TREE STRUCTURED ALGORITHMS FOR SCHEDULING
ACTIVITIES AND RESOURCES IN A

CONTINUUM OF TIME

By
MARTIN JAMES EERTHEIM
Bachelor of Science
Duke University
Durham, North Carolina

1969

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1973

/773
WA
(?A/. 2

OKLAHOMA
STATE UNIVERSITY
LIBRARY

NOV 16 1973

P ST

o

TREE STRUCTURED ALGORITHMS FOR SCHEDULING
ACTIVITIES AND RESOURCES IN A

CONTINUUM OF TIME

Thesis Approved:

Thesis Adviser

&6 £ fll
/) 1) Lwden

Dean of the Graduate College

PREFACE

This thesis is concerned with the development of a computer pro-
gram to solve a particular class of scheduling problems. The primary
objective is to implement tree structured searching techniques in the
search for a schedule.

I wish to express my thanks to my thesis adviser, Dr. James R.

Van Doren, for suggesting the topic of this thesis and providing
invéluable assistance and guidance. Thanks are also due to other
faculty members'of the Department of Computing and Information Sciences,
for théir helpful advice and suggestions. A special note of thanks is
due to Dr. Donald W. Grace who pointed out that one aspect of resource
assignment baéed on attributes was a special case of the transportation
problem.

Finally, I wish to thank the citizens of the City of Stillwater
and the State of Oklahoma for providing the environment which helped
make my education at Oklahoma State University a truly remarkable

experience.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION . . . « & & « . . } et e e e e e e e 1
II. THE EIGHT QUEENS PROBLEM v v ¢ v « ¢ v « « . 7
III. SCHEDULING A SINGLE RESOURCE . . . « v v & v « o . . 16
IV. SCHEDULING A SINGLE CLASS OF RESOURCES 25
V. SCHEDULING MULTIPLE RESOURCE CLASSES 30
VI. EFFICIENCY IN GENERATING AND EXAMINING
PERMUTATIONS &+ &4 & & o o 4 o o o o o o o o o o o o & = 35
VII. SELECTING RESOURCES BASED ON ATTRIBUTES 39
VIII. CONCLUSION AND SUGGESTIONS FOR FURTHER
INVESTIGATION . & & v v v e 4 o v o o o o o o o o o 4 48
BIBLIOGRAPHY + &+ v v v v o o e o e e e e e e e e e e e e 52

APPENDIX A: FLOWCHART OF FINAL PROGRAM v v & & + & 54

APPENDIX B: SOURCE LISTING AND SAMPLE OUTPUT OF
FINAL PROGRAM . v v v v v 4 ¢ ¢ o o o « « o « & 61

APPENDIX C: GLOSSARY OF TERMS ¢ % ¢ ¢ ¢ ¢ o o o o & 84

LIST OF TABLES

Table Page

I. Sample Problem--Scheduling a Single Resource
Unit & ¢ o v v 6 v e e e e e e e e e e e e e e e 16

IT. Three Schedules for the Sample Problem of

1 o 19
III. Sample Table of Actual Starting and Ending Times . . 23
IV, A Schedule Requiring Three Resource Units 26
V. Schedule Table and Associated Pushdown Stacks 28
VI. Sample Problem for Multiple Resource Scheduling . . . 31

VII. Tables of Start and End Times for Each Resource
ClasSs o v 4 ¢ o o s o o o o o o o o o o o s o o s 34

VIITI. Analogy Between General Transportation Problem
and Resource Assignment Problem 42

IX. Computation of the Number of Units Required of
a Particular Attribute Group+ . . . 45

X. A Case for Which an Assignment can be Made for
Each Sub-Interval, but Cannot be Made for
the Entire Period of Time . « « « « o o o « & « o & 45

LIST OF FIGURES

Figure Page
1. Solutions to Eight Queens and Four Queens Problems . . . v

2. Tree Structure Corresponding to the Four Queens
Problem . . ¢ v ¢ o ¢ o o ¢ o o o s ¢ s o o o o o s a 9

3. First Nine Board Configurations to be Examined

in Four Queens Problem « « « + o . . . 12
4. One Node of a Binary Tree . . & « &+ &« ¢ v o o o o o o & - 13
5. A Tree and Its Binary Representation 13

6. Binary Tree Associated with Four Queens Problem
After Two Levels Have Been Processed 14

7. Internal Array of Structures Corresponding to

the Sample Problem of Table I + . . . 20
8. Permutation Tree . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o . 22
9. Decision Tree with Two Levels per Activity 27

10. Graph Showing Common Resource Requirements
Among Activities « & ¢ ¢« o o o ¢ ¢« o o i e s s e e . o 32

11. Adjacency and Path Matrices for Graph in
Figure 10 . « « ¢ o ¢« o ¢« o o o o o« o o o o o o o o &

12. Association Between Resource Classes and

Attribute Groups . . . « ¢ ¢ 4 ¢ o o e e 0 e e e 4 e 40

LIST OF SYMBOLS

i'th attribute group

starting time of the i'th window

ending time of the i'th window

start of actual scheduled time within i'th window
end of actual scheduled time within i'th window
actual time required by i'th activity

number of units of j'th resource class

number of units required of attribute group Ai'
activity

resource unit or resource class

i

CHAPTER 1
INTRODUCTION

A schedule can be defined as a time plan, or a list of times, for
the occurrence of a group of events or procedures. The problems
incurred in creating schedules vary greatly from one application to
another; however, there is one common characteristic inherent in all
scheduling problems, the need to make decisions. This decision making
requirement usually érises due to some limitations of time or resources.
Often a choice must be made between two or more possible schedules as
to which schedule is, in some sense, optimal.

Van Doren (1) has observed that scheduling problems take on the
characteristics of a three dimensional constrained search. The three
dimensions are activities, resources, and time. The following exam-
ples, taken from industrial scheduling and space flight scheduling,
illustrate the three dimensional nature of these problems.

Muth and Thompson (2) have defined industrial scheduling as a
problem of making decisions on how to use each manufacturing facility
at each instant of time, taking into account such considerations as
availability of resources, cost of implementing decisions, due dates,
and so forth. They have identified three major classes of industrial
scheduling problems. In the first of these, the job-shop problem, a
firm contains one or more work centers, and each unit of product

manufactured must pass through each work center at some stage of the

manufacturing process. The production of each unit is an activity, and
the work centers, composed of machines and workers, are resources. The
goal of a job shop schedule might be to meet a production deadline
(time), or to minimize the total time required to complete all jobs.

A typical constraint might be that a work center can operate on, at
most, one product at any instant of time. A second class of problems
arises when a firm keeps an inventory of goods and must decide periodi-
cally when and how many goods to manufacture. In making these deci-
sions, the firm must take into account constraints on the availability
of resources such as raw material, labor, and capital. A third class
of problems, single project scheduling, arises when a project con-
sisting of several distinct tasks (activities) must be completed by a
certain due date (time constraint). In addition to constraints imposed
by resource limitations, constraints may arise due to requirements that
some tasks be performed either before or after others.

Another example which illustrates the three dimensional nature of
the problem can be found in the scheduling problems associated with
NASA's space shuttle program (1). Activities to be scheduled include
shuttle flights, maintenance of orbiters, and deliveries of payloads
to a given orbit. Resources to be scheduled include orbiters, solid
rocket boosters, flight crews, etc. The time dimension may involve
several windows of time, that is, intervals of time during which an
activity must take place.

In many cases, more than one solution can be found for a particu-
lar scheduling problem. In such cases it may be desirable to find all
feasible solutions and choose from among the feasible solutions one

" solution which is optimal. The problem, then, may be compared to

linear programming problems in which it is desired to maximize or
minimize an objective function subject to various constraints.

Because of the great variety of scheduling problems, it is highly
unlikely that a computer program could be developed that would be
general enough to handle all types of scheduling problems. Indeed,
most programs that have been written are designed to solve one particu-
lar problem. However, programs can be developed with enough generality
so that certain classes of problems with common characteristics and
requirements could be solved. The subject of this report is the
development of a computer program to solve scheduling problems of one
particular class.

In the class of problems investigated in this report, an activity
is a non-recurring event that extends over a continuous time interval
and requires the use of one or more resources. A resource class is a
collection of one or more identical resource units. A window of time
is a time interval during which an activity must be scheduled. There
are m activities to be scheduled and n classes of resource units to be
allocated. For simplicity, the restriction is made that an activity
may require at most one unit of each resource class. Associated with
each activity are one or more windows of time, and a duration time
which is the total time necessary to complete an activity. The problem
is to find an actual starting and ending time for each activity such
that each activity is scheduled within one of the windows of time
associated with that activity, and that each resource unit is assigned
to at most one activity at any one instant of time. In an extension
of this problem, one or more attributes are associated with each

resource class, thus forming attribute groups. FEach attribute group

consists of one or more resource classes and each resource class may
belong to one or more attribute groups. Activity requirements are
stated in terms of attribute groups rather than resource classes, that
is to say, each activity requires exactly one unit of one or more
attribute groups.

Previous work in this field includes investigations of problems
of a similar nature. Bratley, et. al. (3), have investigated the
problem of scheduling n tasks on a single resource. FEach task has a
specified earliest start time, latest completion time and number of
time units required. They have developed an algorithm to find a
schedule which minimizes the total elapsed time to complete all jobs.
The approach they have taken is to consider all possible orderings of
n tasks on a single resource. Davis and Heidorn (4) have investigated
the problem of scheduling multiple projects requiring multiple resources,
using techniques originally developed to solve line balancing problems.
Their goal also was to minimize project duration. In each of the
investigations attempts were made to force a discrete resolution on the
time dimension. For example, Davis and Heidorn (4) consider a task
requiring n units of time as n separate tasks each of which requires
one unit of time. However, as Van Doren (1) has pointed out, it may be
highly desirable to treat the time dimension as a continuum. One reason
for this is that a discrete time resolution may lead to methods of
scheduling in which each unit of time is examined, which would magnify
the combinatorial complexity of the problem. Another reason is that,
in some problems, the times required and the windows of time for dif-
ferent activities would vary greatly in magnitude. In such cases it

would be difficult to decide on the proper size of a time unit.

It should be emphasized that the major goal of this investigation
has been the examination of methods used in searching for a schedule.
Therefore, the goal that has been adopted is the determination of
whether a schedule exists rather than the detection of a schedule that
is optimal. When appropriate, however, various criteria of optimality
will be mentioned, along with suggestions to achieve these criteria.

The search methods used to find a schedule are based on the con-
cepts of decision trees and backtrack programming as presented by
Golomb and Baumert (5). These concepts are outlined in Chapter II.

It was decided that the investigation should proceed in a stepwise
manner, beginning with the solution of some simple problems and then
progressing in successive steps of enlargement and refinement in solving
more complex problems, until the class of problems discussed earlier
could .be attacked in its full generality. Thus, the first step in the
investigation was the application of decision trees and backtrack pro-
gramming to the solution of a fairly well-known problem, the eight
queens problem of chess. The reasons for this step are that the pro-
blem is well defined and that it has certain similarities to the
scheduling problems investigated in this report. Two programs which
are described in Chapter II, were written to solve the eight queens
problem. Chapter III describes a program written to solve a fairly
simple scheduling problem, namely scheduling a single resource unit.
Chapter IV describes an enlargement of this program to schedule a
single class of resource units. Chapters V and VI describe a program
to solve a more complex problem, namely scheduling multiple classes of

resource units, and, finally, Chapter VII describes the ultimate goal

of the investigation, scheduling multiple resource classes, where
selection is based on attribute groups. Suggestions for further work

are outlined in Chapter VIII.

CHAPTER II
THE EIGHT QUEENS PROBLEM

To gain insight into possible search techniques which would be
useful in a scheduling program, it was decided to begin the investi-
gation by writing two programs to find solutions to the eight queens
chessboard problem. The problem is to place eight queens on a chess-
board in such a way that no queen may be attacked by another queen. A
queen is safe from attack if no other queen is positioned on the same
row, the same column or the same diagonal. Solutions to this problem
are well known. A generalization of the problem is to place n queens
on an n X n chessboard. Figure 1 shows one solution to the eight

queens problem and one solution to the four queens problem.

Q

Eight Queens Four Queens
Figure 1. Solutions to Eight Queens and Four
Queens Problems.
A partial analogy can be drawn between the eight queens problem
and the problem of scheduling a single resource unit. Consider the

entire chessboard as a unit of resource, the rows of the chessboard

as periods of time, and the columns of the chessboard as activities,
each of which requires exactly one period of time. In this analogy
the three dimensional view reduces to two dimensions because there is
only one resource unit. There are three constraints on the problem two
of which have a direct analogy with a realistic scheduling problem.
The constraint that not more than one queen may occupy a particular row
is analogous to the restriction that the resource unit may be allocated
to only one activity during a given time period. The restriction that
not more than one queen may occupy a column corresponds to the fact
that each activity requires the resource during exactly one time period.
The third constraint of course concerns avoiding diagonal placement.

A brute force approach to the problem would be to examine each
combination of eight squares on a 64 square chessboard. There are
(if) or 4,426,165,368 combinations to be examined. However, it can
be observed immediately that each column must be occupied by exactly
one gueen. The problem then reduces to a search of each column for a
possible square to be occupied. The squares must be chosen so that
no two queens occupy the same row or the same diagonal. The problem
can be represented.by a tree structure in which each level of the tree
corresponds to a column and each node corresponds to a square within
that column. The root of the tree is a dummy node and is considered
to be at level zero. Figure 2 shows the tree structure corresponding
to the four queens problem. Each path from the root of the tree to a
leaf corresponds to a choice of one square for every column; for
example, the leftmost path of the tree corresponds to the placement

of a queen in the first square of each column.

6
W\
N
—
[\S]
&
N
=
N

3 412 %3 4 1 2 3 41 2 3 4

2 3 41 2 3 4 Figure 2. Tree Structure Corresponding to Four Queens Problem.

10

There are 256 leaves in the tree; therefore, one might suppose
that there are 256 alternatives to be examined. However, a closer
examination of the tree structured nature of the problem reveals that
the number of alternatives to be examined can be reduced. Consider
again the left-most path of the tree. Traversing fhe:arc from the root
of the tree to its left-most son corresponds to placing a queen on the
first square of column one. Traversing the arc from this node té its
left-most son corresponds to placing a queen on the first square of
column two. Since no solution to the problem can containbtwo queens
in the same row, a conflict condition (constraint violation) exists.
Furthermore, it is not necessary to examine any nodes beneath the left-
most node at level two; in effect, the tree may be pruned at this node.

Whenever a conflict condition is detected, the'right brother of
the current node is examined, that is to say, an attempt is made to
place a queen on the next square of the column currently being examined.
Placing a queen on the second square of column two would also result in
a conflict condition since two queens would occupy the same diagonal.
However, placing a queen in the third square of column two would cause
no conflict. ' When the examination of a node does not result in a con-
flict condition, the sons of that node are examined, that is to say,
an examination of column three is begun by‘attempting to place a queen
on square one of column three. It turns out that, in the four queens
problem with queens placed in column one, square one, and column two,
square three, placing a queen anywhere in column fhree will cause a
conflict condition. When all alternatives at a given level result in
a conflict condition, then the decision process backtracks one level;

in this case it returns to column two and examines the next alternative,

11

namely, placing a queen on square number four of column two. The first
nine board configurations to be examined are shown in Figure 3.

When a leaf of the tree is examined and no conflict condition is
detected, then the path from the root of the tree to the leaf corres-
ponds to a solution. If only one solution to the problem is desired,
then the solution can be reported and the procedure terminated at this
point. If all solutions are desired, then the solution can be reported
and the search continued by examining the next leaf. If no solﬁ£ion
exists, or if the attempt ié made to find all solutions, the search
terminates after the right-most node of level one (and all of its sons)
have been examined.

The method of tree searching described by the example in the pre-
ceding paragraphs is known as a depth-first tree search. It should be
noted that no explicit data structure corresponding to a tree need be
constructed. The tree structure is inherent in the .decision making
process.

