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CHAPTER I 

HISTORICAL DEVELOPMENT AND THEO-

RETICAL CONSIDERATIONS 

Introduction 

Heat is usually transported through a solid by two different proc-

esses--phonons and free electrons. When heat is introduced into a crys-

tal a certain amount of energy is transferred to the atoms and the dis-

turbance of the first excited atoms is propagated to the next atoms as 

the process is continued througr the crystal. This propagation of the 

perturbation of the atomic motion in the crystal can be considered as 

due to quantized waves traveling in the crystal. Each one of these 

quanta is called a phonon, This is dominant mechanism for transporting 

heat in dielectrics. The second manner.of transporting heat is by means 

of free electrons. This latter mechanism occurs in metals although even 

in metals some of the heat is carried by phonons. In semiconductors and 

alloys both processes are present. Experiments show that the heat trans-

port is proportional to the temperature along the specimen (1), and from 

this observation the heat conductivity is defined as 

~ 
AAT 

(1) 

. 
where Q is the rate of flow of heat along the specimen, -A is the cross 

section and ~Tis the difference of temperature over'the length L. 

1 
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Heat transport by lattice waves in solids depends on the anharmoni­

cities of the lattice forces, on the imperfections of the crystal lattice 

and on the boundary conditions (2), In metals and s.emimetals the ther­

mal· conductivity depends also ori the mobility of.free electrons.· The 

sources.of thermal resistance may vary from one material to another (2). 

Determination of. thermal. conductivity of potassium manganese fluo­

ride, KMnF 3 , is interesting beca.use KMnF 3 is an antiferromagnetic mater­

ial and its nearly cubic structure gives rise to low anisotropy and to 

predominance for nearest neighbor interaction (3). It is attraGtive too 

because many experiments have been done on .. the properties of KMn.F 3 , but. 

only few to obtain the thermal conductivity at low temperature, and none 

to determine .the thermal conductivity at liquid helium .temperature. 

This work will .consist of a brief review of some of the theories of 

thermal conductivity in crystalline dielectric matter at low temperature, 

the determination of the thermal conductivity of KMnF 3 at liquid helium 

temperature and near the Neel temper<f'l.ture, and the conclusions about the 

behavior of.the thermal conductivity dependence on temperature in this 

temperature region, 

Historical Development of Thermal Conductivity 

in Solids Dielectrics 

Eukens in 191~ measured the thermal conductivity of a large number 

of solids at ·liquid 'air and at room temperature (4)., He observed that 

the conductivity of single crystals increased with decreasing tempera­

ture above the boiling point of liquid air ( - 80°K) • Debye expl~\ned 

thii; behavior by assuming that; heat flows through a,dielectric soli~ 

trani;portec;l by traveling elastic waves with the same spectrum as in a 
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continuous medium. The scattering of these waves gives rise to thermal 

resistance. This scattering may be expressed in terms of the mean free 

path, which is defined as the distance that a wave travels before it re-

duces its intensity to 1/e of its initial value. Thermal conductivity 

thus is given in Debye's approach by 

= l AC v 4 · v 

wh.ere C is the specific heat per unit volume, v is the .wave velocity v 

and A is the free path, The mean free path is limited by scattering of 

the waves due to fluctuation in density, which arises from the.anhar-

monicity of the lattice vibrations, and it is inversely proportional to 

the absolute temperature. This explanation was in agreement with Euken's 

me1;1surements. Peierls in.1929.and in 1935 developed a theory in which 

he treated the solid as a crystal lattice of atoms rather than a contin-

uous medium, In this theory the normal modes are quantized, and the 

quanta are.called phonons, In accor~ with Peierls' theory, the thermal 

conductivity A is written as 

1 = - AC v . 3 v ' (2) 

At sufficiently high temperature, the specific heat is independent 

of .the temperature T, and A is invers~ly proportional to T. Then, as-

s~mi,;,.g that vis constant, the.thermal conductivity is inversely propor~ 

tional to T 

1 
A - T O 

If we.define the thermal resistance RT by A= 1/RT, according to 
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the Peierls' theory the.thermal resistance is given by 

= 
v e 

a T exp (- 2T) + bT (3) 

where a, v and bare constant and e is the Debye temperature (4). 

To test the behavior of dielectric crystals at low temperature, de 

Haas and Biermasz (5) measured the thermal conductivity in the region of 

liquid hel;ium for KBr and KCl. They found that thermal resistance di­

minished rapidly from 90° K to 10° K·and increased strongly at lower 

temperature. They investigated the dependence.of the thermal.resistance 

on thickness and found that thermal.resistance was not inversely proper-

tional to th.ickness (6). For temperatures.higher than 0.50 e where C 
v 

was constant:., A was proportional, ·to 1/T. And from A - C v A they as­
v 

sumed that the free path A was.proportional to (C v)~l A for values of 
v 

T> 0.50 e. 1 For values of T < e, C decreases while A - -T, , v This means 

that A increases at lower,temperature. For values of T lower than the 

one for which A.has a maximum, the value of A was found to be of the 

same order of the thickness of the ,rod. This was in agreement with the 

fact that for this temperature regime .the thermal conductivity is de-

pendent on the th.ickness. 
3 At the lowest helium temperature A - T , as 

well as C • For still lower temperature the increasing resistance was 
v 

caused by reflection of the waves by the walls of the sample. They con-

eluded that the hypothesis of the .reflection of elastic waves by the 

wall of the sample.or from the mosaic crystals made it possible to ex-

plain the phenomena of variation of.thermal conductivity at that temper-

ature. 

In 1938, Casimir (7) considered the case when the free path is very 

long compared witn the . dimens.ion of tl;ie crystal. · He compared the flow of 
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heat in.a cylindrical crystal~ at a t~mp~rature lower that the one for 

which the.scattering of.elastic waves.by the boundaries is important, 

with tqe flow of.electromagnetic energy in a cylinder. He deduced·a 

prescription for thermal conduct~vity at temperatuX"es lower,.than that 

one.where.the dimens:f,.ons of t}:l.e crystal are.comparable with·the free 

path. Th~ C.asitilir. formula is 

= dT, - ... 
dZ 

(4) 

This formula .. applies for temperetur~ lower ·than the on.e. corresponding to . . . . . . 

