## LIMIT AND DEAD CENTER POSITIONS OF

## A GEARED FIVE-LINK MECHANISM

By<br>AMNON FEKETE VADASZ<br>Bachelor of Science<br>Oklahoma State University<br>Stillwater, Oklahoma<br>1972

```
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
December, 1973
```


# LIMIT AND DEAD CENTER POSITIONS OF 

A GEARED FIVE-LINK MECHANISM

Thesis Approved:


PREFACE


#### Abstract

In this thesis, the limit and dead center positions of a geared five-link mechanism are first derived analytically. A sample derivation for a gear train speed ratio of two is included to demonstrate the procedure. Secondly, a graphical solution is studied, and a simple graphical procedure is presented. Finally, the positioning of the instant centers of velocity of this mechanism are studied.

I would like to acknowledge the assistance and continuous encouragements received from my advisor, Dr. A. H. Soni. Thanks are also due to my friends: Louis Torfason, Dilip Kohli and Luis Loeff for their stimulative discussion on the subject.

I wish to thank the Mobil Oil Company of Venezuela for giving me the opportunity to come to the United States and for the scholastic scholarship I was given.

I also wish to thank the National Science Foundation for its financial support through the grant GK 21029.

Finally, special gratitude is expressed to my parents, the Baker family, and to all my friends for their continuous encouragement and moral support.


## TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..... 1
II. GENERAL DESCRIPTION OF THE GEARED FIVE-LINK MECHANISM IN STUDY ..... 3
III. ANALYTICAL DERIVATION OF THE LIMIT AND DEAD CENTER POSITIONS ..... 6

1. Displacement Analysis ..... 6
2. Limit Positions ..... 11
3. Dead Center Positions ..... 15
4. Sample Derivation of the Limit and Dead Center Positions of a Geared Five-Link Mechanism of Gear Train Speed Ratio $=2$ ..... 16
IV. GRAPHICAL STUDY OF THE LIMIT AND DEAD CENTER POSITIONS ..... 24
5. General Motions of Trochoids ..... 24
6. Limit Positions ..... 24
7. Graphical Procedure to Obtain the Limit Positions ..... 26
8. Dead Center Positions ..... 28
9. Graphical Procedure to Obtain the Dead Center Positions ..... 30
10. Study of the Inverse Mechanism ..... 31
V. INSTANTANEOUS CENTERS OF VELOCITY IN THE ANALYSIS OF THE LIMIT AND DEAD CENTER POSITIONS ..... 35
11. General Notions of Instantaneous Centers of Velocity ..... 35
12. Instantaneous Centers of Velocity of a Geared Five-Link Mechanism ..... 35
13. Limit Positions ..... 39
14. Dead Center Positions ..... 39
VI. SUMMARY AND CONCLUSIONS ..... 41
SELECTED BIBLIOGRAPHY ..... 42
Chapter Page
APPENDIX A - DERIVATION OF THE COEFFICIENTS OF THE POLYNOMIALS ..... 44
15. Expansion of the Sylvester's Dyalitic Eliminants ..... 44
16. Definition of $K$ ..... 45
17. Definition of the S(I) ..... 45
18. Definition of the $P(K)$ ..... 47
19. Definition of the $K(L) K(M)$ ..... 49
20. Definition of the $K(L) K(M) K(N) K(Y)$ ..... 50
21. Definition of the Coefficients $V(j)$ and
W(j) ..... 52
APPENDIX B - GEOMETRICAL DEFINITION OF THE FLOATING INSTANTANEOUS CENTERS OF VELOCITY OF A GEARED FIVE-LINK MECHANISM ..... 53

## LIST OF TABLES

Table Page
I. Numerical Examples ..... 22
Figure Page

1. Illustration of Notation and Configuration of the Geared Five-Link Mechanism in Study ..... 4
2. Vectorial Representation of the Geared Five-Link Mechanism in Study ..... 7
3. Input Velocity Vectors ..... 7
4. Velocity at Revolute Pair B when $\omega_{0}$ is the Input Angular Velocity; (a) General Configuration; (b) Limit Position; (c) Dead Center Position. ..... 25
5. Graphical Procedure; (a) Sample Limit Position;
(b) Sample Dead Center Position ..... 29
6. Velocity Vectors at Revolute Pair $C$ when $\omega_{5}$ is the Input Angular Velocity; (a) General Configuration; (b) Limit Position; (c) Dead Center Position ..... 32
7. Instantaneous Centers of Velocity of a Geared Five-
Link Mechanism ..... 37
8. Velocity Vectors at $\mathrm{IC}_{34}$ ..... 37
9. Position of the Instantaneous Centers of Velocity;
(a) Limit Position; (b) Dead Center Position. ..... 40

