)-SIDE/2.0	GRI	1630
502 CONTINUE GRI 1650 CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XHIGH) GRI 1670 CALL REGION(N,XL,XR,XLOW) GRI 1680 CALL REGION(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GO TO 10 GRI 1720 C GRI 0512E SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI 0512E COCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740	÷ .		xHIGH(I) = CENTER(I)+SIDE/2.0	GRI	1640
CALL UNNORM(N,XL,XR,XLOW) GRI 1660 CALL UNNORM(N,XL,XR,XHIGH) GRI 1670 CALL REGION(N,XL,XR,XKIGH) GRI 1680 CALL REGION(N,XL,XR,XKIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 CALL NORMAL(N,XL,XR,XLOW) GRI 1710 GO TO 10 GRI 1720 C GRI CCCC C GRI CCCC C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730		502	CONTINUE	GRI	1650
CALL UNNORM(N,XL,XR,XHIGH) GRI 1670 CALL REGION(N,XL,XR,XLOW) GRI 1680 CALL REGION(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1670 CALL NORMAL(N,XL,XR,XHIGH) GRI 1700 CALL NORMAL(N,XL,XR,XLOW) GRI 1710 GO TO 10 GRI 1720 C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740			CALL UNNORM(N,XL,XR,XLOW)	GRI	1660
CALL REGION(N,XL,XR,XLOW) GRI 1680 CALL REGION(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XHIGH) GRI 1700 CALL NORMAL(N,XL,XR,XLOW) GRI 1710 GO TO 10 GRI 1720 C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730			CALL UNNORM(N,XL,XR,XHIGH)	GR I	1670
CALL REGION(N,XL,XR,XHIGH) GRI 1690 CALL NORMAL(N,XL,XR,XLOW) GRI 1700 CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GO TO 10 GRI 1720 C GRI 0.512E C GRI 1.730 CALL REGION(N,XL,XR,SAVEX) GRI 1740			CALL REGION(N,XL,XR,XLOW)	GRI	1680
CALL NORMAL(N, XL, XR, XLOW) GRI 1700 CALL NORMAL(N, XL, XR, XHIGH) GRI 1710 GD TO 10 GRI 1720 C GRI CCCC C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI CCCC C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH C GRI CCCC C GRI CCCC GRI CCCC GRI CCCC C GRI 1730 CALL REGION(N, XL, XR, SAVEX) GRI 1740			CALL REGION(N,XL,XR,XHIGH)	GRI	1690
CALL NORMAL(N,XL,XR,XHIGH) GRI 1710 GO TO 10 GRI 1720 C GRI 000000000000000000000000000000000000			CALL NORMAL(N, XL, XR, XLOW)	GRI	1700
GO TO 10 GRI 1720 C GRI CCCC C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH GRI CCCC GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740			CALL NORMAL(N,XL,XR,XHIGH)	GRI	1710
C GRI CCCC C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH GRI CCCC GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 GRI 1740			GO TO 10	GRI	1720
C GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH GRI CCCC GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) CALL REGION(N,XL,XR,SAVEX) GRI 1730 GRI 1740	C			GRI	0000
C GRI CCCC 45 CALL UNNORM(N,XL,XR,SAVEX) GRI 1730 CALL REGION(N,XL,XR,SAVEX) GRI 1740	0		••••• GRID SIZE SUFFICIENTLY SMALL, EXIT FROM SEARCH •••••	GRI	0000
45 CALL UNNORM(N, XL, XR, SAVEX) GRI 1730 CALL REGION(N, XL, XR, SAVEX) GRI 1740	C			GRI	0000
CALL REGION(N,XL,XR,SAVEX) GRI 1740		45	CALL UNNORM(N, XL, XR, SAVEX)	GRI	1730
			CALL REGIUN(N,XL,XR,SAVEX)	gr í	1740

