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PREFACE 

In this thesis, the limit and dead center positions of a geared 

five-link mechanism are first derived analytically. A sample derivation 

for a gear train speed ratio of two is included to demonstrate the pro­

cedure. Secondly, a graphical solution is studied, and a simple graphi­

cal procedure is presented. Finally, the positioning of the instant 

centers of velocity of this mechanism are studied. 
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NOMENCLATURE 

r1 length of ground ·1 ink MQ 

r:.i length of input link MA 

r3 length of input link AB 

r4 le'ngth of coupler link BC 

rs length of output 'link CQ 

e1 displacement angle of ground link MQ 

ea displacement .angle of input link MA 

e, displacement angle of input link AB 

94 displacement angle of coupler link BC 

95 displacement angle of output link CQ 

G1 gear fixed to the ground link MQ 

Ga gear fixed to the input link AB 

1\ radius of G1 

~ radius of G2 

(01 angular' velocity of the fixed gear G1 

Wa angular velocity of input link MA 

(03 angular velocity of input link AB 

-
V1 ' (i 2,3) velocity· vectors 

GR ratio of Ri /'f\ 

Ol initial displacement angle of input link AB 

r 1 , (i = 1, •• ,5) vectors 

u1 , (i = 1, •. ,5) 'unit vectors 
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IC 

N 

any angle 

small angle 

instantaneous center of velocity 

gear train speed ratio 
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CHAPTER I 

INTRODUCTION 

There is considerable interest in the design and analysis of 

geared mechanisms [1-7)*. Freundenstein claims that the work on geared 

mechanisms dates back to the eighteenth century. An excellent contri­

bution in the study of motion of geared five-link mechanisms is by 

Freundenstein and Primrose [2,3). The dimensional synthesis of geared 

five-link mechanisms is considered by Sandor and his associates [4-6). 

The study on the coupler cognate mechanism is conducted by Hartenberg 

[l] and by Soni and Pamidi [7] ,. 

An interesting topic and one that is of practical importance in 

design and analysis of geared five-link mechanisms is to develop the 

"Grashof Criteria" for these mechanisms. A systematic approach in the 

development of such criteria, however, requires one to develop analyti­

cal methods to determine the conditions for the existence of limit 

positions and dead center positions. Accordingly, the objective of 

this thesis is to develop mathematically the criteria for the existence 

of limit positions and dead center positions and show their relation­

ships with the instantaneous centers of velocity of one of the 

inversions of a geared five-link mechanism. 

Chapter II presents an analytical description of the geared 

~'(Numbers in brackets designate references. 
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five-link mechanism under investigation. 

In Chapter III, an analytical procedure is developed to obtain the 

existence conditions for the limit positions and dead center positions. 

In Chapter IV, the geometric properties of the limit posit ions and 

dead center positions of the geared five-link mechanism are studied. 

In Chapter V, the motion of the instantaneous centers of velocity 

is studied. It is observed that at the limit positions and dead center 

po·sitions these instantaneous centers of velocity arrange themselves in 

predictable manners. 

The significant contribution of this thesis is summarized below. 

(1) Development of a generalized approach to determine the limit 

positions and dead center positions of any given mechanism. 

(2) Development of the existence conditions for the limit posi­

tions and dead center positions of a geared five-link 

mechanism. 

(3) Development of a graphical construction method to determine 

the limit positions and dead center positions of the geared 

five-link mechanism under investigation. 

(4) Development of relationships between the instantaneous centers 

of velocity and the limit positions and dead center positions. 

(5) Development of theorems on instantaneous centers of velocity 

and limit positions and dead center positions. 



CHAPTER II 

GENERAL DESCRIPTION OF THE GEARED 

FIVE-LINK MECHANISM IN STUDY 

Figure 1 shows the geared five-link mechanism studied in this 

thesis. 

In this figure, M, A, B, c, and Qare revolute pairs joining the 

links. r1 and 61 ' i = 1, ••• ,5, are the link lengths and displacement 

angles of the links. The links are: 

i = 1, ground link MQ 

i = 2, input link MA 

i = 3, input link AB 

i = 4, coupler link BC 

• i 5, output link CQ 

Also, &i is the radius of the gear G1 , which is fixed to the ground 

link MQ, and ~ is the radius of the .gear G2 pivoted on input link 

MA at point A onto which is rigidly fixed input link AB. 

The~following definitions will prove to be helpful in the under-
:·,,.·. 

standing of the contents of this thesis: 

(a) Limit position: occurs when the output link reaches 

an extrema, and reverses its motion at this extrema. 

3 
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Figure 1. Illustration of Notation and Configuration 
of the Geared Five-Link Mechanism in Study 

4 



(b) Pseudo-limit position: occurs when the output link 

is at a dwell, and continues the motion in the same 

direction prior to the dwell. 

(c) Dead center position: occurs when the input link 

reaches an extrema. The mechanism is permanently 

locked at this position. The mobility of the 

mechanism is restored by an external force. The 

dead center position of the output link is the limit 

position of the input link. 

(d) Instantaneous centers of velocity (IC): are a pair 

of coincident points which have zero relative velocity. 

5 



CHAPTER III 

ANALYTICAL DERIVATION OF THE LIMIT POSITIONS 

AND DEAD CENTER POSITIONS 

The development of the mathematical conditions for the limit 

positions requires one to 

(1) derive in a closed form the input-output displacement 

relationships; 

(2) obtain i.n a closed form the relationship which describes 

d95 /d9P. = 0 where 9a and 95 are the input and output 

angular displacements; 

(3) develop conditions for the limit positions by 

eliminating the unwanted output parameter 95 • 

The procedure discussed in this chapter can be used for any 

type of mechanism. 

3.1 Displacement Analysis 

The displacement analysis is accomplished by finding the vector 

loop-closure equation of the mechanism shown in Figure 2. 

The gear arrangement for the mechanism in Figure 2 is shown in 

Figure 3; from this figure we write 

va = (k cu:a) x <3 ['Ri + Ra 1)' 

V3 = (k w3 ) x ( -j 8:a) 

6 

(3.1.1) 

(3.1.2) 
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M 

Figure 2. Vectorial Representation 
of the Geared Five­
Link Mechanism in 
Study 

Figure 3. Input Ve.locity Vectors 
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-
where, Va and vs are velocity vectors, 

W2 is the angular velocity of the input link MA, 

W3 is the angular velocity of the input link AB, 

-
i, j and k are unit vectors on the x, y and z axis 

respectively. 

Adding the velocity vectors, the following results: 

- -
Va + V3 = 0; 

that is, 

Simplifying and rearranging the above equation, the following results: 

or 

tu3 = (GR + 1) m?. (3.1.3) 

Since the angular velocities are the first time derivatives of the 

displacements, then, 

dea 
(GR+ 1) dt 

Integration of both sides gives the following: 

e.3 = (GR + 1) ei:1 + °' . (3 .1.4) 

Where, e?. and e3 are the displacements of input link MA and input link 

AB, GR is the ratio of R,_/R2 , and~ is the initial displacement of the 
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input link AB, or more simply, 

(3.1.5) 

where N is the gear train speed ratio (GR+ 1). 