## NOMENCLATURE

| $r_{1}$ | length of ground link MQ |
| :---: | :---: |
| $\mathrm{r}_{2}$ | length of input link MA |
| $\mathrm{r}_{3}$ | length of input link $A B$ |
| $\mathrm{r}_{4}$ | length of coupler link BC |
| $r_{5}$ | length of output 'link CQ |
| $\theta_{1}$ | displacement angle of ground link MQ |
| $\theta_{2}$ | displacement angle of input link MA |
| $\theta_{3}$ | displacement angle of input link $A B$ |
| $\theta_{4}$ | displacement angle of coupler link BC |
| $\theta_{5}$ | displacement angle of output link CQ |
| $\mathrm{G}_{1}$ | gear fixed to the ground link MQ |
| $\mathrm{G}_{2}$ | gear fixed to the input link $A B$ |
| $\mathrm{R}_{1}$ | radius of $\mathrm{G}_{1}$ |
| $\mathrm{R}_{5}$ | radius of $\mathrm{G}_{2}$ |
| $\omega_{1}$ | angular velocity of the fixed gear $G_{1}$ |
| $\omega^{2}$ | angular velocity of input link MA |
| $\omega_{3}$ | angular velacity of input link $A B$ |
| $\bar{V}_{1}, \quad(i=2,3)$ | velocity vectors |
| GR | ratio of $R_{L} / R_{2}$ |
| $\alpha$ | initial displacement angle of input link AB |
| $\mathrm{r}_{1}, \quad(\mathrm{i}=1, \ldots, 5)$ | vectors |
| $\bar{u}_{1},(i=1, \ldots, 5)$ | unit vectors |

any angle
small angle
instantaneous center of velocity
N
gear train speed ratio

CHAPTER I

## INTRODUCT ION

There is considerable interest in the design and analysis of geared mechanisms [1-7]*. Freundenstein claims that the work on geared mechanisms dates back to the eighteenth century. An excellent contri* bution in the study of motion of geared five-link mechanisms is by Freundenstein and Primrose [2,3]. The dimensional synthesis of geared five-1ink mechanisms is considered by Sandor and his associates [4-6]. The study on the coupler cognate mechanism is conducted by Hartenberg [1] and by Soni and Pamidi [7].

An interesting topic and one that is of practical importance in design and analysis of geared five-1ink mechanisms is to develop the "Grashof Criteria" for these mechanisms. A systematic approach in the development of such criteria, however, requires one to develop analytical methods to determine the conditions for the existence of limit positions and dead center positions. Accordingly, the objective of this thesis is to develop mathematically the criteria for the existence of limit positions and dead center positions and show their relationships with the instantaneous centers of velocity of one of the inversions of a geared five-link mechanism.

Chapter II presents an analytical description of the geared
*Numbers in brackets designate references.
five-link mechanism under investigation.
In Chapter III, an analytical procedure is developed to obtain the existence conditions for the limit positions and dead center positions.

In Chapter IV, the geometric properties of the limit positions and dead center positions of the geared five-link mechanism are studied.

In Chapter $V$, the motion of the instantaneous centers of velocity is studied. It is observed that at the limit positions and dead center positions these instantaneous centers of velocity arrange themselves in predictable manners.

The significant contribution of this thesis is summarized below.
(1) Development of a generalized approach to determine the limit positions and dead center positions of any given mechanism.
(2) Development of the existence conditions for the limit positions and dead center positions of a geared five-link mechanism.
(3) Development of a graphical construction method to determine the limit positions and dead center positions of the geared five-1ink mechanism under investigation.
(4) Development of relationships between the instantaneous centers of velocity and the limit positions and dead center positions.
(5) Development of theorems on instantaneous centers of velocity and limit positions and dead center positions.

## CHAPTER II

## GENERAL DESCRIPTION OF THE GEARED

## FIVE-LINK MECHANISM IN STUDY

Figure 1 shows the geared five-1ink mechanism studied in this thesis.

