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CHAPTER 1

HISTORICAL DEVELOPMENT AND THEO-

RETICAL CONSIDERATIONS
Introduction

Heat is usually transported through a solid by two different proc-
esses--phonons and free electrons., When heat is introduced into a crys-
tal a certain amount of energy is transferred to the atoms and the dis-
turbance of the first excited atoms is propagated to the next atoms as
the process is continued through the crystal. This propagation of the
perturbation of the atomic motion in the crystal can be considered as
due to quantized waves traveling in the crystal. Each one of these
quanta is called a phonon. This is dominant mechanism for transporting
heat in dielectrics. The second manner.of transporting heat is by means
of free electrons. This latter mechanism occurs in metals although even
in metals some of the heat is carried by phonons. In semiconductors and
alloys both processes are present. Experiments show that the heat trans-
port is proportional to the temperature along the specimen (1), and from

this observation the heat conductivity is defined as

where Q is the rate of flow of heat along the specimen, .A is the cross

section and AT ig the difference of temperature over the length L.



Heat transport by lattice waves in solids depends on the anharmoni-
cities‘of the lattice forces, on the imperfections of the crystal lattice
and on the boundary conditions (2). In metals and semimetals the ther-
mal conductivity depends also on the mobility of free electrons. The
sources of thermal resistance may vary from one material to another 2).

Determination of;thermal.éonductivity of potassium manganese fluo-
ride, KMnF3, is'interesting because KMnF3 is an antiferromagnetic mater-
ial and its nearly cubic stfuctufe gives rise to low anisotropy and to
pfedominance for nearest neigﬁbor‘interaction (3). It is attractive too

because many experiments have been done on.the properties of KMmnF,, but

3
only few to obtain the thermal égnductivity at low temperature, aﬁd none
to determine the thermal<c6nductivity at.liquid helium temperature.

This work will .consist of a briéf reviéw of.some=of the theories of
thermal conductivity in crystalline dieiectric matter at low temperature,
the determination of the thermal conductivity of KMnF3 at liquid helium
temperature and near the Neel temperature, and the conclusions about the

behavior of.the thermal conductivity dependence on temperature in this

temperature region. .

Historical Development of Thermal Conductivity

in Solids Dielectrics

Eukens in 1911 measured the thermal conductivity of a large number
of solids at liquid air and at room temperature (4).. He observed that
the conductivity of single crystals increased with deéreasing tempera-
ture above the boiling point'of liquid air (- 800K). Debye expléined
this behavior by assuming that.heat flows through a dielectric soli@

transportéd by traveling elastic waves with the same spectrum as in a



continuous medium. The sgattering of these waves gives rise to thermal
resistance, This écattering may be expressed in terms of the mean free
kpath, Which is defined .as the distance that aﬂwave.travels before it re-
duces its intensity to l/e of its initial value. Thermal conductivity

thus is given in Debye's approach by

1
A = 4,1\. Cv v

where Cv is the specific heat per unit volume, v is the wave velocity
and Avisbthe free'path;' The:méan free path is limited by scattering of
the waves due to fluctuation in density, which arises from the anhar-
monicity of the lattice vibratioﬁs, and it is inversely proportional to
the absolute temperature. This-explaﬁation was in agreement with Euken's
measurements. ?eierls in 1929 .and in 1935 developed avtheory in which
Vhe‘treated the solid as‘a.crygtal lattice of atoms rather than a contin-
uous medium. In.this theory the normal modes are quantized, and the
quanta are called phonons. In accord with Peierls' theory, the thermal

conductivity A is written as

1
)\_=, EACVV. (2)

At sufficiently high temperature, the specific heat is independent
- of the temperature T, and A is inversely proportional to T. Then, as-
suming that v is constant, the thermal ccnductivity is inversely propor-

tional to T
1
A~ T e

If we define the thermal resistance RT by A = l/RT, according to



the Peierls' theory the thermal resistance is given by

_ Y R ,
RT, = aT exp (- 2T) + bT (3

where a, v and b are constant and 6 is the Debye temperature (4).

To tqst the behavior of dieléctric crystals at low temperature, de
Haas and Biermasz (5) measured the thermal conductivity in the region of
liquid helium for.KBr and ‘KC1l. They found that thermal resistance.di-
minished rapidly from 90° K to 10° K -and increased-s;rongly at lower
temperatute. They investigated the dependence:of the thermal resistance
on thickness and. found that thermél‘resistanceiwas not inversely propor-
tional to thickness (6). For temperatures.higher than 0.50 8 wherevCV
was constant, ‘A was proportional to 1/T. And from A ~ CV v A they as-
sumed that the free path,Akwés‘proportional to (va)-"l A for values of
T > 0.50 8; TFor values of T <‘6a CV decreases while A -~ %n This means
that A increéses at lower.temperature. For values of T lower than the
one for which A has a maximum, the value of ‘A was found to be of the
_same . order of the thickness of the rod. This was in agreement with the
fact that for this temperature regime the thermal conductivity is de~-
pendent on the thickness. At the lowest helium temperature A ~ T3, as
well as Cvu For still lower temperature the-increasingvresistance was
cagsed.by reflection of the waves by the walls of the sample. They con-
cluded that the hypothesis of the reflection of elastic waves by the
wall of the sample.or from the mosaic crystals made it possible to ex-
plain the phenomenaAof variation of?thermal conductivity at that temper-.
ature: |