Now the output displacement will be derived from Figure 2. The 

- -vectors are r 1 = u1 ri, i = 1, ••• ,5, where r 1 are the link lengths and 

u1 are unit vectors corresponding to each r 1 • They can be arranged 

in the following vector loop closure equation; 

(3.1.6) 

The vectors can be represented as 

je 
r 1 = r 1 e 1; i = 1, .•• ,5. 

From the theory of complex numbers, 

(3.1.7) 

Equation (3.1.6),·after expansion and separation of the real and 

complex parts, becomes, 

o. (3.1.8) 

r 6 sin96 = O. (3.1.9) 

To simplify the calculations e1 may be assumed equal to 360 degrees 

without any loss of generality. Since the output displacement 96 is 

desired, the coupler link displacement 94 must be eliminated from 

equations (3.1.8) and (3.1.9). Therefore, rearrangement of these 

equations gives the following: 

(3 .1.10) 
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(3.1.11) 

Squaring both sides of equations (3.1.10) and (3.1.11) and then adding 

them together gives the following: 

' 
r a + r 2 + r 2 - r 2 + r 2 + 2r r cos (e -eJ-1 a ~ 4 5 2 . ., a ., 

( . 
-2rl, raCOS92 - 2r1 r 3 COS93 - 2r:;:i r 5 COSl\:i cos96 -

,/ 

-2r; rs sinea sines 

Rearrangement and collection of the terms results in: 

where, 

A1 = 2r5 (r1 - r::icose1 - r.'.3cose.'.3) 

Aa = -2rn (r::i sine~ + rs sines) 

(3.1.12) 

(3.1.13) 

A3 = r/ + r/ + r/3 - r 4 2 + rs 2 + 2[r!.!(r3 cos(e:;i - 93 )­

-r1 cose!.!J - rl r3cose3] • 

The following trigonometric relationships are used to find Bs 

explicitly: 

= (2 tan ( Y/2) ). 
sin Y 1 + tan2 (y/2) 

= (1 - tan2 (Y /2)"\ 
cos Y ~1 + tan2 (y /2)°) (3.1.14) 

for any y. Substituting the relationships (3.1.14) in equation 

(3 .1.13) gives 

K tan2 ~ + K~tan~ + K3 = 0 
-,. 2 . 2 

(3.1.1.5) 
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where, 

~ = AB - A' 
l 

' / 

Ke = 2A~. 

~ = A 
3 

+ Al, 

from where, 

(3.1.16) 

Two values of 96 are found to describe the normal and crossed config-

urations. 

Now the displacement of the coupler link e~ will be found. To 

accomplish this, equation (3.1.11) is rearranged so that, 

(3.1.17) 

There are two values of 94 corresponding to the two values of 95 • 

3.2 Limit Positions 

At the limit positions of the output link, a reversal of motion 

can be observed. Hence, the velocity of the output link must be zero 

and the mathematical condition for the existence of the limit positions 

is obtained by setting d95 /de2 = 0. That is, 

d95 = cos95 [-r5 (r2 sin98 + r~sin93 )] +sin95 [r6 (r2cose2+ 

<lea + rs coses)] + [ ra r3 sin( e2 - 83 )-rl <;a sinea + r3 sine~)] = 0. 
. (3 :2 ~'1) 

This can be written in a simpler form, 

(3.2.2) 



where, 

C1 = -r6 (r2 sin92 + r 3 sine3 ) 1 

C2 = r 6 (r2 cos8; +r3 cos83 ) 

C3 = r 2 r3 sin(82 83 ) - r 1 (r11 sin82 + r3 sin83 ). 

Using relationships (3.1.14), the above equation becomes, 

12 

(3.2.3) 

where, 

K4 = C3 - C1 

Kg = 2C2 

Ks = C3 + Cl· 

Equation (3.2.3) forces the velocity of the output link to be zero. 

Equation (3.1.15) describes the loop closure condition which is also 

valid at the limit positions. Both of these relationships involve 92 

and 96 and are not linearly related. To obtain the position of the 

input link MA corresponding to each of the limit positions of the 

output link CQ, 86 must be eliminated from these two independent 

equations. This elimination of 86 is accomplished using Sylvester's 

dyalitic eliminant technique. Application of this technique yields 

the determinant condition written below. 

J<i l<; Ks O 

O K1Kal<s 

~l<csKeO 

0 ~ Kg Ke 

= o. 

(3.2.4) 
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The above determinant when expanded and simplified yields a polynomial 

in tan ea/2. 

The order of this polynomial will depend on the gear train speed 

ratio sinceK1 , i = 1, ••• ,6, are functions of 9; and 93 , where e3 = 

The above statement is valid for any integer or noninteger value 

of N. The noninteger value of N can be delt in the following manner: 

cos (!J.1 e2 ) = cos (Ai, !J.2~)) , 

cos ce2 - !J.1 e2 ) = cos (62 c1 - 61 )~)), and 

cos ce2 ) = cos Ct.;a(~)) 

where, 

!J.1 = non integer number 

D.;a = a number that makes !J.1 ~ and 

The same is true for the sine terms; and the problem now will be 

to find the(~)· 

From relationships (3.1.14), it can be observed that the half 

tangent terms are squared for each corresponding cosine term. Since 

the solution of equation (3.2.4) results in a polynomial in terms of 

tan 62 only, the following theorem will be stated: 
2 

Theorem #1: The degree of the polynomial, solution of the 

Sylvester's dyalitic eliminant, is function of 

the gear train speed ratio only. 
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The real roots of the polynomial give the necessary conditions for a 

limit position to exist. These roots must be replaced in equation 

(3.1.16), which will give two values to 95 , that must be checked with 

equation (3.2.1) to see which value of 95 make the equation equal to 

zero, thus obtaining the possible limit positions of the normal and 

crossed configurations. 

To determine the existence of the limit positions, the second 

derivative of equation (3.1.12) must be obtained. That is: 

cos96 [ -r5 (r2 cos98 + r 3 cose3 )] + 

+ sin95 [ -r6 (r8 sin98 + r 3 sin93 )] -

d265. - [r2 (-r3 cos(e2 - 93 ) + r1 cos98 ) + r1 r 3 cos93 ] 

cie2 2 = cos9s(-re,.(r8 sin92 + r 3 sin93 )] + 

(3.2.5) 

If d29=/d98
2 f O, then 95 is at a limit position and this is a 

sufficient condition. If d295 /d98
2 = O, then further derivatives are 

to be taken to determine if 95 is a limit position or a pseudo-limit 

position. 

Pseudo-limit position as p'reviously defined is the condition in 

which the output during its motion has a dwell, and continues moving 

in the same direction as prior to the dwell [8]. The dwell can be 

instantaneous if d3 95 /de2 3 'f O or longer if dm95 /d9m2 f O, mis odd. 

In case that dm9e,../d98 m 'f O, · m is even, then the output is at a 

limit position with a. dwell·occurring at that extr~ma. 

If d2 96 /de2 2 = 0 occurs, then a practical approach to know if the 

output is at a limit or pseudo-limit position is to check with e2 ± ~' 
where~ is a small angle, the displacement analysis, and observe if 
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the output reverses its motion (limit position), or continues in the 

same direction (pseudo-limit position). 