In this figure, $M, A, B, C$, and $Q$ are revolute pairs joining the links. $r_{1}$ and $\theta_{1}, i=1, \ldots, 5$, are the link lengths and displacement angles of the links. The links are:

$$
\begin{array}{ll}
i=1, & \text { ground link MQ } \\
i=2, & \text { input link } M A \\
i=3, & \text { input } 1 \text { ink } A B \\
i=4, & \text { coupler link } B C \\
i=5, & \text { output link } C Q
\end{array}
$$

Also, $R_{1}$ is the radius of the gear $G_{1}$, which is fixed to the ground link $M Q$, and $R_{\Sigma}$ is the radius of the gear $G_{2}$ pivoted on input link MA at point $A$ onto which is rigidly fixed input link $A B$.

The following definitions will prove to be helpful in the understanding of the contents of this thesis:
(a) Limit position: occurs when the output link reaches an extrema, and reverses its motion at this extrema.


Figure 1. Illustration of Notation and Configuration of the Geared Five-Link Mechanism in Study
(b) Pseudo-1imit position: occurs when the output link is at a dwell, and continues the motion in the same direction prior to the dwell.
(c) Dead center position: occurs when the input link reaches an extrema. The mechanism is permanently locked at this position. The mobility of the mechanism is restored by an external force. The dead center position of the output link is the limit position of the input link.
(d) Instantaneous centers of velocity (IC): are a pair of coincident points which have zero relative velocity.

## ANALYTICAL DERIVATION OF THE LIMIT POSITIONS

AND DEAD CENTER POSITIONS

The development of the mathematical conditions for the limit positions requires one to
(1) derive in a closed form the input-output displacement relationships;
(2) obtain in a closed form the relationship which describes $d \theta_{5} / d \theta_{2}=0$ where $\theta_{2}$ and $\theta_{5}$ are the input and output angular displacements;
(3) develop conditions for the limit positions by eliminating the unwanted output parameter $\theta_{5}$.

The procedure discussed in this chapter can be used for any type of mechanism.

### 3.1 Displacement Analysis

The displacement analysis is accomplished by finding the vector loop-closure equation of the mechanism shown in Figure 2.

The gear arrangement for the mechanism in Figure 2 is shown in Figure 3; from this figure we write

$$
\begin{align*}
& \bar{V}_{2}=\left(\bar{k} \omega_{2}\right) \times\left(\bar{j}\left[R_{1}+R_{2}\right]\right)  \tag{3.1.1}\\
& \bar{V}_{3}=\left(\bar{k} \omega_{3}\right) \times\left(-\bar{j} R_{2}\right) \tag{3.1.2}
\end{align*}
$$



Figure 2. Vectorial Representation of the Geared FiveLink Mechanism in Study


Figure 3. Input Velocity Vectors
where, $\quad \bar{V}_{3}$ and $\bar{V}_{3}$ are velocity vectors, $\omega_{2}$ is the angular velocity of the input link MA, $\omega_{3}$ is the angular velocity of the input link $A B$, $\bar{i}, \bar{j}$ and $\bar{k}$ are unit vectors on the $x, y$ and $z$ axis respectively.

Adding the velocity vectors, the following results:

$$
\bar{v}_{2}+\bar{v}_{3}=0 ;
$$

that is,

$$
-\bar{i} \omega_{2}\left(R_{1}+R_{2}\right)+i \omega_{3} R_{2}=0
$$

Simplifying and rearranging the above equation, the following results:

$$
\omega_{3}=\left(\frac{R_{1}+R_{e}}{R_{2}}\right)_{\omega_{2}},
$$

or

$$
\begin{equation*}
\omega_{3}=(G R+1) \omega_{2} \tag{3.1.3}
\end{equation*}
$$

Since the angular velocities are the first time derivatives of the displacements, then,

$$
\frac{\mathrm{d} \theta_{3}}{\mathrm{dt}}=(\mathrm{GR}+1) \frac{\mathrm{d} \theta_{\mathrm{a}}}{\mathrm{dt}} .
$$

Integration of both sides gives the following:

$$
\begin{equation*}
\theta_{3}=(G R+1) \theta_{\mathrm{a}}+\alpha . \tag{3.1.4}
\end{equation*}
$$

Where, $\theta_{2}$ and $\theta_{3}$ are the displacements of input link MA and input link $A B, G R$ is the ratio of $R_{l} / R_{\bigodot}$, and $\alpha$ is the initial displacement of the
input link $A B$, or more simply,

$$
\begin{equation*}
\theta_{3}=N \theta_{2}+\alpha, \tag{3.1.5}
\end{equation*}
$$

where $N$ is the gear train speed ratio ( $G R+1$ ).
Now the output displacement will be derived from Figure 2. The vectors are $\bar{r}_{1}=\bar{u}_{1} r_{i}, i=1, \ldots, 5$, where $r_{1}$ are the link lengths and $\bar{u}_{1}$ are unit vectors corresponding to each $r_{1}$. They can be arranged in the following vector loop closure equation;

$$
\begin{equation*}
\bar{r}_{8}+\bar{r}_{3}+\bar{r}_{4}-\bar{r}_{1}-\bar{r}_{5}=0 \tag{3.1.6}
\end{equation*}
$$