Another method of traversing decision trees is the breadth-first
approach. With this method, all nodes of a given level are examined
in one step, thus producing the effect of traversing all paths of the
tree in parallel. An actual tree structure is constructed so that
parallel processing of decision paths can be simulated. One method of
construction is to use a binary tree to.represent the decision tree
under consideration (6). Each node of the binary tree has the repre-
sentation shown in Figure 4. The left link of each node points to the
left son of that node, and the right link of each node points to the

brother on the immediate right if one exists, otherwise, the right link

12

(1) (2) (3)
Q Q Q Q
Q
(4) : (5) (6)
Q Q Q Q
Q
Q Q Q
(7) (8) (9)
Q Q Q
Ql Q Q
Q Q

Figure 3. First Nine Board Configurations to be Examined
in Four Queens Problem.

13

is used as a thread and points to the father. An example of a tree and

its binary representation is shown in Figure 5.

Left Link Information Right Link

Figure 4. One Node of a Binary Tree.

AlE[——>A[F o YAl GIT™A] B][FAl I]

Figure 5. A Tree and Its Binary Representation.

A linked list of available storage is required, along with routines
to allocate nodes from the available list and to return nodes which are
no longer needed to the available list. The tree is constructed as a
binary tree. Processing a level of the tree consists of examining each
node of the previous level and for each node of the previous level,
determining which alternatives at the current level do not cause a

conflict condition. All conflict free alternatives are attached as

14

sons of the node being examined. If no conflict free alternatives are
found, then the node being examined may be removed from the tree and
returned to the available list. If a node is pruned whiéh has no
brothers, then the father of the node may also bevpruned. Figure 6
shows the binary tree associated with the four queens problem after two
levels have been processed. The two levels of the tree beneath the
root node correspond to the first two columns of the chessboard. The
number in the information field of each node denotes a square (row),
within the specified column, upon which a queen may be placed. Thus
the left-most path of the tree corresponds to the placement of queens
on the first square of column one and on the third square of column
two. Notice that the tree of Figure 3 contains sixteen nodes at level
two whereas the tree of Figure 6 contains only six nodes. The reason
for this is that, in processing the second level, only those alterna-
tives that do not produce a conflict condition are attached to nodes in
the first level, whereas the tree of Figure 3 shows all possible alter-
natives, including those that produce a conflict condition. After all
levels have been processed, the tree is either empty, in which case no

solution exists, or it contains a path corresponding to each solution.

>~ | 3 | 14

Al3] ——»A[a]~ Al4] Al1] (A1 [J»fAT2TA

Figure 6. Binary Tree Associated with Four Queens Problem After Two
Levels Have Been Processed. Since the root node is a
dummy node, its information field is blank.

15

Two programs were written to find all solutions to the eight
queens problem, one using the breadth-first approach,‘and the other
using the depth-first approach. Both programs were written in Fortran
IV for the IBM System 360 Model 65. Because of the combined effects
of a low resolution timer and a multitasking environment, it was
impossible to obtain accurate measurement of execution time; however,
the execution times appear to be about the same for both methods, a
surprising result when one considers the added overhead of storage
management in the breadth-first approach. A major advantage of the
depth-first approach is greater simplicity in programming, so it was
decided to use this approach in investigation of the scheduling problem.
A noteworthy advantage of the breadth-first approach is that, at the
end of the procedure, all solutions are stored in a convenient struc-
ture, namely, the resultant binary tree. Also, the use of heuristic
techniques qf artificial intelligence in searching decision trees,
which is suggésted in Chapter VIII, may require a breadth-first
traversal (7, 8).

For an excellent generalization of the concepts of decision

trees and backtrack programming, see Golomb and Baumert (5).

CHAPTER III
SCHEDULING A SINGLE RESOURCE

The first scheduling problem to be investigated was that of
scheduling a single resource unit. There are m activities that require
the use of this resource. Associated with each of thesé activities is
the actual length of time that the activity requiresruse of the re-
source, and one or more windows of time, that is, time intervals
specified by a starting and ending time, during which the activity must
be scheduled. The problem is to find a schedule for the resource such
that every activity may use the resource during one of its windows for
the length of time required, and that the resource is used by, at most,
one activity at any instant of time. A sample problem with three

activities 1s shown in Table I.

TABLE T

SAMPLE PROBLEM--SCHEDULING A SINGLE RESOURCE UNIT

Activity Time Required Windows
Xy 1 hour © 1:00-3:00; 6:00-7:00
X5 2 hours 2:00-4:00; 6:00-9:00
x 1 hour 8:00-9:00

17

It was observed in Chapter II that the eight queens problem could
be reduced to the problem of selecting a square from each column such
that no constraints are violated. By analogy, this scheduling problem
can be reduced to selecting one window from the list of windows for
each activity such that no constraints are violated. The determination
of whether constraints‘are violated is somewhat more complex than in
the eight queens problem. Suppose there are n intervals on the real
line, corresponding to one window for each of n activities. These inter-
vals are denoted by [ai, bi] for i =1 to n. Associated with each
interval is some number, denoted by Ai’ which corresponds to the actual
time required by each activi%y. The problem of determining whether
constraints are violated is equivalent to the problem of finding
mutually disjoint subintervals Bﬁj di] such that for i =1 ton

(1) [ci, di]is,a subinterval of [ai, bi]’ and

(2) di - c. :Ai-

The basic approach in determining whether constraints are vio--
iated is to generate permutations of the selected windows, and, for
each permutation generated, attempt to schedule each activity as early
in its window as possible, starting‘with the first window in the permu-
tation. No activity can be scheduled prior to the start time of its
window or prior to the completion of the previous activity. Let
[a'i, b'i] be the i'th window of the permutation currently being
examined.. Then,

(1) ¢! a'

1 1

(2) c', = max (a'i, d'i_l) for i = 2 to n, and

(3) d'i c'i + A'i for i = 1 to n.

If d'i exceeds b'i for any i than the i'th activity cannot be scheduled

18

within its window in the permutation currently being examined. If no
permutation is found for which each activity can be scheduled within
its window, then the choice of windows must be altered. A tree struc-
tured approach is used both in selecting windows and in generating
permutations, as will be seen in the following paragraphs.

A program was written in PL/I for the IBM System 360 Model 65
which finds all combinations of windows (where one window is selected
from the list of windows associated with each activity) for which a
schedule exists. For each such combination, the program reports one
possible schedule. In the same problem of Table I, there are four
combinations of windows. .Schedules exist for three of these combina-
tions. A schedule for each of these three combinations is shown in
Table II.

As stated previously, only one schedule per combination of windows
is reported. Of course, there may be many schedulesrfor each combina-
tion: (1) There may be more than one permutation of mutually disjoint
subintefvals; (2) if the time domain is considered to be a continuum,
and if a subinterval, [c‘i, d'i], has the properties that d'i < b'i
and d'i { C'i+1’ then an infinite number of schedules exist. Consider,
for example, activity X in the second schedule of Table Il. This
activity may be scheduled for 1:00-2:00, 1:01-2:01, 1:05-2:05, 1:15-
2:15, and so forth. Even if a small finite resolution were imposed on
the time domain, it would be combinatorially infeasible in most éases
to examine and report all solutions. Therefore, the scope of the pro-
blem is limited to finding a sequence in which the activities can be
scheduled, and finding a time interval in which each activity can be

scheduled within that sequence.

19

TABLE II

THREE SCHEDULES FOR THE SAMPLE
PROBLEM OF TABLE I

Activity Window Scheduled Time
Schedule 1
X3 1:00-3:00 1:00-2:00
X, 2:00-4:00 2:00-4:00
Xz 8:00-9:00 8:00-9:00
Schedule 2
X 1:00-3:00 1:00-2:00
X, 6:00-9:00 6:00—8:00
X 8:00-9:00 8:00-9:00
Schedule 3
X, 2:00-4:00 2:00-4:00
Xy 6:00-7:00 6:00-7:00
Xz 8:00~-9:00 8:00-9:00

The program contains an array of structures in which each structure
corresponds to an activity. The information included in each structure
includes the name of the activity, the actual time required, and the
start and end time of each window associated with that activity.

Figure 7 shows the array of structures corrésponding to the sample
problem of Table I. (The number of activities to be scheduled as well
as the maximum number of windows per activity are input parameters
which are used in allocating storage for this array.) This array is

searched in a tree structured fashion using the depth-first approach

20

X3 1 1 3 6 7
X, 2 2 4 6 9
Xz 1 8 91 0[O

Figure 7. Internal Array of Structures
Corresponding to the Sample
Problem of Table I.

described in Chapter II. Each leyel of the tree corresponds to an
activity and each node within a level corresponds to a window asso-
ciated with that activity. As each node is visited, a pointer to the
associated activity and window is placed on a pushdown stack, and a
subprogram, CONFL1, is called to determine whether a schedule exists
for the nodes (windows) on the stack. (Henceforth, the terms window
and activity will be used interchangeably to denote items on the stack.)
If a conflict condition is detected (that is, if no schedule can be
found for the windows on the stack), then the search proceeds to the
next window for the current activity, or, if all windows for the current
activity have been examined, the search bécktracks one level to the
previous activity. If no conflict condition is detected, the search
advances to the next level starting at the first window on that level,
or, if all levels have been examined, reports that a solution has been
found and advénces to the next window of the current activity.

This tree structured search may be summarized as follows:

(1) Set level = 1.

(2) Set node = 1.

(3) Push node onto stack and call CONFL1-

21

(4) Has a conflict condition been detected? If so, go to
step 7.

(5) Is this the last level? If so, a schedule has been found.
Report the solution and go to step 7. Otherwise, continue.

(6) Add 1 to level. Go to step 2.

(7) Is this the last node at this level? If so, go to step 9.

(8) Pop node from stack. Add 1 to node. Go to step 3.

(9) If level = 1, then stop. Otherwise, subtract 1 from level,

pop node from stack, and go to step 7.

CONFL1 is a subprogram whose calling parameter is the pushdown
stack generated during the search of the window tree. This routine
genera£es permutations of the items in the stack in lexicographical
order, starting with the order in which the items appear in the stack.
For each permutation generated, a call is made to another subprogram,
CONFL2, which determines whether the activities can be scheduled in
the order represented by the current permutation. If a permutation is
found for‘which a schedule exists, then CONFL1 immediately returns con-
trol to the main program reporting a '"no conflict" condition. If all
permutations have been generated and no permutation has been found for
which. a schedule exists, then-a conflict condition is returned to the
main program.

Permutations are generated and examined in a manner corresponding
to a depth-first, left to right tree search. For example, permutations
of the numbers 1, 2, 3, and 4 may be represented by the tree shown in
Figure 8, The leaves of this tree are, from left to right, all the
permutations of the numbers 1, 2, 3, and 4 in lexicographical order.

Permutations are generated one element at a time and calls are made to

.22

2 3 4
2 13 14 1 23 24
1 3 4 4 4 4
=Yy ==}~ [~~~ Dl (ol DL
\ER B (VI RO B ROV IR BTN BTN SR Bl IO B K5 T e
[¢)] I PR DA (SN I R B S\
LI
el el et e " T - R "R (S v
[RS S T A T O RN T NG
WA H» N 2D A i L. |
[R [\ I SN B NI A | N e

IF'igure 8. Permutation Tree.

CONFL2 to check the partial permutations being formed. If the activi-
ties represented in the partial permutation cannot be scheduled in the
order specified by the permutation, then examination of the corres-
ponding full permutations is precluded. TFor example, suppose four
windows, denoted by Wi Wy, Wo and w, appear on the stack. The first
call to CONFL2 is made with the partial permutation Wiy Woe If it is
found that the activities associated with Wy and W, cannot be scheduled
in the specified order, then it is not necessary to examine either of
the permutations Wiy Woy Way W, and Wiy Woy Wy, and W Although
well-known algorithms exist for generating permutations in lexico-
graphical order (9, 10, 11), no algorithms which would allow this
preclusion capability were readily available. More will be said in
Chapter VI regarding permutations.

CONFL2 is a subprogram whose calling argument is the current

partial or complete permutation generated in CONFL1. This routine

23

attempts to build a table of actual starting and ending times for the
activities represented in the permutation, scheduling each activity as
early in its window as possible. The starting and ending times in this
table correspond to the mutually disjoint subintervals, denoted by

[ci, di

, referred to earlier in this chapter. An example may be found

in Table III.

TABLE III

SAMPLE TABLE OF ACTUAL STARTING AND ENDING TIMES

Window . Time Required Actual Time
Activity (ai, bi) (Ai) ' (ci, di)
1 1-3 2 1-3
2 2-5 1 3~-4
3 5-8 2 5-7
4 6-8 1 7-8

Although the program is not concerned with finding an optimal
schedule, it may be enlightening at this point to consider possible
criteria of optimality. Two possible goals would be to finish utili-
zation of the resource at the earliest time possible or to begin
utilization at the latest time possible. Other goals ﬁight be a "most
dense" solution, in which the time from the start of the first activity
to the end of the last activity is minimized, or a '"most distributed"
solution which is imprecisely defined but which will in some sense
impose a uniform distribution of activity assignments over a period of
time. Another way of describing a '"most distributed" goal is that in
which the total idle time for the resource is distributed evenly among

the time intervals between activity assignments.

24

Once a goal has been chosen, one might ask whether it is possible
to find an optimal schedule without examining all possible schedules.
For example, suppose the goal is to find the "earliest schedule'", that
is, a schedule in which utilization of activities is completed as early
as possible. One might suppose that by ordering the windows by
increasing order of window start time, the first schedule found might
be the earliest schedule, or might, at least, have some sort of
"earliest" attribute. This question gives rise to the general question
of ordering the windows in such a way that the optimal solution will be
found as quickly as possible.

Another question that might be raised is whether the windows can
be ordered in such a way that a schedule (not necessarily optimal) can
be found as quickly as possible. Two possibilities for such an ordering
are by increasing order of window start time or by decreasing order of
time constraint, that is, by increasing order of bi -a; - Ai' These
questions will not be investigated any further in this report, but
hopefully, they will provide the source for future investigations.

The remaining programs described in this report all have the same
general structure as this one; that is to say, each program consists of
a main program which traverses a decision tree of activities and win-
dows, a subprogram named CONFL1 which generates permutations of activi-
ties, and a subprogram named CONFL2 which attempts to schedule the

activities in the order specified by the permutation.

CHAPTER IV
SCHEDULING A SINGLE CLASS OF RESOURCES

The next problem investigated was that of scheduling a single
resource class. A resource class consists of ¢ O identical resource
units. The resource units are identical in the sense that a request
made for a unit of the specified class may be satisfied by any of the
units within the class. Each activity to be scheduled requires exactly
one unit of the resource class. The problem is to schedule each activi-
ty within one Qf its windows for its specified time required, in such a
way that each resource unit is assigned to not more than one activity
at any instant of time. Notice that two activities cannbe scheduled at
the same time if there are two or more units in the class.

One could approach the problem with at least two different goals
in mind. One of these goals is to minimize the number of resource
units actually utilized. This goal would be employed in a problem
where q units could be made available, but where it would be desirable
to schedule all activities with fewer than q resource units. If all
activities can be scheduled during mutually disjoint time intervals,
then only one resource unit is required. Two activities are said to
overlap if their actual scheduled times are not disjoint. For example,
if activity one is scheduled for 4:00 to 7:00 and activity two is
scheduled for 6:00 to 9:00, then activities one and two overlap. If

all activities cannot be scheduled during mutually disjoint time

oR

26

intervals, then the number of units required does not exceed the
maximum number of activities which overlap at any instant of time. In
the schedule shown in Table IV three activities are scheduled during

6:00 to 7:00; therefore, three resource units must be available.

TABLE IV

A SCHEDULE REQUIRING THREE RESOURCE UNITS

Activity Actual Time Scheduled
1 3:00-5:00
2 4:00-6:00
3 5:00-7:00
4 6:00-8:00
5 ' 6:00-9:00

Another goal is to achieve a most uniformly distributed utiliza-
tion among the resource units. This goal would be employed in a situa-
tion where q units would definitely be available and where it would be
desirable to equalize utilization among the q units. It was decided to
use this goal in the current investigation; its implementation will be
described below.

