
TREE STRUCTURED ALGORITHMS FOR SCHEDULING

ACTIVITIES AND RESOURCES IN A

CONTINUUM OF TIME

By

MARTIN JAMES WERTHEIM
~

Bachelor of Science

Duke University

Durham, North Carolina

1969

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

July, 1973

~
1173'
ft//./ff±
<1.t>--J. 2

t
l ~-
4

(
t

TREE STRUCTURED ALGORITHMS FOR SCHEDULING

ACTIVITIES AND RESOURCES IN A

CONTINUUM OF TIME

Thesis Approved:

n 12 JJ~
Dean of the Graduate College

OKlAHOIM
Sf ATE UNIVER611Y

UIRA~Y

NOV 16 1973

PREFACE

This thesis is concerned with the development of a computer pro­

gram to solve a particular class of scheduling problems. The primary

objective is to implement tree structured searching techniques in the

search for a schedule.

I wish to express my thanks to my thesis adviser, Dr. James R.

Van Doren, for suggesting the topic of this thesis and providing

invaluable assistance and guidance. Thanks are also due to other

faculty members of the Department of Computing and Information Sciences,

for their helpful advice and suggestions. A special note of thanks is

due to Dr •. Don~ld W. Grace who pointed out that one aspect of resource

assignment based on attributes was a special case of the transportation

problem.

Finally, I wish to thank the citizens of the City of Stillwater

and the State of Oklahoma for providing the environment which helped

make my education at Oklahoma State University a truly remarkable

experience.

TABLE OF CONTENTS

Chapter

I • INTRODUCTION

II. THE EIGHT QUEENS PROBLEM

III. SCHEDULING A SINGLE RESOURCE

IV. SCHEDULING A SINGLE CLASS OF RESOURCES

V. SCHEDULING MULTIPLE RESOURCE CLASSES

VI. EFFICIENCY IN GENERATING AND EXAMINING
PERMUTATIONS • • . • • • • • • • . . • •

VII. SELECTING RESOURCES BASED ON ATTRIBUTES

VIII. CONCLUSION AND SUGGESTIONS FOR FURTHER
INVESTIGATION

BIBLIOGRAPHY

APPENDIX A: FLOWCHART OF FINAL PROGRAM.

APPENDIX B: SOURCE LISTING AND SAMPLE OUTPUT OF
FINAL PROGRAM •••••.

APPENDIX C: GLOSSARY OF TERMS

Page

1

7

16

25

30

35

39

48

52

54

61

84

LIST OF TABLES

Table

I. Sample Problem--Scheduling a Single Resource
Unit · · · · ·

II. Three Schedules for the Sample Problem of
Table I . . • • •••

III. Sample Table of Actual Starting and Ending Times

IV. A Schedule Requiring Three Resource Units ••

V. Schedule Table and Associated Pushdown Stacks

VI. Sample Problem for Multiple Resource Scheduling.

VII. Tables of Start and End Times for Each Resource
Class .

VIII. Analogy Between General Transportation Problem
and Resource Assignment Problem •.•••

IX. Computation of the Number of Units Required of
a Particular Attribute Group

X. A Case for Which an Assignment can be Made for
Each Sub-Interval, but Cannot be Made for
the Entire Period of Time • • . • • • • • • .

Page

16

19

23

26

28

31

42

45

45

LIST OF FIGURES

Figure

1. Solutions to Eight Queens and Four Queens Problems

2. Tree Structure Corresponding to the Four Queens
Problem

3. First Nine Board Configurations to be Examined
in Four Queens Problem ••

4. One Node of a Binary Tree

5. A Tree and Its Binary Representation

6. Binary Tree Associated with Four Queens Problem
After Two Levels Have Been Processed ••

7. Internal Array of Structures Corresponding to
the Sample Problem of Table I •••••.

8. Permutation Tree ••

9. Decision Tree with Two Levels per Activity

10. Graph Showing Common Resource Requirements
Among Activities •..••••••••.•••••.•

11. Adjacency and Path Matrices for Graph in
Figure 10

12. Association Between Resource Classes and
Attribute Groups • . • • • • • • • • •••••••

Page

7

9

12

13

13

14

20

22

27

32

33

40

A.
1

a.
1

b.
1

c.
1

d.
1

/!J..
1

q.
J

R(A.)

x.
1

y.
J

1

LIST OF SYMBOLS

i'th attribute group

starting time of the i'th window

ending time of the i'th window

start of actual scheduled time within i'th window

end of actual scheduled time within i'th window

actual time required by i'th activity

number of units of j'th resource class

number of units required of attribute group A.
1·

activity

resource unit or resource class

CHAPTER I

INTRODUCTION

A schedule can be defined as a time plan, or a list of times, for

the occurrence of a group of events or procedures. The problems

incurred in creating schedules vary greatly from one application to

another; however, there is one common characteristic inherent in all

scheduling problems, the need to make decisions. This decision making

requirement usually arises due to some limitations of time or resources.

Often a choice must be made between two or more possible schedules as

to which schedule is, in some sense, optimal.

Van Doren (1) has observed that scheduling problems take on the

characteristics of a three dimensional constrained search. The three

dimensions are activities, resources, and time. The following exam­

ples, taken from industrial scheduling and space flight scheduling,

illustrate the three dimensional nature of these problems.

Muth and Thompson (2) have defined industrial scheduling as a

problem of making decisions on how to use each manufacturing facility

at each instant of time, taking into account such considerations as

availability of resources, cost of implementing decisions, due dates,

and so forth. They have identified three major classes of industrial

scheduling problems. In the first of these, the job-shop problem, a

firm contains one or more work centers, and each unit of product

manufactured must pass through each work center at some stage of the

2

manufacturing process. The production of each unit is an activity, and

the work centers, composed of machines and workers, are resources. The

goal of a job shop schedule might be to meet a production deadline

(time), or to minimize the total time required to complete all jobs.

A typical constraint might be that a work center can operate on, at

most, one product at any instant of time. A second class of problems

arises when a firm keeps an inventory of goods and must decide periodi­

cally when and how many goods to manufacture. In making these deci­

sions, the firm must take into account constraints on the availability

of resources such as raw material, labor, and capital. A third class

of problems, single project scheduling, arises when a project con­

sisting of several distinct tasks (activities) must be completed by a

certain due date (time constraint). In addition to constraints imposed

by resource limitations, constraints may arise due to requirements that

some tasks be performed either before or after others.

Another example which illustrates the three dimensional nature of

the problem can be found in the scheduling problems associated with

NASA's space shuttle program (1). Activities to be scheduled include

shuttle flights, maintenance of orbiters, and deliveries of payloads

to a given orbit. Resources to be scheduled include orbiters, solid

rocket boosters, flight crews, etc. The time dimension may involve

several windows of time, that is, intervals of time during which an

activity must take place.

In many cases, more than one solution can be found for a particu­

lar scheduling problem. In such cases it may be desirable to find all

feasible solutions and choose from among the feasible solutions one

solution which is optimal. The problem, then, may be compared to

linear programming problems in which it is desired to maximize or

minimize an objective function subject to various constraints.

3

Because of the great variety of scheduling problems, it is highly

unlikely that a computer program could be developed that would be

general enough to handle all types of scheduling problems. Indeed,

most programs that have been written are designed to solve one particu­

lar problem. However, programs can be developed with enough generality

so that certain classes of problems with common characteristics and

requirements could be solved. The subject of this report is the

development of a computer program to solve scheduling problems of one

particular class.

In the class of problems investigated in this report, an activity

is a non-recurring event that extends over a continuous time interval

and requires the use of one or more resources. A resource class is a

collection of one or more identical resource units. A window of time

is a time interval during which an activity must be scheduled. There

are m activities to be scheduled and n classes of resource units to be

allocated. For simplicity, the restriction is made that an activity

may require at most one unit of each resource class. Associated with

each activity are one or more windows of time, and a duration time

which is the total time necessary to complete an activity. The problem

is to find an actual starting and ending time for each activity such

that each activity is scheduled within one of the windows of time

associated with that activity, and that each resource unit is assigned

to at most one activity at any one instant of time. In an extension

of this problem, one or more attributes are associated with each

resource class, thus forming attribute groups. Each attribute group

consists of one or more resource classes and each resource class may

belong to one or more attribute groups. Activity requirements are

stated in terms of attribute groups rather than resource classes, that

is to say, each activity requires exactly one unit of one or more

attribute groups.

Previous work in this field includes investigations of problems

of a similar nature. Bratley, et. al. (3), have investigated the

problem of scheduling n tasks on a single resource, Each task has a

specified earliest start time, latest completion time and number of

time units required. They have developed an algorithm to find a

schedule which minimizes the total elapsed time to complete all jobs.

The approach they have taken is to consider all possible orderings of

4

n tasks on a single resource. Davis and Heidorn (4) have investigated

the problem of scheduling multiple projects requiring multiple resources,

using techniques originally developed to solve line balancing problems.

Their goal also was to minimize project duration. In each of the

investigations attempts were made to force a discrete resolution on the

time dimension. For example, Davis and Heidorn (4) consider a task

requiring n units of time as n separate tasks each of which requires

one unit of time. However, as Van Doren (1) has pointed out, it may be

highly desirable to treat the time dimension as a continuum. One reason

for this is that a discrete time resolution may lead to methods of

scheduling in which each unit of time is examined, wh i ch would magnify

the combinatorial complexity of the problem. Another reason is that,

in some problems, the times required and the windows of time for dif­

ferent activities woul d vary greatly in magnitude. In such cases it

would be difficult to decide on the proper size of a time unit.

It should be emphasized that the major goal of this investigation

has been the examination of methods used in searching for a schedule.

Therefore, the goal that has been adopted is the determination of

whether a schedule exists rather than the detection of a schedule that

is optimal. When appropriate, however, various criteria of optimality

will be mentioned, along with suggestions to achieve these criteria,

The search methods used to find a schedule are based on the con­

cepts of decision trees and backtrack programming as presented by

Golomb and Baumert (5). These concepts are outlined in Chapter II.

5

It was decided that the investigation should proceed in a stepwise

manner, beginning with the solution of some simple problems and then

progressing in successive steps of enlargement and refinement in solving

more complex problems, until the class of problems discussed earlier

could.be attacked in its full generality. Thus, the first step in the

investigation was the application of decision trees and backtrack pro­

gramming to the solution of a fairly well-known problem, the eight

queens problem of chess. The reasons for this step are that the pro­

blem is well defined and that it has certain similarities to the

scheduling problems investigated in this report. Two programs which

are described in Chapter II, were written to solve the eight queens

problem. Chapter III describes a program written to solve a fairly

simple scheduling problem, namely scheduling a single resource unit,

Chapter IV describes an enlargement of this program to schedule a

single class of resource units. Chapters V and VI describe a program

to solve a more complex problem, namely scheduling multiple classes of

resource units, and, finally, Chapter VII describes the ultimate goal

of the investigation, scheduling multiple resource classes, where

selection is based on attribute groups. Suggestions for further work

are outlined in Chapter VIII.

6

CHAPTER II

THE EIGHT QUEENS PROBLEM

To gain insight into possible search techniques which would be

useful in a scheduling program, it was decided to begin the investi-

gation by writing two programs to find solutions to the eight queens

chessboard problem. The problem is to place eight queens on a chess-

board in such a way that no queen may be attacked by another queen. A

queen is safe from attack if no other queen is positioned on the same

row, the same column or the same diagonal. Solutions to this problem

are well known. A generalization of the problem is to place n queens

on an n x n chessboard. Figure 1 shows one solution to the eight

queens problem and one solution to the four queens problem.

Q
Q

Q
Q

Q
Q

Q
Q

Eight Queens Four Queens

Figure 1, Solutions to Eight Queens and Four
Queens Problems.

A partial analogy can be drawn be~ween the eight queens problem

and the problem of scheduling a single resource unit. Consider the

entire chessboard as a unit of resource, the rows of the chessboard

as periods of time, and the columns of the chessboard as activities,

each of which requires exactly one period of time. In this analogy

8

the three dimensional view reduces to two dimensions because there is

only one resource unit. There are three constraints on the problem two

of which have a direct analogy with a realistic scheduling problem.

The constraint that not more than one queen may occupy a particular row

is analogous to the restriction that the resource unit may be allocated

to only one activity during a given time period. The restriction that

not more than one queen may occupy a column corresponds to the fact

that each activity requires the resource during exactly one time period.

The third constraint of course concerns avoiding diagonal placement.

A brute force approach to the problem would be to examine each

combination of eight squares on a 64 square chessboard. There are

(6
8
4) or 4,426,165,368 combinations to be examined. However, it can

be observed immediately that each column must be occupied by exactly

one queen. The problem then reduces to a search of each column for a

possible square to be occupied. The squares must be chosen so that

no two queens occupy the same row or the same diagonal. The problem

can be represented by a tree structure in which each level of the tree

corresponds to a column and each node corresponds to a square within

that column. The root of the tree is a dummy node and is considered

to be at level zero. Figure 2 shows the tree structure corresponding

to the four queens problem. Each path from the root of the tree to a

leaf corresponds to a choice of one square for every column; for

example, the leftmost path of the tree corresponds to the placement

of a queen in the first square of each column.

2 3 4 1 2 3 4 1 2 3 4

4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 Figure 2. Tree Structure Corresponding to Four Queens Problem.

(0

10

There are 256 leaves in the tree; therefore, one might suppose

that there are 256 alternatives to be examined. However, a closer

examination of the tree structured nature of the problem reveals that

the number of alternatives to be examined can be reduced. Consider

again the left-most path of the tree. Traversing the arc from the root

of the tree to its left-most son corresponds to placing a queen on the

first square of column one. Traversing the arc from this node to its

left-most son corresponds to placing a queen on the first square of

column two. Since no solution to the problem can contain two queens

in the same row, a conflict condition (constraint violation) exists.

Furthermore, it is not necessary to examine any nodes beneath the left­

most node at level two; in effect, the tree may be pruned at this node.

Whenever a conflict condition is detected, the right brother of

the current node is examined, that is to say, an attempt is made to

place a queen on the next square of the column currently being examined.

Placing a queen on the second square of column two would also result in

a conflict condition since two queens would occupy the same diagonal.

However, placing a queen in the third square of column two would cause

no conflict.· When the examination of a node does not result in a con­

flict condition, the sons of that node are examined, that is to say,

an examination of column three is begun by attempting to place a queen

on square one of column three. It turns out that, in the four queens

problem with queens placed in column one, square one, and column two,

square three, placing a queen anywhere in column three will cause a

conflict condition. When all alternatives at a given level result in

a conflict condition, then the decision process backtracks one level;

in this case it returns to column two and examines the next alternative,

11

namely, placing a queen on square number four of column two. The first

nine board configurations to be examined are shown in Figure 3.

When a leaf of the tree is examined and no conflict condition is

detected, then the path from the root of the tree to the leaf corres­

ponds to a solution. If only one solution to the problem is desired,

then the solution can be reported and the procedure terminated at this

point. If all solutions are desired, then the solution can be reported

and the search continued by examining the next leaf. If no solution

exists, or if the attempt is made to find all solutions, the search

terminates after the right-most node of level one (and all of its sons)

have been examined.

The method of tree searching described by the example in the pre­

ceding paragraphs is known as a depth-first tree search. It should be

noted that no explicit data structure corresponding to a tree need be

constructed. The tree structure is inherent in the decision making

process.

Another method of traversing decision trees is the breadth-first

approach. With this method, all nodes of a given level are examined

in one step, thus producing the effect of traversing all paths of the

tree in parallel. An actual tree structure is constructed so that

parallel processing of decision paths can be simulated. One method of

construction is to use a binary tree to represent the decision tree

under consideration (6). Each node of the binary tree has the repre­

sentation shown in Figure 4. The left link of each node points to the

left son of that node, and the right link of each node points to the

brother on the immediate right if one exists, otherwise, the right link

(1)

Q

(4)

Q

(7)

Q

(2) (3)

Q Q Q

Q

(5) (6)

Q Q Q

Q

Q Q Q

(8) (9)

Q Q

Q Q Q

Q Q

Figure 3. First Nine Board Configurations to be Examined
in Four Queens Problem.

12

13

is used as a thread and points to the father. An example of a tree and

its binary representation is shown in Figure 5.

/ Left Link Information Right Link

Figure 4. One Node of a Binary Tree.

A

E F G H I

Figure 5. A Tree and Its Binary Representation.