In 1938, Casimir. (7) considered the case when the free path is very

long compared with the.dimension of the crystal,  He compared the flow of



heat in.gvcylindrical‘crystal; at a temperature lower that the one for
which the scattering of elastic waves by the boundaries is important,
with thé flow of electromagnetic energy in é_cylinder. He deduced a
prescription for thermal conductivity‘at temperatures lower:.than that
one where the dimensions of the crystal are comparable with the free

path. The Casimir.formula is

3/2

A o= —— S RPA;- 2,31 x 103T3 (4)

T£is formula. applies for tempergture lower ‘than the one corresponding to
A maximum. X maximum usually oécurs,at a value of T between 6/20 and
6/30 (1).. Then we can write that Casimir's formula applies for tempera-
tures T, such that

!':v e

; T=< ?anx.~ 56_“

The Césimir formula was;deduced for cylindrical rods with circular
crossisection of radius R. When ﬁﬁe cross section is a square, R is
changed in . the forhula by 0.56 d; d is the .side of the square. F is the
flow of energy per second fhréugh,a crystal with cylindrical shape of
radius R, éndlwith avgradieﬁt‘temperature dT/dz in the z direction. Ac
is a constant that can be calculated from the specific.heat when it is

written

P is an adimensiopal factor of the\ordérlofvunity and for anisotropy

bodies it may be yritten



2a2+l

(2a3+l)2/3

whére alpha 1s the ratio between the longitudinal and transverse veloc~
ity of .sound. For values of o 'between 1and 2, P ~ 1‘4',:Ac can be cal-
culated for a material if ifs Debye‘temperature is known. When the.
material is isotfopic P = 1.4 can be used. Casimir's formula may now
be written A = B R T3 where B is a{parameter containing P and Ata This
formula is called the T3 law, and it 'shows A as a function of B; R and
"T3 and for B, A is a function.oflthe Debye's temperature. Casimir. made

experiments on 810, and KCl, and concluded . that his theoretical consider-

2
‘ations led to a fairly satisfactory interpretation of the experimental.
_ facté (7).

In 1958 P. G. Klemens wrote.in detail about thermal conductivity.
In this paper, tﬁe thermal conductivity for non-metal cfystals, due to

the lattice vibrations at high temperature is given by a formula deduced

by Leibfried and Schloemann (2)

1/3 .3
A - %E-Y—z— (C—h) Maes,-g- for T >> 9 (5)

where C 1s the specific heét at high temperature, Y is a parameter deter-
mined from the thermél expaﬁéion, a? is the volume per atom, M is fhe
mass per atoﬁ, 6 is the Débye's temperature ‘and T is the absolute tem-
perature.

For thefmal‘conductiﬁity limited by umklapp processeé at low tem-

perature, Klemens deduced the following expressibn:
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Ky 3 3 oT
7;) aM < e for T << 6 (6)

7.05

r o D02

4.8°

and making the proportionality an equality, he gave as a formula for
thermal conductivity, at low temperature, limited by umklapp processes,

the,following one:

St 6
= el <<

A Ao o (e) e for T 8 (6)
where oy is a numerical constant .of the order of unity; @y depends upon

the details of the zohe structure and upon the dispersion of the lattice

waves near the boundaries, Ao is a constant, which if it is derived from

L
formula (6) gives Ao = 0,5, and Ao A(T") Ig-for T' =T > 6, Then, the

final formula given by Klemens for X is

3 —=
‘T eulT

AT = 0.5 A () for T << 0 . (7)

Substances having the same parameter should have a reduced ther-

A(T)

A
o

there should be one curve (2).

mal conductivity such that when it is plotted as a function of T/®
The thermal resistance is decreased rapidly by umklapp process at

low temperature, and after the thermal resistance reaches a minimum it is
again increased by external boundaries.. At the lowest temperature the
size of the sample acts to produce a lower thermal conductivity. Each
resistive process contributes additively to the total resistance, and
‘the total thermal resistance of a dielectric crystal can be written as
(2)
-5

o, T

Rp(T) = DI° + F(T) + BT > e 1 (7)



where D T3 is due to the size effect, F(T) arises from static imperfec-
0

tions and B T_3 e T is the .effect of -umklapp processes.

The thermal conductivity does not.decrease more rapidly than in-
versely with temperature because of imperfections. For point defects it
is inversely proportional to T, whereas it can decrease more slowly or -
even increase with other imperfectioné. Then, when the thermal conduc-
tivity changes faster than linearly an important fraction of the resist-
ance may be attributed to umklapp processes at low temperature. When
the sample is almost free of imperfeétions the behavior of thermal con-

ductivity is given by the formula

8

ATy . BT- *1T

At the lowest temperature, when the size effect is the most important,
and the crystal is almost free of imperfections, the thermal conductiv-

ity is given by

Exponential variation of ‘the thermal.conductivity has been found by
Berman. (3), White and,Woodé (8), by Wilkinson and Wilks (9), by Webb and

Wilks (10) and by Berman, Foster and Ziman (11).
Theoretical Considerations

To study thermal conductivity in a crystal we consider it, in a
first approximation, as a composed of atoms bound together with Hooke's

forces. Then, we solve the motion for the crystal lattice in its normal



modes. Solving the motion in its normal modes, where W

_j’
zed normal mode or phonon corresponding to the wave vector k and to the

is the quanti-

polarization index j, the Hamiltonian of the system is (12)

1
H = kﬁ (Nk, + 59 yil W (8)
—J =] =3

where N-lsj is the total number of quantized normal modes or phonons with

the wave vector k, and'ﬁng is the energy of the phonon ij.

The velocity of a wave packet with wave vector k is given by the

group velocity

3 . - .?i).léj.