There are two ways of viewing the search process in terms of
decision trees. 1In one view, there are two levels in the tree per
activity; one level contains nodes corresponding to the associated time
windows, and the other level contains nodes corresponding to the re-
source units. Figure 9 shows such a tree for two activities, two
windows per activity, and three resource units. This approach might

be taken if it is desired to examine the effects of allocating

27

Window

Resource | Activity 1

Window Activity
2

Resource

Figure 9. Decision Tree with Two Levels Per Activity.

different resource units to different activities. However, as can be
seen by examining Figure 9, the combinatorial complexity of the problem
proliferates greatly, even for a fairly small problem.

Another view is to have one level in the tree per activity, and
in traversing the tree, allow the conflict checking routines to deter-
mine which resource unit, if any, can be allocated to an activity.

This view can be taken if the resource class is viewed as a pool of
identical fesource units, and if it is immaterial, in terms of schedul-
ing, which unit is allocated to a particular activity. It seems
reasonable to expect that this approach would result in a shorter search
time, especially if the method of unit selection were kept reasonbly
simple.

The program described in Chapter III was modified, incorporating
the second approach to the tree structured decision making process
described above, so that it would handle a single class of resource
units. The number of units available, q, is a required input parameter.
The greatest number of changes were made in the CONFL2 subprogram.
Firstly, the table of actual start and end times was expanded to include
the number of the resource unit allocated. In addition, a pushdown

stack is required for each resource unit, in which the top item

28

indicates the start and end time of the latest allocation of that unit.
Examination of the top item of a stack tells the earliest time that
unit will be available for further allocation. Examples of the expanded

table and corresponding stacks are shown in Table V.

TABLE V

SCHEDULE TABLE AND ASSOCIATED PUSHDOWN STACKS

Table of start and end times and unit allocated

Activity Start End Unit
1 1:00 3:00 1
2 2:00 3:00 2
3 3:00 9:00 3
4 4:00 - 6:00 1
5] 5:00 7:00 2

Associated Pushdown Stacks

Unit #1 Unit #2 Unit #3
1:00-3:00 2:00-5:00 3:00-9:00
4:00-6:00 5:00-7:00

The reason pushdown stacks are required merits some further-
explanation. Recall that permutations are generatéd in a tree struc-
tured manner as described in Chapter III. In general, the use of a
tree structured decision making process requires backtracking capability.
Specifically, suppose there are eight activities to be scheduled, and
Table V represents a schedule for the first five items in the schedule,

that is to say, a choice has been made at level five in the permutation

29

tree. Further suppose that each of the remaining three activities must
begin before 6:0C, which is the earliest time that a resource unit will
be available. No branch can be taken from the current node at level
five; therefore, the next alternative at level five, that is, the next
partial—permutation of five items in lexicographicalgorder, must be
examined. The start and end time in the fifth row of the table must be
removed and the stack corresponding to resource unit two must be popped
to indicate that unit two is no longer allocated for 5:00 to 7:00.

A circular polling mechanism is used in deciding which resource
unit to assign to the next activity in the permutation. Suppose unit
i was the last unit allocated to an activity, and it is desired to
allocate a unit for the next activity in the permutation. The search
for an available unit begins with unit i + 1, proceeds to unit g, then
proceeds from unit 1 to unit i. This is roughly equivalent to main-
faining a first—ih, first-out queue of resource units, where a unit is
returned to the end of the queue when an activity has finished using it.
This circular polling method is used because in most cases a more dis-
tributed allocation can be expected from this method than from a method
which always begins searching at unit 1.

Perhaps the program described here could be modified so that it
could determine the minimum number of resource units required. This

is a question that will be left for future investigation.

CHAPTER V
SCHEDULING MULTIPLE RESOURCE CLASSES

In this chapter we consider the problem of scheduling m activities
on n different resource classes. FEach resource class, Yo contains a4
units. FEach activity may require exactly one unit of one or more
resource classes. Specifications for each activity include actual time
required, windows of time, and a list of resource classes of which a
unit is required. It is assumed that all resources required by an
activity are to be assigned during the same time interval. Specifica-
tions for each resource class include the number of resource units in
the class. A sample problem is shown in Table VI,

Extending the scope of the problem from ene resource class to n
resource classes increases the combinatorial complexity of the problem
in terms of the number of alternatives to be examined. One way to
reduce this complexity is to identify subsets of activities in such a
way that each subset may be scheduled independently of the other sub-
sets. If there are 10 activities to be scheduled with two windows per
activity, the number of leaves in the decision tree corresponding to
the activities and their windows (which will henceforth be referred to
as the window tree) is 210 or 1024. However, if two subsets of five
activities each could be identified, the search could be reduced to two

window trees each of which contains 25 or 32 leaves.

7N

31

TABLE VI

SAMPLE PROBLEM FOR MULTIPLE RESOURCE SCHEDULING

Resource Class ' Number of Units
¥y 2
Yo 1
Yz S
Yy 8
s 6
Ye 3
Activity Time Required Windows Resource Classes
X, 2 7-9; 10-12 Yy Yo
X, 1 1-2; 5-6 Yor Y3
X< 1 3-4 Yaq
X, 2 2-5 Y6
x5 3 1-7 y3, y5
Xg 1 1-3; 9-12 Vg Vg

Consider an undirected graph in which each node corresponds to an
activity and in which an arc from node i to node j indicates that
activities X, and xj share a common réquirement for at least one re-

- source class. A graph for the sample problem of Table VI is shown in
Figure 10. Each connected component of such a graph identifies a sub-
set of activities which must be scheduled interdependently. In this

sample problem activities X195 X5 and x_. collectively require units

5

from resource classes Yir Yoo Yz and Ys: and activities xs, Xy

32

Figure 10. Graph Showing Common Resource
Requirements Among Activities.
and Xg collectively require units from resource classes Ya and Yo

x, and x. can be scheduled independently of

Evidently, activities x 5 5

].,

x, and x_, because allocation of resource units to x

activities x3, 4 6 1?

X5 and Xz would have no effect on the availability of resource units

and x_..

for X2y Xy 6

The connected components of the graph described above are identi-
fied as follows. The adjacency matrix is constructed, then an algorithm
by Warshall (12) is employed to construct the path matrix. A distinct
row value of the path matrix defines a connected component of the graph,
and therefore, a .subset of activities. Figure 11 shows the adjacency
and path matrices for the graph in Figure 10. There are two distinct
row values in the ﬁath matrix.

The program described in Chapter IV actually assigns individual
resource units to activities. In contrast, the approach taken here is
to determine the number of units of each resource class that are re-
quired at any instant of time and to determine whether each resource
class has enough units to meet those requirements. 1In order to reduce
the combinatorial complexity of the problem, it was decided not to make

assignments of individual units.

33

2 1 2 5 6
1(lo|1]o0 111 (11{0 110
210|010 1]O0 2|1 1]J]0}0 |10
3i0 {000} 0]1 310 10111101
4010 |0 |O0O]O|1 410 |0 |1 1 [0 [1
5011 (0j0|O0]O0 5|1 1] 0j0]1]0O0
6/{0 0|1 110]O0 610 10| 1}1 (011

Adjacency Matrix Path Matrix

Figure 11. Adjacency and Path Matrices for Graph in Figure 10.

In this program, the CONFL2 subprogram still attempts to schedule
each activity as early in its window as possible. There is a table of
start and end times for the activities scheduled; also for each resource
class there is a corresponding table of start and end times for the
activities requiring units of that resource class. In scheduling activ-

ities Xy X5, and x these tables might appear as in Table VII. When

5?
attempting to schedule the next activity in the permutation tree, the
table correspon&ing to each resource class required by the next activity
is examined to determine the earliest time (greater than or equal to the
window start time) that a unit of that resource will become available.
This is done by counting the number of activities whose scheduled times
overlap the proposed scheduled time of the current activity, and com-
paring that count against the number of units in the resource class. A
previously scheduled activity is presumed to overlap the activity cur-
rently being écheduled if the ending time of thé previously scheduled

activity exceeds the window start time of the current activity. This

is a rather restrictivd®presumption which may result in no schedule

34

being found when a schedule actually exists. A better method of

counting overlapping activities will be presented in Chapter VII.

TABLE VII

TABLES OF START AND END TIMES FOR
EACH RESOURCE CLASS

All ¥y Yo Y3 Y5
7-9 7-9 7-9 1-2 2-5
1-2 1-2 2-5

2-5

After the earliest available time for each resource class has
been determined, the latest of these times is taken to be the actual
starting time of the activity being scheduled. The actual time re-
quired is added to the starting time to give the actual ending time.

If the actual ending time exceeds the window end time, then the activity
cannot be scheduled within its window.

A schedule produced by this program shows, for each resource class,
the exact times that resource units are to be assigned to activities.
Furthermore, the approach taken guarantees that the assignments can be
made. Once a schedule has been produced, a circular polling mechanism,
similar to the one described in Chapter IV, could be employed to make

assignments of individual units.

CHAPTER VI
EFFICIENCY IN GENERATING AND EXAMINING PERMUTATIONS

During the course of testing the program described in Chapter V,
it became evident that increased speed in generating and examining
permutations of activities was necessary. The present chapter is con-
cerned with possible improvements in that direction, and describes the
improvements that were actually implemented.

Whenever a new node in the window tree is visited, a pointer to
that activity and window is placed on a stack, and a call is made to
CONFL1 in an attempt to find a schedule for all activities which have
pointers on the stack. CONFL1 generates permutations of the pointers
on the stack and, for each permutation generated, calls CONFLZ2, which
attempts to schedule the activities in the order specified by the per-
mutation. These permutations are generated in a depth-first tree
searching manner; one may speak of traversing a tree of permutations.

The permutations are generated in lexicographical order. Knuth
(6) shows two other methods of generating permutations; however, one
advantage of lexicographical ordering is that informétion gained in
scheduling the previous permutation can be used in scheduling the cur-
rent permutation. If the current permutation consists of n elements,
then it can be assumed that a schedule has already been found for the
first n - 1 elements in the permutation. For example, consider a call

to CONFL2 made with a partial permutation 31425. Due to the nature of

36

depth-first tree traversal, it can be assumed that the activities
corresponding to the partial permutation 3142 have already been
scheduled; furthermore, the schedule for 3142 is retained in CONFL2,

so all that is necessary is to schedule the activity corresponding to 5.

When a new node in the window tree is examined, the entire process
of generating permutations is repeated from the beginning. The ques-
tion to be examined is how can information gained from the previous
call to CONFL1 be retained, and how can this information be used to
hasten the current permutation check. It would be desirable to elimi-
nate some permutations from consideration based on the fact that similar
permutations failed to produce a schedule in a previous call to CONFLZ2.

Consider one possible example. Suppose four activities are repre-
"sented in the stack and a fifth activity is being added. Of the four
activities, originally in the stack, suppose that the first permuta-
tion, in iexicographical ofder, that produced a schedule was 3142.
Considering permutations of five activities, it is evident that 12345
will not produce a schedule, because if 12345 were to produce a schedule,
then 1234 would have produced a schedule for four activities. Indeed,
the first permutation that need be considered is 31425. Also, permuta-
tions such as 31524, 51234, 52431 can be removed from consideration for
reasons explained below.

As another possibility, suppose there are two activities repre-
sented in the stack, and the permutation 1,2 does not produce a schedule
but the permutation 2,1 does. It is evident that 2 must precede 1 in
any permutation that contains both 1 and 2. It might be desirable to
find all pairs of activities in which one activity must precede the

other before beginning to generate permutations. Perhaps this idea

37

could be generalized, and necessary ordering relationships among
triplets, quadruplets, and so forth, could be found. This would
correspond to a breadfh—first search of the first few levels of the
permutation tree, coupled with a depth-first search of the remainder
of the tree.

Two changes were made to the program described in Chapter V with
respect to generating and checking permutations. Firstly, corres-
ponding to each level in the window tree, a record is kept of the
permutation that produced a schedule at that level. When a node at
level i in the window tree is visited, permutations are generated
beginning with the permutation stored for level i - 1. Secondly, each
new permutation generated at level i in the window tree is compared to
the permutation stored for level i - 1 to detect violations of lexiéal
ordering. For example, suppose 3142 is the permutation stored for
level four, and while processing level five in the window tree, the
permutation 31524 is generated. Since 3124 precedes 3142 in lexico-
graphical ordering, the permutation 3124 cannot produce a schgdule
because if 3124 could produce a ‘schedule, then 3124 would have been
stored for level four. Since 3124 cannot produce a schedule, then 31524
cannot produce a schedule either. This can be proved as follows.
Suppose a schedule is found for 31524, which would mean that the
activities could be scheduled in the order specified by the permutation
31524, If one of these activities, say activity 5, is eliminated, the
remaining four activities could still be scheduled in the specified
order. However, it is known that the permutation 3124 did not produce
a schedule. Therefore, it can be concluded that 31524 cannot produce a

schedule; hence 31524 can be eliminated from consideration.

Further possibilities for improvement, such as recognition of
problem decomposition at various levels in the permutation tree, are

pointed out by Bratley, et. al. (3).

38

CHAPTER VII
SELECTING RESOURCES BASED ON ATTRIBUTES

The program described in this chapter extends the flexibility of
resource class selection and requirement specification by allowing
attributes to be specified for eaéh resource class, thus associating
each resource class with one or more attribute groups, and allowing
resource requirements to be specified in terms of attribute groups
rather than specific resource classes. When an activity requires a
resource unit of a specific attribute group, that unit may be selected
from any resource class which is a member of the specified attribute
group. A resource unit may service at most one requirement at any one
time, but it may service requirements for different attribute groups at
different times. The ability to service requirements for different
attribute groups at different times has been restricted in the present
implementation for reasons expléined below.

As an example, suppose there are seven resource classes, denoted
by yj for j =1 to 7, and three attribute groups, denoted by Al, A2,
and A3. In an airline scheduling problem, for example, there might be
seven different kinds of aircraft used by the airline. Attribute group
Al might consist of all aircraft with seating capacity greater than
120, attribute group A2 might consist of all jet powered aircraft, and
attribute group A3 might consist of all aircraft that can land on a

5,000 foot runway. Figure 12 shows a possible association between

~n

40

resource classes and attribute groups. A request for a unit of group
A2, for example, could be satisfied by a unit of one of the resource
classes Yor Y59 Y50 Yoo Units in class y, may satisfy requests for

group Al whereas units of class Y, may satisfy requests for either A

1
or A3.

Resource Classes
)
o
o
RS X X X
g
3 A, X X X X
5
el X | X X
-

Figure 12, Association Between Resource Classes
and Attribute Groups.

Subsets of activities that can be scheduled independently can be
determined by‘the same graph theoretic method as was used in the pro-
gram described in Chapter VI. In this case an arc is drawn between two
nodes if the activities corresponding to the two nodes share at least
one common attribute group requirement.

Let qj be the number of units of class yj and R(Ai) be the number
of units of group Ai required at some instant of time. It is desired
to determine whether there exists an assignment of resource units which
satisfies the following conditions:

(1) The number of units assigned to satisfy the requirements of

each group, A, is R(Ai).

(2) The number of units assigned from each class ¥y does not

exceed qj.

(3) A resource unit which is a member of class Y is assigned

to group Ai only if yj is a member of Ai' (A unit is

41

assigned to group Ai if that unit is assigned to an
activity which requires a unit of group Ai')

This problem is a special case of the transportation problem of
linear programming (13). In the transportation problem there are a
specified number of suppliers, each of which can supply a specified
number of units, and a specified number of customers, each of which
must receive a specified number of units. Also there is a known cost
of shipping a single unit from supplier i to customer j. The problem
is to minimize the total shipping cost subject to the constraint that
all customer demands be met.

To apply the transportation model to the resource assignment
problem, one would consider the resource classes as suppliers and the
attribute groups as customers. The cost of assigning a unit of re-
source class yj to satisfy a requirement for Ai is zero if resource
class yj is a member of attribute group Ai and is one otherwise. The
analogy between the general transportation problem and the resource
assignment problem is shown in Table VIII. Bayer's transportation
algorithm (14) is used to find an assignment that minimizes the total
cost. The assignment can be made only if the minimized total cost is
zero.