3.3 Dead Center Positions 

In order to find the dead center positions, the first derivative 

of the input with respect to the output displacements, must be set 

equal to zero. This is accomplished by taking d92 /d95 = 0 of equation 

(3.1.12) obtaining: 

d92 = cos 95 [ -r5 (r2 sin99 + r 3 sin93 )] + 
d96 

(3.3.1) 

or, 

(3.3.2) 

where, 

The above equation, with the use of relationships (3.1.14), becomes: 

(3.3.3) 

where, 
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Similarly as for the limit positions, a common root e6 must be 

found for equations (3.1.15) and (3.3.3). Here again, two equations 

with two unknowns are provided. In order to obtain an equation in 

terms of e2 only, Sylvester's dyalitic eliminant technique is used to 

obtain: 

= o. 
Iv,~l<eO 

O Kr, ~ Kg (3.3.4) 

Solving, a polynomial in terms of ta.n ~ results. Theorem :/Fl applies 

here, too. The real roots of the polynomial provide the necessary 

and sufficient conditions for the existence of dead center positions, 

since the mechanism becomes a structure at these positions. 

3.4 Sample Derivation of the Limit and 

Dead Center Positions of a Geared 

Five-Link Mechanism of Gear 

Train Speed Ratio= 2 

The general approach presented in the previous section is reexam­

ined to obtain numerical results for a geared five-link mechanism with 

a gear train speed ratio= 2. For this purpose, the displacement 

analysis will first be performed. 

Since N = 2, equation (3.1.5) becomes 

(3.4.1) 

substituting 03 in equation (3.1.12), the following is obtained: 
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2 2 2 2 2 r 1 + rli + r 3 - r4 + r6 + 2r2 r 3 cos(9a + OI) - 2r1 r 2 cos92 -

-2r1 r3 cos(29a + OI) - 2r2 r 6 cos91 cos96 -

-2r3 r 6 cos(292 + a1)cos66 + 2r1 r 6 cos66 -

equation (3.1.13) becomes, 

where, 

Al = 

A2 = 

A3 = 

2r6 [ r 1 -r2 cos62 - r3 (cosa1(cos2 92 - sin2 ea) -

-2s in62 cos 62 sincx)] 

-2r6 [ r 2 sin62 + r3 (2sin62 cos62cosQI + 

+ sincx(cos262 - sin2 92 ) )] 

r2+r2+r2 2 2 + 2[ ra (r3 (cos62 cosa - r4 + rs l 2 3 

- sin62 sina) - r 1 cos62 ) - r 1 r3 (cosa(cos2 92 -

sin2 62 ) - 2sin62 cos ea s ina)] • 

(3.4.2) 

(3.4.3) 

To obtain the conditions for the limit positions, the first derivative 

of the output with respect to the input displacement must be equated 

to zero. To accomplish this, take d96 /d92 = 0 of equation (3.4.2), 

rearrange and collect terms. Thus, 

where, 

C1 = ,;6 [r2 sin92 + 2r3 (2cos62 sin9acosa1 + 

+ sina(cos298 - sin2 62 ))] 

(3.4.4) 



- 2sinacos98 sin92 )] 

C3 = -r2 r3 (cosasin~fil + sin~cose~) + 

+ r 1 [ r1 sine1 + 2r3 (2cosacos92 sine. + 

+ sina(cos2 e. - sin2 9&))] , 

Equations (3,1.15) and (3.2,3) are rewritten, 

\ tan2 96 + ~ tan~ + Ka = 0 
2 2 

and 

~ tan2 ~ + Ks tan96 + Ke = 0 
2 2 

where, 

I<,. = A3 - A l 

Ka = 2A 2 

Ka = A3 + Al 

K,. = C3 - c1 

Ks = 2C2 

Ke = C3 + c1 

18 

(3.4.5) 

(3.4.6) 

with the A's and C's found in equations (3.4.3) and (3.4.4). In order 

to find a common root of 90 in the above equations, Sylvester's 

dyalitic eliminant technique is applied, This procedure yields a 

16th degree polynomial; 

V(17)t16 + V(16)t15 + V(15)t14 + V(14)t13 + V(l3)t12 + 

+ V(l2)t11 + V(ll)t10 + V(lO)t9 + V(9)t8 + V(8)t7 + V(7)t6 + 
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+ V(6)t6 + V(5)t4 + V(4)t3 + V(3)t2 + V(2)t + V(l) = 0 
(3.4.7) 

Where V(i), i 
m m = 1, ••• ,17, are defined in Appendix A and t =tan~' 

m = 1, ••• , 16. 

The real roots of the above polynomial must be introduced in 

' 
equation (3.1.16) and then in (3.4.4) to find the possible limit 

positions of the normal and crossed configurations. 

Introduce the values of the real roots in equation (3.2.5) and 

follow the procedure outlined in Section 3.2 to check the existance 

of a limit or a pseudo-limit position. 

For the dead center positions, equation (3.3.2) becomes, 

where, 

C4 = r 6 [ r 2 sin92 + r3 (2cose; sin92 cosa + 

+ sinet(cos2 92 - sin2 92 ))] 

C0 = rs[-r2 cose2 + r 3 (cosa(sin2 92 - cos 2 9;) + 

·Equation (3.3.3) is rewritten, 

~ tan2 ~ + Ka tan~ + Kg = 0 
2 2 

where, 

(3.4-8) 

(3.4.9) 



with the C's found in equation (3.4.8). In order to find a common 

root of es in equations (3.4.5) and (3.4.9), Sylvester's dyalitic 

eliminant technique is applied. This procedure yields a 16th degree 

po lynomia 1; 

W(17)t16 + W(16)t15 + W(15)t14 + W(l4)t13 + W(l3)t12 + 

+ W(12)t11 + W(ll)t10 + cW(lO)t9 + W(9)t8 + W(8)t7 + 

+ W(7)t6 + W(6)t5 + W(S)_t4 + W(4)t3 + W(3) 2 + W(2)t + 

2.0 

+ W(l) = 0 (3.4.10) 

where, W(i), i = 1, ••• ,17, are defined in Appendix A. 

The real roots of the above equation give the necessary and 

sufficient conditions for the existance of the dead center pdsitions. 