and the second second

	80/80	LIST			
1990.00 2345(00001111111111222222222233333333 57890123456789012345678901234567	334444444	44455555555555666 7890123456789012	566666667777777 34567890123456	7778
	CALL MERITA (SAVEX.Y)			GRI	1750
	NN = NN + T			GRI	1760
	CALL NORMAL (N.XI. XR. SAVEX)			GRI	1770
	DD 46 K=1.N			GRI	1780
	X(K) = SAVEX(K)			GRI	1790
	IF(CENTER(K)-SAVEX(K))60.61.62			GRI	1800
60	XLOW(K) = CENTER(K)			GR I	1810
	XHIGH(K) = CENTER(K) + SIDE/2.0			GRI	1820
	GO TO 46			GRI	1830
61	XLOW(K) = CENTER(K)-SIDE/2.0			GR I	1840
	XHIGH(K) = CENTER(K)+SIDE/2.0			GRI	1850
	GO TO 46			GRÌ	1860
62	XLOW(K) = CENTER(K) - SIDE/2.0	÷		GRI	1870
	XHIGH(K) = CENTER(K)			GRI	1880
46	CONTINUE			GRI	1890
	CALL UNNORM(N,XL,XR,XLGW)			GR I	1900
	CALL UNNORM(N, XL, XR, XHIGH)			GRI	1910
	CALL UNNORM(N,XL,XR,SAVEX)			GR I	1920
	CALL UNNORM(N, XL, XR, X)		1	GR I	1930
•	IF(MPRINT)47,49,47			GRI	1940
47	FF = SIDE			GRI	1950
	WRITE(6,48)Y,NN,FF		:	GRI	1960
48	FORMAT(/+			GRI	1970
				÷÷	
1	154H LARGEST MERIT ORDINATE FOUN	D DURING S	SEARCH	., E15.8,/, GRI	1980
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI	D DURING S	SEARCH DURING SEARCH	,E15.8,/,GRI ,I15,/, GRI	1980 1990
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA	DURING S DNS USED I L OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	•,E15•8,/,GRI •,I15,/, GRI •,E15•8,/)GRI	1980 1990 2000
	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N	ID DURING S ONS USED I AL OF UNCEI	SEARCH DURING SEARCH RTAINTY EXTANT .	•,E15•8,/,GRI •,I15,/, GRI •,E15•8,/)GRI GRI	1980 1990 2000 2010
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I)	ID DURING S DNS USED I AL OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	.,E15.8,/,GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI	1980 1990 2000 2010 2020
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 190 I=1,N X1 = XLOW(I) X2 = SAVEX(I)	ID DURING S ONS USED I IL OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	,E15.8,/,GRI ,I15,/, GRI ,E15.8,/)GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I)	ID DURING S ONS USED I AL OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	,E15.8,/,GRI ,I15,/, GRI ,E15.8,/)GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2040
1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3	ID DURING S ONS USED I IL OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2040 2050
101	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8	ID DURING S ONS USED I L OF UNCE	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2020 2020 2030 2040 2050 2060
101	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(,	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2040 2050 2060 2070
101 100	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE	ID DURING S DNS USED I L OF UNCE ,2X, I1,2H) =,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080
101 100 49	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DD 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 I2HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN</pre>	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2030 2040 2050 2050 2060 2070 2080 2090
101 100 49	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END</pre>	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI .,I15,/, GRI .,E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2030 2050 2050 2050 2050 205