The next problem to be considered is the determination of require-
ments for each attribute group during a given time interval, and the
use of the transportation algorithm in the CONFL2 subprogram to deter-
mine wﬁether the next activity can be scheduled. Suppose a call is
made to CONFL2 with n activities in the permutation. As explained in
Chapter VI, the first n -~ 1 activities have been scheduled so that the

task at hand is to schedule the n'th activity. The scheduled start and

42

TABLE VIII

ANALOGY BETWEEN GENERAL TRANSPORTATION PROBLEM
AND RESOURCE ASSIGNMENT PROBLEM

Transportation Problem Resource Assignment

Problem
Suppliers Resource Classes
Customers Attribute Groups
Shipping Cost "Cost" is O or 1

end times for the first n - 1 activities have been retained in the

tables described in Chapter V. Let to and tl be the proposed start

and end times for activity n. Initially let t, be equal to the window

0

start time for activity n. Then proceed as follows:

(1) Compute t. by adding the actual time required by activity n

1

to to.

(2) Compute the number of units of each attribute group required

by the n activities during the time interval bounded by to

and t A procedure used for this computation is described

1
below.
(3) Invoke the transportation algorithm. If the minimized total
cost is zero, then the attribute requirements can be satis-

fied during the time interval bounded by t . and tl’ and to

0
and tl are entered as the scheduled start and end times for
activity n.

(4) If the minimized cost is greater than zero, then set t, equal

to the earliest time that any attribute requirement may

decrease. The earliest time any attribute requirement may

43

decrease is the earliest scheduled ending time of the first
n - 1 activities. Recompute tl’ and if tl does not exceed
the window end time, then return to step 2. Otherwise,
report that activity n cannot be scheduled.

In the program described in Chapter V, a table was kept for each
resource class, which contained scheduled start and end times of activi-
ties requiring units of that resource class. In this program, such a
table is kept for each attribute group. It was noted in Chapter V that
the method used for counting the number of overlapping activities was
unduly restrictive. Suppose for example, the scheduled time for

activity x, was 4:00 to 6:00, and the scheduled time for activity x

1 2

was 6:00 to 8:00, If the proposed scheduled time for activity Xz was
5:00 to 7:00, the method used in the previous program would count two
overlapping activities and conclude that three units were required,
when it is clear that only two units are required. A more accurate
method of determining the number of units of an attribﬁte group re-

quired during a specified time interval is used in this program. For

any attribute group, let k be the number of units required during the

time interval bounded by to and tl’ and let (cl, dl)’ (c2, d2), cee,
(cn 1 dn l) be the start and end times of those activities already
scheduled which require a unit of that attribute group. Let fl, f2,

seey T 1 be flags associated with each scheduled activity. Each flag
n—

will indicate whether the scheduled time of its corresponding activity
overlaps the time interval bounded by tO and tl. The value of k is

computed as follows:

(1) Set k equal to zero. Set f. equal to zero for all i.

44

(2) Order the Cis di pairs in increasing order of c; Choose

a value for j such that c._

15t

o < cj'
(3) This step counts the number of overlapping activities that

begin before t.. For k =1 to j -1, if d1 > tO’ then

0
set fi = 1 and add 1 to k.

(4) This step counts the number of overlapping activities that
begin after to. If two activities both overlap the interval
being examined but do not overlap each other, then they may
be counted as one activity. For i = j to n - 1:

If c, { t; then for A=1toi- 1 search for a pair c¢j, dX
where fX = 1 and dX < c; If such a pair is found, set
qX = di. Otherwise Set~fi =1 and add 1 to k.

An example is shown in Table IX. Note that the second and third
activity both overlap the time period 3:00 to 5:00, but since they do
not overlap each other, they may be considered as one activity
scheduled for 2:00 to 6:00.

This method examines whether resource assignments can be made
during sub-intervals of time, without considering whether or not
assignments can be made for the entire period of time under considera-
tion. Diabolical cases may arise in which the assignment can be made
during each sub-interval but not for the entire period of tiﬁe under
consideration. An example of such a case is shown in Table X.

, and x

When the permutation consists of X;y X , the time inter-

2 3

val under consideration is 9:00 to 11:00. The only assignment that

could be made is two units of Yy for Al and one unit of Yo for A2.

When the permutation consists of Xjr Xg1 Xgy Xy, and Xz the time

interval to be considered is 10:00 to 12:00. The only assignment that

TABLE IX

45

COMPUTATION OF THE NUMBER OF UNITS REQUIRED
OF A PARTICULAR ATTRIBUTE GROUP

t. = 3:00

0 tl = 5:00
¢, = 1:00 d1 = 3:00 fl =0
Cy = 2:00 d2 = 4:00 f2 =1
Coy = 4:00 d3 = 6:00 f3 =0
c, = 5:00 d4 = 7:00 f4 =0
=1
TABLE X

A CASE FOR WHICH AN ASSIGNMENT CAN BE MADE FOR
EACH SUBINTERVAL, BUT CANNOT BE MADE FOR

THE ENTIRE PERIOD OF TIME

Activity Window
Xy 8:00-10:00
X, 8:00-10:00
X 9:00-11:00
X, 10:00-12:00
X5 10:00-12:00

Resource Class

Time Required

Y1

Yo

2

2

2

2

2
Attribute

1, 2

2, 3

Attribute
Groups Required

Quantity
2

2

46

could be made is one unit of Yy for A2 and two units of Yo for A3.
Notice that assignments can be made for each subinterval of time but
that one unit cannot be assigned to X continuously from 9:00 to 11:00.
The method described above would report that a schedule exists when in
fact no schedule can be found.

To avoid such situations, we add the restriction that a resource
unit may be assigned to only one attribute group during the entire
period of time under consideration. In the example of Table X, if a
unit of y, were assigned to an activity requiring a unit of A1 from
8:00 to 10:00, then the same unit could be assigned to another activity
requiring a unit of Al after 10:00, but the unit could not be assigned

to satisfy an activity's request for A, even though class Yy is a member

2
of group A2. To implement this restriction, a dummy activity is added
which requires no resources but which must be scheduled for the entire
period of time under consideration. This forces CONFL2 to look for an
assignment that can be made for the entire time period. In the example
of Table X, an attempt to schedule a dummy activity during the time
interval 8:00 to 12:00 would cause CONFL2 to report that no schedule
could be found.

There are cases, however, for which this added restriction would
cause a échedule not to be found when in fact a schedule exists. Sup~
pose two activities request units of attribute group Al; one of the
activities can be scheduled from 8:00 to 10:00 and the other from
10:00 to 12:00. Suppose two resource classes, Yy and ¥, can service

the request, and that a unit of Y1 is available from 8:00 to 10:00 and

a unit of Yo is available from 10:00 to 12:00. Clearly a schedule

47

exists, but the additional restriction described above may result in
a report that no schedule can be found.

It was decided to take the more restrictive approach and use the
dummy activity in the program at the cost of possibly not finding a
schedule when one does exist. The problem of guaranteeing that a
schedule will be found if and only if one does exist apparently

remains unsolved at the time of this writing.

CHAPTER VIII

CONCLUSION AND SUGGESTIONS FOR

FURTHER INVESTIGATION

The primary goal of this investigation has been the application
of tree structured processes to the solution of a certain class of
scheduling problems. This goal has been attained through the develop-
ment of four computer programs. Three of these four programs were
written to solve subclasses of the class of scheduling problems under
consideration, and the fourth program was written to solve the full
class of problems. Except for certain cases which are noted elsewhere
in this report, each of these four programs solves the class or sub-
class of problems for which it was written. Another goal which has
been achieved was the elimination of the need to impose a aiscrete
resolution on the time dimension. This has been done by scheduling
each activity as early in its window as possible.

In addition to the attainment of these'goals, the investigation
resulted in several other significant achievements. One of these is
the use of graph theoretic techniques te identify independent subsets
of activities, as described in Chapter V. Another accomplishment is
the development of an algorithm to count the number of units of an
attribute group required during a subinterval of time. Still another

accomplishment is the application of a solution method for the

49

transportation problem to the problem of assigning resource classes to
attribute groups, as described in Chapter VII.

However, the author believes that the most important results of
the investigation are to be found not in the goals that have been
achieved, but in the problem areas that have been uncovered by the
investigation which could lead to further study. Traversal of decision
trees has been of primary importance in developing these programs. It
may well be said that the investigation itself has proceeded in a tree
structured manner. In a number of instances during the development of
the above-mentioned pfograms, interesting problems and questions suit-
able for further investigation were encountered; in each case a decision
had to be made as to whether to turn the investigation toward a deeper
study of the problem uncovered or to continue in the current direction.
In the following paragraphs, some unbeaten paths in this decision tree
are outlined.

It was conjectured in Chapter III that, by ordering the windows
in increasing order of window start time, the first schedule found
would have some earliest attribute associated with it. The effect of
ordering windows merits further investigation. Will ordering of windows
in decreasing order of time constraint produce a solution in the
shortest time by creating conflicts early in the decision making pro-
cess? 1In each program the CONFL2 routine attempts to schedule each
activity as early in its window as possible. If the windows were
ordered by decreasing order of start time (or perhaps end time) and the
CONFL2 routine were changed so that each activity was scheduled as late
in its window as possible, would the first solution found be the "latest"

solution?

350

The method of assigning resource units to attribute groups des-
cribed in Chapter VII could use some improvement. An algorithm is used
which can find a solution to the transportation problem in its full
generality. It seems that a faster algorithm could be developed for
this special case. Perhaps an algorithm could be developed which would
determine whether the assignment could be made, and, if the assignment
could not be made, would determine the minimum change in attribute
requirements necessary for an assignment to be made.

Improvements with respect to generating and checking permutations
were discussed in Chapter VI. For a large problem, it is evident that
an enumeration of all permutations is combinatorially infeasible.
Heuristic techniques need to be developed which will choose the "best"
path in a decision tree, that is, the path that is most likely, in some
respect, to arrive at a solution. The interested investigator is
referred to Slagel and Lee (15) for a discussion of heuristic techniques
applied to tree searching problems.

Lastly, the feasibility of applying the final program to a fairly
large problem should be studied. Since this investigation has been
concerned mainly with techniques and methods, no attempt has been made
to determine the amount of time required to solve scheduling problems
of various sizes. The problem shown in the sample output of Appendix B
has nine activities, five resource classes, and eight attribute groups;
no attempt has been made to test a larger problem. Variables that
should be considered in such a study include the number of activities,
the number of windows per activity, the severity of time and resource

constraints, and the number of subsets of independent activities.

51

Hopefully, the techniques developed in this investigation, together
with the results of further investigations, will be useful in the
development of a non-procedural scheduling language which is expected

to be undertaken locally in the near future.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

BIBLIOGRAPHY

Van Doren, J. R. "Space Flight Scheduling." Attachment 1 to
Arts and Sciences Research Report on Project 3722-16/D-2160,
Oklahoma State University, January, 1973.

Muth, John F., and Gerald L. Thompson. Industrial Scheduling.
Englewood Cliffs: Prentice-Hall, 1963.

Bratley, Paul, Michael Florian, and Pierre Robillard. "Scheduling
with Earliest Start and Due Date Constraints." Publication
No. 56, University of Montreal, March, 1971.

Davis, Edward W., and George E. Heidorn. "An Algorithm for
Optimal Project Scheduling under Multiple Resource Con-
straints," Management Science, Vol. 17, 12 (1971), 803-816.

Golomb, Solomon W., and Leonard D. Baumert. '"Backtrack Program-
ming," Journal of the ACM, Vol. 12 (1965), 516-524.

Knuth, Donald E. The Art of Computer Programming, Vol. I.
Reading: Addison-Wesley, 1968.

Nilssoq, Nils J. Problem Solving Methods in Artificial Intelli-
gence. New York: McGraw-Hill, 1971.

Slagel, James R. Artificial Intelligence: The Heuristic Program-
ming Approach. New York: McGraw-Hill, 1971.

Schrack, G. F., and M. Shimrat. "Algorithm 102, Permutations in
Lexicographical Order," Communications of the ACM, Vol. 5
(June, 1962), 346.

Shen, Mok-Kong. "Algorithm 202, Generation of Permutations in
Lexicographical Order," Communications of the ACM, Vol. 6
(September, 1963), 517.

Ord-Smith, R. J. "Algorithm 323, Generation of Permutations in
Lexicographic Order," Communications of the ACM, Vol. 11
(February, 1968), 117.

Warshall, Stephen. YA Theorem on Boolean Matrices,' Journal of
the ACM, Vol. 9 (1962), 11-12.

Wagner, Harvey M. Principles of Operations Research. FEnglewood
Cliffs: Prentice Hall, 1969.

394

33

(14) Bayer, G. "Algorithm 293, Transportation Problem," Communica-
tions of the ACM, Vol. 9 (December, 1966), 869-871.

(15) Slagel, James R., and Richard C. T. Lee. "Application of Game
Tree Searching Techniques to Sequential Pattern Recognition,"
Communications of the ACM, Vol. 14 (February, 1971), 103-110.

APPENDIX A

FLOWCHART OF FINAL PROGRAM

A

| Start)

Print
Tables

Tables printed are
activity table, resource
class table, requirement

Build
Adjacency
Matrix

v

Compute
Path
Matrix

v

Window tree
search for —
each subset

specification table,

Identify subsets of
activities that may
be scheduled inde-
pendently.

This step is
— —{elaborated on the
following pages-

Legend

LPERM - save area for permutations

LVL - current level of window tree

NODE - pointer to window at current level
PLVL - current level of permutation tree
PSTK - vector containing permutation
RETCODEl - return code set by CONFL1
RETCODE2 - return code set by CONFL2

SLS - tentative activity start time

SLE - tentative activity end time

STK - stack used in window tree traversal

35

Start Window
Tree Search

y

LVL=1

NODE < 1

=

NODE

STK(LVL) =

Call
CONFL1

LPERM(LVL)
D
PSTK

Print
Solution

Save successful

permutation.
PSTK is created
in CONFL1.

LVL -a—
LVL + 1

No

LVL=<LVL~1

Does NODE point

to the last window

at this level?

NODE =
NODE + 1

@

End Window
Tree Search

S7

Enter CONFL1

PSTK ~—
LPERM(LVL-1)

!

58

Record
schedule for
first
activity

1

RETCODE]l -—
Return

permutation.

PLVL - LVL

!

PSTK (PLVL) .

*_—
LVL

D=

Call
CONFL2

—_—
Restore permutation
from previous level.
Also restore schedule
corresponding to the

PSTK (PLVL)
-

1

RETCODE1 =—
1

y
(Return)

Valid
Permuta-
tion

Check whether the numbers
in PSTK constitute a permutation

~—{ and whether that permutation

violates lexicographical
ordering.

PSTK(PLVL)<—
PSTK (PLVL)

+ 1

0

PLVL =—
PLVL -1

Erase
Last
Schedule

Remove schedule for
activity pointed to by
— — — 1 PSTK(PLVL). This
schedule was recorded

in CONFL2.