The vectors can be represented as

$$
\bar{r}_{1}=r_{1} e^{j \theta_{1}} ; i=1, \ldots, 5
$$

From the theory of complex numbers,

$$
\begin{equation*}
r_{1} e^{j \theta_{1}}=r_{1}\left(\cos \theta_{1}+j \sin \theta_{1}\right), i=1, \ldots, 5 \tag{3.1.7}
\end{equation*}
$$

Equation (3.1.6), after expansion and separation of the real and complex parts, becomes,

$$
\begin{align*}
& r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}+r_{4} \cos \theta_{4}-r_{1} \cos \theta_{1}-r_{5} \cos \theta_{5}=0 .  \tag{3.1.8}\\
& r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}+r_{4} \sin \theta_{4}-r_{1} \sin \theta_{1}-r_{5} \sin \theta_{5}=0 . \tag{3.1.9}
\end{align*}
$$

To simplify the calculations $\theta_{1}$ may be assumed equal to 360 degrees without any loss of generality. Since the output displacement $\theta_{5}$ is desired, the coupler link displacement $\theta_{4}$ must be eliminated from equations (3.1.8) and (3.1.9). Therefore, rearrangement of these equations gives the following:

$$
\begin{equation*}
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}-r_{1}-r_{5} \cos \theta_{5}=-r_{4} \cos \theta_{4} \tag{3.1.10}
\end{equation*}
$$

$$
\begin{equation*}
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}-r_{5} \sin \theta_{5}=-r_{4} \sin \theta_{4} . \tag{3.1.11}
\end{equation*}
$$

Squaring both sides of equations (3.1.10) and (3.1.11) and then adding them together gives the following:

$$
\begin{align*}
& r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}+2 r_{2} r_{3} \cos \left(\theta_{2}-\theta_{3}-\right. \\
& -2 r_{1} r_{2} \cos \theta_{2}-2 r_{1} r_{3} \cos \theta_{3}-2 r_{2} r_{5} \cos \theta_{2} \cos \theta_{5}- \\
& -2 r_{3} r_{5} \cos \theta_{3} \cos \theta_{5}+2 r_{1} r_{5} \cos \theta_{5}-  \tag{3.1.12}\\
& -2 r_{2} r_{5} \sin \theta_{2} \sin \theta_{5}-2 r_{3} r_{5} \sin \theta_{3} \sin \theta_{5}=0 .
\end{align*}
$$

Rearrangement and collection of the terms results in:

$$
\begin{equation*}
A_{1} \cos \theta_{5}+A_{2} \sin \theta_{5}+A_{3}=0 \tag{3.1.13}
\end{equation*}
$$

where,

$$
\begin{aligned}
A_{1}= & 2 r_{5}\left(r_{1}-r_{2} \cos \theta_{2}-r_{3} \cos \theta_{3}\right) \\
A_{2}= & -2 r_{5}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right) \\
A_{3}= & r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}+2\left[r _ { 2 } \left(r_{3} \cos \left(\theta_{2}-\theta_{3}\right)-\right.\right. \\
& \left.\left.-r_{1} \cos \theta_{2}\right)-r_{1} r_{3} \cos \theta_{3}\right] .
\end{aligned}
$$

The following trigonometric relationships are used to find $\theta_{5}$ explicitly:

$$
\begin{align*}
& \sin \gamma=\left(\frac{2 \tan (\gamma / 2)}{1+\tan ^{2}(\gamma / 2)}\right) \\
& \cos \gamma=\left(\frac{1-\tan ^{2}(\gamma / 2)}{1+\tan ^{2}(\gamma / 2)}\right) \tag{3.1.14}
\end{align*}
$$

for any $\gamma$. Substituting the relationships (3.1.14) in equation (3.1.13) gives

$$
\begin{equation*}
k_{1} \tan ^{2} \frac{\theta_{5}}{2}+k_{2} \tan ^{\theta_{5}} \frac{k_{3}}{2}=0 \tag{3.1.15}
\end{equation*}
$$

where,

$$
\begin{aligned}
K_{1} & =A_{B}-A_{1} \\
K_{2} & =2 A_{2} \\
K_{2} & =A_{3}+A_{1}
\end{aligned}
$$

from where,

$$
\begin{equation*}
\theta_{5}=2 \operatorname{artan}\left(\frac{-K_{2} \pm \sqrt{K_{2}^{2}-4 K_{1} K_{3}}}{2 K_{1}}\right) \tag{3.1.16}
\end{equation*}
$$

Two values of $\theta_{5}$ are found to describe the normal and crossed configurations.