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,II,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONT INUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,ES	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI , I15,/, GRI , E 15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2050 2050 2050 2050 2070 2080 2090 2100 0010
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONT INUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9)	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) ≈,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI , I15,/, GRI , E 15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2010 2020 2030 2050 2050 2050 2050 2070 2080 2090 2100 0010 0020
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI ., I15,/, GRI ., E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2030 2050 2050 2050 2070 2080 2090 2100 0010 0020 0020
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(1)	ID DURING S ONS USED I L OF UNCEI ,2X, ,11,2H) =,E 1)	SEARCH DURING SEARCH RTAINTY EXTANT .	., E15.8,/, GRI ., I15,/, GRI ., E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2040 2050 2050 2050 2070 2080 2090 2100 0010 0020 0030 0040
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DD 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DD 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(1))	ID DURING S ONS USED I L OF UNCE ,2X, I1,2H) =,E I) I)	SEARCH DURING SEARCH RTAINTY EXTANT .	•, E15•8,/, GRI •,I15,/, GRI •,E15•8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2040 2050 2050 2050 2070 2080 2090 2100 0010 0020 0030 0040 0050
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN	ID DURING S ONS USED I L OF UNCE ,2X, I1,2H) =,E I)) - XL (I))	SEARCH DURING SEARCH RTAINTY EXTANT .	•, E15•8,/, GRI •,I15,/, GRI •,E15•8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2040 2050 2060 2070 2080 2070 2080 2070 2080 2070 2080 0010 0020 0010 0050 0050 0050
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBDOUTINE WENDER(N, Y,	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E: I) (}-XL(I))	SEARCH DURING SEARCH RTAINTY EXTANT .	,E15.8,/,GRI ,I15,/, GRI ,E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2040 2050 2050 2050 2060 2070 2080 2070 2080 2090 2100 0010 0020 0050 0050 0050 0050
101 100 49	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 L2HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) SUBROUTINE UNNORM(N,XL,XR,EX)</pre>	ID DURING S ONS USED I L OF UNCER ,2X, I1,2H) =,ES I) () - XL (I))	SEARCH DURING SEARCH RTAINTY EXTANT .	, E15.8,/, GRI , I15,/, GRI , E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2020 2030 2030 2050 2050 2050 205
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONT INUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM()) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(1) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,1 SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9)	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,ES	SEARCH DURING SEARCH RTAINTY EXTANT .	, E15.8,/, GRI , I15,/, GRI , E15.8,/)GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2000 2020 2030 2030 2050 2050 2050 205
101 100 49	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONT INUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM()) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) ≈,E I)	SEARCH DURING SEARCH RTAINTY EXTANT .	., E 15.8, /, GR I ., I15, /, GR I ., E 15.8, /) GR I GR I GR I GR I GR I GR I GR I GR I	1980 1990 2000 2020 2020 2030 2050 2050 2050 205