Examples of limit, pseudo-limit and dead center positions are 

· presented in Table I; in this table, 

r1 ' i = 1, ••• , 5 = link lengths 

Alpha = initial input link AB displacement 

Theta 2 = input link MA displacement 

Theta 3 = input link AB displacement 

Theta 4N = coupler link BC displacement - mechanism in normal 

configuration 

Theta SN= output link CQ displacement - mechanism in normal 

configuration 

Theta 4C = coupler link BC displacement - mechanism in crossed 

configuration 

Theta SC= output link CQ displacement - mechanism in crossed 

configuration 



Position; 

1111 = limit position 

2222 = pseudo-limit position 

3333 = dead center position 

21 



TABLE I 

NUMERICAL EXAMPLES 

Rl I R2 I R3 I R4 I R5 I ALPHA !THETA 2 ITHEH 3 ITHF.TA 4NIHETA 5NITHETA 4CITHETA 5Ct POSI1ION 
------1------1------1------1------1-- -----1--------1--------1--------1--------1----- --1--- ----1----------

5.00 1.00 1.2s 3.25 2.15 75.oo 348.7 52.4 35.5 102.a 1111 
51.1 177.3 334.4 191.9 1111 

312 • 1 'B9 • 2 3 31 • 6 2 6 3. 1 1111 
69.2 213.5 . 14.4 157.5 1111 

119. 9 314. 8 3 24. 4 2 24. 1 1111 
145.7 6.4 26.9 127.8 1111 
265.1 245.2 20.1 200.9 20.9 200.7 3333 
185.0 85.0 348.l 169.8 349.7 167.9 3333 

- ----1------1------1------1------1--------1--------1--------1--------1 -------1--------1--------1----------
1.50 2.00 1.75 3.00 2.25 75.00 82.9 240.7 36.2 81.9 1111 . 

110.2 295.3 302.l 274.0 1111 
133.2 341.4 10.0 39.2 1111 
185.5 · 86.l 297.9 209.2 1111 

------1------1~----1------1------1--------1--------1--------1--------1--------1---- ---1---- ---1----------
1.00 2.so · 1.25 3.oo 2.2s 90.00 87.3 264.7 35&.o 21.1 2222 

90. 0 270. 0 278. 1 229. 7 1111 
90.J 270.0 356.1 27.7 2222 
90.0 210.0 278.7 229.7 1111 
90.0 210.0 356.l 21.1 2222 

153.9 37.8 275.8 209.8 1111 
------1------1------1------1------1-- -----,----- --1--------1--------1--------1--------1--------1--- ------

1.00 2.50 o.95 3.00 2.25 90.00 97.2 284.3 203.9 216.9 1111 
141.0 11.9 272.4 213.0 1111 

----- 1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------
1.oo 2.so 1.50 3.00 2.25 90.00 a9.9 269.a 210.6 242.7 1111 

71.3 232.6 0.8 32.9 1111 
106.9 303.8 354.0 21.1 1111 
l.58.7 47.4 275.4 205.7 1111 

------ 1------1------ 1------1-·-----1--------1--------1--------1 --------1--------1 --------1--. -----1----------
N 
N 



TABLE I (CONTINUED) 

R!. I R2 I R3 I R4 I R5 I ALPHA ITHETA 2 ITHEH 3 !THETA 4NIT-iETA 5NITHETA 4CITHETA 5CJ POSITION 
------1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------

1.15 l.OJ 2.00 3.25 2.75 270.00 272.0 94.C 274.7 234.7 1111 
192. q 2 Q s. a 18. 1 1 s 5. o 1111 
238.8 27.6 349.8 349.4 354.0 354.4 3333 
232.8 15.6 29.l 28.8 33.1 33.5 3H3 

------1------1------1------1------1 --------1--------1--------1------ -1--------1--------1--------1----------
4.00 1.00 6.oo 2.00 3.25 o.o 143.6 281.2 323.!'> 190.5 1111 

216.4 72~8 36.4 169.5 1111 
307.0 254.J 307.0 227.5 1111 

53.0 106,0 53.0 132.5 1111 
------1------1 ------1------1------1--------1--------1--------1--------l--------1--------1-----~-1----------

1.oo 4.00 C.JO 3.25 ?.OJ o.o NO EXTREMAS OR DWELLS EXIST FJR Te!IS CASE 
------1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------

·2.oo 3.25 o.oo 1.00 4.oo o.o 290.9 221.s 290.9 263.o 1111 
69.l 138.2 69.l 97.0 1111 

140.4 280.CI 320.4 159.0 1111 
219.6 79.l 39.6 201.0 1111 
64.7 129.3 71.6 103.5 84.7 100.2 3333 

295.3 230.7 275.3 259.8 288.4 256.5 3333 
143.4 286.8 333.9 157.9 340.3 156.3 3333 
216.6 73.2 19.7 203.7 26.l 202.1 3333 

------1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------
2.oo 3.2s o.oo 4.oo 1.00 o.o 64.7 129.3 280.2 215.3 283.s 288.4 3333 

295.3 230.7 76.5 71.6 79.8 84.7 3333 
143.4 286.8 337.2 157.3 337.2 157.1 3333 
216.6 13.2 22.8 202.9 22.s 202.1 3333 

------1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------
1.oo o.oo 3.25 4.00 2.00 o.o NO EXTREMAS o~ DWELLS EXIST FOR THIS USE 

------1------1------1------1------1--------1--------1--------1--------1--------1--------1--------1----------
N 
w 



CHAPTER IV 

GRAPHICAL STUDY OF THE LIMIT AND 

DEAD CENTER POSITIONS 

In actual design work, in many instances a designer is interested 

in a quick and simple technique to check the motion characteristics of 

the output of a mechanism. 

In this chapter a graphical procedure is explained that will enable 

the designer to find all the limit and dead center positions of a geared 

five-link mechanism for both normal and crossed configurations. 

4.1 General Motions of Trochoids 

A trochoid is a curve traced by a point on a circle when the 

circle rolls on another fixed circle. The number of convolutions 

and geometry of this curve depends on the ratio of the radii of both 

circles, and the distance of the point generating the trochoid from 

the center of the rolling circle. In figure 3, point B generates a 

trochoid. 

4.2 Limit Positions 

In order to understand the occurrence of the limit positions of a 

geared five-link mechanism, consider ij vector V (see Figure 4a) which 

is the velocity vector corresponding to the angular velocity (w) at 
s 

which point B meves about the rolling contact point P of the two gears. 

24 
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Figure 4. Velocity at Revolute Pair B when w2 is the Input Angular Velocity; (a) General 
Configuration; (b) Limit Position; (c) Dead Center Position 
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That is V = ills x PB, where PB is the distance between point P and B, or 

simply Vis perpendicular to line PB at point B. In the same figure, 

vectors VnBC and VtBC are the normal and tangential components of V 

with respect to the coupler link BC. 

At a limit position, VnBC must be zero, and after this condition 

occurs, VnBC must have opposite direction as prior to the occurence of 

this condition, otherwise it is at a dwell (pseudo-limit position), 

For VnBC to become zero. line PB must be collinear to coupler link BC 

see Figure 4b. 

Any gear train with several gears has a speed ratio equivalent to 

a gear train with only two gears; these two gears will be named. 

equivalent gears. 

the following theorem can be stated: 

Theorem #2: A limit or pseudo-limit position of a geared five-link 

mechanism with any gear train speed ratio exists only 

when the coupler link or its prolongation passes 

through the point of contact of the two equivalent 

gears. 