A maxi'qi.um~ •. A i;naximum usua.lly occurs. at a .. value of T between 6/20 and 

6/30 (1) •... Then we can write that. Casimir' s formula. appli.es for tempera-

tures T, such that 

Tl\e Cas.imil;'.' foi;,nula '!,)'as, deduced for cylindrical rods with circular 

cross· section of ra4ius R. When the cross section is a square., R is 

changec;l in.the fotinula by 0.56 4; dis the ,side of the square. Fis the 

:f;low of energy per ~econc;l 'through.a crystal.with cylindrical shape.of 

rci!,dius R, and with a ·gradient tell!,peratur~ dT/dz in the z .direction. A . . .. . . . . c 

.is a constant :that can be calculated. from the ,specific .heat .when it is 

written 

3 C. = At. 
0 

; 

i? is an adime1'siop,al factor of tte ·o:t;'4er, of unity and for anisotropy 

'bodies it may ~e written· 
' . 
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p = 

where alpha is·th,e ratio betweeq the longitudinal.and transverse veloc­

ity of .. sound. For values of o: 'between 1 and 2, P - 1. 4 •. Ac can be cal­

culated for a material if its Debye temperature is known. When the. 

material is isotropic P = 1.4 can be used. Casimir's formula may now 

. . 3 h be written 11. = B R T where B is a parameter containing P and Ac_. T is 

3 formula is · called th.e T law, and it · shows 11.. as a function of B, R and 

· T; and . for B, 11. is a function of the De bye's temperature, Casimir made 

experiments on Si02 and KCl, and concluded.that his theoretical consider­

·ations led to a fairly satisfactory interpretation of the experimental, 

facts (7), 

In 1958 P, G. Klemens wrote.in detail about thermal conductivity, 

In this pape);', the thermal conductiv;i.ty for non-metal crystal~, due to 

the .lattice vibrations at high temperature is given by a formula deduced 

by Leibfried and Schloemann (2) 

24 41/3 (c3) Ma·e3 i 
A - It> ---y h T for T » e (5) 

y 

where C is the specific heat at high temperature, Y is a parameter deter-

3 mined from the therm/ill expansion, a, is the volume per atom,, Mis the 

lllass per atom, e is the Debye' s temperature and T is the absolute tem-

perature. 

For thermal·conclucti~ity limited by umklapp processes at low tern-

perature, Klemens.deduced the following expression: 
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e 
3 -

7 05 ~ T3 alT 
11. - -.!-- (-) aM - e for T << e 

4 • 82 h e 
(6) 

and making the proportionality an equality, he gave as a formula for 

thermal conductivity, at low temperature, limited by umklapp processes, 

the following one: 

= A 11. (!/ 
o o e for T « e (6) 

where a1 is a numerical constant of the order of unity; a1 depends upon 

the details of the zone structure and upon the dispersion of the latti.ce 

waves near the boundaries, A is a constant, which if it is derived from 
0 

formula (6) gives A = 0.5, and 11. 
0 0 

T' = 11.(T') e for T' = T > e. 

final formula given bi Klemens for 11. is 

11. (T) =· 0.5 A 
0 

for T << 8 

Then, the 

(7) 

Substances having the same parameter should have a reduced ther­

mal conductivity 11.~T) such that when it is plotted as a function of T/8 
0 

there should. be one curve (2). 

The thermal resistance is decreased rapidly by umklapp process at 

low temperature, and after the thermal resistance reaches a minimum it is 

again increased by external boundaries. At the lowest temperature the 

size of the sample acts to produce a lower thermal conductivity. Each 

resistive process contributes additively to the total resistance, and 

the total thermal resistance of a dielectric crystal can be written as 

(2) 

R.r(T) DT3 + F(T) + BT-3 e (7) 
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3 where D T is due to the size effect, F(T) arises from static imperfec-
8 

-3 - T 
tions and BT e is the effect of umklapp processes. 

The thermal conductivity does not decrease mor.e rapidly than in-

versely with temperature because of imperfections. For point defects it 

is inversely proportional · to T, wher'eas it can c;lecrease more slowly or · 

even increase with other impel,'.'fect;l.ons. Then, when the thermal.conduc-

tivity changes faster than linearly an important fraction of the resist-

ance may be attributed to umk+app processes at lo:w temperature. When 

the sample is almost free of imperfections the behavior of thermal con-

ductivity is. given by the formula 

At the lowest temperature, when the size effect is the most important, 

and the crystal is almost free of imperfections, the thermal conductiy-

ity is given by 

= 

Exponential variation .of the thermal.conductivity has been found.by 

Berman (3), White and. Woods (8), by Wilkinson and Wilks (9), by Webb and 

Wilks (10) and by Berman, Foster and Ziman (11). 

Theoretical Considerations 

To study thermal conductivity in a crystal we consider it, in a 

first approximation, as a composed of atoms bound together with Hooke's 

forceso Then, we solve the motion.for the crystal lattice in its normal 
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modes. Solving the .motion in its normal modes, where wk is the quanti-
-j 

zed normal mode or phonon corresponding to the wave vector k and to the 

polarization index j, the Hamiltonian of the system is (12) 

H = (8) 

where N!s:i is the total number of quantized normal modes or phonons with 

the wave vector~' and -!iw,!sj is the energy of the phonon w!sl, 

The velocity of a wave packet with wave vector k is given by the 

group velocity 

= vk .• e. 
- .... .J -l. 

where ~i is an unit wavevector and ~iii; the component of~ in the direc­

tion of e .• The number of phonons per unit volume in an isolated system 
-]. 

of volume.Vin equilibrium at,temperature Tis (13) 

0 

~j 
= 

hwlsJ _,_ 
~T 

[V(e. 