101 100 49	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DD 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 L2HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DD 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I))</pre>	ID DURING S ONS USED I L OF UNCE ,2X, I1,2H) ≃,E I)	SEARCH DURING SEARCH RTAINTY EXTANT .	•, E15•8,/, GRI •, I15,/, GRI •, E15•8,/) GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	1980 1990 2010 2020 2030 2030 2050 2050 2050 2050 205
101 100 49 1	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 L2HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM DIMENSION XL(9),XR(9),XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE EX(I)=XL(I)*(XR(I)-XL(I))</pre>	ID DURING S ONS USED I L OF UNCE ;2X, I1,2H) =,E]	SEARCH DURING SEARCH RTAINTY EXTANT .	•, E15•8,/, GRI •, I15,/, GRI •, E15•8,/) GRI GRI GRI GRI GRI GRI GRI GRI GRI GRI	$\begin{array}{c} 1980\\ 1990\\ 2900\\ 2010\\ 2020\\ 2030\\ 2050\\ 2050\\ 2050\\ 2070\\ 2080\\ 2070\\ 2080\\ 2070\\ 2080\\ 2090\\ 2070\\ 0010\\ 0050\\$
101 100 49 1	<pre>154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N XNORM(I)=(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE</pre>	ID DURING S ONS USED I L OF UNCER ,2X, I1,2H) =,E: I) (}-XL(I))	SEARCH DURING SEARCH RTAINTY EXTANT .	., E 15.8, /, GR I ., I15, /, GR I ., E 15.8, /) GR I GR I GR I GR I GR I GR I GR I GR I	$\begin{array}{c} 1980\\ 1990\\ 2900\\ 2010\\ 2020\\ 2030\\ 2050\\ 2050\\ 2050\\ 2050\\ 2050\\ 2050\\ 2050\\ 2050\\ 2050\\ 0010\\ 0050\\$
101 100 49 1	<pre>154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN END SUBROUTINE DECIDING WE ADD SUBROUTINE SUBROUTINE DECIDING WE ADD SUBROUTINE SUBROUTINE SUBR</pre>	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E: I) (}-XL(I))	SEARCH DURING SEARCH RTAINTY EXTANT .	., E 15.8, /, GR I ., I15, /, GR I ., E 15.8, /) GR I GR I GR I GR I GR I GR I GR I GR I	1980 1990 2010 2020 2030 2030 2050 2050 2050 2050 205
101 100 49 1	154H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DO 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 12HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM(9) DO 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) SUBROUTINE REGION(N,XL,XR,X) DIMENSION XL(9) YE(9) YEND SUBROUTINE REGION(N,XL,XR,X) DIMENSION YEND SUBROUTINE REGION(N,XL,XR,X) DIMENSION YEND SUBROUTINE REGION(N,XL,XR,X) DIMENSION YEND SUBROUTINE REGION(N,XL,XR,X) DIMENSION YEND	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) ≈,ES	SEARCH DURING SEARCH RTAINTY EXTANT .	., E 15.8, /, GR I ., I15, /, GR I ., E 15.8, /) GR I GR I GR I GR I GR I GR I GR I GR I	1980 1990 2000 2020 2020 2030 2050 2050 2050 205
101 100 49 1	<pre>L54H LARGEST MERIT ORDINATE FOUN 254H NUMBER OF FUNCTION EVALUATI 354H FRACT. REDUCTION IN INTERVA DD 100 I=1,N X1 = XLOW(I) X2 = SAVEX(I) X3 = XHIGH(I) WRITE(6,101)I,X1,I,X2,I,X3 FORMAT(1X,5HXLOW(,I1,2H)=,E15.8 L2HX(,I1,2H)=,E15.8,2X,6HXHIGH(, CONTINUE RETURN END SUBROUTINE NORMAL(N,XL,XR,XNORM(9) DD 1 I=1,N XNORM(I)=(XNORM(I)-XL(I))/(XR(I) CONTINUE RETURN END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N END SUBROUTINE UNNORM(N,XL,XR,EX) DIMENSION XL(9),XR(9),EX(9) DO 1 I=1,N EXURN END SUBROUTINE REGION(N,XL,XR,X) DIMENSION XL(9),XR(9),X(9) DO 1 I=1,N EX(I)=XL(I)+EX(I)*(XR(I)-XL(I)) CONTINUE RETURN END SUBROUTINE REGION(N,XL,XR,X) DIMENSION XL(9),XR(9),X(9) DO 6 (I=1)</pre>	ID DURING S ONS USED I L OF UNCEI ,2X, I1,2H) =,E I)	SEARCH DURING SEARCH RTAINTY EXTANT .	., E 15.8, /, GR I ., I15, /, GR I ., E 15.8, /) GR I GR I GR I GR I GR I GR I GR I GR I	1980 1990 2010 2020 2020 2020 2020 2050 2050 205

والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

and the second secon

00000	10000111111111122222222233333333334444444444	555555666666666667777777	7778
12345	5678901234567890123456789012345678901234567890123	45678901234567890123456	7890
1	X(I)=XL(I)	REG	0050
	GO TO 4	REG	0060
2	IF(XR(I)-X(I))3,4,4	REG	0070
3	X(I)=XR(I)	REG	0080
4	CONTINUE	REG	0090
	RETURN	REG	0100
	END	REG	0110

```
80/80 LIST
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
      DIMENSION ZR(100),ZI(100),POWER0(100),PRESS(100),POWERI(100)
      DIMENSION XH(100)
      DIMENSION XARRAY(101), YARRAY(101)
      READ(5,100) RA, DENS, RAD, AL, RT, CA
      READ(5,200) U0,R,S,RM,RK,RL
C
     COMPUTE OUTPUT ACOUSTICAL IMPEDANCE OF IMPEDANCE MATCHING DEVICE.
      L=99
      FRQ=100.
      00 16 K=1,L
      XX=RL
      FRR=FRQ*(2.*3.141592)
      KK = K - 1
£
      CHAR=(DENS*CA)/S
      RE=R/(S*S)
      XE=(FRR*RM+RK/FRR)/(S*S)
      VAL 1=ABS((FRR*XX/CA)-(.5*3.141592))
      VAL2=ABS((FRR*XX/CA)-(1.5*3.141592))
      IF(VAL1.LT.1.00E-02.0R.VAL2.LT.1.00E-02) G0 T0 5
      DUF=(CHAR-XE*TAN(FRR*XX/CA))*(CHAR-XE*TAN(FRR*XX/CA))
     1 + (RE*TAN(FRR*XX/CA))*(RE*TAN(FRR*XX/CA))
      ZR(K) =CHAR*CHAR*RE*(1.+(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/DUF
С
      ZI(K) = (XE*CHAR-(XE*XE+RE*RE)*TAN(FRR*XX/CA)+
     1 CHAR*(TAN(FRR*XX/CA))*(TAN(FRR*XX/CA)))/OUF
      IF(VAL1.GE.1.00E-02.AND.VAL2.GE.1.00E-02) GO TO 6
    5 7R(K)=7R(KK)
      ZI(K)=ZI(KK)
    6 CONT INUE
      XH(K)=FRR*DENS*1.7*RAD/( 3.141592*RAD*RAD - FRR*FRR*1.7*RAD*
     1((3.141592*R T*R T*AL) /(CA*CA)))
С
      XARRAY(K) = ALOG10(FRQ)
С
      POWERD(K)=(UO+UO+XH(K)+XH(K)+ZR(K)/((RA+ZR(K))+(RA+ZR(K))+
     1 (XH(K)+ZI(K))*(XH(K)+ZI(K))))*1.00E-07
С
      POWERI(K)=(UO+UO+((RA+ZR(K))+(RA+ZR(K))+ZI(K)+ZI(K))+XH(K)/
     1 ((RA+ZR(K))*(RA+ZR(K))+(XH(K)+ZI(K))*(XH(K)+ZI(K)))*1.00E-07
      PRS=UD*XH(K)/SQRT((RA+ZR(K))*(RA+ZR(K))+(XH(K)+ZI(K))*(XH(K)+ZI(K)
     1))
      PRESS(K)=20.*ALOG10(PRS/.0002)
С
      WRITE(6,116) FRQ, POWERI(K), POWERO(K), XH(K), PRESS(K)
   16 FRQ=FRQ+100.
С
 ۰.
с
      CALL PLOTS
      CALL PLOTC(0.0,-11.,-3)
      00 9 K=1.L
      YARRAY(K)=XH(K)
    9 CONTINUE
С
```

• •

123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 CALL PLOTC(0.0,5.5,2) CALL PLOTC(8.5,5.5,3) CALL PLOTC(8.5,0.0,2) CALL PLOTC(0.0,0.0,2) CALL PLOTC(0.0,1.5,-3) CALL PLOTC(2.0,0.0,-3) C SCALE VALUES AND DRAW AXES CALL SCALE (XARRAY, 5. 9,99,1) CALL SCALE(YARRAY, 2.0, 99, 1) CALL AXIS(0.0,0,0,*LCG FREQUENCY*,-13,5.0,0.0,XARRAY(100), 1 XARRAY(101)) CALL AX IS (0.0,0.0, 'REACTANCE', 9, 2.0, 90.0, YARRAY(100), YARRAY(101)) C PLOT POINTS. C PLOT POINTS. CALL LINE(XARRAY, YARPAY, 99, 1, 19, 75) CALL PLOTC(-2.0,4.0,-3) DO 1º K=1,L YARRAY(K)=10.*ALOG10(POWERI(K)/(1.00E-12)) 10 CONTINUE c CALL PLOTC(0.0,5.5,2) CALL PLOTC (8.5,5.5,3) CALL PLOTC(8.5, 0.0, 2) CALL PLOTC (1.0.0.0.2) CALL PLOTC(1.0,1.5,-3) CALL PLOTC(2.0, 0.0,-3) С SCALE VALUES AND DRAW AXES CALL SCALE (XARRAY, 5. 9, 99, 1) CALL SCALE(YARRAY, 2.7,99,1) CALL AXIS(7.0, 1.9, LCG FREQUENCY 1, -13, 5. 1, 0.0, XARRAY(100), 1 XARRAY(101)) CALL AXIS(0.0,0.0, POWER IN*, 8, 2.0, 90.0, YARRAY(100), YARRAY(101)) C PLOT POINTS. CALL LINE (XARRAY, YARRAY, 99, 1, 10, 75) CALL SYMBOL (4.10,2.50,.10, RH= 1,0.0,3) CALL NUMBER (4.5,2.50,.10, RA,0.0,2) CALL SYMBOL (4.0,2.35,.10, *XX=*,0.0,3) CALL NUMBER (4.50,2.35,.10,RL,0.0,2) CALL SYMBOL (4.00,2.20,.10, RAD= ,0.0,4) CALL NUMBER (4.50,2.20,.10,RAD,0.0,4) CALL SYMBOL (4.00,2.05,.10, "AL=",0.0,3) CALL NUMBER (4.50,2.05,.10,AL,0.0,4) CALL SYMBOL (4.00, 1.90, .10, 'RT=', 0.0, 3) CALL NUMBER(4.50,1.90,.10,RT,0.0,4) CALL PLOTC(8.0,-6.5,-3) C 00 11 K=1.L 11 YARRAY(K)=10.*ALOGI0(POWERO(K)/(1.00E-12)) С С. CALL PLOTC(7.7, 5.5, 2) CALL PLOTC(8.5,5.5,3) CALL PLOTC(8.5,0.0,2) CALL PLOTC(0.0, 0.0, 2)

