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PREFACE 

This thesis is concerned with the development of a computer pro­

gram to solve a particular class of scheduling problems. The primary 

objective is to implement tree structured searching techniques in the 

search for a schedule. 

I wish to express my thanks to my thesis adviser, Dr. James R. 

Van Doren, for suggesting the topic of this thesis and providing 

invaluable assistance and guidance. Thanks are also due to other 

faculty members of the Department of Computing and Information Sciences, 

for their helpful advice and suggestions. A special note of thanks is 

due to Dr •. Don~ld W. Grace who pointed out that one aspect of resource 

assignment based on attributes was a special case of the transportation 

problem. 

Finally, I wish to thank the citizens of the City of Stillwater 

and the State of Oklahoma for providing the environment which helped 

make my education at Oklahoma State University a truly remarkable 

experience. 
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CHAPTER I 

INTRODUCTION 

A schedule can be defined as a time plan, or a list of times, for 

the occurrence of a group of events or procedures. The problems 

incurred in creating schedules vary greatly from one application to 

another; however, there is one common characteristic inherent in all 

scheduling problems, the need to make decisions. This decision making 

requirement usually arises due to some limitations of time or resources. 

Often a choice must be made between two or more possible schedules as 

to which schedule is, in some sense, optimal. 

Van Doren (1) has observed that scheduling problems take on the 

characteristics of a three dimensional constrained search. The three 

dimensions are activities, resources, and time. The following exam­

ples, taken from industrial scheduling and space flight scheduling, 

illustrate the three dimensional nature of these problems. 

Muth and Thompson (2) have defined industrial scheduling as a 

problem of making decisions on how to use each manufacturing facility 

at each instant of time, taking into account such considerations as 

availability of resources, cost of implementing decisions, due dates, 

and so forth. They have identified three major classes of industrial 

scheduling problems. In the first of these, the job-shop problem, a 

firm contains one or more work centers, and each unit of product 

manufactured must pass through each work center at some stage of the 
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manufacturing process. The production of each unit is an activity, and 

the work centers, composed of machines and workers, are resources. The 

goal of a job shop schedule might be to meet a production deadline 

(time), or to minimize the total time required to complete all jobs. 

A typical constraint might be that a work center can operate on, at 

most, one product at any instant of time. A second class of problems 

arises when a firm keeps an inventory of goods and must decide periodi­

cally when and how many goods to manufacture. In making these deci­

sions, the firm must take into account constraints on the availability 

of resources such as raw material, labor, and capital. A third class 

of problems, single project scheduling, arises when a project con­

sisting of several distinct tasks (activities) must be completed by a 

certain due date (time constraint). In addition to constraints imposed 

by resource limitations, constraints may arise due to requirements that 

some tasks be performed either before or after others. 

Another example which illustrates the three dimensional nature of 

the problem can be found in the scheduling problems associated with 

NASA's space shuttle program (1). Activities to be scheduled include 

shuttle flights, maintenance of orbiters, and deliveries of payloads 

to a given orbit. Resources to be scheduled include orbiters, solid 

rocket boosters, flight crews, etc. The time dimension may involve 

several windows of time, that is, intervals of time during which an 

activity must take place. 

In many cases, more than one solution can be found for a particu­

lar scheduling problem. In such cases it may be desirable to find all 

feasible solutions and choose from among the feasible solutions one 

solution which is optimal. The problem, then, may be compared to 



linear programming problems in which it is desired to maximize or 

minimize an objective function subject to various constraints. 
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Because of the great variety of scheduling problems, it is highly 

unlikely that a computer program could be developed that would be 

general enough to handle all types of scheduling problems. Indeed, 

most programs that have been written are designed to solve one particu­

lar problem. However, programs can be developed with enough generality 

so that certain classes of problems with common characteristics and 

requirements could be solved. The subject of this report is the 

development of a computer program to solve scheduling problems of one 

particular class. 

In the class of problems investigated in this report, an activity 

is a non-recurring event that extends over a continuous time interval 

and requires the use of one or more resources. A resource class is a 

collection of one or more identical resource units. A window of time 

is a time interval during which an activity must be scheduled. There 

are m activities to be scheduled and n classes of resource units to be 

allocated. For simplicity, the restriction is made that an activity 

may require at most one unit of each resource class. Associated with 

each activity are one or more windows of time, and a duration time 

which is the total time necessary to complete an activity. The problem 

is to find an actual starting and ending time for each activity such 

that each activity is scheduled within one of the windows of time 

associated with that activity, and that each resource unit is assigned 

to at most one activity at any one instant of time. In an extension 

of this problem, one or more attributes are associated with each 

resource class, thus forming attribute groups. Each attribute group 



consists of one or more resource classes and each resource class may 

belong to one or more attribute groups. Activity requirements are 

stated in terms of attribute groups rather than resource classes, that 

is to say, each activity requires exactly one unit of one or more 

attribute groups. 

Previous work in this field includes investigations of problems 

of a similar nature. Bratley, et. al. (3), have investigated the 

problem of scheduling n tasks on a single resource, Each task has a 

specified earliest start time, latest completion time and number of 

time units required. They have developed an algorithm to find a 

schedule which minimizes the total elapsed time to complete all jobs. 

The approach they have taken is to consider all possible orderings of 
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n tasks on a single resource. Davis and Heidorn (4) have investigated 

the problem of scheduling multiple projects requiring multiple resources, 

using techniques originally developed to solve line balancing problems. 

Their goal also was to minimize project duration. In each of the 

investigations attempts were made to force a discrete resolution on the 

time dimension. For example, Davis and Heidorn (4) consider a task 

requiring n units of time as n separate tasks each of which requires 

one unit of time. However, as Van Doren (1) has pointed out, it may be 

highly desirable to treat the time dimension as a continuum. One reason 

for this is that a discrete time resolution may lead to methods of 

scheduling in which each unit of time is examined, wh i ch would magnify 

the combinatorial complexity of the problem. Another reason is that, 

in some problems, the times required and the windows of time for dif­

ferent activities woul d vary greatly in magnitude. In such cases it 

would be difficult to decide on the proper size of a time unit. 



It should be emphasized that the major goal of this investigation 

has been the examination of methods used in searching for a schedule. 

Therefore, the goal that has been adopted is the determination of 

whether a schedule exists rather than the detection of a schedule that 

is optimal. When appropriate, however, various criteria of optimality 

will be mentioned, along with suggestions to achieve these criteria, 

The search methods used to find a schedule are based on the con­

cepts of decision trees and backtrack programming as presented by 

Golomb and Baumert (5). These concepts are outlined in Chapter II. 
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It was decided that the investigation should proceed in a stepwise 

manner, beginning with the solution of some simple problems and then 

progressing in successive steps of enlargement and refinement in solving 

more complex problems, until the class of problems discussed earlier 

could.be attacked in its full generality. Thus, the first step in the 

investigation was the application of decision trees and backtrack pro­

gramming to the solution of a fairly well-known problem, the eight 

queens problem of chess. The reasons for this step are that the pro­

blem is well defined and that it has certain similarities to the 

scheduling problems investigated in this report. Two programs which 

are described in Chapter II, were written to solve the eight queens 

problem. Chapter III describes a program written to solve a fairly 

simple scheduling problem, namely scheduling a single resource unit, 

Chapter IV describes an enlargement of this program to schedule a 

single class of resource units. Chapters V and VI describe a program 

to solve a more complex problem, namely scheduling multiple classes of 

resource units, and, finally, Chapter VII describes the ultimate goal 



of the investigation, scheduling multiple resource classes, where 

selection is based on attribute groups. Suggestions for further work 

are outlined in Chapter VIII. 

6 



CHAPTER II 

THE EIGHT QUEENS PROBLEM 

To gain insight into possible search techniques which would be 

useful in a scheduling program, it was decided to begin the investi-

gation by writing two programs to find solutions to the eight queens 

chessboard problem. The problem is to place eight queens on a chess-

board in such a way that no queen may be attacked by another queen. A 

queen is safe from attack if no other queen is positioned on the same 

row, the same column or the same diagonal. Solutions to this problem 

are well known. A generalization of the problem is to place n queens 

on an n x n chessboard. Figure 1 shows one solution to the eight 

queens problem and one solution to the four queens problem. 

Q 
Q 

Q 
Q 

Q 
Q 

Q 
Q 

Eight Queens Four Queens 

Figure 1, Solutions to Eight Queens and Four 
Queens Problems. 

A partial analogy can be drawn be~ween the eight queens problem 

and the problem of scheduling a single resource unit. Consider the 

entire chessboard as a unit of resource, the rows of the chessboard 



as periods of time, and the columns of the chessboard as activities, 

each of which requires exactly one period of time. In this analogy 
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the three dimensional view reduces to two dimensions because there is 

only one resource unit. There are three constraints on the problem two 

of which have a direct analogy with a realistic scheduling problem. 

The constraint that not more than one queen may occupy a particular row 

is analogous to the restriction that the resource unit may be allocated 

to only one activity during a given time period. The restriction that 

not more than one queen may occupy a column corresponds to the fact 

that each activity requires the resource during exactly one time period. 

The third constraint of course concerns avoiding diagonal placement. 

A brute force approach to the problem would be to examine each 

combination of eight squares on a 64 square chessboard. There are 

(6
8
4 ) or 4,426,165,368 combinations to be examined. However, it can 

be observed immediately that each column must be occupied by exactly 

one queen. The problem then reduces to a search of each column for a 

possible square to be occupied. The squares must be chosen so that 

no two queens occupy the same row or the same diagonal. The problem 

can be represented by a tree structure in which each level of the tree 

corresponds to a column and each node corresponds to a square within 

that column. The root of the tree is a dummy node and is considered 

to be at level zero. Figure 2 shows the tree structure corresponding 

to the four queens problem. Each path from the root of the tree to a 

leaf corresponds to a choice of one square for every column; for 

example, the leftmost path of the tree corresponds to the placement 

of a queen in the first square of each column. 



2 3 4 1 2 3 4 1 2 3 4 

4 1 2 3 4 1 2 3 4 1 2 3 4 

1 2 3 4 1 2 3 4 Figure 2. Tree Structure Corresponding to Four Queens Problem. 

(0 
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There are 256 leaves in the tree; therefore, one might suppose 

that there are 256 alternatives to be examined. However, a closer 

examination of the tree structured nature of the problem reveals that 

the number of alternatives to be examined can be reduced. Consider 

again the left-most path of the tree. Traversing the arc from the root 

of the tree to its left-most son corresponds to placing a queen on the 

first square of column one. Traversing the arc from this node to its 

left-most son corresponds to placing a queen on the first square of 

column two. Since no solution to the problem can contain two queens 

in the same row, a conflict condition (constraint violation) exists. 

Furthermore, it is not necessary to examine any nodes beneath the left­

most node at level two; in effect, the tree may be pruned at this node. 

Whenever a conflict condition is detected, the right brother of 

the current node is examined, that is to say, an attempt is made to 

place a queen on the next square of the column currently being examined. 

Placing a queen on the second square of column two would also result in 

a conflict condition since two queens would occupy the same diagonal. 

However, placing a queen in the third square of column two would cause 

no conflict.· When the examination of a node does not result in a con­

flict condition, the sons of that node are examined, that is to say, 

an examination of column three is begun by attempting to place a queen 

on square one of column three. It turns out that, in the four queens 

problem with queens placed in column one, square one, and column two, 

square three, placing a queen anywhere in column three will cause a 

conflict condition. When all alternatives at a given level result in 

a conflict condition, then the decision process backtracks one level; 

in this case it returns to column two and examines the next alternative, 
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namely, placing a queen on square number four of column two. The first 

nine board configurations to be examined are shown in Figure 3. 

When a leaf of the tree is examined and no conflict condition is 

detected, then the path from the root of the tree to the leaf corres­

ponds to a solution. If only one solution to the problem is desired, 

then the solution can be reported and the procedure terminated at this 

point. If all solutions are desired, then the solution can be reported 

and the search continued by examining the next leaf. If no solution 

exists, or if the attempt is made to find all solutions, the search 

terminates after the right-most node of level one (and all of its sons) 

have been examined. 

The method of tree searching described by the example in the pre­

ceding paragraphs is known as a depth-first tree search. It should be 

noted that no explicit data structure corresponding to a tree need be 

constructed. The tree structure is inherent in the decision making 

process. 

Another method of traversing decision trees is the breadth-first 

approach. With this method, all nodes of a given level are examined 

in one step, thus producing the effect of traversing all paths of the 

tree in parallel. An actual tree structure is constructed so that 

parallel processing of decision paths can be simulated. One method of 

construction is to use a binary tree to represent the decision tree 

under consideration (6). Each node of the binary tree has the repre­

sentation shown in Figure 4. The left link of each node points to the 

left son of that node, and the right link of each node points to the 

brother on the immediate right if one exists, otherwise, the right link 



(1) 

Q 

(4) 

Q 

(7) 

Q 

(2) (3) 

Q Q Q 

Q 

(5) (6) 

Q Q Q 

Q 

Q Q Q 

(8) (9) 

Q Q 

Q Q Q 

Q Q 

Figure 3. First Nine Board Configurations to be Examined 
in Four Queens Problem. 

12 
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is used as a thread and points to the father. An example of a tree and 

its binary representation is shown in Figure 5. 

/ Left Link Information Right Link 

Figure 4. One Node of a Binary Tree. 

A 

E F G H I 

Figure 5. A Tree and Its Binary Representation. 

A linked list of available storage is required, along with routines 

to allocate nodes from the available list and to return nodes which are 

no longer needed to the available list. The tree is constructed as a 

binary tree. Processing a level of the tree consists of examining each 

node of the previous level and for each node of the previous level, 

determining which alternatives at the current level do not cause a 

conflict condition. All conflict free alternatives are attached as 
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sons of the node being examined. If no conflict free alternatives are 

found, then the node being examined may be removed from the tree and 

returned to the available list. If a node is pruned which has no 

brothers, then the father of the node may also be pruned. Figure 6 

shows the binary tree associated with the four queens problem after two 

levels have been processed. The two levels of the tree beneath the 

root node correspond to the first two columns of the chessboard. The 

number in the information field of each node denotes a square (row), 

within the specified column, upon which a queen may be placed. Thus 

the left-most path of the tree corresponds to the placement of queens 

on the first square of column one and on the third square of column 

two. Notice that the tree of Figure 3 contains sixteen nodes at level 

two whereas the tree of Figure 6 contains only six nodes. The reason 

for this is that, in processing the second level, only those alterna-

tives that do not produce a conflict condition are attached to nodes in 

the first level, whereas the tree of Figure 3 shows all possible alter-

natives, including those that produce a conflict condition. After all 

levels have been processed, the tree is either empty, in which case no 

solution exists, or it contains a path corresponding to each solution. 

A 

Figure 6. Binary Tree Associated with Four Queens Problem After Two 
Levels Have Been Processed. Since the root node is a 
dummy node, its information field is blank. 
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Two programs were written to find all solutions to the eight 

queens problem, one using the breadth-first approach, and the other 

using the depth-first approach. Both programs were written in Fortran 

LV for the ]BM System 360 Model 65. Because of the combined effects 

of a low resolution timer and a multitasking environment, it was 

impossible to obtain accurate measurement of execution time; however, 

the execution times appear to be about the same for both methods, a 

surprising result when one considers the added overhead of storage 

management in the breadth-first approach. A major advantage of the 

depth-first approach is greater simplicity in programming, so it was 

decided to use this approach in investigation of the scheduling problem. 

A noteworthy advantage of the breadth-first approach is that, at the 

end of the procedure, all solutions are stored in a convenient struc­

ture, namely, the resultant binary tree. Also, the use of heuristic 

techniques of artificial intelligence in searching decision trees, 

which is suggested in Chapter VIII, may require a breadth-first 

traversal (7, 8). 

For an excellent generalization of the concepts of decision 

trees and backtrack programming, see Golomb and Baumert (5). 



CHAPTER III 

SCHEDULING A SINGLE RESOURCE 

The first scheduling problem to be investigated was that of 

scheduling a single resource unit. There are m activities that require 

the use of this resource. Associated with each of these activities is 

the actual length of time that the activity requires use of the re­

source, and one or more windows of time, that is, time intervals 

specified by a starting and ending time, during which the activity must 

be scheduled. The problem is to find a schedule for the resource such 

that every activity may use the resource during one of its windows for 

the length of time required, and that the resource is used by, at most, 

one activity at any instant of time. A sample problem with three 

activities is shown in Table I. 