A linked list of available storage is required, along with routines

to allocate nodes from the available list and to return nodes which are

no longer needed to the available list. The tree is constructed as a

binary tree. Processing a level of the tree consists of examining each

node of the previous level and for each node of the previous level,

determining which alternatives at the current level do not cause a

conflict condition. All conflict free alternatives are attached as

14

sons of the node being examined. If no conflict free alternatives are

found, then the node being examined may be removed from the tree and

returned to the available list. If a node is pruned which has no

brothers, then the father of the node may also be pruned. Figure 6

shows the binary tree associated with the four queens problem after two

levels have been processed. The two levels of the tree beneath the

root node correspond to the first two columns of the chessboard. The

number in the information field of each node denotes a square (row),

within the specified column, upon which a queen may be placed. Thus

the left-most path of the tree corresponds to the placement of queens

on the first square of column one and on the third square of column

two. Notice that the tree of Figure 3 contains sixteen nodes at level

two whereas the tree of Figure 6 contains only six nodes. The reason

for this is that, in processing the second level, only those alterna-

tives that do not produce a conflict condition are attached to nodes in

the first level, whereas the tree of Figure 3 shows all possible alter-

natives, including those that produce a conflict condition. After all

levels have been processed, the tree is either empty, in which case no

solution exists, or it contains a path corresponding to each solution.

A

Figure 6. Binary Tree Associated with Four Queens Problem After Two
Levels Have Been Processed. Since the root node is a
dummy node, its information field is blank.

15

Two programs were written to find all solutions to the eight

queens problem, one using the breadth-first approach, and the other

using the depth-first approach. Both programs were written in Fortran

LV for the]BM System 360 Model 65. Because of the combined effects

of a low resolution timer and a multitasking environment, it was

impossible to obtain accurate measurement of execution time; however,

the execution times appear to be about the same for both methods, a

surprising result when one considers the added overhead of storage

management in the breadth-first approach. A major advantage of the

depth-first approach is greater simplicity in programming, so it was

decided to use this approach in investigation of the scheduling problem.

A noteworthy advantage of the breadth-first approach is that, at the

end of the procedure, all solutions are stored in a convenient struc­

ture, namely, the resultant binary tree. Also, the use of heuristic

techniques of artificial intelligence in searching decision trees,

which is suggested in Chapter VIII, may require a breadth-first

traversal (7, 8).

For an excellent generalization of the concepts of decision

trees and backtrack programming, see Golomb and Baumert (5).

CHAPTER III

SCHEDULING A SINGLE RESOURCE

The first scheduling problem to be investigated was that of

scheduling a single resource unit. There are m activities that require

the use of this resource. Associated with each of these activities is

the actual length of time that the activity requires use of the re­

source, and one or more windows of time, that is, time intervals

specified by a starting and ending time, during which the activity must

be scheduled. The problem is to find a schedule for the resource such

that every activity may use the resource during one of its windows for

the length of time required, and that the resource is used by, at most,

one activity at any instant of time. A sample problem with three

activities is shown in Table I.

TABLE I

SAMPLE PROBLEM--SCHEDULING A SINGLE RESOURCE UNIT

Activity Time Required Windows

xl 1 hour 1:00-3:00; 6:00-7:00

x2 2 hours 2:00-4:00; 6:00-9:00

x3 1 hour 8:00-9:00

17

It was observed in Chapter II that the eight queens problem could

be reduced to the problem of selecting a square from each column such

that no constraints are violated. By analogy, this scheduling problem

can be reduced to selecting one window from the list of windows for

each activity such that no constraints are violated. The determination

of whether constraints are violated is somewhat more complex than in

the eight queens problem. Suppose there are n intervals on the real

line, corresponding to one window for each of n activities. These inter-

vals are denoted by [ai, bi] for i = 1 ton. Associated with each

interval is some number, denoted by 1., which corresponds to the actual
1

time required by each activity. The problem of determining whether

constraints are violated is equivalent to the problem of finding

mutually disjoint subintervals [c., d.] such that for i = 1 to n
1 1

(1)

(2)

[c., d.}is a subinterval of [a., b.], and
1 1 1 1

d -c.='1 .•
i 1 1

The basic approach in determining whether constraints are vio-

lated is to generate permutations of the selected windows, and, for

each permutation generated, attempt to schedule each activity as early

in its window as possible, starting with the first window in the permu-

tation. No activity can be scheduled prior to the start time of its

window or prior to the completion of the previous activity. Let

[a'i' b'i] be the i'th window of the permutation currently being

examined. Then,

(1) c' = a' l 1

(2) c'. = max (a'., d'. 1) for i = 2 ton, and
1 1 1-

(3) d I .
1

c'. + '11 • for i = 1 ton.
1 1

If d'. exceeds b'. for any i than the i'th activity cannot be scheduled
1 1

18

within its window in the permutation currently being examined. If no

permutation is found for which each activity can be scheduled within

its window, then the choice of windows must be altered. A tree struc-

tured approach is used both in selecting windows and in generating

permutations, as will be seen in the following paragraphs.

A program was written in PL/I for the IBM System 360 Model 65

which finds all combinations of windows (where one window is selected

from the list of windows associated with each activity) for which a

schedule exists. For each such combination, the program reports one

possible schedule. In the same problem of Table I, there are four

combinations of windows. Schedules exist for three of these combina-

tions. A schedule for each of these three combinations is shown in

Table II.

As stated previously, only one schedule per combination of windows

is reported. Of course, there may be many schedules for each combina-

tion: (1) There may be more than one permutation of mutually disjoint

subintervals; (2) if the time domain is considered to be a continuum,

and if a subinterval, [c'i' d'i], has the properties that d'i < b'i

and d'. (c'. 1 , then an infinite number of schedules exist. Consider,
1 1+

for example, activity x1 in the second schedule of Table II. This

activity may be scheduled for 1:00-2:00, 1:01-2:01, 1:05-2:05, 1:15-

2:15, and so forth. Even if a small finite resolution were imposed on

the time domain, it would be combinatorially infeasible in most cases

to examine and report all solutions. Therefore, the scope of the pro-

blem is limited to finding a sequence in which the activities can be

scheduled, and finding a time interval in which each activity can be

scheduled within that sequence.

•

Activity

Schedule 1

xl

x2

x3

Schedule 2

xl

x2

x3

Schedule 3

x2

xl

x3

TABLE II

THREE SCHEDULES FOR THE SAMPLE
PROBLEM OF TABLE I

Window Scheduled Time

1:00-3:00 1:00-2:00

2:00-4:00 2:00-4:00

8:00-9:00 8:00-9:00

1:00-3:00 l:OQ-2:00

6:00-9:00 6:00-8:00

8:00-9:00 8:00-9:00

2:00-4:00 2:00-4:00

6:00-7:00 6:00-7:00

8:00-9:00 8:00-9:00

19

The program contains an array of structures in which each structure

corresponds to an activity. The information included in each structure

includes the name of the activity, the actual time required, and the

start and end time of each window associated with that activity.

Figure 7 shows the array of structures corresponding to the sample

problem of Table I. (The number of activities to be scheduled as well

as the maximum number of windows per activity are input parameters

which are used in allocating storage for this array.) This array is

searched in a tree structured fashion using the depth-first approach

xl 1 1 3 6 7

x2 2 2 4 6 9

x3 1 8 9 0 0

Figure 7. Internal Array of Structures
Corresponding to the Sample
Problem of Table I.

20

described in Chapter II. Each leyel of the tree corresponds to an

activity and each node within a level corresponds to a window asso-

ciated with that activity. As each node is visited, a pointer to the

associated activity and window is placed on a pushdown stack, and a

subprogram, CONFLl, is called to determine whether a schedule exists

for the nodes (windows) on the stack. (Henceforth, the terms window

and activity will be used interchangeably to denote items on the stack.)

If a conflict condition is detected (that is, if no schedule can be

found for the windows on the stack), then the search proceeds to the

next window for the current activity, or, if all windows for the current

activity have been examined, the search backtracks one level to the

previous activity. If no conflict condition is detected, the search

advances to the next level starting at the first window on that level,

or, if all levels have been examined, reports that a solution has been

found and advances to the next window of the current activity.

This tree structured search may be summarized as follows:

(1) Set level= 1,

(2) Set node= 1,

(3) Push node onto stack and call CONFLl•

(4) Has a conflict condition been detected? If so, go to

step 7.

(5) Is this the last level? If so, a schedule has been found.

Report the solution and go to step 7. Otherwise, continue.

(6) Add 1 to level. Go to step 2.

(7) Is this the last node at this level? If so, go to step 9.

(8) Pop node from stack. Add 1 to node. Go to step 3.

(9) If level = 1, then stop. Otherwise, subtract 1 from level,

pop node from stack, and go to step 7.

21

CONFLl is a subprogram whose calling parameter is the pushdown

stack generated during the search of the window tree. This routine

generates permutations of the items in the stack in lexicographical

order, starting with the order in which the items appear in the stack.

For each permutation generated, a call is made to another subprogram,

CONFL2, which determines whether the activities can be scheduled in

the order represented by the current permutation. If a permutation is

found for which a schedule exists, then CONFLl immediately returns con­

trol to the main program reporting a "no conflict" condition. If all

permutations have been generated and no permutation has been found for

which a schedule exists, then·a conflict condition is returned to the

main program.

Permutations are generated and examined in a manner corresponding

to a depth-first, left to right tree search. For example, permutations

of the numbers 1, 2, 3, and 4 may be represented by the tree shown in

Figure 8. The leaves of this tree are, from left to right, all the

permutations of the numbers 1, 2, 3, and 4 in lexicographical order.

Permutations are generated one element at a time and calls are made to

.22

•••
r-' r-' r-' r-' r-' r-' I\) I\) I\) I\) I\) I\)
I\) I\) C,I C,I *" *" r-' r-' C,I C,I *" *" C,I ,+" I\) *" I\) C,I C,I *" r-' *" r-' C,I

*" C,I *" I\) C,I I\) *" C,I *" r-' C,I r-'

Figure 8. Permutation Tree.

CONFL2 to check the partial permutations being formed. If the activi-

ties represented in the partial permutation cannot be scheduled in the

order specified by the permutation, then examination of the corres-

ponding full permutations is precluded. For example, suppose four

windows, denoted by w1 , w2 , w3 and w4 appear on the stack. The first

call to CONFL2 is made with the partial permutation w1 , w2 • If it is

found that the activities associated with w1 and w2 cannot be scheduled

in the specified order, then it is not necessary to examine either of

well-known algorithms exist for generating permutations in lexico-

graphical order (9, 10, 11), no algorithms which would allow this

preclusion capability were readily available. More will be said in

Chapter VI regarding permutations.

CONFL2 is a subprogram whose calling argument is the current

partial or complete permutation generated in CONFLl. This routine

23

attempts to build a table of actual starting and ending times for the

activities represented in the permutation, scheduling each activity as

early in its window as possible. The starting and ending times in this

table correspond to the mutually disjoint subintervals, denoted by

[ci, di]' referred to earlier in this chapter. An example may be found

in Table III.

TABLE III

SAMPLE TABLE OF ACTUAL STARTING AND ENDING TIMES

Window Time Required Actual Time
Activity (a. ' b.) (A.) (c. ' d.)

]_]_]_]_]_

1 1-3 2 1-3

2 2-5 1 3-4

3 5-8 2 5-7

4 6-8 1 7-8

Although the program is not concerned with finding an optimal

schedule, it may be enlightening at this point to consider possible

criteria of optimality. Two possible goals would be to finish utili-

zation of the resource at the earliest time possible or to begin

utilization at the latest time possible. Other goals might be a "most

dense" solution, in which the time from the start of the first activity

to the end of the last activity is minimized, or a "most distributed"

solution which is imprecisely defined but which will in some sense

impose a uniform distribution of activity assignments over a period of

time. Another way of describing a "most distributed" goal is that in

which the total idle time for the resource is distributed evenly among

the time intervals between activity assignments.

24

Once a goal has been chosen, one might ask whether it is possible

to find an optimal schedule without examining all possible schedules.

For example, suppose the goal is to find the "earliest schedule", that

is, a schedule in which utilization of activities is completed as early

as possible. One might suppose that by ordering the windows by

increasing order of window start time, the first schedule found might

be the earliest schedule, or might, at least, have some sort of

"earliest" attribute. This question gives rise to the general question

of ordering the windows in such a way that the optimal solution will be

found as quickly as possible.

Another question that might be raised is whether the windows can

be ordered in such a way that a schedule (not necessarily optimal) can

be found as quickly as possible. Two possibilities for such an ordering

are by increasing order of window start time or by decreasing order of

time constraint, that is, by increasing order of b. - a. - d .. These
1 1 1

questions will not be investigated any further in this report, but

hopefully, they will provide the source for future investigations.

The remaining programs described in this report all have the same

general structure as this one; that is to say, each program consists of

a main program which traverses a decision tree of activities and win-

dows, a subprogram named CONFLl which generates permutations of activi-

ties, and a subprogram named CONFL2 which attempts to schedule the

activities in the order specified by the permutation.

CHAPTER IV

SCHEDULING A SINGLE CLASS OF RESOURCES

The next problem investigated was that of scheduling a single

resource class. A resource class consists of q O identical resource

units. The resource units are identical in the sense that a request

made for a unit of the specified class may be satisfied by any of the

units within the class. Each activity to be scheduled requires exactly

one unit of the resource class. The problem is to schedule each activi­

ty within one of its windows for its specified time required, in such a

way that each resource unit is assigned to not more than one activity

at any instant of time. Notice that two activities can be scheduled at

the same time if there are two or more units in the class.

One could approach the problem with at least two different goals

in mind. One of these goals is to minimize the number of resource

units actually utilized. This goal would be employed in a problem

where tj_ units could be made available, but where it would be desirable

to schedule all activities with fewer than q resource units. If all

activities can be scheduled during mutually disjoint time intervals,

then only one resource unit is required. Two activities are said to

overlap if their actual scheduled times are not disjoint. For example,

if activity one is scheduled for 4:00 to 7:00 and activity two is

scheduled for 6:00 to 9:00, then activities one and two overlap, If

all activities cannot be scheduled during mutually disjoint time

26

intervals, then the number of units required does not exceed the

maximum number of activities which overlap at any instant of time. In

the schedule shown in Table IV three activities are scheduled during

6:00 to 7:00; therefore, three resource units must be available.

TABLE IV

A SCHEDULE REQUIRING THREE RESOURCE UNITS

Activity

1

2

3

4

5

Actual Time Scheduled

3:00-5:00

4:00-6:00

5:00-7:00

6:00-8:00

6:00-9:00

Another goal is to achieve a most uniformly distributed utiliza­

tion among the resource units. This goal would be employed in a situa­

tion where q units would definitely be available and where it would be

desirable to equalize utilization among the q units. It was decided to

use this goal in the current investigation; its implementation will be

described below.

There are two ways of viewing the search process in terms of

decision trees. In one view, there are two levels in the tree per

activity; one level contains nodes corresponding to the associated time

windows, and the other level contains nodes corresponding to the re­

source units. Figure 9 shows such a tree for two activities, two

windows per activity, and three resource units. This approach might

be taken if it is desired to examine the effects of allocating

27

Window

Activity 1

Window Activity
2

Resource

Figure 9. Decision Tree with Two Levels Per Activity.

different resource units to different activities. However, as can be

seen by examining Figure 9, the combinatorial complexity of the problem

proliferates greatly, even for a fairly small problem.

Another view is to have one level in the tree per activity, and

in traversing the tree, allow the conflict checking routines to deter-

mine which resource unit, if any, can be allocated to an activity.

This view can be taken if the resource class is viewed as a pool of

identical resource units, and if it is immaterial, in terms of schedul-

ing, which unit is allocated to a particular activity. It seems

reasonable to expect that this approach would result in a shorter search

time, especially if the method of unit selection were kept reasonbly

simple.

The program described in Chapter III was modified, incorporating

the second approach to the tree structured decision making process

described above, so that it would handle a single class of resource

units. The number of units available, q, is a required input parameter.

The greatest number of changes were made in the CONFL2 subprogram.

Firstly, the table of actual start and end times was expanded to include

the number of the resource unit allocated. In addition, a pushdown

stack is required for each resource unit, in which the top item

28

indicates the start and end time of the latest allocation of that unit.

