By
MARTIN JAMES WERTHEIM
Bachelor of Science
Duke University
Durham, North Carolina
1969

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
        for the Degree of
        MASTER OF SCIENCE
            July, 1973
```

$$
\begin{aligned}
& \text { Thesin } \\
& 1973 \\
& w 499 \text { t } \\
& \text { cap. } 2
\end{aligned}
$$

TREE STRUCTURED ALGORITHMS FOR SCHEDULING

aCTIVITIES AND RESOURCES IN A

CONTINUUM OF TIME

Thesis Approved:

PREFACE

Abstract

This thesis is concerned with the development of a computer program to solve a particular class of scheduling problems. The primary objective is to implement tree structured searching techniques in the search for a schedule.

I wish to express my thanks to my thesis adviser, Dr. James R. Van Doren, for suggesting the topic of this thesis and providing invaluable assistance and guidance. Thanks are also due to other faculty members of the Department of Computing and Information Sciences, for their helpful advice and suggestions. A special note of thanks is due to Dr. Donald W. Grace who pointed out that one aspect of resource assignment based on attributes was a special case of the transportation problem.

Finally, I wish to thank the citizens of the City of Stillwater and the State of Oklahoma for providing the environment which helped make my education at Oklahoma State University a truly remarkable experience.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THE EIGHT QUEENS PROBLEM 7
III. SCHEDULING A SINGLE RESOURCE 16
IV. SCHEDULING A SINGLE CLASS OF RESOURCES 25
V. SCHEDULING MULTIPLE RESOURCE CLASSES 30
VI. EFFICIENCY IN GENERATING AND EXAMINING PERMUTATIONS 35
VII. SELECTING RESOURCES BASED ON ATTRIBUTES 39
VIII. CONCLUSION AND SUGGESTIONS FOR FURTHER INVESTIGATION 48
BIBLIOGRAPHY 52
APPENDIX A: FLOWCHART OF FINAL PROGRAM 54
APPENDIX B: SOURCE LISTING AND SAMPLE OUTPUT OF FINAL PROGRAM 61
APPENDIX C: GLOSSARY OF TERMS 84
Table Page
I. Sample Problem--Scheduling a Single Resource Unit 16
II. Three Schedules for the Sample Problem of Table I 19
III. Sample Table of Actual Starting and Ending Times 23
IV. A Schedule Requiring Three Resource Units 26
V. Schedule Table and Associated Pushdown Stacks 28
VI. Sample Problem for Multiple Resource Scheduling 31
VII. Tables of Start and End Times for Each Resource Class 34
VIII. Analogy Between General Transportation Problem and Resource Assignment Problem 42
IX. Computation of the Number of Units Required of a Particular Attribute Group 45
X. A Case for Which an Assignment can be Made for Each Sub-Interval, but Cannot be Made for the Entire Period of Time 45

LIST OF FIGURES

Figure Page

1. Solutions to Eight Queens and Four Queens Problems 7
2. Tree Structure Corresponding to the Four Queens Problem 9
3. First Nine Board Configurations to be Examined in Four Queens Problem 12
4. One Node of a Binary Tree 13
5. A Tree and Its Binary Representation 13
6. Binary Tree Associated with Four Queens Problem After Two Levels Have Been Processed 14
7. Internal Array of Structures Corresponding to the Sample Problem of Table I 20
8. Permutation Tree 22
9. Decision Tree with Two Levels per Activity 27
10. Graph Showing Common Resource Requirements
Among Activities 32
11. Adjacency and Path Matrices for Graph in Figure 10 33
12. Association Between Resource Classes and Attribute Groups 40

LIST OF SYMBOLS

$\mathrm{A}_{\mathbf{i}}$	i'th attribute group
$\mathrm{a}_{\mathbf{i}}$	starting time of the i^{\prime} th window
$\mathbf{b}_{\mathbf{i}}$	ending time of the i^{\prime} 'th window
c_{i}	start of actual scheduled time within i'th window
$\mathrm{d}_{\mathbf{i}}$	end of actual scheduled time within i'th window
Δ_{i}	actual time required by i'th activity
q_{j}	number of units of j'th resource class
$R\left(A_{i}\right)$	number of units required of attribute group A_{i}
$\mathbf{x}_{\mathbf{i}}$	activity
y_{j}	resource unit or resource class

CHAPTER I

INTRODUCTION

A schedule can be defined as a time plan, or a list of times, for the occurrence of a group of events or procedures. The problems incurred in creating schedules vary greatly from one application to another; however, there is one common characteristic inherent in all scheduling problems, the need to make decisions. This decision making requirement usually arises due to some limitations of time or resources. Often a choice must be made between two or more possible schedules as to which schedule is, in some sense, optimal.

Van Doren (1) has observed that scheduling problems take on the characteristics of a three dimensional constrained search. The three dimensions are activities, resources, and time. The following examples, taken from industrial scheduling and space flight scheduling, illustrate the three dimensional nature of these problems.

Muth and Thompson (2) have defined industrial scheduling as a problem of making decisions on how to use each manufacturing facility at each instant of time, taking into account such considerations as availability of resources, cost of implementing decisions, due dates, and so forth. They have identified three major classes of industrial scheduling problems. In the first of these, the job-shop problem, a firm contains one or more work centers, and each unit of product manufactured must pass through each work center at some stage of the
manufacturing process. The production of each unit is an activity, and the work centers, composed of machines and workers, are resources. The goal of a job shop schedule might be to meet a production deadline (time), or to minimize the total time required to complete all jobs. A typical constraint might be that a work center can operate on, at most, one product at any instant of time. A second class of problems arises when a firm keeps an inventory of goods and must decide periodically when and how many goods to manufacture. In making these decisions, the firm must take into account constraints on the availability of resources such as raw material, labor, and capital. A third class of problems, single project scheduling, arises when a project consisting of several distinct tasks (activities) must be completed by a certain due date (time constraint). In addition to constraints imposed by resource limitations, constraints may arise due to requirements that some tasks be performed either before or after others.

Another example which illustrates the three dimensional nature of the problem can be found in the scheduling problems associated with NASA's space shuttle program (1). Activities to be scheduled include shuttle flights, maintenance of orbiters, and deliveries of payloads to a given orbit. Resources to be scheduled include orbiters, solid rocket boosters, flight crews, etc. The time dimension may involve several windows of time, that is, intervals of time during which an activity must take place.

In many cases, more than one solution can be found for a particular scheduling problem. In such cases it may be desirable to find all feasible solutions and choose from among the feasible solutions one solution which is optimal. The problem, then, may be compared to
linear programming problems in which it is desired to maximize or minimize an objective function subject to various constraints.

Because of the great variety of scheduling problems, it is highly unlikely that a computer program could be developed that would be general enough to handle all types of scheduling problems. Indeed, most programs that have been written are designed to solve one particular problem. However, programs can be developed with enough generality so that certain classes of problems with common characteristics and requirements could be solved. The subject of this report is the development of a computer program to solve scheduling problems of one particular class.

In the class of problems investigated in this report, an activity is a non-recurring event that extends over a continuous time interval and requires the use of one or more resources. A resource class is a collection of one or more identical resource units. A window of time is a time interval during which an activity must be scheduled. There are m activities to be scheduled and n classes of resource units to be allocated. For simplicity, the restriction is made that an activity may require at most one unit of each resource class. Associated with each activity are one or more windows of time, and a duration time which is the total time necessary to complete an activity. The problem is to find an actual starting and ending time for each activity such that each activity is scheduled within one of the windows of time associated with that activity, and that each resource unit is assigned to at most one activity at any one instant of time. In an extension of this problem, one or more attributes are associated with each resource class, thus forming attribute groups. Each attribute group
consists of one or more resource classes and each resource class may belong to one or more attribute groups. Activity requirements are stated in terms of attribute groups rather than resource classes, that is to say, each activity requires exactly one unit of one or more attribute groups.

Previous work in this field includes investigations of problems of a similar nature. Bratley, et. al. (3), have investigated the problem of scheduling n tasks on a single resource. Each task has a specified earliest start time, latest completion time and number of time units required. They have developed an algorithm to find a schedule which minimizes the total elapsed time to complete all jobs. The approach they have taken is to consider all possible orderings of n tasks on a single resource. Davis and Heidorn (4) have investigated the problem of scheduling multiple projects requiring multiple resources, using techniques originally developed to solve line balancing problems. Their goal also was to minimize project duration. In each of the investigations attempts were made to force a discrete resolution on the time dimension. For example, Davis and Heidorn (4) consider a task requiring n units of time as n separate tasks each of which requires one unit of time. However, as Van Doren (1) has pointed out, it may be highly desirable to treat the time dimension as a continuum. One reason for this is that a discrete time resolution may lead to methods of scheduling in which each unit of time is examined, which would magnify the combinatorial complexity of the problem. Another reason is that, in some problems, the times required and the windows of time for different activities would vary greatly in magnitude. In such cases it would be difficult to decide on the proper size of a time unit.

It should be emphasized that the major goal of this investigation has been the examination of methods used in searching for a schedule. Therefore, the goal that has been adopted is the determination of whether a schedule exists rather than the detection of a schedule that is optimal. When appropriate, however, various criteria of optimality will be mentioned, along with suggestions to achieve these criteria. The search methods used to find a schedule are based on the concepts of decision trees and backtrack programming as presented by Golomb and Baumert (5). These concepts are outlined in Chapter II. It was decided that the investigation should proceed in a stepwise manner, beginning with the solution of some simple problems and then progressing in successive steps of enlargement and refinement in solving more complex problems, until the class of problems discussed earlier could.be attacked in its full generality. Thus, the first step in the investigation was the application of decision trees and backtrack programming to the solution of a fairly well-known problem, the eight queens problem of chess. The reasons for this step are that the problem is well defined and that it has certain similarities to the scheduling problems investigated in this report. Two programs which are described in Chapter II, were written to solve the eight queens problem. Chapter III describes a program written to solve a fairly simple scheduling problem, namely scheduling a single resource unit. Chapter IV describes an enlargement of this program to schedule a single class of resource units. Chapters V and VI describe a program to solve a more complex problem, namely scheduling multiple classes of resource units, and, finally, Chapter VII describes the ultimate goal
of the investigation, scheduling multiple resource classes, where selection is based on attribute groups. Suggestions for further work are outlined in Chapter VIII.