Now the displacement of the coupler link $\theta_{4}$ will be found. To accomplish this, equation (3.1.11) is rearranged so that,

$$
\begin{equation*}
\theta_{4}=\operatorname{arsin}\left(\frac{1}{r_{4}}\left[r_{5} \sin \theta_{5}-r_{2} \sin \theta_{3}-r_{3} \sin \theta_{3}\right]\right) \tag{3.1.17}
\end{equation*}
$$

There are two values of $\theta_{4}$ corresponding to the two values of $\theta_{5}$.

### 3.2 Limit Positions

At the limit positions of the output link, a reversal of motion can be observed. Hence, the velocity of the output link must be zero and the mathematical condition for the existence of the limit positions is obtained by setting $\mathrm{d}_{5} / \mathrm{d} \theta_{2}=0$. That is,

$$
\begin{aligned}
& \frac{d \theta_{5}}{d \theta_{2}}=\cos \theta_{5}\left[-r_{5}\left(r_{2} \cos \dot{\theta}_{3}\right)\right]+\left[r_{2} r_{3} \sin \left(\theta_{2}-\theta_{3}\right)-r_{1}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right)\right]=0
\end{aligned}
$$

This can be written in a simpler form,

$$
\begin{equation*}
C_{2} \cos \theta_{5}+C_{2} \sin \theta_{5}+C_{3}=0 \tag{3.2.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& C_{1}=-r_{5}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right) \\
& C_{2}=r_{5}\left(r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}\right) \\
& C_{3}=r_{2} r_{3} \sin \left(\theta_{2}-\theta_{3}\right)-r_{1}\left(r_{5} \sin \theta_{2}+r_{3} \sin \theta_{3}\right) .
\end{aligned}
$$

Using relationships (3.1.14), the above equation becomes,

$$
\begin{equation*}
K_{4} \tan ^{2} \frac{\theta_{5}}{2}+K_{5} \tan \frac{\theta_{5}}{2}+K_{6}=0 \tag{3.2.3}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{K}_{4}=\mathrm{C}_{3}-\mathrm{C}_{1} \\
& \mathrm{~K}_{5}=2 \mathrm{C}_{2} \\
& \mathrm{~K}_{6}=\mathrm{C}_{3}+\mathrm{C}_{1} .
\end{aligned}
$$

Equation (3.2.3) forces the velocity of the output link to be zero. Equation (3.1.15) describes the loop closure condition which is also valid at the limit positions. Both of these relationships involve $\theta_{2}$ and $\theta_{5}$ and are not linearly related. To obtain the position of the input link MA corresponding to each of the limit positions of the output link $C Q, \theta_{5}$ must be eliminated from these two independent equations. This elimination of $\theta_{5}$ is accomplished using Sylvester's dyalitic eliminant technique. Application of this technique yields the determinant condition written below.

$$
\left|\begin{array}{llll}
K_{1} & K_{2} & K_{3} & 0  \tag{3.2.4}\\
0 & K_{1} & K_{2} & K_{3} \\
K_{4} & K_{5} & K_{8} & 0 \\
0 & K_{4} & K_{5} & K_{8}
\end{array}\right|=0 .
$$

The above determinant when expanded and simplified yields a polynomial in $\tan \theta_{2} / 2$.

The order of this polynomial will depend on the gear train speed ratio since $K_{1}$, $i=1, \ldots, 6$, are functions of $\theta_{2}$ and $\theta_{3}$, where $\theta_{3}=$ $\mathrm{N} \theta_{2}+\alpha$.