Examination of the top item of a stack tells the earliest time that

unit will be available for further allocation. Examples of the expanded

table and corresponding stacks are shown in Table V.

TABLE V

SCHEDULE TABLE AND ASSOCIATED PUSHDOWN STACKS

Table of start and end times and unit allocated

Activity Start End Unit

1 1:00 3:00 1

2 2:00 5:00 2

3 3:00 9:00 3

4 4:00 6:00 1

5 5:00 7:00 2

Associated Pushdown Stacks

Unit #1 Unit #2 Unit #3

1:00-3:00 2:00-5:00 3:00-9:00

4:00-6:00 5:00-7:00

The reason pushdown stacks are required merits some further

explanation. Recall that permutations are generated in a tree struc­

tured manner as described in Chapter III. In general, the use of a

tree structured decision making process requires backtracking capability.

Specifically, suppose there are eight activities to be scheduled, and

Table V represents a schedule for the first five items in the schedule,

that is to say, a choice has been made at level five in the permutation

29

tree. Further suppose that each of the remaining three activities must

begin before 6:00, which is the earliest time that a resource unit will

be available. No branch can be taken from the current node at level

five; therefore, the next alternative at level five, that is, the next

partial permutation of five items in lexicographical order, must be

examined. The start and end time in the fifth row of the table must be

removed and the stack corresponding to resource unit two must be popped

to indicate that unit two is no longer allocated for 5:00 to 7:00.

A circular polling mechanism is used in deciding which resource

unit to assign to the next activity in the permutation. Suppose unit

i was the last unit allocated to an activity, and it is desired to

allocate a unit for the next activity in the permutation. The search

for an available unit begins with unit i + 1, proceeds to unit q, then

proceeds from unit 1 to unit i. This is roughly equivalent to main­

taining a first-in, first-out queue of resource units, where a unit is

returned to the end of the queue when an activity has finished using it.

This circular polling method is used because in most cases a more dis­

tributed allocation can be expected from this method than from a method

which always begins searching at unit 1.

Perhaps the program described here could be modified so that it

could determine the minimum number of resource units required. This

is a question that will be left for future investigation.

CHAPTER V

SCHEDULING MULTIPLE RESOURCE CLASSES

In this chapter we consider the problem of scheduling m activities

on n different resource classes. Each resource class, y., contains q.
l l

units. Each activity may require exactly one unit of one or more

resource classes. Specifications for each activity include actual time

required, windows of time, and a list of resource classes of which a

unit is required. It is assumed that all resources required by an

activity are to be assigned during the same time interval. Specifica-

tions for each resource class include the number of resource units in

the class. A sample problem is shown in Table VI.

Extending the scope of the problem from one resource class ton

resource classes increases the combinatorial complexity of the problem

in terms of the number of alternatives to be examined. One way to

reduce this complexity is to identify subsets of activities in such a

way that each subset may be scheduled independently of the other sub-

sets. If there are 10 activities to be scheduled with two windows per

activity, the number of leaves in the decision tree corresponding to

the activities and their windows (which will henceforth be referred to

as the window tree) is 210 or 1024. However, if two subsets of five

activities each could be identified, the search could be reduced to two

window trees each of which contains 25 or 32 leaves.

31

TABLE VI

SAMPLE PROBLEM FOR MULTIPLE RESOURCE SCHEDULING

Resource Class Number of Units

Y1 2

Y2 1

Y3 5

Y4 8

Y5 6

y6 3

Activity Time Required Windows Resource Classes

xl 2 7-9; 10-12 Y1' Y2

x2 1 1-2; 5-6 Y2, Y3

x3 1 3-4 Y4

x4 2 2-5 y6

x5 3 1-7 Y3, Y5

x6 1 1-3; 9-12 Y4, Y5

Consider an undirected graph in which each node corresponds to an

activity and in which an arc from node i to node j indicates that

activities x. and x. share a common requirement for at least one re-
l. J

source class. A graph for the sample problem of Table VI is shown in

Figure 10. Each connected component of such a graph identifi.es a sub-

set of activities which must be scheduled interdependently. In this

sample problem activities x1 , x2 , and x5 collectively require units

from resour,ce classes y1 , y2 , y 3 , and y5 , and activities ~3 , x4 ,

2 3

6

Figure 10. Graph Showing Common Resource
Requirements Among Activities.

and x6 collectively require units from resource classes y4 and y6 •

Evidently, activities x1 , x2 and x5 can be scheduled independently of

activities x3 , x4 and x6 because allocation of resource units to x1 ,

x2 and x5 would have no effect on the availability of resource units

32

The connected components of the graph described above are identi-

fied as follows. The adjacency matrix is constructed, then an algorithm

by Warshall (12) is employed to construct the path matrix. A distinct

row value of the path matrix defines a connected component of the graph,

and therefore, a ,subset of activities. Figure 11 shows the adjacency

and path matrices for the graph in Figure 10. There are two distinct

row values in the path matrix.

The program described in Chapter IV actually assigns individual

resource units to activities. In contrast, the approach taken here is

to determine the number of units of each resource class that are re-

quired at any instant of time and to determine whether each resource

class has enough units to meet those requirements. In order to reduce

the combinatorial complexity of the problem, it was decided not to make

assignments of individual units.

1

2

3

4

5

6

1

0

1

0

0

0

0

2 3 4 5 6

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1

1 0 0 0 0

0 1 1 0 0

Adjacency Matrix

1

2

3

4

5

6

1

1

1

0

0

1

0

2

1

1

0

0

1

0

3 4 5 6

0 0 1 0

0 0 1 0

1 1 0 1

1 1 0 1

0 0 1 0

1 1 0 1

Path Matrix

Figure 11. Adjacency and Path Matrices for Graph in Figure 10.

33

In this program, the CONFL2 subprogram still attempts to schedule

each activity as early in its window as possible. There is a table of

start and end times for the activities scheduled; also for each resource

class there is a corresponding table of start and end times for the

activities requiring units of that resource class. In scheduling activ­

ities x1 , x2 , and x5 , these tables might appear as in Table VII. When

attempting to schedule the next activity in the permutation tree, the

table corresponding to each resource class required by the next activity

is examined to determine the earliest time (greater than or equal to the

window start time) that a unit of that resource will become available.

This is done by counting the number of activities whose scheduled times

overlap the proposed scheduled time of the current activity, and com­

paring that count against the number of units in the resource class. A

previously scheduled activity is presumed to overlap the activity cur­

rently being scheduled if the ending time of the previously scheduled

activity exceeds the window start time of the current activity. This

is a rather restrictiv~presumption which may result in no schedule

being found when a schedule actually exists. A better method of

counting overlapping activities will be presented in Chapter VII.

All

7-9

1-2

2-5

TABLE VII

TABLES OF START AND END TIMES FOR
EACH RESOURCE CLASS

7-9 7-9 1-2

1-2 2-5

2-5

After the earliest available time for each resource class has

been determined, the latest of these times is taken to be the actual

starting time of the activity being scheduled. The actual time re-

quired is added to the starting time to give the actual ending time.

34

If the actual ending time exceeds the window end time, then the activity

cannot be scheduled within its window.

A schedule produced by this program shows, for each resource class,

the exact times that resource units are to be assigned to activities.

Furthermore, the approach taken guarantees that the assignments can be

made. Once a schedule has been produced, a circular polling mechanism,

similar to the one described in Chapter IV, could be employed to make

assignments of individual units.

CHAPTER VI

EFFICIENCY IN GENERATING AND EXAMINING PERMUTATIONS

During the course of testing the program described in Chapter V,

it became evident that increased speed in generating and examining

permutations of activities was necessary. The present chapter is con­

cerned with possible improvements in that direction, and describes the

improvements that were actually implemented.

Whenever a new node in the window tree is visited, a pointer to

that activity and window is placed on a stack, and a call is made to

CONFLl in an attempt to find a schedule for all activities which have

pointers on the stack. CONFLl generates permutations of the pointers

on the stack and, for each permutation generated, calls CONFL2, which

attempts to schedule the activities in the order specified by the per­

mutation. These permutations are generated in a depth-first tree

searching manner; one may speak of traversing a tree of permutations.

The permutations are generated in lexicographical order. Knuth

(6) shows two other methods of generating permutations; however, one

advantage of lexicographical ordering is that information gained in

scheduling the previous permutation can be used in scheduling the cur­

rent permutation. If the current permutation consists of n elements,

then it can be assumed that a schedule has already been found for the

first n - l elements in the permutation. For example, consider a call

to CONFL2 made with a partial permutation 31425. Due to the nature of

depth-first tree traversal, it can be assumed that the activities

corresponding to the partial permutation 3142 have already been

scheduled; furthermore, the schedule for 3142 is retained in CONFL2,

36

so all that is necessary is to schedule the activity corresponding to 5.

When a new node in the window tree is examined, the entire process

of generating permutations is repeated from the beginning. The ques­

tion to be examined is how can information gained from the previous

call to CONFLl be retained, and how can this information be used to

hasten the current permutation check. It would be desirable to elimi­

nate some permutations from consideration based on the fact that similar

permutations failed to produce a schedule in a previous call to CONFL2.

Consider one possible example. Suppose four activities are repre­

sented in the stack and a fifth activity is being added. Of the four

activities, originally in the stack, suppose that the first permuta­

tion, in lexicographical order, that produced a schedule was 3142.

Considering permutations of five activities, it is evident that 12345

will not produce a schedule, because if 12345 were to produce a schedule,

then 1234 would have produced a schedule for four activities. Indeed,

the first permutation that need be considered is 31425. Also, permuta­

tions such as 31524, 51234, 52431 can be removed from consideration for

reasons explained below.

As another possibility, suppose there are two activities repre­

sented in the stack, and the permutation 1,2 does not produce a schedule

but the permutation 2,1 does. It is evident that 2 must precede 1 in

any permutation that contains both 1 and 2. It might be desirable to

find all pairs of activities in which one activity must precede the

other before beginning to generate permutations. Perhaps this idea

could be generalized, and necessary ordering relationships among

triplets, quadruplets, and so forth, could be found. This would

correspond to a breadth-first search of the first few levels of the

permutation tree, coupled with a depth-first search of the remainder

of the tree.

37

Two changes were made to the program described in Chapter V with

respect to generating and checking permutations. Firstly, corres­

ponding to each level in the window tree, a record is kept of the

permutation that produced a schedule at that level. When a node at

level i in the window tree is visited, permutations are generated

beginning with the permutation stored for level i - 1. Secondly, each

new permutation generated at level i in the window tree is compared to

the peFmutation stored for level i - l to detect violations of lexical

ordering. For example, suppose 3142 is the permutation stored for

level four, and while processing level five in the window tree, the

permutation 31524 is generated. Since 3124 precedes 3142 in lexico­

graphical ordering, the permutation 3124 cannot produce a schedule

because if 3124 could produce a·schedule, then 3124 would have been

stored for level four. Since 3124 cannot produce a schedule, then 31524

cannot produce a schedule either. This can be proved as follows.

Suppose a schedule is found for 31524, which would mean that the

activities could be scheduled in the order specified by the permutation

31524. If one of these activities, say activity 5, is eliminated, the

remaining four activities could still be scheduled in the specified

order. However, it is known that the permutation 3124 did not produce

a schedule. Therefore, it can be concluded that 31524 cannot produce a

schedule; hence 31524 can be eliminated from consideration.

Further possibilities for improvement, such as recognition of

problem decomposition at various levels in the permutation tree, are

pointed out by Bratley, et. al. (3).

38

CHAPTER VII

SELECTING RESOURCES BASED ON ATTRIBUTES

The program described in this chapter extends the flexibility of

resource class selection and requirement specification by allowing

attributes to be specified for each resource class, thus associating

each resource class with one or more attribute groups, and allowing

resource requirements to be specified in terms of attribute groups

rather than specific resource classes. When an activity requires a

resource unit of a specific attribute group, that unit may be selected

from any resource class which is a member of the specified attribute

group. A resource unit may service at most one requirement at any one

time, but it may service requirements for different attribute groups at

different times. The ability to service requirements for different

attribute groups at different times has been restricted in the present

implementation for reasons explained below.

As an example, suppose there are seven resource classes, denoted

by yj for j = l to 7, and three attribute groups, denoted by A1 , A2 ,

and A3 • In an airline scheduling problem, for example, there might be

seven different kinds of aircraft used by the airline. Attribute group

A1 might consist of all aircraft with seating capacity greater than

120, attribute group A2 might consist of all jet powered aircraft, and

attribute group A3 might consist of all aircraft that can land on a

5,000 foot runway. Figure 12 shows a possible association between

resource classes and attribute groups. A request for a unit of group

A2 , for example, could be satisfied by a unit of one of the resource

classes y2 , y3 , y5 , y7 • Units in class y1 may satisfy requests for

group A1 whereas units of class y4 may satisfy requests for either A1

or A3 •

Resource Classes
rJ.l
P.
;::s
0
....

Al c., x x x
<!) _...,
;::s

A2 ,.c . .., x x x x
.... _...,

1\3 _...,
<

x x x

Figure 12. Association Between Resource Classes
and Attribute Groups.

Subsets of activities that can be scheduled independently can be

determined by the same graph theoretic method as was used in the pro-

40

gram described in Chapter VI. In this case an arc is drawn between two

nodes if the activities corresponding to the two nodes share at least

one common attribute group requirement.

Let q. be the number of units of classy. and R(A.) be the number
J J]_

of units of group A. required at some instant of time. It is desired
]_

to determine whether there exists an assignment of resource units which

satisfies the following conditions:

(1) The number of units assigned to satisfy the requirements of

(2)

(3)

each group, A., is R(A.).
]_]_

The number of units assigned from each classy. does not
J

exceed q ..
J

A resource unit which is a member of classy. is assigned
J

to group A. only if y. is a member of A .. (A unit is
]_ J]_

assigned to group A. if that unit is assigned to an
l

activity which requires a unit of group A.,)
l

This problem is a special case of the transportation problem of

linear prograIJlIIling (13). In the transportation problem there are a

specified number of suppliers, each of which can supply a specified

number of units, and a specified number of customers, each of which

must receive a specified number of units. Also there is a known cost

of shipping a single unit from supplier i to customer j. The problem

is to minimize the total shipping cost subject to the constraint that

all customer demands be met.

To apply the transportation model to the resource assignment

problem, one would consider the resource classes as suppliers and the

attribute groups as customers. The cost of assigning a unit of re-

source classy. to satisfy a requirement for A. is zero if resource
J l

classy. is a member of attribute group A. and is one otherwise. The
J l

analogy between the general transportation problem and the resource

assignment problem is shown in Table VIII. Bayer's transportation

algorithm (14) is used to find an assignment that minimizes the total

cost. The assignment can be made only if the minimized total cost is

zero.

41

The next problem to be considered is the determination of require-

ments for each attribute group during a given time interval, and the

use of the transportation algorithm in the CONFL2 subprogram to deter-

mine whether the next activity can be scheduled. Suppose a call is

made to CONFL2 with n activities in the permutation, As explained in

Chapter VI, the first n - 1 activities have been scheduled so that the

task at hand is to schedule the n'th activity. The scheduled start and

42

TABLE VIII

ANALOGY BETWEEN GENERAL TRANSPORTATION PROBLEM
AND RESOURCE ASSIGNMENT PROBLEM

Transportation Problem

Suppliers

Customers

Shipping Cost

Resource Assignment
Problem

Resource Classes

Attribute Groups

"Cost" is O or 1

end times for the first n - 1 activities have been retained in the

tables described in Chapter V. Let t 0 and t 1 be the proposed start

and end times for activity n. Initially let t 0 be equal to the window

start time for activity n. Then proceed as follows:

(1) Compute t 1 by adding the actual time required by activity n

to to.

(2) Compute the number of units of each attribute group required

by then activities during the time interval bounded by t 0

and t 1 • A procedure used for this computation is described

below.

(3) Invoke the transportation algorithm. If the minimized total

cost is zero, then the attribute requirements can be satis-

fied during the time interval bounded by t 0 and t 1 , and t 0

and t 1 are entered as the scheduled start and end times for

activity n.

(4) If the minimized cost is greater than zero, then set t 0 equal

to the earliest time that any attribute requirement may

decrease. The earliest time any attribute requirement may

decrease is the earliest scheduled ending time of the first

n - l activities. Recompute t 1 , and if t 1 does not exceed

the window end time, then return to step 2. Otherwise,

report that activity n cannot be scheduled.