CHAPTER II

THE EIGHT QUEENS PROBLEM

To gain insight into possible search techniques which would be useful in a scheduling program, it was decided to begin the investigation by writing two programs to find solutions to the eight queens chessboard problem. The problem is to place eight queens on a chessboard in such a way that no queen may be attacked by another queen. A queen is safe from attack if no other queen is positioned on the same row, the same column or the same diagonal. Solutions to this problem are well known. A generalization of the problem is to place n queens on an $n x n$ chessboard. Figure 1 shows one solution to the eight queens problem and one solution to the four queens problem.

							Q
	Q						
			Q				
Q							
						Q	
				Q			
		Q					
					Q		

Eight Queens

Four Queens

Figure 1. Solutions to Eight Queens and Four Queens Problems.

A partial analogy can be drawn between the eight queens problem and the problem of scheduling a single resource unit. Consider the entire chessboard as a unit of resource, the rows of the chessboard
as periods of time, and the columns of the chessboard as activities, each of which requires exactly one period of time. In this analogy the three dimensional view reduces to two dimensions because there is only one resource unit. There are three constraints on the problem two of which have a direct analogy with a realistic scheduling problem. The constraint that not more than one queen may occupy a particular row is analogous to the restriction that the resource unit may be allocated to only one activity during a given time period. The restriction that not more than one queen may occupy a column corresponds to the fact that each activity requires the resource during exactly one time period. The third constraint of course concerns avoiding diagonal placement. A brute force approach to the problem would be to examine each combination of eight squares on a 64 square chessboard. There are $\binom{64}{8}$ or $4,426,165,368$ combinations to be examined. However, it can be observed immediately that each column must be occupied by exactly one queen. The problem then reduces to a search of each column for a possible square to be occupied. The squares must be chosen so that no two queens occupy the same row or the same diagonal. The problem can be represented by a tree structure in which each level of the tree corresponds to a column and each node corresponds to a square within that column. The root of the tree is a dummy node and is considered to be at level zero. Figure 2 shows the tree structure corresponding to the four queens problem. Each path from the root of the tree to a leaf corresponds to a choice of one square for every column; for example, the leftmost path of the tree corresponds to the placement of a queen in the first square of each column.

Figure 2. Tree Structure Corresponding to Four Queens Problem.

There are 256 leaves in the tree; therefore, one might suppose that there are 256 alternatives to be examined. However, a closer examination of the tree structured nature of the problem reveals that the number of alternatives to be examined can be reduced. Consider again the left-most path of the tree. Traversing the arc from the root of the tree to its leftmost son corresponds to placing a queen on the first square of column one. Traversing the arc from this node to its left-most son corresponds to placing a queen on the first square of column two. Since no solution to the problem can contain two queens in the same row, a conflict condition (constraint violation) exists. Furthermore, it is not necessary to examine any nodes beneath the leftmost node at level two; in effect, the tree may be pruned at this node.

Whenever a conflict condition is detected, the right brother of the current node is examined, that is to say, an attempt is made to place a queen on the next square of the column currently being examined. Placing a queen on the second square of column two would also result in a conflict condition since two queens would occupy the same diagonal. However, placing a queen in the third square of column two would cause no conflict. When the examination of a node does not result in a conflict condition, the sons of that node are examined, that is to say, an examination of column three is begun by attempting to place a queen on square one of column three. It turns out that, in the four queens problem with queens placed in column one, square one, and column two, square three, placing a queen anywhere in column three will cause a conflict condition. When all alternatives at a given level result in a conflict condition, then the decision process backtracks one level; in this case it returns to column two and examines the next alternative,
namely, placing a queen on square number four of column two. The first nine board configurations to be examined are shown in Figure 3.

When a leaf of the tree is examined and no conflict condition is detected, then the path from the root of the tree to the leaf corresponds to a solution. If only one solution to the problem is desired, then the solution can be reported and the procedure terminated at this point. If all solutions are desired, then the solution can be reported and the search continued by examining the next leaf. If no solution exists, or if the attempt is made to find all solutions, the search terminates after the right-most node of level one (and all of its sons) have been examined.

The method of tree searching described by the example in the preceding paragraphs is known as a depth-first tree search. It should be noted that no explicit data structure corresponding to a tree need be constructed. The tree structure is inherent in the decision making process.

Another method of traversing decision trees is the breadth-first approach. With this method, all nodes of a given level are examined in one step, thus producing the effect of traversing all paths of the tree in parallel. An actual tree structure is constructed so that parallel processing of decision paths can be simulated. One method of construction is to use a binary tree to represent the decision tree under consideration (6). Each node of the binary tree has the representation shown in Figure 4. The left link of each node points to the left son of that node, and the right link of each node points to the brother on the immediate right if one exists, otherwise, the right link
(1)

(4)

(7)

(2)

(5)

(8)

(3)

(6)

(9)

Figure 3. First Nine Board Configurations to be Examined in Four Queens Problem.
is used as a thread and points to the father. An example of a tree and its binary representation is shown in Figure 5.

Left Link	Information	Right Link

Figure 4. One Node of a Binary Tree.

Figure 5. A Tree and Its Binary Representation.

A linked list of available storage is required, along with routines to allocate nodes from the available list and to return nodes which are no longer needed to the available list. The tree is constructed as a binary tree. Processing a level of the tree consists of examining each node of the previous level and for each node of the previous level, determining which alternatives at the current level do not cause a conflict condition. All conflict free alternatives are attached as
sons of the node being examined. If no conflict free alternatives are found, then the node being examined may be removed from the tree and returned to the available list. If a node is pruned which has no brothers, then the father of the node may also be pruned. Figure 6 shows the binary tree associated with the four queens problem after two levels have been processed. The two levels of the tree beneath the root node correspond to the first two columns of the chessboard. The number in the information field of each node denotes a square (row), within the specified column, upon which a queen may be placed. Thus the left-most path of the tree corresponds to the placement of queens on the first square of column one and on the third square of column two. Notice that the tree of Figure 3 contains sixteen nodes at level two whereas the tree of Figure 6 contains only six nodes. The reason for this is that, in processing the second level, only those alternatives that do not produce a conflict condition are attached to nodes in the first level, whereas the tree of Figure 3 shows all possible alternatives, including those that produce a conflict condition. After all levels have been processed, the tree is either empty, in which case no solution exists, or it contains a path corresponding to each solution.

[^0]Two programs were written to find all solutions to the eight queens problem, one using the breadth-first approach, and the other using the depth-first approach. Both programs were written in Fortran IV for the IBM System 360 Model 65. Because of the combined effects of a low resolution timer and a multitasking environment, it was impossible to obtain accurate measurement of execution time; however, the execution times appear to be about the same for both methods, a surprising result when one considers the added overhead of storage management in the breadth-first approach. A major advantage of the depth-first approach is greater simplicity in programming, so it was decided to use this approach in investigation of the scheduling problem. A noteworthy advantage of the breadth-first approach is that, at the end of the procedure, all solutions are stored in a convenient structure, namely, the resultant binary tree. Also, the use of heuristic techniques of artificial intelligence in searching decision trees, which is suggested in Chapter VIII, may require a breadth-first traversal $(7,8)$.

For an excellent generalization of the concepts of decision trees and backtrack programming, see Golomb and Baumert (5).

CHAPTER III

SCHEDULING A SINGLE RESOURCE

The first scheduling problem to be investigated was that of scheduling a single resource unit. There are m activities that require the use of this resource. Associated with each of these activities is the actual length of time that the activity requires use of the resource, and one or more windows of time, that is, time intervals specified by a starting and ending time, during which the activity must be scheduled. The problem is to find a schedule for the resource such that every activity may use the resource during one of its windows for the length of time required, and that the resource is used by, at most, one activity at any instant of time. A sample problem with three activities is shown in Table I.

TABLE I

SAMPLE PROBLEM--SCHEDULTNG A SINGLE RESOURCE UNTT

Activity	Time Required	Windows
\mathbf{x}_{1}	1 hour	$1: 00-3: 00 ; 6: 00-7: 00$
x_{2}	2 hours	$2: 00-4: 00 ; 6: 00-9: 00$
x_{3}	1 hour	$8: 00-9: 00$

It was observed in Chapter II that the eight queens problem could be reduced to the problem of selecting a square from each column such that no constraints are violated. By analogy, this scheduling problem can be reduced to selecting one window from the list of windows for each activity such that no constraints are violated. The determination of whether constraints are violated is somewhat more complex than in the eight queens problem. Suppose there are n intervals on the real line, corresponding to one window for each of n activities. These intervals are denoted by $\left[a_{i}, b_{i}\right]$ for $i=1$ to n. Associated with each interval is some number, denoted by Δ_{i}, which corresponds to the actual time required by each activity. The problem of determining whether constraints are violated is equivalent to the problem of finding mutually disjoint subintervals $\left[c_{i}, d_{i}\right]$ such that for $i=1$ to n
(1) $\left[c_{i}, d_{i}\right]$ is a subinterval of $\left[a_{i}, b_{i}\right]$, and
(2) $d_{i}-c_{i}=\Delta_{i}$.

The basic approach in determining whether constraints are violated is to generate permutations of the selected windows, and, for each permutation generated, attempt to schedule each activity as early in its window as possible, starting with the first window in the permutation. No activity can be scheduled prior to the start time of its window or prior to the completion of the previous activity. Let $\left[a_{i}^{\prime}, b^{\prime}{ }_{i}\right]$ be the i^{\prime} th window of the permutation currently being examined. Then,
(1) $c^{\prime}{ }_{1}=a^{\prime}{ }_{1}$
(2) $c_{i}^{\prime}=\max \left(a_{i}^{\prime}, d_{i-1}^{\prime}\right)$ for $i=2$ to n, and
(3) $d^{\prime}{ }_{i}=c^{\prime}{ }_{i}+\Delta^{\prime}{ }_{i}$ for $i=1$ to n.

If $d^{\prime}{ }_{i}$ exceeds $b^{\prime}{ }_{i}$ for any i than the i^{\prime} th activity cannot be scheduled
within its window in the permutation currently being examined. If no permutation is found for which each activity can be scheduled within its window, then the choice of windows must be altered. A tree structured approach is used both in selecting windows and in generating permutations, as will be seen in the following paragraphs.