TABLE I 

SAMPLE PROBLEM--SCHEDULING A SINGLE RESOURCE UNIT 

Activity Time Required Windows 

xl 1 hour 1:00-3:00; 6:00-7:00 

x2 2 hours 2:00-4:00; 6:00-9:00 

x3 1 hour 8:00-9:00 
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It was observed in Chapter II that the eight queens problem could 

be reduced to the problem of selecting a square from each column such 

that no constraints are violated. By analogy, this scheduling problem 

can be reduced to selecting one window from the list of windows for 

each activity such that no constraints are violated. The determination 

of whether constraints are violated is somewhat more complex than in 

the eight queens problem. Suppose there are n intervals on the real 

line, corresponding to one window for each of n activities. These inter-

vals are denoted by [ai, bi] for i = 1 ton. Associated with each 

interval is some number, denoted by 1., which corresponds to the actual 
1 

time required by each activity. The problem of determining whether 

constraints are violated is equivalent to the problem of finding 

mutually disjoint subintervals [c., d.] such that for i = 1 to n 
1 1 

(1) 

(2) 

[c., d.}is a subinterval of [a., b.], and 
1 1 1 1 

d -c.='1 .• 
i 1 1 

The basic approach in determining whether constraints are vio-

lated is to generate permutations of the selected windows, and, for 

each permutation generated, attempt to schedule each activity as early 

in its window as possible, starting with the first window in the permu-

tation. No activity can be scheduled prior to the start time of its 

window or prior to the completion of the previous activity. Let 

[ a'i' b'i] be the i'th window of the permutation currently being 

examined. Then, 

(1) c' = a' l 1 

(2) c'. = max (a'., d'. 1 ) for i = 2 ton, and 
1 1 1-

(3) d I . 
1 

c'. + '11 • for i = 1 ton. 
1 1 

If d'. exceeds b'. for any i than the i'th activity cannot be scheduled 
1 1 
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within its window in the permutation currently being examined. If no 

permutation is found for which each activity can be scheduled within 

its window, then the choice of windows must be altered. A tree struc-

tured approach is used both in selecting windows and in generating 

permutations, as will be seen in the following paragraphs. 

A program was written in PL/I for the IBM System 360 Model 65 

which finds all combinations of windows (where one window is selected 

from the list of windows associated with each activity) for which a 

schedule exists. For each such combination, the program reports one 

possible schedule. In the same problem of Table I, there are four 

combinations of windows. Schedules exist for three of these combina-

tions. A schedule for each of these three combinations is shown in 

Table II. 

As stated previously, only one schedule per combination of windows 

is reported. Of course, there may be many schedules for each combina-

tion: (1) There may be more than one permutation of mutually disjoint 

subintervals; (2) if the time domain is considered to be a continuum, 

and if a subinterval, [ c'i' d'i], has the properties that d'i < b'i 

and d'. ( c'. 1 , then an infinite number of schedules exist. Consider, 
1 1+ 

for example, activity x1 in the second schedule of Table II. This 

activity may be scheduled for 1:00-2:00, 1:01-2:01, 1:05-2:05, 1:15-

2:15, and so forth. Even if a small finite resolution were imposed on 

the time domain, it would be combinatorially infeasible in most cases 

to examine and report all solutions. Therefore, the scope of the pro-

blem is limited to finding a sequence in which the activities can be 

scheduled, and finding a time interval in which each activity can be 

scheduled within that sequence. 
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Activity 

Schedule 1 

xl 

x2 

x3 

Schedule 2 

xl 

x2 

x3 

Schedule 3 

x2 

xl 

x3 

TABLE II 

THREE SCHEDULES FOR THE SAMPLE 
PROBLEM OF TABLE I 

Window Scheduled Time 

1:00-3:00 1:00-2:00 

2:00-4:00 2:00-4:00 

8:00-9:00 8:00-9:00 

1:00-3:00 l:OQ-2:00 

6:00-9:00 6:00-8:00 

8:00-9:00 8:00-9:00 

2:00-4:00 2:00-4:00 

6:00-7:00 6:00-7:00 

8:00-9:00 8:00-9:00 
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The program contains an array of structures in which each structure 

corresponds to an activity. The information included in each structure 

includes the name of the activity, the actual time required, and the 

start and end time of each window associated with that activity. 

Figure 7 shows the array of structures corresponding to the sample 

problem of Table I. (The number of activities to be scheduled as well 

as the maximum number of windows per activity are input parameters 

which are used in allocating storage for this array.) This array is 

searched in a tree structured fashion using the depth-first approach 



xl 1 1 3 6 7 

x2 2 2 4 6 9 

x3 1 8 9 0 0 

Figure 7. Internal Array of Structures 
Corresponding to the Sample 
Problem of Table I. 
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described in Chapter II. Each leyel of the tree corresponds to an 

activity and each node within a level corresponds to a window asso-

ciated with that activity. As each node is visited, a pointer to the 

associated activity and window is placed on a pushdown stack, and a 

subprogram, CONFLl, is called to determine whether a schedule exists 

for the nodes (windows) on the stack. (Henceforth, the terms window 

and activity will be used interchangeably to denote items on the stack.) 

If a conflict condition is detected (that is, if no schedule can be 

found for the windows on the stack), then the search proceeds to the 

next window for the current activity, or, if all windows for the current 

activity have been examined, the search backtracks one level to the 

previous activity. If no conflict condition is detected, the search 

advances to the next level starting at the first window on that level, 

or, if all levels have been examined, reports that a solution has been 

found and advances to the next window of the current activity. 

This tree structured search may be summarized as follows: 

(1) Set level= 1, 

(2) Set node= 1, 

(3) Push node onto stack and call CONFLl• 



(4) Has a conflict condition been detected? If so, go to 

step 7. 

(5) Is this the last level? If so, a schedule has been found. 

Report the solution and go to step 7. Otherwise, continue. 

(6) Add 1 to level. Go to step 2. 

(7) Is this the last node at this level? If so, go to step 9. 

(8) Pop node from stack. Add 1 to node. Go to step 3. 

(9) If level = 1, then stop. Otherwise, subtract 1 from level, 

pop node from stack, and go to step 7. 

21 

CONFLl is a subprogram whose calling parameter is the pushdown 

stack generated during the search of the window tree. This routine 

generates permutations of the items in the stack in lexicographical 

order, starting with the order in which the items appear in the stack. 

For each permutation generated, a call is made to another subprogram, 

CONFL2, which determines whether the activities can be scheduled in 

the order represented by the current permutation. If a permutation is 

found for which a schedule exists, then CONFLl immediately returns con­

trol to the main program reporting a "no conflict" condition. If all 

permutations have been generated and no permutation has been found for 

which a schedule exists, then·a conflict condition is returned to the 

main program. 

Permutations are generated and examined in a manner corresponding 

to a depth-first, left to right tree search. For example, permutations 

of the numbers 1, 2, 3, and 4 may be represented by the tree shown in 

Figure 8. The leaves of this tree are, from left to right, all the 

permutations of the numbers 1, 2, 3, and 4 in lexicographical order. 

Permutations are generated one element at a time and calls are made to 
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Figure 8. Permutation Tree. 

CONFL2 to check the partial permutations being formed. If the activi-

ties represented in the partial permutation cannot be scheduled in the 

order specified by the permutation, then examination of the corres-

ponding full permutations is precluded. For example, suppose four 

windows, denoted by w1 , w2 , w3 and w4 appear on the stack. The first 

call to CONFL2 is made with the partial permutation w1 , w2 • If it is 

found that the activities associated with w1 and w2 cannot be scheduled 

in the specified order, then it is not necessary to examine either of 

well-known algorithms exist for generating permutations in lexico-

graphical order (9, 10, 11), no algorithms which would allow this 

preclusion capability were readily available. More will be said in 

Chapter VI regarding permutations. 

CONFL2 is a subprogram whose calling argument is the current 

partial or complete permutation generated in CONFLl. This routine 
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attempts to build a table of actual starting and ending times for the 

activities represented in the permutation, scheduling each activity as 

early in its window as possible. The starting and ending times in this 

table correspond to the mutually disjoint subintervals, denoted by 

[ ci, di]' referred to earlier in this chapter. An example may be found 

in Table III. 

TABLE III 

SAMPLE TABLE OF ACTUAL STARTING AND ENDING TIMES 

Window Time Required Actual Time 
Activity (a. ' b.) (A.) ( c. ' d.) 

]_ ]_ ]_ ]_ ]_ 

1 1-3 2 1-3 

2 2-5 1 3-4 

3 5-8 2 5-7 

4 6-8 1 7-8 

Although the program is not concerned with finding an optimal 

schedule, it may be enlightening at this point to consider possible 

criteria of optimality. Two possible goals would be to finish utili-

zation of the resource at the earliest time possible or to begin 

utilization at the latest time possible. Other goals might be a "most 

dense" solution, in which the time from the start of the first activity 

to the end of the last activity is minimized, or a "most distributed" 

solution which is imprecisely defined but which will in some sense 

impose a uniform distribution of activity assignments over a period of 

time. Another way of describing a "most distributed" goal is that in 

which the total idle time for the resource is distributed evenly among 

the time intervals between activity assignments. 



24 

Once a goal has been chosen, one might ask whether it is possible 

to find an optimal schedule without examining all possible schedules. 

For example, suppose the goal is to find the "earliest schedule", that 

is, a schedule in which utilization of activities is completed as early 

as possible. One might suppose that by ordering the windows by 

increasing order of window start time, the first schedule found might 

be the earliest schedule, or might, at least, have some sort of 

"earliest" attribute. This question gives rise to the general question 

of ordering the windows in such a way that the optimal solution will be 

found as quickly as possible. 

Another question that might be raised is whether the windows can 

be ordered in such a way that a schedule (not necessarily optimal) can 

be found as quickly as possible. Two possibilities for such an ordering 

are by increasing order of window start time or by decreasing order of 

time constraint, that is, by increasing order of b. - a. - d .. These 
1 1 1 

questions will not be investigated any further in this report, but 

hopefully, they will provide the source for future investigations. 

The remaining programs described in this report all have the same 

general structure as this one; that is to say, each program consists of 

a main program which traverses a decision tree of activities and win-

dows, a subprogram named CONFLl which generates permutations of activi-

ties, and a subprogram named CONFL2 which attempts to schedule the 

activities in the order specified by the permutation. 



CHAPTER IV 

SCHEDULING A SINGLE CLASS OF RESOURCES 

The next problem investigated was that of scheduling a single 

resource class. A resource class consists of q O identical resource 

units. The resource units are identical in the sense that a request 

made for a unit of the specified class may be satisfied by any of the 

units within the class. Each activity to be scheduled requires exactly 

one unit of the resource class. The problem is to schedule each activi­

ty within one of its windows for its specified time required, in such a 

way that each resource unit is assigned to not more than one activity 

at any instant of time. Notice that two activities can be scheduled at 

the same time if there are two or more units in the class. 

One could approach the problem with at least two different goals 

in mind. One of these goals is to minimize the number of resource 

units actually utilized. This goal would be employed in a problem 

where tj_ units could be made available, but where it would be desirable 

to schedule all activities with fewer than q resource units. If all 

activities can be scheduled during mutually disjoint time intervals, 

then only one resource unit is required. Two activities are said to 

overlap if their actual scheduled times are not disjoint. For example, 

if activity one is scheduled for 4:00 to 7:00 and activity two is 

scheduled for 6:00 to 9:00, then activities one and two overlap, If 

all activities cannot be scheduled during mutually disjoint time 
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intervals, then the number of units required does not exceed the 

maximum number of activities which overlap at any instant of time. In 

the schedule shown in Table IV three activities are scheduled during 

6:00 to 7:00; therefore, three resource units must be available. 

TABLE IV 

A SCHEDULE REQUIRING THREE RESOURCE UNITS 

Activity 

1 

2 

3 

4 

5 

Actual Time Scheduled 

3:00-5:00 

4:00-6:00 

5:00-7:00 

6:00-8:00 

6:00-9:00 

Another goal is to achieve a most uniformly distributed utiliza­

tion among the resource units. This goal would be employed in a situa­

tion where q units would definitely be available and where it would be 

desirable to equalize utilization among the q units. It was decided to 

use this goal in the current investigation; its implementation will be 

described below. 

There are two ways of viewing the search process in terms of 

decision trees. In one view, there are two levels in the tree per 

activity; one level contains nodes corresponding to the associated time 

windows, and the other level contains nodes corresponding to the re­

source units. Figure 9 shows such a tree for two activities, two 

windows per activity, and three resource units. This approach might 

be taken if it is desired to examine the effects of allocating 
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Window 

Activity 1 

Window Activity 
2 

Resource 

Figure 9. Decision Tree with Two Levels Per Activity. 

different resource units to different activities. However, as can be 

seen by examining Figure 9, the combinatorial complexity of the problem 

proliferates greatly, even for a fairly small problem. 

Another view is to have one level in the tree per activity, and 

in traversing the tree, allow the conflict checking routines to deter-

mine which resource unit, if any, can be allocated to an activity. 

This view can be taken if the resource class is viewed as a pool of 

identical resource units, and if it is immaterial, in terms of schedul-

ing, which unit is allocated to a particular activity. It seems 

reasonable to expect that this approach would result in a shorter search 

time, especially if the method of unit selection were kept reasonbly 

simple. 

The program described in Chapter III was modified, incorporating 

the second approach to the tree structured decision making process 

described above, so that it would handle a single class of resource 

units. The number of units available, q, is a required input parameter. 

The greatest number of changes were made in the CONFL2 subprogram. 

Firstly, the table of actual start and end times was expanded to include 

the number of the resource unit allocated. In addition, a pushdown 

stack is required for each resource unit, in which the top item 



28 

indicates the start and end time of the latest allocation of that unit. 

Examination of the top item of a stack tells the earliest time that 

unit will be available for further allocation. Examples of the expanded 

table and corresponding stacks are shown in Table V. 

TABLE V 

SCHEDULE TABLE AND ASSOCIATED PUSHDOWN STACKS 

Table of start and end times and unit allocated 

Activity Start End Unit 

1 1:00 3:00 1 

2 2:00 5:00 2 

3 3:00 9:00 3 

4 4:00 6:00 1 

5 5:00 7:00 2 

Associated Pushdown Stacks 

Unit #1 Unit #2 Unit #3 

1:00-3:00 2:00-5:00 3:00-9:00 

4:00-6:00 5:00-7:00 

The reason pushdown stacks are required merits some further 

explanation. Recall that permutations are generated in a tree struc­

tured manner as described in Chapter III. In general, the use of a 

tree structured decision making process requires backtracking capability. 

Specifically, suppose there are eight activities to be scheduled, and 

Table V represents a schedule for the first five items in the schedule, 

that is to say, a choice has been made at level five in the permutation 
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tree. Further suppose that each of the remaining three activities must 

begin before 6:00, which is the earliest time that a resource unit will 

be available. No branch can be taken from the current node at level 

five; therefore, the next alternative at level five, that is, the next 

partial permutation of five items in lexicographical order, must be 

examined. The start and end time in the fifth row of the table must be 

removed and the stack corresponding to resource unit two must be popped 

to indicate that unit two is no longer allocated for 5:00 to 7:00. 

A circular polling mechanism is used in deciding which resource 

unit to assign to the next activity in the permutation. Suppose unit 

i was the last unit allocated to an activity, and it is desired to 

allocate a unit for the next activity in the permutation. The search 

for an available unit begins with unit i + 1, proceeds to unit q, then 

proceeds from unit 1 to unit i. This is roughly equivalent to main­

taining a first-in, first-out queue of resource units, where a unit is 

returned to the end of the queue when an activity has finished using it. 

This circular polling method is used because in most cases a more dis­

tributed allocation can be expected from this method than from a method 

which always begins searching at unit 1. 

Perhaps the program described here could be modified so that it 

could determine the minimum number of resource units required. This 

is a question that will be left for future investigation. 



CHAPTER V 

SCHEDULING MULTIPLE RESOURCE CLASSES 

In this chapter we consider the problem of scheduling m activities 

on n different resource classes. Each resource class, y., contains q. 
l l 

units. Each activity may require exactly one unit of one or more 

resource classes. Specifications for each activity include actual time 

required, windows of time, and a list of resource classes of which a 

unit is required. It is assumed that all resources required by an 

activity are to be assigned during the same time interval. Specifica-

tions for each resource class include the number of resource units in 

the class. A sample problem is shown in Table VI. 