In the program described in Chapter V, a table was kept for each

43

resource class, which contained scheduled start and end times of activi-

ties requiring units of that resource class. In this program, such a

table is kept for each attribute group. It was noted in Chapter V that

the method used for counting the number of overlapping activities was

unduly restrictive. Suppose for example, the scheduled time for

activity x1 was 4:00 to 6:00, and the scheduled time for activity x2

was 6:00 to 8:00. If the proposed scheduled time for activity x3 was

5:00 to 7:00, the method used in the previous program would count two

overlapping activities and conclude that three units were required,

when it is clear that only two units are required. A more accurate

method of determining the number of units of an attribute group re-

quired during a specified time interval is used in this program. For

any attribute group, let k be the number of units required during the

time interval bounded by t 0 and t 1 , and let (c1 , d1), (c2 , d2), ••• ,

(cn-l' dn_1) be the start and end times of those activities already

scheduled which require a unit of that attribute group. Let f 1 , f 2 ,

••• , fn-l be flags associated with each scheduled activity. Each flag

will indicate whether the scheduled time of its corresponding activity

overlaps the time interval bounded by t 0 and t 1 • The value of k is

computed as follows:

(1) Set k equal to zero. Set f. equal to zero for all i,
1

(2) Order the c., d. pairs in increasing order of c .• Choose
l l l

a value for j such that c. 1 < t 0 < c .•
J- - - J

(3) This step counts the number of overlapping activities that

begin before t 0 . Fork= 1 to j - 1, if a1) t 0 , then

set f. = 1 and add 1 to k,
l

(4) This step counts the number of overlapping activities that

44

begin after t 0 . If two activities both overlap the interval

being examined but do not overlap each other, then they may

be counted as one activity. For i = j to n - 1:

If c. < tl then for J.. = 1 to i - 1 search for a pair CA' ay
l

where f,R = 1 and d,R ~ c .•
l

If such a pair is found, set

a; = d .• Otherwise set .f. = 1 and add 1 to k,
l l

An example is shown in Table IX. Note that the second and third

activity both overlap the time period 3:00 to 5:00, but since they do

not overlap each other, they. may be considered as one activity

scheduled for 2:00 to 6:00.

This method examines whether resource assignments can be made

during sub-intervals of time, without considering whether or not

assignments can be made for the entire period of time under considera-

tion. Diabolical cases may arise in which the assignment can be made

during each sub-interval but not for the entire period of time under

consideration. An example of such a case is shown in Table X.

When the permutation consists of x1 , x2 , and x3 , the time inter-

val under consideration is 9:00 to 11:00. The only assignment that

could be made is two units of y1 for A1 and one unit of y2 for A2 •

When the permutation consists of x1 , x2 , x3 , x4 , and x5 , the time

interval to be considered is 10:00 to 12:00. The only assignment that

TABLE IX

COMPUTATION OF THE NUMBER OF UNITS REQUIRED
OF A PARTICULAR ATTRIBUTE GROUP

to = 3:00 tl = 5:00

cl = 1:00 dl 3:00 fl = 0

c2 2:00 d2 4:00 f2 = 1

c3 = 4:00 d3 = 6:00 f3 = 0

c4 = 5:00 d4 = 7:00 f4 = 0

k = 1

TABLE X

A CASE FOR WHICH AN ASSIGNMENT CAN BE MADE FOR
EACH SUBINTERVAL, BUT CANNOT BE MADE FOR

THE ENTIRE PERIOD OF TIME

Activity Window Time Required

8:00-10:00 2

8:00-10:00

9:00-11:00 2

10:00-12:00 2

10:00-12:00 2

Resource Class Attribute

1, 2

2, 3

Attribute
Groups Required

Quantity

2

2

45

could be made is one unit of y1 for A and two units of y2 for A3 .
2

Notice that assignments can be made for each subinterval of time but

46

that one unit cannot be assigned to x 3 continuously from 9:00 to 11:00.

The method described above would report that a schedule exists when in

fact no schedule can be found.

To avoid such situations, we add the restriction that a resource

unit may be assigned to only one attribute group during the entire

period of time under consideration. In the example of Table X, if a

unit of y1 were assigned to an activity requiring a unit of A1 from

8:00 to 10:00, then the same unit could be assigned to another activity

requiring a unit of A1 after 10:00, but the unit could not be assigned

to satisfy an activity's request for A2 even though class y1 is a member

of group A2 • To implement this restriction, a dummy activity is added

which requires no resources but which must be scheduled for the entire

period of time under consideration. This forces CONFL2 to look for an

assignment that can be made for the entire time period. In the example

of Table X, an attempt to schedule a dummy activity during the time

interval 8:00 to 12:00 would cause CONFL2 to report that no schedule

could be found.

There are cases, however, for which this added restriction would

cause a schedule not to be found when in fact a schedule exists. Sup-

pose two activities request units of attribute group A1 ; one of the

activities can be scheduled from 8:00 to 10:00 and the other from

10:00 to 12:00. Suppose two resource classes, y1 and y2 can service

the request, and that a unit of y1 is available from 8:00 to 10:00 and

a unit of y2 is available from 10:00 to 12:00. Clearly a schedule

exists, but the additional restriction described above may result in

a report that no schedule can be found.

47

It was decided to take the more restrictive approach and use the

dummy activity in the program at the cost of possibly not finding a

schedule when one does exist. The proplem of guaranteeing that a

schedule will be found if and only if one does exist apparently

remains unsolved at the time of this writing.

CHAPTER VIII

CONCLUSION AND SUGGESTIONS FOR

FURTHER INVESTIGATION

The primary goal of this investigation has been the application

of tree structured processes to the solution of a certain class of

scheduling problems. This goal has been attained through the develop­

ment of four computer programs. Three of these four programs were

written to solve subclasses of the class of scheduling problems under

consideration, and the fourth program was written to solve the full

class of problems. Except for certain cases which are noted elsewhere

in this report, each of these four programs solves the class or sub­

class of problems for which it was written. Another goal which has

been achieved was the elimination of the need to impos~ a discrete

resolution on the time dimension. This has been done by scheduling

each activity as early in its window as possible.

In addition to the attainment of these goals, the investigation

resulted in several other significant achievements. One of these is

the use of graph theoretic techniques to identify independent subsets

of activities, as described in Chapter V. Another accomplishment is

the development of an algorithm to count the number of units of an

attribute group required during a subinterval of time. Still another

accomplishment is the application of a solution method for the

110

49

transportation problem to the problem of assigning resource classes to

attribute groups, as described in Chapter VII.

However, the author believes that the most important results of

the investigation are to be found not in the goals that have been

achieved, but in the problem areas that have been uncovered by the

investigation which could lead to further study. Traversal of decision

trees has been of primary importance· in developing these programs. It

may well be said that the investigation itself has proceeded in a tree

structured manner. In a number of instances during the development of

the above-mentioned programs, interesting problems and questions suit­

able for further investigation were encountered; in each case a decision

had to be made as to whether to turn the investigation toward a deeper

study of the problem uncovered or to continue in the current direction.

In the following paragraphs, some unbeaten paths in this decision tree

are outlined.

It was conjectured in Chapter III that, by ordering the windows

in increasing order of window start time, the first schedule found

would have some earliest attribute associated with it. The effect of

ordering windows merits further investigation. Will ordering of windows

in decreasing order of time constraint produce a solution in the

shortest time by creating conflicts early in the decision making pro­

cess? In each program the CONFL2 routine attempts to schedule each

activity as early in its window as possible. If the windows were

ordered by decreasing order of start time (or perhaps end time) and the

CONFL2 routine were changed so that each activity was scheduled as late

in its window as possible, would the first solution found be the n1atest"

solution?

50

The method of assigning resource units to attribute groups des­

cribed in Chapter VII could use some improvement. An algorithm is used

which can find a solution to the transportation problem in its full

generality. It seems that a faster algorithm could be developed for

this special case. Perhaps an algorithm could be developed which would

determine whether the assignment could be made, and, if the assignment

could not be made, would determine the minimum change in attribute

requirements necessary for an assignment to be made.

Improvements with respect to generating and checking permutations

were discussed in Chapter VI. For a large problem, it is evident that

·an enumeration of all permutations is combinatorially infeasible.

Heuristic techniques need to be developed which will choose the 11best 11

path in a decision tree, that is, the path that is most likely, in some

respect, to arrive at a solution. The interested investigator is

referred to Slagel and Lee (15) for a discussion of heuristic techniques

applied to tree searching problems.

Lastly, the feasibility of applying the final program to a fairly

large problem should be studied. Since this investigation has been

concerned mainly with techniques and methods, no attempt has been made

to determine the amount of time required to solve scheduling problems

of various sizes. The problem shown in the sample output of Appendix B

has nine activities, five resource classes, and eight attribute groups;

no attempt has been made to test a larger problem. Variables that

should be considered in such a study include the number of activities,

the number of windows per activity, the severity of time and resource

constraints, and the number of subsets of independent activities.

51

Hopefully, the techniques developed in this investigation, together

with the results of further investigations, will be useful in the

development of a non-procedural scheduling language which is expected

to be undertaken locally in the near future.

BIBLIOGRAPHY

(1) Van Doren, J. R. "Space Flight Scheduling." Attachment 1 to
Arts and Sciences Research Report on Project 3722-16/D-2160,
Oklahoma State University, January, 1973.

(2) Muth, John F., and Gerald L. Thompson. Industrial Scheduling.
• Englewood Cliffs: Prentice-Hall, 1963.

(3) Bratley, Paul, Michael Florian, and Pierre Robillard. "Scheduling
with Earliest Start and Due Date Constraints." Publication
No. 56, University of Montreal, March, 1971.

(4) Davis, Edward W., and George E. Heidorn. "An Algorithm for
Optimal Project Scheduling under Multiple Resource Con­
straints,11 Management Science, Vol. 17, 12 (1971), 803-816.

(5) Golomb, Solomon W., and Leonard D. Baumert. "Backtrack Program­
ming," Journal of the ACM, Vol. 12 (1965), 516-524.

(6) Knuth, Donald E. The Art of Computer Programming, Vol. I.
Reading: Addison-Wesley, 1968.

(7) Nilsson, Nils J. Problem Solving Methods in Artificial Intelli-
• gence. New York: McGraw-Hill, 1971.

(8) Slagel, James R. Artificial Intelligence: The Heuristic Program­
ming Approach. New York: McGraw-Hill, 1971.

(9) Schrack, G. F., and M. Shimrat. "Algorithm 102, Permutations in
Lexicographical Order," Communications of the ACM, Vol. 5
(June, 1962), 346.

(10) Shen, Mok-Kong. "Algorithm 202, Generation of Permutations in
Lexicographical Order," Communications of the ACM, Vol. 6
(September, 1963), 517.

(11) Ord-Smith, R. J. "Algorithm 323, Generation of Permutations in
Lexicographic Order," Communications of the ACM, Vol. 11
(February, 1968), 117.

(12) Warshall, Stephen. "A Theorem on Boolean Matrices," Journal of
the ACM, Vol. 9 (1962), 11-12.

(13) Wagner, Harvey M. Principles of Operations Research. Englewood
Cliffs: Prentice Hall, 1969.

(14) Bayer, G. "Algorithm 293, Transportation Problem," Communica­
tions of the ACM, Vol. 9 (December, 1966), 869-871.

53

(15) Slagel, James R., and Richard C. T. Lee. "Application of Game
Tree Searching Techniques to Sequential Pattern Recognition,"
Communications of the ACM, Vol. 14 (February, 1971), 103-110.

APPENDIX A

FLOWCHART OF FINAL PROGRAM

Start

Read
Input
Data

Print
Tables

Build
Adjacency
Matrix

Compute
Path
Matrix

Window tree
search for
each subset

Stop

Tables printed are
activity table, resource
class table, requirement
specification table.

Identify subsets of
activities that may
be scheduled inde­
pendently.

This step is
elaborated on the
following pages.

Legend
LPERM - save area for permutations
LVL - current level of window tree
NODE - pointer to window at current level
PLVL - current level of permutation tree
PSTK - vector containing permutation
RETCODEl - return code set by CONFLl
RETCODE2 - return code set by CONFL2
SLS - tentative activity start time
SLE - tentative activity end time
STK - stack used in window tree traversal

55

Start Window
Tree Search

LVL,._ 1

NODE,..__ 1

STK(LVL).-.­
NODE

Call
CONFLl

LPERM(LVL)
..........

PSTK

No

No

Save successful
permutation.
PSTK is created
in CONFLl.

LVL ._.
LVL + 1

56

No

LVL+-LVL-1

Does NODE point
to the last window
at this level?

NODE=
NODE+ 1

End Window
Tree Search

57

Enter CONFLl

PSTK ~
LPERM(LVL-1)

PLVL .,._ L VL

PSTK(PLVL)
~

LVL

Call
CONFL2

Record
>---'Y=->e"-"'--P-t schedule for

first
activity

RETCODEl ..,.._
1

Restore permutation
from previous level.
Also restore schedule
corresponding to the
permutation.

PLVL ~
PLVL + 1

PSTK(PLVL)
~

1

RETCODEl ~
1

Return

58

Return

PLVL ~
PLVL - 1

Erase
Last
Schedule

r

Check whether the numbers
in PSTK constitute a permutation
and whether that permutation
violates lexicographical
ordering.

PSTK(PLVL)+­
~.....,.. PSTK(PLVL)

+ 1

RETCODEl~
0

Return

Remove schedule for
activity pointed to by
PSTK(PLVL). This
schedule was recorded
in CONFL2.

59

Enter CONFL2

Initialize
SLS and SLE

Count
Requirements
For Each
Attribute
Grou ·

Call
Transportation
Routine

Find New
Values For
SLS and SLE

RETCODE2 .,....

0

Return

Ye Record
Schedule for

This Activity

RETCODE2 .,.
1 Return

60

APPENDIX B

SOURCE LISTING AND SAMPLE OUTPUT

OF FINAL PROGRAM

SCHE05: PROC OPTIONSCHAINI; S:HE) 10

STHT LEVEL NEST
l

2

3 l
4 l

5 l
6 2

7 2

8 2

9 2

SCHE05: PROC OPTIONSC~AINI;

,.
THIS PROGRA'4 SCHEDULES MULTIPLE .t(SJu,::E CLASSES. EII.C-i RESOURCE
CLASS HAS ONE OR MORE 4TTil.lBUTES; THE RESOJRCES REQUIRED BY l'II
ACTIVITY ARE SPECIFIED 11\1 TE.tMS OF ATTRIBUTE GORUPS.