\ ki T R,

)
k3’
where e; is an unit wavevector and Ei is the component of k in the direc-

tion of e The number of phonons per unit volume in an isolated system

of volume .V in equilibrium at.temperature T is (13)

s -t
o KpT
My = [Vie. -] .

The heat flow in ‘the system at position r is

°

Q= T @Y 9)

~where nkj is the density of phonons in the system with a non-uniform

temperature distribution. The net flow of heat in a system in equilib-

rium is zero, and if we write § , = nkj - n;j, the flow of heat may be

k]
written

3 = L & .
Q 5 Sk ﬁwl_cjzl_gj €))
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The equation of Boltzmann for the phonon distribution is:

3 9

. - . ki
( 3;.)scatt. N ng VT =57 10)

If the concept of relaxation time is introduced, the scattering ex-

pression may be written (14) as

Bnk, '
—KJ. R _ 0 ,
( ot )scatt. ‘ z T (nkj nkj) (11)

Substituting this expression of the scattering into Boltzmann's
equation, and assuming that the system is not far from equilibrium, such

that

oT T

the Boltzmann equation may be written as.

-9
= -~ VT « V Tjj'

" By T ET

Here %;= b ﬁL-and the flow of heat may be expressed by
i T; ‘
i

on, .,
6 = - L VT -V —Ekl

1 Yy T h wkj 3T YEj .

In the last equation the thermal conductivity is a tensor for ani-

sotropic systems, and it 'is defined from the formula for heat flow as

ooy
e T W W) Ty —=L (12)
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allowing to write the flux of heat.as a function of the thermal conduc-

tivity tensor in the following form

Q = —VT‘}\G (13)

3

When the system is isotropic, the thermal conductivity reduces to

(14)

and Q = AVT (13) for isotropy, where ¢ is the angle between the group
velocity and VT. When the distribution of discrete states may be ap-
proximated to a céntinuous distribution, the sum in formula (14) may be
changed to the integral over k. Making this change, the thermal conduc-

tivity is given by (14) as

K ﬁ .
A= p—V_pmaxe g -——n—kivzakzdk (14)
6n2 © kj @9 kj 3

H

where kmax is the effective radius of the first Brillouin zone. If the
acoustic approximation is used, which means that w = v k, this equation
is Debye's equation for isotropic‘solfds, and the thermal conductivity

is expressed by

x

)
A = 12 fomaxu . hwz ' xe-“2 wzdw (15)
217y KBT (e"-1)
hw , :
where x = f;f’ ©ax is the Debye's maximum for w, and v is the sound

velocity.
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Antiferromagnetism
The magnetic moment of one atom or ion may be expressed by

Bo= YHJ = -guide (16)

!

Where;ﬁg is the total angular moment of the atom or ion. This total
angular momentum is the sum of the orbital angular moment'ﬁg plus the
spin angular moment ﬁ§, Y is the ratio betwéen the magnetic moment and
the angular moment and the g factor is

J(J+1) + S(S+1) - L(L+1)
— T . (17)

Uéually antiferromagnetis (AFM) are .characterized by the property
of having the spins ordered in an antiparallel arrangement but no net
magnetization below certain teﬁperature\(lS)u This temperatﬁrevis called
the Neel temperature;' KMnF3 is an exception to this, but the magnetiza-
tion vanishes at 81 °K while the order vanishes at 88°K.

The fact that AFM have spin order and no magnetization suggests that
electron spins are ordered in a special,form in which the field of omne
electron acts on the other electrons, and conversely. To explain this
behavior it is assumed that fhe~atoms of an AFM possess magnetic moment,

,and that a negative exchange coupling is operating among them (17). In
the crystalline antiferromagnetic model an arrangement of the atomic
magnetic moments-is_aésumed in such a way that they point upward and
downward in an alternating manner when the temperature is sufficiently
low.

The susceptibility of AFM crystals has a maximum at a temperature

close to the Neel temperature.(Tn) (16). Below this temperature AFM are
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magnetically anisotropic. At temperatures higher than Tn the suscepti-

bility obeys the Curie-Weiss law

. C
X = Txoe

pd
for T T (18)

where X is the magnetic susceptibility and C is the Curie parameter. If
the Curie temperature is defined as that one where the extrapolated par-
amagnetic susceptibility is «, we may say that 0 is a value equal to -TC

C

T-T
c

in the Curie law X =

With this model of AFM the crystal may have two or an even number
of sublattices. For each sublattice with spin pointing up there is one
pointing down. It has been postulated that there is an energy directing
the magnetization along certain definite crystallographic axes called
the magnetocrystalline anisotropy eneréy (15).

The operator expressing the .energy of the interaction between the
electron spins of the atoms localized in a crystal may be written as the

Hamiltonian of the system (18)

= -— X . N
H 2 Jij 5, §j (19)

The 'exchange interaction in the crystal is equivalent to an inter-

atomic potential (17)

1 .
Uy, = -FJA 48 08 (20)

where S, and §j_are respectively the spin angular moments of the atoms 1

1
and j measured in units of h, J is the exchange integral, In an anti-
ferromagnet, J is negative and denotes, in the case of compounds, pre-

dominantly the coefficient of indirect exchange coupling, that is, the
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coupling via the intermediary of a negative ion such as F .
The magnetization for the two sublattices is equal when there is no
applied field, and the magnetization of each sublattice is called the

saturation magnetization Mo’ which is equal to

. 1 : ‘
M = Su;Ngs Bs(yo) . (21)

N is the number of magnetic atoms per unit volume, g is the g factor;
for an electron spin g is 2,00, Mg is the Bohr magneton and it is equal
to Eﬁ%’ S is the spin angular momentum number, BS is the Brillouin func-

tion and Y, is equal to

parameter defined from the exchange field, KB is the Boltzmann
ant at T is the Kelvin temperature.
The solution for the spins motion in crystal lattice of an anti-