Extending the scope of the problem from one resource class ton 

resource classes increases the combinatorial complexity of the problem 

in terms of the number of alternatives to be examined. One way to 

reduce this complexity is to identify subsets of activities in such a 

way that each subset may be scheduled independently of the other sub-

sets. If there are 10 activities to be scheduled with two windows per 

activity, the number of leaves in the decision tree corresponding to 

the activities and their windows (which will henceforth be referred to 

as the window tree) is 210 or 1024. However, if two subsets of five 

activities each could be identified, the search could be reduced to two 

window trees each of which contains 25 or 32 leaves. 
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TABLE VI 

SAMPLE PROBLEM FOR MULTIPLE RESOURCE SCHEDULING 

Resource Class Number of Units 

Y1 2 

Y2 1 

Y3 5 

Y4 8 

Y5 6 

y6 3 

Activity Time Required Windows Resource Classes 

xl 2 7-9; 10-12 Y1' Y2 

x2 1 1-2; 5-6 Y2, Y3 

x3 1 3-4 Y4 

x4 2 2-5 y6 

x5 3 1-7 Y3, Y5 

x6 1 1-3; 9-12 Y4, Y5 

Consider an undirected graph in which each node corresponds to an 

activity and in which an arc from node i to node j indicates that 

activities x. and x. share a common requirement for at least one re-
l. J 

source class. A graph for the sample problem of Table VI is shown in 

Figure 10. Each connected component of such a graph identifi.es a sub-

set of activities which must be scheduled interdependently. In this 

sample problem activities x1 , x2 , and x5 collectively require units 

from resour,ce classes y1 , y2 , y 3 , and y5 , and activities ~3 , x4 , 
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Figure 10. Graph Showing Common Resource 
Requirements Among Activities. 

and x6 collectively require units from resource classes y4 and y6 • 

Evidently, activities x1 , x2 and x5 can be scheduled independently of 

activities x3 , x4 and x6 because allocation of resource units to x1 , 

x2 and x5 would have no effect on the availability of resource units 
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The connected components of the graph described above are identi-

fied as follows. The adjacency matrix is constructed, then an algorithm 

by Warshall (12) is employed to construct the path matrix. A distinct 

row value of the path matrix defines a connected component of the graph, 

and therefore, a ,subset of activities. Figure 11 shows the adjacency 

and path matrices for the graph in Figure 10. There are two distinct 

row values in the path matrix. 

The program described in Chapter IV actually assigns individual 

resource units to activities. In contrast, the approach taken here is 

to determine the number of units of each resource class that are re-

quired at any instant of time and to determine whether each resource 

class has enough units to meet those requirements. In order to reduce 

the combinatorial complexity of the problem, it was decided not to make 

assignments of individual units. 
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Figure 11. Adjacency and Path Matrices for Graph in Figure 10. 

33 

In this program, the CONFL2 subprogram still attempts to schedule 

each activity as early in its window as possible. There is a table of 

start and end times for the activities scheduled; also for each resource 

class there is a corresponding table of start and end times for the 

activities requiring units of that resource class. In scheduling activ­

ities x1 , x2 , and x5 , these tables might appear as in Table VII. When 

attempting to schedule the next activity in the permutation tree, the 

table corresponding to each resource class required by the next activity 

is examined to determine the earliest time (greater than or equal to the 

window start time) that a unit of that resource will become available. 

This is done by counting the number of activities whose scheduled times 

overlap the proposed scheduled time of the current activity, and com­

paring that count against the number of units in the resource class. A 

previously scheduled activity is presumed to overlap the activity cur­

rently being scheduled if the ending time of the previously scheduled 

activity exceeds the window start time of the current activity. This 

is a rather restrictiv~presumption which may result in no schedule 



being found when a schedule actually exists. A better method of 

counting overlapping activities will be presented in Chapter VII. 

All 

7-9 

1-2 

2-5 

TABLE VII 

TABLES OF START AND END TIMES FOR 
EACH RESOURCE CLASS 

7-9 7-9 1-2 

1-2 2-5 

2-5 

After the earliest available time for each resource class has 

been determined, the latest of these times is taken to be the actual 

starting time of the activity being scheduled. The actual time re-

quired is added to the starting time to give the actual ending time. 
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If the actual ending time exceeds the window end time, then the activity 

cannot be scheduled within its window. 

A schedule produced by this program shows, for each resource class, 

the exact times that resource units are to be assigned to activities. 

Furthermore, the approach taken guarantees that the assignments can be 

made. Once a schedule has been produced, a circular polling mechanism, 

similar to the one described in Chapter IV, could be employed to make 

assignments of individual units. 



CHAPTER VI 

EFFICIENCY IN GENERATING AND EXAMINING PERMUTATIONS 

During the course of testing the program described in Chapter V, 

it became evident that increased speed in generating and examining 

permutations of activities was necessary. The present chapter is con­

cerned with possible improvements in that direction, and describes the 

improvements that were actually implemented. 

Whenever a new node in the window tree is visited, a pointer to 

that activity and window is placed on a stack, and a call is made to 

CONFLl in an attempt to find a schedule for all activities which have 

pointers on the stack. CONFLl generates permutations of the pointers 

on the stack and, for each permutation generated, calls CONFL2, which 

attempts to schedule the activities in the order specified by the per­

mutation. These permutations are generated in a depth-first tree 

searching manner; one may speak of traversing a tree of permutations. 

The permutations are generated in lexicographical order. Knuth 

(6) shows two other methods of generating permutations; however, one 

advantage of lexicographical ordering is that information gained in 

scheduling the previous permutation can be used in scheduling the cur­

rent permutation. If the current permutation consists of n elements, 

then it can be assumed that a schedule has already been found for the 

first n - l elements in the permutation. For example, consider a call 

to CONFL2 made with a partial permutation 31425. Due to the nature of 



depth-first tree traversal, it can be assumed that the activities 

corresponding to the partial permutation 3142 have already been 

scheduled; furthermore, the schedule for 3142 is retained in CONFL2, 
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so all that is necessary is to schedule the activity corresponding to 5. 

When a new node in the window tree is examined, the entire process 

of generating permutations is repeated from the beginning. The ques­

tion to be examined is how can information gained from the previous 

call to CONFLl be retained, and how can this information be used to 

hasten the current permutation check. It would be desirable to elimi­

nate some permutations from consideration based on the fact that similar 

permutations failed to produce a schedule in a previous call to CONFL2. 

Consider one possible example. Suppose four activities are repre­

sented in the stack and a fifth activity is being added. Of the four 

activities, originally in the stack, suppose that the first permuta­

tion, in lexicographical order, that produced a schedule was 3142. 

Considering permutations of five activities, it is evident that 12345 

will not produce a schedule, because if 12345 were to produce a schedule, 

then 1234 would have produced a schedule for four activities. Indeed, 

the first permutation that need be considered is 31425. Also, permuta­

tions such as 31524, 51234, 52431 can be removed from consideration for 

reasons explained below. 

As another possibility, suppose there are two activities repre­

sented in the stack, and the permutation 1,2 does not produce a schedule 

but the permutation 2,1 does. It is evident that 2 must precede 1 in 

any permutation that contains both 1 and 2. It might be desirable to 

find all pairs of activities in which one activity must precede the 

other before beginning to generate permutations. Perhaps this idea 



could be generalized, and necessary ordering relationships among 

triplets, quadruplets, and so forth, could be found. This would 

correspond to a breadth-first search of the first few levels of the 

permutation tree, coupled with a depth-first search of the remainder 

of the tree. 
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Two changes were made to the program described in Chapter V with 

respect to generating and checking permutations. Firstly, corres­

ponding to each level in the window tree, a record is kept of the 

permutation that produced a schedule at that level. When a node at 

level i in the window tree is visited, permutations are generated 

beginning with the permutation stored for level i - 1. Secondly, each 

new permutation generated at level i in the window tree is compared to 

the peFmutation stored for level i - l to detect violations of lexical 

ordering. For example, suppose 3142 is the permutation stored for 

level four, and while processing level five in the window tree, the 

permutation 31524 is generated. Since 3124 precedes 3142 in lexico­

graphical ordering, the permutation 3124 cannot produce a schedule 

because if 3124 could produce a·schedule, then 3124 would have been 

stored for level four. Since 3124 cannot produce a schedule, then 31524 

cannot produce a schedule either. This can be proved as follows. 

Suppose a schedule is found for 31524, which would mean that the 

activities could be scheduled in the order specified by the permutation 

31524. If one of these activities, say activity 5, is eliminated, the 

remaining four activities could still be scheduled in the specified 

order. However, it is known that the permutation 3124 did not produce 

a schedule. Therefore, it can be concluded that 31524 cannot produce a 

schedule; hence 31524 can be eliminated from consideration. 



Further possibilities for improvement, such as recognition of 

problem decomposition at various levels in the permutation tree, are 

pointed out by Bratley, et. al. (3). 
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CHAPTER VII 

SELECTING RESOURCES BASED ON ATTRIBUTES 

The program described in this chapter extends the flexibility of 

resource class selection and requirement specification by allowing 

attributes to be specified for each resource class, thus associating 

each resource class with one or more attribute groups, and allowing 

resource requirements to be specified in terms of attribute groups 

rather than specific resource classes. When an activity requires a 

resource unit of a specific attribute group, that unit may be selected 

from any resource class which is a member of the specified attribute 

group. A resource unit may service at most one requirement at any one 

time, but it may service requirements for different attribute groups at 

different times. The ability to service requirements for different 

attribute groups at different times has been restricted in the present 

implementation for reasons explained below. 

As an example, suppose there are seven resource classes, denoted 

by yj for j = l to 7, and three attribute groups, denoted by A1 , A2 , 

and A3 • In an airline scheduling problem, for example, there might be 

seven different kinds of aircraft used by the airline. Attribute group 

A1 might consist of all aircraft with seating capacity greater than 

120, attribute group A2 might consist of all jet powered aircraft, and 

attribute group A3 might consist of all aircraft that can land on a 

5,000 foot runway. Figure 12 shows a possible association between 



resource classes and attribute groups. A request for a unit of group 

A2 , for example, could be satisfied by a unit of one of the resource 

classes y2 , y3 , y5 , y7 • Units in class y1 may satisfy requests for 

group A1 whereas units of class y4 may satisfy requests for either A1 

or A3 • 

Resource Classes 
rJ.l 
P. 
;::s 
0 
.... 

Al c., x x x 
<!) _..., 
;::s 

A2 ,.c . .., x x x x 
.... _..., 

1\3 _..., 
< 

x x x 

Figure 12. Association Between Resource Classes 
and Attribute Groups. 

Subsets of activities that can be scheduled independently can be 

determined by the same graph theoretic method as was used in the pro-
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gram described in Chapter VI. In this case an arc is drawn between two 

nodes if the activities corresponding to the two nodes share at least 

one common attribute group requirement. 

Let q. be the number of units of classy. and R(A.) be the number 
J J ]_ 

of units of group A. required at some instant of time. It is desired 
]_ 

to determine whether there exists an assignment of resource units which 

satisfies the following conditions: 

(1) The number of units assigned to satisfy the requirements of 

(2) 

(3) 

each group, A., is R(A.). 
]_ ]_ 

The number of units assigned from each classy. does not 
J 

exceed q .. 
J 

A resource unit which is a member of classy. is assigned 
J 

to group A. only if y. is a member of A .. (A unit is 
]_ J ]_ 



assigned to group A. if that unit is assigned to an 
l 

activity which requires a unit of group A.,) 
l 

This problem is a special case of the transportation problem of 

linear prograIJlIIling (13). In the transportation problem there are a 

specified number of suppliers, each of which can supply a specified 

number of units, and a specified number of customers, each of which 

must receive a specified number of units. Also there is a known cost 

of shipping a single unit from supplier i to customer j. The problem 

is to minimize the total shipping cost subject to the constraint that 

all customer demands be met. 

To apply the transportation model to the resource assignment 

problem, one would consider the resource classes as suppliers and the 

attribute groups as customers. The cost of assigning a unit of re-

source classy. to satisfy a requirement for A. is zero if resource 
J l 

classy. is a member of attribute group A. and is one otherwise. The 
J l 

analogy between the general transportation problem and the resource 

assignment problem is shown in Table VIII. Bayer's transportation 

algorithm (14) is used to find an assignment that minimizes the total 

cost. The assignment can be made only if the minimized total cost is 

zero. 
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The next problem to be considered is the determination of require-

ments for each attribute group during a given time interval, and the 

use of the transportation algorithm in the CONFL2 subprogram to deter-

mine whether the next activity can be scheduled. Suppose a call is 

made to CONFL2 with n activities in the permutation, As explained in 

Chapter VI, the first n - 1 activities have been scheduled so that the 

task at hand is to schedule the n'th activity. The scheduled start and 
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TABLE VIII 

ANALOGY BETWEEN GENERAL TRANSPORTATION PROBLEM 
AND RESOURCE ASSIGNMENT PROBLEM 

Transportation Problem 

Suppliers 

Customers 

Shipping Cost 

Resource Assignment 
Problem 

Resource Classes 

Attribute Groups 

"Cost" is O or 1 

end times for the first n - 1 activities have been retained in the 

tables described in Chapter V. Let t 0 and t 1 be the proposed start 

and end times for activity n. Initially let t 0 be equal to the window 

start time for activity n. Then proceed as follows: 

(1) Compute t 1 by adding the actual time required by activity n 

to to. 

(2) Compute the number of units of each attribute group required 

by then activities during the time interval bounded by t 0 

and t 1 • A procedure used for this computation is described 

below. 

(3) Invoke the transportation algorithm. If the minimized total 

cost is zero, then the attribute requirements can be satis-

fied during the time interval bounded by t 0 and t 1 , and t 0 

and t 1 are entered as the scheduled start and end times for 

activity n. 

(4) If the minimized cost is greater than zero, then set t 0 equal 

to the earliest time that any attribute requirement may 

decrease. The earliest time any attribute requirement may 



decrease is the earliest scheduled ending time of the first 

n - l activities. Recompute t 1 , and if t 1 does not exceed 

the window end time, then return to step 2. Otherwise, 

report that activity n cannot be scheduled. 

In the program described in Chapter V, a table was kept for each 
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resource class, which contained scheduled start and end times of activi-

ties requiring units of that resource class. In this program, such a 

table is kept for each attribute group. It was noted in Chapter V that 

the method used for counting the number of overlapping activities was 

unduly restrictive. Suppose for example, the scheduled time for 

activity x1 was 4:00 to 6:00, and the scheduled time for activity x2 

was 6:00 to 8:00. If the proposed scheduled time for activity x3 was 

5:00 to 7:00, the method used in the previous program would count two 

overlapping activities and conclude that three units were required, 

when it is clear that only two units are required. A more accurate 

method of determining the number of units of an attribute group re-

quired during a specified time interval is used in this program. For 

any attribute group, let k be the number of units required during the 

time interval bounded by t 0 and t 1 , and let (c1 , d1 ), (c2 , d2 ), ••• , 

(cn-l' dn_1 ) be the start and end times of those activities already 

scheduled which require a unit of that attribute group. Let f 1 , f 2 , 

••• , fn-l be flags associated with each scheduled activity. Each flag 

will indicate whether the scheduled time of its corresponding activity 

overlaps the time interval bounded by t 0 and t 1 • The value of k is 

computed as follows: 

(1) Set k equal to zero. Set f. equal to zero for all i, 
1 



(2) Order the c., d. pairs in increasing order of c .• Choose 
l l l 

a value for j such that c. 1 < t 0 < c .• 
J- - - J 

(3) This step counts the number of overlapping activities that 

begin before t 0 . Fork= 1 to j - 1, if a1 ) t 0 , then 

set f. = 1 and add 1 to k, 
l 

(4) This step counts the number of overlapping activities that 
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begin after t 0 . If two activities both overlap the interval 

being examined but do not overlap each other, then they may 

be counted as one activity. For i = j to n - 1: 

If c. < tl then for J.. = 1 to i - 1 search for a pair CA' ay 
l 

where f,R = 1 and d,R ~ c .• 
l 

If such a pair is found, set 

a; = d .• Otherwise set .f. = 1 and add 1 to k, 
l l 

An example is shown in Table IX. Note that the second and third 

activity both overlap the time period 3:00 to 5:00, but since they do 

not overlap each other, they. may be considered as one activity 

scheduled for 2:00 to 6:00. 

This method examines whether resource assignments can be made 

during sub-intervals of time, without considering whether or not 

assignments can be made for the entire period of time under considera-

tion. Diabolical cases may arise in which the assignment can be made 

during each sub-interval but not for the entire period of time under 

consideration. An example of such a case is shown in Table X. 