-1 

- 1)] 

The heat flow in the system at position r is 

. 
Q = 

where nk, is the density of phonons in the system with a non-uniform 
. _J 

(9) 

temperature distribution. The net flow of heat in a system in equilib-

rium is zero, and if we write o~j 

written 

0 
= n~j - n~j' the flow of heat may be 

(9) 
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The equation of Boltzmann for the phonon distribution is· 

~ 
( at ) scatt. (10) 

If the concept of relaxation time is introduced, the scattering ex-

pression may be written (l4) as 

< a~i) = 
at scatt, 

(11) 

Substituting this expression of the scattering into Boltzmann's 

equation, and assuming that the system is not far from equilibrium, such 

the Boltzmann equation may be written as 

= 

1 · l 
Here - = E ~ and the flow of heat may be expressed by 

T i Ti 

. 
Q = 

In the last equation the thermal conductivity is a tensor for ani-

sotropic systems,, and,it·is defined from the formula for heat.flow as 

(12) 
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allowing to write the flux of heat,as a function of the thermal conduc-

tivity tensor in the following form 

. 
Q = - !JT • >,. 

af3-
(13) 

When the system is isotropic, the thermal conductivity reduces to 

(14) 

and Q = WT (13) for isotropy, where ~ is the angle between the group 

velocity and VT, When the distribution of discrete states may be ap-

proxilllated to a continuous distribution, t;:he sum in formula (14) may be 

~hanged to the integral over k, Making this change, the thermal conduc-

tivity is given by (14) as 

>..· = 
k an,0 

"'. l ! max. L2'. ~'v2 k2dk 
~ 2 T 'fl w~J' ~T. k' 61r O (} . _J ' j 

(14) 

where k is the effective radius of the first Brillouin zone. If the max 

acoustic approximation is used, which means that w = v k, this equation 

is Debye's equation for i~otropic,solids, and the thermal,conductivity 

is expressed by 

w x 
_1_ ! max. , ~ e' w2dw 
2 2 o K T2 ('e~ -1) .. 2 

1T "\l B 

(15) 

hwk 
where x = ~T' wmax is the .Debye's maximum for w, and vis the sound 

velocity. 



Antiferromagnetism 

The magnetic moment of one atom or ion may be expressed by 

J.J :::; Y-?iJ = -gJ.J J' B-

where ~J is the total angular moment of the atom or ion. This total 

12 

(16) 

angular momentum is the sum of the orbital angular moment -fi~ plus the 

spin angular moment .:fi~, Y is the ratio between the magnetic moment anq 

th.e .angular moment and the g factor is 

g = 
J(J+l) + S(S+l) - L(L+l) 

2 J(J+l) (17) 

Usually antiferromagnetis (AFM) are characterized by the property 

of having the spins ordered in an antiparallel arrangement but no net 
•. ,; 

magnetization below certain temperature.(15), This temperature.is called 

the Neel temperature.· KMnF3 is an.exception to this, but the magnetiza­

tion vanishes at 81 °K while the order vanishes at 88°K. 

The fact that AFM have.spin order and no magnetization suggests that 

electron spins are ordered in a special. form in which the field of one 

electron a~ts on the other electrons, and conversely, To explain this 

behavior it is assumed th.at the atoms of an AFM possess magnetic moment, 

, and that a negative exchange coupling is operating among them (17), In 

the. crystalline antiferromagnetic model an arrangement of the atomic 

magnetic moments is.assumed in such a way that they point upward and 

downward in an alternating manner when the temperature is sufficiently 

lowe 

The susceptibility of A]l'M crystals has a maximum at a temperature 

close.to the Neel temperature.(Tn) (16), Below this temperature AFM are 
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magnetically anisotropic. At temperatures higher than T the suscepti­
n 

bility obeys the Curie-Weiss law 

c x = T + 6 
for T > T 

n 
(18) 

where.Xis the magnetic susceptibility and C is the Curie parameter. If 

the Curie temperature is defined as that one where the extrapolated par-

amagnetic susceptibility is oo, we may say that 6 is a value equal to -T c 

in the Curie law X - ~C~ - T-T. • 
c 

With th.is. model of AFM the crystal may have two or an even number 

of sublattices. For each sublattice with spin pointing up there is one 

pointing down. It has been postulated that there is an energy directing 

the magnetization along certain.definite crystallographic axes called 

the magnetocrystalline anisotropy energy (15). 

The operator expressing the.energy of the interaction between the 

electron spins of the atoms localized in a crystal may be written as the 

Hamiltonian of the system (18) 

H = (19) 

The exchange interaction in the crystal is equivalent to an inter~ 

atomic potential (17) 

(20) 

where ~i and ~j are respectively the spin angular moments of the atoms i 

and j measul;'ed in units of h. J is the exchange integral. In an anti-

ferromagnet, J is negative and denotes, in the case of compounds, pre­

dominantly the coefficient of indirect exchange coupling, that is, the 
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coupling via the intermediary of a negative ion such as F , 

The magnetization for the two sublattices is equal when there is no 

applied field, and the magnetization of each sublattice is called the 

saturation magnetization M, which is equal to 
0 

M 
0 

1 
= 2 µB Ng S B (y ) 

S O 
(21) 

N is the number of magnetic atoms per unit volume, g is the g factor; 

for an electron spin g is 2,00, µBis the Bohr magneton and it is equal 

to 2efi, Sis the spin angular momentum number, B is the Brillouin func-
mc s 

tion and y is equal to 
0 

= GM 
0 

parameter defined from the exchange field, KB is the Boltzmann 

.ant at Tis the Kelvin temperature. 

The solution for the spins motion in crystal lattice of an anti-

:romagnetic compound with only two sublattices may be written as (19) 

ilw = (22) 

Where H is a ficticious magnetic field introducing the anisotropy and 
a 

He is the exchange field such that JS= - 2 µBHe' In this prescription, 

J is the negative exchange integral and µBis defined from the ratio 

bet~een the magnetic moment of an atom with its spin S: ~ = 2µBS, When 

k is small f(k) = 1 - Yk2 , Neglecting anisotropy the solution is 

(23) 

This result gives w depending linearly on k for small values of~' 



which is different from the similar case for ferromagnetism. 