A program was written in PL/I for the IBM System 360 Model 65 which finds all combinations of windows (where one window is selected from the list of windows associated with each activity) for which a schedule exists. For each such combination, the program reports one possible schedule. In the same problem of Table I, there are four combinations of windows. Schedules exist for three of these combinations. A schedule for each of these three combinations is shown in Table II.

As stated previously, only one schedule per combination of windows is reported. Of course, there may be many schedules for each combination: (1) There may be more than one permutation of mutually disjoint subintervals; (2) if the time domain is considered to be a continuum, and if a subinterval, $\left[c^{\prime}{ }_{i}, d^{\prime}{ }_{i}\right]$, has the properties that $d^{\prime}{ }_{i}\left\langle b^{\prime}{ }_{i}\right.$ and $d^{\prime}{ }_{\mathbf{i}}<\mathrm{c}^{\prime}{ }_{i+1}$, then an infinite number of schedules exist. Consider, for example, activity x_{1} in the second schedule of Table II. This activity may be scheduled for $1: 00-2: 00,1: 01-2: 01,1: 05-2: 05,1: 15-$ 2:15, and so forth. Even if a small finite resolution were imposed on the time domain, it would be combinatorially infeasible in most cases to examine and report all solutions. Therefore, the scope of the problem is limited to finding a sequence in which the activities can be scheduled, and finding a time interval in which each activity can be scheduled within that sequence.

TABLE II
THREE SCHEDULES FOR THE SAMPLE PROBLEM OF TABLE I
Activity Window \quad Scheduled Time

Schedule 1

x_{1}	$1: 00-3: 00$	$1: 00-2: 00$
x_{2}	$2: 00-4: 00$	$2: 00-4: 00$
x_{3}	$8: 00-9: 00$	$8: 00-9: 00$

Schedule 2
${ }^{x} 1$
x_{2}
x_{3}
Schedule 3
x_{2}
2:00-4:00
6:00-7:00
8:00-9:00
8:00-9:00

The program contains an array of structures in which each structure corresponds to an activity. The information included in each structure includes the name of the activity, the actual time required, and the start and end time of each window associated with that activity. Figure 7 shows the array of structures corresponding to the sample problem of Table I. (The number of activities to be scheduled as well as the maximum number of windows per activity are input parameters which are used in allocating storage for this array.) This array is searched in a tree structured fashion using the depth-first approach

x_{1}	1	1	3	6	7
x_{2}	2	2	4	6	9
x_{3}	1	8	9	0	0

Figure 7. Internal Array of Structures Corresponding to the Sample Problem of Table I.
described in Chapter II. Each level of the tree corresponds to an activity and each node within a level corresponds to a window associated with that activity. As each node is visited, a pointer to the associated activity and window is placed on a pushdown stack, and a subprogram, CONFLl, is called to determine whether a schedule exists for the nodes (windows) on the stack. (Henceforth, the terms window and activity will be used interchangeably to denote items on the stack.) If a conflict condition is detected (that is, if no schedule can be found for the windows on the stack), then the search proceeds to the next window for the current activity, or, if all windows for the current activity have been examined, the search backtracks one level to the previous activity. If no conflict condition is detected, the search advances to the next level starting at the first window on that level, or, if all levels have been examined, reports that a solution has been found and advances to the next window of the current activity.

This tree structured search may be summarized as follows:
(1) Set level = 1 .
(2) Set node $=\mathbf{1} \cdot$
(3) Push node onto stack and call CONFLl.
(4) Has a conflict condition been detected? If so, go to step 7.
(5) Is this the last level? If so, a schedule has been found. Report the solution and go to step 7. Otherwise, continue.
(6) Add 1 to level. Go to step 2.
(7) Is this the last node at this level? If so, go to step 9.
(8) Pop node from stack. Add 1 to node. Go to step 3.
(9) If level $=1$, then stop. Otherwise, subtract 1 from level, pop node from stack, and go to step 7.

CONFLl is a subprogram whose calling parameter is the pushdown stack generated during the search of the window tree. This routine generates permutations of the items in the stack in lexicographical order, starting with the order in which the items appear in the stack. For each permutation generated, a call is made to another subprogram, CONFL2, which determines whether the activities can be scheduled in the order represented by the current permutation. If a permutation is found for which a schedule exists, then CONFLl immediately returns control to the main program reporting a "no conflict" condition. If all permutations have been generated and no permutation has been found for which a schedule exists, then a conflict condition is returned to the main program.

Permutations are generated and examined in a manner corresponding to a depth-first, left to right tree search. For example, permutations of the numbers $1,2,3$, and 4 may be represented by the tree shown in Figure 8. The leaves of this tree are, from left to right, all the permutations of the numbers $1,2,3$, and 4 in lexicographical order. Permutations are generated one element at a time and calls are made to

Figure 8. Permutation Tree.

CONFL2 to check the partial permutations being formed. If the activities represented in the partial permutation cannot be scheduled in the order specified by the permutation, then examination of the corresponding full permutations is precluded. For example, suppose four windows, denoted by w_{1}, w_{2}, w_{3} and w_{4} appear on the stack. The first call to CONFL2 is made with the partial permutation w_{1}, w_{2}. If it is found that the activities associated with w_{1} and w_{2} cannot be scheduled in the specified order, then it is not necessary to examine either of the permutations $w_{1}, w_{2}, w_{3}, w_{4}$, and w_{1}, w_{2}, w_{4}, and w_{3}. Although well-known algorithms exist for generating permutations in lexicographical order ($9,10,11$), no algorithms which would allow this preclusion capability were readily available. More will be said in Chapter VI regarding permutations.

CONFL2 is a subprogram whose calling argument is the current partial or complete permutation generated in CONFLl. This routine
attempts to build a table of actual starting and ending times for the activities represented in the permutation, scheduling each activity as early in its window as possible. The starting and ending times in this table correspond to the mutually disjoint subintervals, denoted by $\left[c_{i}, d_{i}\right]$, referred to earlier in this chapter. An example may be found in Table III.

TABLE III

SAMPLE TABLE OF ACTUAL STARTING AND ENDING TIMES

Activity	Window $\left(a_{i}, b_{i}\right)$	Time Required $\left(\Delta_{i}\right)$	Actual Time $\left(c_{i}, d_{i}\right)$
1	$1-3$	2	$1-3$
2	$2-5$	1	$3-4$
3	$5-8$	2	$5-7$
4	$6-8$	1	$7-8$

Although the program is not concerned with finding an optimal schedule, it may be enlightening at this point to consider possible criteria of optimality. Two possible goals would be to finish utilization of the resource at the earliest time possible or to begin utilization at the latest time possible. Other goals might be a "most dense" solution, in which the time from the start of the first activity to the end of the last activity is minimized, or a "most distributed" solution which is imprecisely defined but which will in some sense impose a uniform distribution of activity assignments over a period of time. Another way of describing a "most distributed" goal is that in which the total idle time for the resource is distributed evenly among the time intervals between activity assignments.

Once a goal has been chosen, one might ask whether it is possible to find an optimal schedule without examining all possible schedules. For example, suppose the goal is to find the "earliest schedule", that is, a schedule in which utilization of activities is completed as early as possible. One might suppose that by ordering the windows by increasing order of window start time, the first schedule found might be the earliest schedule, or might, at least, have some sort of "earliest" attribute. This question gives rise to the general question of ordering the windows in such a way that the optimal solution will be found as quickly as possible.

Another question that might be raised is whether the windows can be ordered in such a way that a schedule (not necessarily optimal) can be found as quickly as possible. Two possibilities for such an ordering are by increasing order of window start time or by decreasing order of time constraint, that is, by increasing order of $b_{i}-a_{i}-\Delta_{i}$. These questions will not be investigated any further in this report, but hopefully, they will provide the source for future investigations.

The remaining programs described in this report all have the same general structure as this one; that is to say, each program consists of a main program which traverses a decision tree of activities and windows, a subprogram named CONFLl which generates permutations of activities, and a subprogram named CONFL2 which attempts to schedule the activities in the order specified by the permutation.

CHAPTER IV

SCHEDULING A SINGLE CLASS OF RESOURCES

The next problem investigated was that of scheduling a single resource class. A resource class consists of q o identical resource units. The resource units are identical in the sense that a request made for a unit of the specified class may be satisfied by any of the units within the class. Each activity to be scheduled requires exactly one unit of the resource class. The problem is to schedule each activity within one of its windows for its specified time required, in such a way that each resource unit is assigned to not more than one activity at any instant of time. Notice that two activities can be scheduled at the same time if there are two or more units in the class.

One could approach the problem with at least two different goals in mind. One of these goals is to minimize the number of resource units actually utilized. This goal would be employed in a problem where q units could be made available, but where it would be desirable to schedule all activities with fewer than q resource units. If all activities can be scheduled during mutually disjoint time intervals, then only one resource unit is required. Two activities are said to overlap if their actual scheduled times are not disjoint. For example, if activity one is scheduled for $4: 00$ to $7: 00$ and activity two is scheduled for $6: 00$ to $9: 00$, then activities one and two overlap. If all activities cannot be scheduled during mutually disjoint time
intervals, then the number of units required does not exceed the maximum number of activities which overlap at any instant of time. In the schedule shown in Table IV three activities are scheduled during 6:00 to 7:00; therefore, three resource units must be available.

TABLE IV
A SCHEDULE REQUIRING THREE RESOURCE UNITS

Activity	Actual Time Scheduled
1	$3: 00-5: 00$
2	$4: 00-6: 00$
3	$5: 00-7: 00$
4	$6: 00-8: 00$
5	$6: 00-9: 00$

Another goal is to achieve a most uniformly distributed utilization among the resource units. This goal would be employed in a situation where q units would definitely be available and where it would be desirable to equalize utilization among the q units. It was decided to use this goal in the current investigation; its implementation will be described below.