When the permutation consists of x1 , x2 , and x3 , the time inter-

val under consideration is 9:00 to 11:00. The only assignment that 

could be made is two units of y1 for A1 and one unit of y2 for A2 • 

When the permutation consists of x1 , x2 , x3 , x4 , and x5 , the time 

interval to be considered is 10:00 to 12:00. The only assignment that 



TABLE IX 

COMPUTATION OF THE NUMBER OF UNITS REQUIRED 
OF A PARTICULAR ATTRIBUTE GROUP 

to = 3:00 tl = 5:00 

cl = 1:00 dl 3:00 fl = 0 

c2 2:00 d2 4:00 f2 = 1 

c3 = 4:00 d3 = 6:00 f3 = 0 

c4 = 5:00 d4 = 7:00 f4 = 0 

k = 1 

TABLE X 

A CASE FOR WHICH AN ASSIGNMENT CAN BE MADE FOR 
EACH SUBINTERVAL, BUT CANNOT BE MADE FOR 

THE ENTIRE PERIOD OF TIME 

Activity Window Time Required 

8:00-10:00 2 

8:00-10:00 

9:00-11:00 2 

10:00-12:00 2 

10:00-12:00 2 

Resource Class Attribute 

1, 2 

2, 3 

Attribute 
Groups Required 

Quantity 

2 

2 
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could be made is one unit of y1 for A and two units of y2 for A3 . 
2 

Notice that assignments can be made for each subinterval of time but 

46 

that one unit cannot be assigned to x 3 continuously from 9:00 to 11:00. 

The method described above would report that a schedule exists when in 

fact no schedule can be found. 

To avoid such situations, we add the restriction that a resource 

unit may be assigned to only one attribute group during the entire 

period of time under consideration. In the example of Table X, if a 

unit of y1 were assigned to an activity requiring a unit of A1 from 

8:00 to 10:00, then the same unit could be assigned to another activity 

requiring a unit of A1 after 10:00, but the unit could not be assigned 

to satisfy an activity's request for A2 even though class y1 is a member 

of group A2 • To implement this restriction, a dummy activity is added 

which requires no resources but which must be scheduled for the entire 

period of time under consideration. This forces CONFL2 to look for an 

assignment that can be made for the entire time period. In the example 

of Table X, an attempt to schedule a dummy activity during the time 

interval 8:00 to 12:00 would cause CONFL2 to report that no schedule 

could be found. 

There are cases, however, for which this added restriction would 

cause a schedule not to be found when in fact a schedule exists. Sup-

pose two activities request units of attribute group A1 ; one of the 

activities can be scheduled from 8:00 to 10:00 and the other from 

10:00 to 12:00. Suppose two resource classes, y1 and y2 can service 

the request, and that a unit of y1 is available from 8:00 to 10:00 and 

a unit of y2 is available from 10:00 to 12:00. Clearly a schedule 



exists, but the additional restriction described above may result in 

a report that no schedule can be found. 

47 

It was decided to take the more restrictive approach and use the 

dummy activity in the program at the cost of possibly not finding a 

schedule when one does exist. The proplem of guaranteeing that a 

schedule will be found if and only if one does exist apparently 

remains unsolved at the time of this writing. 



CHAPTER VIII 

CONCLUSION AND SUGGESTIONS FOR 

FURTHER INVESTIGATION 

The primary goal of this investigation has been the application 

of tree structured processes to the solution of a certain class of 

scheduling problems. This goal has been attained through the develop­

ment of four computer programs. Three of these four programs were 

written to solve subclasses of the class of scheduling problems under 

consideration, and the fourth program was written to solve the full 

class of problems. Except for certain cases which are noted elsewhere 

in this report, each of these four programs solves the class or sub­

class of problems for which it was written. Another goal which has 

been achieved was the elimination of the need to impos~ a discrete 

resolution on the time dimension. This has been done by scheduling 

each activity as early in its window as possible. 

In addition to the attainment of these goals, the investigation 

resulted in several other significant achievements. One of these is 

the use of graph theoretic techniques to identify independent subsets 

of activities, as described in Chapter V. Another accomplishment is 

the development of an algorithm to count the number of units of an 

attribute group required during a subinterval of time. Still another 

accomplishment is the application of a solution method for the 

110 
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transportation problem to the problem of assigning resource classes to 

attribute groups, as described in Chapter VII. 

However, the author believes that the most important results of 

the investigation are to be found not in the goals that have been 

achieved, but in the problem areas that have been uncovered by the 

investigation which could lead to further study. Traversal of decision 

trees has been of primary importance· in developing these programs. It 

may well be said that the investigation itself has proceeded in a tree 

structured manner. In a number of instances during the development of 

the above-mentioned programs, interesting problems and questions suit­

able for further investigation were encountered; in each case a decision 

had to be made as to whether to turn the investigation toward a deeper 

study of the problem uncovered or to continue in the current direction. 

In the following paragraphs, some unbeaten paths in this decision tree 

are outlined. 

It was conjectured in Chapter III that, by ordering the windows 

in increasing order of window start time, the first schedule found 

would have some earliest attribute associated with it. The effect of 

ordering windows merits further investigation. Will ordering of windows 

in decreasing order of time constraint produce a solution in the 

shortest time by creating conflicts early in the decision making pro­

cess? In each program the CONFL2 routine attempts to schedule each 

activity as early in its window as possible. If the windows were 

ordered by decreasing order of start time (or perhaps end time) and the 

CONFL2 routine were changed so that each activity was scheduled as late 

in its window as possible, would the first solution found be the n1atest" 

solution? 
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The method of assigning resource units to attribute groups des­

cribed in Chapter VII could use some improvement. An algorithm is used 

which can find a solution to the transportation problem in its full 

generality. It seems that a faster algorithm could be developed for 

this special case. Perhaps an algorithm could be developed which would 

determine whether the assignment could be made, and, if the assignment 

could not be made, would determine the minimum change in attribute 

requirements necessary for an assignment to be made. 

Improvements with respect to generating and checking permutations 

were discussed in Chapter VI. For a large problem, it is evident that 

·an enumeration of all permutations is combinatorially infeasible. 

Heuristic techniques need to be developed which will choose the 11best 11 

path in a decision tree, that is, the path that is most likely, in some 

respect, to arrive at a solution. The interested investigator is 

referred to Slagel and Lee (15) for a discussion of heuristic techniques 

applied to tree searching problems. 

Lastly, the feasibility of applying the final program to a fairly 

large problem should be studied. Since this investigation has been 

concerned mainly with techniques and methods, no attempt has been made 

to determine the amount of time required to solve scheduling problems 

of various sizes. The problem shown in the sample output of Appendix B 

has nine activities, five resource classes, and eight attribute groups; 

no attempt has been made to test a larger problem. Variables that 

should be considered in such a study include the number of activities, 

the number of windows per activity, the severity of time and resource 

constraints, and the number of subsets of independent activities. 
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Hopefully, the techniques developed in this investigation, together 

with the results of further investigations, will be useful in the 

development of a non-procedural scheduling language which is expected 

to be undertaken locally in the near future. 
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APPENDIX A 

FLOWCHART OF FINAL PROGRAM 



Start 

Read 
Input 
Data 

Print 
Tables 

Build 
Adjacency 
Matrix 

Compute 
Path 
Matrix 

Window tree 
search for 
each subset 

Stop 

Tables printed are 
activity table, resource 
class table, requirement 
specification table. 

Identify subsets of 
activities that may 
be scheduled inde­
pendently. 

This step is 
elaborated on the 
following pages. 

Legend 
LPERM - save area for permutations 
LVL - current level of window tree 
NODE - pointer to window at current level 
PLVL - current level of permutation tree 
PSTK - vector containing permutation 
RETCODEl - return code set by CONFLl 
RETCODE2 - return code set by CONFL2 
SLS - tentative activity start time 
SLE - tentative activity end time 
STK - stack used in window tree traversal 
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Start Window 
Tree Search 

LVL,._ 1 

NODE,..__ 1 

STK(LVL).-.­
NODE 

Call 
CONFLl 

LPERM(LVL) 
.......... 

PSTK 

No 

No 

Save successful 
permutation. 
PSTK is created 
in CONFLl. 

LVL ._. 
LVL + 1 
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No 

LVL+-LVL-1 

Does NODE point 
to the last window 
at this level? 

NODE= 
NODE+ 1 

End Window 
Tree Search 
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Enter CONFLl 

PSTK ~ 
LPERM(LVL-1) 

PLVL .,._ L VL 

PSTK(PLVL) 
~ 

LVL 

Call 
CONFL2 

Record 
>---'Y=->e"-"'--P-t schedule for 

first 
activity 

RETCODEl ..,.._ 
1 

Restore permutation 
from previous level. 
Also restore schedule 
corresponding to the 
permutation. 

PLVL ~ 
PLVL + 1 

PSTK(PLVL) 
~ 

1 

RETCODEl ~ 
1 

Return 
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Return 



PLVL ~ 
PLVL - 1 

Erase 
Last 
Schedule 

r 

Check whether the numbers 
in PSTK constitute a permutation 
and whether that permutation 
violates lexicographical 
ordering. 

PSTK(PLVL)+­
~.....,.. PSTK(PLVL) 

+ 1 

RETCODEl~ 
0 

Return 

Remove schedule for 
activity pointed to by 
PSTK(PLVL). This 
schedule was recorded 
in CONFL2. 
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Enter CONFL2 

Initialize 
SLS and SLE 

Count 
Requirements 
For Each 
Attribute 
Grou · 

Call 
Transportation 
Routine 

Find New 
Values For 
SLS and SLE 

RETCODE2 .,.... 

0 

Return 

Ye Record 
Schedule for 

This Activity 

RETCODE2 .,. 
1 Return 
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APPENDIX B 

SOURCE LISTING AND SAMPLE OUTPUT 

OF FINAL PROGRAM 



SCHE05: PROC OPTIONSCHAINI; S:HE) 10 

STHT LEVEL NEST 
l 

2 

3 l 
4 l 

5 l 
6 2 

7 2 

8 2 

9 2 

SCHE05: PROC OPTIONSC~AINI; 

,. 
THIS PROGRA'4 SCHEDULES MULTIPLE .t( SJu,::E CLASSES. EII.C-i RESOURCE 
CLASS HAS ONE OR MORE 4TTil.lBUTES; THE RESOJRCES REQUIRED BY l'II 
ACTIVITY ARE SPECIFIED 11\1 TE.tMS OF ATTRIBUTE GORUPS. 

MAJOR PROGRAM VARIABLES: 

., 

ACTTBL ACTIVITY TABLE 
REST BL RESOJRCE CLASS UBLE 

RQTBL 
STK 
PSTK 
D 

SLVEC 

REQUIREHEI\IT TASL: COJ!:D NUl'ERICALLY 
PUSHDOWN STACK USED TJ TRAVE,Sf wlNDOW TREE 
PUSHDOWN.STACK USEO TO GENERATE PER'4UTATIONi 
MATRIX USED TJ REP,ES5NT DEPENDENCY RELATION 

BETWEE'II PAl,S OF ACTIVITIES 
VECTOR OF TEI\ITATIVE ALLOCATION TIMES - ONE 

VECTJR >e, ,ESOU,CE :LASS 
SUBSET OF ACTIVITIES BEING SCHEOJLED 

SUBSET DF ATT,13UTE ;RQUPS REQUIRED BY CURRENT ACTIVITt 
)o!AX IMU)ol # OF ACTIVITIES 

SUB 
SUBRE S 
HAXAC 
HAXRES 
HAXW 
MAXRQ 
HAXA TR -
ACT CT 
RES CT 
RQC T 
DCOUNT 
LPERM -

MAXI HUH # OF RES Oll!I.CES 
MAXIMUM # OF WINJOWS PER ACTIVITY 
MAXIMUM # OF RE.;)J IRE'4ENTS CTJTAL HAXl'4UHI 

MAXIMUM# OF ATTRIBUTE GROUPS 
ACTUAL CO~NT OF ACTIVITIES 
ACTUAL COUNT OF RESOJRCES 
ACTUAL CJUNT OF R:OUIREMENTS 
# OF ACTIVITIES I'll LA,GEST SU3SET 

LAST SUCCESSFUL PERHLITATION 

OCL (MAXAC, MAXRE.S, MAXW, HAX"R:;i, A:;TCT, '1.ESCT, RQ:T, I, J, K, MII.X~TR, 
RTCODEl, RTCODE2, ROW,DCOUNT, SCT,LVL,NODE,PliLI 

FIXED BIN INI Tl 01; • 
I* READ INPUT PARAMETERS •I 

GET LIST ('!AXA:, Ho\XRES, MAXW, MAXRQ, MiXATRI; 
HAXW: MINIMAXW,81; 

BLKl: BEG IN; 
DCL l ACTTBLIHAXACI, 

2 11.C T# :HAR( 41 1 

2 ACTNA'IE CHAR(SI, 
2 ~CTTIME FIXEd BIN,/~ ACTJAL TIME REQJIRED •I 
2 A: TWl'IIDJWSOIII.XWI, 

3 ACTSTRT FIXED 8111, I* ,1~0JW STA~T Tl'4E */. 
3 ACTEND FIXED BIN; I* WlNDO~ END TIME*/ 

DCL l RES TBL C 'l.',Xi\E SI, 
2 RES~ CHA.tl41 1 

2 RE SNII. ME C-iAR 181 , 
2 ~ESUNI TS FIXED BII\I, I* # OF UNI TS IN CLASS *I 
2 RESATRllOI FIXED BIN; 

DCL RQTHACMIIXRQI, 
2 RQACTA CHAR(41, 
2 RQATRA FIXED BIN; 

DCL CA,DCOD: CriAR(ll, BUF CHARC791; 
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SCHED l O 
SCHEJ 20 
SCHED 30 
SCHED ~i> 
SCHE!> 50 
SCHED ~J 
S::-iED 70 
SCHEJ 80 
SCHED iJ 
SC-iEDlOO 
SCHEO 110 
S CHED120 
SCHED130 
SCHi:Dl'tO 
SCHE0150 
s::-1eouo 
SCHEDl 70 
SCHED180 
SCHED190 
SCHED2lJ 
s:-1eo21 o 
SCHED220 
SCHED230. 
s:riE0240 
SCHED250 
SGH!i:OHO 
SC-fED270 
S CHE0l3J 
SCHE02'10 
SCHE030J 
SCHED31J 
SCHED32J 
SCHEi>330 
S CHE031oJ 
SC·i':D350 
SCHE031>0 
SCHED370 
SCriED380 
SCHE 0390 
SCHED~OO 
SC-iED'+l O 
SCHED420 
SCHEDr.30 
SCHED440 
S CHE0\5J 
SCHED4!>0 
SCHE0470 
SCHED43J 
SC,tE04'10 
SCHED500 
SCHED51J 
SC-IED5?0 
S CHED530 
SCHfOS,.J 
SC'"IED550 
SCHED560 



SCHEDS: PRDC OPTIONSIHAINI; 

STHT LEVEL NEST 

10 

11 
13 

lit 

15 
16 
17 
18 

19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

35 

36 

37 
38 
39 
40 
41 
42 

43 
44 

45 

46 
47 

2 

2 
2 

2 

2 
2 
2 

·2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
·2 
2 
2 
2 
2 
2 
2 

2 

2 

2 
2 
2 
2 
2 
2 

2 
2 

2 

2 
2 

1 
1 

1 

1 
1 

1 
2 
2 
1 
1 

l 
l 
l 

l 
1 
l 

DCL ATTBLIMAXRES•l,HAXATR•H FIXEO 81!11 1 
RESQTYIMAXRESI FIXED BINI 

I• READ (NPUT DATA FOR ACTIVlTIES, '1.ESOIRCE CLASSES AN) 
REQUI REHENTS ., 

ON ENOFILEISYSINI GO TO LAST_CARD; 
ATTBL z 11 

READCARO: 
GET EDIT I CARDCODE, BUF I (CO Lil I, A 111,A en I I; 
IF CARDCODE = 1 1 1 THEN 

DO; I* ACTh'ITY TABLE f'IIPUT *I 
ACTCT = ACTCT •1; 
GET STRING IBUFl EDITIACTTBLIACTCTII 

IAl41,Ali:ll, 1171Fl41 I; 
ENJ; 

ELSE IF CARDCDDE = 1 2 1 THEN 
DO; I* RESOJRCE CLASS TABLE I'IIPJT *I 

RESCT = RESCTq; 
GET STR l'IIG I BUF I EDIT IR: STBL I RESC Tl I 

CAl41,AIB1,lll I FC~II; 
DO l=l TJ 10 WHILEIR~SATP(RESCT,ll >OJ; 

ATTBLIRESCT,RESATHRESCT,111 "' O; 
ENO; 
RE SQ TY.IRE SCT I = :Re,SUNI Tsc·~e: SC'TI; 

ENO; 
ELSE IF CARD:ODE = 131 THEN 

DO; . I* REQUIRE'IENTS INl>UT *I 
RQCT .. RQCT •1; 
.GET STRl'IIG IBUFI E·DITIRQTBLAIRQCTI I IA(41 1 FC~II; 