:romagnetic compound with only two sublattices may be written as (19)

Where Ha is a ficticious magnetic field introducing the anisotropy and
He is the exchange field such that J § = - 2 uBHe° In this prescription,

J is the negative exchange integral and u, is defined from the ratio

B
between the magnetic moment of an atom with its spin S: u = 2uBS. When

k is small f(k) =1 - Ykzu Neglecting anisotropy the solution is:

}

fw. = 2 pH V2Y k (23)

This result gives w depending linearly on k for small values of k,
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‘which is different from the similar case for ferromagnetism.,
The approximated dispersion relation from Equation (22) of w has

the form given in Figure 1.

ar
a

Figure 1. Dispersion Relation of One
Spin Wave in an Anti-
ferromagnet

The elementary excitations of a spin system have a wave like form;
and, when they-are quantized, are called magnons. A spin wave calcula-
tion determines the way in wﬁich-the excited states deviate from a per-
fectly ordering (16).

Akhiezer and Shishkin (20) have studied tﬁeﬂthermal cqnductiVity of
ferromagnetic dielectric materials and found that, at low temperature,
the therfial conductivity in unbounded ferromagnetic dielectrics; which
contain no impurities is determined by the interaction of spin waves with
other and with phonons. They showed that when the Curie Temperature Tc

is lower than the Debye temperature 6_, the thermal conductivity is

D’

’
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Tc 6D

rather proportional to e4T than to e T. They gave a prescription for

thermal conductivity due to phonomns and another one for thermal conduc-
tivity due to magnons.

The prescriptions for A_ and Am are:

f
T
2 c
T 6 5 —
¢cD T 4T,
Af - ” > (e) e Tc << GD (24)
aw
T
3 c
X~ _EEL_ Q!L)7/2 e4T T << § (25)
no g 2 °T ¢ D
aw c

"Akhiezer and Bar'yarkhatar (21) have studied the thermal conductiv-
ity qf ferrodielectrics at low temperature based in the mutual scatter-
ing of spin waves. They deduced the following formula for thermal con-
ductivity at low temperature

2
_T 26 4l L
Y22 3% YT 3

a Al

(26)

Where a is the lattice constant, Cs and Cl are, respectively, the heat

capacity of the spin waves and of the lattice. A, is a value depending

1
5
on T e T Yo
When

6, »>> T
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NZT
c
4 T 2T
A= g fa © 27)
G%D
They pointed out that when GD >> Tc and T << 5 spin waves play
c
6%)
an essential role in the heat conduction. If eD >>.T >>-—T— the heat is
c

conducted by phonons.

Gurzhi (22) has studied the thermal conductivity in dielectric and
ferrodielectrics. He used the Debye approach A = CvAv and obtained at
very low temperature that ‘A is proportional to T3 for dielectrics. For

a temperature range from Tl to T,, he obtained

2’

) (28)

Where Tl is the temperature at which Agp’ the free path for phonon-phonon
normal process, is of the same order of length that the one of the sam-

ple: N v+ d. T, is the temperature at which A' = éi . AV is the ef-
PP 2 AN

fective mean ffee path which characterizes the volume collisions with
loss of momentum. The value d is the transverse dimension of the sample,
M is the mass of the unit cell, v is the sound velocity and a is the
lattice constant:. At higher temperature he considered the usual decrease
of thermal conductivity due to umklapp processes in the exponential form
and in the 1/T law due to imperfectioms.

To work with magnons, he started considering the spin waves as the

basically responsible for heat transport in ferrites at low temperature.

The following formulas were deduced for him at very low temperature



18

Bu M
__90o0
)
2 e T ;T << T << M
c
T 2 2 w2 uM 4/7
. e 4 T 0 . < (22
Ve S5 x ) M << T << (D) (29)
a c c c
7/2 uﬁM 4/7
T ‘ 0
) 3 T, < T << T,
c
Where Mg is the Bohr magneton,‘Mo is the saturation magnetic moment and

B is the anisotropy constant.

At higher temperatures than T,, it was considered that the thermal

929
conductivity decreases exponentially if the sample was sufficiently
pure.

Gurevich and Roman (23) studied the thermal conductivity of ferrites
at low temperatures and the entrainment of phonons and magnons. They
considered -the flow of heat in ferrites at low temperature determined by
the flows of phonons and magnons. This flow is limited by scattering at
the crystal defects and at the boundaries, and by the transfer processes.
The ‘relaxation time conéept of phonons and magnons is used in this de-
duction. It was considered that magnen-magnon and phonon-phonon inter-
actions were much stronger than the interactions causing thermal resist-
ance. Equilibrium distributions,‘ﬁith velocities v and vp, for magnons
and phonons were established in the magnon and phonon subsystems as a
result of the latter ‘interactions. Then, it is considered that at a
given temperature and at-a magnons and phonons concentration, the inter-
action between magnons and phonons change to be stronger than the inter-

action causing thermal resistance. One of the systems, the magnon or

phonon, is accelerated or decelerated by the other, and a single velocity
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v determined by the balance of momentum is established. The temperature
region where this happens is called the entrainment temperature. They
examined specifically the thermal conduétivity,'with entrainment of mag-
notis and phonons, in the case of losing momentum due to the scattering
of phonons or magnons by defects.

One general formula was deduced for the thermal conductivity of

ferrites, this is.