4.3 Graphical Procedure to Obtain 

the Limit Positions 

A simple graphical procedure to obtain the limit positions is as 

follows: 

1) Plot circle C1 of length r 2 (input link MA) about Pi, that is, 

(4.3.1) 

(4.3.2) 
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2) On the same graph plot the trochoid T1 corresponding to the 

3) 

gear ratio and link lengths selected as inputs (r2 and rs) 

that is, 

On the same graph plot 

same data as step (2); 

and for ~j;' 
::$ 

r~ becomes 

x~1 = xa + (rs + 

Ys1 = y + (r3 + 2 

Xs2 = xa + (r,. -

'fsa = Ya + (r3 -

two new trochoids Ta 

except that for 'I\,, r 3, 
·"' ~2 

rs - r4; that is, 

r4) coses 

r4 )sin83 

r4 )cose3 

r4 )sin83 

and T3 , 

becomes 

(4.3.3) 

(4.3.4) 

with the 

rs + r4 

(4.3.5) 

(4.3.6) 

(4.3.7) 

(4.3.8) 

4) On the same graph, select a point at a distance r 1 (gound 

link MQ) from the center of rotation P1 of circle C1 • Then 

with a length r 5 (output link CQ) as radius, plot circle C2 

about Pa as fixed center. 

5) All the points PC1 where C; cuts trochoids T2 and T3 are one 

of the ends of the coupler link BC. In order to find the 

other end, draw a line 11 perpendicular to the trochoid T2 

or T3 where the intersection with C2 occurred until 11 cuts 

trochoid T1 perpendicularly at point PB1 ; this will be the 

other end of the coupler link BC. 

6) Now to find the position of the input link MA, draw a circle 

C3 with radius corresponding to the input link AB length (r3 ) 

with center at PB1 ; it will cut circle C1 at two points (or at 

one point if tangent to C1 ). Draw another circle C4 with 

radius corresponding to the equivalent fixeq gear (R1 ) about 
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point P1 • Draw line La collinear with L1 until it cuts circle 

C4 (it may cut C4 at two points). The point P3 of the inter­

section of C3 and c1 , which is collinear with the point P4 of 

the intersection of I._ with C4 , and point P1 will be the point 

P3 determining the location of input link MA. 

7) Repeat steps (5) and (6) until all input positions are found. 

All these input positions correspond to limit or pseudo-limit 

position of the output link. 

Figure Sa shows one of the limit positions which was obtained 

using the procedure just outlined. 

4.4 Dead Center Positions 

In order to understand the occurrence of the dead center positions 

of a geared five-link mechanism see Figure 4a where V, VnBC and VtBC 

are as previously defined in Section 4.2. For a dead center position 

to occur, the velocity vector V must become zero; this will only occur 

if the geometric configuration of the links force the input links to 

become stationary. The geometric configuration (see Figure 4c) that 

will hinder the input link MA from rotating occurs when links BC and CQ 

(coupler and output links) are collinear. 

As explained in Section 4.2, any gear train with several gears has 

a speed ratio equivalent to a gear train with only two gears; and these 

two gears are. named e.quivalent gears. 

The following theorem can be stated: 

Theorem #3: A dead center position of a geared five-iink 

mechanism with any gear train speed ratio exists 



(a) 

(b) 

Figure 5. Graphical Procedure; (a) Sample Limit Position; 
(b) Sample Dead Center Position 
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only when the coupler and the output links are 

collinear. 

4.5 Graphical Procedure to Obtain 

the Dead Center Positions 

30 

A simple graphical procedure to obtain the dead center positions 

is as follows : 

1) Carry out steps (1), (2), and (4) of Section 4.3 (graphical 

procedure to obtain the limit positions). Then circle C1 , 

trochoid T1 , circle Ca and fixed points pl and P; are given. 

2) On the same graph, plot two new circles C5 and Ca with radius 

r 5 + r4 and r 6 - r 4 respectively with center at point P2 ; that 

is, 

Xe; l = r1 + (r5 + r4 )cos95 (4.5.1) 

Ys1 = (rs + r4 )sin96 (4.5.2) 

Xsa = r1 + (r5 - r4 )cos95 (4.5.3) 

Y5:a = (r5 - r4 )sin96 (4.5.4) 

3) All the points PBD where circles C6 and Ce cut trochoid T1 are 

one of the ends of the coupler link BC. In order to find the 

other end draw a line La passing through PBD and P8 ; this line 

L., will cut circle C5 in two places. The point P CD on line L3 

which is at a length r4 from point PBD is the other end of the 

coupler link BC, 

4) To obtain the position of the two input links MA and AB, draw 

circle C.., with radius r3 of the input link AB about PBD; 

circle C.,. will cut circle C1 at two points (or at one point if 
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tangent to C1 ). One of these two points PAl or PA2 will give 

the position of the input link MA. To determine the appropri-

ate position, first assume PAl is the solution, and try to 

rotate input link MA in the direction of wa (clockwise or 

counterclockwise, depending on which one was selected for the 

mechanism) ; 

a. If the coupler link BC could move, then the other point 

PA2 is the position of the input link. 

b. If the coupler link could not move, that is, the mechanism 

remains in locked position then point PAl is the initial 

position of the input link. 

5) Repeat steps (3) and (4) until all input positions are found. 

This input position corresponds to dead center positions of 

the output link. 

Figure Sb shows in the same example as Section 4.3 one of the dead 

center positions using the procedure just outlined. 

4.6 Study of the Inverse Mechanism 

In this section the motion of the geared five-link mechanism is 

studied for the case when 95 is the input displacement, 92 is the out-

put displacement and w5 is the input angular velocity. 

Consider the vectors shown in Figure 6a where Ve is the vector 

corresponding to w6 (input angular velocity) crossed with link length 

r 6 (input link CQ), VCB is the projection of Ve on coupler link BC, 

Vn... and Vt are the normal and tangential components of velocity 
tiP BP 

vector VCB on line BP at point B. 



B 

Q Q 

(a) (b) 

Figure 6. Velocity Vectors at Revolute Pair C when w6 is the Input Angular Velocity; 
(a) General Configuration; (b) Limit Position; (c) Dead Center Position 
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A limit or pseudo-limit position occurs when V is zero, that is, 
CB 

Ve is perpendicular to link BC; this occurs when the input link CQ is 

collinear with coupler link BC see Figure 6b. If the direction of VCB 

after a sma 11 increment of w5 is oppos iJ::e to prior to V CB = 0, then 

the mechanism at VCB = 0 is at a limit position; otherwise, it is at a 

pseudo-limit position. 

A dead center position may only occur if the vector Ve becomes 

zero. This happens when the geometric configuration of the links force 

the input link CQ to become stationary; that is, line PB must be 

collinear with coupler link BC see Figure 6c. If, for an increment of 

w6 the'mechanism remainsc.:loc\{ed., then it is at a dead center position. 

Let 

MECH 1, when 82 = input, and 86 = output, and 

MECH 2, when 86 = input, and 82 = output, 

then, it can be concluded that, 

1) When MECH 1 is at a limit position, MECH 2 is at a dead center 

position. 

2) When MECH 1 is at a dead center position, MECH 2 is at a limit 

position. 

3) When MECH 1 is at a pseudo-limit position, MECH 2 is at a dead 

center position. 

4) When Mech 2 is at a pseudo-limit position Mech 1 is at a dead 

center position. 



In other words the analysis of the limit, pseudo-limit and dead 

center positions is independent of which link MA or CQ is considered 

as input. 
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CHAPTER V 

INSTANTANEOUS CENTERS OF VELOCITY 

IN THE ANALYSIS OF THE LIMIT 

AND DEAD CENTER POSITIONS 

Once some specific geometric configurations of the limit and dead 

center positions are available, the next logical step is to analyze the 

instantaneous centers of velocity (represented as IC all throughout 

this chapter); with the objectives to understand other additional geo-

metrical properties of limit and dead center positions. 