MAJOR PROGRAM VARIABLES:

.,

ACTTBL ACTIVITY TABLE
REST BL RESOJRCE CLASS UBLE

RQTBL
STK
PSTK
D

SLVEC

REQUIREHEI\IT TASL: COJ!:D NUl'ERICALLY
PUSHDOWN STACK USED TJ TRAVE,Sf wlNDOW TREE
PUSHDOWN.STACK USEO TO GENERATE PER'4UTATIONi
MATRIX USED TJ REP,ES5NT DEPENDENCY RELATION

BETWEE'II PAl,S OF ACTIVITIES
VECTOR OF TEI\ITATIVE ALLOCATION TIMES - ONE

VECTJR >e, ,ESOU,CE :LASS
SUBSET OF ACTIVITIES BEING SCHEOJLED

SUBSET DF ATT,13UTE ;RQUPS REQUIRED BY CURRENT ACTIVITt
)o!AX IMU)ol # OF ACTIVITIES

SUB
SUBRE S
HAXAC
HAXRES
HAXW
MAXRQ
HAXA TR -
ACT CT
RES CT
RQC T
DCOUNT
LPERM -

MAXI HUH # OF RES Oll!I.CES
MAXIMUM # OF WINJOWS PER ACTIVITY
MAXIMUM # OF RE.;)J IRE'4ENTS CTJTAL HAXl'4UHI

MAXIMUM# OF ATTRIBUTE GROUPS
ACTUAL CO~NT OF ACTIVITIES
ACTUAL COUNT OF RESOJRCES
ACTUAL CJUNT OF R:OUIREMENTS
OF ACTIVITIES I'll LA,GEST SU3SET

LAST SUCCESSFUL PERHLITATION

OCL (MAXAC, MAXRE.S, MAXW, HAX"R:;i, A:;TCT, '1.ESCT, RQ:T, I, J, K, MII.X~TR,
RTCODEl, RTCODE2, ROW,DCOUNT, SCT,LVL,NODE,PliLI

FIXED BIN INI Tl 01; •
I* READ INPUT PARAMETERS •I

GET LIST ('!AXA:, Ho\XRES, MAXW, MAXRQ, MiXATRI;
HAXW: MINIMAXW,81;

BLKl: BEG IN;
DCL l ACTTBLIHAXACI,

2 11.C T# :HAR(41 1

2 ACTNA'IE CHAR(SI,
2 ~CTTIME FIXEd BIN,/~ ACTJAL TIME REQJIRED •I
2 A: TWl'IIDJWSOIII.XWI,

3 ACTSTRT FIXED 8111, I* ,1~0JW STA~T Tl'4E */.
3 ACTEND FIXED BIN; I* WlNDO~ END TIME*/

DCL l RES TBL C 'l.',Xi\E SI,
2 RES~ CHA.tl41 1

2 RE SNII. ME C-iAR 181 ,
2 ~ESUNI TS FIXED BII\I, I* # OF UNI TS IN CLASS *I
2 RESATRllOI FIXED BIN;

DCL RQTHACMIIXRQI,
2 RQACTA CHAR(41,
2 RQATRA FIXED BIN;

DCL CA,DCOD: CriAR(ll, BUF CHARC791;

62

SCHED l O
SCHEJ 20
SCHED 30
SCHED ~i>
SCHE!> 50
SCHED ~J
S::-iED 70
SCHEJ 80
SCHED iJ
SC-iEDlOO
SCHEO 110
S CHED120
SCHED130
SCHi:Dl'tO
SCHE0150
s::-1eouo
SCHEDl 70
SCHED180
SCHED190
SCHED2lJ
s:-1eo21 o
SCHED220
SCHED230.
s:riE0240
SCHED250
SGH!i:OHO
SC-fED270
S CHE0l3J
SCHE02'10
SCHE030J
SCHED31J
SCHED32J
SCHEi>330
S CHE031oJ
SC·i':D350
SCHE031>0
SCHED370
SCriED380
SCHE 0390
SCHED~OO
SC-iED'+l O
SCHED420
SCHEDr.30
SCHED440
S CHE0\5J
SCHED4!>0
SCHE0470
SCHED43J
SC,tE04'10
SCHED500
SCHED51J
SC-IED5?0
S CHED530
SCHfOS,.J
SC'"IED550
SCHED560

SCHEDS: PRDC OPTIONSIHAINI;

STHT LEVEL NEST

10

11
13

lit

15
16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34

35

36

37
38
39
40
41
42

43
44

45

46
47

2

2
2

2

2
2
2

·2

2
2
2
2
2

2
2
2
2
·2
2
2
2
2
2
2

2

2

2
2
2
2
2
2

2
2

2

2
2

1
1

1

1
1

1
2
2
1
1

l
l
l

l
1
l

DCL ATTBLIMAXRES•l,HAXATR•H FIXEO 81!11 1
RESQTYIMAXRESI FIXED BINI

I• READ (NPUT DATA FOR ACTIVlTIES, '1.ESOIRCE CLASSES AN)
REQUI REHENTS .,

ON ENOFILEISYSINI GO TO LAST_CARD;
ATTBL z 11

READCARO:
GET EDIT I CARDCODE, BUF I (CO Lil I, A 111,A en I I;
IF CARDCODE = 1 1 1 THEN

DO; I* ACTh'ITY TABLE f'IIPUT *I
ACTCT = ACTCT •1;
GET STRING IBUFl EDITIACTTBLIACTCTII

IAl41,Ali:ll, 1171Fl41 I;
ENJ;

ELSE IF CARDCDDE = 1 2 1 THEN
DO; I* RESOJRCE CLASS TABLE I'IIPJT *I

RESCT = RESCTq;
GET STR l'IIG I BUF I EDIT IR: STBL I RESC Tl I

CAl41,AIB1,lll I FC~II;
DO l=l TJ 10 WHILEIR~SATP(RESCT,ll >OJ;

ATTBLIRESCT,RESATHRESCT,111 "' O;
ENO;
RE SQ TY.IRE SCT I = :Re,SUNI Tsc·~e: SC'TI;

ENO;
ELSE IF CARD:ODE = 131 THEN

DO; . I* REQUIRE'IENTS INl>UT *I
RQCT .. RQCT •1;
.GET STRl'IIG IBUFI E·DITIRQTBLAIRQCTI I IA(41 1 FC~II;

END;
ELSE PUT SKIP EDIT ICAROCOOE,BUF, 1 INVALID CARDCOOE'I

I AC 11 ,A I 79.I .~ l;
GO TO READCARO;

LAST_CARD:.
IF ACTCT = 0 I RESCT = 0 I RQCT a O

THEN DO;
PUT SKIP EDIT I 1 MISSIN~ INPUT DATA 1 l(AI;
STOP;

EN:>;
ATTBLIRESCT+l,*I = l;
ATTBLl*,MAXATR+ll a O;

I* PRINT TABLES *I

PUT EDIT I' TABLE OF ACTIVITIES 1.IIPAGE,ltl2Jl,A,SKIPl111;
PUT EOI T 1 'ACT #', • n ME REO', • w1 r-.JCiws• 1

I SK IP (111 A, COL 114 I, A, COL I 2a I ,A I ;
PUT EDIT I IACTTBLII I DO l=l TO ACTCTII

I SK IP I 11 , XI 11 .~ I 41 , XI 11 ,.\ I 81 , X 111 ,F (41 ,
(HAXWIIXlbl,Fl41,Xlll,Fl4111:

PUT EDIT I •TABLE O~ RESOURCE CLASSES' I ISKIPl31,XltJl,At;
PUT EUITl 1 CLASS 1 , 1 # OF U:-i!TS•, 1 ATT.l.liWTES 1 l

I SKI Pl 11 ,COLI 81 ,A ,COLI 2ll, A, COLC37 I ,A I;

s:.tE:> 10

63

SCHED570
SC,tEDSBO
SCHEDHO
SCHED!>OO
S::Hl:)610
S CHE0!>20
S:HED630
SCHEOb40
SCHE0650
SCHEDb!,O
S:HEl670
SCHED!:.90
SCHED6'10
SCHED700
SCHED710
SCHED720
SCHED730
SCHED7ft0
SCHED750
SCHED7!10
SCHED770
SCHE::>780·
SCHEDHO
S:flEDBDO
SCHEDBlO
SCHE'0~20
SCHl:0830
SCHED840
SCHEDB50
SC~ED 860
SCHE0117:>
SCHED880
SCHED890
S CHE0'1J:>
SCHED9l O
SCHED920
SCHEOHO
SC~E09t,0
SCHED950
SCHEDH:>
SCHED970
SCHED980
SCHEO'HO
SCHE10DO
SCHE1010
SCHElOZD
SCri!: 1030
S CHEl:>t,0
SCHE1050
SCHE1060
SCHEl:>f:>
SCHElO<IO
SCHE1090
SCHElllJ
SCHE1110

SCHE05: PROC OPTIONSIMAINI; S:HE) 10

STHT Ll'VEL NEST

48

49
50

51

52
53
54

55

56
57
58
60
61
62
63

64

65

66

67
68
69
70
71
72
73
74
75

76
77
78

2

2
2

2

2
3
3

3

3
3
3
3
3
3
3

3

3

3

3
3
3
3
3
3
3
3
3

3
3
3

l
1
1
l
l

l
2
2
3
3
3
2
1

l
2

PUT EDIT IIRESTBLIII 00 1=1 TO USCTII
IS Kl Pt l I, X t l O I, A 14 I,~ 11 1, Al 8 1, XI 11, Fl 4 1, XI 71, I 10 IF I 411;

PUT EDIT I' TABLE OF REQUIREMENTS 1 IIPA:;E,Xl201,A,SKIPl1ll;
PUT EDIT l'ACT IV !TY', 1 ATTR !BUTE G:1.JuP 1 1

I SK I PI I I , COLI I> I , A, CCL I 2 :> I , A I ;
PUT EDIT IIRQTBLA(II DO l=l TO R;J:TII

(SKIP 11 11 X (10 I, A (4 1, X (10 I, F (411 ;
I*

PUT EDIT! 1 ATH !BUTE MATRIX', ((ATTBLI! ,JI 00 J=l TO
MAXATR+l I 00 l=l TO RES CT +111

(PAGE ,A ,SKIPl21 ,IRESCT+ll I (MAXATR+l I CFl'+ll ,SKIPI);
*I

BLK2: BEG! N;
DCL LOOKA ENTRY RETURNSIFIXED BINI;
DCL l RQTBL (RQCT 1,

21RQACT#, RQATR#I FIXED BIN;
OCL OIACTCT,ACTCTI Bl Till;

I* LOOK UP EACH ACTIVITY I: ATTRIB, IN RQTBLA, A"ID PLACE THE RJ~
POSITIONS I~ THE CORRESPONDING POSITION IN RQTBL, THUS CONSTRUCT~
ING A NUMERICAL REQUIREMENT TABLE .,

DO I= 1 TO RQCT;
ROW= LOOKAIRQACTA(lll;
IF ~O~ = D THEN GO TO TBL_ERROR;

·RQACT Ill I l = ROW;
ROATR#ll l = RQATRACl l;

END; -
GO TO BUILD_O;

TBL_ERROR:
PUT SKIP EDIT IRQACTA(11, • ITEM NOT IN TABLE'l

I A(4l ,Xl21,Al4l,AI;
STOP;

I* CONSTRUCT D MATRIX BY ENTERING A l IN 011,JI AND DIJ, II
IF ACTIII A~D ACTIJI MUST Srl~RE AT LEAST 1 ATTRIB, CLASS .,

BUILO_O:
o = •o '8;
00 I = l TO RQC T-1 ;

00 J = I+ 1 TO ROC T;
If RQACT#lll ~= RQACT#IJI & R~.\TR#lll = RQHR#lJl

THEN DO;
DI RQAC T# I II ,RQAC T# I JII '1' 8;
OIRQACT#IJl,RQACT~llll = '1'8;

ENO;
ENO;

ENO;
I* N~W USE WARSHILL' S ALGOQITHM TO GET THE PATH MATRIX

COR~ESPO~OING TJ THE AOJACEN:Y MATRIX 0, .,
00 J=l TO AC TC T;

DO I = 1 TO ACTCT;
IF 011,Jl THEN Dll,*I 2 Dll,*l I DCJ,*I;

64

SCHEll 20
SC'iEll30
SCHEll'+O
SCHEll 50
SCHE 1160
SCHE1170
S:::'iEll 80
SCHE 1190
SCHE12JO
S:::HE 121 0
SCHE1220
SCHE1230
SCHE 1240
SCHE1250
SCHE12~0
SCHE 1270
SCHEln:>
SCHE1290
SCHE 1300
SCHE13l:l
SCl-iE 1320
SCHE1330
SCHE13lt0
S:::HE 1350
SCHE 1360
SCHE1370
SCl-it1380
SCHE1390
SCHEl'+OO
SCHE1410
S CHE1'+2J
SCHE1430
SCHE14'+0
SCHEl<t50
SCHE14~0
SCHE 1470
SCHE1'+3:l
SCHE 1490
SCHE 1500
SCHE1510
SCHE1520
SCHE1530
SCHE15~0
SCHE 1550
SCHE15bJ
SC>iE 1570
SCHE 1580
S CHE15~0
SCHE1600
SCHE 1610
SCHE11>2J
SCHE1630
SCHEl640
SCHEl 650
SCHE 1660

SCHE05: PROC OPTIDNSIHAINl; SCHEO l O

STHT LEVEL NEST

80
81
82
83
84

85
8b
87
88
89
91
92
93
94
95

96
97

98
99

100

101

102
103
105
lOb
107

108
109

110
111
112
113

3
3
3
3
3

3
3
3
3
3
3
3
3
3
4

4
4

4
4
4

4

4
4
4
4
4

4
4

4
4
4
4

2
1

1
1

l
l
2
2
1
1

l
2
2
l
l

1
l

l
2
2
3

ENO;
ENO;
DD I = 1 TO ACTCT;

DI 1, Il = 'l'B;
ENO;

I• EACH ROW IN THE D MAT~IX SPE:IFl=S A SUBSET OF ACTIVITIES THAT
MUST BE SCHEDULED INTERDEPE;<,tOE;<,tTLY.
FINO THE ti OF ACTIVITIES IN THE LARGEST SUBSET .,

DCOUNT: O;
DO I : 1 TO ACTCT;

K = o;
DO J = 1 TO ACTCT;

IF 011,JI THEN K = K+l;
ENO;
DCOUNT = MAX!DCOJNT,KI;

ENO;
BLK3: BEGIN;

DCL IAIRESCT+l I, B(MAXATR+l 1,Cl IRESCT+l,MAXATR+l 1,
XIRESCT+l,MAXATR+lll FIXED BIN;

OCL ISTKIDCOUNTI, PSTKIOCOUNTI, SJBIDCOJ'lT II FIXED 3l'l;
DCL l SLVE:TORSIO:'IAXAT~I,

2 SLPT FIXED BIN,
2 SLVEC (DCOUNTI,

3 ISLSTK.T,SLENOI FIXE.> BIN;
OCL SUBRES IMAXATR I FIXED BIN;

OCL CONFL2 ENTi:tYIBITllll;
OCL LPERMIDCOU'.H,DCOUNTI FIX:') BIN;

t• BEGIN TREE TRAVERSAL FOR SJBSETS OF ACTIVITIES THII.T RE:IUHE
INTE~-OEPENDENT SCHEDULING .,

LOOP _1 :
00 ROW= 1 TO ACTCT;

00 I = l TO 11.CTCT;
IF OIROW,11 THEN GO TO SCH_SJBSET;

ENO;
GO TO ENO_LOOP _ l;

SCH_SUB SET:

,. IDENTIFY ACTIVITIES l'I TH~ SUBSET SPECIFIE) BY T~IS ~ow. IF
OIR0~,11 = l PLACE ACTIVITY I INTO THE SJB VECTOR, THEN ZERJ
OUT RJW I l'l THE D MATRIX SIN:E ROW I WILL BE IDENTICAL TO
THE CURRENT ROW ANO WILL OEFI'IE THE SA'IE SU!::SET JF ~CTIVITIES. .,

SU8=0;
SCT=O;
PUT :DlT l'ATT!:MPT!NG TO SCHEDULE THE FOLLOWING ACTIVITIES',

•ACT# TIME RE·JUIREO WlN)OWS' I
(PAGE,A,SK!Pll.1,AI;

00 I=l TO ACTCT;
IF O IP.OW ,I I = 'l' B THE'I

DO;
SCT" SCT+l;

65

SCHElb70
SCHElbBO
SCHE lt.90
S CHE1700
SCH El 710
SCHE 1720
SCHEl 73:J
SC HE l 7't0
SCHEl750
S CHEl 7!>0
SCHEl 770
SCHE1780
SCHElHO
SCHE 1600
SCHElBlO
SCHE1620
SCHE1830
SCHElB<tO
SCHE1B50
SCHE1B60
SCHElB70
SCHElBBO
SCH!: l tl90
SCHEB:>J
SCHE1910
SCHE1920
SCHElH:J
SCHE19r.O
SCHE1950
SCHEl9!>0
SC-iE 1970
SCHE19BO
SCHEI 9'10
SCHE 2000
SCHE2010
SCHE2020
·SC'"IE203 0
S CHE2:ll+:J
SCHE2050
SCHE20b0
SCHE2070
SCHE2080
SCH!:2090
SCHE2l00
SC.HE 2110
SCHE2120
SCHE2130
SCHE 2140
SCHE2150
S CHE21 !>O
SCHE2170
SCHE2180
SCHE2l 90
SCHE 2200
SCHE2210

SCHE!)5: PROC OPTIONS I HAI NJ i s:-.eo 10

STHT LEVEL NEST

114
115
117

118
119

120
121
122

123

124
125
126

127
129
130
131
132
133
134

135

136
137
138
140
141
142
143
144
145

146

147
149
150

151
152
1~3

4
4
4

4
4

4
4
4

4
4
4

4
4
4
4
4
4
4

4

4
4
4
4
4
4
4
4
4

4

4
4
4

4
4
4

3
3
3

3
2

l
l
l

l
l
1

2
2
3
3
2
2
2

1
l
l
2
2
2
l
1
l

l
l
l

l
2
2

SUBISCT l=I;
lF I ~= ROW THEN DI I,•1 = •o•s;
PUT SKIP EDIT IACT#lll,A:TTIMEl!l ,IACTWINDOWSll,JI

ENO;
ENO;