END; 
ELSE PUT SKIP EDIT ICAROCOOE,BUF, 1 INVALID CARDCOOE'I 

I AC 11 ,A I 79.I .~ l; 
GO TO READCARO; 

LAST_CARD:. 
IF ACTCT = 0 I RESCT = 0 I RQCT a O 

THEN DO; 
PUT SKIP EDIT I 1 MISSIN~ INPUT DATA 1 l(AI; 
STOP; 

EN:>; 
ATTBLIRESCT+l,*I = l; 
ATTBLl*,MAXATR+ll a O; 

I* PRINT TABLES *I 

PUT EDIT I' TABLE OF ACTIVITIES 1.IIPAGE,ltl2Jl,A,SKIPl111; 
PUT EOI T 1 'ACT #', • n ME REO', • w1 r-.JCiws• 1 

I SK IP ( 111 A, COL 114 I, A, COL I 2a I ,A I ; 
PUT EDIT I IACTTBLII I DO l=l TO ACTCTII 

I SK IP I 11 , XI 11 .~ I 41 , XI 11 ,.\ I 81 , X 111 ,F (41 , 
(HAXWIIXlbl,Fl41,Xlll,Fl4111: 

PUT EDIT I •TABLE O~ RESOURCE CLASSES' I ISKIPl31,XltJl,At; 
PUT EUITl 1 CLASS 1 , 1 # OF U:-i!TS•, 1 ATT.l.liWTES 1 l 

I SKI Pl 11 ,COLI 81 ,A ,COLI 2ll, A, COLC37 I ,A I; 

s:.tE:> 10 
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SCHED570 
SC,tEDSBO 
SCHEDHO 
SCHED!>OO 
S::Hl:)610 
S CHE0!>20 
S:HED630 
SCHEOb40 
SCHE0650 
SCHEDb!,O 
S:HEl670 
SCHED!:.90 
SCHED6'10 
SCHED700 
SCHED710 
SCHED720 
SCHED730 
SCHED7ft0 
SCHED750 
SCHED7!10 
SCHED770 
SCHE::>780· 
SCHEDHO 
S:flEDBDO 
SCHEDBlO 
SCHE'0~20 
SCHl:0830 
SCHED840 
SCHEDB50 
SC~ED 860 
SCHE0117:> 
SCHED880 
SCHED890 
S CHE0'1J:> 
SCHED9l O 
SCHED920 
SCHEOHO 
SC~E09t,0 
SCHED950 
SCHEDH:> 
SCHED970 
SCHED980 
SCHEO'HO 
SCHE10DO 
SCHE1010 
SCHElOZD 
SCri!: 1030 
S CHEl:>t,0 
SCHE1050 
SCHE1060 
SCHEl:>f:> 
SCHElO<IO 
SCHE1090 
SCHElllJ 
SCHE1110 



SCHE05: PROC OPTIONSIMAINI; S:HE) 10 

STHT Ll'VEL NEST 

48 

49 
50 

51 

52 
53 
54 

55 

56 
57 
58 
60 
61 
62 
63 

64 

65 

66 

67 
68 
69 
70 
71 
72 
73 
74 
75 

76 
77 
78 

2 

2 
2 

2 

2 
3 
3 

3 

3 
3 
3 
3 
3 
3 
3 

3 

3 

3 

3 
3 
3 
3 
3 
3 
3 
3 
3 

3 
3 
3 

l 
1 
1 
l 
l 

l 
2 
2 
3 
3 
3 
2 
1 

l 
2 

PUT EDIT IIRESTBLIII 00 1=1 TO USCTII 
IS Kl Pt l I, X t l O I, A 14 I,~ 11 1, Al 8 1, XI 11, Fl 4 1, XI 71, I 10 IF I 411; 

PUT EDIT I' TABLE OF REQUIREMENTS 1 IIPA:;E,Xl201,A,SKIPl1ll; 
PUT EDIT l'ACT IV !TY', 1 ATTR !BUTE G:1.JuP 1 1 

I SK I PI I I , COLI I> I , A, CCL I 2 :> I , A I ; 
PUT EDIT IIRQTBLA( II DO l=l TO R;J:TII 

(SKIP 11 11 X ( 10 I, A ( 4 1, X ( 10 I, F ( 411 ; 
I* 

PUT EDIT! 1 ATH !BUTE MATRIX', ((ATTBLI! ,JI 00 J=l TO 
MAXATR+l I 00 l=l TO RES CT +111 

( PAGE ,A ,SKIPl21 ,IRESCT+ll I (MAXATR+l I CFl'+ll ,SKIPI ); 
*I 

BLK2: BEG! N; 
DCL LOOKA ENTRY RETURNSIFIXED BINI; 
DCL l RQTBL (RQCT 1, 

21RQACT#, RQATR#I FIXED BIN; 
OCL OIACTCT,ACTCTI Bl Till; 

I* LOOK UP EACH ACTIVITY I: ATTRIB, IN RQTBLA, A"ID PLACE THE RJ~ 
POSITIONS I~ THE CORRESPONDING POSITION IN RQTBL, THUS CONSTRUCT~ 
ING A NUMERICAL REQUIREMENT TABLE ., 

DO I= 1 TO RQCT; 
ROW= LOOKAIRQACTA(lll; 
IF ~O~ = D THEN GO TO TBL_ERROR; 

·RQACT Ill I l = ROW; 
ROATR#ll l = RQATRACl l; 

END; -
GO TO BUILD_O; 

TBL_ERROR: 
PUT SKIP EDIT IRQACTA( 11, • ITEM NOT IN TABLE'l 

I A(4l ,Xl21,Al4l,AI; 
STOP; 

I* CONSTRUCT D MATRIX BY ENTERING A l IN 011,JI AND DIJ, II 
IF ACTIII A~D ACTIJI MUST Srl~RE AT LEAST 1 ATTRIB, CLASS ., 

BUILO_O: 
o = •o '8; 
00 I = l TO RQC T-1 ; 

00 J = I+ 1 TO ROC T; 
If RQACT#lll ~= RQACT#IJI & R~.\TR#lll = RQHR#lJl 

THEN DO; 
DI RQAC T# I II ,RQAC T# I JII '1' 8; 
OIRQACT#IJl,RQACT~llll = '1'8; 

ENO; 
ENO; 

ENO; 
I* N~W USE WARSHILL' S ALGOQITHM TO GET THE PATH MATRIX 

COR~ESPO~OING TJ THE AOJACEN:Y MATRIX 0, ., 
00 J=l TO AC TC T; 

DO I = 1 TO ACTCT; 
IF 011,Jl THEN Dll,*I 2 Dll,*l I DCJ,*I; 
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SCHEll 20 
SC'iEll30 
SCHEll'+O 
SCHEll 50 
SCHE 1160 
SCHE1170 
S:::'iEll 80 
SCHE 1190 
SCHE12JO 
S:::HE 121 0 
SCHE1220 
SCHE1230 
SCHE 1240 
SCHE1250 
SCHE12~0 
SCHE 1270 
SCHEln:> 
SCHE1290 
SCHE 1300 
SCHE13l:l 
SCl-iE 1320 
SCHE1330 
SCHE13lt0 
S:::HE 1350 
SCHE 1360 
SCHE1370 
SCl-it1380 
SCHE1390 
SCHEl'+OO 
SCHE1410 
S CHE1'+2J 
SCHE1430 
SCHE14'+0 
SCHEl<t50 
SCHE14~0 
SCHE 1470 
SCHE1'+3:l 
SCHE 1490 
SCHE 1500 
SCHE1510 
SCHE1520 
SCHE1530 
SCHE15~0 
SCHE 1550 
SCHE15bJ 
SC>iE 1570 
SCHE 1580 
S CHE15~0 
SCHE1600 
SCHE 1610 
SCHE11>2J 
SCHE1630 
SCHEl640 
SCHEl 650 
SCHE 1660 



SCHE05: PROC OPTIDNSIHAINl; SCHEO l O 

STHT LEVEL NEST 

80 
81 
82 
83 
84 

85 
8b 
87 
88 
89 
91 
92 
93 
94 
95 

96 
97 

98 
99 

100 

101 

102 
103 
105 
lOb 
107 

108 
109 

110 
111 
112 
113 

3 
3 
3 
3 
3 

3 
3 
3 
3 
3 
3 
3 
3 
3 
4 

4 
4 

4 
4 
4 

4 

4 
4 
4 
4 
4 

4 
4 

4 
4 
4 
4 

2 
1 

1 
1 

l 
l 
2 
2 
1 
1 

l 
2 
2 
l 
l 

1 
l 

l 
2 
2 
3 

ENO; 
ENO; 
DD I = 1 TO ACTCT; 

DI 1, Il = 'l'B; 
ENO; 

I• EACH ROW IN THE D MAT~IX SPE:IFl=S A SUBSET OF ACTIVITIES THAT 
MUST BE SCHEDULED INTERDEPE;<,tOE;<,tTLY. 
FINO THE ti OF ACTIVITIES IN THE LARGEST SUBSET ., 

DCOUNT: O; 
DO I : 1 TO ACTCT; 

K = o; 
DO J = 1 TO ACTCT; 

IF 011,JI THEN K = K+l; 
ENO; 
DCOUNT = MAX!DCOJNT,KI; 

ENO; 
BLK3: BEGIN; 

DCL IAIRESCT+l I, B(MAXATR+l 1,Cl IRESCT+l,MAXATR+l 1, 
XIRESCT+l,MAXATR+lll FIXED BIN; 

OCL ISTKIDCOUNTI, PSTKIOCOUNTI, SJBIDCOJ'lT II FIXED 3l'l; 
DCL l SLVE:TORSIO:'IAXAT~I, 

2 SLPT FIXED BIN, 
2 SLVEC (DCOUNTI, 

3 ISLSTK.T,SLENOI FIXE.> BIN; 
OCL SUBRES IMAXATR I FIXED BIN; 

OCL CONFL2 ENTi:tYIBITllll; 
OCL LPERMIDCOU'.H,DCOUNTI FIX:') BIN; 

t• BEGIN TREE TRAVERSAL FOR SJBSETS OF ACTIVITIES THII.T RE:IUHE 
INTE~-OEPENDENT SCHEDULING ., 

LOOP _1 : 
00 ROW= 1 TO ACTCT; 

00 I = l TO 11.CTCT; 
IF OIROW,11 THEN GO TO SCH_SJBSET; 

ENO; 
GO TO ENO_LOOP _ l; 

SCH_SUB SET: 

,. IDENTIFY ACTIVITIES l'I TH~ SUBSET SPECIFIE) BY T~IS ~ow. IF 
OIR0~,11 = l PLACE ACTIVITY I INTO THE SJB VECTOR, THEN ZERJ 
OUT RJW I l'l THE D MATRIX SIN:E ROW I WILL BE IDENTICAL TO 
THE CURRENT ROW ANO WILL OEFI'IE THE SA'IE SU!::SET JF ~CTIVITIES. ., 

SU8=0; 
SCT=O; 
PUT :DlT l'ATT!:MPT!NG TO SCHEDULE THE FOLLOWING ACTIVITIES', 

•ACT# TIME RE·JUIREO WlN)OWS' I 
(PAGE,A,SK!Pll.1,AI; 

00 I=l TO ACTCT; 
IF O IP.OW ,I I = 'l' B THE'I 

DO; 
SCT" SCT+l; 
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SCHElb70 
SCHElbBO 
SCHE lt.90 
S CHE1700 
SCH El 710 
SCHE 1720 
SCHEl 73:J 
SC HE l 7't0 
SCHEl750 
S CHEl 7!>0 
SCHEl 770 
SCHE1780 
SCHElHO 
SCHE 1600 
SCHElBlO 
SCHE1620 
SCHE1830 
SCHElB<tO 
SCHE1B50 
SCHE1B60 
SCHElB70 
SCHElBBO 
SCH!: l tl90 
SCHEB:>J 
SCHE1910 
SCHE1920 
SCHElH:J 
SCHE19r.O 
SCHE1950 
SCHEl9!>0 
SC-iE 1970 
SCHE19BO 
SCHEI 9'10 
SCHE 2000 
SCHE2010 
SCHE2020 
·SC'"IE203 0 
S CHE2:ll+:J 
SCHE2050 
SCHE20b0 
SCHE2070 
SCHE2080 
SCH!:2090 
SCHE2l00 
SC.HE 2110 
SCHE2120 
SCHE2130 
SCHE 2140 
SCHE2150 
S CHE21 !>O 
SCHE2170 
SCHE2180 
SCHE2l 90 
SCHE 2200 
SCHE2210 



SCHE!)5: PROC OPTIONS I HAI NJ i s:-.eo 10 

STHT LEVEL NEST 

114 
115 
117 

118 
119 

120 
121 
122 

123 

124 
125 
126 

127 
129 
130 
131 
132 
133 
134 

135 

136 
137 
138 
140 
141 
142 
143 
144 
145 

146 

147 
149 
150 

151 
152 
1~3 

4 
4 
4 

4 
4 

4 
4 
4 

4 
4 
4 

4 
4 
4 
4 
4 
4 
4 

4 

4 
4 
4 
4 
4 
4 
4 
4 
4 

4 

4 
4 
4 

4 
4 
4 

3 
3 
3 

3 
2 

l 
l 
l 

l 
l 
1 

2 
2 
3 
3 
2 
2 
2 

1 
l 
l 
2 
2 
2 
l 
1 
l 

l 
l 
l 

l 
2 
2 

SUBISCT l=I; 
lF I ~= ROW THEN DI I,•1 = •o•s; 
PUT SKIP EDIT IACT#lll,A:TTIMEl!l ,IACTWINDOWSll,JI 

ENO; 
ENO; 

00 J=l TO ~AXw WHILE 14CTEIID(l,JI ~= 0111 
( A 141 , X I 7 I , F 141 , X I 8 I , ( MAX.; I IF I 4 I, X 11 I, F ( 4 1, 

XI 3111 i 

I• BEGIN TRAVERSAL OF WINDOW TREE FJR SUBSET OF 4CTIVITIES *I 

LPERM=O; 
LVL "1: 

FIRST_WINDOW: 
NOOE= l; 
I* PL ACE NEW NOOE ON STACK AND CHECK FOR CONFLICT *I 

PUSH_ONTO_STACK: 
STK( l VLI = NODE; 
CALL CON Fl 1 ; 
IF RTCODEl = l THEN 

00; 
I* NO CON FL JCT OETECTE::>; GJ TO NEXT LEVEL *I 
IF LVL. = SCT THEN GO TO OUTPUT _SOLUT IO\I; 
DO I= 1 TO L VL; 

LPERMILVL, I I = PSTKI I I; 
END; 
LVL=LVL+l; 
GO TO FIRST_WINDOW; 

END; 
I* CONFL JCT DETECTED, CHECK N!:XT Wl"IDOW Oil. GO. TO PREVIOUS LEVEL*/ 

NE XT_kINDOW: 
NODE = NOOE +l; 
IF NODE <= HAXW & ACTENO(SUBILVLl,NODEI - 0 

THEN GO TO PUSH_ONTO_STACK; 
IF LVL=l THEN DO; 

PUT EDITllt..Jl'-',l&OI'-' HS<lP(21,A,S'<IPlll,AI; 
GO TO END_LOOP_l; 

ENDi 
LVL = LVL-1; 
NOOE= STK(LVLI; 
GO TO NEXT_WINDOW; 

OUTPUT_SOLUTION: 
CALL CONFL21'l'BI; 
I f R T: ODE 2 = 0 TH:: N GO TO NEXT _w INDOW i 
PUT ED!Tll60l'-'ICSK!Pl21,AI; 

PUT EDIT ('SCHEDULE FOR A~OVE ACTIVITIES•, 
'ACT# WINDOW ACTUAL'I 

IS K IP I 2 I , X ( l O I , A , S'< IP I 11 , X( l O I , 0 i 
00 l = 1 TO l VL; 

K = sua I PS TK I 11 I ; 
PUT SKIP EDIT CACT#IKl,ACTWINDJwS(K,STK(PST<(IJIJ, 

SLVEC CO ,111 
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SCHE2220 
SCHE 2230 
SCHE2241) 
SCHE 2250 
SCHE2260 
SCHE2270 
SCHE 2280 
S CHE2290 
SCHE2300 
SCHE2310 
S CHE2320 
SCHE233() 
SCHE2340 
SCHE235J 
SCHE2360 
SCHE 2370 
SCHE2390 
SCHE2390 
SCHE 2400 
SCHEZ41:> 
SCHE2420 
SCHE2430 
SCHE2440 
SCHE2450 
S CHE2460 
SCHE2470 
SCHE2480 
SCHE24~0 
SCHE 2500 
SCHE 2510 
SCHE252:l 
SCHE2530 
SCHE2540 
S CHE2550 
SCHE2560 
SCHE2570 
SCHE2580 
SCHE2590 
S CHE26JO 
SCHE2610 
SCHE 2620 
SCHE2630 
SCI-IE 2640 
SCHE 2650 
SCHE2660 
SCHE 2670 
SCHE 2660 
SCHE26)0 
SCHE 2 700 
SCHE2710 
SCHE2720 
SCHE2730 
S CHE2740 
SCHE2750 
SCHE2760 