The approximated dispersion relation from Equation (22) of w has 

the form given in Figure 1. 

Figure 1. Dispersion Relation of One 
Spin Wave in an Anti­
ferromagnet 

15 

The elementary excitations of a spin system have a wave 1.ike form; 

and, when ·they·are quantized, are called magnons. A spin wave,calcula-

tion determines the way in which ·the excited states deviate from a per-

fectly ordering· (16). 

. . 
Akhiezex- ,;1nd Shishkin (20) have s·ttidied the; the-rmal· conductivity of 

ferromagnetic dielectric materi,;1ls and found that, at low temperature, 

,......· ~ ' 

the the~l cc;mductivity in unbqunded ferromagnetic dielect·rics; which 

contain no impurities is determined by the interaction of spin:waves with 

other and with phonoris. They'showed that when the Curie Temperature T 
c 

is lower than the Debye temperature eD' the thermal conductivity is 
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Tc eD 
4T 2T rather proportional toe than toe They gave a prescription for 

thermal conductivity due to phonons and another one for thermal conduc-

tivity due to magnons. 

The prescriptions for Af and Am are: 

T 8 2 
c D 

2 
iiaw 

T 3 
c 

"m - .ftaw2 

T 7 /2 
(-) 
T 

c 

T 
c 

4T 
e . T << en 

(24) 

(25) 

Akhiezer and Bar'yarkhatar (21) have studied the thermal conductiv-

ity o,f ferrodielectrics at low temperature based in the mutual scatter-

ing of spin waves. They deduced the following formula for thermal con~ 

ductivity at low temperature. 

(26) 

Where a is the lattice constant, C and c1 are, respectively, the heat 
.9 

capacity of the spin waves and of the lattice. A1 is a value depending 

en --
on Te T 

Yo 

When 
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n2T 
-· _c_ 

4 T 2T 
A = g 'fl.a e (27) 

82 
D 

They pointed out that when 8D » Tc and T « T' spin waves play 
c 

an essential role in the heat conduction. 
82 

If 8D » -T >> 2 the heat is T· 
c 

conducted by phonons. 

Gurzhi (22) has studied the thermal conductivity in dielectric and 

ferrodielectrics. He used the Debye approach A~ C Av and obtained at· v 

very low temperature that A is proportional to T3 for dielectrics. For 

a temperature range from T1 to T2 , he obtained 

d2 8 
c..!.> 4 8D a 

(28) 

Where T1 is the temperature at which A:p' the free path for phonon-phonon 

normal process, is of the same order of length that the one of the sam-

ple: 
2 

T2 is the temperature at which Av= dN. 
A 

Av is the ef-

fective mean free path which characterizes the volume collisions with 

loss of momentum. The valued is the transverse dimension of the sample, 

Mis the. mass of tl;ie unit·cell; vis the sound velocity and a is the 

lattice constant. At higher temperature he.considered the usual decrease 

of thermal conductivity due to umk.lapp processes.in the exponential .form 

and in the 1/T law due to imperfections. 

To work with magnons, he started considering the spin waves as the 

basically responsible for heat tranf;port·in ferrites at low temperature. 

The following formulas were deduced for hit11 at very low temperature 



µM 2 
(T o) e 

c 

(3µ M 
0 0 

T 
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T « T << µ M 
1 B o 

T d2 2 µM 2 µ M 4/7 

" 
c (.1..) (-2.) µM << T << (...!..£.) (29) = T x 3 T T 0 T 

a c c c 

c..!..) 
7/2 JJ:i1 4/7 

T (--o) << T << T 
T c T 2 c c 

Where µBis the Bohr magneton, M0 is the saturation magnetic moment and 

(3 is the anisotropy constant. 

At higher temperatures than T2 , it was considered that the thermal 

conductivity decreases exponel)tially if the sample was sufficiently 

pure, 

Gurevich and Roman (23) studied the thermal conductivity of ferrites 

at low temperatures and the entrainment of phonons and magnons. They 

considered the flow of heat in ferrites at low temperature determined by 

the flows of phonons and magnons, This flow is limited by scattering at 

the crystal defects and at the boundaries, and by the transfer processes, 

The relaxation time concept of phonons and magnons.is used in this de-

duction. It was considered that magrton-magnon and phonon-phonon i1J.ter-

actions were much stronger than the interactions causing thermal resist-

ance, Equilibrium distributions, with velocities v and v, for magnons . m p 

and phonons were established in the magnon and phonon subsystems as a 

result of the latter interactions, Then, it is considered that at a 

given temperature and at. a magnons and phonons concentration, the inter-

action between magnons and phonops change to be stronger than the inter-

action causing thermal resistance. One of the systems, the magnon or· 

phonon, is accelerated or decelerated by the other, and a single velocity 
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v determined by the balance of momentum is. established. The temperature 

region where this happens is called the entrainment temperature. They 

examined specifically the thermal conductivity, with entraimnent of mag-

norls and phonons, in the case of losing momentum due to the scattering 

of phonons or magnons by defects~ 
. . 

One general formula was deduced for the thermal conductivity of 

ferrites, this is 

= (30) 

Where Tis the Kelvin temperature,µ is the effective mass of one 

mag non = C is the magnon heat capacity, C is the phonon heat 
2T a2 ' m P 

c 

capacity, n is the number of magnons per unit volume, N is the number m p 

of phonon·per unit volume, zmd is the relaxation time of magnons in the 

interaction causing momentum losses and zpd is relaxation times of 

phonons in the interactions causing momentum losses. 

2 92 D 
They defined a temperature T1 = 2µv ., T and considered the case 

c 
when T << T1 • For this region .temperature, the thermal conductivity is 

determined·by the magnons. When T >> T1 , A is determined by phonons. 

They also showed that when.T << T1 the interaction between magnons 

and phonons is more probable. A very important result of this study is 

that when there is entrainment ·the curve A= f(T) has a minimum at the 

beginning of the region temferature, and then the thermal conductivity 

increas.es with temperature; while when there is not entrainment ·it .de-

creas~s monotically. 
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Gurevich and Roman (24) also studied thermal conductivity of anti-

ferromagnetis at low temperature. They considered two cases: TN>> eD 

and TN<< eD, It was found that the thermal conductivity depends on the 

kind of magnetic impurities in the crystal. 