There are two ways of viewing the search process in terms of decision trees. In one view, there are two levels in the tree per activity; one level contains nodes corresponding to the associated time windows, and the other level contains nodes corresponding to the resource units. Figure 9 shows such a tree for two activities, two windows per activity, and three resource units. This approach might be taken if it is desired to examine the effects of allocating

Figure 9. Decision Tree with Two Levels Per Activity.
different resource units to different activities. However, as can be seen by examining Figure 9 , the combinatorial complexity of the problem proliferates greatly, even for a fairly small problem.

Another view is to have one level in the tree per activity, and in traversing the tree, allow the conflict checking routines to determine which resource unit, if any, can be allocated to an activity. This view can be taken if the resource class is viewed as a pool of identical resource units, and if it is immaterial, in terms of scheduling, which unit is allocated to a particular activity. It seems reasonable to expect that this approach would result in a shorter search time, especially if the method of unit selection were kept reasonbly simple.

The program described in Chapter III was modified, incorporating the second approach to the tree structured decision making process described above, so that it would handle a single class of resource units. The number of units available, q, is a required input parameter. The greatest number of changes were made in the CONFL2 subprogram. Firstly, the table of actual start and end times was expanded to include the number of the resource unit allocated. In addition, a pushdown stack is required for each resource unit, in which the top item
indicates the start and end time of the latest allocation of that unit. Examination of the top item of a stack tells the earliest time that unit will be available for further allocation. Examples of the expanded table and corresponding stacks are shown in Table V.

TABLE V

SCHEDULE TABLE AND ASSOCIATED PUSHDOWN STACKS

Table of start and end times and unit allocated

Activity	Start	End	Unit
1	$1: 00$	$3: 00$	1
2	$2: 00$	$5: 00$	2
3	$3: 00$	$9: 00$	3
4	$4: 00$	$6: 00$	1
5	$5: 00$	$7: 00$	2

Associated Pushdown Stacks
Unit \#1
1:00-3:00
4:00-6:00

Unit \#2
2:00-5:00
5:00-7:00

The reason pushdown stacks are required merits some further explanation. Recall that permutations are generated in a tree structured manner as described in Chapter III. In general, the use of a tree structured decision making process requires backtracking capability. Specifically, suppose there are eight activities to be scheduled, and Table V represents a schedule for the first five items in the schedule, that is to say, a choice has been made at level five in the permutation
tree. Further suppose that each of the remaining three activities must begin before 6:00, which is the earliest time that a resource unit will be available. No branch can be taken from the current node at level five; therefore, the next alternative at level five, that is, the next partial permutation of five items in lexicographical order, must be examined. The start and end time in the fifth row of the table must be removed and the stack corresponding to resource unit two must be popped to indicate that unit two is no longer allocated for 5:00 to 7:00.

A circular polling mechanism is used in deciding which resource unit to assign to the next activity in the permutation. Suppose unit i was the last unit allocated to an activity, and it is desired to allocate a unit for the next activity in the permutation. The search for an available unit begins with unit $i+1$, proceeds to unit q, then proceeds from unit lo unit i. This is roughly equivalent to maintaining a first-in, first-out queue of resource units, where a unit is returned to the end of the queue when an activity has finished using it. This circular polling method is used because in most cases a more distributed allocation can be expected from this method than from a method which always begins searching at unit 1 .

Perhaps the program described here could be modified so that it could determine the minimum number of resource units required. This is a question that will be left for future investigation.

CHAPTER V

SCHEDULING MULTIPLE RESOURCE CLASSES

In this chapter we consider the problem of scheduling m activities on n different resource classes. Each resource class, y_{i}, contains q_{i} units. Each activity may require exactly one unit of one or more resource classes. Specifications for each activity include actual time required, windows of time, and a list of resource classes of which a unit is required. It is assumed that all resources required by an activity are to be assigned during the same time interval. Specifications for each resource class include the number of resource units in the class. A sample problem is shown in Table VI.
Extending the scope of the problem from one resource class to n resource classes increases the combinatorial complexity of the problem in terms of the number of alternatives to be examined. One way to reduce this complexity is to identify subsets of activities in such a way that each subset may be scheduled independently of the other subsets. If there are 10 activities to be scheduled with two windows per activity, the number of leaves in the decision tree corresponding to the activities and their windows (which will henceforth be referred to as the window tree) is 2^{10} or 1024. However, if two subsets of five activities each could be identified, the search could be reduced to two window trees each of which contains 2^{5} or 32 leaves.

TABLE VI

SAMPLE PROBLEM FOR MULTIPLE RESOURCE SCHEDULING

	Resource Class	Numbe	f Units
	y_{1}		
	y_{2}		
	y_{3}		5
	y_{4}		
	y_{5}		
	y_{6}		
Activity	Time Required	Windows	Resource Classes
x_{1}	2	7-9; 10-12	$\mathrm{y}_{1}, \mathrm{y}_{2}$
x_{2}	1	1-2; 5-6	$\mathrm{y}_{2}, \mathrm{y}_{3}$
x_{3}	1	3-4	y_{4}
x_{4}	2	$2-5$	${ }^{4} 6$
x_{5}	3	1-7	$\mathrm{y}_{3}, \mathrm{y}_{5}$
x_{6}	1	1-3; 9-12	$\mathrm{y}_{4}, \mathrm{y}_{6}$

Consider an undirected graph in which each node corresponds to an activity and in which an arc from node i to node j indicates that activities X_{i} and X_{j} share a common requirement for at least one resource class. A graph for the sample problem of Table VI is shown in Figure 10. Each connected component of such a graph identifies a subset of activities which must be scheduled interdependently. In this sample problem activities x_{1}, x_{2}, and x_{5} collectively require units from resource classes y_{1}, y_{2}, y_{3}, and y_{5}, and activities x_{3}, x_{4},

Figure 10. Graph Showing Common Resource Requirements Among Activities.
and x_{6} collectively require units from resource classes y_{4} and y_{6}. Evidently, activities x_{1}, x_{2} and x_{5} can be scheduled independently of activities x_{3}, x_{4} and x_{6} because allocation of resource units to x_{1}, x_{2} and x_{5} would have no effect on the availability of resource units for x_{3}, x_{4}, and x_{6}.

The connected components of the graph described above are identified as follows. The adjacency matrix is constructed, then an algorithm by Warshall (12) is employed to construct the path matrix. A distinct row value of the path matrix defines a connected component of the graph, and therefore, a subset of activities. Figure 11 shows the adjacency and path matrices for the graph in Figure 10. There are two distinct row values in the path matrix.

The program described in Chapter IV actually assigns individual resource units to activities. In contrast, the approach taken here is to determine the number of units of each resource class that are required at any instant of time and to determine whether each resource class has enough units to meet those requirements. In order to reduce the combinatorial complexity of the problem, it was decided not to make assignments of individual units.

	1	2	3	4	5	6
1	0	1	0	0	0	0
2	1	0	0	0	1	0
3	0	0	0	0	0	1
4	0	0	0	0	0	1
5	0	1	0	0	0	0
6	0	0	1	1	0	0

Adjacency Matrix

	1	2	3	4	5	6
1	1	1	0	0	1	0
2	1	1	0	0	1	0
3	0	0	1	1	0	1
4	0	0	1	1	0	1
5	1	1	0	0	1	0
6	0	0	1	1	0	1

Path Matrix

Figure ll. Adjacency and Path Matrices for Graph in Figure 10.

In this program, the CONFL2 subprogram still attempts to schedule each activity as early in its window as possible. There is a table of start and end times for the activities scheduled; also for each resource class there is a corresponding table of start and end times for the activities requiring units of that resource class. In scheduling activities x_{1}, x_{2}, and x_{5}, these tables might appear as in Table VII. When attempting to schedule the next activity in the permutation tree, the table corresponding to each resource class required by the next activity is examined to determine the earliest time (greater than or equal to the window start time) that a unit of that resource will become available. This is done by counting the number of activities whose scheduled times overlap the proposed scheduled time of the current activity, and comparing that count against the number of units in the resource class. A previously scheduled activity is presumed to overlap the activity currently being scheduled if the ending time of the previously scheduled activity exceeds the window start time of the current activity. This is a rather restrictive presumption which may result in no schedule
being found when a schedule actually exists. A better method of counting overlapping activities will be presented in Chapter VII.

TABLE VII

TABLES OF START AND END TIMES FOR EACH RESOURCE CLASS

All	y_{1}	y_{2}	y_{3}	y_{5}
$7-9$	$7-9$	$7-9$	$1-2$	$2-5$
$1-2$		$1-2$	$2-5$	

$2-5$

After the earliest available time for each resource class has been determined, the latest of these times is taken to be the actual starting time of the activity being scheduled. The actual time required is added to the starting time to give the actual ending time. If the actual ending time exceeds the window end time, then the activity cannot be scheduled within its window.

A schedule produced by this program shows, for each resource class, the exact times that resource units are to be assigned to activities. Furthermore, the approach taken guarantees that the assignments can be made. Once a schedule has been produced, a circular polling mechanism, similar to the one described in Chapter IV, could be employed to make assignments of individual units.

CHAPTER VI

EFFICIENCY IN GENERATING AND EXAMINING PERMUTATIONS

During the course of testing the program described in Chapter V, it became evident that increased speed in generating and examining permutations of activities was necessary. The present chapter is concerned with possible improvements in that direction, and describes the improvements that were actually implemented.

Whenever a new node in the window tree is visited, a pointer to that activity and window is placed on a stack, and a call is made to CONFLI in an attempt to find a schedule for all activities which have pointers on the stack. CONFLl generates permutations of the pointers on the stack and, for each permutation generated, calls CONFL2, which attempts to schedule the activities in the order specified by the permutation. These permutations are generated in a depth-first tree searching manner; one may speak of traversing a tree of permutations.

The permutations are generated in lexicographical order. Knuth (6) shows two other methods of generating permutations; however, one advantage of lexicographical ordering is that information gained in scheduling the previous permutation can be used in scheduling the current permutation. If the current permutation consists of n elements, then it can be assumed that a schedule has already been found for the first $n-l$ elements in the permutation. For example, consider a call to CONFL2 made with a partial permutation 3l425. Due to the nature of
depth-first tree traversal, it can be assumed that the activities corresponding to the partial permutation 3142 have already been scheduled; furthermore, the schedule for 3142 is retained in CONFL2, so all that is necessary is to schedule the activity corresponding to 5 .