SCHE05: PROC OPTIONSIHAIN); SCHED 10 

STHT LEVEL NEST 

154 
155 

156 
157 
158 
159 

160 
161 
162 

163 
164 
165 
166 
167 
168 
169 

170 
171 
173 
174 
175 
176 

177 

178 

179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 

4 
4 

4 
4 
4 
4 

4 
4 
4 

4 
4 
4 
4 
4 
4 
4 

4 
4 
4 
4 
4 
4 

4 

4 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

2 
1 

1 
2 
3 
3 

3 
2 
l 

1 
2 
2 
2 
3 
3 
4 

4 
4 
4 
3 
2 
1 

1 
1 
l 
1 
2 
2 
2 
2 

IXl91,Al41,IZl(Xl31,Fl41,X(ll ,Fl4111; 
END; 

PUT EOlll'ASSIGNMENTS OF RESOJRCE CLASSES TO ATTRIBUTE GROUPS', 
•RESJuqcE CLASS A TTil.lBUTE :.ROUP ¥ OF UNITS' I 

(SKIP 12 I, A, SK IP 111, A I; 
DO 1=1 TO RESCT; 

00 J= l TO HAXATR; 
IF XI I ,JI ,= 0 THEN 

PUT EDIT IRES~lll ,J,Xll,JII 
I SK IP( 11, COL I 51, A I 41 , CJL( 221 ,F 141 ,COLI 391 ,FI 411 ; 

ENO; 
ENO; 
PUT EDIT l 1 RESJURCE ASSIGN~E'ITS•, •::LASS', 1 TIH:S ASSl:iN:0 1 1 

IS Kl P I 2 I , CO LI 2 0 I , A, SK l P 11 I , A , COL I l 5 I , A I i 
00 1=1 TO RESCT; 

PUT SKIP EOITIRES#l 111 1Xlll,Al411; 
ICCL=lO; 
DO J = 1 TO MAX.\TR; 

IF Xll,J I ,= 0 THEN 
DO K=l TO SLPTIJ); 

PUT SKIPIOI EDITl'l',SLVECIJ,Kl, 1 1'1 
IC OL I l COL 1, A, FI 41, XI 11, FI 4 1, A I; 

!COL = ICOL+l2i 
IF ICOL>llO THEN ICJL=lO; 

ENO; 
ENO; 

END; 
GO TO NEXT_WINDOW; 

ENO_LOOP_l: 
END LOOP_l; 

I* * * * * * * * * * * * * * * * * * 
CONFL l: PROC; 

* ., 

I* GENEUTE PERMUTATIONS OF WINDOWS IN THE STACK UNUL A PERH~JfA-
TION IS REACHED FOR WHICH A SCHEJULE CAN BE FOUNJ 

*I 
DCL I l ,J,K,Ll FIXED Bl N; 
SLVECTJRS=O; 
SUBRE S=O; 
IF LVL = 1 THEN 

DO; 
I = SUBlll; 
CALL SCANRQ( 11 i 
PST K 111 = l i 
00 J =l TO ~AXATR WHIL=ISUBRES(JI > Ol; 

K = SUBR E SI JI ; 
SLSTRTIK,11 = ACTSTRTII,STK(tl)i 
SLENDIK,11 = SLSTRTIK,ll + ACTTIMEIII; 
SLPTIKI = l; 
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SCHE2770 
SCHE27BO 
SCHE 2790 
SCHE2SJJ 
SCHE 2810 
SCHE 2820 
SCHE2830 
SCHE 2840 
SCHE21!50 
SCHE28!>0 
SCHE 2870 
SCHE2880 
SCHE2S~O 
SCHE2900 
SCHE2'HO 
sc.ie2q20 
SCHE 2930 
SCHE2940 
SCHE2950 
SCHE2960 
SCHE2HO 
SCHE 2980 
SCHE2990 
SCHE3000 
,SCHS.301 0 
SCHE3320 
SCHE3030 
SCH!:3040 
S CHE3050 
SCHE30!>0 
SCHE 3070 
SCHE3030 
S:HE3090 
SCHE 3100 
SCHE3110 
SC>iE3120 
SCHE3130 
SCHE3140 
SCHE3150 
SCHE3160 
SCHE3170 
SCHE3180 
SCHE3190 
SCHE3200 
SCHE 3210 
SCHE3220 
SCHE3230 
SCHE3240 
S CHE3250 
SCHE32!>0 
SCHE 3270 
SCHE3230 
SCHE 3290 
SCHE 3300 
SCHE3310 



SCHED 5: PROC OPTIONS(HAJNI; SCHED 10 

STHT LEVEL NEST 

192 
193 
194 
195 
19b 
197 
198 

199 
200 
201 
202 
203 
204 
205 
20b 
207 

208 

209 
210 
212 

213 
214 
215 
216 
as 
220 
222 
223 

224 

226 
228 
229 
230 
231 
232 

233 

234 
235 
236 
237 

5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 

5 

5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 

5 

5 
5 
5 
5 
5 
5 

5 

5 
5 
5 
5 

2 
1 
l 
1 
l 
1 
l 

1 
l 
l 

l 
l 

1 
l 
l 
1 
1 

l 
l 
l 

l 
l 
1 

END: 
R ll:ODE I = l; 
SLSTRTC0,11 = ACTSTRTCl,SHCllli 
SLENDIO ,11 SLSTRT 10,l I + ACTT f!'IEC JI; 

SLPTIOI s l; 
RETURN i 

ENO; 
I• BEGIN GENERATING PERMUTATIONS IN LEXICAL ORDER,STARTING WITH THE 

PERMUTATION IIH ICH PRODUCED A SCHEOULE AT TH: Pil.: VIJUS LEVEL, 
RESTORE THIS PREVIOUS PERMUTATION IN PSTK, AND CALL CONFL2 REPEAT­
EOL Y TO RE STORE THE PREVIOUS SCHEilULE, ., 

P STK=Oi 
DO PLVL=l TO lVL-li 

PSTKIPLVLI = LPERMCLVL-1,PLVLI; 
CALL CONFL21'0'BI; 

END; 
PLVL = LVL; 
PSTKIPLVLI = LVL; 
GO TO CALL_C2; 

NE XT_LVL: . 
PS TK I PL VLI = 1; 

CHECK_Ct1NFLZ: 
IF PL VL > l THEN 

DO I = l TO Pl VL - l; 
IF PSTKIII ""PST·KtPLVU THl:N GO .. TO NEXT_ll"O; 

END; 
I* COMPARE THIS PERMUTATION WITH THE PE~MUTATION OF TH: PREVIOUS LEVEL 

AND CHECK FOR VIOLATIONS OF LEXICAL ORDERING 
*I 

K=O; 
DO I =l TO PLVLi 

K = K+l; 
IFPSTKIKI 
IF PSTKIKI 
IF PST1<IKI 

END; 
CALL_C2: 

LVL THEN K = K+l; 
C LPERMILVL-1,ll THEN GO TO NEXT_NO; 
> LPERMILVL-1,11 TH~N GO TO CALL_C2i 

CALL CONFL 21 '0 1 81 i 
IF RTCODE2 = 0 THEN GO TO NEXT _NO i 

i• NO CON Fl IC T DE TEC TEO */ 
IF PLVL = LVL THEN DO; 

PLVL = PLVL+l; 
GO TO NEXT_LVL i 

RTCODEl "' li 
RETURi'li 

ENO; 

NEXT_NO: I* CO~FLICT FOUND *I 
IF PSTK IPLVL I C LVL THEN 

oo: 
PSTKIPLVLI = PSTK(PLVLI + li 
GO TO CHECK_CONFL2i 

ENO; 
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SCHE3320 
SCHE3330 
SCHE33!t0 
SCHE3350 
SCHE3360 
SCHE3370 
SCHE 3380 
SCHE33~J 
SCHE3400 
SCHE3'+10 
SCHE3420 
SCHE 3430 
SCHE3440 
SCHE3450 
SCHE3't60 
SCHE3470 
SCHE3480 
SCHE3490 
SCHE.350:1 
SCHE3510 
SCHE3520 
SCHE353J · 
SCHE35't0 
SCHE3550 
SCHE35!»0 
SCHE 3570 
SCHE 3580 
SCHE3590 
SCHE36UO 
SCHE3610 
SCHE3620 
SCHE 3630 
SCHE36't0 
SCHE3650 
SCHE3660 
SCHE3!>70 
SCHE3680 
SCHE3690 
SCHE37:>0 
S::HE3710 
SCHE3720 
SCHE3730 
SCHE 3740 
SCHE 3750 
SCHE37!>0 
SCHE3770 
SCHE3780 
SCHE3790 
SCo-tE 3800 
SCHE3Bl0 
SCHE38?0 
SCHE 3t!30 
SCHE38't:J 
SC-iE 38SO 
SCHE 3860 



SCHE05: PROC OPT IONS CHAIN I ; SCHED 10 

STHT LEVEL NEST 

238 
240 
,41 
242 
243 

244 
245 
246 
247 
248 
249 
250 

251 

252 
253 

254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
264 
265 
266 
267 

268 
269 
270 
Hl 
272 

5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 

4 

5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 

l 
l 
l 

1 
1 

1 
1 
1 
l 

1 
l 
l 

1 
1 
1 
l 
1 

IF Pl VL • 1 THEN DO; 
RTCOOEl ,.0; 
RE TURN; 

ENO; 
PLVL • PLVL - 1; 
I* REMOVE TENTATIVE SCHE:DULE TIME FOR ACTIVITY POINTED TO 

BY PSTKCPLVLI 
*I 
CALL S:ANRQC SUtlCPSTKCPLVLI 11; 
00 I •l TO :-IAXATR WHILE( SUBRESI I l > 01; 

SLPTCSUBRESIIII • SLPTISUBRESIIII - I; 
ENO; 
SLPTIOI • SLPTIOI - l; 
GO TO NEXT_NO; 
ENO CON FL 1; 

I* * * * * * • * * * • * * • * * *I 

CONFL2: PROCCFINALI; ,. 
Tr!IS ROUTINE ATTEMPTS TO FINO A SCHEDULE FJR THE ACTIVITIES 
POINTED TO BY PSTK. PLVL IS THE# OF ACTIVITIES TO BE SCHEDJLEO. 
IF PLYL > I THEN PLYL-1 ACTIVITIES HAVE AL~EADY Bl:l:N SC-f!:OULED. 
IF FINAL• 1 THEN A FULL PRE~UTATIONHAS BEEN FOJND ~HICH HAS 
THUS FAR PRODUCED ND CONFLl:T, IN T-11 S CASE T-HE ·ROUTtNE IS JSED 
TO FIND THE ACTUAL RESUU'l.CE ALLOCATIJNt IF IT C4'l BE F)UND, ., 

DCL FINAL B ITC 11; 
DCL I I ,J, K ,S LS ,SL E, NEXTSLS, !PO INT, HIND, TEMP, <OU'l T, l'iF ,OEL T ,COST, 

WINDEND, HOLDKI 
FIXED BIN; 

DCLI Cl CX:OUNT 1,01 DCaJNT II FIXED BIN; 
DCL DVPCDCOU,'lll g1TC1J; 
OCL TRANSPl ENTRYIFIXED BIN, FIXED Bl:'-l,,,.,, I; 

INF = 32767; 
IF FINAL THEN 

DO; 
SLS=O; 
DELT= 32767; 
SLE,W INDEND SLS • DEL T; 

END; 
ELSE 

DO; 
I • SUB IP S TK I PL VLI I; 
J = STKIPSTKIPLVLII; 
CALL SCANRQ( 11; 

I* SET TENTATIVE STUT TIME 
SLS = ACTSTRTC I.JI; 
OELT = A:TTIHEIII; 
SLE= SLS +DELT; 
WINDEND = ACTENDll,JI; 

ENO; 

START TIME OF WINDOW*/ 
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SCHE3970 
SCflE 3880 
SCHE3890 
SCHE39::>J 
SCHE 3910 
SCHE3920 
SCHE3930 
SCHE 3940 
S CHE3950 
SCHE39~0 
SCHE 3970 
S CHE39SO 
SCflE 3990 
SCHE4000 
SCHE4010 
SCHE4020 
SCHE 4030 
SCHE40'+0 
SCHE 4050 
SCHE4060 
SCHE4070 
SCHE 4080 
S CHE4090 
SCHE4100 
SCHE 4110 
SCHE4t20 
S::H!:4130 
SCHE4140 
SCHE4150 
SCHE4160 
SCHE4170 
SCHE4180 
SCHE 4190 
SCHE4200 
SCHE421 o 
SCflE 4220 
SCHE423l 
·scHE4240 
SCHE4250 
S CHE42!>J 
SC-IE42 70 
SCHE42BO 
S CHE42~0 
SCHE4300 
SCHE4310 
SCHE4320 
SC,!E4330 
SCHE4340 
S CHE4350 
SCHE4360 
SCHE4370 
SCHE43BO 
SCHE4 390 
SCHE4400 
SCHE4410 



S.CHEO 5: PROC OPTION SI MA I NI: SCHEO 10 

STl'T LEVEL NEST 

273 

27't 
275 
276 
277 
278 
279 
280 
281 
283 
284 
285 
286 
287 

288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 

~00 
301 
303 

304 
306 
308 
309 
HO 

311 

5 

5 
5 
5 
5 
5 
5 
5 
s 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 

5 
5 
5 
5 
5 

5 

1 
1 

1 
1 
1 
2 
2 
2 
2 

1 
1 
2 
2 
3 
3 
3 
3 
3 
3 
3 
2 

1 
2 
2 

1 
1 
1 
2 
2 

C DUNT _RE Q: 
NE XTSLS " WINOENO; 

I* FOR EACH ATTRIBUTE GROUP I, SET BIJ I = TO THE I JF -JNITS 
REQUIREcl DURl"lG <SLS,SLE>, INITIALIZE Bill TO 1 IF THE CURRENT 
ACTIVITY REQUIRES THE ATT{lbUTE I, *I 
B " O; 

IF ,FINAL THEN 
DO I= 1 TO HAXATR WHILE ISUBRESIII > 01; 

Bl SIBRE SI 111 : l; 
END; 
DO I = 1 TO MAXATR; 

KOUNT = O; 
IF SLPTIII = 0 THEN GO TO BYPASS_COUNT; 
DO J = 1 TO SL PT I I I; 

Cl JI = SLSTRTII ,JI; 
DIJI = SLENOll,JI; 
OVP I JI = 1 0' B; 

ENO; 

I* FOR THE ATTRIBUTE 1, C & 0 CONTAIN START & END TIMES OF ACTI-

., 
VITIES ALREADY SCHEDULED, ORDER THE SE Tl MES BY INCREASING 
ORDER OF STARTT IHE 

IF SLPTI 11 > 1 THEN 
DO J=l-TO SLPT(II -1; 

IF CI JI > CI J• 11 THEN 

ENO; 

00 K = J+ 1 BY -1 TJ 2 WHILE ICI Kl<CIK-111; 
TEMP " CIKI; 
CI Kl = CI K-11; 
C(K-11 = TE'IP; 
TEMP = OIKI; 
OIKI = 01 K-11; 
OIK-11 " TEMP; 

ENO; 

I* DETERMINE THE EAPLIEST TIME (AFTER SLSI THAT A UNIT MIGHT 
BECO~E AVAILABLE ., 

00 J = 1 TO SLPTlll; 
IF DIJI > SLS & OIJI < NEXTSLS THEN NEXTSLS OIJI; 

ENO; 

I* FINO VALUE FOR !POINT SUCH THAT :IIPOINTI <= SLS & 
Cl IPOINT+l I >= SLS 

*I 
IF SLS <= Cl 11 THEN !POINT = O; 

ELSE IF SLS >= CISLPTIIII THE>,j !POINT= SLPTIII; 
ELSE 00 J = 1 TO SLPT(II WHILE ICIJI < SLSI; 

!PO INT = J ; 
ENO; 

I• COUNT ACTIVITIES STARTl"lG BEFOR!: SLS & ENO(N:; AFTER SLS •I 
IF IPiHNT > 0 THEN 
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SCHE4420 
SCHE4430 
SCHE4"1t0 
SCHE4450 
SCHE44!>0 
SCHE4470 
SCHE4480 
SCHE44'l0 
SCHE45:l0 
SCHE4510 
SCHE4520 
SCHE 4530 
SCHE4540 
SCHE4550 
SCHE4560 
SCHE4!>70 
SCHE4580 
SCHE4590 
SCHE4f>:)0 
SCHE46l O 
SCHE4620 
SCHE4b30-
SCHE 4b40 
SCHE4650 
SCHE4bb0 
SCHE4670 
SCHE 4680 
SCHE4b'l0 
SCHE 4 700 
SCHE4710 
SCHE4720 
SC>IE4730 
SCHE4740 
SCHE4750 
SCH~4760 
SCHE4770 
SCHE4 780 
SCHE4790 
SCHE48:):) 
SCHE4810 
SCHE 4820 
SCHE4U:l 
SCHE4840 
SCHE 4850 
SCHE4Bb0 
s:HE 4870 
S CHE4880 
SCHE4890 
SCHE 4900 
SCHE4910 
SCHE4920 
SCHE4930 
SCHE4HO 
S:HE1t95J 
SCHE4960 



SCHE05: PROC OPTIONSCKAINI; SCHEO 10 

STKT LEVEL NEST 

312 
313 
314 
315 
316 
:!17 
318 

319 
320 
321 
322 
323 
324 
325 
326 
?27 
328 
:29 
:!30 
331 
:!32 
:!33 
335 
?36 
337 
338 
?39 
340 
341 

342 

343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
?59 

5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

l 
2 
2 
3 
3 
3 
2 

1 
1 
2 
2 
3 
3 
3 
3 
4 
4 
5 
5 
5 
4 
3 
3 
4 
4 
4 
3 
2 
1 

l 

1 
1 
1 

1 
1 
1 

1 
1 
1 

00 J = l TO IPOINT; 
If OIJI > SLS THEN 

oo; 

END; 

OVPI JI = 1 1 18; 
KOU NT z KOUNT +l; 

ENO; 

I* IDENTIFY ACTIV!T !ES THAT ST ART OJ:!.ING <SLS, SLE>. 