00 J=l TO ~AXw WHILE 14CTEIID(l,JI ~= 0111
(A 141 , X I 7 I , F 141 , X I 8 I , (MAX.; I IF I 4 I, X 11 I, F (4 1,

XI 3111 i

I• BEGIN TRAVERSAL OF WINDOW TREE FJR SUBSET OF 4CTIVITIES *I

LPERM=O;
LVL "1:

FIRST_WINDOW:
NOOE= l;
I* PL ACE NEW NOOE ON STACK AND CHECK FOR CONFLICT *I

PUSH_ONTO_STACK:
STK(l VLI = NODE;
CALL CON Fl 1 ;
IF RTCODEl = l THEN

00;
I* NO CON FL JCT OETECTE::>; GJ TO NEXT LEVEL *I
IF LVL. = SCT THEN GO TO OUTPUT _SOLUT IO\I;
DO I= 1 TO L VL;

LPERMILVL, I I = PSTKI I I;
END;
LVL=LVL+l;
GO TO FIRST_WINDOW;

END;
I* CONFL JCT DETECTED, CHECK N!:XT Wl"IDOW Oil. GO. TO PREVIOUS LEVEL*/

NE XT_kINDOW:
NODE = NOOE +l;
IF NODE <= HAXW & ACTENO(SUBILVLl,NODEI - 0

THEN GO TO PUSH_ONTO_STACK;
IF LVL=l THEN DO;

PUT EDITllt..Jl'-',l&OI'-' HS<lP(21,A,S'<IPlll,AI;
GO TO END_LOOP_l;

ENDi
LVL = LVL-1;
NOOE= STK(LVLI;
GO TO NEXT_WINDOW;

OUTPUT_SOLUTION:
CALL CONFL21'l'BI;
I f R T: ODE 2 = 0 TH:: N GO TO NEXT _w INDOW i
PUT ED!Tll60l'-'ICSK!Pl21,AI;

PUT EDIT ('SCHEDULE FOR A~OVE ACTIVITIES•,
'ACT# WINDOW ACTUAL'I

IS K IP I 2 I , X (l O I , A , S'< IP I 11 , X(l O I , 0 i
00 l = 1 TO l VL;

K = sua I PS TK I 11 I ;
PUT SKIP EDIT CACT#IKl,ACTWINDJwS(K,STK(PST<(IJIJ,

SLVEC CO ,111

66

SCHE2220
SCHE 2230
SCHE2241)
SCHE 2250
SCHE2260
SCHE2270
SCHE 2280
S CHE2290
SCHE2300
SCHE2310
S CHE2320
SCHE233()
SCHE2340
SCHE235J
SCHE2360
SCHE 2370
SCHE2390
SCHE2390
SCHE 2400
SCHEZ41:>
SCHE2420
SCHE2430
SCHE2440
SCHE2450
S CHE2460
SCHE2470
SCHE2480
SCHE24~0
SCHE 2500
SCHE 2510
SCHE252:l
SCHE2530
SCHE2540
S CHE2550
SCHE2560
SCHE2570
SCHE2580
SCHE2590
S CHE26JO
SCHE2610
SCHE 2620
SCHE2630
SCI-IE 2640
SCHE 2650
SCHE2660
SCHE 2670
SCHE 2660
SCHE26)0
SCHE 2 700
SCHE2710
SCHE2720
SCHE2730
S CHE2740
SCHE2750
SCHE2760

SCHE05: PROC OPTIONSIHAIN); SCHED 10

STHT LEVEL NEST

154
155

156
157
158
159

160
161
162

163
164
165
166
167
168
169

170
171
173
174
175
176

177

178

179
180
181
182
183
184
185
186
187
188
189
190
191

4
4

4
4
4
4

4
4
4

4
4
4
4
4
4
4

4
4
4
4
4
4

4

4

5
5
5
5
5
5
5
5
5
5
5
5
5

2
1

1
2
3
3

3
2
l

1
2
2
2
3
3
4

4
4
4
3
2
1

1
1
l
1
2
2
2
2

IXl91,Al41,IZl(Xl31,Fl41,X(ll ,Fl4111;
END;

PUT EOlll'ASSIGNMENTS OF RESOJRCE CLASSES TO ATTRIBUTE GROUPS',
•RESJuqcE CLASS A TTil.lBUTE :.ROUP ¥ OF UNITS' I

(SKIP 12 I, A, SK IP 111, A I;
DO 1=1 TO RESCT;

00 J= l TO HAXATR;
IF XI I ,JI ,= 0 THEN

PUT EDIT IRES~lll ,J,Xll,JII
I SK IP(11, COL I 51, A I 41 , CJL(221 ,F 141 ,COLI 391 ,FI 411 ;

ENO;
ENO;
PUT EDIT l 1 RESJURCE ASSIGN~E'ITS•, •::LASS', 1 TIH:S ASSl:iN:0 1 1

IS Kl P I 2 I , CO LI 2 0 I , A, SK l P 11 I , A , COL I l 5 I , A I i
00 1=1 TO RESCT;

PUT SKIP EOITIRES#l 111 1Xlll,Al411;
ICCL=lO;
DO J = 1 TO MAX.\TR;

IF Xll,J I ,= 0 THEN
DO K=l TO SLPTIJ);

PUT SKIPIOI EDITl'l',SLVECIJ,Kl, 1 1'1
IC OL I l COL 1, A, FI 41, XI 11, FI 4 1, A I;

!COL = ICOL+l2i
IF ICOL>llO THEN ICJL=lO;

ENO;
ENO;

END;
GO TO NEXT_WINDOW;

ENO_LOOP_l:
END LOOP_l;

I* * * * * * * * * * * * * * * * * *
CONFL l: PROC;

* .,

I* GENEUTE PERMUTATIONS OF WINDOWS IN THE STACK UNUL A PERH~JfA-
TION IS REACHED FOR WHICH A SCHEJULE CAN BE FOUNJ

*I
DCL I l ,J,K,Ll FIXED Bl N;
SLVECTJRS=O;
SUBRE S=O;
IF LVL = 1 THEN

DO;
I = SUBlll;
CALL SCANRQ(11 i
PST K 111 = l i
00 J =l TO ~AXATR WHIL=ISUBRES(JI > Ol;

K = SUBR E SI JI ;
SLSTRTIK,11 = ACTSTRTII,STK(tl)i
SLENDIK,11 = SLSTRTIK,ll + ACTTIMEIII;
SLPTIKI = l;

67

SCHE2770
SCHE27BO
SCHE 2790
SCHE2SJJ
SCHE 2810
SCHE 2820
SCHE2830
SCHE 2840
SCHE21!50
SCHE28!>0
SCHE 2870
SCHE2880
SCHE2S~O
SCHE2900
SCHE2'HO
sc.ie2q20
SCHE 2930
SCHE2940
SCHE2950
SCHE2960
SCHE2HO
SCHE 2980
SCHE2990
SCHE3000
,SCHS.301 0
SCHE3320
SCHE3030
SCH!:3040
S CHE3050
SCHE30!>0
SCHE 3070
SCHE3030
S:HE3090
SCHE 3100
SCHE3110
SC>iE3120
SCHE3130
SCHE3140
SCHE3150
SCHE3160
SCHE3170
SCHE3180
SCHE3190
SCHE3200
SCHE 3210
SCHE3220
SCHE3230
SCHE3240
S CHE3250
SCHE32!>0
SCHE 3270
SCHE3230
SCHE 3290
SCHE 3300
SCHE3310

SCHED 5: PROC OPTIONS(HAJNI; SCHED 10

STHT LEVEL NEST

192
193
194
195
19b
197
198

199
200
201
202
203
204
205
20b
207

208

209
210
212

213
214
215
216
as
220
222
223

224

226
228
229
230
231
232

233

234
235
236
237

5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5

5

5
5
5

5
5
5
5
5
5
5
5

5

5
5
5
5
5
5

5

5
5
5
5

2
1
l
1
l
1
l

1
l
l

l
l

1
l
l
1
1

l
l
l

l
l
1

END:
R ll:ODE I = l;
SLSTRTC0,11 = ACTSTRTCl,SHCllli
SLENDIO ,11 SLSTRT 10,l I + ACTT f!'IEC JI;

SLPTIOI s l;
RETURN i

ENO;
I• BEGIN GENERATING PERMUTATIONS IN LEXICAL ORDER,STARTING WITH THE

PERMUTATION IIH ICH PRODUCED A SCHEOULE AT TH: Pil.: VIJUS LEVEL,
RESTORE THIS PREVIOUS PERMUTATION IN PSTK, AND CALL CONFL2 REPEAT­
EOL Y TO RE STORE THE PREVIOUS SCHEilULE, .,

P STK=Oi
DO PLVL=l TO lVL-li

PSTKIPLVLI = LPERMCLVL-1,PLVLI;
CALL CONFL21'0'BI;

END;
PLVL = LVL;
PSTKIPLVLI = LVL;
GO TO CALL_C2;

NE XT_LVL: .
PS TK I PL VLI = 1;

CHECK_Ct1NFLZ:
IF PL VL > l THEN

DO I = l TO Pl VL - l;
IF PSTKIII ""PST·KtPLVU THl:N GO .. TO NEXT_ll"O;

END;
I* COMPARE THIS PERMUTATION WITH THE PE~MUTATION OF TH: PREVIOUS LEVEL

AND CHECK FOR VIOLATIONS OF LEXICAL ORDERING
*I

K=O;
DO I =l TO PLVLi

K = K+l;
IFPSTKIKI
IF PSTKIKI
IF PST1<IKI

END;
CALL_C2:

LVL THEN K = K+l;
C LPERMILVL-1,ll THEN GO TO NEXT_NO;
> LPERMILVL-1,11 TH~N GO TO CALL_C2i

CALL CONFL 21 '0 1 81 i
IF RTCODE2 = 0 THEN GO TO NEXT _NO i

i• NO CON Fl IC T DE TEC TEO */
IF PLVL = LVL THEN DO;

PLVL = PLVL+l;
GO TO NEXT_LVL i

RTCODEl "' li
RETURi'li

ENO;

NEXT_NO: I* CO~FLICT FOUND *I
IF PSTK IPLVL I C LVL THEN

oo:
PSTKIPLVLI = PSTK(PLVLI + li
GO TO CHECK_CONFL2i

ENO;

68

SCHE3320
SCHE3330
SCHE33!t0
SCHE3350
SCHE3360
SCHE3370
SCHE 3380
SCHE33~J
SCHE3400
SCHE3'+10
SCHE3420
SCHE 3430
SCHE3440
SCHE3450
SCHE3't60
SCHE3470
SCHE3480
SCHE3490
SCHE.350:1
SCHE3510
SCHE3520
SCHE353J ·
SCHE35't0
SCHE3550
SCHE35!»0
SCHE 3570
SCHE 3580
SCHE3590
SCHE36UO
SCHE3610
SCHE3620
SCHE 3630
SCHE36't0
SCHE3650
SCHE3660
SCHE3!>70
SCHE3680
SCHE3690
SCHE37:>0
S::HE3710
SCHE3720
SCHE3730
SCHE 3740
SCHE 3750
SCHE37!>0
SCHE3770
SCHE3780
SCHE3790
SCo-tE 3800
SCHE3Bl0
SCHE38?0
SCHE 3t!30
SCHE38't:J
SC-iE 38SO
SCHE 3860

SCHE05: PROC OPT IONS CHAIN I ; SCHED 10

STHT LEVEL NEST

238
240
,41
242
243

244
245
246
247
248
249
250

251

252
253

254
255
256
257
258
259
260
261
262
263
264
264
265
266
267

268
269
270
Hl
272

5
5
5
5
5

5
5
5
5
5
5
5

4

5
5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

5
5
5
5
5

l
l
l

1
1

1
1
1
l

1
l
l

1
1
1
l
1

IF Pl VL • 1 THEN DO;
RTCOOEl ,.0;
RE TURN;

ENO;
PLVL • PLVL - 1;
I* REMOVE TENTATIVE SCHE:DULE TIME FOR ACTIVITY POINTED TO

BY PSTKCPLVLI
*I
CALL S:ANRQC SUtlCPSTKCPLVLI 11;
00 I •l TO :-IAXATR WHILE(SUBRESI I l > 01;

SLPTCSUBRESIIII • SLPTISUBRESIIII - I;
ENO;
SLPTIOI • SLPTIOI - l;
GO TO NEXT_NO;
ENO CON FL 1;

I* * * * * * • * * * • * * • * * *I

CONFL2: PROCCFINALI; ,.
Tr!IS ROUTINE ATTEMPTS TO FINO A SCHEDULE FJR THE ACTIVITIES
POINTED TO BY PSTK. PLVL IS THE# OF ACTIVITIES TO BE SCHEDJLEO.
IF PLYL > I THEN PLYL-1 ACTIVITIES HAVE AL~EADY Bl:l:N SC-f!:OULED.
IF FINAL• 1 THEN A FULL PRE~UTATIONHAS BEEN FOJND ~HICH HAS
THUS FAR PRODUCED ND CONFLl:T, IN T-11 S CASE T-HE ·ROUTtNE IS JSED
TO FIND THE ACTUAL RESUU'l.CE ALLOCATIJNt IF IT C4'l BE F)UND, .,

DCL FINAL B ITC 11;
DCL I I ,J, K ,S LS ,SL E, NEXTSLS, !PO INT, HIND, TEMP, <OU'l T, l'iF ,OEL T ,COST,

WINDEND, HOLDKI
FIXED BIN;

DCLI Cl CX:OUNT 1,01 DCaJNT II FIXED BIN;
DCL DVPCDCOU,'lll g1TC1J;
OCL TRANSPl ENTRYIFIXED BIN, FIXED Bl:'-l,,,.,, I;

INF = 32767;
IF FINAL THEN

DO;
SLS=O;
DELT= 32767;
SLE,W INDEND SLS • DEL T;

END;
ELSE

DO;
I • SUB IP S TK I PL VLI I;
J = STKIPSTKIPLVLII;
CALL SCANRQ(11;

I* SET TENTATIVE STUT TIME
SLS = ACTSTRTC I.JI;
OELT = A:TTIHEIII;
SLE= SLS +DELT;
WINDEND = ACTENDll,JI;

ENO;

START TIME OF WINDOW*/

69

SCHE3970
SCflE 3880
SCHE3890
SCHE39::>J
SCHE 3910
SCHE3920
SCHE3930
SCHE 3940
S CHE3950
SCHE39~0
SCHE 3970
S CHE39SO
SCflE 3990
SCHE4000
SCHE4010
SCHE4020
SCHE 4030
SCHE40'+0
SCHE 4050
SCHE4060
SCHE4070
SCHE 4080
S CHE4090
SCHE4100
SCHE 4110
SCHE4t20
S::H!:4130
SCHE4140
SCHE4150
SCHE4160
SCHE4170
SCHE4180
SCHE 4190
SCHE4200
SCHE421 o
SCflE 4220
SCHE423l
·scHE4240
SCHE4250
S CHE42!>J
SC-IE42 70
SCHE42BO
S CHE42~0
SCHE4300
SCHE4310
SCHE4320
SC,!E4330
SCHE4340
S CHE4350
SCHE4360
SCHE4370
SCHE43BO
SCHE4 390
SCHE4400
SCHE4410

S.CHEO 5: PROC OPTION SI MA I NI: SCHEO 10

STl'T LEVEL NEST

273

27't
275
276
277
278
279
280
281
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299

~00
301
303

304
306
308
309
HO

311

5

5
5
5
5
5
5
5
s
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5
5

5
5
5

5
5
5
5
5

5

1
1

1
1
1
2
2
2
2

1
1
2
2
3
3
3
3
3
3
3
2

1
2
2

1
1
1
2
2

C DUNT _RE Q:
NE XTSLS " WINOENO;

I* FOR EACH ATTRIBUTE GROUP I, SET BIJ I = TO THE I JF -JNITS
REQUIREcl DURl"lG <SLS,SLE>, INITIALIZE Bill TO 1 IF THE CURRENT
ACTIVITY REQUIRES THE ATT{lbUTE I, *I
B " O;