When a new node in the window tree is examined, the entire process of generating permutations is repeated from the beginning. The question to be examined is how can information gained from the previous call to CONFLl be retained, and how can this information be used to hasten the current permutation check. It would be desirable to eliminate some permutations from consideration based on the fact that similar permutations failed to produce a schedule in a previous call to CONFL2. Consider one possible example. Suppose four activities are represented in the stack and a fifth activity is being added. Of the four activities, originally in the stack, suppose that the first permutation, in lexicographical order, that produced a schedule was 3142. Considering permutations of five activities, it is evident that 12345 will not produce a schedule, because if 12345 were to produce a schedule, then 1234 would have produced a schedule for four activities. Indeed, the first permutation that need be considered is 31425. Also, permutations such as $31524,51234,52431$ can be removed from consideration for reasons explained below.

As another possibility, suppose there are two activities represented in the stack, and the permutation 1,2 does not produce a schedule but the permutation 2,1 does. It is evident that 2 must precede 1 in any permutation that contains both 1 and 2 . It might be desirable to find all pairs of activities in which one activity must precede the other before beginning to generate permutations. Perhaps this idea
could be generalized, and necessary ordering relationships among triplets, quadruplets, and so forth, could be found. This would correspond to a breadth-first search of the first few levels of the permutation tree, coupled with a depth-first search of the remainder of the tree.

Two changes were made to the program described in Chapter V with respect to generating and checking permutations. Firstly, corresponding to each level in the window tree, a record is kept of the permutation that produced a schedule at that level. When a node at level i in the window tree is visited, permutations are generated beginning with the permutation stored for level i - 1. Secondly, each new permutation generated at level i in the window tree is compared to the permutation stored for level i - 1 to detect violations of lexical ordering. For example, suppose 3142 is the permutation stored for level four, and while processing level five in the window tree, the permutation 31524 is generated. Since 3124 precedes 3142 in lexicographical ordering, the permutation 3124 cannot produce a schedule because if 3124 could produce a'schedule, then 3124 would have been stored for level four. Since 3124 cannot produce a schedule, then 31524 cannot produce a schedule either. This can be proved as follows. Suppose a schedule is found for 31524 , which would mean that the activities could be scheduled in the order specified by the permutation 31524. If one of these activities, say activity 5 , is eliminated, the remaining four activities could still be scheduled in the specified order. However, it is known that the permutation 3124 did not produce a schedule. Therefore, it can be concluded that 31524 cannot produce a schedule; hence 31524 can be eliminated from consideration.
Further possibilities for improvement, such as recognition of
problem decomposition at various levels in the permutation tree, arepointed out by Bratley, et. al. (3).

CHAPTER VII

SELECTING RESOURCES BASED ON ATTRIBUTES

The program described in this chapter extends the flexibility of resource class selection and requirement specification by allowing attributes to be specified for each resource class, thus associating each resource class with one or more attribute groups, and allowing resource requirements to be specified in terms of attribute groups rather than specific resource classes. When an activity requires a resource unit of a specific attribute group, that unit may be selected from any resource class which is a member of the specified attribute group. A resource unit may service at most one requirement at any one time, but it may service requirements for different attribute groups at different times. The ability to service requirements for different attribute groups at different times has been restricted in the present implementation for reasons explained below.

As an example, suppose there are seven resource classes, denoted by y_{j} for $j=1$ to 7 , and three attribute groups, denoted by A_{1}, A_{2}, and A_{3}. In an airline scheduling problem, for example, there might be seven different kinds of aircraft used by the airline. Attribute group ${ }^{\text {A }}$ l might consist of all aircraft with seating capacity greater than 120, attribute group A_{2} might consist of all jet powered aircraft, and attribute group A_{3} might consist of all aircraft that can land on a 5,000 foot runway. Figure 12 shows a possible association between
resource classes and attribute groups. A request for a unit of group A_{2}, for example, could be satisfied by a unit of one of the resource classes $y_{2}, y_{3}, y_{5}, y_{7}$. Units in class y_{1} may satisfy requests for group A_{l} whereas units of class y_{4} may satisfy requests for either A_{1} or A_{3}.

Figure 12. Association Between Resource Classes and Attribute Groups.

Subsets of activities that can be scheduled independently can be determined by the same graph theoretic method as was used in the program described in Chapter VI. In this case an arc is drawn between two nodes if the activities corresponding to the two nodes share at least one common attribute group requirement.

Let q_{j} be the number of units of class y_{j} and $R\left(A_{i}\right)$ be the number of units of group A_{i} required at some instant of time. It is desired to determine whether there exists an assignment of resource units which satisfies the following conditions:
(1) The number of units assigned to satisfy the requirements of each group, A_{i}, is $R\left(A_{i}\right)$.
(2) The number of units assigned from each class y_{j} does not exceed q_{j}.
(3) A resource unit which is a member of class y_{j} is assigned to group A_{i} only if y_{j} is a member of A_{i}. (A unit is
assigned to group A_{i} if that unit is assigned to an activity which requires a unit of group $\mathrm{A}_{\mathbf{i}}$.)

This problem is a special case of the transportation problem of linear programming (13). In the transportation problem there are a specified number of suppliers, each of which can supply a specified number of units, and a specified number of customers, each of which must receive a specified number of units. Also there is a known cost of shipping a single unit from supplier i to customer j. The problem is to minimize the total shipping cost subject to the constraint that all customer demands be met.

To apply the transportation model to the resource assignment problem, one would consider the resource classes as suppliers and the attribute groups as customers. The cost of assigning a unit of resource class y_{j} to satisfy a requirement for A_{i} is zero if resource class y_{j} is a member of attribute group A_{i} and is one otherwise. The analogy between the general transportation problem and the resource assignment problem is shown in Table VIII. Bayer's transportation algorithm (14) is used to find an assignment that minimizes the total cost. The assignment can be made only if the minimized total cost is zero.

The next problem to be considered is the determination of requirements for each attribute group during a given time interval, and the use of the transportation algorithm in the CONFL2 subprogram to determine whether the next activity can be scheduled. Suppose a call is made to CONFL2 with n activities in the permutation. As explained in Chapter VI, the first $n-1$ activities have been scheduled so that the task at hand is to schedule the n'th activity. The scheduled start and

TABLE VIII

ANALOGY BETWEEN GENERAL TRANSPORTATION PROBLEM AND RESOURCE ASSIGNMENT PROBLEM

Transportation Problem	Resource Assignment Problem
Suppliers	Resource Classes
Customers	Attribute Groups
Shipping Cost	"Cost" is 0 or 1

end times for the first $n-1$ activities have been retained in the tables described in Chapter V. Let t_{0} and t_{1} be the proposed start and end times for activity n. Initially let t_{0} be equal to the window start time for activity n. Then proceed as follows:
(1) Compute t_{1} by adding the actual time required by activity n to t_{0}.
(2) Compute the number of units of each attribute group required by the n activities during the time interval bounded by t_{0} and t_{1}. A procedure used for this computation is described below.
(3) Invoke the transportation algorithm. If the minimized total cost is zero, then the attribute requirements can be satisfied during the time interval bounded by t_{0} and t_{1}, and t_{0} and t_{l} are entered as the scheduled start and end times for activity n .
(4) If the minimized cost is greater than zero, then set t_{0} equal to the earliest time that any attribute requirement may decrease. The earliest time any attribute requirement may
decrease is the earliest scheduled ending time of the first $n-1$ activities. Recompute t_{1}, and if t_{1} does not exceed the window end time, then return to step 2. Otherwise, report that activity n cannot be scheduled.

In the program described in Chapter V, a table was kept for each resource class, which contained scheduled start and end times of activities requiring units of that resource class. In this program, such a table is kept for each attribute group. It was noted in Chapter V that the method used for counting the number of overlapping activities was unduly restrictive. Suppose for example, the scheduled time for activity x_{1} was $4: 00$ to $6: 00$, and the scheduled time for activity x_{2} was 6:00 to 8:00. If the proposed scheduled time for activity x_{3} was 5:00 to 7:00, the method used in the previous program would count two overlapping activities and conclude that three units were required, when it is clear that only two units are required. A more accurate method of determining the number of units of an attribute group required during a specified time interval is used in this program. For any attribute group, let k be the number of units required during the time interval bounded by t_{0} and t_{1}, and let $\left(c_{1}, d_{1}\right),\left(c_{2}, d_{2}\right), \ldots$, $\left(c_{n-1}, d_{n-1}\right)$ be the start and end times of those activities already scheduled which require a unit of that attribute group. Let f_{1}, f_{2}, ..., f_{n-1} be flags associated with each scheduled activity. Each flag will indicate whether the scheduled time of its corresponding activity overlaps the time interval bounded by t_{0} and t_{1}. The value of k is computed as follows:
(1) Set k equal to zero. Set f_{i} equal to zero for all i.
(2) Order the c_{i}, d_{i} pairs in increasing order of c_{i}. Choose a value for j such that $c_{j-1} \leq t_{0} \leq c_{j}$.
(3) This step counts the number of overlapping activities that begin before t_{0}. For $k=1$ to $j-1$, if $d_{1}>t_{0}$, then set $\mathrm{f}_{\mathrm{i}}=1$ and add 1 to k.
(4) This step counts the number of overlapping activities that begin after t_{0}. If two activities both overlap the interval being examined but do not overlap each other, then they may be counted as one activity. For $i=j$ to $n-1$:

If $c_{i}<t_{1}$ then for $\ell=1$ to $i-1$ search for a pair c_{ℓ}, d_{ℓ} where $f_{\ell}=1$ and $d_{\ell} \leq c_{i}$. If such a pair is found, set $d_{\ell}=d_{i}$. Otherwise set $f_{i}=1$ and add 1 to k.

An example is shown in Table IX. Note that the second and third activity both overlap the time period 3:00 to 5:00, but since they do not overlap each other, they may be considered as one activity scheduled for 2:00 to 6:00.

This method examines whether resource assignments can be made during sub-intervals of time, without considering whether or not assignments can be made for the entire period of time under consideration. Diabolical cases may arise in which the assignment can be made during each sub-interval but not for the entire period of time under consideration. An example of such a case is shown in Table X.