Ec +ic)H?
R (30)
U n N
(__II_I__+_L)
Z V4
md pd

Where T is the Kelvin temperature, u is the effective mass of one

2
magnon = ——h—f, Cm is the magnon heat capacity, Cp is the phonon heat
a

2T
c

capacity, n is the number of magnons per unit volume, Np is the number

of phonon per unit volume, z 4

interaction causing momentum losses and zpd is relaxation times of

is the relaxation time of magnons in the

phonons in the interactions causing momentum losses.
62
2

They defined a temperature Tl'= 2uvT = T—Q-and considered the case
c

when T << Tl° For this region temperature, the thermal conductivity is
determined by the magnons. When T >> Tl, A is determined by phononé°
They glso showed that when T << Tl the interaction between magnons
and phonons is more probable. A very important result of this study is
that when there is entraimment the curve A = f(T) has a minimum at the
beginning of the region temperature, and then the thermal>conductivity
increases with temperatufe; while when there is not entrainment it de-

creases monotically. -
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Gurevich and Roman (24) also studied thermal conductivity of anti-

ferromagnetis at low temperature. They considered two cases:. TN >> eD

and TN << § It was found that the thermal conductivity depends on the

DO
kind of magnetic impurities in the crystal.
The prescriptions deduced for them are:

N
= ———, ic i iti <<
A Taho For diamagnetic impurities and T 8 (31)

N D’

A= =3 - For paramagnetic impurities and TN << GD° (32)

When -both kinds of impurities are present in the antiferromagnet,

the thermal conductivity is

T 3
N T
A= oo (—TN R ForT<T2 (32)
and
T
. N1
A= Fc T For T > T2 (31)

T2 is the temperature where A reaches the maximum and ¢ is the total con-

centration of impurities.
Potassium Manganese Fluoride (KMnFB)

Potassium manganese fluoride, KMnFB, is an antiferromagnetic com-
pound with Neel temperature Tn = 88 °K. This compound has a divalent
. +2 . . ‘ +2 -, . .
manganese ion Mn = with five d electrons. Mn = is a S state ion, which,

according to Berman, Olof and Knox (25) allows to expect a slight dis-
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tortion from its cubic perovskite structure. But it is known. that per-
ovskite structure is itself unstable. These two facts make the study

of KMnF3 more Interesting. At room temperature potassium manganese
fluoride has a cubic perovskite structure with lattiée constant
a=4,186 Xa In addition to the Neel temperature transition at 88 OK,
it has been shown a second magnetic transition at 81.50 °k. Below this
temperature of 81.50 °K it exhibits a weak ferromagnetism caused by
cauting of the spins. Also, it is:known that the cubic room temperature
structure changes to an orthorhombic phase at 184 °K with tetragonal
pseudocells with values of c/a > 1, and at 84 °K there is another tetra-
gonal pseudocell too, but with c¢/a < 1 (25). Monoclinic pseudocells
have been reportéd at lower temperature and between 88 and 105 °k. .

Thermal conductivity of KMnF, between 15 °K and 300 °K has been

3 N
measured by Suemune and Ikawa (26) finding an anomalous decreasing in
the temperature dependence of the thérmal conductivity at the Neel
temperature. They also found an anomalous decreasing of the thermal
conductivity for another antiferromagnetic material with perovskite
structure, KCoFB, at its Neel temperature of 144 °k. These anomalous
minima in the thermal conductivity were attributed to the phonon-magnon
scattering (26).

In determining the specific heat of KMnF, between.70 °K and 300 oK,

3
anomalous values of the specific heat have been found (27,28). A maxi-
mum of the specific heat at 83 °K has been attributed to an antiferro-

magnetic ordering of the manganese ion below this temperature. Another
maximum at 179 oK is supposed to be due to the crystal structure change.

Khlyustov and his coworkers (28) found three temperatures where the

specific heat of this material has anomalous values. They found that at
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85.75 °K there is second kind transition which was attributed to the
antiferromagnetic ordering. The anomaly at 95.13 °k was a first kind
transition with changing of the structure, and the anomalous behavior at
191.13 corresponded to the changing of the space symmetry group in the
crystal.

Goldrich and Birman (29) showed in a theoretical way that only
eight space groups can arise in the perovskites by second order phase
transitions without changing the unit cell.

Using the neutron scattering technique it has been found that the
phase transition at 184 °k is a result of the softening of F25 phonon
mode at the [111] zone boundaries, and it has been shown that the two
transitions at ‘84 °K and 184 °K are a result of the soft phonon insta-
bility (30).

Figure 2 is a sketch of the unit cubic cell of KMnF,_, at room temper-

3

ature. Figure 3 illustrates the unit cell in the orthorhombic phase.



Figure 2.

Unit Cubic Cell of KMnF

3

at Room Temperature
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Figure 3. Unit Cell of Potassium Manganese Flu-
oride in the Orthoorhombic Phasge

O — Potassium
C)’—— Fluorine

® — Manganese
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CHAPTER II.
EXPERIMENTAL-
The Sample

The sample was a crystal of potassium manganese fluoride grown at.
Oak Ridge National Laboratory by C. R. Riley ﬁsing the Stockbarger tech-
nique. The dimensions of the sample were 10,00 mm. in length, 2.58 mm.
in width and 1.50 mm. in thickness. The sample color was a soft pink.
The dimensions were obtained after cutting a . little bigger piece in
order to have a more uniform éross section., The sample was oriented by

X-ray diffraction so that the 10 mm. length was parallel to a <100> axis,
The Apparatus