5.1 General Notions of Instantaneous 

Centers of Velocity 

Instantaneous centers of velocity as defined previously are a pair 

of coincident points having zero relative velocity [l]. 

In the study of the IC's in this chapter the concepts of Kennedy's 

theorem will be used. The theorem reads: "The instantaneous centers 

of velocity of any three rigid bodies having planar motion lie on the 

same straight line." 

5.2 Instantaneous Centers of Velocity of 

a Geared Five-Link Mechanism 

The number of IC of a mechanism, can be·determined. by, 

M(M-1) 
N =· 

2 (5.2.1) 
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where, N = number of IC~ and M = number of links of the mechanism. The 

use of equation (5.2.1), with M = 5. (five-link), gives ten IC. These 

are: 

rel 2 ICl3 ICl4 IC1s 

IC23 IC84 IC26 

IC.,4 IC35 

IC46 

Figure 7 presents all the IC, and for ease of understanding the IC of 

the frame of the mechanism, and the IC corresponding to the point of 

contact of the gears will be named fixed IC., The other ones will be 

named floating IC. Thus, IC1s;, IC23 , IC34 , IC46 , IC16 , and ICi 3 are 

fixed IC, and IC14 , IC24 , IC26 and IC 35 are floating IC. 

The fixed IC are defined geometrically as follows, (see Figure 7): 

IC23 : x., 3 = r2 cos 9:a (5.2.2) 

'las = r2 s in9:a (5.2.3) 

IC4s: X,g, 6 = r1 + rs coses (5.2.4) 

Y4s r 6 sin95 (5.2.5) 

IC12: X12 0. (5.2.6) 

Y12 = o. (5. 2. 7) 

ICi s: Xi o = r1 (5.2.8) 

Y1 o = o. (5.2.9) 

IC34 : X.34 Xas + r3 coses (5.2.10) 

Y34 = Yzs + r3 sin93 (5.2.11) 

rc1 s: X13 R1 cos 9a (5.2.12) 

Yis Ri sinSa (5.2.13) 



-~igure 7. Instantaneous Centers of Velocity of a Geared 
Five-Link Mechanism 

"34 
Vs 

Figure 8. · Velocity Vectors at IC34 
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and the floating IC are defined in Appendix B. 

Now that all the IC have been defined, the next step is to find 

the ang~lar velocity of each link. 

Using Kennedy's theorem and simple geometry, the relative 

velocity vector of any two links can be found (1]. 

The anguiar velocities are: 

1) Ground link MQ: w1 = 0 

2) Input link MA: w2 = input velocity 

3) Input link AB: w3 = (1 + GR)w2 

(for a derivation see Section 3.1) 

4) Coupler link BC: 

(IC1!i --IC34 ) 

(IC14 --IC34 ) 

Where w.s is found from the following derivation in Figure 8, r 3 

(5.2.14) 

(5.2.15) 

(5.2.16) 

(5.2.17) 

and Ra are known, and S is the distance from IC13 to IC34 • Therefore, 

and, 

so; 

cos~ 
r :a + 52 - "Q• a = __ 3..._ ____ ·-a=--

- v Vs= .:u_ 
case 

V,s 
ws = s 

(5.2.18) 

(5.2.19) 

(5.2.20) 

(5.2.21) 
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5) Output link CQ: 

(5.2.22) 

w4 and UJs may also be obtained by taking other IC in consideration, but 

the procedure above is the simplest. 

5.3 Limit Positions 

Since the limit and the pseudo-limit positions occur when the out-

put link has zero velocity, and since '°a, w3 and w4 are in motion while 

the limit or pseudo-limit position occurs. The only way w5 in equation 

(5.2.22) can become zero is if the distance IC14 to IC45 becomes zero. 

See Figure 9a where the limit position presented in Figure 4b is 

redrawn. It is interesting to observe that as a result of Kennedy's 

theorem, the IS1coincide with IC35 , and IC12 coincide with IC25 • 

The following theorem can be stated: 

Theorem #4: A limit or pseudo-limit position of a geared five-

link mechanism exists if the instantaneous center of 

of velocity corresponding to the input and output 

links coincides with the instantaneous center of 

velocity coincident with the output moving pivot. 

5.4 Dead Center Positions 

A dead center position will occur when input link MA reaches an 

extrema (tlJ:a becomes zero). That is, the mechanism becomes locked. 

This can be explained as follows; a dead center position occurs only 



(«'5 ,6 

leis 
..:,s 
IC:1s 

/ 
Or) -e_ 

Figure 9. Position of the ·Instantaneous Centers of Velocity; (a) Limit Position; 
(b) Dead Center Position · 

.p.. 
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when w4 in equation (5.2.22) is zero, therefore, w6 is zero. For w4 to 

become zero in equation (5.2.17) the IC14 must coincide with the IC34 

at a dead center position. Thus, w4 would be~, but this condition can 

only occur when w3 is zero (that is, ws = 0), therefore w4 is zero. 

Since w3 is zero, this implies that w8 is zero from eq~ation (5.2.16). 

It is interesting to observe that as a result of Kennedy's theorem, 

rc.i 4 is also coincident with IC14 and IC34 ; this in turn, will make the 

IC86 and IC35 coincide with IC16 • See Figure 9b where the dead center 

position presented in Figure 4c is redrawn. 

The following theorem can now be stated: 

Theorem #5. A dead center position of a geared five-link 

mechanism exists if the instantaneous centers of 

velocity corresponding to the input and output links 

are coincident with the instantaneous center of 

velocity of the input's moving pivot. 

In other words when IC14 coincides with IC34 , a dead center posi­

tion has been achieved (Ic;_ 4 can only be coincident with IC :; 4 at IC34 , 

because of the geometry involved in the construction of the IC). 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In this thesis a generalized approach is developed to find the 

limit and dead center positions of a geared five-link mechanism. This 

approach is applied to study the existence of limit and dead center 

positions of a geared five-link mechanism with a gear train speed ratio 

of two. 

The analytical study show that the first and second derivative 

relationships give the necessary and sufficient conditions for the exis­

tance of the limit and dead center positions. It was found that the 

degree of the polynomials resulting from the expansion of Sylvester's 

dyalitic eliminant technique to determine the extremas is function of 

the gear train speed ratio of the mechanism. 

The graphical approach is proposed to study to specific geometric 

configurations at the limit and dead center positions. 

The motion of the instantaneous centers of velocity of geared five­

link mechanisms show that they (IC) position themselves in a specific 

predictable manner at the extermas. 
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APPENDIX A 

DERIVATION OF THE COEFFICIENTS 

OF THE POLYNOMIALS 

In the following sections the coefficients of the polynomials that 

provide the necessary conditions for the limit and dead center posi­

tions of a geared five-link mechanism with gear train speed ratio= 2 

are derived. 