The prescriptions deduced for them are: 

T 2 
N 

Ta~c· For diamagnetic impurities and TN<< 6Dc 

For paramagnetic impurities and TN<< eD, 

(31) 

(32) 

When·both kinds of impurities are present in the antiferromagnet, 

the thermal conductivity is 

For T < T2 (32) 

and 

For T > T2 (31) 

T2 is the temperature where A reaches the maximum and c is the total con-

centration of impurities, 

Potassium Manganese Fluoride (KMnF3) 

Potassium manganese fluoride, KMnF 3 , is an antiferromagnetic com-

pound.with Neel temperature T = 88 °K. 
n 

manganese ion Mn+2 with five d electrons. 

This compound has a divalent 

+2 
Mn is a S state ion, which, 

according to Berman~ Olaf and Knox (25) allows to expect a slight dis-
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tortion from its cubic perovskite structure. But it is known that per-

ovskite structure is itsel'f unstable. These two facts make the study 

of KMnF3 more interesting. At room temperature potassium manganese 

fluoride has a .cubic perovskite structure with lattice constant 
0 

a= 4.186 A. In addition to the Neel temperature transition at 88 °K, 

0 it has been shown a second magnetic transition at 81,50 K. Below this 

temperature of 81.50 °Kit exhibits a weak ferromagnetism caused by 

cauting of the spins. Also, it is known that the cubic room temperature 

structure changes to an orthorhombic phase at 184 °K with tetragonal 

0 pseudocells with values of c/a > 1, and at 84 K there is another tetra-

gonal pseudocell too, but with c/a < 1 (25). Monoclinic pseudocells 

0 have been reported at lower temperature and between 88 and 105 K. 

0 . 0 
Thermal conductivity of KMnF3 between 15 Kand 300 K has been 

measured by Suemune and Ikawa (26) finding an anomalous decreasing in 

the temperature dependence o:E the thermal conductivity at the Neel 

temperature, They also found an ano.malous decreasing of the thermal 

conductivity for another antiferromagnetic material with perovskite 

0 structure, KCoF3 , at its Neel temperature of 144 K. These anomalous 

minima in the thermal conductivity were attributed to the phonon-magnon 

scattering (26). 

0 0 In determining the specific heat of KMnF 3 between.70 Kand 300 K, 

anomalous values of the specific heat have been found (27,28). A maxi­

mum of the specific heat at 83 °K has been attributed to an antiferro-

magnetic ordering of the manganese ion below this temperature. Another 

maximum at 179 °K is supposed to be due to the crystal structure change, 

Khlyustov and his coworkers (28) found three temperatures where the 

specific heat of this material has anomalous values. They found tQat at 
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85.75 °K there is second kind transition which was attributed to the 

antiferromagnetic ordering. 
0 

The anomaly at 95.13 K was a first kind 

transition with changing of the structure, and the anomalous behavior at 

191.13 corresponded to the changing of the space symmetry group in the 

crystal. 

Goldrich and Birman (29) showed in a theoretical way that only 

eight space groups can arise in the perovskites by second order phase 

transitions without changing the unit cello 

Using the neutron scattering technique it has been found that the 

phase transition at 184 °K is a result of the softening of r 25 phonon 

mode at the [111] zone boundaries, and it has been shown that the two 

0 0 transitions at 84 Kand 184 Kare a result of the soft phonon insta-

bility (30) 0 

Figure 2 is a sketch of the unit cubic cell of KMnF3 at room temper­

ature. Figure 3 illustrates the unit cell in the orthorhombic phase. 
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CHAPTER II. 

EXPERIMENTAL· 

The Sample 

The sample was a crystal of potassium manganese fluoride grown at. 

Oak Ridge National Laboratory by C, R. Riley using the Stockbarger tech-

nique~ The dimensions of the sample were 10.00 mm. in length, 2.58 mm. 

in width and 1.50 mm. in thickness. The sample color was a soft pink. 

The dimensions were obtained after cuttipg a little bigger piece in 

order to have a more uniform cross section. The sample was oriented by 

X-ray diffraction so that the 10 mm. length was parallel to a <100> axis. 

The Apparatus 

The measurements were made by using a steady~state heat flow method, 

The. complete apparatus consisted of a cryostat and a sample holder. In 

addition there was the necessary equipment to evacuate the sample holder 

and to produce low temperatures by evaporating cryogenic liquids such as 

nitrogen and helium. AuF -chromel thermocouples were used to measure 
e 

temperature~ These emf's were monitored by a potentiometer. Figure 4 

shows a schematic diagram of the cryostE1,tand sample holder. The cryo­

stat contains fot,ir chambers. They are: an exterior vacuum chamber to 

isolate tb,e next interior ctambet: from the room temperature, a second 

chamber with a cylindrical hole on its top to put· liquid nitrogen in it, 

another interior vacuum chamber to isolate the inner chamber from the 
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last nitrogen .one and the inner chamber where is placed the sample hold-

er. In this champer may be put liquid helium or liquid nitrogen in ac-

cord with the temperature that we need.in the sample., The latter chamb-

er may be kept in contact with the ambient by a hole or may be sealed 

and connected to the pumping system. This cryostat is a glass dewar 

used to pre-cool .and to keep the sample holder can cool. 