The measurements were made by using a steady-state heat flow method.
The complete apparatus consisted of a cryostat and a sample holder. In
addition there was the necessary‘equipment to evacuate the sample holder
and to produce low temperatures by evaporating cryogenic liquids such as
nitrogen and helium., AuFe—chromel ﬁhermocouples'were used to measure
temperature. These emf's were monitored by a potentiometer. Figure 4
shows a schematic diagram of the cryostat and sample holder. The cryo-
stat contains four chambers. They are: an exterior vacuum chamber to
isolate the next interior chamber from the foom temperature, a second

,

chamber with a cylindrical hole on its top to put liquid nitrogen in it,

another interior vacuum chamber to isolate the inner chamber from the

AN
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last nitrogen .one and the inner chamber where is placed ‘the sample hold-
er. In this chamber may be put liquid helium or liquid nitrogen in ac-
cord with the temperature that we need .in the sample. , The latter chamb~
er may be kept in contact. with the ambient by a hole or may be sealed
and connectedvto the pumping system. This cryostat is a glass dewar
used to pre-cool and to keep the sample holder can cool.

A detaill of the sample holder is shown in Figure 5. It is essen~
tially a small brass vacuum can containing a heat sink, an ambient heat-
er and the holder for the sample. This can has on its top a vacuum seal,
and from this top emerge two stainless sfeel tubes. One of these is to
take out‘thé cables going to the meters and to the power sources. This
tube is used to evacuate the brass can too. The second tube is used to
* pump- out the variable heat leak;‘ This heat leak is used to increase the
range in temperature that measurements can be madg‘with a given cryo-
genic liquid. At the bottom éffthis tube there 1s a clamp to fix the
sample. Over the clamp there is an aluminum flange where is fixed a
cylindrical aluminum heat shield for heat radiations. Then the tube
passes through the aluminum flange and just.over the flange the electric
ambient‘heater is placed around the tube. Above this the tube has an
internal copper cylipdrical héa; sink; A heat leaking chamber is left
between the heat sink and the wéil of the -tube. The chamber may be.
evacuated or may be filled with some‘gas.r The set heat sink-heat leak
works as a heat transfer cylinder from the.inside of the brass can to
the cooler in the inner .chamber qf the dewar. Thé latter heat transfer
cylinder is connected to‘thé‘exterior pumpiqg“system or to a connector
to transfer gas into the cylinder when it;is necessary. To measure the

sample is fixed to the clamp in-the sample holder. Indium is used to
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have a better thermal contact between the clamps and the piece of KMnF3.
Then the ends of the thermocquple are put in contact with the sample
leaving somé distance apaft betﬁeen the thermocouple clamps. . The thermo-
couple used in éhisfexperiment‘ﬁas one built with one chromel wire and
one AuFe wire, It is interesting to. point out that the thermocouple .was
connected in such a mode that éllowed’to measure AT directly, This kind:
of connection has the advantagé that the values of AT obtained do not
depend on the differencé:of’temperature between the sample and the ice-
bath reference., . Figure 6 shows a detail of this‘connection,«

Finally, the gradiént'heater‘is fixed to the bottom of the sample.
The 'ambient heater plays the role of raising the_femperature of the.
sample and keeping this temperature. The gradient heater is used to
transform electric power in therma; energy which flows through the
sample .in the form of heat, Then ;ﬁis heat out of the brass can through

the sink.
Technique.

The éample, with the clamps to measure . the teﬁperature T and the
gradient temperature AT, was fixed to the holder sample. The distance
between the clamps for AT was 5.10 mms. The sampie cross sectlon was
3.87 mmz.° Onge the‘sample.holder'was inside of the dewar, and the can
evacuatgd, the next step consisted of filling thé;correspohding outer
chamber with liquiﬁ nitroéeh."fhéﬁi iiqdid hélium was transferred to
the inner dewar. With the evacuated brass can leak tested, anq Without
any electric éufrént.in the amBient heatér; ﬁhe power was turned'on in
the gradient heater. After this it .was necessary‘tovwait‘for“ébout-

three hours to allow the system 'to reach thermal equilibrium. Then, the
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first meaéureﬁents were initiated at liquid helium temperature. It was
observed that thermal equilibrium was reached in a relative short time,
which allowed ‘all the points at liquid helium temperature to be taken in
two days. Fifteen points were taken from 5,15 °k to 22,50 °k. The
measurement at each. point was made in the following way: taking a read-
ing of temperature with pdwer in the gradient_heater»and anpther read-
ing for temperature gradient, then turning the power off in the heater,
wait for equilibrium and take again one reading for temperature and
other for gradient.

To work at the Neel temperature liquid nitrogen was transferred in-
to thé inner dewar instead of liquid helium. By pumping out the liquid
nitrogen, 1t was possible .to reach a, temperature of 46,35 OK, At this
temperature the second run begéﬁ. The same method of putting first
power -in the gradient heater,i and the_nzmeasurin'g with zero power was
used, Twenty seven points wérévtaken from 46.35 °K to 188.00 OK, but,
in two mon;hsq At sixty three degrees some.problems in getting stabil-
ity forced a éhange in the procedufe. Up to the last named temperature
I could wait for equilibrium, an& when the temperature was changing at
a very slow rate I could read the temperature and change to read AT, A
subsequent readi;g showed that .the first reading of temperature was
right. Now, nothing was stable, nor the temperature neither AT. It was
necessary.to~read the temperature when it was almost in equilibrium aﬁd
to turn to observe the température,gradiént changing until it took a .
limit value or began very small oscillations around a value. Then tak—
'ing this value for AT, I returned to re-read the value of the tempera-
ture, and when it was almost .the same that the one before; I took this

temperature value as a right one, Tables V and VI show a sample .of this
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behavior in the results of the experiment. .