The above statement is valid for any integer or noninteger value of $N$. The noninteger value of $N$ can be delt in the following manner:

$$
\begin{aligned}
& \cos \left(\Delta_{1} \theta_{2}\right)=\cos \left(\Delta_{1} \Delta_{2}\left(\frac{\theta_{2}}{\Delta_{2}}\right)\right) \\
& \cos \left(\theta_{2}-\Delta_{1} \theta_{2}\right)=\cos \left(\Delta_{2}\left(1-\Delta_{1}\right)\left(\frac{\theta_{2}}{\Lambda_{2}}\right)\right) \\
& \cos \left(\theta_{2}\right)=\cos \left(\Delta_{2}\left(\frac{\theta_{2}}{\Delta_{2}}\right)\right)
\end{aligned}
$$

where,
$\Delta_{I} \quad=$ non integer number
$\Delta_{2} \quad=a$ number that makes $\Delta_{1} \Delta_{2}$ and
$\Delta_{2}\left(1-\Delta_{1}\right)$ an integer.

The same is true for the sine terms; and the problem now will be to find the $\left(\frac{\theta_{2}}{\Delta_{2}}\right)$.

From relationships (3.1.14), it can be observed that the half tangent terms are squared for each corresponding cosine term. Since the solution of equation (3.2.4) results in a polynomial in terms of $\tan \frac{\theta_{2}}{2}$ only, the following theorem will be stated:

Theorem 非: The degree of the polynomia1, solution of the Sylvester's dyalitic eliminant, is function of the gear train speed ratio only.

The real roots of the polynomial give the necessary conditions for a limit position to exist. These roots must be replaced in equation (3.1.16), which will give two values to $\theta_{5}$, that must be checked with equation (3.2.1) to see which value of $\theta_{5}$ make the equation equal to zero, thus obtaining the possible limit positions of the normal and crossed configurations.

To determine the existence of the limit positions, the second derivative of equation (3.1.12) must be obtained. That is:

$$
\begin{align*}
& \cos \theta_{5}\left[-r_{5}\left(r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}\right)\right]+ \\
& +\sin \theta_{5}\left[-r_{5}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right)\right]- \\
\frac{\mathrm{d}^{2} \theta_{5}}{\mathrm{~d} \theta_{2}}= & \frac{-\left[r_{2}\left(-r_{3} \cos \left(\theta_{2}-\theta_{3}\right)+r_{1} \cos \theta_{2}\right)+r_{1} r_{3} \cos \theta_{3}\right]}{\cos \theta_{5}\left[-r_{5}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right)\right]+} \\
& +\sin \theta_{5}\left[-r_{5}\left(r_{1}-r_{2} \cos \theta_{2}-r_{3} \cos \theta_{3}\right)\right] \tag{3.2.5}
\end{align*}
$$

If $\mathrm{d}^{2} \theta_{5} / \mathrm{d} \theta_{2}^{2} \neq 0$, then $\theta_{5}$ is at a limit position and this is a sufficient condition. If $\mathrm{d}^{2} \theta_{5} / \mathrm{d} \theta_{2}^{2}=0$, then further derivatives are to be taken to determine if $\theta_{5}$ is a limit position or a pseudo-1imit position.

Pseudo-limit position as previously defined is the condition in which the output during its motion has a dwell, and continues moving in the same direction as prior to the dwell [8]. The dwell can be instantaneous if $d^{3} \theta_{5} / d \theta_{3}{ }^{3} \neq 0$ or longer if $d^{m} \theta_{5} / d \theta_{B}^{m} \neq 0, m$ is odd.

In case that $d^{m} \theta_{5} / d \theta_{2}{ }^{m} \neq 0, m$ is even, then the output is at a limit position with a dwell occurring at that extrema.

If $\mathrm{d}^{2} \theta_{5} / \mathrm{d} \theta_{\mathrm{a}}^{2}=0$ occurs, then a practical approach to know if the output is at a limit or pseudo-limit position is to check with $\theta_{2} \pm \xi$, where 5 is a small angle, the displacement analysis, and observe if
the output reverses its motion (limit position), or continues in the same direction (pseudo-limit position).

### 3.3 Dead Center Positions

In order to find the dead center positions, the first derivative of the input with respect to the output displacements, must be set equal to zero. This is accomplished by taking $d \theta_{2} / d \theta_{5}=0$ of equation (3.1.12) obtaining:

$$
\begin{align*}
\frac{d \theta_{2}}{d \theta_{5}}= & \cos \theta_{5}\left[-r_{5}\left(r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}\right)\right]+  \tag{3.3.1}\\
& +\sin \theta_{5}\left[r_{5}\left(r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}\right)\right]=0
\end{align*}
$$

or,

$$
\begin{equation*}
C_{4} \cos \theta_{5}+C_{5} \sin \theta_{5}=0 \tag{3.3.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& C_{4}=-r_{5}\left(r_{2} \sin \theta_{3}+r_{3} \sin \theta_{3}\right) \\
& C_{5}=r_{5}\left(r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}\right)
\end{aligned}
$$