12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 CALL PLOTC(2.0,0.0,-3) CALL PLOTC(0.0,1.5,-3) С SCALE AND LABEL AXES CALL SCALE(XARRAY, 5.0, 99, 1) CALL SCALE (YARR 44,2.0,99,1) CALL AXIS(0.0,0.0, LOG FREQUENCY', -13,5.0,0.0, XARRAY(100), 1 XARRAY(101)) CALL AXIS(0.0,0.0, POWER TRANSMITTED', 17, 2.0, 90.0, YARRAY (100 1), YARRAY(101)) С PLOT POINTS. CALL LINE (XARRAY, YARRAY, 99,1,10,75) CALL PLOTC(-2.0,4.0,-3) С DO 12 K=1,L 12 YARRAY (K)=PRESS(K) С CALL PLOTC(1.0,5.5,2) CALL PLOTC(8.5,5.5,3) CALL PLOTC(8.5,0.0.2) CALL PLOTC(0.0,0.0,2) CALL PLOTC(2.0,0.0,-3) CALL PLOTC (0.0,1.5,-3) C SCALE AND LABEL AXES. CALL SCALE(XARRAY, 5.0, 99, 1) CALL SCALF (YARRAY, 2. 0,99,1) CALL AXIS(0.0,0.0, 'LOG FREQUENCY',-13,5.0,0.0, XARRAY(100), 1 XARRAY (101)) CALL AXIS(0.0,0.0, OUTPUT SPL IN DB',16,2.0,90.0, YARRAY(100), 1 YARRAY(101)) С PLCT POINTS. CALL LINE(XARRAY, YARRAY, 99,1,10,75) 100 FORMAT (3E20.8/3E20.8) 116 FORMAT(2X,5H FRQ=E10.4,9HPOWER IN=E20.8,10HPOWER OUT=E20.8, 1 4H XH=E20.8,9H PRESS = E27.8) 200 FORMAT(3E15.4/3F15.4) STOP END

58

.