When the permutation consists of $\mathrm{x}_{1}, \mathrm{x}_{2}$, and x_{3}, the time interval under consideration is $9: 00$ to $11: 00$. The only assignment that could be made is two units of y_{1} for A_{1} and one unit of y_{2} for A_{2}. When the permutation consists of $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5}, the time interval to be considered is 10:00 to 12:00. The only assignment that

TABLE IX
COMPUTATION OF THE NUMBER OF UNITS REQUIRED
OF A PARTICULAR ATTRIBUTE GROUP
$t_{0}=3: 00$
$t_{1}=5: 00$
$c_{1}=1: 00$
$d_{1}=3: 00$
$\mathrm{f}_{1}=0$
$c_{2}=2: 00$
$d_{2}=4: 00$
$f_{2}=1$
$c_{3}=4: 00$
$d_{3}=6: 00$
$\mathrm{f}_{3}=0$
$c_{4}=5: 00$
$d_{4}=7: 00$
$\mathrm{f}_{4}=0$
$\mathrm{k}=1$

TABLE X

A CASE FOR WHICH AN ASSIGNMENT CAN BE MADE FOR EACH SUBINTERVAL, BUT CANNOT BE MADE FOR

THE ENTIRE PERIOD OF TIME

Activity	Window	Time Required	Attribute Groups Required
${ }^{\text {x }} 1$	8:00-10:00	2	A_{1}
x_{2}	8:00-10:00	2	A_{1}
x_{3}	9:00-11:00	2	A_{2}
x_{4}	10:00-12:00	2	A_{3}
x_{5}	10:00-12:00	2	${ }^{\text {A }} 3$
	Resource Class	Attribute	Quantity
	y_{1}	1,2	2
	y_{2}	2, 3	2

could be made is one unit of y_{1} for A_{2} and two units of y_{2} for A_{3}. Notice that assignments can be made for each subinterval of time but that one unit cannot be assigned to x_{3} continuously from 9:00 to $11: 00$. The method described above would report that a schedule exists when in fact no schedule can be found.

To avoid such situations, we add the restriction that a resource unit may be assigned to only one attribute group during the entire period of time under consideration. In the example of Table X, if a unit of y_{1} were assigned to an activity requiring a unit of A_{1} from 8:00 to $10: 00$, then the same unit could be assigned to another activity requiring a unit of A_{1} after $10: 00$, but the unit could not be assigned to satisfy an activity's request for A_{2} even though class y_{1} is a member of group A_{2}. To implement this restriction, a dummy activity is added which requires no resources but which must be scheduled for the entire period of time under consideration. This forces CONFL2 to look for an assignment that can be made for the entire time period. In the example of Table X, an attempt to schedule a dummy activity during the time interval 8:00 to $12: 00$ would cause CONFL2 to report that no schedule could be found.

There are cases, however, for which this added restriction would cause a schedule not to be found when in fact a schedule exists. Suppose two activities request units of attribute group A_{1}; one of the activities can be scheduled from 8:00 to $10: 00$ and the other from 10:00 to $12: 00$. Suppose two resource classes, y_{1} and y_{2} can service the request, and that a unit of y_{1} is available from 8:00 to 10:00 and a unit of y_{2} is available from 10:00 to 12:00. Clearly a schedule
exists, but the additional restriction described above may result in a report that no schedule can be found.

It was decided to take the more restrictive approach and use the dummy activity in the program at the cost of possibly not finding a schedule when one does exist. The problem of guaranteeing that a schedule will be found if and only if one does exist apparently remains unsolved at the time of this writing.

CHAPTER VITI

CONCLUSION AND SUGGESTIONS FOR

 FURTHER INVESTIGATION
Abstract

The primary goal of this investigation has been the application of tree structured processes to the solution of a certain class of scheduling problems. This goal has been attained through the development of four computer programs. Three of these four programs were written to solve subclasses of the class of scheduling problems under consideration, and the fourth program was written to solve the full class of problems. Except for certain cases which are noted elsewhere in this report, each of these four programs solves the class or subclass of problems for which it was written. Another goal which has been achieved was the elimination of the need to impose a discrete resolution on the time dimension. This has been done by scheduling each activity as early in its window as possible.

In addition to the attainment of these goals, the investigation resulted in several other significant achievements. One of these is the use of graph theoretic techniques to identify independent subsets of activities, as described in Chapter V. Another accomplishment is the development of an algorithm to count the number of units of an attribute group required during a subinterval of time. Still another accomplishment is the application of a solution method for the

transportation problem to the problem of assigning resource classes to attribute groups, as described in Chapter VII.

However, the author believes that the most important results of the investigation are to be found not in the goals that have been achieved, but in the problem areas that have been uncovered by the investigation which could lead to further study. Traversal of decision trees has been of primary importance in developing these programs. It may well be said that the investigation itself has proceeded in a tree structured manner. In a number of instances during the development of the above-mentioned programs, interesting problems and questions suitable for further investigation were encountered; in each case a decision had to be made as to whether to turn the investigation toward a deeper study of the problem uncovered or to continue in the current direction. In the following paragraphs, some unbeaten paths in this decision tree are outlined.

It was conjectured in Chapter III that, by ordering the windows in increasing order of window start time, the first schedule found would have some earliest attribute associated with it. The effect of ordering windows merits further investigation. Will ordering of windows in decreasing order of time constraint produce a solution in the shortest time by creating conflicts early in the decision making process? In each program the CONFL2 routine attempts to schedule each activity as early in its window as possible. If the windows were ordered by decreasing order of start time (or perhaps end time) and the CONFL2 routine were changed so that each activity was scheduled as late in its window as possible, would the first solution found be the "latest" solution?

The method of assigning resource units to attribute groups described in Chapter VII could use some improvement. An algorithm is used which can find a solution to the transportation problem in its full generality. It seems that a faster algorithm could be developed for this special case. Perhaps an algorithm could be developed which would determine whether the assignment could be made, and, if the assignment could not be made, would determine the minimum change in attribute requirements necessary for an assignment to be made.

Improvements with respect to generating and checking permutations were discussed in Chapter VI. For a large problem, it is evident that an enumeration of all permutations is combinatorially infeasible. Heuristic techniques need to be developed which will choose the "best" path in a decision tree, that is, the path that is most likely, in some respect, to arrive at a solution. The interested investigator is referred to Slagel and Lee (15) for a discussion of heuristic techniques applied to tree searching problems.

Lastly, the feasibility of applying the final program to a fairly large problem should be studied. Since this investigation has been concerned mainly with techniques and methods, no attempt has been made to determine the amount of time required to solve scheduling problems of various sizes. The problem shown in the sample output of Appendix B has nine activities, five resource classes, and eight attribute groups; no attempt has been made to test a larger problem. Variables that should be considered in such a study include the number of activities, the number of windows per activity, the severity of time and resource constraints, and the number of subsets of independent activities.

Hopefully, the techniques developed in this investigation, together

 with the results of further investigations, will be useful in the development of a non-procedural scheduling language which is expected to be undertaken locally in the near future.
BIBLIOGRAPHY

(1) Van Doren, J. R. "Space Flight Scheduling." Attachment 1 to Arts and Sciences Research Report on Project 3722-16/D-2160, Oklahoma State University, January, 1973.
(2) Muth, John F., and Gerald L. Thompson. Industrial Scheduling. Englewood Cliffs: Prentice-Hall, 1963.
(3) Bratley, Paul, Michael Florian, and Pierre Robillard. "Scheduling with Earliest Start and Due Date Constraints." Publication No. 56, University of Montreal, March, 1971.
(4) Davis, Edward W., and George E. Heidorn. "An Algorithm for Optimal Project Scheduling under Multiple Resource Constraints," Management Science, Vol. 17, 12 (1971), 803-816.
(5) Golomb, Solomon W., and Leonard D. Baumert. "Backtrack Programming," Journal of the ACM, Vol. 12 (1965), 516-524.
(6) Knuth, Donald E. The Art of Computer Programming, Vol. I. Reading: Addison-Wesley, 1968.
(7) Nilsson, Nils J. Problem Solving Methods in Artificial Intelligence. New York: McGraw-Hill, 1971.
(8) Slagel, James R. Artificial Intelligence: The Heuristic Programming Approach. New York: McGraw-Hill, 1971.
(9) Schrack, G. F., and M. Shimrat. "Algorithm 102, Permutations in Lexicographical Order," Communications of the ACM, Vol. 5 (June, 1962), 346.
(10) Shen, Mok-Kong. "Algorithm 202, Generation of Permutations in Lexicographical Order," Communications of the ACM, Vol. 6 (September, 1963), 517.
(11) Ord-Smith, R. J. "Algorithm 323, Generation of Permutations in Lexicographic Order," Communications of the ACM, Vol. 11 (February, 1968), 117.
(12) Warshall, Stephen. "A Theorem on Boolean Matrices," Journal of the ACM, Vol. 9 (1962), 11-12.
(13) Wagner, Harvey M. Principles of Operations Research. Englewood Cliffs: Prentice Hall, 1969.
(14) Bayer, G. "Algorithm 293, Transportation Problem," Communications of the ACM, Vol. 9 (December, 1966), 869-871.
(15) Slagel, James R., and Richard C. T. Lee. "Application of Game Tree Searching Techniques to Sequential Pattern Recognition," Communications of the ACM, Vol. 14 (February, 1971), 103-110.