.. , 
FOR EACH SUCH ACTIVITY, SEE WHETHER IT CAN BE MATCHED ~ITH AN 
EARLIER OVERLAPPING ACTIVITY. 

IF 1 PO INT < SL P TC I I THEN 
00 J=IPOINT+l TO SLPTCII; 

IF CtJI < SLE THEN 
00; 

MINO= CIJI; 
HOLOK = O; 
IF J > 1 THEN 

00 K=l TO J-1; 
IF OIK) <=MIND & OVP(Kl 

oo; 

ENO; 

MINO= OIKI; 
HCLOK "' K; 

ENO; 

1 1 1 B THEN 

IF HOLDK > 0 THEN D!HOLOKI = DIJ); 
ELSE DO; 

ENO; 
ENO; 

BYPASS_COUNT: 

OVPIJI = 1 1 1 8; 
KOUNT = KOUNT+l; 

END; 

B tI I = 8 ll I + KOU NT; 
ENO; 

I* PREPARE TO CALL TRANSPORT AT IJN RJUTINE */ 
00 l=l TO RESCT+l; 

Al 11 = RESIJTY( II; 
Clll,*1 = ATTl:ILII,*H 

END; 
X=O; 
TEMP = SUMIAI - SUMIBI; 
IF TE MP >= 0 

THEN oo; 
BIMAXATR+ll • TE~P; 
A! !<E SC h 11 = O; 

END; 
ELSE DO; 

A ( R E SC Tt-11 = -' TE MP ; 
BIMAXATR+ll = O; 

ENO; 
CALL TRANSPJ(q~SCT+l,MAXATR+l,INF,Cl,A,8,X,COSTI; 
IF COST > 0 THEN GO TO R~DUCE_REIJ; 

I* ENTER SLS,SLE IN SCHEDULE FOR EACH ATTRIBUTE GROUP RfQUIREO 
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SCHE4970 
SCHE4980 
SCHE4990 
S CHE5QJO 
SCHE 501 0 
SCHE 5020 
SCHE503() 
SCHE 5040 
SCHE5050 
SCHE50o0 
SCHE 5070 
SCHE50~0 
SCHE5090 
SCHE 5100 
SCHE5110 
SCHE 5120 
SCHE5130 
SCHE51"0 
SCHE 5150 
SCHE5160 
SCHE5170 
SCHE 5180 · 
SCHE5l90 
SCHE5200 
SCHE 521 0 
S CHE5220 
SCHE5230 
SCHE 5240 
S CHE525:> 
SCHE52!>0 
SCHE 5270 
SCHE5280 
SCHE5290 
SCHE5300 
SCHE5310 
SCHE5320 
SCHE 5330 
SCHE5340 
SCHE 5350 
SCHE5360 
SCHE5370 
SCHE5380 
S CHE5390 
SCHE5'+00 
SCHE 5410 
SCHE5420 
SCHE5430 
SCHE 5440 
S CHE545:> 
SCHE 54!>0 
SCHE 5470 
SCHE5490 
SCHE 5490 
SCHE 5500 
SCHE5510 



SCHE05: PROC OPTIONSCMAINI; 

STHT LEVEL NEST 

361 
363 
364 
3b5 
366 
367 
368 
369 
370 
371 
?72 
373 
374 
?75 
376 

377 

378 
379 
380 
381 

382 
383 
384 
385 
3116 
387 
388 
389 

390 

391 

392 

393 
394 

395 
396 
397 
398 
399 
400 
401 
402 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 

5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 

5 

6 

6 

6 
6 

6 
7 
7 
7 
7 
7 
7 
7 

1 
1 
1 

1 
1 
1 
1 
1 

l 
l 
l 

l 
1 
l 

l 
1 

l 
1 

BY THIS ACTIVITY ., 
IF FINAL THEN 00; 

RTCOOE2 " 1; 
RE TURN; 

END; 
00 I sl TO HAXATR WHILE ISUBRESC ti > 01; 

K= SUS RE SI 11 ; . 
SLPTIKI = SLPTIKl+l; 
SLSTRTIK,SLPTIKII • SLS; 
SLENDIK,SLPTIKII ,. SLE; 

END; 
SLPTIOI = SLPTIOl+l; 
SLSHTIO,SLPTIOII = SLS; 
SLENDIO,SLPTIOII = SLE; 
RTCOOE2 = 1; 
RETURN; 

REDUCE_REQ: 

IF FINAL THEN DCli 
RTCOOE2 ,. O; . 
REH.RN; 

END; 
I* TRY NEW VALUES FOR SLS & SLE •I 

SL S = NEX'f·SL S; 
SLE = SLS + DELT; 
IF SLE > WHIDEND THEN 

DO; 
RTCOOE2 ,. 0; 
RE TURN; 

ENO; 
ELSE GO TO COUNT _REO; 

TRANS Pl: PROC IM,N, lNF,C,A,B, X,KWI; ,. 
ALGORlTHM 293 - C::lll_EC TED ti.L:.ORI THHS FROM CACM 

*I 
OCL IM,N,lNF,KW,Al*l ,Bl*l ,Cl*,*l,XC*,*I I 

FIXED BIN; 
DCL 11,J,U,V,K,L,S,T,GD,H,P,CIJ,XIJ,Al,BJ,LSVJ,~LVII 

FIXED Bl N; 
DCL ZG BIT I 11; 
DCL (GI HI, LISTU (Ml ,NLV I Ml ,R IN), LIS T\I IN l, LSI O:'l+N-11, 

NU H*Nl, LSVI O:NI I 
F IXEO BIN; 

IN: PROC; 
LSVJ "LSVCJI; 
DO T = LSVINI BY -1 TO LSVJ; 

LS IT+ll =LSI Tl; 
ENO; 
DO T -= J TO N; 

LSVIT I = LSV( Tl + l; 
ENO; 

S:HEO 10 

72 

SCHE 5520 
SCHE5530 
SCHE55't0 
SCHE 5550 
SCHE5560 
SCHE5570 
SCHE 5580 
SCHE5590 
SCHE5600 
SCHE 5610 
SCHE5620 
SCHE5630 
SCHE 5640 
SCHE565() 
SCHE5660 
SCHE 5670 
SCHE5680 
SCHE5690 
SCHE5700 
SCHE571() 
S:HE57ZO 
S::HE 5730· 
SCHE5740 
SCHE5750 
SCHE 5760 
SCHl:'5"770 
SCHE 5780 
SCHE 5790 
SCHESBOO 
SCHE 5810 
SCHE5820 
SCHE5830 
SCHE 5840 
SCHE5850 
SCHE58!>0 
SCHE 5870 
SCHE583:) 
SCHF5890 
SCHE5<100 
SCHE5910 
SC,iE5920 
SCHE 5930 
SCHE5'HO 
SCHE 5950 
SCHE5960 
SCHE5970 
SCHE 5980 
SCHE5HO 
SCHE6000 
SCHE6010 
S CHE6:l20 
SCHE603il 
SCHE6040 
SCHE6053 
SCHE 6060 



SCHE05: PROC OPTIONS(HAIN); 

STHT LEVEL NEST 

'i03 
404 

405 
406 
407 
408 
410 
1,11 
1,12 
413 
U4 

415 
"16 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
434 
435 
436 
437 
438 
't39 
440 
441 
't42 
443 
444 
445 
446 
44 7 
449 
450 
451 
453 
454 
't55 
456 
457 
458 
459 

7 
7 

6 
7 
1 
7 
7 
7 
7 
7 
7 

7 
1 
1 
7 
1 
1 
7 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
b 
6 
6 
b 
6 
6 
6 
6 
6 
6 
b 
6 
6 
6 
6 

l 
2 
2 
2 
l 

1 
1 

1 
1 

1 
l 

1 
1 
2 
2 
1 
2 
2 
2 
3 
3 
3 
3 
2 
1 
l 

1 
1 
l 
2 
2 
1 
2 
2 
2 
3 
3 

LSILSVJ+U "' J; 
ENO IN; 

OUT: PROC; 
LSVJ = LSVIJ I; 
00 T = LSVIJ-I l+l TO LSVJ; 

IF LSI Tl = I THEN DO; 
S s T; 
GO TO EX; 

END; 

x = o; 

ENO; 
EX: 

00 T = J TO N; 
LSV(T) = LSV!Tl-1; 

ENO; 
LSVJ = LSVINI; 
DO T = S TO LSVJ; 

LS<TI = LSI T+ll; 
ENO; 

END OUT; 

00 I = 1 TO H; 
NLVIII • 11-ll•N; 

ENO; 
LSV = O; 
l!STV = O; 
KW,GO = O; 
00 I "' 1 TO H; 

H "' I NF; 
OOJ•lTON; 

IF CI I , JI < H_ THEN H = CI I, J I ; 
END; 
OOJ=lTON; 

CIJ, Cll,JI C(l,JI - H; 
IF C I J = 0 THE N 

DO; 
LISTVIJI = O; 
NL VI, NL VI 11 = NL VII I +l; 
NL I NL V I) = J; 

ENO; 
ENO; 
KW • H*AI ll+KW; 

ENO; 
00 J=l TON; 

IF LISTV(JI = 0 THEN GO TO °"EXTJl; 
Hz INF: 
DO I = l TO H; 

IF Cl! ,JI = H THEN H = C(l,JI; 
ENO; 
OD I = l TO M; 

CIJ, Cll,JI = Cll,JI - H; 
IF CIJ = 0 THEN 

DO; 
NLVl,NLVCII = NLVIIIH; 
NLINLVI I "' J; 

SCHEO 10 
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SCHE6070 
SCHE6080 
SCHE6090 
SCHE6100 
SCHE6110 
SCHE 612 0 
SCHE613J 
SCHE6HO 
SCHE6150 
SCHE6l6J 
SCHE 61 70 
SCHE6180 
SCHE61'10 
SCHE6200 
SCHE6210 
SCHE6220 
SCHE 623 0 
SCHE6240 
SCHE6250 
SCHE6260 
SCHE6270 
SCHE62Bo· 
SCHE6290 
SCHEl.300 
SC'-IE6310 
SCHE6320 
SCHE6330 
SCHE 6340 
SCHE6350 
SCHE6360 
SCH!: 6370 
SCHE6380 
SCHE6390 
SCHE 6400 
SCHE6410 
SCHE642 0 
SCHE 643 0 
SCHE6440 
SCHE6450 
SCHE6460 
SCHE6470 
SC-tE6480 
SCHE6490 
SCHEb500 
SC>iE 651 0 
S CHE6520 
SCHE6530 
SCHE 6540 
SCHE6550 
SCHE65b0 
SC-!E6570 
S CHE65SO 
SCHE6590 
SCHE 6600 
SCHE6!> 10 
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SCHED5: PROC OPTIONS(MAINI; s: HEO 10 

STMT LEVEL NEST 

460 6 3 ENO; SCHE6620 
461 6 2 ENO; SCHE6630 
462 6 l KW= H*BIJl+KW; S CHEb6<t0 
463 6 1 NEXTJl: SCHEbb50 

ENO; SCHE6660 
SCHEbb70 

~64 6 S2: SCHEM,80 
00 I 1 TOM; SCHE6690 

4b5 6 1 Al Al 11; SCHE6700 
466 6 l NLVI = NLVIJI; SCHE6710 
467 6 1 DOU= 11-ll*N•l TO NLV[; SCHE6720 
468 b 2 IF A [ = 0 THEN GO TO NEXTI 2; SCHEb730 
00 6 2 J = NLIUI; SCHE6740 
471 6 2 BJ= BIJI; SCHE6750 
472 6 2 IF BJ = 0 THEN GO TO NEXTJ4; SCHE67!,0 
474 6 2 H,Xll ,Jl = MlNIAl,BJJ; SCHE6770 
475 6 2 Al = AI-H; S CHE6 790 
476 6 2 B IJ l = BJ - H; SCHE6790 
H7 6 2 CALL IN; SCHE6BOO 
478 6 2 NEXT J 4: SCHEb8lO 

ENO; SCHE6820 ,. BEGIN PAGE 2 ., SCHE 61330 
479 6 NEXTI 2: S CHEb840 

Al II = A I; SCHEb850 
480 6 GD = GD +Al; SCHE6860 
481 6 'ENO; SCHE!>87J 
482 6 531: SCHE6880 
483 6 IF GD 0 THEN GO TO S6; SCHE6B90 
484 6 S32: SCHEb900 

R s O; SCHE 6910 
485 6 K = O; SCHE6920 
486 6 00 I l TO M; SCHE6BJ 
487 6 1 IF Alli ,= 0 THEN SCHE6940 
488 6 l 00; SCHE6950 
489 6 2 K = K+ 1; S CHE6960 
490 6 2 LISTU(Kl = [ ; SCHE 6970 
491 6 2 GI I I = I NF; SCHE6980 
492 6 2 ENO; SCHE6990 
493 6 1 ELSEGIII = o; SCHE 7000 
494 6 l END; SCHE70l0 
495 6 S3 3: SCHE7020 

L = O; SC'lE 7030 
496 6 DO U = 1 TO K; SCHE704J 
497 6 1 I = LISTUIUI; SCHE7050 
498 6 1 NLVI = NL VI I l; SCHE 7060 
499 6 l DJ s = I 1- ll •N+l TO NLVI; SCHE7070 
500 6 2 J = NLISJ; S::HE 7080 
501 6 2 IF RIJI ,= O THEN GO TO NEXT JS; SCHE7090 
503 6 2 RIJ I = I ; SCHE7100 
504 6 2 L = L+l; SCHE7110 
505 6 2 LI STVI LI = J; SCHE 7120 
506 6 2 IF BIJI > 0 THEN GO TO 54; SCHE7130 
508 6 2 NEXT JS: SCHE 7140 

EtlD; SCHE7150 
509 6 ENO; SCHE71 !»O 



75 

SCHEDS: P'I.OC OPTIONSIHAINII S:HED 10 

STMT LEVEL NEST 

510 6 IF Ls O THEN GO TO SS; SC'tE 7170 
SU 6 K=O; SCHE718D 
513 6 DO V " 1 TO L; SCHE:7190 
~lit 6 l J = LISTVIVI; SCHE7200 
515 6 1 LSVJ = LSVIJI; SCHE7210 
516 6 1 00 S = LSVIJ-11+1 TO LSVJ; SCHE7220 
517 6 2 I = LSISI; SCHE 7230 
518 6 2 IF Gii i = 0 THEN SCHE7240 
519 6 2 oo; SC-iE 7Z50 
520 6 3 Giii a J; SCHE 7260 
521 6 3 K = K+l; SCHE7270 
522 6 3 LISTUIKI a I; SCHE7280 
523 6 3 END; SCHE7290 
524 6 2 END; SCHE7330 
525 6 1 END; SCHE 7310 
526 6 IF K=O THEN :;o TO SS; SCHE7320 
528 6 GO TO 533; SCHE7333 