The Result of the Experiment

The results of the experiment are shown in Tables I and II, In
these tables the temperature is given in degrees Kelvin and the corres-
ponding thermal conductivity is given in milliwatt per degree and per
centimetér. The same result is shown in a graph where the thermal con-
ductivity has been plotted as a function of the Kelvin temperature. This
graph is drawn.in a loé—ldg scale. In adgition, for a better underétand—
ing of the results the formula used to detérmine the thermal conductiv-
ity is shown. The values obtained during the experiment to be used in
the formula are written in other two tables numbers III and IV. Tables

V and VI are a sample.of the variation of delta T going to a limit.

TABLE I

» THERMAL CONDUCTIVITY OF KMnF3 AT
LIQUID HELTUM TEMPERATURE

A

Point T : mw .
Number : °% . cm. %K
1 5.19 112.0
2 5,67 137.0
3 6,21 . 170.0
4 7.09 : 198.5
5 7.48 219.0
6 8.33 266.0
7 9.15 284.0
8 11.50 N 299.0
9 ‘ 12.46 299.0
10 12,82 292.0
11 14.07 295.0
12 15.30 273.0
13 17.50 253.0
14 o ! 18.56 232.0

15 22,25 186.0




TABLE II

THERMAL CONDUGTIVITY OF KMnF, NEAR THE NEEL TEMPERATURE -

3
A
Point - T _ mw.
Number ' g ‘ oK cm,
16 46,35 ‘ - 81.0
17 ‘ 50.40 73.0
18 , 55,10 65.0
19 ‘ 55,40 64.0
20 R 61,00 59.0
21 74,25 52.5
22 * 79.05 . 50.8
23 80.50. : 50.6
24 . 81.10, 50.8
25 81.95 50.9
26 83,25 50.2
27 86.40 , 50.4
28 86.86 50.2
29 88.25 : 50.0
30 88.70 50.0
31 89.90 50.8
32 : 97.50 51.6
33 ' 101.50 52.6
34 107.70 54,0
35 113,20 54.0
36 120 54,20
37 126 54.30
38 ’ 135 55,00
39 149 : 56.40
40 168 58.00

41 188 62.00
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EXPERIMENTAL DATA TO CALCULATE THERMAL CONDUCTIVITY ()

TABLE III

AT LIQUID HELIUM TEMPERATURE

35

Point T. Q
Number °x nw
Efs 5.15 0.285
2. 5.67 - 1.590
3 6.21 2.120.
4 7.09 2.088
5 7.48 2.670
6 8.33 3.700
7 9.15 2,088 -
8 11.50 0.795
9 12,46 1.144
10 12.82 1.144
11 14 .07 1.144
12 15.30 1.146
13 17.50 1.147
14 18.56 1.147
22,25 1.151-

v
0.10
1.96
2.35

2,05

2,32

2.66

1.12

0.70 .-

0.93

0.99

0.98 .

0,04
1.14

1,30

1.54

E, %%- AT A
W g e
0.3 13.43 0.0334  112.0
-0.16  13.82 0.1532  137.0
-0.01  14.25 0.1645  170.0
0.02  14.75 0.1380  198.5
-0.08 14,95  0.1600 ~ 219,0
-0.21-  15.36 0.1820  266.0
-0.41 15,83 0.0964 1284.0
0.13  16.34 0.0348 ~ 299.0
0.09  16.57 0.0508  299.0
0.12  16.63 0.0520  292.0
0.12  16.80 0.0555  295.0
0.11  16.90 0.0595  273.0
0.13  16.98  0.0595  253.0
0.20  16.99 0.0650  232.0
17.30 186.0

15

0.14

0.0810



EXPERIMENTAL DATA TO CALCULATE THERMAL CONDUCTIVITY (A)

TABLE IV

NEAR THE NEEL TEMPERATURE

36

Point T ) E E_ -%% AT A
Number °k W W W %% °r T
16 46.35  0.5216  2.07  0.56  16.455  0.0858  81.0
17 50.40  0.0736  0.64  0.44  16.606  0.1330  73.0
18 55.10  0.5284 2,08 0,24  16.808  0,1080  65.0
19 55.40  0.5240  2.03  0.20  16.821  0.0108  64.0
20 61.00  0.5272  2.13 0,14 17,077  0.0117  59.0
21 66.65  0.8220  3.46  0.22  17.335  0.1860  58.0
22 74.25  0.8258  2.43 -0.19  17.665  0.0201  52.5
23 79.05  0.8345  3.91  0.03  17.870  0.0218  50.8
24 80.50  0.8355  4.06  1.20  17.940  0.0218  50.6
25 81.10  0.8360  4.02  0.11  17.961  0.0218  50.8
26 81.95  0.8400  4.00  0.02 18,040  0.0220  50.9
27 83.25  0.8350  4.00  0.05  18.050  0.0220  50.2
28 86.86  0.8410 3,88 -0.15  18.174  0.0224  50.2
29 88.25  0.8395 3,98 -0.02°  18.260  0.0221  50.0
30 88.70  0.8385  3.98 -~0.10  18.280  0.0224  50.0
31 89.90  0.8400  3.84 -0.17  18.328  0.0218  50.86
32 97.50  0.8450  3.75  0.30  18.630° 0.0217  51.60
33 101,50  0.8465  3.49 =-0.50  18.78 0.2122  52.60
34 107.70  0.8450  3.58 -0.35 19,02 0.2060  54.00
35 113.20  0.8535  3.30 -0.20  19.192  0.2060  54.0
36 120.00  0.8535  2.94 -1.10  19.415  0.2070  54.2
37 126.00  0.8560  3.18 =-0.90  19.615  0.2080  54.3
38 135.00  0.8595  3.00 =-1.10° 19.861°  0.2062  55.0
39 149.00  0.8645  2.45 -1.66  20.215  0.2031  56.4
40 168.00  0.8690  2.90 -1.27  20.670  0.2010  62.0
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TABLE V