IF ,FINAL THEN
DO I= 1 TO HAXATR WHILE ISUBRESIII > 01;

Bl SIBRE SI 111 : l;
END;
DO I = 1 TO MAXATR;

KOUNT = O;
IF SLPTIII = 0 THEN GO TO BYPASS_COUNT;
DO J = 1 TO SL PT I I I;

Cl JI = SLSTRTII ,JI;
DIJI = SLENOll,JI;
OVP I JI = 1 0' B;

ENO;

I* FOR THE ATTRIBUTE 1, C & 0 CONTAIN START & END TIMES OF ACTI-

.,
VITIES ALREADY SCHEDULED, ORDER THE SE Tl MES BY INCREASING
ORDER OF STARTT IHE

IF SLPTI 11 > 1 THEN
DO J=l-TO SLPT(II -1;

IF CI JI > CI J• 11 THEN

ENO;

00 K = J+ 1 BY -1 TJ 2 WHILE ICI Kl<CIK-111;
TEMP " CIKI;
CI Kl = CI K-11;
C(K-11 = TE'IP;
TEMP = OIKI;
OIKI = 01 K-11;
OIK-11 " TEMP;

ENO;

I* DETERMINE THE EAPLIEST TIME (AFTER SLSI THAT A UNIT MIGHT
BECO~E AVAILABLE .,

00 J = 1 TO SLPTlll;
IF DIJI > SLS & OIJI < NEXTSLS THEN NEXTSLS OIJI;

ENO;

I* FINO VALUE FOR !POINT SUCH THAT :IIPOINTI <= SLS &
Cl IPOINT+l I >= SLS

*I
IF SLS <= Cl 11 THEN !POINT = O;

ELSE IF SLS >= CISLPTIIII THE>,j !POINT= SLPTIII;
ELSE 00 J = 1 TO SLPT(II WHILE ICIJI < SLSI;

!PO INT = J ;
ENO;

I• COUNT ACTIVITIES STARTl"lG BEFOR!: SLS & ENO(N:; AFTER SLS •I
IF IPiHNT > 0 THEN

70

SCHE4420
SCHE4430
SCHE4"1t0
SCHE4450
SCHE44!>0
SCHE4470
SCHE4480
SCHE44'l0
SCHE45:l0
SCHE4510
SCHE4520
SCHE 4530
SCHE4540
SCHE4550
SCHE4560
SCHE4!>70
SCHE4580
SCHE4590
SCHE4f>:)0
SCHE46l O
SCHE4620
SCHE4b30-
SCHE 4b40
SCHE4650
SCHE4bb0
SCHE4670
SCHE 4680
SCHE4b'l0
SCHE 4 700
SCHE4710
SCHE4720
SC>IE4730
SCHE4740
SCHE4750
SCH~4760
SCHE4770
SCHE4 780
SCHE4790
SCHE48:):)
SCHE4810
SCHE 4820
SCHE4U:l
SCHE4840
SCHE 4850
SCHE4Bb0
s:HE 4870
S CHE4880
SCHE4890
SCHE 4900
SCHE4910
SCHE4920
SCHE4930
SCHE4HO
S:HE1t95J
SCHE4960

SCHE05: PROC OPTIONSCKAINI; SCHEO 10

STKT LEVEL NEST

312
313
314
315
316
:!17
318

319
320
321
322
323
324
325
326
?27
328
:29
:!30
331
:!32
:!33
335
?36
337
338
?39
340
341

342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
?59

5
5
5
5
5
5
5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

l
2
2
3
3
3
2

1
1
2
2
3
3
3
3
4
4
5
5
5
4
3
3
4
4
4
3
2
1

l

1
1
1

1
1
1

1
1
1

00 J = l TO IPOINT;
If OIJI > SLS THEN

oo;

END;

OVPI JI = 1 1 18;
KOU NT z KOUNT +l;

ENO;

I* IDENTIFY ACTIV!T !ES THAT ST ART OJ:!.ING <SLS, SLE>.

.. ,
FOR EACH SUCH ACTIVITY, SEE WHETHER IT CAN BE MATCHED ~ITH AN
EARLIER OVERLAPPING ACTIVITY.

IF 1 PO INT < SL P TC I I THEN
00 J=IPOINT+l TO SLPTCII;

IF CtJI < SLE THEN
00;

MINO= CIJI;
HOLOK = O;
IF J > 1 THEN

00 K=l TO J-1;
IF OIK) <=MIND & OVP(Kl

oo;

ENO;

MINO= OIKI;
HCLOK "' K;

ENO;

1 1 1 B THEN

IF HOLDK > 0 THEN D!HOLOKI = DIJ);
ELSE DO;

ENO;
ENO;

BYPASS_COUNT:

OVPIJI = 1 1 1 8;
KOUNT = KOUNT+l;

END;

B tI I = 8 ll I + KOU NT;
ENO;

I* PREPARE TO CALL TRANSPORT AT IJN RJUTINE */
00 l=l TO RESCT+l;

Al 11 = RESIJTY(II;
Clll,*1 = ATTl:ILII,*H

END;
X=O;
TEMP = SUMIAI - SUMIBI;
IF TE MP >= 0

THEN oo;
BIMAXATR+ll • TE~P;
A! !<E SC h 11 = O;

END;
ELSE DO;

A (R E SC Tt-11 = -' TE MP ;
BIMAXATR+ll = O;

ENO;
CALL TRANSPJ(q~SCT+l,MAXATR+l,INF,Cl,A,8,X,COSTI;
IF COST > 0 THEN GO TO R~DUCE_REIJ;

I* ENTER SLS,SLE IN SCHEDULE FOR EACH ATTRIBUTE GROUP RfQUIREO

71

SCHE4970
SCHE4980
SCHE4990
S CHE5QJO
SCHE 501 0
SCHE 5020
SCHE503()
SCHE 5040
SCHE5050
SCHE50o0
SCHE 5070
SCHE50~0
SCHE5090
SCHE 5100
SCHE5110
SCHE 5120
SCHE5130
SCHE51"0
SCHE 5150
SCHE5160
SCHE5170
SCHE 5180 ·
SCHE5l90
SCHE5200
SCHE 521 0
S CHE5220
SCHE5230
SCHE 5240
S CHE525:>
SCHE52!>0
SCHE 5270
SCHE5280
SCHE5290
SCHE5300
SCHE5310
SCHE5320
SCHE 5330
SCHE5340
SCHE 5350
SCHE5360
SCHE5370
SCHE5380
S CHE5390
SCHE5'+00
SCHE 5410
SCHE5420
SCHE5430
SCHE 5440
S CHE545:>
SCHE 54!>0
SCHE 5470
SCHE5490
SCHE 5490
SCHE 5500
SCHE5510

SCHE05: PROC OPTIONSCMAINI;

STHT LEVEL NEST

361
363
364
3b5
366
367
368
369
370
371
?72
373
374
?75
376

377

378
379
380
381

382
383
384
385
3116
387
388
389

390

391

392

393
394

395
396
397
398
399
400
401
402

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

5

5
5
5
5

5
5
5
5
5
5
5
5

5

6

6

6
6

6
7
7
7
7
7
7
7

1
1
1

1
1
1
1
1

l
l
l

l
1
l

l
1

l
1

BY THIS ACTIVITY .,
IF FINAL THEN 00;

RTCOOE2 " 1;
RE TURN;

END;
00 I sl TO HAXATR WHILE ISUBRESC ti > 01;

K= SUS RE SI 11 ; .
SLPTIKI = SLPTIKl+l;
SLSTRTIK,SLPTIKII • SLS;
SLENDIK,SLPTIKII ,. SLE;

END;
SLPTIOI = SLPTIOl+l;
SLSHTIO,SLPTIOII = SLS;
SLENDIO,SLPTIOII = SLE;
RTCOOE2 = 1;
RETURN;

REDUCE_REQ:

IF FINAL THEN DCli
RTCOOE2 ,. O; .
REH.RN;

END;
I* TRY NEW VALUES FOR SLS & SLE •I

SL S = NEX'f·SL S;
SLE = SLS + DELT;
IF SLE > WHIDEND THEN

DO;
RTCOOE2 ,. 0;
RE TURN;

ENO;
ELSE GO TO COUNT _REO;

TRANS Pl: PROC IM,N, lNF,C,A,B, X,KWI; ,.
ALGORlTHM 293 - C::lll_EC TED ti.L:.ORI THHS FROM CACM

*I
OCL IM,N,lNF,KW,Al*l ,Bl*l ,Cl*,*l,XC*,*I I

FIXED BIN;
DCL 11,J,U,V,K,L,S,T,GD,H,P,CIJ,XIJ,Al,BJ,LSVJ,~LVII

FIXED Bl N;
DCL ZG BIT I 11;
DCL (GI HI, LISTU (Ml ,NLV I Ml ,R IN), LIS T\I IN l, LSI O:'l+N-11,

NU H*Nl, LSVI O:NI I
F IXEO BIN;

IN: PROC;
LSVJ "LSVCJI;
DO T = LSVINI BY -1 TO LSVJ;

LS IT+ll =LSI Tl;
ENO;
DO T -= J TO N;

LSVIT I = LSV(Tl + l;
ENO;

S:HEO 10

72

SCHE 5520
SCHE5530
SCHE55't0
SCHE 5550
SCHE5560
SCHE5570
SCHE 5580
SCHE5590
SCHE5600
SCHE 5610
SCHE5620
SCHE5630
SCHE 5640
SCHE565()
SCHE5660
SCHE 5670
SCHE5680
SCHE5690
SCHE5700
SCHE571()
S:HE57ZO
S::HE 5730·
SCHE5740
SCHE5750
SCHE 5760
SCHl:'5"770
SCHE 5780
SCHE 5790
SCHESBOO
SCHE 5810
SCHE5820
SCHE5830
SCHE 5840
SCHE5850
SCHE58!>0
SCHE 5870
SCHE583:)
SCHF5890
SCHE5<100
SCHE5910
SC,iE5920
SCHE 5930
SCHE5'HO
SCHE 5950
SCHE5960
SCHE5970
SCHE 5980
SCHE5HO
SCHE6000
SCHE6010
S CHE6:l20
SCHE603il
SCHE6040
SCHE6053
SCHE 6060

SCHE05: PROC OPTIONS(HAIN);

STHT LEVEL NEST

'i03
404

405
406
407
408
410
1,11
1,12
413
U4

415
"16
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
434
435
436
437
438
't39
440
441
't42
443
444
445
446
44 7
449
450
451
453
454
't55
456
457
458
459

7
7

6
7
1
7
7
7
7
7
7

7
1
1
7
1
1
7
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
b
6
6
b
6
6
6
6
6
6
b
6
6
6
6

l
2
2
2
l

1
1

1
1

1
l

1
1
2
2
1
2
2
2
3
3
3
3
2
1
l

1
1
l
2
2
1
2
2
2
3
3

LSILSVJ+U "' J;
ENO IN;

OUT: PROC;
LSVJ = LSVIJ I;
00 T = LSVIJ-I l+l TO LSVJ;

IF LSI Tl = I THEN DO;
S s T;
GO TO EX;

END;

x = o;

ENO;
EX:

00 T = J TO N;
LSV(T) = LSV!Tl-1;

ENO;
LSVJ = LSVINI;
DO T = S TO LSVJ;

LS<TI = LSI T+ll;
ENO;

END OUT;

00 I = 1 TO H;
NLVIII • 11-ll•N;

ENO;
LSV = O;
l!STV = O;
KW,GO = O;
00 I "' 1 TO H;

H "' I NF;
OOJ•lTON;

IF CI I , JI < H_ THEN H = CI I, J I ;
END;
OOJ=lTON;

CIJ, Cll,JI C(l,JI - H;
IF C I J = 0 THE N

DO;
LISTVIJI = O;
NL VI, NL VI 11 = NL VII I +l;
NL I NL V I) = J;

ENO;
ENO;
KW • H*AI ll+KW;

ENO;
00 J=l TON;

IF LISTV(JI = 0 THEN GO TO °"EXTJl;
Hz INF:
DO I = l TO H;

IF Cl! ,JI = H THEN H = C(l,JI;
ENO;
OD I = l TO M;

CIJ, Cll,JI = Cll,JI - H;
IF CIJ = 0 THEN

DO;
NLVl,NLVCII = NLVIIIH;
NLINLVI I "' J;

SCHEO 10

73

SCHE6070
SCHE6080
SCHE6090
SCHE6100
SCHE6110
SCHE 612 0
SCHE613J
SCHE6HO
SCHE6150
SCHE6l6J
SCHE 61 70
SCHE6180
SCHE61'10
SCHE6200
SCHE6210
SCHE6220
SCHE 623 0
SCHE6240
SCHE6250
SCHE6260
SCHE6270
SCHE62Bo·
SCHE6290
SCHEl.300
SC'-IE6310
SCHE6320
SCHE6330
SCHE 6340
SCHE6350
SCHE6360
SCH!: 6370
SCHE6380
SCHE6390
SCHE 6400
SCHE6410
SCHE642 0
SCHE 643 0
SCHE6440
SCHE6450
SCHE6460
SCHE6470
SC-tE6480
SCHE6490
SCHEb500
SC>iE 651 0
S CHE6520
SCHE6530
SCHE 6540
SCHE6550
SCHE65b0
SC-!E6570
S CHE65SO
SCHE6590
SCHE 6600
SCHE6!> 10

74

SCHED5: PROC OPTIONS(MAINI; s: HEO 10

STMT LEVEL NEST

460 6 3 ENO; SCHE6620
461 6 2 ENO; SCHE6630
462 6 l KW= H*BIJl+KW; S CHEb6<t0
463 6 1 NEXTJl: SCHEbb50

ENO; SCHE6660
SCHEbb70

~64 6 S2: SCHEM,80
00 I 1 TOM; SCHE6690

4b5 6 1 Al Al 11; SCHE6700
466 6 l NLVI = NLVIJI; SCHE6710
467 6 1 DOU= 11-ll*N•l TO NLV[; SCHE6720
468 b 2 IF A [= 0 THEN GO TO NEXTI 2; SCHEb730
00 6 2 J = NLIUI; SCHE6740
471 6 2 BJ= BIJI; SCHE6750
472 6 2 IF BJ = 0 THEN GO TO NEXTJ4; SCHE67!,0
474 6 2 H,Xll ,Jl = MlNIAl,BJJ; SCHE6770
475 6 2 Al = AI-H; S CHE6 790
476 6 2 B IJ l = BJ - H; SCHE6790
H7 6 2 CALL IN; SCHE6BOO
478 6 2 NEXT J 4: SCHEb8lO

ENO; SCHE6820 ,. BEGIN PAGE 2 ., SCHE 61330
479 6 NEXTI 2: S CHEb840

Al II = A I; SCHEb850
480 6 GD = GD +Al; SCHE6860
481 6 'ENO; SCHE!>87J
482 6 531: SCHE6880
483 6 IF GD 0 THEN GO TO S6; SCHE6B90
484 6 S32: SCHEb900

R s O; SCHE 6910
485 6 K = O; SCHE6920
486 6 00 I l TO M; SCHE6BJ
487 6 1 IF Alli ,= 0 THEN SCHE6940
488 6 l 00; SCHE6950
489 6 2 K = K+ 1; S CHE6960
490 6 2 LISTU(Kl = [; SCHE 6970
491 6 2 GI I I = I NF; SCHE6980
492 6 2 ENO; SCHE6990
493 6 1 ELSEGIII = o; SCHE 7000
494 6 l END; SCHE70l0
495 6 S3 3: SCHE7020

L = O; SC'lE 7030
496 6 DO U = 1 TO K; SCHE704J
497 6 1 I = LISTUIUI; SCHE7050
498 6 1 NLVI = NL VI I l; SCHE 7060
499 6 l DJ s = I 1- ll •N+l TO NLVI; SCHE7070
500 6 2 J = NLISJ; S::HE 7080
501 6 2 IF RIJI ,= O THEN GO TO NEXT JS; SCHE7090
503 6 2 RIJ I = I ; SCHE7100
504 6 2 L = L+l; SCHE7110
505 6 2 LI STVI LI = J; SCHE 7120
506 6 2 IF BIJI > 0 THEN GO TO 54; SCHE7130
508 6 2 NEXT JS: SCHE 7140