39

—

Enter CONFL2

Initialize
SLS and SLE

Count
Requirements
For Each

Attribute
Group

Call

Transportation

Routine

Can

Assignment
Be Made

Record
Schedule for
This Activity

RETCODE2 ~=
1

60

Find New
Values For
SLS and SLE

Window end

RETCODE2 --
0

y

Return

APPENDIX B

SOURCE LISTING AND SAMPLE OUTPUT

OF FINAL PROGRAM

"1

SCHEDS:

STMT LEVEL NEST
: SCHEDS5: PROC OPTIONS{4AIN)3

1

2 1
3 1
. 1
5 1
6 2
7 2
8 2
9 2

/%

THIS PROGRAM SCHEDULES MULTIPLE RESJIURZE CLASSES.
CLASS HAS ONE OR MORE ATTRIBUTES;

PROC OPTIONS(MAIN)};

SCHE) 10

EACH RESOURCE
THE RESOJRCES REQUIRED BY AN

ACTIVITY ARE SPECIFIED IN TERMS OF ATTRIBUTE GORUPS.
MAJOR PROGRAM VARIABLES:
ACTTBL ACTIVITY TABLE
REST 8L RESOURCE CLASS TABLE
RQTBL REQUIREMENT TABLE CO3SD NUMERICALLY
STK PUS HOOWN STACK USED T) TRAVEISE wWINDOW TREE

./

PSTK PUSHOOWN STACK USED TO GENERATE PERMUTAT IONS

o] MATRIX USED TJ REPIESINT DEPENDENCY RELATION
BETWEEN PAIRS OF ACTIVITIES

SLVEC VECTOR OF TENTATIVE ALLOCATION TIMES -~ ONE
VECTIR >£3 IESIURIE TLASS

sus SUBSET OF ACTIVITIES BEING SCHEDJLED

SUBRES SUBSET OF ATTRIBUTE 3RJUPS REQUIRED BY CURRENT ACTIVITY

MAXAC MAX [MUM # OF ACTIVITIES

MAXRES MAXIMUM 3 OF RESQURCES

MA XKW MAXIMUM ¥ OF WINIQWS PER ACTIVITY

MAXRQ MAX [MUM ¥ OF REQJUIREMENTS (TITAL MAXIMUM)}

MAXATR - MAXIMUM # OF ATTRIBUTE GROUPS

ACTCT ACTUAL COUNT OF ACTIVITIES

RESCT ACTUAL COUNT OF RESOURCES

RQLT ACTUAL CJUNT OF REQUIREMENTS

DCOUNT § OF ACTIVITIES IN LAIGEST SU3SET

LPERM - LAST SUCCESSFUL PERMUTATION

OCL (MAXACy MAXRES:

MAXdy MAXRQy ACTCT, JESCT, RQCTy Iy J» K, MAXQTR,

RTCODEly RTCODE2, ROW,DCOUNT, SCT,LVL,NODE, PLVL)
FIXED BIN INIT{O}; ’

/% READ INPUT PARAMETERS #/

GET LIST (MAXAZ, MAXRES, MAXW, MAXRQ, MAXATR};
MIN(MAXW 48) 3 .

MAX W

BLKL:

ocL

oCL

bCL

BEGIN;
1 ACTTBLIMAXAC),

2 ACTH CHAR(4) ,

2 ACTNAME CHAR{8),

2 ACTTIME FIXED BIN, /% ACTUAL TIME REQJIRED %/
2 ACTWINDIWSIMAXK) »

-

1

3
3

ACTSTRT FIXED BINy /% AINDIW START TIME */
ACTEND FIXED BIN; /* WINDOJ END TIME */

RESTBLIMAXRES),

2 RESH# CHAR(4),

2 RE SNAME CHARI(8), ’

2 RESUNITS FIXED BIN, /% # OF UNITS IN CLASS */
2 RESATRI{10)} FIXED BIN3

RQTELATMAXRQ) »

2 RQACTA CHAR{ 4},

2 RQATRA FIXED BINg

DCL CAIDCCDE CHAR(1l), BUF CHAR(79);

62

SCHED 10
SCHE) 20
SCHED 3D
SCHED %0
SCHED 50
SCHED 32
SCHED 70
SCHED 80
SCHED 32
SCHED100
SCHED110
SCHEDL20
SCHED130
SCHED140
SCHEDL50
SCHED160
SCHEDI 70
SCHEDL80
SCHED190
S CHED2))
SCHED210
SCHED220
SCHED230
SCHED240
SCHED250
S CHED250
SCHED272
SCHEDZ32
SCHED230
SCHED 309
SCHED312
STHED32D
SCHED 330
S CHED349
SC4£0350
SCHED 360
SCHED370
SCHED380
SCHED390
SCHED400
SCHED410
SCHED¢20
SCHED430
SCHED#40
S CHED459
SCHED45D
SCHED4TO
SCHED43)
SCHED430
SCHED500
SCHED519
SCAED520
SCHEDS30
SCHED5%0
SCHEDS5Y
S CHED560

63

SCHEDS: PROC OPTIONS (MAIN); S2HED 10

STMT LEVEL NEST

10 2 OCL ATTBL(MAXRES+1,MAXATR+1) FIXED BIN, SCHED570
RESQTY{MAXRES} FIXED BIN; . SCAEDS80

SCHED530

/% READ INPUT DATA FOR ACTIVITIES, RESOURCE CLASSES AND SCHEDS00

REQUI REMENTS SCHEDS10

./ S CHEDS 20

11 2 ON ENOFILE(SYSIN) GO TO LAST_CARD; . STHEDS3O
13 2 ATTBL = 13 . SCHED®40
SCHEDL50

14 2 READCARD: ’ . SCHEDS50
GET EDIT (CARDCODE,BUF) (COLIL)oACL) AL73)); STHEDSTO

15 2 IF CARDCODE = 1! THEN . SCHED530
16 2 : DO; /% ACTIVITY TABLE INPUT */ SCHED60
17 2 1 ACTCT = ACTCT +13; SCHED 700
18 "2 1 GET STRING (BUF) EDIT(AZTTBL(ACTCT)) SCHED71d
CAL43,A(3), (1T7)F(4))3 SCHED720

19 2 1 END3 . SCHED730
20 2 ELSE IF CARDCODE = 2% THEN SCHEDT40
21 2 00; /* RESOJRCE CLASS TABLE INPJT %/ SCHEDT750
22 2 1 RESCT = RESCT+1: SCHEDT50
23 2 1 GET STRING (BUF) EDIT (RISTBL(RESCT)) SCHEDT70Q
(A{4),A(8),(11) Fl4)); SCHED 780

24 2 1 DO I=1 TJ 10 WHILE{RESATR(RESCT,I) >0)3 SCHED730
25 2 2 ATTBLIRESCT ,RESATR(RESCT,1)) = 03 SCHEDSO0D
26 2 2 END3 SCHEDB10
27 2 1 RESQTY.(RESCT) =:RESUNITS(RESCT); SCHED329
28 2 1 END; SCHED B30
29 2 ELSE IF CARDCODE = *3¢ THEN SCHED840
30 2 pleld) /* REQUIREMENTS INPUT */ SCHED850
31 2 1 RQCT = RQCT+1; SCHED 8GO
32 2 1 GET STRING (BUF) EDIT{RQTBLA(RQCTI) (A(4) ,F(%)); SCHEDBTI
33 2 1 END; SCHEDSA O
34 2 ELSE PUT SKIP EDIT (CARDCODE,BUF,* INVALID CARDCDDE®) SCHEDH90
(AT1) ,A(79),4); SCHED3JD

35 2 GO TO READCARD; SCHED910
SCHEDS20

36 2 LAST_CARD: SCHED?30
IF ACTCT = 0 | RESCT = 0 | RQCT = 0 SCHED940

37 2 THEN DO3 : SCHED950
38 2 1 PUT SKIP EDIT (*MISSING INPUT DATA)(A); SCHED3%92
39 2 1 sTOP; SCHEDSTO
40 2 1 END; SCHED980
41 2 ATTBL(RESCT #1,%) = 13 SCHEDS30
42 2 ATTBL(=y MAXATR+1) = 03 SCHE1000
/% PRINT TABLES =*/ SCHE1010

SCHE1020

43 2 PUT EDIT (' TABLE OF ACTIVITIES *)(PAGE,X{20),A,SKIPI1)); SCHEL030
s 2 PUT EDIT ('ACT A%, 'TIME REQ', *WINDOWS') . SCHEL1J4D
(SKIP(13,A,COLLL4),4,C0L(23),A)3 : SCHE1050

45 2 PUT EOIT ¢ {ACTTBL(I) DO I=1 TO ACTCY)) SCHE 1060
(SKIPEL) o XUL) AC&) o XU L) 4A(8B1 4X(1) ,F(4) SCHEL1J7D

(MAXHI(X (63, F(&), X{1),F{&1)) s SCHEL080

Y 2 PUT EDIT (*TABLE OF RESOURCE CLASSES* J(SKIP(3),X(10),40; SCHE 1090
47 2 PUT EDIT(®CLASS®, *# OF UNITS*, $ATTRIARUTES®*) SCHE1123

(SKIP(1) ,COL(8) A, CTLI23)+A,COL(3T7)yAD; SCHEL110

64

SCHEDS5: PROC OPTIONS [MAIND; : SZHED 10

STMT LEVEL NEST

48 2 PUT EDIT ((RESTBLII) DO 1=1 TO RESCT)) SCHE1120
[SKIP{L},X{10),A{a)X (1), Al8)4X(1},Fl4)},X{T),{10)F(4))3 SCHE1130

49 2 PUT EDIT (¢ TABLE OF REQUIREMENTS *)(PASE+X(20) +A,SKIP(1)); SCHE1140
50 - 2 PUT EDIT (*ACTIVITY*, *ATTRIBUYE GRIUP?!) SCHE1150
[SKIP[1) ,COLI6}4A,CCLI2I)4A)3 SCHE 1160

51 2 PUT EDIT {((RQYBLA(I) DO I=1 TQ RIIT)) SCHE1170
{SKIP(1)eXI10)4A(4) X(1D),FL &)} SCHEL1B0

/% SCHE1190

PUT EDIT(*ATTRIBUTE MATRIX*¢, ((ATTBLII,J) DO J=1 TO SCHE123Q

MAXATR+1) 0O I=1 TQ RESCT +1)} SCHE1210

[PAGE A ySKIP(2) ¢ (RESCT+1) ((MAXATR#L)ILF(6)),SKIP)); SCHE1220

*/) SCHE1230

52 2 BLK2: SBEGIN:] SCHE1240
53 3 DCL LOOKA ENTRY RETURNS(FIXED BIN): SCHE1250
54 3 DCL 1 RQTBL (RQCT)y SCHE1250
2(RQACT#, RQATR#) FIXED BIN; SCHE1270

55 3 DCL D(ACTCT,ACTCT) BITI1); SCHE123D
SCHE1290

/% LOOK UP EACH ACTIVITY & ATTRIB., IN RQTBLA, AND PLACE THE RJHW SCHE1300

POSITIONS IN THE CORRESPONDING POSITION IN RQTBL, THUS CONSTRUCT- SCHEL31)

ING A NUMERICAL REQUIREMENT TABLE SCHE1320

*/ SCHE1330

56 3 DO I=1 TO RQCT; SCHE13%0
57 3 1 ROW = LOCGKA{RQACTA{I}); - - SCHE1350
58 3 1 IF R0W = 0 THEN GO TO TBL_ERROR; ’ SCHE1360
60 3 1 "RQACT#(1) = ROW;) SCHE1370
61 3 1 ROATR#(I) = RQATRA(I); SCHE1380
62 3 1 END; SCHE1390
63 3 GO TO BUILD_D; SCHE1&00
SCHE1410

64 3 TBL_ERROR: SCHEL&2)
. PUT SKIP EDIT (RQACTA(I}, * ITEM NOT IN TABLE®) SCHE1 &30
(AL4) X (2),A04),4); SCHE 1440

65 3 STOP; SCHEl450
SCHE1 450

/% CONSTRUCT D MATRIX BY ENTERING A 1 IN D(I,J) AND D(J, I} SCHE 1470

IF ACTI(1) AND ACT(J) MUST SHARE AT LEAST 1 ATTRIB, CLASS SCHE143D

*/ . SCHE1490

66 3 BUILD_D: : SCHE1500
D= '0'8% : SCHE1510

67 3 DO I =1 TO RQCT-1; SCHE1520
68 3 1 DO J = I+1 TO RQCT; SCHE1530
69 3 2 1F RQACT#(1) ~= RQACTHE(J) & RUIATR#(I) = RQATR#(J) SCHEL1540
70 3 2 THEN DO; SCHE1550
71 3 3 DIRQACTHII) JRQACTA(J)) = #1'8; SCHE1562
72 3 3 DIRQACTEIJ)LRQACTH(I)) = *178; SCHE1S570
73 3 3 END; . SCHE 1580
T4 3 2 END SCHE1530
75 3 1 END; SCHE1600
/% NJW USE WARSHALL®S ALGORITHM TO GET THE PATH MATRIX SCHE1610

CORRESPONDING T3 THE ADJACENZY MATRI X D. ‘ SCHE162D

=/ SCHE1630

76 3 00 Jx1 TQ ACTCT; SCHE 1640
77 3 1 DO I = 1 TO ACTCT; SCHE1650
78 3 2 IF DI1,4J) THEN DI(I.%) = DUI,*) | DlSs*); SCHE1660

65

SCHEDS: PROC OPTIONS{MAIND; SCHED 10

STMT LEVEL NEST

80 3 2 END ; . SCHE1670
81 3 1 END3 SCHE1680
82 3 DOT =1 TO ACTCT; SCHE1690
83 3 1 DUIyI) = *1°'8; SCHEL7020
84 3 1 END; SCHE1T710
SCHE1720

/* EACH ROW IN THE D MATRIX SPELIFIZS A SUBSET OF ACTIVITIES THAT SCHEL173)

MUST BE SCHEDULED INTERDEPENDENTLY. SCHE1T740

FIND THE # OF ACTIVITIES IN THE LARGEST SUBSET SCHE1750

*/ SCHEL750

85 . 3 DCOUNT = 03 SCHEL1TTO
86 3 DO I =1 TO ACTCTS ’ SCHE1780
87 3 1 K = 03 SCHEL1T30
88 3 1 DO J =1 TO ACTCTS SCHE1800
89 3 2 IF D{14J) THEN K = K¢l SCHE1810
91 3 2 END 3 SCHE1820
92 3 1 DCOUNT = MAX{DCOUNT,K}; SCHE1830
93 3 1 END3 SCHE1&40
94 3 BLK3: BEGIN; . SCHE1 850
95 4 OCL (A(RESCT#1},BIMAXATR+1),Cl {RESCF +1,MAXATR 1), SCHE1860
X(RESCT+1,MAXATR#1}) FIXED BINS SCHE187D

SCHEL880

96 4 OCL (STK(DCOUNT), PSTK(DCOUNT}, SJB(OCOUNT }) FIXED 31IN; SCHE14890Q
97 4 OCL 1 SLVECTORS(O:MAXATR) , SCHE1320
2 SLPT FIXED BIN, SCHEL1910

2 SLVEC (DCOUNT}, SCHE1920

3 {SLSTRT,SLEND) FIXED BIN; SCHEL133)D

98 4 DCL SUBRES (MAXATR}FIXED BIN; . SCHE19%D
99 4 DCL CONFLZ ENTRY{BIT{1)1}; SCHE1950
100 4 DCL LPERM(DCOUNT,DCOUNT) FIXED BIN; SCHEL350
/% BEGIN TREE TRAVERSAL FOR SUBSETS OF ACTIVITIES THAT REJUIRE SCHELS970

INTER-DEPENDENT SCHEDULING SCHE 1980

*/ ' SCHEL1930

101 4 LogpP_1 3 SCHE 2000
DO ROW = 1 TO ACTLTS SCHE2010

102 4 1 00 I = 1 TO ACTCT; SCHE2020
103 4 2 IF D(ROW,I) THEN GO TO SCH_SUBSET; -SCHE2030
105 4 2 END.3 SCHE2062
106 4 1 GO TO END_LOOP_1; © SCHE2050
107 4 1 SCH_SUBSET: SCHE 2060
SCHE2070

/% IDENTIFY ACTIVITIES IN THE SUBSET SPECIFIED BY THIS VW. IF SCHE2080

DIROW,I) = 1 PLACE ACTIVITY [INTO THE SUB VECTOR, THEN ZER)D SCHE 2090

OUT R3W I IN THE D MATRIX SINCE ROW I WILL BE IDENTICAL TO SCHE2123

THE CURRENT ROW AND WILL DEFINE THE SAME SUBSET 13F ACTIVITIES. SCHE2110

*/ ’ SCHE 2120

SUB=03 SCHE213)

los 4 1 SCT=03 ' SCHE2140
109 4 1 PUT EDIT {*ATTEMPTING TO SCHEDULE THE FOLLCWING ACTIVITIES?, SCHE2150
YACT # TIME REQUIRED WINDOWS*) SCHE215%0

(PAGE,AySKIP(214A)3 . SCHE2170

110 4 1 D0 I=1 TO ACTCT; SCHE2180
111 4 2 IF O(POW,I) = *1'B THEN SCHE2190
112 4 2 00: SCHE2200
ns3 4 3 SCT = SCT+1; SCHE2210