APPENDIX A

FLOWCHART OF FINAL PROGRAM

Legend
LPERM - save area for permutations LVL - current level of window tree NODE - pointer to window at current level PLVL - current level of permutation tree PSTK - vector containing permutation RETCODE1 - return code set by CONFL1 RETCODE2 - return code set by CONFL2 SLS - tentative activity start time SLE - tentative activity end time STK - stack used in window tree traversal

APPENDIX B

SOURCE LISTING AND SAMPLE OUTPUT

OF FINAL PROGRAM

STMT LEVEL NEST

10	2		```DCL ATTBL\MAXRES +1,MAXATR+1) FIXED BIN. RESQTY(MAXRES: FIXED BIN; /* READ INPUT DATA FOR ACTIVITIES, RESOUREE CLASSES AND REQUI REMENTS */```	SCHED5TO SCHED580 SCHED570 SCHEOSOO SLHEJ 610 SCHEDS 20
11	2		ON ENCFILESSYSINI GO TO LAST＿CARO：	S5 HED630
13	2		ATTBL $\times 1$ ：	SCHED640 SCHEOS5O
14	2		$\begin{aligned} & \text { READCARD: } \\ & \text { GET EDI (CARDCODE, BUF)(COL(1),A(1),A(77)); } \end{aligned}$	$\begin{aligned} & \text { SCHED6S0 } \\ & \text { SEHE } 670 \end{aligned}$
15	2		IF CARDCODE $=$＇1＇THEN	S CHEDS 90
16	2		DO：\quad＊ACTIVITY TABLE IYPUT＊／	SCHED690
17	2	1	$A C T C T=A C T C T+1 ;$	SCHED700
18	2	1	GET STRING（BUF）EDIT（AこTTBL（ACTCT）） （A14），A（3），（17）f（4））：	SCHEOT10 SCHEO 720
19	2	1	ENJ：	S CHED730
20	2		ELSE IF CARDCODE x＇2＇THEN	SCHE07\％0
21	2		DO；$\quad 1 *$ RESOJRCE CLASS TABLE IVPJT $* /$	SCHED750
22	2	1	RESCT $=$ RESCT＋1；	SCHEOTSO
23	2	1	GET STRIVG（BUF）EDIT（RESTBL（RESCTI） $(A(4), A(8),(11) F(4)) ;$	SCHEDTTO SCHED 780
24	2	1	DO I＝1 T〕 10 HHILE（RESATR（RESCT，I）＞01：	SCHED770
25	2	2	ATTBL（RESCT，RESATY（RESCT，I）$=0$ \％	SEHEDS00
26	2	2	END：	SCHED810
27	2	1	RESQTY（RESCT）＝RESUNITS（RESCTI＊	SCHEDS 20
28	2	1	ENO：	SCHED830
29	2		ELSE IF CARDCODE $=13^{\prime}$ THEN	SCHEO840
30	2		DO：$/ *$ REQUIREYENTS INPUT $* /$	SCHED850
31	2	1	RQCT $=$ RQCT＋1；	SEHED860
32	2	1	GET．STRIVG（BUF）EDIT（RQTBLA（RQCT））（A（4），F（\％））：	SCHEOBTJ
33	2	1	ENO：	SCHED880
34	2		ELSE PUT SKIP EDIT（CARDCODE，BUF，＇INVALID CARDCDDE＇） （A（1），A（79），A）：	SCHED890 SCHEDYJJ
35	2		GO TO READCARO：	SこHED910 SCHED920
36	2		LAST＿CARD： IF ACTCT $=0 \mid$ RESCT $=0 \mid$ RQCT $=0$	$\begin{aligned} & \text { SCHEO9 } 30 \\ & \text { SCHEUY4 } \end{aligned}$
37	2		THEN DO：	SCHED950
38	2	1	PUT SKIP EDIT（＇MISSINA INPUT DATA＇）（A）：	SCHED75
39	2	1	STOP：	SEHED970
40	2	1	ENO；	SCHEO980
41	2		ATTBL（RESCT＋1；＊）＝1；	SCHEDS70
42	2		ATTBL（ $*$ MAXATR＋1）$=0$ ；	SCHE1000
			1＊PRINT TABLES＊／	$\begin{aligned} & \text { SCHE } 1010 \\ & \text { SCHEIOश0 } \end{aligned}$
43	2		PUT EDIT ！TABLE OF ACTIVITIES＇）（PAGE，${ }^{\text {（ }}$（2J），A，SKIP（1）；	SCHE1030
44	2		PUT EDIT（＇ACT＂＇，＇TIME REQ＇．＇WINJOWS＇） （SKIP（1），A，COL（14），A，COL（2a），A）：	$\begin{aligned} & \text { SCHE1040 } \\ & \text { SCHEIO50 } \end{aligned}$
45	2		$\begin{aligned} & \text { PUT EDIT I (ACTTBL(1) DO I }=1 \text { TO ACTCT }) \\ & \\ & (S X I P(1), X(1), A(4), X(1), A(81), x(1), F(4) . \\ & \\ & \text { (MAXH)(X(6),F(4),X(1),F(4)):} \end{aligned}$	$\begin{aligned} & \text { SCHE } 1060 \\ & \text { SCHE } O 10 \\ & \text { SCHE } O B O \end{aligned}$
46	2		PUT EDIT（ TABLE DF RESOURCE CLASSES：）（SK！P（3），X（1）），A）：	SCHE 1090
47	2		PUT EUIT（＇CLASS＇，＊OF UNITSA，＇ATTスIBUTES＇） （SKIP（1），COL（8），A，COL（23），A，CDL（37），A）：	$\begin{aligned} & \text { SCHE1130 } \\ & \text { SCME1110 } \end{aligned}$

STMT LEVEL NEST

114	4	3	SUB(SCT $)=1$;	SCHE 2220
115	4	3	IF I = ROW THEN D(1,*) = 0'B;	SCHE 2230
117	4	3	PUT SKIP EDIT (ACTHIU), AETTIMEIl), (ACTHINDOHS(I, J)	SCHE2240
			DO J=1 TO YAXN WHILE (ACTEVO(I, J) $7=0111$	SCHE 2250
			$(\mathrm{A} 44), \mathrm{X}(7), \mathrm{F}(4), \mathrm{X}(8),(\mathrm{MAX})(\mathrm{F}(4), \mathrm{X}(1), \mathrm{F}(4)$,	SCHE 2260
			X 3111 :	SCHE2270
118	4	3	ENO:	SCHE 2280
119	4	2	END ;	SCHE 2290
				SCHE2300
			/* begin traversal of windor tree fjr subset of activities */	SCHE 2310
				SCHE2320
120	4	1	LPERM $=0$;	SCHE2330
121	4	1	LVL $=1 ;$	SCHE 2340
122	4	1	FIRST_HINOOH:	SCHE2350
			NODE $=1$;	SCHE 2360
			/* Place new node on stack and check for conflict */	SCHE 2370
				SCHE2390
123	4	1	PUSH_ONTO_STACK:	SCHE 2390
			STKILVL) $=$ NODE;	SCHE 2400
124	4	1	CALL CONFL 1;	SCHE2415
125	4	1	IF RTCODEL = 1 THEN	SCHE 2420
126	4	1	00:	SCHE 2430
			/* NO CONFLICT DETECTEJ; G] To NEXT LEVEL */	SCHE2440
127	4	2	IF LVL = SCT THEN GO TO DUTPUT_SOLUTION:	SCHE 2450
129	4	2	OO I=1 TO LVL;	SCHE2450
130	4	3	LPERM(LVL, 1$)=$ PSTK(I);	SCHE 2470
131	4	3	END:	SCHE 2480
132	4	2	$\underline{L L L}=\mathrm{LVR} \mathrm{+} 1$;	SCHE2430
133	4	2	GO TO FIRST_HINDOW;	SCHE 2500
134	4	2	ENO;	SCHE 2510
			/* CONFLICT OETECTED. ChECK next window or go. TO previous level*/	SCHE2523
				SCHE 2530
135	4	1	NEXT_KINDOW:	SCHE 2540
			NODE $=$ NOOE +1 ;	SCHE2550
136	4	1	IF NODE < MAXW \& ACTEND(SUB(LVL), NODE) $=0$	SCHE 2560
137	4	1	THEN GO TO PUSH_ONTO_STACK;	SCHE 2570
138	4	1	IF LVL=1 THEN DO;	SCHE2580
140	4	2		SCHE 2590
141	4	2	GO TO ENO_LOOP_1;	SCHE2630
142	4	2	END:	SCHE 2610
143	4	1	LVL $=$ LVL-1:	SCHE 2620
144	4	1	NODE $=$ STKILVLI:	SCHE2630
145	4	1	GO TO NEXT_HINOOW;	SCHE 2640
				SCHE 2650
146	4	1	dUTPUT_SOLUTION:	SCHE 2650
			CALL CONFL2 (198);	SCHE 2670
147	4	1	IF R TEODE2 = O THENGO TO NEXT_WINDOW:	SCHE 2680
149	4	1	PUT EDIT(160)-T)(SKIP (2), A) :	SCHE 2670
150	4	1	PUT EDIT ('SCHEDULE for above act ivities',	SCHE 2700
			'ACI\# WI NDOW ACTUAL'I	SCHE 2710
			(SKIP(2), X(10), A, SKIP(1), X (10), A) :	SCHE2 720
151	4	1	OOI = 1 TOLVL;	SCHE 2730
152	4	2	$K=$ SUä(PSTK (I)	SCHE2740
153	4	2	PUT SKIP EOIT (ACTH(K), ACTWINDJWSIK,STK(PSTく(I)]),	SCHE 2750
			SLVEC(0, ${ }^{\text {d }}$	SCHE 2760

stmt level nest

192	5	2	END:	SCHE 3320
193	5	1	R T ODE $1=1:$	SCHE 3330
194	5	1	SLSTRT(0, 1) = $4 C T S T R T I T, S T<(1) 1:$	SCHE3360
195	5	1	SLEND(0,1) $=$ SLSTRT (0,1) + ACTT [ME(1):	SCHE 3350
196	5	1	SLPT(0) $=1:$	SCHE 3360
197	5	1	RETURN:	SCHE3370
198	5	1	END;	SCHE 3380
			/* begin generating permutations in lexical order,starting with the	SCHE3373
			PERMUTATION which produced a schejule at the previjus level.	SCHE 3400
			RESTORE THIS PREVIOUS PERMUTATION IN PSTK, AND CALL CONFL 2 REPEAT-	SCHE3410
			EOLY TO RESTORE the previdus schejule.	SCHE3420
			*/	SCHE 3430
199	5		PSTK=0:	SCHE 3440
200	5		DO PLVL=1 TO LVL-1;	SCHE3450
201	5	1	PSTK(PLVL) $=$ LPERM(LVL-1;PLVL):	SEHE 3460
202	5	1	CALL CONFL2('0'8):	SCHE 3470
203	5	1	END:	SCHE3480
204	5		PLVL = LVL;	SCHE 3490
205	5		PSTK(PLVL) = LVL;	SCHE3503
206	5		GO TO CALL_C2;	SCHE3510
207	5		NEXT_LVL:	SCHE 3520
			PSTK (PLVL) = 1;	SCHE3530.