EtlD; SCHE7150
509 6 ENO; SCHE71 !»O

75

SCHEDS: P'I.OC OPTIONSIHAINII S:HED 10

STMT LEVEL NEST

510 6 IF Ls O THEN GO TO SS; SC'tE 7170
SU 6 K=O; SCHE718D
513 6 DO V " 1 TO L; SCHE:7190
~lit 6 l J = LISTVIVI; SCHE7200
515 6 1 LSVJ = LSVIJI; SCHE7210
516 6 1 00 S = LSVIJ-11+1 TO LSVJ; SCHE7220
517 6 2 I = LSISI; SCHE 7230
518 6 2 IF Gii i = 0 THEN SCHE7240
519 6 2 oo; SC-iE 7Z50
520 6 3 Giii a J; SCHE 7260
521 6 3 K = K+l; SCHE7270
522 6 3 LISTUIKI a I; SCHE7280
523 6 3 END; SCHE7290
524 6 2 END; SCHE7330
525 6 1 END; SCHE 7310
526 6 IF K=O THEN :;o TO SS; SCHE7320
528 6 GO TO 533; SCHE7333

S::HE 7340
529 6 54: SCHE7350

H" BCJI; SCHE73!>0
530 6 p = J; SCHE 7370

SCHE7380 , .. BEGIN PAGE 2 COLUMN 2 ., SCHE7390
SCHE 7400

531 6 MARK: SCHE7410
I"= ·"RIJ I'; 'SCHE7420

532 6 J = GCII; SCHE 7430
533 6 IF J = INF THEN. SCHE7440
534 6 DO; SCHE7450
535 6 1 IF All I < H THEN H " Al II; SCHE7460'
537 6 1 GO TO RE; SCHE747:>
538 6 1 ENO; SC!iE7't80
539 6 IF XI I ,JI < H THEN H "'Xll,JI; SCHE7490
541 6 GO TO MARK; SCHE75JO
542 6 RE: SCHE7510

J sp; SCHE7520
543 6 BIJl=BIJI- H; SCHE7530
544 6 Alli = Al II - H; SC!iE 7540
545 6 GD " GO - H; SCHE7550
546 6 R El: SCHE7560

I = RI JI; SCHE 7570
547 6 XIJ = Xlt,JI; SCHE7580
548 6 Xll,J I = XIJ +H; SCHE7590
549 6 IF XIJ = 0 THEN CALL IN; SCHE 7600
551 6 J = Gill; SCHE7610
552 6 IF J=INF THEN GO TO 531; SC-iE 7620
554 6 XIJ,Xll,JI = XI I, JI-H; SCHE7630
555 6 IF XIJ = O THEN CALL OUT; SCHE7640
557 6 GO TO REI; SCHE 7650
558 6 SS: SCHE7b60

K•O; SCHE7670
559 6 L=N+l; SCHE 7680
560 6 DO J= 1 TON; SCHE7690
561 6 1 IF RI JI = 0 THEN SCHE1700
562 6 1 DO; SCHE 7710

SCHE05: PROC OPTWNSCHAINI; SCHEO 10

STMT LEVEL NEST

563
564
565
566
567
568
569
570
571
572
573
57!:>
576
577
579
580

581
582
583
584
585
586
588
589
590
591
592
593
594
595
596
597
599
600
601
602
603
604
605
606
l:07
608
609
610
611
612

613

614

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
b
5

4

5

2
2
2
1
2
2
2
1

1
l
2
2
2
1

l
1
l
2
2
2
2
2
3
3
3
2
1
2
2
2
2
2
3
3
3
2
1
l

K=K+ l;
LISTVCKI '" J;

ENO;
ELSE oo;

END;

l • L-1;
llSTVILJa J;

ENO;

H = I NF;
DO I= \ TO H;

IF Giii = 0 THEN GO TO NEXfl6;
00 S = 1 TO Ki

J = LISTV(SI;
IF Cll,JI < H THEN H = Cll,JI;

ENJ;
NEXT 16:
ENO;
DO I = 1 TO H;

ZG = CGIJI -.: 01;
NLVI = 11-ll•N;
OOS=LTON;

J = LCSTVIS);
IF ZG THEN CIJ = Cll,J);

ELSE CIJ, CCl,JI = CCl,JI + H;
IF CIJ = 0 THEN

ENO;

DO;
NLVt = NLVl+l;
NLINLVII = J;

END;

DO S = l TO K;
J = LI STY(SI ;
IF ZG THEN CIJ,CI 1,JI : CII,JI-H;

ELSE CIJ = CCI ,JI;
IF C IJ = 0 THEN

ENO;

oo;
NLVI = NlVI+l;
NLINLVI I =. J;

EN_O;

NLVII I = NL VI;
ENO;
KW = KW + H*50;
GO TO 532;

56: RETURN;
ENO TRANSPl;
ENO CONFLZ;

,. * • * * * • • • * • • • • • • • • * • *'
SCANRQ: PROC 111;

I• SCAN RQTBL TJ IDENTIFY All A TTRIB. S REQUIRED BY ACTIVITY I.
PLACE THE NUMBERS OF THE GRJJPS l"I SU6RES VECTJR .,

OCLl 1,J,K,L,HI FIXED BIN;

76

SCHE7720
SCHE7730
SCHE7740
SCHE7750
SCHE77!>0
SCHE 7770
SCHE77~0
SCHE7790
SCHE7BOO
SCHE7810
SC-IE 7620
SCHE7tl30
SCHE781't0
SCHE 7850
SCHE7860
SCHE7870
SCHE7880
SCHE7810
SCHE7900
SCHE 7910
SCHEHZO
SCHE7930
SCHE7940
SCHEH50

.. S.CHE7960
SCHE7970
SCHE7980
SCHE7990
SCHE8000
SCHEBOlO
SCHE 8020
SCHE8)33
SCHE801't0
SCHE 8050
SCHE83&3
SCHE8070
SCHE8080
SCHE801:>
SCHE 8100
SCHEBllO
SCHEB 12:>
SCHE 8130
SCHE8140
SCHEBlS)
SCHE 8160
SCHE8170
SCHE8180
SCHE 8190
S CHE8200
SCHE82l O
SCHE 8220
SCHE8230
SC'iE82'tO
SCHE8250
SCHE82&0

SCHEDS: PROC OPTIONSCMAINI;

STMT LEVEL NEST

615 5 K::r:O;
616 5 SUBRE S = Oi
617 5 00 J 1 TORQCT;
618 5 1 IF RQACT#(JI = I THEN DO;
620 5 2 K=K+l;
621 5 2 SUBRE SIKI R::IATRMI JI;
t22 5 2 END;
623 5 1 ENO;
624 5 END SCANRQ;

625 4 END BLI< 3;

,. • • • • • • • • • • • • • • •
626 3 LOOK A: PROC(ARG I RE.TURNS IFIXcO BI NI;
627 4 OCL 11,J,K,L,MI FIXEDBif'I, ARG CHUI 41;
628 4 DO I = 1 TO AC TC T;
629 4 1 IF A~G = ACT#(I I TllEN RETURNIII;
f31 4 1 ENO;
632 4 RE TURNI 01;
633 4 ENO LOOK A;

634 3 ENO BLKZ;
f35 2 ENO BLKl;
636 l ENO SCHED5;

• • • *I

SCHED 10

77

SCHE 8270
SCHE 8280
SCHEBZn
SCHE 8300
SCHE8310
SCHE8320
SCHE 8330
SCHE8340
SCHEB350
SCHE 8360
SC HES 310
SCHE8380
SCHE8390
SCHE840J
S::.-iE84lJ
SCHE8420
SCHE8430
SCHE 8440
SCHE8450
SCHE84i>O
SCHE 84 70
S CHEB480
SCHES<,90
SCHE 8500
SCHE8510

78

TABLE Of ACTIVITIES
ACT I Tl ME REQ W INOO~ S
Al 1 l 3 0 0 I) 0
A2 1 1 4 7 9 0 0
A3 3 2 5 0 0 0 0
Alt 1 l 9 0 I) 0 0
A5 3 " 7 0 0 0 0
A6 4 5 10 0 0 0 0
A7 2 9 11 I) I) I) 0
AS 1 10 12 13 14 0 0
A9 2 10 14 16 18 19 21

TABLE OF RESOURCE CLASSES
CLASS I OF UN ITS ATHIBUTES

Rl 4 1 3 8 0 0 0 0 0 0 0
R2 3 2 " 0 0 0 0 0 0 0 0
R3 5 5 6 7 0 0 0 0 0 0 0
R4 2 3 " 0 0 0 0 0 0 0 0
R5 6 2 7 8 0 0 0 0 0 0 0

ACTIVITY
Al
Al
A2
A2
A3
A3
A3
A4
A4
AS
AS
A6
A7
AB
AB
A9

TABLE OF REQUIREMENTS
ATT RI BUTE GROUP

1
5
3 ,.
2
5
6
7
B
2
6 ,. '

1 ,.
7
1

79

ATTEMPTING TO SCHEDULE THE FOLLOW! NG ACTIVITIES

ACT#
Al
A3
AS
A7
A9

T !ME REQUIRED
l
3
3
2
2

SCHEDULE
ACT#

Al
A3
AS
A7
A9

1
2 ,.
9

10

FOR ABOVE
WI NOOW
1 3
2 5
4 7
9 11

10 14

II INOOWS
3
5
7

11
14 16 18

ACTIVITIES
ACTUAL

1 2
2 S
4 7
9 11

10 12

19

ASSIGNMENTS OF
RES CUR CE CLASS

Rl

RESOURCE CLASSES TO ATTRIBUTE GROUPS

R2
R3
R3

CLASS
Rl 1
R2 2
R3 1
R4
R5

ATTRrnUTE GROUP
1
2
5
6

RESOURCE ASSIGNMENTS
TIMES ASSIGNED

21 (9 111 10
51 I 4 71
2 I (2 51 2

i OF UNITS
2
2
1
2

121

51 4

SCHEOUL E
ACT#

FOR ABOVE
WINDOW

ACTIVITIES
ACTUAL

Al
A3
A5
A7
A9

A SS IGN~E NTS OF
RESOURCE CLASS

RI
R2
R3
R3

CLASS
RI 1
R2 2
R3 1
R4
RS

1 3
2 5
4 7
9 11

16 18

1 2
2 5
4 7
9 11

16 18

RESOURCE CLASSES TO ATTRIBUTE GROUPS
A TTRlilUTE GROUP

1
2
5
6

RESOJRCE ASSIGNMENTS
Tl MF. S A SS[GNEO

21 (9 111 16
51 (4 71
21 (2 51 2

OF UNITS
1
2
l
2

181

5 I 4

80

21

71

71

SCHEDULE
ACT#

Al
A3
AS
A7
A9

FOR ABOVE
W lNDOw
l 3
2 5
4 7
9 11

19 21

ACTIVITIES
ACTUAL

l 2
2 5
4 7
9 11

19 21

ASSIGNt<ENTS OF
RESOURCE CLASS

Rl

RESCURCE CLASS ES TO ATTR !BUTE GROUPS

R2
R3
R3

CLASS
Rl l
R2 2
R3 1
R4
RS

A TTR!SUTE GROUP
l
2
5
6

RESOURCE ASSIGNMENTS
Tl MES ASSIGNED

21 I 9 111 19
5 I I 4 71
21 I 2 51 2

OF UNITS
l
2
1
2

211

51 4

81

71

ATTEMPTING TO SCHEDULE THE FOLLOWING ACTIVlTIES

ACTI
A2
A4
Ab
A8

TIME REQUIRED
l
l
4
1

SCHEDULE
ACT#

A2
A4
Ab
A8

l
l
5

10

FOR ABOVE
kl NOOW
l 4
l 9
5 10

10 12

WINDOWS ,. 7 9
9

10
12 13 14

ACT IV IT I ES
ACTUAL

l 2
1 2
5 9

10 11

ASS IGNl'ENTS OF
RESOURCE CLASS

Rl

RESOURCE CLASSES TO ATTRIBUTE GROUPS

Rl
R2
R3

A TTRl6UTE GROUP
3
8
4
7

RESOURCE ASS IGNHENTS
TIMES ASSIGNED

1 2 I I l 21

,i OF UNITS
1
1
1
1

CLASS
Rl
R2
R3
Rft
R5

1 2 I I 5 9 I 10 111
l 21 I 10 111

SCHEDULE
ACT#

AZ
A4
Ab
A8

FOR ABOVE
WINDOW
1 4
1 9
5 10

13 14

ACT IVIT !ES
ACTUAL

l 2
1 2
5 9

13 14

ASS lGNt,!ENTS OF
RE SOURCE CLASS

Rl

RES OJ RC E CL ASS ES TO ATTRIBUTE GROUPS

Rl
R2
R3

CLASS
Rl
R2
R3
R4
RS

ATTRIBUTE GROUP
3
8
4.
7

RESOJRCE ASS IGNHENTS
Tl ME S AS SIG NED

l 2 I I l 21

OF UNITS
1
1
1
1

1 21 I 5 91 13 141 .
1 21 I 13 14 I

82

SCHEDULE FOR ABOVE ACTIVITIES
ACT# WINDOW ACTUAL

AZ
Alt
A6
AS

7 9
1 9
5 10

10 12

7 8
1 2
5 9

10 11

ASSIGNMENTS OF
RESOURCE CLASS

Rl .

RESOU~CE CLASSES TO A TTR I 8 UTE GROUPS

Rl
R2
R3

ATTR !BUTE GROUP
3
8

" 7

RESOURCE ASSIGN~ENTS
TIMES ASSIGNED

7 81 C 1 21

• OF UNITS
l
1
2
1

CLASS
Rl
R2
R3
Rlt
R5

7 81 C 5 91 10 111
t 21 I 10 111

SCHEDULE
ACT#

AZ
Alt
A6
AS

FOR A"BOVE
WINDOW
7 9
1 9
5 10

13 14

ACTIVITIES
ACTUAL
7 8
1 2
5 9

13 14

ASSIGNMENTS OF
RESOURCE CLASS

Rl

RESOURCE CLASSES TO ATTRIBUTE GROUPS

Rl
R2
R3

Cl ASS
Rl
R2
R3
R ',,
R5

ATTRIBUTE GROUP
3
8 ,.
1

RESOURCE ASSIGNMENTS
TIMES ASSIGNED

7 81 C l 21

II OF UNITS
1
l
2
1

1 81 I 5 91 13 141
1 21 C 13 141

83

APPENDIX C

GLOSSARY OF TERMS

84

activity - a non-recurring event that extends over a continuous time
interval and requires the use of one or more resources.

attribute group - group of all resource classes which possess the
same attribute.

breadth-first search - a method of tree searching in which all nodes
of a given level are processed in the same step, producing the
effect of traversing all paths of the tree in parallel.

constraint - a restriction or limitation which must be taken into
account when scheduling an activity.

dense solution - a solution to a scheduling problem which minimizes
the total ~lapsed time between the starting time of the first
activity and the ending time of the last activity.

depth-first search - a method of tree searching in which all paths
are examined in series.

distributed solution - a solution to a scheduling problem which
imposes a uniform distribution of activity assignments over a
period of time.

earliest schedule - a solution to a scheduling problem in which the
last activity is completed as early as possible.

ending time - the time at which an activity will complete the utili­
zation of resources allocated to it.

85

resource assignment - allocation of a resource unit to an activity for
a specified time interval.

resource class - a collection of identical resource units.

resource unit - a person or a reusable item.

starting time - the time at which an activity will begin utilization
of resources allocated to it.

tree structured search - a search for a solution to a problem which
is performed by examining alternatives in a manner corresponding
to the traversal of a tree.

uniformly distributed utilization - allocation of resource units in
such a way that all units within a given class are allocated
for approximately equal lengths of time.

window - an interval of time during which an activity may be scheduled.

VITA

Martin James Wertheim

Candidate for the Degree of

Master of Science

Thesis: TREE STRUCTURED ALGORITHMS FOR SCHEDULING ACTIVITIES AND
RESOURCES IN A CONTINUUM OF TIME

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Rochester, New York, July 27, 1947,
the son of William and Helen Wertheim.

Education: Graduated from Benjamin Franklin High School,
Rochester, New York, in June, 1965; received Bachelor
of Science degree in Mathematics from Duke University
in 1969; completed requirements for the Master of
Science degree at Oklahoma State University in July,
1973.

Professional Experience: Programmer/Analyst, Texas Instru­
ments, Incorporated, 1969-1971; Graduate Assistant,
Oklahoma State University, 1972-1973.