A.l Expansion of the Sylvester's 

Dyalitic Eliminants 

The expansion of the Sylvester's dyalitic eliminants (3.2.4) and 

(3.3.4) give respectively for limit positions; 

Ki 2 Ks 2 + Ki IS Ks 2 - 2~ IS K.. Ks - Ki Ka Ks Ks + 

Ka 2 ~Ks +IS 2 K.a. 2 - KaIS~Ks = o 

for dead center positions, 

IS 2 Ka 2 + Ki Ks Ka 2 - 2Ki Ks~ r<g - Ki Ka Ke Ke + 

Ka 2 ~Ke + Ks 2 ~ 2 - ISKs~Ke = 0 

where the Kj, j = 1, ••. ,9, are defined as follows: 

44 
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A.2 Definition of the K. 
J 

In order to simplify the data supplied for the computer K(j) = 

Kj, j = 1, •• ,9. Permute the following equation, 

K(J) = 8(I)t4 + 8(I + l)t3 + 8(I + 2)t2 + 

8(I + 3)t + 8(I + 4) 

with, 

J = 1,2,3,4,5,6,7,8,9 

I= l,6,11,16,21,26,31,36,41 

where the 8(I), I= 1, •• ,45 as defined as follows: 

A.3 Definition of the 8(I) 

The 8(I)'s are: 

8(1) = P(l) - P(2) + P(6) 

8(2) = 2[P(4) - P(5)] 

8(3) = 2[2P(3) - P(l) + P(6)] 

8(4) = 2[P(4) + P(5)] 

8(5) = P(l) + P(2) + P(6) 

8 (6) = P(7) 

8(7) = 2{P(9) - P(lO)] 

8 (8) = 2,!2P.(8) - P(7)] 

S(9) = 2[P(9) + (10)) 

8(10) = P(7) 

8(11) = P(ll) - P(l2) + P(16) 

8(12) = 2[P(l4) - P(15)] 

(A. 2 .1) 



S(l3) = 2J2P(13) - P(ll) + P(l6)] 

S(l4) = .iJP(l4) + P(l5)] 

S(l5) = P(ll) + P(l2) + P(l6) 

S(16) = P(l7) - P(l8) 

S(l7) = 2{P(20) - P(21)] 

.. S(l8) = 2[2P(l9) - P(17)] 

S(l9) = 2fP(20) + P(21)] 

S(20) = P(l7) + P(l8) 

B(21) = P(22) - P(23) 

S(22) = -2P(25) 

S(23) = 2[2P(24) - P(22)] 

S(24) = 2P(25) 

S(25) = P(22) + P(23) 

S(26) = P(26) - P(27) 

S(27) = 2[P(29) - P(30)] 

S(28) = 2[2P(28) - P(26)] 

S(29) = 2[P(29) + P(30)] 

S(30) = P(26) + P(27) 

S(31) = P(31) 

S(32) = 2[P(33) - P(34)] 

S(33) = 2[2P(32) - P(31)] 

S(34) = 2[P(33) + P(34)] 

S(35) = P(31) 

S(36) = P(35) - P(36) + P(39). 

S(37) = -2P(38) 

S(38) = 2[2P(37) - P(35) + P(39)] 

S(39) = 2P(38) 
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8(40) = P(35) + P(36) + P(39) 

8 (41) = -8 (31) 

8 (42) = -8 (32) 

8(43) -8(33) 

8(44) = -8 (34) 

8 (45) = -8 (35) 

Where the P(K), K = 1, .•. ,39 are defined as follows: 

A.4 Definition of the P(K) 

The P(K)'s are: 

P(3) = 2r3 (r1 - rs)cosQI 

P(4) == -2r2 r3 siOQI 

P(8) = -P(7) 

P (9) = -4r2 rs 

P(lO) = -8r3 rscOSQ1 

P(ll) = -2r3 (r1 + rs )cosQI 

P (12) = 2r2 (r3 c.os ,Ci - r 1 - rs) 

P(13) = 2rs (r1 + rs )co&a 

P(14) = -2r2 r3 siOQI 

P(15) = 4r3 (r1 + rs )siOQI 
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P(l7) = 4rs (r1 - rs )sinai 

P(l8) = -2r2 rs s ina 

P(l9) = 4-rs (rs - r 1 )s ina 

P(20) = 2ra (r1 - rs COSOI - re) 

P(21) = 8rs (r1 - rs )cosai 

P(22) = -8r3 rs cosai 

P(23) = -4r2 rs 

P(24) = 8rs rs cOSQ' 

P(2S) = 16rs rs s il1Q' 

P(26) = 4rs (r1 + rs )s ina 

P(27) = -2r:arssina 

P(28) = -4rs (r1 + rs )sina 

P(29) = 2ra (r1 - r 3 cosct + rs) 

P(30) = 8rs (r1 + rs )cosai 

P(31) = 2rs rs sina 

P(32) = -P(31) 

P(33) = 2r; rs 

P(34) ::;: 4rs rs cosa 

P(35) = P(34) 

P(36) = 2P(33) 

P(37) = -P (34) 

P(38) = -4P(31) 

P(39) = -4r1 rs 

Where ·r1 , r 2 ,. r 3 , r4 , r 6 , and ot are the initial conditions (link 

lengths and initial position of input link AB). 
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with, 

A.5 Definition of the K(L)K(M) 

Permute the following equation: 

K(L)K(M) = Q(K)t8 + Q(K + l)t7 + Q(K + 2)t6 + 

Q(K + 3)t5 + Q(K + 4)t4 + Q(K + 5)t3 + 

Q(K + 6)t2 + Q(K + 7)t + Q(K + 8) 

L = 1,2,3,4,5,6,7,8,9,1,l,2,4,4,5,7,7,8 

M = 1,2,3,4,5,6,7,8,9,2,3,3,5,6,6,8,9,9 

I= l,6,ll,16,21,26,31,36,41,1,l,6,16,16,21,31,31,36 

J = l,6,ll,16,21,26,31,36,41,6,ll,ll,21,26,26,36,41,41 
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(A.5.1) 

K = 1,10,19,28,37,46,55,64,73,82,91,100,109,118,127,136,145, 

154 

where Q(K)'s are: 

Q(K) = S(I)S(J) 

Q(K + 1) = S(I)S(J + 1) + S(I + l)S(J) 

Q(K + 2) = S(I)S(J + 2) + S(I + l)S(J + 1) + S(I + 2)S(J) 

Q(K + 3) = S(I)S(J + 3) + S(I + l)S(J + 2) + S(I + 2)S(J + 1) 

+ S(I + 3)S(J) 

Q(K + 4) = S(I)S(J + 4) + S(I + l)S(J + 3) + S(I + 2)S(J + 2) 

+ S(I + 3)S(J + 1) + S(I + 4)S(J) 

Q(K + 5) = S(I + l)S(J + 4) + S(I + 2)S(J + 3) + 

S(I + 3)S(J + 2) + S(I + 4)S(J + 1) 

Q(K + 6) = S(I + 2)S(J + 4) + S(I + 3)S(J + 3) + 

S(I + 4)S(J + 2) 



Q(K + 7) = S(I + 3)S(J + 4) + S(I + 4)S(J + 3) 