The above equation, with the use of relationships (3.1.14), becomes:

$$
\begin{equation*}
K_{r} \tan ^{2} \frac{\theta_{5}}{2}+K_{8} \tan \frac{\theta_{5}}{2}+K_{9}=0 \tag{3.3.3}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{K}_{7}=\mathrm{C}_{4} \\
& \mathrm{~K}_{8}=-2 \mathrm{C}_{5} \\
& \mathrm{~K}_{9}=-\mathrm{C}_{4}
\end{aligned}
$$

Similarly as for the limit positions, a common root $\theta_{5}$ must be found for equations (3.1.15) and (3.3.3). Here again, two equations with two unknowns are provided. In order to obtain an equation in terms of $\theta_{2}$ only, Sylvester's dyalitic eliminant technique is used to obtain:

$$
\left|\begin{array}{llll}
K_{1} & K_{2} & K_{3} & 0  \tag{3.3.4}\\
0 & K_{1} & K_{a} & K_{3} \\
K_{7} & K_{\theta} & K_{\theta} & 0 \\
0 & K_{7} & K_{8} & K_{\theta}
\end{array}\right|=0 .
$$

Solving, a polynomial in terms of $\tan \frac{\theta_{z}}{2}$ results. Theorem 非 1 applies here, too. The real roots of the polynomial provide the necessary and sufficient conditions for the existence of dead center positions, since the mechanism becomes a structure at these positions.

3.4 Sample Derivation of the Limit and<br>Dead Center Positions of a Geared<br>Five-Link Mechanism of Gear<br>Train Speed Ratio $=2$

The general approach presented in the previous section is reexamined to obtain numerical results for a geared five-1ink mechanism with a gear train speed ratio $=2$. For this purpose, the displacement analysis will first be performed.

Since $N=2$, equation (3.1.5) becomes

$$
\begin{equation*}
\theta_{3}=2 \theta_{2}+\alpha \tag{3.4.1}
\end{equation*}
$$

substituting $\theta_{3}$ in equation (3.1.12), the following is obtained:

$$
\begin{align*}
& r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}+2 r_{2} r_{3} \cos \left(\theta_{2}+\alpha\right)-2 r_{1} r_{2} \cos \theta_{2}- \\
& -2 r_{1} r_{3} \cos \left(2 \theta_{2}+\alpha\right)-2 r_{2} r_{5} \cos \theta_{2} \cos \theta_{5}- \\
& -2 r_{3} r_{5} \cos \left(2 \theta_{2}+\alpha\right) \cos \theta_{5}+2 r_{1} r_{5} \cos \theta_{5}- \\
& -2 r_{2} r_{5} \sin \theta_{2} \sin \theta_{5}-2 r_{3} r_{5} \sin \left(2 \theta_{2}+\alpha\right) \sin \theta_{5}=0 ; \tag{3.4.2}
\end{align*}
$$

equation (3.1.13) becomes,

$$
\begin{equation*}
A_{1} \cos \theta_{5}+A_{2} \sin \theta_{5}+A_{3}=0 \tag{3.4.3}
\end{equation*}
$$

where,

$$
\begin{aligned}
A_{1}= & 2 r_{5}\left[r_{1}-r_{2} \cos \theta_{2}-r_{3}\left(\cos \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right)-\right.\right. \\
& \left.\left.-2 \sin \theta_{2} \cos \theta_{2} \sin \alpha\right)\right] \\
A_{2}= & -2 r_{5}\left[r_{2} \sin \theta_{2}+r_{3}\left(2 \sin \theta_{2} \cos \theta_{2} \cos \alpha+\right.\right. \\
& \left.\left.+\sin \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right)\right)\right] \\
A_{3}= & r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}+2\left[r _ { 2 } \left(r _ { 3 } \left(\cos \theta_{2} \cos \alpha-\right.\right.\right. \\
& \left.\left.-\sin \theta_{2} \sin \alpha\right)-r_{1} \cos \theta_{2}\right)-r_{1} r_{3}\left(\operatorname { c o s } \alpha \left(\cos ^{2} \theta_{2}-\right.\right. \\
& \left.\left.\left.\sin ^{2} \theta_{2}\right)-2 \sin \theta_{2} \cos \theta_{3} \sin \alpha\right)\right] .
\end{aligned}
$$