GOING TO A LIMIT VALUE AT 88.25 K
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TABLE VI

oE

VARIATION OF AT == GOING TO A LIMIT VALUE AT 88.25 K

oT
WITH P = O IN THE GRADIENT HEATER

t ar 32
Minutes mw
0.0 0.54
4.0 0.23
6.0 0.10
11.0 0.00
23.0 =0.02

24,0 -0.02"
26.0 -0.04
34.0 -0.04
35.0 -0.01
41.0 -0.02
42,0 -0.02
43.0 -0.02
49.0 -0.02
54.0 -0.02
62.0 -0.02

38
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The formula used to calculate the thermal conductivity is

A=%T'-I§ | (32)

where P is power flowing through the crystal, L is the separation be-
tween the clamps connected with the thermocouple te measure AT, A is the
cross section of the sample and AT is the temperature difference between
the clamps. AT is determined by the following prescription

E -E

AT = —Eﬁ—ﬂ (33)

3T

where Ep is the electromotive force generated:in the thermocouple by the
difference of temperature between the clamps when there is some power
in the gradient heater, Eo is the emf when there is no power in the
gradient heater and %% is the relation between temperature and electro-
motive force for this thermocouple.

In this experiment the ratio L/A was a constant equal to 13,50 cm—l

and the measurement concerned only with the power P, the temperature and

the values to obtain AT.
Discussion of the Results

From the observation of the tables and the graph showing. the re-
sults, it may be pointed out that five of the six points taken between
5.19 °K and 8.33 °K are on a straight line. This line shows a relation
between the thermal conductivity and the Kelvin temperature, in which
the thermal conductivity is.almost proportional to T2 rather than to T3.

This line may be represented by
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A = 3.35 72 + 30.00 . (34)

where the thermal conductivity is given in milliwatts per Kelvin degree
and per centimeter and the temperature in Kelvin degrees.

The last equation for thermal conductivity gives a deviation less
than 8% from the values obtained in the experiment for these five points
between 5.19 and 8.33 °k.

The thermal conductivity shows a maximum at 11.50 and 12.46 °k. The
value of the maximum is 299.00 milliwatt per Kelvin degree and per centi~-
meter. Choosing the maximum at 12 oK, the Debye temperature may be.esti-
mated in 264 Kelvin degrees. This value is the resuit of multiplying
twelve times twenty three.

The :points taken between 17.50 and 61.00 °K are also on straight
line. It is necessary to point out that no points were taken between
22.50 and 46.35 °K. The equation
2800 _ 19 (35)
represents the relation between the thermal conductivity and the Kelvin
temperature from 17.50 to 61.00 °K. The thermal conductivity is given
in milliwatt per Kelvin degree and per centimeter and the temperature is
given in Kelvin.degrees.

1. From 5.19 K to 8.33 K, the thermal conductivity is proportipnal
to Ta, with o ~ 2. This result‘is more in accord with the prediction of
Gurzhy (22) for thermal conductivity in ferrodiélectrics at very low
temperature, where, A -~ T2, than the prediction of Casimir (7) for di-
electriqs or the Gurevich and Roman (24) prediction for antiferromagnets. .

They predict a‘T3 law in this temperature region. It may be necessary to
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3 behavior. The

go to lower temperature than 5.15 K to obéerve this T
magnitude of the conductivity is much smaller than would be expected if
the heat conduction were due entirely to phonons with mean free path de-
termined by the sample boundaries, This indicates a strong phonon
scattering mechanism in this regime. Two possibilities are spontaneous
"twinning" due to the structural phases transitions and magnon-phonon
interactions. These can not be distinguished in the present experiment.
Wolf (31) is experimenting with a diamagnetic perovskite, KZnF3, which
has the same cubic structure at room temperature and almost the same

constant lattice that KMnF,. "He has found higher values of the thermal

3
conductivity is this temperature region and a higher maximum that the
one found in this experiment.

2. The behavior A ~ £(1/T) is in accord with the prediction of
Gurevich and Roman (24) for antiferromagnets with diamagnetic impurities.

3. The thermal conductivity has a broad minimum in the vicinity of
the Neel temperature 88 K. A careful search was made for evidence of
magnetic critical scattering. No structure was observed indicating that
this minimum is probably nor magnetic in origin. A source for the mini-

mum may be the resonance scattering of the soft phonon modes. This

point should be investigated.
Summary

The thermal conductivity of a small sample of potassium manganese

fluoride, KMnFs, has been measured in the temperature range from 5.19 K

to 188 K. A maximum was found at 12 K. The value of this maximum was

mW.

e At lower temperatures than 8.33 K.. the thermal conductiv-

300

ity, A, behaved like A ~_f(T2)e The low values of .the thermal conduc-
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tivity are attributed to a strong phonon scattering mechanism rather
than to the effect of the samﬁle»Boundarigs.

From 17.50 K,\to 61‘K,; ﬁhe thermal conductivity behaved propor-
tjonal to 1/T, whiéh,corresponds to the scattering of phonons and mag-~
nbné by impurities.

From 80 K. to 90 K., was found an. almost temperature independent
behavior of the thermal conductivity. A minimum of 50 Ermgét-was found

at the Neel-temperature 88 K. This minimum is probably not magnetic in

origin.
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