A detail of the sample holder is shown in ]figure 5. It is essen-

tially a small brass vacuum can containing a heat sink, an a'qlbtent heat-

er and the holder for the sample. This can has on its top a vacuum seal, 

and from this top emerge two stainless steel tubes. One of these is to 

take out the cables going t9 the meters and to the power sources, This 

' tube is used to evacuate the brass can too. The second tube is used to 

pump out the variable heat leak. This heat leak is used to increase the 

range in temperature that measurements can be made· with a given cryo-

genie liquid. At _the bottom of this tube there is a clamp to fb: the 

sample. Over the clamp there is an aluminum flange where is fixed a 

cylindrical aluminum heat shield for heat radiations. Then the tube 

passes through th.e aluminum flange and just, over the flange the .electric 

ambient heater is placed around the tube. Above this the t~be has. an 

internal copper cylindrical heat sink. A heat leaking chamber is left 

between the heat sink and the wall of, the tube. The chamber may be , 

evacuated or may be .filled with so11,1e gas.· The se_t heat sink-heat leak 

works as a heat transfer cylinder from the.inside of the brass can·to 

the cooler in the inner.chamber of the.dewar. The latter heat transfer 

cylinder is connected to the exterior pumpiq.g system or to a connector 

to transfer gas into the cylinder when it .is necessary. To measure the 

sample is fixed to the clamp in the sample hol,der. Indium is. used to 
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~ave I;\· bett;er th,ermal c·entact ,between the ·cl.amp~ and t;.he piece of. KMnF 3 • 

Th.en 1;:he. ends. ·of the tt,.e~ocouple are· put in co_ntact with, the sample 

leaving some dist;an.ce ap~rt between the thermocouple clamps. The thermo-

couple usec;i :in tpis eJC;per:tment .was one b1.,1ilt with ~me ch,romel wire and 

one AuFe wire,· ·rt is .interesting t;.a, point out that; the thermocouple,was 

connected .in. such a mode that: a+lowed to measure Al' directly.. Th:i,s. kind: 

of connection has the advantage that the values of AT obtain~d do not 

depend on the difference of .temperatur~ between· the sample and the ice, 

bath ref~rence~ . Fisure 6 s.li,(;)ws .a detail of. this connection~ . 

Finally, the gradient ~eater is fixed to the h~ttom of the ,sample. 

'rhe ·,m.b.ient h,eater plays. the rqle of raising the . temperat;.ure of the 

sample and keeping this temperat;.ure. The gradient heater is used to. 

transform electric power in thet"ma~-. energy which flow$ through· the 

S~Jttp·le ,ii;i. th.e form. of heat~ . Then this heat .. out of the. brass can through 

the siI).k. 

Tech-n:Lque. 

Th,e s.ample, with tne clamps tQ measure : the temperature T and · the . . . . . . 

gradien.t. temperlilture AT, .was f:1:x;ecl .to the holder sample, '.Che distance 

between .. th:e c+amps for 6T .was 5 ~10; i:iuns. The sample cross section was 

. 2 3,87 mm. Once the.sample holder :was insi~e of t;.he dewar, and the can 

eva.cuated, the next ste,p consisted o:( filling the, corres.ponding outer 

· chamber 'tttith liquid ni,t;.rogen. , 'Th.~, liquid helium was transferred ta 

the irmer dewar·. WH:h the evacuated' '6rass can leak tested, and without. 
I .-

aJ;\y electric current. in th.e amb:lerit .heatel;', the power was turned on in 

the .gradient heater. Afte'J;' this it ;WaE! nec~ss~ry to .wait. for about . 

three hou~s to allow the syst.~m ·to reach thet'lllal equilibrium~ . Then, the 
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first measurements were initiat~d at liquid helium temperature. It was 

observed that thei;-mal equilibrium was reached ina relative short; time, 

which allowed all the points at liquid helium.temperature to be taken in 

two days. 
0 0 Fifteen points were taken from 5.15 K to 22.50 K. The 

'1leasurement at .each point was made in the following way: taking a read-

ing of temperature wi,th power in the gradient heater and another read-

ing for temperature gradient, t1'en turning the power off in tq.e heater, 

wait for equilibri,um and take again one reading for temperature and 

other for gradient. 

To work at the·Neel temperature liquid nitrogen was transferred in-

to the inner dewar instead of liquid helium, By pumping out the liquid 

nitrogen, it was possible.to reach a,temperature of 46.35 °K. At this 

te~perature the second run began. The same method of putting first 

power, in th.e gradient heater, and then measuring with zero power was 

used, 0 0 Twenty seven points were taken from 46.35 K to 188,00 K, but, 

in two months, At e;ixty three degrees some. problems in getting, stabil-

ity forced a change in the procedure, Up ta the last named tem,peratur.e 

I cquld wait for equilibrium, and when the temperature was changing at 

a very slow rate I could read the temperature and change to read AT, A 

subsequent reading showed/that.the first reading of temperature was 

right. NQW, nothing was stable, nor tl).e temperature neither fiT, It was 

necessary to read the temperature when it was almost in equilibrium and 

to turn to observe the temperature gradient changing until it took a 

limit value or began very small oscillations around a value. Then tak-

ing this value for h.T, I returned to re-read . the value of t.he tempera-

ture, and when it was almost the same that the one before; I took this 

temperature value as a right one, Tables V and VI show a sample.of this 
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behavior in the re.$ult~ of the experiment •. 

The. Result of the Expetiment 

The results. of the e:J!:periment are .-shewn in Tables I and IL In 

these tables the temperat;ure is given in degrees Ke.lvin and. the corres-

pc;mding thenial , conc;luc ti vi ty is gi vep. in milliwatt · per degree and per 

centime~er. The same re~ult is showh.in·a graph, where the.thermal con-

ductiyity has been plot~ed as a functi,on Qf the Kelvin temperature. This 

graph is drawn in a log-log scale~ In addition, for a better understand-
' 

ing of the .results the formula us~d to detei-mine_the thermal conductiv­

ity is. showµ.. The values obtained _during the. experiment to be us.ed in 

th.e formula are written in other two .tables numbers III and IV. Tables 

V anc:i VI are a sample.of the variation of delta T going to a limit. 

Point 
Numbei-

l 
2 
3 
4 
5. 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TABLE I 

TllERMAL CO:NBUCTIVITY OF RMnF3 AT 
LIQUID HELIUM TEMPERATURE 

T o· 
K. 