С VRM= REFERENCE VOLTAGE FOR MICROPHONE CALIBRATION, IN VOLTS. VP.S= REFERENCE VOLTAGE FOR SOURCE CALIBRATION, IN VOLTS. £ VM = MICROPHONE FREQUENCY RESPONCE, IN DECIBELS RE 1 VOLT. C = SOURCE VOLTAGE EPEQUENCY RESPONCE +KNOWN IMPEDANCE IN DBV. С VK = PROBE MICROPHONE OPEN CIRCUIT SENSITIVITY. С SM = SOURCE MICROPHONE OPEN CIRCUIT SENSITIVITY. SS C FSK = SOURCE PHASE RESPONCE + KNOWN IMPEDANCE IN DBV. C FM = MICROPHONE PROBE TUBE PHASE RESPONCE, IN DEGREES. PM = PROBE MICROPHONE PRESSURE IN DYNES/SQUARE CM. С PS = SOUPCE PRESSURE IN DYNES/SQUARE CM. C FMM = PHASE DIFFERENCE BETWEEN SOURCE AND MICROPHONE, MEASURED. .C h GS = MAGNITUDE OF SOURCE TRANSFER FUNCTION. GSR = MAGNITUDE OF SOURCE OPEN CIRCUIT TRANSFER FUNCTION. С GM = MAGNITUDE OF MICROPHONE TRANSFER FUNCTION. С GMM = OPEN CIRCUIT TRANSFER FUNCTION, MEASURED FOR SOURCE. C FSR = OPEN CIRCUIT PHASE RESPONCE. FSM = OPEN CIRCUIT PHASE RESPONCE, MEASURED. C C ED = OPEN CIRCUIT VOLTAGE RESPONCE, IN VOLTS. c VO = OPEN CIRCUIT VOLTAGE RESPONCE, IN DBV. С VMM = VOLTAGE OF PROBE MICROPHONE, MEASURED IN DECIBELS. r VSM = VOLTAGE OF SOURCE MICROPHONE, MEASURED IN DECIBELS. C Ċ. VREF= MEASURING REFERENCE VOLTAGE. PE = RESISTANCE OF EAR. С = REACTANCE DE EAR. C XF = REFERENCE PRESSURE. C PR DIMENSION VM(22), VK(22), FSK(22), RE(22), XE(22), VMM(22), FMM(22), 1EM(22) READ(5,100) (VM(I),I=1,22), (VK(I),I=1,22), (FSK(I),I=1,22), 1(FM(I), I=1, 22)READ(5,105) (VMM(I), I=1,22), (FMM(I), I=1,22) READ(5,110) VRM, VRS, SM, SS, V, CA, DENS, VREE DEL FRQ= 100. FRQ=100. DG 10 I=1,22 FSK(I)=(3.141592/18^.)*FSK(I) FM(I)=(3.141592/180.)*FM(I) FMM(I)= (3.141592/180.)*EMM(I) FRR=2.*3.141592*FRQ IF(FRQ.GE.1000.) DELERQ=500. EM=10.**(VM(I)/20.) ES=10.**(VK(1)/20.) EMM=10.**(VMM(I)/20.) GM = EM * SS/(VRM * SM)GS = ES * SS / (V R S * SM) $GMS = EMM \neq SS/(VREF \neq SM)$ C=V/(DENS*CA*CA) F1 = FMM(I) - FM(I) - FSK(I)Pl=GMS/(GM*GS*FRR*C) RF(I)=P1*SIN(F1)XE(I)=-P1+COS(F1) PE=20.*ALOG10(EMM/(SM*GM*.0002)) F2=F1*180./3.141592 WRITE(6,200) FRQ, RE(I), XE(I), PE,P1,F2 11 FRQ=FRQ+DFLFRQ

.

APPENDIX B

CALIBRATION CURVES AND MODEL

IMPEDANCE CURVES AS A

FUNCTION OF DISTANCE

Frequency

Frequency

Frequency

Frequency

. . .

y i sana

. .

يور مريد ال

A. Sec.

1.11

71

.

. . .

and the second

و و و و و و

and the second

,

.

. .

VITA

Paul Wayne Whaley

Candidate for the Degree of

Master of Science

Thesis: IMPEDANCE MATCHING IN AURAL PROSTHESIS

Major Field: Mechanical Engineering

Biographical:

- Personal Data: Born in Duncan, Oklahoma, December 9, 1948, the son of Mr. and Mrs. John W. Whaley.
- Education: Graduated from Adrian High School, Adrian, Texas, in May, 1967; received Bachelor of Science degree in Mechanical Engineering from Oklahoma State University in May, 1971.
- Professional Experience: Graduate Teaching Assistant,
 Oklahoma State University, College of Engineering, 1971-1972; Graduate Research Assistant, Oklahoma State
 University, College of Engineering, 1972-1973; Associate
 Member, American Society of Mechanical Engineers.