208	5		CHECK_CONFL2:	SCME 3540
			IF PLVL >1 THEN	SCHE 3550
209	5		DO I = 1 TO PLVL-1:	SCHE3550
210	5	1	1F PSTK(I) =PSTK(PLVL) THEN GO TO NEXT_VO;	SCHE 3570
212	5	1	END;	SCHE 3580
			1* COMPARE THIS PERMUTATION WITH THE PERMUTATION OF The previ ous level	SCHE3590
			ANO CHECK for violatidons of lexical order ing	SCHE 3600
			*/	SCHE 3610
213	5		$\mathrm{K}=0$;	SCHE3620
214	5		DO I=1 TO PLVL;	SCHE 3630
215	5	1	$k=k+1$;	SCHE3640
216	5	1	IF PSTK (K) = LVL THEN K = $\mathrm{K}+1$;	SCHE3650
218	5	1	[F PSTK(K) < LPERM(LVL-1, ! THEN GO TO NEXT_NO;	SCHE 3660
220	5	1	IF PSTX(K) > LPERM(LVL-1,I) THEN GO TO CALL_C2;	SCHE35 70
222	5	1	END;	SCHE 3680
223	5		CALL_C2:	SCHE 3690
			CALL CONFL 2(0'B);	SCHE37JO
224	5		If RTCODE2 = O THEN GD TO NEXT_NO;	SCHE3710
				SCHE 3720
			/* NO CONFLICT deTECTED */	SCHE3730
226	5		IF PLVL = LVL THEN DO:	SLHE 3740
228	5	1	RTCCDE1 $=1$;	SLHE 3750
229	5	1	RETURN:	SCHE3750
230	5	1	END:	SCHE 3770
231	5		PLVL $=$ PLVL+1;	SCHE 3780
232	5		GO TO NEXT_LVL;	$\begin{aligned} & \text { SCHE } 3790 \\ & \text { SCHE } 3800 \end{aligned}$
233	5		NEXT_NO: \quad * CONFLICT FOUND * $/$	SCHE3910
			IF PSTK (PLVL) < LVL THEN	SCHE3820
234	5		DO;	SCHE 3830
235	5	1	PSTX(PLVL) $=$ PSTK(PLVL) $+1:$	SCHE3840
236	5	1	GO TO CHECK_CONFL2:	SETE 3850
237	5	1	END:	SCHE 3860

stmt level nest

238	5			SCHE3370
240	5	1	IF PLVL $=1$ THEN OO： RTCODEL $=0$ ；	SCHE 3880
241	5	1	（ RETURN：	SCHE 3890
242	5	1	END：	SCHE39JJ
243	5			SCHE 3910
				SCHE3920
			BY PSTKイPLVL：	SCHE3930
				SCHE 3940
244	5			SCHE3950
245	5		DO I＝ 1 TO Maxatr Whilelsubresill＞0）：	SCHE3950
246	5	1	SLPT（SUBRESII）$=$ SLPT（SUBRES（II）－1；	SCHE 3970
247	5	1	END：	SCHE3930
248	5		SLPT（0）＝SLPT（0）－1；	SCHE 3970
249	5		go ro next＿no；	SCHE4000
250	5		END CONFLI；	SCHE4013
				SCHE 4020
				SCHE 4030
				SCHE40\％ 0
				SCHE 4050
251	4		CONFL2：PROCIFINALI：	SCHE4060
				SCHE4070
			this routine attempts to find a schedule for the activities	SCHE4080
			POINTED TO BY PSTK．PLVL IS The \＃of activities to be scheojled．	S CHE4090
			IF PLVL >1 THEN PLVL－1 ACTIVIIIES HAVE ALREADY BEEN SCHEDULED．	SCHE4100
			IF FINAL＝ 1 THEN A FULL PREYUTATIONHAS BEEN FOJND AHICH HASTMUS FAR PROUCED ND CONFLIET．IN THIS CASE THE RCUTINE IS JSED	SCHE 4110
				SCHE4120
			to find the actual resuurce allocation，if it cay be fjund．	Sご 5 ¢ 4130
			＊ 1 DCL FINAL BITC11：	SCHE4140
252	5		DCL FINAL BITII）：	SCHE4150
253	5		```DCL II,J,K,SLS,SLE,NEXTSLS,IPOINT,MINO,TEMP, KOUYT,IYF,DELT,COST, WINDEND, HOLDK)```	SCHE 4160
				SCHE4170
			FIXED BIN：	SCHE4180
254	5		OCLIC（DCOUNT），DIDCOUNT ）FIXEO BIN：	SCHE4190
255	5		OCL OVP（OCGUNTI SIT（1］；	SCHE4200
256	5			SCHE4210
257	5		INF $=32767$ ；	SCHE4220
258	5		IF FINAL THEN	SCHE423J
259	5		DO：	SCHE4240
260	5	1	SLS $=0 ;$	SCHE 4250
261	5	1	OELT $=32767$ ；	SCHE4253
262	5	1	SLE，WINOENO＝SLS＋DELT；	56154270
263	5	1	END：	SCHE4280
264	5		ELSE	SCHE4230
264	5		DO；	SCHE4300
265	5	1	$1=$ SUBCPSTK（PLVLI）；	SCHE4310
266	5	1	$J=$ STKPPSTK（PLVLI）；	SCHE4323
267	5	1	CALL SCANRQ（II；	SCHE 4330
				SCHE4340
			／＊SET TENTATIVE START TIME＝START TIME OF WINDOW＊／	SCHE4350
268	5	1	SLS＝ACTSTRT（1，J）：	SCHE 4360
269	5	1	DELT＝ACTTIME（I）；	SCHE 4370
270	5	，	SLE＝SLS＋DELT；	SCHE4380
271	5	1	WINDEND＝ACTEND（1．J）：	SCHE4390
272	5	1	ENO；	SCHE4400

stmt level nest

STMT LEVEL NESt

STMT LEVEL NEST

stmt level nest

SCHE6070
SCHE 6080 SCHE 6090 SCHE6 100 SCHEG110 SCHE 6120 SCHE6 133 SEHE 6140 SCHE 6150 SCHE6150 SCHE 6170 SCHE 6180 SCHE6 170 SCHE6 170
SCHE 6200 SCHEG210 SCHE6220 SCHE 6230 SCHE6240 SCHE6240
SCHE6250 SCHE 6260 SCHE6 270 SCHE 6280 SCHE 6290 SCHES 300 SCHE6310 SCHE 6320 SCHE6 330 SCHE 6340 SCHE 6340
SCHE 6350 SCHE 6350
SCHE6 350 SCHE 6370 SCHE6380 SCHE6 390 SCHE6390
SCHE 6400 SCHE 6410 SCHE6420 SCHE 6430 SCHE6440 SCHE 6450 SCHE 6460 S CHE6470 SCHE6480 SCHE 6490 SCHE 6490
SCHE6 500 SCHE6500
SCHE 6510 SCHE 6520 SCHE6530 SCHE 6540 SCHE 6550 SCHE6560 SCHE 6570 S CHE6590 SCHE6590 SCHE 6600 SCHEGS 10

StMt level nest

STMT LEVEL NEST

stmt level nest

attempting to schedule the follouing activities

SCHEDULE ACT*	$F O$	$\begin{aligned} & \text { ABOVE } \\ & \text { DOW } \end{aligned}$	ACTIVITIES ACTUAL	
Al	1	3	1	2
${ }^{13}$	2	5	2	5
A5	4	7	4	7
A 7	9	11	9	11
A9	19	21	19	21

ASSIGNMENTS OF RESCURCE CLASSES TO ATTRIBUTE GROUPS RESOURCE CLASS ATTRIBUTE GROUP RIBUTE GROUPS
O OF UNITS
1
2
1
2

RESOURCE ASSIGNMENTS

CLASS TIMESASSIGNED

attempting to schedule the follohing activities

SCHEDULE FOR ABOVE ACTIVITIES

ACT* WINOOW AC TUAL

GLOSSARY OF TERMS
activity - a non-recurring event that extends over a continuous time interval and requires the use of one or more resources.
attribute group - group of all resource classes which possess the same attribute.
breadth-first search - a method of tree searching in which all nodes of a given level are processed in the same step, producing the effect of traversing all paths of the tree in parallel.
constraint - a restriction or limitation which must be taken into account when scheduling an activity.
dense solution - a solution to a scheduling problem which minimizes the total elapsed time between the starting time of the first activity and the ending time of the last activity.
depth-first search - a method of tree searching in which all paths are examined in series.
distributed solution - a solution to a scheduling problem which imposes a uniform distribution of activity assignments over a period of time.
earliest schedule - a solution to a scheduling problem in which the last activity is completed as early as possible.
ending time - the time at which an activity will complete the utilization of resources allocated to it.
resource assignment - allocation of a resource unit to an activity for a specified time interval.
resource class - a collection of identical resource units.
resource unit - a person or a reusable item.
starting time - the time at which an activity will begin utilization of resources allocated to it.
tree structured search - a search for a solution to a problem which is performed by examining alternatives in a manner corresponding to the traversal of a tree.
uniformly distributed utilization - allocation of resource units in such a way that all units within a given class are allocated for approximately equal lengths of time.
window - an interval of time during which an activity may be scheduled.
Martin James Wertheim
Candidate for the Degree of
Master of Science
Thesis: TREE STRUCTURED ALGORITHMS FOR SCHEDULING ACTIVITIES AND RESOURCES IN A CONTINUUM OF TIME
Major Field: Computing and Information Science
Biographical:
Personal Data: Born in Rochester, New York, July 27, 1947,the son of William and Helen Wertheim.Education: Graduated from Benjamin Franklin High School,Rochester, New York, in June, 1965; received Bachelorof Science degree in Mathematics from Duke Universityin 1969; completed requirements for the Master ofScience degree at Oklahoma State University in July,1973.
Professional Experience: Programmer/Analyst, Texas Instru-ments, Incorporated, 1969-1971; Graduate Assistant,Oklahoma State University, 1972-1973.

[^0]: Figure 6. Binary Tree Associated with Four Queens Problem After Two Levels Have Been Processed. Since the root node is a dummy node, its information field is blank.