SCHEDS: PROC OPTIONS{MAIN); SZ4ED 10

STMT LEVEL NEST

114 4 3
115 4 3
117 & 3
118 4 3
119 4 2
120 4 1
121 4 1
122 4 1
123 4 1
124 & 1
125 4 1
126 4 1
127 4 2
129 4 2
130 4 3
131 4 3
132 & 2
133 4 2
134 4 2
135 4 1
136 4 1
137 4 1
138 4 1
140 4 2
141 4 2
142 4 2
143 4 1
144 4 1
145 4 1
146 4 1
147 4 1
149 4 1
150 4 1
151 4 1
152 4 2
153 4 2

SUB(SCT =13

IF I ~= ROW THEN D(I,%) = 083

PUT SKIP EDIT (ACTH{I) f)AZTTIME(L) o (ACTWINDOWS (I ,J)

DO J=1 TO YAXW WHILE {ACTEND(I+J) »= 0} 1))
CALG) o X (T} aFL4) yX(8)y (MAXAI(F L4, XT1)}, Fla),
Xt
END;
END;

/* BEGIN TRAVERSAL OF WINDOW TREE FIR SUBSET OF ACTIVITIES */

LPERM=03
LVL = 13
FIRST_WINDOW:
NODE = 13
/% PLACE NEW NODE ON STACK AND CHECK FOR CONFLICT %/

PUSH_ONTO_STACK:
STKILVL) = NOOE;
CALL CONFL1;
IF RTCODEL= 1| THEN
D0
/% NO CONFLICT DETECTED; G3 TD NEXT LEVEL #/
IF LVL = SCT THEN GO TO DUTPUT_SOLUT ION}
00 I=1 TO LWL;
LPERMILVL,) = PSTKII);
END; .
LVL = LWL + 13
G0 TG FIRST _W INDOW;
END
/% CONFLICT DETECTED. CHECK NEXT WINDOW OR GO. TO PREVIOUS LEVEL#/

NE XT_WINDOW:

NODE = NOGE +13

IF NODE <= MAXW £ ACTENDI(SUB(LVL)«NODE) -~= 0

THEN GO TO PUSH_DNTO_STACK;

IF LvL=1 THEN DO; ’
PUT EDITU(5D) =5 (60172)(SKIP(2),A4,5KIP{1),A);
GO TO END_LOOP_13

END3

LVL = LVL-1;
NODE = STK(LVLY 3
GO TO NEXT_WINOGH;

DUTPUT_SOLUTION:
CALL CONFL2('1%8);
IF RTCODE2 = 0 THEN GO TO NEXT_WINDOW;
PUT EDIT((60)*=")(SKIP{ 2),A};
PUT EDIT (*SCHEDULE FOR ABOVE ACTIVITIES®,
YACTH Wl NDOW ACTUAL?)
(SKIP(2)s XC10),A,SKIPL1) o X(10),44) 3
DOl =1 TO LVL;
K = SUBIPSTK(I))};
PUT SKIP EDIT (ACTH#(K);ACTWINDIAS(KySTK{PSTK{I))},
SLVEC(O,()?

66

SCHE2220
SCHE 2230
SCHE2240
SCHE 2250
SCHE 2260
SCHE2270
SCHE 2280
SCHE2290
SCHE2300
SCHE2310
SCHE2320
SCHE2330
SCHE2340
SCHE2352
SCHE2360
SCHE2370
SCHE2330
SCHE 2350
SCHE 2400
SCHE24190
SCHE 2420
SCHE2430
SCHE2440
SCHE2450
SCHE2450
SCHE2470
SCHE 2480
SCHE2430
SCHE 2500
SCHE2510
SCHE252)
SCHE2530
SCHE2540
SCHE2550
SCHE 2560
SCHE2570
SCHE2580
SCHE2590
SCHE2620
SCHE2610
SCHE 2620
SCHE2630
SCHE 2640
SCHE 2650
SCHE2650
SCHE 2670
SCHE 2680
SCHE2630
SCHE2700
SCHE2710
SCHE2720
SCHE2730
SCHE2740D
SCHE2750
SCHE 2760

SCHEDS: PROC OPTIONS(MAIN); : SCHED 10

STMT LEVEL NEST

(XE9) gAL4) L1210 XI3) 4FL4) 4X(1] ,FE4))I3
154 4 2 END;
155 4 1 PUT EDIT{'ASSIGNMENTS OF RESOURCE CLASSES TG ATTRIBUTE GROUPS?,
*RESIURCE CLASS ATTRIBUTE GROUP ¥ OF UNITS?)
(SKIPI2),A,SKIPI1),AD;
156 4 1 D0 I=1 TO RESCT;
157 4 2 DO J=1 T3 MAXATR;
158 4 3 IF X(1,J) ~= O THEN
159 4 3 PUT EOIT (RESHII) yJyX{1,d))
(SKIP{1)4COLUSIeAL4) ,CILL221,F(4),COLI39),FLG))3
160 4 3 END;
161 4 2 END 3
162 A 1 PUT EDIT ('RESJURCE ASSIGNMENTS®,'CLASSt, 'TIMIS ASSISNEDY)
(SKIP(2) 4COL(2034AsSKIP(1), AsCOLELS },A05
163 4 1 00 I=1 TO RESCT: .
164 4 2 PUT SKIP EDIT(RESH(IN) (X(1),Al4));
165 4 2 1coL=10;
166 4 2 DO 4 =1 TO MAXATR;
167 4 3 IF X(1,J) ~= 0 THEN
168 4 3 DO K=1 TO SLPT{J);
169 4 4 PUT SKIP(O) EDIT(14, SLVEC(J,K) 40)7)
(COLUICOLI,AsF(4), X{L),Fl4),A)3
170 4 4 ICOL = 1COL#12;
171 4 4 If 1COL>110 THEN ICIL=10;
173 4 4 END;
174 4 3 END;
175 4 2 END; -
176 4 1 GO TQ NEXT_WINDOW;
177 4 1 END_LOOP_12
END LCOP_13
1% * 3 x x x * * L 3 * * * * * * * * x * */
178 4 CONFL1: PROC;
/% GENERATE PERMUTATIONS OF WINDOWS IN THE STACK UNTIL A PERMUTA-
TION IS REACHED FOR WHICH A SCHEDULE CAN BE FOUND
*/
179 s DCL (I,d,KeL} FIXED BIN;
180 5 SLVECTIRS=0;
181 5 SUBRES=03
182 s IF LVL = 1 THEN
183 5 003
184 5 1 I = SuB(1);
185 s 1 CALL SCANRQ(I};
186 5 1 PSTK(1) = 1;
187 5 1 DG J =1 TO MAXATR WHILE(SUBRES(J) > 0}3
188 5 2 K = SUBRES(J)3
189 5 2 SLSTRT (K,1) = ACTSTRT(I3STK(1))3;
150 5 2 SLEND(K,1) = SLSTRT(K,1} + ACITIME(I};
191 5 2 SLPTIK) = 13

67

SCHE2770
SCHEZ2780
SCHE 2790
SCHE28D
SCHE 2810
SCHE2820
SCHE2830
SCHE 2840
SCHEZ2850
SCHE2850
SCHE 2870
SCHE2880
SCHE2830
SCHEZ2900
SCHE23710
SCHE2920
SCHE 2930
SCHE2540
SCHE2950
SCHEZ2960
SCHE237)
SCHE 2980
SCHER990
SCHE3030
SCHE3010
SCHE3J20
SCHE3030
SCHE 3040
SCHE3050
SCHE3060
SCHE 3070
SCHE303)
SCHE30%0
SCHE 3100
SCHE3110
SCHE3120
SCHE3130
SCHE3140
SCHE 3150
SCHE 3160
SCHE3170
SCHE 3180
SCHE3190
SCHE3200
SCHE 3210
SCHE3222
SCHE3230
SCHE 3240
SCHE3250
SCHE3250
SCHE 3270
SCHE3230
SCHE 3290
SCHE 3300
SCHE3310

STHT LEVEL NEST

192
193
194
195
196
197
198

199
200
201
202
203
204
205
206
207

208

209
210
212

213
214
215
216

234
235
236
237

SCHEDS:

S

(VRS RV RV RLNY)

Vi v aon w [CRE BV R N RN R] WMV W vV gan g

WV

VR RV EY Y

e N

"

-

st

e

PROC OPTIONS{MAIN);

END;
RTCODEL = 13
SLSTRT{O0s1) = ACTSTRT([,STC(1)};
SLEND{O 1} = SLSTRT(O,1} + ACTTIME(1}:
SLPT(O} = 13
RETURN
END;

SCHED 10

/7% BEGIN GENERATING PERMUTATIONS IN LEXICAL ORDER,STARTING WITH THE

PERMUT AT ION WHICH PRODUCED A SCHEDULE AT THI PRIVIJUS LEVEL.

RESTORE THIS PREVIOUS PERMUTATION IN PSTK, AND CALL CONFL2 REPEAT-

EOLY TO RESTORE THE PREVIOUS SCHEOJULE.
*/
PSTK=03
DO PLVL=1 YO LVL-13;
PSTK{PLVL) = LPERM(LVL-1,PLVL);
CALL CONFL2(*0'B};
END
PLVL = LVL;
PSTK{PLVL} = LVL3;
GO TO CALL_C23
NEXT_LVL:
PSTK{PLVL} = 13
CHECK_CONFL2:
IF PLVL > 1 THEN
DG I = 1 TO PLVL-13
1F PSTK{I) =PSTKLtPLVL) THEN GJ3 TO NEXT_NO;
END;
/% COMPARE THIS PERMUTATION WITH THE PEIMUTATION OF THE PREVIOUS
AND CHECK FOR VIOLATIONS OF LEXICAL ORDER ING

*/
K=03
Do 1=l TOD PLVL;
K = K+13
IF PSTKI(K) = LVL THEN K = K¢l;
[F PSTK(K) < LPERMILVL=~l4I) THEN GO TO NEXT_NO3
IF PSTK(K) > LPERMILVL-1,s1) THEN GO TO CALL_C23
END;
CALL_C2:3

CALL CONFL2('0'B) 3
IF RTCODE2 = 0 THEN GO TO NEXT_NO;

/% NO CONFLICT DETECTED #/
IF PLVL = LVL THEN DO:
RTCCDEL = 13
RETURN;
END:
PLVL = PLVL#13 .
GO TO NEXT_LVL3

NEXT_NO: /7% CONFLICT FOUND */
IF PSTK{PLVL} < LVL THEN
003
PSTK(PLVL) = PSTK(PLVL) + 13}
GO TO CHECK_CONFL23;
END3

LEVEL

68

SCHE3320
SCHE3330
SCHE33¢0
SCHE 3350
SCHE3360
SCHE3370
SCHE 3380
SCHE333)
SCHE3%00
SCHE 3410
SCHE3420
SCHE 3430
SCHE 3440
SCHE3450
SCHE 3460
SCHE3470
SCHE3480
SCHE 3490
SCHE3500
SCHE3510
SCHE 3520
SCHE353)
SCHE3540
SCHE 3550
SCHE3550
SCHE 3570
SCHE 3580
SCHE3590
SCHE 3600
SCHE3610
SCHE3620
SCHE 3639
SCHE3640
SCHE3650
SCHE 3660
SCHE3570
SCHE3680
SCHE 3690
SCHE3700
SCHE3710
SCHE3720
SCHE373)
SCHE3740
SCHE3750
SCHE3750
SCHE3T70
SCHE3780
SCHE3790
SCHE3800
SCHE3810
SCHE3820
SCHE 3830
SCHE3840
SCHE3850
SCHE 3860

SCHEDS: PROC OPY IONS{MAIN); SCHED 10

STMT LEVEL NEST

238 H IF PLVL = 1 THEN DO;
240 5 1 RYCODEl =03
1 5 1 RE TURN3
242 5 1 END:
243 5 PLVL = PLVL = 13
/% REMOVE TENTATIVE SCHEDULE TIME FOR ACTIVITY POINTED TO
BY PSTK{PLVL}
*/
2644 H CALL SCANRQUSUB(PSTK(PLVL))Y;: -
245 5 DO I =1 TO MAXATR WHILE(SUBRES(I) > 0)3
246 5 1 SLPT(SUBRES{I)) = SLPT(SUBRES(I)) =~ 1}
247 5 1 END;
248 5 SLPT(0) = SLPTIO) - 1%
249 H GO TO NEXT_NO;
250 5 END CONFL1;
Vi * *® * * * L x * x L x * x * x *7
251 4 CONFL2: PROC(FINAL}:
/1%
THIS ROUTINE ATTEMPTS TO FIND A SCHEDULE FIR THE ACTIVITIES
POINYED TGO BY PSTK. PLVL IS THE # OF ACTIVITIES TO BE SCHEOJLED.
IF PLVL > 1 THEN PLVL-1 ACTIVITIES HAVE ALREADY BEEN SC4SDULED.
IF FINAL = 1 THEN A FULL PREMUTAT IONHAS BEEN FOJND JHICH HAS
THUS FAR PRODUCED ND CONFLIZT. IN T4IS CASE THE -RCUTINE IS USED
TO FIND THE ACTUAL RESGURCE ALLOCATION, IF IV CAN BE FIUND.
*/
252 5 DCL FINAL BIT(1)3;
253 5 DCL (T4J9KsSLSySLE,NEXTSLS, IPOINT ,MIND,TEMP,XODUNT, INFDELT,CIST,
WINDEND, HOLDK)
FIXED BIN;
254 5 OCL(CUDCOUNT) ,DIDCOUNT}) FIXED BIN;
255 5 DCL OVP(OCGUNT} 8IT(1);
256 5 DCL TRANSPl ENTRY(FIXED BINy FIXED BINgsrors)3
257 5 INF = 32767;
258 5 IF FINAL THEN
259 5 003
260 5 1 SLS$=0;
261 5 1 DELT = 32767;
262 5 1 SLE,WINDEND = SLS ¢ DELT;
263 5 1 END3
264 5 ELSE
264 5 00;
265 5 1 1 = SUB(PSTK(PLVL));
266 5 1 J = STK{PSTK(PLVL)}3
2617 5 1 CALL SCANRQ(1};
/% SET TENTATIVE START TVIME = START TIME OF WINDOW %/
268 5 1 SLS = ACTSTRT(1,J4);
269 5 1 DELT = AZTTIME(I);
270 5 1 SLE = SLS + DELT;
in 5 1 WINDEND = ACTENO(1,J);
212 5 1 END 3

69

SCHE3370
SCHE 3880
SCHE 3890
SCHE392)
SCHE3910
SCHE3920
SCHE3930
SCHE 3940
SCHE3950
SCHE3950
SCHE 3970
SCHE3930
SCHE3990
SCHE 4000
SCHE4O1D
SCHE40Q20
SCHE 4030
SCHE404%0
SCHE 4050
SCHE4060
SCHE4070
SCHE 4030
SCHE4090
SCHE4100
SCHE4110
SCHE4120
SCHE413d
SCHE®140
SCHE4150
SCHE4160
SCHE4170
SCHE4180
SCHE4190
SCHE4200
SCHE4210
SCHE4220
SCHE%232

‘SCHE4240

SCHE 4250
SCHE4252
SC4E4270
SCHE 4280
SCHE4230
SCHE4300
SCHE 4310
SCHE4320
SCHE 4330
SCHE4340
SCHE4350
SCHE4360
SCHE 4370
SCHE4 380
SCHE 4390
SCHE4400
SCHE4410

SCHEDS5: PROC OPTIONS(MAIN}; STHED 10

STMT LEVEL NEST

ér3 5 COUNT_REQ:
NEXTSLS = WINDEND:

/% FOR EACH ATTRIBUTE GROUP I, SET B(J) = TO THE # JF -JNITS
REQUIRED DURING <SLS,SLE>. INITIALIZE BII) TO 1 IF THE CURRENT