5 .19 · 
5.67 
6 .21 . 
7.09 
7.48 
8.33 
9.15 

11.SG> 
12.46 
12.82 
14~07 
15 •. 30 
17.50 

•. • ·1 18.56 
22~25 

). 

mw. 
cm,.°K 

112.0 
137.0 
170.0 
198.5 
219.0 
266.0 
284~0 
299.0 
299.b 
292.0 
295.0 
273.0 

' • i: 

253.0 
232.0 
186.0 
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TABLE II 

THERMAL CONDUCTIVITY OF I<MnF3 NEAR THE NEEL TEMPE~TURE· 

A 
Po:i,:p.t T mw. 
Number QK OK cm •. 

16 46.35 81.0 
17 50.4/) 73.0 
18 55.10 65.0 
19 55.40 64.b 
20 61~00 5.9 .o 
21 74.25 52.5 
22 79.05 50.8 
23 80.50. 50.6 
24 81.10, 50.8 
25 Sl.95 50.9 
26 83~25 50.2 
27 86.40 50.4 
28 86.86 5p.2 
29 88.25 50.0 
30 88.. 70 50.0 
31 89~~o 50.8 
32. 97.50 51.6 
33 101.50 52.6 
34 107~_70 54.0 
35 113.20 54.0 
36 120 54~20 
~7 126 54.30 
38 135, 55.00 
39 149 56.40 
40 l~~. 58.00 
41 188 62.00 
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TABLE III 

EXPERIMENTAL DATA TO CAL.CULATE TH:mRMAL CONDUCTJ.VITY (A.) 
AT LIQl)ID HELIUM TEMPERATURE 

Point T Q E E 
oE 

!J.T " p 0 at 

Number OK mW µV µV µV OK mw. 
OK ~K cm. 

1 5.15 0.285 0.10 -0.34 13.43 0.0334 112.0 

2 .. 5 .67 · 1._5.90 1~96 . . -0.16 13.82 0.1532 137.0 

3 6.21 2.120 2.35 -0.01 14.25 0.1645 170.0 

4 ?~09 2.088 2.05 0.02: 14.75 0.13~0 198 .s' 

5 7 .48 . 2 .670 . 2 .32· -o.oa· 14. 9'5' .. .. 0.1600. 219.0 

6 8.33 . 3.700 2.66 ....:.0.21 15.36 0.1820 266.0 

7 9.15 2 .• oaa 1.12 · -0.41 15.83 0.0964 284.0 

8 1L50 o. 795 0. 70 . · 0.13 16.34 0.0348 299.0 

9 12.46 1.144 0.93 0.09 16.57 0.0508 299.0 

10. J,.2.82 1.144 0.99 0.12 16.63 0.0520 292 .0 

11 14.07 1.144 · 0,98. 0.12 16.80 0.0555 295.0 

12 15 .30 1.146 0~04 .. 0.11 16.9.0 0.0595 273.0 

13 17.50 l.l,47 1.14 0.13 16.98 0.0595 253.0 

14 18.56 1.147 1,30 0.20 16.99 0.0650 232.0 

15 · 22.25 1.·151, 1.54 0.14 17.30 0.0810 186.0 



Point 

Number 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

TABLE IV 

EXPERIMENTAL DATA TO CALCULATE THERMAL CONDUCTIVITY (A) 
NEAR THE NEEL TEMPERATURE 

. clE T Q E E af LiT 
p 0 

OK mW µV µV \.IV OK 
OK 

46.35 0.5216 2.07 0.56 16.455 0.0858 
50.40 0.0736 0.64 0.44 16.606 0.1330 
55.10 0.5284 2.08 0.24 16.808 0.1080 
55.40 0.5240 2.03 0.20 16.821 0.0108 
61.00 0.5272 2.13 0.14 17 .077 0.0117 
66.65 0.8220 3.46 0.22 17.335 0.1860 
74.25 0.8258 2.43 -0.19 17.665 0.0201 
79.05 0.8345 3.91 0.03 17.870 0.0218 
80.50 0.8355 4.06 1.20 17.940 0.0218 
81.10 0.8360 4.02 0.11 17.961 0.0218 
81.95 0.8400 4.00 0.02 18.040 0.0220 
83.25 0.8350 4.00 0.05 18.050 0.0220 
86.86 0.8410 3.88 -0.15 18.174 0.0224 
88.25 0.8395 3.98 -0.02 18.260 0.0221 
88.70 0.8385 3.98 -0.10 18.280 0~0224 
89.90 0.8400 3.84 -0.17 18.328 0.0218 
97.50 0.8450 3.75 0.30 18 .630- 0.0217 

101.50 0.8465 3.49 -0.50 18. 78 0.2122 
107.70 0.8450 3.58 -0.35 19.02 0.2060 
113.20 0.8535 3.30 -0.20 19.192 0.2060 
120.00 0.8535 2.94 -1.10 19.415 0.2070 
126.00 0.8560 3.18 -0.90 19.615 0.2080 
135.00 0.8595 3.00 .:..Lio- 19.861- 0.2062 
149.00 0.8645 2.45 -1.66 20.215 0.2031 
168.00 0.8690 2.90 -1.27 20.670 0.2010 

36 

A 

mw. 
OK cm. 

81.0 
73.0 
65.0 
64.0 
59.0 
58.0 
52.5 
50.8 
50.6 
50.8 
50.9 
50.2 
50.2 
so.a 
50.0 
50.86 
51.60 
52.60 
54.00 
54.0 
54.2 
54.3 
55.0 
56.4 
62.0 
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TABLE V 

VARIATION OF dT :~ GOING TO A LIMIT VALUE AT 88.25 K 

t 6T !! aT t LlT ~ · aT 

Minutes mw Minut;es mw 

- ·o.o J.90 58.0 3.99 
3.0 3.90 59.0 3.99 
4.0 3.90 59.0 3.99 
7.0 3.90 61.0 3.99 