S::HE 7340 
529 6 54: SCHE7350 

H" BCJI; SCHE73!>0 
530 6 p = J; SCHE 7370 

SCHE7380 , .. BEGIN PAGE 2 COLUMN 2 ., SCHE7390 
SCHE 7400 

531 6 MARK: SCHE7410 
I"= ·"RIJ I'; 'SCHE7420 

532 6 J = GCII; SCHE 7430 
533 6 IF J = INF THEN. SCHE7440 
534 6 DO; SCHE7450 
535 6 1 IF All I < H THEN H " Al II; SCHE7460' 
537 6 1 GO TO RE; SCHE747:> 
538 6 1 ENO; SC!iE7't80 
539 6 IF XI I ,JI < H THEN H "'Xll,JI; SCHE7490 
541 6 GO TO MARK; SCHE75JO 
542 6 RE: SCHE7510 

J sp; SCHE7520 
543 6 BIJl=BIJI- H; SCHE7530 
544 6 Alli = Al II - H; SC!iE 7540 
545 6 GD " GO - H; SCHE7550 
546 6 R El: SCHE7560 

I = RI JI; SCHE 7570 
547 6 XIJ = Xlt,JI; SCHE7580 
548 6 Xll,J I = XIJ +H; SCHE7590 
549 6 IF XIJ = 0 THEN CALL IN; SCHE 7600 
551 6 J = Gill; SCHE7610 
552 6 IF J=INF THEN GO TO 531; SC-iE 7620 
554 6 XIJ,Xll,JI = XI I, JI-H; SCHE7630 
555 6 IF XIJ = O THEN CALL OUT; SCHE7640 
557 6 GO TO REI; SCHE 7650 
558 6 SS: SCHE7b60 

K•O; SCHE7670 
559 6 L=N+l; SCHE 7680 
560 6 DO J= 1 TON; SCHE7690 
561 6 1 IF RI JI = 0 THEN SCHE1700 
562 6 1 DO; SCHE 7710 



SCHE05: PROC OPTWNSCHAINI; SCHEO 10 

STMT LEVEL NEST 

563 
564 
565 
566 
567 
568 
569 
570 
571 
572 
573 
57!:> 
576 
577 
579 
580 

581 
582 
583 
584 
585 
586 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
599 
600 
601 
602 
603 
604 
605 
606 
l:07 
608 
609 
610 
611 
612 

613 

614 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
b 
5 

4 

5 

2 
2 
2 
1 
2 
2 
2 
1 

1 
l 
2 
2 
2 
1 

l 
1 
l 
2 
2 
2 
2 
2 
3 
3 
3 
2 
1 
2 
2 
2 
2 
2 
3 
3 
3 
2 
1 
l 

K=K+ l; 
LISTVCKI '" J; 

ENO; 
ELSE oo; 

END; 

l • L-1; 
llSTVILJa J; 

ENO; 

H = I NF; 
DO I= \ TO H; 

IF Giii = 0 THEN GO TO NEXfl6; 
00 S = 1 TO Ki 

J = LISTV(SI; 
IF Cll,JI < H THEN H = Cll,JI; 

ENJ; 
NEXT 16: 
ENO; 
DO I = 1 TO H; 

ZG = CGIJI -.: 01; 
NLVI = 11-ll•N; 
OOS=LTON; 

J = LCSTVIS); 
IF ZG THEN CIJ = Cll,J); 

ELSE CIJ, CCl,JI = CCl,JI + H; 
IF CIJ = 0 THEN 

ENO; 

DO; 
NLVt = NLVl+l; 
NLINLVII = J; 

END; 

DO S = l TO K; 
J = LI STY( SI ; 
IF ZG THEN CIJ,CI 1,JI : CII,JI-H; 

ELSE CIJ = CCI ,JI; 
IF C IJ = 0 THEN 

ENO; 

oo; 
NLVI = NlVI+l; 
NLINLVI I =. J; 

EN_O; 

NLVII I = NL VI; 
ENO; 
KW = KW + H*50; 
GO TO 532; 

56: RETURN; 
ENO TRANSPl; 
ENO CONFLZ; 

,. * • * * * • • • * • • • • • • • • * • *' 
SCANRQ: PROC 111; 

I• SCAN RQTBL TJ IDENTIFY All A TTRIB. S REQUIRED BY ACTIVITY I. 
PLACE THE NUMBERS OF THE GRJJPS l"I SU6RES VECTJR ., 

OCLl 1,J,K,L,HI FIXED BIN; 

76 

SCHE7720 
SCHE7730 
SCHE7740 
SCHE7750 
SCHE77!>0 
SCHE 7770 
SCHE77~0 
SCHE7790 
SCHE7BOO 
SCHE7810 
SC-IE 7620 
SCHE7tl30 
SCHE781't0 
SCHE 7850 
SCHE7860 
SCHE7870 
SCHE7880 
SCHE7810 
SCHE7900 
SCHE 7910 
SCHEHZO 
SCHE7930 
SCHE7940 
SCHEH50 

.. S.CHE7960 
SCHE7970 
SCHE7980 
SCHE7990 
SCHE8000 
SCHEBOlO 
SCHE 8020 
SCHE8)33 
SCHE801't0 
SCHE 8050 
SCHE83&3 
SCHE8070 
SCHE8080 
SCHE801:> 
SCHE 8100 
SCHEBllO 
SCHEB 12:> 
SCHE 8130 
SCHE8140 
SCHEBlS) 
SCHE 8160 
SCHE8170 
SCHE8180 
SCHE 8190 
S CHE8200 
SCHE82l O 
SCHE 8220 
SCHE8230 
SC'iE82'tO 
SCHE8250 
SCHE82&0 



SCHEDS: PROC OPTIONSCMAINI; 

STMT LEVEL NEST 

615 5 K::r:O; 
616 5 SUBRE S = Oi 
617 5 00 J 1 TORQCT; 
618 5 1 IF RQACT#(JI = I THEN DO; 
620 5 2 K=K+l; 
621 5 2 SUBRE SIKI R::IATRMI JI; 
t22 5 2 END; 
623 5 1 ENO; 
624 5 END SCANRQ; 

625 4 END BLI< 3; 

,. • • • • • • • • • • • • • • • 
626 3 LOOK A: PROC(ARG I RE.TURNS IFIXcO BI NI; 
627 4 OCL 11,J,K,L,MI FIXEDBif'I, ARG CHUI 41; 
628 4 DO I = 1 TO AC TC T; 
629 4 1 IF A~G = ACT#( I I TllEN RETURNIII; 
f31 4 1 ENO; 
632 4 RE TURNI 01; 
633 4 ENO LOOK A; 

634 3 ENO BLKZ; 
f35 2 ENO BLKl; 
636 l ENO SCHED5; 

• • • *I 

SCHED 10 
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SCHE 8270 
SCHE 8280 
SCHEBZn 
SCHE 8300 
SCHE8310 
SCHE8320 
SCHE 8330 
SCHE8340 
SCHEB350 
SCHE 8360 
SC HES 310 
SCHE8380 
SCHE8390 
SCHE840J 
S::.-iE84lJ 
SCHE8420 
SCHE8430 
SCHE 8440 
SCHE8450 
SCHE84i>O 
SCHE 84 70 
S CHEB480 
SCHES<,90 
SCHE 8500 
SCHE8510 
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TABLE Of ACTIVITIES 
ACT I Tl ME REQ W INOO~ S 
Al 1 l 3 0 0 I) 0 
A2 1 1 4 7 9 0 0 
A3 3 2 5 0 0 0 0 
Alt 1 l 9 0 I) 0 0 
A5 3 " 7 0 0 0 0 
A6 4 5 10 0 0 0 0 
A7 2 9 11 I) I) I) 0 
AS 1 10 12 13 14 0 0 
A9 2 10 14 16 18 19 21 

TABLE OF RESOURCE CLASSES 
CLASS I OF UN ITS ATHIBUTES 

Rl 4 1 3 8 0 0 0 0 0 0 0 
R2 3 2 " 0 0 0 0 0 0 0 0 
R3 5 5 6 7 0 0 0 0 0 0 0 
R4 2 3 " 0 0 0 0 0 0 0 0 
R5 6 2 7 8 0 0 0 0 0 0 0 



ACTIVITY 
Al 
Al 
A2 
A2 
A3 
A3 
A3 
A4 
A4 
AS 
AS 
A6 
A7 
AB 
AB 
A9 

TABLE OF REQUIREMENTS 
ATT RI BUTE GROUP 

1 
5 
3 ,. 
2 
5 
6 
7 
B 
2 
6 ,. ' 

1 ,. 
7 
1 
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ATTEMPTING TO SCHEDULE THE FOLLOW! NG ACTIVITIES 

ACT# 
Al 
A3 
AS 
A7 
A9 

T !ME REQUIRED 
l 
3 
3 
2 
2 

SCHEDULE 
ACT# 

Al 
A3 
AS 
A7 
A9 

1 
2 ,. 
9 

10 

FOR ABOVE 
WI NOOW 
1 3 
2 5 
4 7 
9 11 

10 14 

II INOOWS 
3 
5 
7 

11 
14 16 18 

ACTIVITIES 
ACTUAL 

1 2 
2 S 
4 7 
9 11 

10 12 

19 

ASSIGNMENTS OF 
RES CUR CE CLASS 

Rl 

RESOURCE CLASSES TO ATTRIBUTE GROUPS 

R2 
R3 
R3 

CLASS 
Rl 1 
R2 2 
R3 1 
R4 
R5 

ATTRrnUTE GROUP 
1 
2 
5 
6 

RESOURCE ASSIGNMENTS 
TIMES ASSIGNED 

21 ( 9 111 10 
51 I 4 71 
2 I ( 2 51 2 

i OF UNITS 
2 
2 
1 
2 

121 

51 4 

SCHEOUL E 
ACT# 

FOR ABOVE 
WINDOW 

ACTIVITIES 
ACTUAL 

Al 
A3 
A5 
A7 
A9 

A SS IGN~E NTS OF 
RESOURCE CLASS 

RI 
R2 
R3 
R3 

CLASS 
RI 1 
R2 2 
R3 1 
R4 
RS 

1 3 
2 5 
4 7 
9 11 

16 18 

1 2 
2 5 
4 7 
9 11 

16 18 

RESOURCE CLASSES TO ATTRIBUTE GROUPS 
A TTRlilUTE GROUP 

1 
2 
5 
6 

RESOJRCE ASSIGNMENTS 
Tl MF. S A SS[ GNEO 

21 ( 9 111 16 
51 ( 4 71 
21 ( 2 51 2 

# OF UNITS 
1 
2 
l 
2 

181 

5 I 4 

80 

21 

71 

71 



SCHEDULE 
ACT# 

Al 
A3 
AS 
A7 
A9 

FOR ABOVE 
W lNDOw 
l 3 
2 5 
4 7 
9 11 

19 21 

ACTIVITIES 
ACTUAL 

l 2 
2 5 
4 7 
9 11 

19 21 

ASSIGNt<ENTS OF 
RESOURCE CLASS 

Rl 

RESCURCE CLASS ES TO ATTR !BUTE GROUPS 

R2 
R3 
R3 

CLASS 
Rl l 
R2 2 
R3 1 
R4 
RS 

A TTR!SUTE GROUP 
l 
2 
5 
6 

RESOURCE ASSIGNMENTS 
Tl MES ASSIGNED 

21 I 9 111 19 
5 I I 4 71 
21 I 2 51 2 

# OF UNITS 
l 
2 
1 
2 

211 

51 4 

81 

71 



ATTEMPTING TO SCHEDULE THE FOLLOWING ACTIVlTIES 

ACTI 
A2 
A4 
Ab 
A8 

TIME REQUIRED 
l 
l 
4 
1 

SCHEDULE 
ACT# 

A2 
A4 
Ab 
A8 

l 
l 
5 

10 

FOR ABOVE 
kl NOOW 
l 4 
l 9 
5 10 

10 12 

WINDOWS ,. 7 9 
9 

10 
12 13 14 

ACT IV IT I ES 
ACTUAL 

l 2 
1 2 
5 9 

10 11 

ASS IGNl'ENTS OF 
RESOURCE CLASS 

Rl 

RESOURCE CLASSES TO ATTRIBUTE GROUPS 

Rl 
R2 
R3 

A TTRl6UTE GROUP 
3 
8 
4 
7 

RESOURCE ASS IGNHENTS 
TIMES ASSIGNED 

1 2 I I l 21 

,i OF UNITS 
1 
1 
1 
1 

CLASS 
Rl 
R2 
R3 
Rft 
R5 

1 2 I I 5 9 I 10 111 
l 21 I 10 111 

SCHEDULE 
ACT# 

AZ 
A4 
Ab 
A8 

FOR ABOVE 
WINDOW 
1 4 
1 9 
5 10 

13 14 

ACT IVIT !ES 
ACTUAL 

l 2 
1 2 
5 9 

13 14 

ASS lGNt,!ENTS OF 
RE SOURCE CLASS 

Rl 

RES OJ RC E CL ASS ES TO ATTRIBUTE GROUPS 

Rl 
R2 
R3 

CLASS 
Rl 
R2 
R3 
R4 
RS 

ATTRIBUTE GROUP 
3 
8 
4. 
7 

RESOJRCE ASS IGNHENTS 
Tl ME S AS SIG NED 

l 2 I I l 21 

# OF UNITS 
1 
1 
1 
1 

1 21 I 5 91 13 141 . 
1 21 I 13 14 I 
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SCHEDULE FOR ABOVE ACTIVITIES 
ACT# WINDOW ACTUAL 

AZ 
Alt 
A6 
AS 

7 9 
1 9 
5 10 

10 12 

7 8 
1 2 
5 9 

10 11 

ASSIGNMENTS OF 
RESOURCE CLASS 

Rl . 

RESOU~CE CLASSES TO A TTR I 8 UTE GROUPS 

Rl 
R2 
R3 

ATTR !BUTE GROUP 
3 
8 

" 7 

RESOURCE ASSIGN~ENTS 
TIMES ASSIGNED 

7 81 C 1 21 

• OF UNITS 
l 
1 
2 
1 

CLASS 
Rl 
R2 
R3 
Rlt 
R5 

7 81 C 5 91 10 111 
t 21 I 10 111 

SCHEDULE 
ACT# 

AZ 
Alt 
A6 
AS 

FOR A"BOVE 
WINDOW 
7 9 
1 9 
5 10 

13 14 

ACTIVITIES 
ACTUAL 
7 8 
1 2 
5 9 

13 14 

ASSIGNMENTS OF 
RESOURCE CLASS 

Rl 

RESOURCE CLASSES TO ATTRIBUTE GROUPS 

Rl 
R2 
R3 

Cl ASS 
Rl 
R2 
R3 
R ',, 
R5 

ATTRIBUTE GROUP 
3 
8 ,. 
1 

RESOURCE ASSIGNMENTS 
TIMES ASSIGNED 

7 81 C l 21 

II OF UNITS 
1 
l 
2 
1 

1 81 I 5 91 13 141 
1 21 C 13 141 
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APPENDIX C 

GLOSSARY OF TERMS 
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activity - a non-recurring event that extends over a continuous time 
interval and requires the use of one or more resources. 

attribute group - group of all resource classes which possess the 
same attribute. 

breadth-first search - a method of tree searching in which all nodes 
of a given level are processed in the same step, producing the 
effect of traversing all paths of the tree in parallel. 

constraint - a restriction or limitation which must be taken into 
account when scheduling an activity. 

dense solution - a solution to a scheduling problem which minimizes 
the total ~lapsed time between the starting time of the first 
activity and the ending time of the last activity. 

depth-first search - a method of tree searching in which all paths 
are examined in series. 

distributed solution - a solution to a scheduling problem which 
imposes a uniform distribution of activity assignments over a 
period of time. 

earliest schedule - a solution to a scheduling problem in which the 
last activity is completed as early as possible. 

ending time - the time at which an activity will complete the utili­
zation of resources allocated to it. 
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resource assignment - allocation of a resource unit to an activity for 
a specified time interval. 

resource class - a collection of identical resource units. 

resource unit - a person or a reusable item. 

starting time - the time at which an activity will begin utilization 
of resources allocated to it. 

tree structured search - a search for a solution to a problem which 
is performed by examining alternatives in a manner corresponding 
to the traversal of a tree. 

uniformly distributed utilization - allocation of resource units in 
such a way that all units within a given class are allocated 
for approximately equal lengths of time. 

window - an interval of time during which an activity may be scheduled. 
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