ACTIVITY REQUIRES THE ATTRIBUTE I. */
214] 8 = 0;
2715 5 IF ~FINAL THEN
276 -] 00 1 = 1 TO MAXATR WHILE {(SUBRES(I) > 0);
217 5 1 B{ SUBRES(I}) =13
278 5 1 END3 ’
2719 S DO I =1 TO MAXATR;
280 S 1 KOUNT = 03
281 5 1 IF SLPT{I} = 0 THEN GO TO BYPASS_COUNT;
283 5 1 00 J =1 TOSLPTII);
284 5 2 ClJ) = SLSTRT(I,J4);
285 5 2 D{J) = SLEND(I,J);
286 S 2 ovPiJ) = *0'83
287 S 2 END 3
/* FOR THE ATTRIBUTE I, C & O CONTAIN START & ENO TIMES OF ACTI-
VITIES ALREADY SCHEDULED. OROER THESE TIMES BY INCREASING
ORDER OF START TIME
*/
288 S 1 IfF SLPTLI) > 1 THEN
289 H 1 DO J=1 'TO SLPT(I) -1;
290 S 2 IF CUJ) > ClJrl) THEN
291 5 2 00 K = J+1 BY =1 T 2 WHILE (CUKIKC(K-1)):
292 5 3 TEMP = C(K):
293 H 3 CI(K) = CIK-1)3
294 5 3 ClK=1} = TENP;
295 H 3 TEMP = DIK);
296 5 3 D(K) = DIK-1);
297 H 3 D(K~1) = TEMP3;
298 5 3 END;
299 H 2 END;-
/¥ DETERMINE THE EARLIEST TIME (AFTER SLS) THAT A UNIT MIGHT
BECOME AVAILABLE)
*/
200 - 1 DO J =1 TO SLPTUIN;
301 H 2 IF D{J) > SLS & D(J) < NEXTSLS THEN NEXTSLS = D(J}3
303 5 2 END;
/* FIND VALUE FOR IPOINT SUCH THAT Z(IPDINT) <= SLS €
CUIPOINT+1)} >= SLS
*/
304 5 1 IF SLS<= Cll) THEN IPOINT = 03
306 H 1 ELSE IF StS >= CUSLPT(I}) THEN IPJDINT = SLPT(1}3
308 S 1 ELSE 00 J = 1 TO SLPT(I) WHILE (C(J) < SLS):
309 H 2 IPOINT = J3;
210 5 2 END;
/* COUNT ACTIVITIES STARTING BEFORE SLS & ENDIN3 AFTER SLS */
1 5 1 IF IPOINT > O THEN

70

SCHE 4420
SCHE443D
SCHE44¢O
SCHE 4450
SCHE4450
SCHE4470
SCHE 4480
SCHE4430
SCHE©520
SCHE4510
SCHE4520
SCHE 4530
SCHE4540
SCHE4550
SCHE4560
SCHE45TQ
SCHE4580
SCHE 4590
SCHE4520
SCHE4610
SCHE4620
SCHE4530"
SCHE 4640
SCHE4650
SCHE4550
SCHE4670
SCHE 4680
SCHE&4430
SCHE4T00
SCHE4710
SCHE&720
SCHE4T30
SCHE4740
SCHE4750
SCHE&4T60
SCHE4TT0
SCHE4780
SCHE%790
SCHE48))
SCHE4510
SCHE 4820
SCHE483)
SCHE4 840
SCHE 4850
SCHE4850
SCHE 4870
SCHE4880
SCHE4890
SCHE 4900
SCHE4S10
SCHE4920
SCHE4930
SCHE4340
SCTHE@95)
SCHE 4960

71

SCHED5: PROC OPT IDNS (MAIN); SCHED 10

STMT LEVEL NEST

312 H 1 DO J = 1 TO IPOINT: SCHE43T0
313] 2 IF 0(J) > SLS THEN SCHE4980
14 H 2 D03 SCHE 4990
315 H 3 DVPLJ) = *1'8; : SCHESJI0
e H 3 KOUNT = KOUNT +1; SCHES010
27 H 3 END; SCHES020
31e 5 2 END 3 SCHES030
/% IDENTIFY ACTIVITIES THAT START DJRING <SLS,SLE>. - CHE 5060

FOR EACH SUCH ACTIVITY, SEE WHETHER IT CAN BE MATCHED WITH AN SCHES050

EARLIER OV ERLAPPING ACTIVITY. SCHES050

*/ SCHE 5070

319 5 1 IF IPOINT < SLPT(I) THEN SCHES030
320] 1 00 J=IPOINT+1 YO SLPT(I); SCHES090
221 H 2 IF CtJ) < SLE THEN SCHE 5100
322 5 2 00 SCHES110
323 s 3 MIND = ClJ); SCHES120
324 5 3 HOLDK = 03 SCHES130
325 s 3 IF J > 1 THEN SCHES140
26 s 3 DO K=1 TQ J-1; SCHES150
227 5 4 IF DIK) <=MIND & OVP{K) = *1%B THEN SCHES160
328 5 6 DO SCHESL70
329 5 5 MIND = DIK); SCHES180 -
230 5 5 HCLDK = X3 SCHES190
331 5 5 END; SCHES200
232 5 & END; SCHES210
233 5 3 ‘1F “HOLDK > 0 THEN D(HOLDK) = DU J); SCHES220
235 s 3 ELSE DO; SCHES230
238 5 s OVPIJ) = 7183 SCHE 5240
337 5 4 KOUNT = KOUNT+1j SCHES25)
338 5 3 END; SCHES250
239 s 3 END; SCHES270
340 S 2 END3 ' SCHES2890
341 5 1 BYPASS_COUNT: SCHES290
B{I) = B(I} + KOUNT; ’ SCHES300

342 5 1 END; SCHES5310
/% PREPARE TQ CALL TRANSPORTATIIN ROUTINE */ SCHES5320

243 5 0D I=1 TO RESCT+¢l; SCHE 5330
344 s 1 AlLl) = RESQTY(I); SCHES340
345 5 1 CLily*) = ATTBL(I,*); SCHE 5350
346 s 1 END3 SCHES5360
347 5 X=03 SCHES370
348 5 TEMP = SUMIA) — SUMIB); : SCHE 5380
249 5 IF TEMP >= 0 SCHES390
350 5 THEN DO; SCHES400
151 5 1 BIMAXATR+1) = TENP; SCHE 5410
352 5 1 A{RESCT+1) = 03 . SCHE542)
353 - 1 END; SCHE5430
254 s ELSE DO; SCHE 5440
355 5 1 A(RESCT#1) = <TEMP; SCHES450
356 H 1 B(MAXATR+1) = 03 SCHES5450
157 5 1 END: : SCHES470
358 5 CALL TRANSP!(RESCT#1,MAXATR+1,INF,Cl,A,B,X,C0ST)3 SCHES30
159 5 IF COST > 0 THEN GO TO REDUCE_REQ; SCHE 56490
SCHE 5500

/* ENTER SLS,SLE IN SCHEDULE FOR EACH ATTRIBUTE GRQUP REQUIRED SCHESS10

SCHEDS : PROC OPTIONS(MAIN)

STMT LEVEL NEST

el

W
o
0
SRV RS RV R RS NV RV RV RT. VRV RV RV RV)
e

w
-~
-
w

e s

382

284
38s
246
3187
£
389

w
o
w
(LR RV RV RV NV NV RV) wmaagawn
e

w

390

w
0
>
oo

395
396
357
398
399
400
401
402

NNy Nuy~NO
-

BY THIS ACTIVITY
s/ '
IF FINAL THEN DO
RTCODE2 = 13
RE TURN;
END;
DO I =1 TO MAXATR WHILE (SUBRESI(I) > 0}
K= SUSRES(I);
SLPT{K} = SLPT(K}+13
SLSTRT(K,SLPT{K}) = SLS}
SLEND{K,SLPT(K}) = SLES
END3
SLPTL{O) = SLPT(0)+1;
SLSTRAT{Q,SLPT{O)} =
SLEND{QSLPT(O}) =
RTCODE2 = 13
RETURN 3

SLS;
SLES

REDUCE_REQ:

IF FINAL THEN DO3
RTCODE2
RETWRNS
END3
/* TRY NEW VALUZS FOR SLS
SLS = NEXTSLS;
SLE = SLS ¢ DELT;
IF SLE > WINDEND THEN
D03
RTCODE2 = O3
RE TURN3
END 3 :
ELSE GO TO CQUNT_REQ;

= 03

& SLE */

TRANS P13
/%
ALGORITHM 293 - COLLECTED ALSORITHMS FROM
*/
DCL (MyNsINFoKWoALH) 4BI¥) 4C(%,%) X (%,%))
FIXED BIN;

PROC (MyNyINFyCyAyBy XoKH) 3

SCHED 10

CACM

DCL (le3eUsVaKsL oSoToGDsHiPoCIJeXTJg ALy BI L SVILNLVI)

FIXED BIN;
DCL 26 BIT(1)3;

DCL (GEM),LISTUIMI ¢4NLVIM),RIN),LISTVIN),LS(Oz4¢N-1),

NLOMEN) yLSVIO:N))

FIXED BIN;

IN: PROC 3

LSVJ = LSVIJ);

DO T = LSVIN)
LS (T+¢1) =

END3

DO T = J TO N3 '
LSYIT) = LSVLT) ¢+ 15

END;

BY -1 TO LSVJ;
LS (T3

72

SCHE 5520
SCHES530
SCHES540
SCHE 5550
SCHES5560
SCHES5TQ
SCHE 5580
SCHE5590
SCHES600
SCHES5610
SCHES5620
SCHES630
SCHE 5640
SCHES650
SCHES5660
SCHES5670
SCHES680
SCHES5690
SCHES700
SCHEST1D
SCHES720
SCHES5730
SCHE5740
SCHEST750
SCHE 5760
SCHESTT0
SCHEST80
SCHES5790
SCHES800
SCHES810
SCHES820
SCHE5830
SCHE 5840
SCHESB50
SCHE5850
SCHES870
SCHE583)
SCHES890
SCHE 5900
SCHES910
SCHES9320
SCHE 5930
SCHES55640
SCHE 5950
SCHES5960
SCHES970
SCHE 5980
SCHES33D
SCHE6000
SCHE&010
SCHESD20
SCHE6030
SCHE 6040
SCHEGD5D
SCHE 6060

SCHEDS: PROC OPTIONS(MAIN);

STMT LEVEL NEST

403 7 LSILSVI+L) = 13
404 7 END IN3
405 [OUT: PROC;
406 7 LSVJ = LSV(J)3
407 7 DO T = LSVIJ-1)+1 TO LSVJ;
408 7 1 IF LS{T) = F THEN DO;
410 7 2 S = T3
411 7 2 GO TO EX:
412 7 2 END3
413 7 1 END;
Al 7 EX:
DO T = J TO N3
415 7 1 LSVIT) = LSVI(T)-13
416 7 1 o END3
4«17 7 LSVJ = LSVIN};
418 7 DO T =S TO LSVJ;
419 7 1 LSIT) = LS(Tel)3
420 7 1 END3
421 7 END QUT;
422 [} X = 03
423 6 DO I =1 T0 M3
424 6 1 NLVII) = (I-1)%N;
425 [1 END;
426 [LSV = 03
427 6 LISTv = 05
428 6 KHsGD = 03
429 6 DO I =1 TO M3
430 [} 1 H = INFj
431 6 1 DO J =1 T0 N3
432 [2 IF CLI,J) < HTHEN H = ClI,J};}
434 6 2 END ;
435 6 1 D0 J = 1 70O N3
436 6 2 ClJdy CUIJd) = C(14J) = H;
437 6 2 IF CIJ = 0 THEN
438 -] 2 003
439 [3 LISTVIJY = O3
440 [] 3 NLVEy NLVII} = NLV(I) +13
441 6 3 NLINLVI) = 33
442 -] 3 ENO3
443 [] 2 END 3
444 6 1 Kb = HeATI)}+KW3
445 6 1 END3
446 [] D3 J=1 TO N3
447 6 1 IF LISTV(J) = O THEN GO TO NEXTJ13
449 6 1 H = INF3
450 6 1 D01 =1 T0 M3
451 6 2 IF ClIsJ} = H THEN H = C(I,J)%
453 6 2 END3
454 6 1 00 I = 1 TO M3 .
455 6 2 CIJy C(1,J) = C(14J) - H3
456 [} 2 IF C1J = 0 THEN
457 [2 003
458 [} 3 NLVIGZNLV (D) = NLV(T}+1;
459 [} 3 NLINLVI)} = J3

SCHED 10

73

SCHE&60TO
SCHESL080
SCHE 6090
SCHE6103
SCHE6110
SCHE®120
SCHE613)D
SCHE®140
SCHE6150
SCHEG61SD
SCHE6170
SCHE6180
SCHE6130
SCHE 6200
SCHEG210
SCHE6220
SCHE 6230
SCHE6240
SCHES6250
SCHE 6260
SCHE62T0
SCHE6280
SCHE 6290
SCHES300
SCHES6310
SCHE6320
SCHE6330
SCHE 6340
SCHE 6350
SCHE6350
SCHE 6370
SCHE6380
SCHE639D
SCHE 6400
SCHE6410
SCHE6420
SCHE 6430
SCHEb644)
SCHE6450
SCHE 6460
SCHE64TO
SCHAE6480
SCHE 6490
SCHEG50)
SCHE651 0
SCHE6520
SCHE6530
SCHE 6540
SCHE&550
SCHE6560
SCHEB6570
S CHE6580
SCHE6590
SCHE 6600
SCHE6510

74

SCHEDS5:t PROC OPTIONS{MAIN} ; SZHED 10

STMT LEVEL NEST

460 6 3 END; SCHE6620
461 6 2 END; SCHE6630
462 6 1 K = H¥8(J)eKN; SCHE6540
463 6 1 NEXTJ1: SCHE6650
END; ‘ SCHE6660
SCHE6670
464 6 s2: SCHE 6680
00 I =1 TO M; SCHE 6690
465 6 1 AL = ALL); SCHE6700
466 6 1 NLVI = NLV(ID); SCHEG6T10
467 6 1 DO U = (I-1)%N¢1 TO NLVI; SCHE6720
468 6 2 IF Al = O THEN GO TO NEXTI2; SCHE6730
470 6 2 J = NLIW; SCHE 6740
471 6 2 8J = BLJ); SCHE6TS0
472 6 2 IF BJ = O THEN GO TO NEXTJ43 SCHE&750
474 6 2 HoX(I4J) = MIN(AL,BJ); SCHE6770
475 6 2 Al = AlI-H; SCHE6730
476 6 2 8(J) = BJ - H; SCHE6790
«17 6 2 CALL IN; SCHE 6800
478 6 2 NEXTJ 4t SCHE6810
END; SCHE6820
/% BEGIN PAGE 2 */ SCHE 6330
479 6 1 NEXTI2: : SCHE6840
ALL) = AL; SCHE6850
480 6 1 GD = GD +Al; SCHE6860
481 6 1 END; SCHES87)
482 6 $31: . SCHE6H80
483 6 IF GO = 0 THEN GJ TG S6; SCHE 6890
484 6 s32: . SCHE6300
R = 0; : SCHE 6910
485 6 K = 0; SCHE6920
486 6 DO I =1 TO M; SCHE673)
487 6 1 IF A(I) ~= 0 THEN SCHE 6940
488 6 1 00; SCHE6950
489 6 2 K = K¢l3 SCHE6350
490 6 2 LISTU(K) = I3 SCHE 6970
491 6 2 GLI) = INF; SCHE6980
492 6 2 END; : SCHE6990
493 6 1 ELSE G(I) = 03 SCHE 7000
494 6 1 END ; SCHE7010
495 6 $33: SCHE7020
L =0; SCHE 7030
496 6 DO U =1 TOK; SCHE?04D
497 6 1 I = LISTU(U); SCHE7050
498 6 1 NLVI = NLVIID; SCHE 7060
499 6 1 0D S = {I-1)sN¢l TO NLVI; SCHE?070
500 6 2 J = NLIS); . ZHET7080
501 6 2 IF R{J) ~= 0 THEN GO TO NEXTJS; SCHE7090
503 6 2 RUJY = I3 SCHET100
504 6 2 L= 14; ‘ SCHE 7110
505 6 2 LISTVILY = J; ' SCHET120
506 6 2 IF B(J) > O THEN GO TO S4; SCHE7130
508 6 2 NEXTJS5 SCHE 7140
END 3 SCHET150
509 6 1 END; SCHE?L50