10.0 3.90 66.0 3.99 
12.0 3.90 69.0 3.99 
13.0 3.94 71.0 3.99 
18.0 3.94 72.0 4.01 
21.0 3.97 79.0 4.01 
25.0 3.97 90.0 4 •. 01 
31.0 3 .• 99 91.0 4,03 
35.0 3.99 92.0 4 .• 03 
36.0 4.01 92.0 4.02 
39.0 4.·01 94.0 4 •. 03 
46.o 4.01 100.0 3.93 
42.0 4.01 . 104.0 4.01 
43.0 4.01 108.0 4.01 
55 .o- 3.97 112.0 4.01 
57.0 3 •. 96 



TAB:LE VI 

VARIATION OF AT;~ GOING TO A LIMI~ VALUE A+ 88.25 K 
WITH P = 0 IN THE GRADIENT HEATER 

t LiT 2,! ar · 
Minutes mw 

o.o 0.54 

4.0 0.23 

6.0 0.10 

11.0 o.oo 

23.0 -0.02 

24.0 -0.02· 

26.0 -0.04 

34.0 -0.04 

3.5. () -0.01 

41.0 -0.02 

42.0 -0.02 

43.0 -0.02 

49.0 -0.02 

54.0 -0.02 

62.0 -0.02 

38 
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The formula used to calculate the thermal·conductivity is 

. 
= g_ • L 

AT A (32) 

where Pis power flowing through the crystal, Lis the separation be-

tween the cla~ps connected.with the thermocouple tQ measure AT, A is the 

cross section of the sample and AT is the temperature difference between 

the cla~ps. 6.T is det~rmined 'by the fol;I.owing prescription 

AT = (33) 

where E is the electromotive force generated in the thermocouple by the 
p 

difference of temperature between .the clamps when there is some po'tl7er 

in the gradient heater, E is the emf when.there is no power in the 
0 

clE 
gradient heater and clT is the relation between temperature and electro-

mot~ve force for this thermocouple. 

. -1 
In this experiment the ratio L/A was a constant equal to 13.50 cm 

and the,measu;el!lent cqncerned,.only with .t'he power P, the temperature and 

the values to obtain AT .• 

Discussion of the Results 

From the observation of the tables and the grapl\ shpwing.the re-

sults, it may be pointed out tqat five of the .six points taken between 

0 · 0 5.19 Kand 8.33 Kare on a straight line. This line shows a relation 

between tlw thermal conduct:(.vity and the Kelv:1..n temperatur.e, ·in which 

the thermal conductivity is.almost proportional to T2 rather than to T3• 

This line .may be represented by 
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>. = 
2 3.35 T + 30.00 • (34) 

where the thermal conductivity is given in milliwatts per Kelvin degree 

and.per centimeter and the temperature in Kelvin degrees. 

The last equation for thermal conductivity gives a deviation less 

than 8% from the values obtained in the experiment for these five points 

0 
between 5.19 and 8.33 K. 

0 The thermal conductivity shows a maximum at 11.50 and 12.46 K, The 

value of the maximum is 299.00 milliwatt per Kelvin degree and per centi­

meter. Choosing the maximum at 12 °K, the Debye temperature may be esti-

mated in 264 Kelvin degrees. This value is the result of multiplying 

twelve times twenty three. 

The points taken between 17.50 and·61.00 °Kare also on straight 

line. It is necessary to point out that no points were taken between 

0 
22.50 and 46.35 K, The equation 

= 4600 _ 19 
T' (35) 

represents the relation between the thermal conductivity and the Kelvin 

temperature from 17.50 to 61.00 °K. The thermal conductivity is given 

in milliwatt per Kelvin degree and per centimeter and the temperature is 

given in Kelvin.degrees. 

1. From 5 .19 K to 8. 33 K, the thermal conductivity is proportional 

to Ta:, with a: - 2. This result is more in accord with the prediction of 

GurzQy (22) for thermal conduGtivity in ferrodielectrics at very low 

temperature, where,). - T2 , than the prediction of Casimir (7) for di-

electrics or the Gurevich and Roman (24) prediction for antiferromagnets. 
I 

They predict a T3 law. in this temperature region, It may be necessary to 
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go to lower temperature than 5,15 K to observe this T3 behavior. The 

magnitude of the conductivity is much smaller than would be expected if 

the .heat conduction were due entirely to phonons with mean free path de-

termined by the sample boundaries. This indicates a strong phonon 

scattering mechanism in this regime, Two possibilities are spontaneous 

"twinning" due to the str~ctural phases transitions and magnon-phonon 

interactions. These can not be distinguished in the present experiment. 

Wolf (31) is experimenting with a diamagnetic perovskite, KZnF3 , which 

has the same cubic structure at room temperature and almost the same 

constant lattice that KMnF3 • He has found higher values of the thermal 

conductivity is this temperature region and a higher maximum that the 

one found in this experiment, 

2. The behavior A - f(l/T) is in accord with the prediction of 

Gurevich and Roman (24) for antiferromagnets with diamagnetic impurities. 

3, The thermal conductivity has a broad minimum in the vicinity of 

the Neel temperature 88 K. A careful search was made for evidence of 

magnetic critical scattering. No structure was observed indicating that 

this minimum is probably nor magnetic in origin. A source for the mini-

mum may be the resonance scatte~ing of the soft phonon modes, This 

point should be investigated. 

Summary 

The thermal.conductivity of a small sample of potassium manganese 

fluoride, KMnF3 , has been measured in the temperature range from 5.19 K 

to 'i88 K. A maximum was found at 12 K. The value of this maximum was 

300 mW. 
K, cm. At lower temperatures tq.an 8.33 K, the thermal conductiv-

ity, A, behaved like>.. - f(T 2), The low values of the thermal conduc..,. 
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tiivity are attributed to a strong phonon scattering mechanism rather 

than to the effect of the sample boundaries. 

' 
From 17,50 K. to 61 ·K., the thermal conduc;:tivity behaved prop or-

tional to 1/T, which corresponds to the scatt;:ering of .phonons and mag-

nons by impurities .• 

From 80 K. to 90 K., was'found an. almost temperature independent 

behavior ,of the thermal conductivity, A . • f 50 mW. m1.n1.mum o K • cm. was found 

at the Neel temperature 88 K. This minimum is probably not magnetic in 

origin. 
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