Q(K + 8) = S(I + 4)S(J + 4) 
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where the S(I), I= 1, •. ,45, and the S(J), J = 1, •• ,45, are defined in 

Section A.3. 

with, 

A.6 Definition of the K(L)K(M)K(N)K(Y) 

Permute the following equation: 

K(L)K(M)K(N)K(Y) = T(K)t16 + T(K + l)t15 + T(K + 2)t14 + 

T(K + 3)t13 + T(K + 4)t12 + T(K + 5)t11 + 

T(K + 6)t10 + T(K + 7)t9 + T(K + 8)t8 + 

T(K + 9)t7 + T(K + 10)t6 + T(K + ll)t5 + 

T(K + 12)t4 + T(K + 13)t3 + T(K + 14)t2 + 

T(K + 15)t + T(K + 16) (A.6.1) 

L = 1,1,l,1,2,3,2,l,1,l,1,2,3,2 

M = 1,3,3,2,2,3,3,1,3,3,2,2,3,3 

N = 6,5,4,5,4,4,4,9,8,7,8,7,7,7 

Y = 6,5,6,6,b,4,5,9,8,9,9,9,7,8 

I= 1,91,91,82,10,19,100,1,91,91,82,l0,19,100 

J = 46,37,118,127,118,28,109,73,64,145,154,145,55,136 

K = l,18,35,52,69,86,103,120,137,154,171,l88,205,222 

where the T(K)'s are: 

T(K) = Q(I)Q(J) 

T(K + 1) = Q(I)Q(J + 1) + Q(I + l)Q(J) 



T(K + 2) = Q(I)Q(J + 2) + Q(I + l)Q(J + 1) + Q(I + 2)Q(J) 

T(K + 3) = Q(I)Q(J + 3) + Q(I + l)Q(J + 2) + 

Q(I + 2)Q(J + 1) + Q(I + 3)Q(J) 

T(K + 4) = Q(I)Q(J + 4) + Q(I + l)Q(J + 3) + 

Q(I + 2)Q(J + 2) + Q(I + 3)Q(J + 1) + 

Q(I + 4)Q(J) 

T(K + 5) = Q(I)Q(J + 5) + Q(I + l)Q(J + 4) + 

Q(I + 2)Q(J + 3) + Q(I + 3)Q(J + 2) + 

Q(I + 4)Q(J + 1) + Q(I + 5)Q(J) 

T(K + 6) = Q(I)Q(J + 6) + Q(I + 1:YQ(J + 5) + Q(I + 2) 
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Q(J + 4) + Q(I + 3)Q(J + 3) + Q(I + 4)Q(J + 2) + 

Q ( I + 5) Q ( J + 1) + Q ( I + 6) Q ( J}_ 

T(K + 7) =-Q(I)Q(J + 7) + Q(I + l)Q(J + 6) + Q(I + 2) 

Q(J + 5) + Q(I + 3)Q(J + 4) + Q(I + 4)Q(J + 3) + 

Q(I + 5)Q(J + 2) + Q(I + 6)Q(J + 1) + Q(I + 7) 

Q(J) 

T(K + 8) = 'Q(I)Q(J + 8) + Q(I + l)Q(J + 7) + Q(I + 2) 

Q(J + 6) + Q(I + 3)Q(J + 5) + Q(I + 4)Q(J + 4) + 

Q(I + 5)Q(J + 3) + Q(I + 6)Q(J + 2) + 

Q(I + 7)Q(J-+ i) + Q(I + 8)Q(J) 

T(K + 9) = Q(I + l)Q(J + 8) + Q(I + 2)Q(J + 7) + Q(I + 3) 

Q(J + 6) + Q(I + 4)Q(J + 5) + Q(I + 5)Q(J + 4) + 

Q(I + 6)Q(J + 3) + Q(I + 7)Q(J + 2) + Q(I + 8) 

Q(J + 1) 

T(K + 10) = Q(I + 2)Q(J + 8) + Q(I + 3)Q(J + 7) + Q(I + 4) 

Q(J + 6) + Q(I + 5)Q(J + 5) + Q(I + 6)Q{J-+ 4) + 

Q(I + 7)Q(J + 3) + Q(I + 8)Q(J + 2) 
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T(K + 11) = .. Q(I + 3)Q(J + 8-) + Q(I + 4).Q.(J + 7) + Q(I + 5) 

..... .Q(J + 6) + .Q(I + 6.)..Q(J + 5) + .Q(I + 7)Q(J + 4) + 

Q(I + 8)Q(J + 3) 

T(K + 12) = Q(I + 4)~(J + 8) + Q(I + 5)Q(J + 7) + Q(I + 6) 

Q(J + 6) + Q(I + 7)Q(J + 5) + Q(I + 8)Q(J + 4) 

T(K + .13) = Q(I + 5)Q(J + 8) + Q(I + 6)Q(J + 7) + Q(I + 7) 

Q(J + 6) + Q(I + 8)Q(J + 5) 

T(K + 14) = Q(I + 6)Q(J + 8) + Q(I + 7)Q(J + 7) + Q(I + 8) 

Q(J + 6) 

T(K + 15) = Q(I + 7)Q(J + 8) + Q(I + 8)Q(J + 7) 

T(K + 16) = Q(I + 8)Q(J + 8) 

The Q(I)'s and Q(J)'s are defined in Section A.5. 

A.7 Definition of the coefficients V(j) and W(j) 

These are the co.efficients of the polynomials (3.4.5) and (3.4.7). 

Permute the following equation: 

V(l8 - I)= T(I) + T(I + 17) - 2T(I + 34) - T(I + 51) + 

T(I + 68) + T(I + 85) - T(I + 102) (A.7.l) 

W(l8 - I)= T(I + 119) + T(I + 136) - 2T(I + 153) -

T(I + 170) + T(I + 187) + T(I + 204) -

T(I + 221) (A. 7 .2) 

with I= 1,2,3, ..•. 17, where the T(I)'s are defined in Section A.6. 



APPENDIX B 

GEO:t•mrRICAL DEFINITION OF THE FLOATING 

INSTANTANEOUS CENTERS OF VELOCITY 

OF A GEARED FIVE-LINK 

MECHANISM 

A floating IC is the intersection point of two lines with equa-

tion of this form: 

y= mX+b (B.1.1) 

where, mis the slope of the line and bis the x-intercept. 

The point of intersection of two lines is at, 

( B.1. 2) 

( B.1. 3) 

where, 

A1y - Aay 
ll\ = A1x - A8 x 

Illa = Bly - B:aY 
B1 x - B2 x 

bl = A1Y - ml A1 x 

ha = Bly - Ill; B1 x 
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coordinates of points Al, A2 , Bl, and B2 respectively. Therefore, to 

find the floating JC, permu.te" with equations (B.1.2) and (B.1.3), the 

following: 

Floating IC Al A2 Bl B,a 

ICu. IC1114 IClB rc,. 6 ICl6 

IC24 ICi,;a rel.., IC34 IC23 

ICa 6 IC34 IC45 IC13 ICls 

rc25 rc24 IC45 IC23 rcss 

where, rc12 , rc13 , IC23 , IC34 , IC46 and IC16 are fixed IC, and were 

defined in Section 5.2. 
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