SCHEDS5: PROC OPTIONSIMAINIG SCHED 10

STMT LEVEL NEST

510 [IF L= 0 THEN GO TO S53;
51¢ 6 K=03
513 6 00OV =1T0L3;
14 6 1 J = LISTv(IV);
515 6 1 LSVJ = LSVIJ) ¢
516 6 1 DO S = LSVI{J~-1)+1 TO LSVJ;
517 6 2 1 = LSSk
518 6 2 IF GUI} = 0 THEN
519 6 2 003
520 6 3 G(I) = 45
521 6 3 K = K+¢13
522 [} 3 LISTU(K) = 13
523 6 3 END;
524 & 2 END3
525 6 1 ENOD;
526 6 IF K=0 THEN GO TQ S53
528 & GO TO §33;
529 6 S43

H= B8lJ)s
530 6 P = J3

/* BEGIN PAGE 2 COLUMN 2 x/

531 6 MARK S

I =REJY§
532 6 J =5t
533 6 IF J = INF THEN °
53¢ [00:
535 6 1 IF A{I} < H THEN H = A{]I)3
537 [1 GO YO RE;
538 -} 1 END3
539 6 IF X{14J) € H THEN H = X{l1+J)3
541 6 GO TO MARK 3
542 6 RE:

J =P3
543 3 8(J) = B{J) - H;
S44 6 AlLI) = A(TI) - H3
545 & GD = GD - H3
546 6 REL:

I =R(I;
547 [XI1J = X(I,J)%
548 3 X(IyJd) = X1J #H§
549 [If XIJ = 0 THEN CALL IN;
551 3 J = GlI}3
552 [IF J=INF THEN GO TO S31;
554 6 XIJe XCI o9} = X(I4J)-H;
55% 6 IF XIJ = 0 THEN CALL QUT;
£57 3 GO 1O REl;
558 6 §$5:

K=03
559 & L=N+ 3
560 [} 00 J= 1 TO N3
561 6 1 IfF R{J)} = 0 THEN
562 6 1 D03

75

SCHET170
SCHE7180
SCHET190
SCHE 7200
SCHE7210
SCHET220
SCHE 7230
SCHET240
SCHET250
SCHE 7260
SCHET270
SCHE7280
SCHET7290
SCHET320
SCHE 7310
SCHET7320
SCHE733)
SCHE 7340
SCHET7350
SCHET350
SCHE 73790
SCHE7380
SCHET7390
SCHE 7400
SCHE7410
SCHE7420
SCHE 7430
SCHET440
SCHE7450
SCHE 7460 °
SCHET&4TD
SCHE 7480
SCHET490
SCHET520
SCHETS510
SCHE7520
SCHET530
SCHE 7540
SCHE 7550
SCHE7560
SCHET570
SCHET580
SCHET550
SCHE 7600
SCHETH10
SCHET620
SCHET630
SCHET640
SCHE 7650
SCHET7660
SCHET&T0
CHE 7680
SCHET690
SCHET700
SCHETT1 0

SCHEDS: PROC OPTIONS{MAIN)

STMT LEVEL NEST

563 6 2 K=K+ 13
564 6 2 LISTVIK) = J3
565 6 2 END;
566 6 1 ELSE 003
567 6 2 L= L-1;
568 6 2 LISTVILI= J;
569 6 2 END;
570 6 1 END;
571 6 H = INF;
572 6 00 I= 1 TO M;
573 6 1 IF G{1] = 0 THEN GO TO NEXT16%
575 6 1 00 S =1 TJ K3
576 6 2 J = LISTV(S);
577 6 2 IF CUI1,J) < H THEN H = C(I1,J)3
579 6 2 END;
580 6 1 NEXT 163

END;
581 6 DO I =1 T0 M;
582 6 1 26 = (G(I) ~= 01}
583 6 1 NLVI = (I-11%N;
584 6 1 DOS =1L T0N;
585 6 2 J = LISTVIS);
586 6 2 IF 2G THEN CI1J = CU1,40%
588 6 2 ELSE CIJ, CLI14d) = CUI,d) + H3
589 6 2 IF C1J = 0 THEN
590 6 2 00;
591 6 3 NLVT = NLVI+1;
592 6 3 NLINLVI) = 33
593 6 3 END}
594 6 2 END
595 6 1 DOS =1 TO K;
596 6 2 J = LISTV(S);
597 6 2 IF 26 THEN CIJ,CUE,d) = CLI,J)-H;
599 6 2 ELSE CIJ = C(I,d)3
600 6 2 IF C1J = O THEN
601 6 2 003
602 6 3 NLVI = NLV1+l;
603 6 3 NLINLVD) = J;
604 6 3 END;
605 6 2 END3
606 6 1 NLVII) = NLVI;
&7 6 1 END;
608 6 KH = KW + H#GD;
609 6 G0 TD $323;
610 6 S6: RETURN;
611 6 END TRANSP1;
612 5 END CONFL2;

/% * * * * * * * L 3 *] L 3 L * L * %

613 4 SCANRQs PROCUI);

SCHED 10

*/

/* SCAN RQTBL T3 IDENTIFY ALL ATTRIB. S REQUIRED BY ACTIVITY I.

*/
614 5 DCLUTyJeKoL M) FIXED BINS

PLACE THE NUMBERS OF THE GR3JPS IN SUBRES VECTIR

76

SCHET720
SCHET730
SCHET740
SCHET750
SCHETT50
SCHETTT0
SCHET730
SCHET790
SCHETB800
SCHETE10
SCHE 7820
SCHE7830
SCHETB4D
SCHE 7850
SCHET860
SCHE7870
SCHE 7880
SCHE7839
SCHET900
SCHE 7910
SCHET320
SCHET930
SCHE7940
SCHET350

.SCHE 7960

SCHET970
SCHET980
SCHE 7990

SCHEB0OQO

SCHEBOLO
SCHE 8020
SCHE8J3)
SCHEBQ4D
SCHE 8050
SCHEBJ5Q
SCHEBQTD
SCHE 8080
SCHEB03)
SCHEB100
SCHEBIL1O
SCHES122
SCHEB130
SCHEB140
SCHEB15)
SCHEB160
SCHEB170
SCHEB180
SCHEB190
SCHEB209
SCHEB2190
SCHE 8220
SCHEB23D
SCHEE240
SCHEB8250
SCHEB260

77

SCHEDS: PROC OPTIONS(MAINI; . SCHED 10

STMT LEVEL NEST

815 5 K=0; SCHE 8270
616 5 SUBRES = 03 SCHES8280
617 5 00 J =1 70 RQCT; SCHEB23D
618 5 1 IF RQACT#{J) = T THEN DO; SCHE 8300
620 5 2 K=K+13 SCHEB210
621 5 2 SUBRESIK) = RIATRE(J}; SCHES832)
€22 5 2 END; SCHE 8330
623 5 1 END3 SCHE8340
624 5 END SCANRQ: SCHEB350
SCHE 8360

625 4 END BLK 33 SCHEB3T)
. SCHEB38JD

J¥ ¥ & *x % * % * * ¥ X % % *x % % x & ® *x/ SCHE81390

626 3 LOOKA: PROC(ARG) RETURNS (FIXED BIN); SCHEB4DD
627 4 DCL {1,JeKyLsM) FIXED BINy ARG CHAR(&) STAEB4YD
628 4 DO T =1 TO ACTCT; SCHE 8420
629 4 1 IFf ARG = ACTA{I) THEN RETURN(I); SCHEB430
€31 4 1 END; SCHE 8440
632 4 RETURN(0} 3 : SCHE 8450
633 4 END LODKA SCHEB46D
SCHE 8470

SCHEB48BO

634 3 END BLK2; SCHEB430
€35 2 END BLK1; SCHE 8500
636 1 END SCHEDS; SCHEBS510

TABLE OF ACTIVITIES

ACT # TIME REQ WINDOWS
Al 1 1 3 0 0 0
A2 1 1 4 7 9 0
A3 3 2 5 0 0 0
A4 1 1 9 0 0 0
AS 3 4 T 0 0 0
A6 4 5 10 0 0 0
AT 2 9 11 [H] 0 0
A8 1 10 12 13 14 0
A9 2 10 14 16 18 19
TABLE OF RESOURCE CLASSES
CLASS # OF UNITS ATTRIBUTES
R1 4 3 8 0 0 0
R2 3 2 4 0 0 0 0
R3 5 5 6 7 0 0 0
R4 2 3 4 0 0o 0 0
RS [} 2 7 8 0 0 1]

00000000

N

- X-X-X-X-)
[-X-¥-¥-X-}
- X-Y-¥-¥-]
Coo©Co0

ACTIVITY
Al
Al
A2
A2
A3
A3
A3
A4
A4
A5
AS
As
AT
A8
A8
A9

TABLE OF REQUIREMENTS
ATTRIBUTE GROUP

Ny NCTANIO AT

79

ATTEMP TING TO SCHEDULE THE FOLLOWING ACTIVITIES

ACT S TIME REQUIRED ® INDOWS

Al 1 1 3

A3 3 2 5

AS 3 4 7

AT 2 9 11

A9 2 10 14 16 18 19

SCHEDULE FCR ABOVE ACTIVITIES

ACT# WINDCW ACTUAL
Al 1 3 1 2
A3 2 5 2 5
AS 4 7 4 7
AT 9 11 9 11
A9 10 14 10 12
ASSIGNMENTS OF RESOURCE CLASSES TO ATTRIBUTE GROUPS
RESCURCE CLASS ATTRIBUTE GROUP # OF UNITS
R1 1 2
R2 2 2
R3 H 1
R3 6 2
RE SOURCE ASSIGNMENTS
CLASS TIMES ASSIGNED
R1 (1 2) (9 1) (10 12)
R2 { 2 S5y { 4 n
R3 (1 21 2 5) ¢ 2 s 4
R4
RS

SCHEDULE FOR ABOVE ACTIVITIES

ACTH WINOOW ACTUAL
Al 1 3 1 2
a3 2 s 2 s
AS 4 7 “ 7
A7 9 1 9 11
A9 16 18 16 18 .
ASSIGNMENTS OF RESOURCE CLASSES TO ATTRIBUTE GROUPS
RESOURCE CLASS ATTRIBUTE GROUP # OF UNITS
Rl 1 1
R2 2 2
R3 5 1
R3 6 2
RESOURCE ASS IGNMENTS
CLASS TIMES ASSIGNED
R1 (1 21t 5 1) 16 18)
R2 (2 sit & 7)
R3 1 22(2 st 2 S)t 4
R&

RS

ASSIGNMENTS OF RESCURCE CLASSES TO ATTRIBUTE GROUPS

SCHEDULE FOR ABOVE ACTIVITIES

ACT#
Al
A3
AS
A7
A9

RESOURCE CLASS

Rl
R2
R3
R3

CLASS
R1
R2
R3
R&
RS

(1
(2
(1

W INDOW
1 3
2 5
4 7
9 11
19 21

ATTRIBUTE GROUP

RESOURCE ASS IGNMENTS
TIMES ASSIGNED

2}
5)
2)

VN -

9
4
2

ACTUAL

1 2
2 5
4 7
9 11
19 21

11
7)
5) (

19
2

OF UNITS

NN -

21)
5)

4

n

81

ATTEMPTING TO SCHEDULE THE FOLLOWING ACTIVITIES

ACT# TIME REQUIRED W INDOWS

A2 1 1 4 7 9
A4 1 1 9

A6 4 5 10

A8 1 10 12 13 14

SCHEDULE FCOR ABOVE ACTIVITIES

AC T# WINOOW ACTUAL
A2 1 4 1 2
As 19 12
A6 5 10 5 9
A8 10 12 10 11
ASSIGNMENTS OF RESCURCE CLASSES TO ATTRIBUTE GROUPS
RESOURCE CLASS ATTRIBUTE GROUP # OF UNITS
Rl 3 1
R1 . 8 1
R2 4 1
R3 3 ? 1
RESOURCE ASSIGNMENTS
CLASS TIMES ASSIGMED
R1 { 1 2) ! 1 2)
R2 (1 2) S ., 9}l 10 11
R3 { 1 2) {10 1
R4
RS

SCHEDULE FOR ABOVE ACTIVITIES

ACT#H WINOOW ACTUAL
A2 1 4 1 2
A4 1 9 1 2
A6 5 10 5 9
A8 13 14 13 14
ASSIGNMENTS OF RESOURCE CLASSES TO ATTRIBUTE GROUPS
RESOURCE CLASS ATTRIBUTE GROUP # OF UNITS
Al ’ 3 1
Rl 8 1.
R2 4 1
R3 7 1
RESOURCE ASSIGNMENTS
CLASS TIMES ASSIGNED
R1 { 1 2) 1 2)
R2 (1 2) 5 9y { 13 14)
R3 { 1 2) 13 14)
R4

RS

82

SCHEDULE FOR ABOVE ACTIVITIES

ACT# WINDOW AC Tual
A2 7 9 7 8
A4 1 9 1 2
A6 5 10 H 9
A8 10 12 10 11
ASSIGNMENTS OF RESDURCE CLASSES TO ATTRIBUTE GROUPS
RESOURCE CLASS ATTRIBUTE GROUP ¥ OF UNETS
Rl 3 1
R1 8 1
R2 4 2
R3 7 1
RESOURCE ASSIGNMENTS
CLASS TIMES ASSIGNED
R1 { 7 8) { 1 2)
R2 (7 8) 5 9)y { 10 i
R3 { 1 2) (10 11}
R4
RS

SCHEDULE FOR ABUVE ACTIVITIES

ACT# W INDOW ACTUAL
A2 7 S 7 8
A4 1 9 1 2
A6 5 10 5 9
L1:] 13 14 13 14
ASSIGNMENTS OF RESOURCE CLASSES TO ATTRIBUTE GRDUPS
RESOURCE CLASS ATTRIBUTE GRDUP # OF UNITS
Rl 3 1
R1 8 1
R2 . 4 2
R3 7 1
RESOURCE ASSIGNMENTS
CLASS TIMES ASSIGNED
R1 { 7 8) 1 2)
R2 { 7 8) (5 9y (13 14)
R3 (1 2) (13 16)

83

APPENDIX C

GLOSSARY OF TERMS

84

85

activity - a non-recurring event that extends over a continuous time
interval and requires the use of one or more resources.

attribute group - group of all resource classes which possess the
same attribute.

breadth-first search - a method of tree searching in which all nodes
of a given level are processed in the same step, producing the
effect of traversing all paths of the tree in parallel.

constraint - a restriction or limitation which must be faken into
account when scheduling an activity.

dense solution - a solution to a scheduling problem which minimizes
the total ¢lapsed time between the starting time of the first
activity and the ending time of the last activity.

depth-first search - a method of tree searching in which all paths
are examined in series.

distributed solution - a solution to a scheduling problem which
imposes a uniform distribution of activity assignments over a

period of time.

earliest schedule - a solution to a scheduling problem in which the
last activity is completed as early as possible.

ending time - the time at which an activity will complete the utili-
zation of resources allocated to it.

resource assignment - allocation of a resource unit to an activity for
a specified time interval,

resource class - a collection of identical resource units.
resource unit - a person or a reusable item.

starting time - the time at which an activity will begin utilization
of resources allocated to it.

tree structured search - a search for a solution to a problem which
is performed by examining alternatives in a manner corresponding
to the traversal of a tree.

uniformly distributed utilization - allocation of resource units in
such a way that all units within a given class are allocated

for approximately equal lengths of time.

window -~ an interval of time during which an activity may be scheduled.

VITA
Martin James Wertheim
Candidate for the Degree of
Master of Science

Thesis: TREE STRUCTURED ALGORITHMS FOR SCHEDULING ACTIVITIES AND
RESOURCES IN A CONTINUUM OF TIME

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Rochester, New York, July 27, 1947,
the son of William and Helen Wertheim.

Education: Graduated from Benjamin Franklin High School,
Rochester, New York, in June, 1965; received Bachelor
of Science degree in Mathematics from Duke University
in 1969; completed requirements for the Master of

Science degree at Oklahoma State University in July,
1973.

Professional Experience: Programmer/Analyst, Texas Instru-
ments, Incorporated, 1969-1971; Graduate Assistant,
Oklahoma State University, 1972-1973.