To obtain the conditions for the limit positions, the first derivative of the output with respect to the input displacement must be equated to zero. To accomplish this, take $d \theta_{5} / d \theta_{2}=0$ of equation (3.4.2), rearrange and collect terms. Thus,

$$
\begin{equation*}
\frac{d \theta_{5}}{d \theta_{2}}=C_{1} \cos \theta_{5}+C_{2} \sin \theta_{5}+C_{3}=0 \tag{3.4.4}
\end{equation*}
$$

where,

$$
\begin{aligned}
C_{1}= & r_{5}\left[r_{2} \sin \theta_{2}+2 r_{3}\left(2 \cos \theta_{2} \sin \theta_{2} \cos \alpha+\right.\right. \\
& \left.\left.+\sin \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
C_{2}= & -r_{5}\left[r_{2} \cos \theta_{2}+2 r_{3}\left(\cos \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right)-\right.\right. \\
& \left.\left.-2 \sin \alpha \cos \theta_{2} \sin \theta_{2}\right)\right] \\
C_{3}= & -r_{2} r_{3}\left(\cos \alpha \sin \theta_{1}+\sin \alpha \cos \theta_{2}\right)+ \\
& +r_{1}\left[r_{2} \sin \theta_{2}+2 r_{3}\left(2 \cos \alpha \cos \theta_{2} \sin \theta_{2}+\right.\right. \\
& \left.\left.+\sin \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{3}\right)\right)\right] .
\end{aligned}
$$

Equations (3.1.15) and (3.2.3) are rewritten,

$$
\begin{equation*}
K_{1} \tan ^{2} \frac{\theta_{5}}{2}+K_{2} \tan \frac{\theta_{5}}{2}+K_{3}=0 \tag{3.4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{4} \tan ^{2} \frac{\theta_{5}}{2}+K_{5} \tan \frac{\theta_{5}}{2}+K_{8}=0 \tag{3.4.6}
\end{equation*}
$$

where,

$$
\begin{aligned}
& K_{1}=A_{3}-A_{1} \\
& K_{2}=2 A_{2} \\
& K_{3}=A_{3}+A_{1} \\
& K_{4}=C_{3}-C_{1} \\
& K_{5}=2 C_{2} \\
& K_{B}=C_{3}+C_{1}
\end{aligned}
$$

with the $A$ 's and C's found in equations (3.4.3) and (3.4.4). In order to find a common root of $\theta_{5}$ in the above equations, Sylvester's dyalitic eliminant technique is applied. This procedure yields a 16th degree polynomial;

$$
\begin{aligned}
& V(17) t^{16}+V(16) t^{15}+V(15) t^{14}+V(14) t^{13}+V(13) t^{12}+ \\
& +V(12) t^{11}+V(11) t^{10}+V(10) t^{9}+V(9) t^{8}+V(8) t^{7}+V(7) t^{6}+
\end{aligned}
$$

$$
\begin{equation*}
+V(6) t^{5}+V(5) t^{4}+V(4) t^{3}+V(3) t^{2}+V(2) t+V(1)=0 \tag{3.4.7}
\end{equation*}
$$

Where $V(i), i=1, \ldots, 17$, are defined in Appendix $A$ and $t^{m}=\tan ^{m} \frac{\theta_{2}}{2}$, $m=1, \ldots, 16$.

The real roots of the above polynomial must be introduced in equation (3.1.16) and then in (3.4.4) to find the possible limit positions of the normal and crossed configurations.

Introduce the values of the real roots in equation (3.2.5) and follow the procedure outlined in Section 3.2 to check the existance of a limit or a pseudo-limit position.

For the dead center positions, equation (3.3.2) becomes,

$$
\begin{equation*}
\frac{d \theta_{2}}{d \theta_{5}}=C_{4} \cos \theta_{5}+C_{5} \sin \theta_{5}=0 \tag{3.4-8}
\end{equation*}
$$

where,

$$
\begin{aligned}
C_{4}= & r_{5}\left[r_{2} \sin \theta_{2}+r_{3}\left(2 \cos \theta_{2} \sin \theta_{2} \cos \alpha+\right.\right. \\
& \left.\left.+\sin \alpha\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right)\right)\right] \\
C_{5}= & r_{5}\left[-r_{2} \cos \theta_{2}+r_{3}\left(\cos \alpha\left(\sin ^{2} \theta_{2}-\cos ^{2} \theta_{2}\right)+\right.\right. \\
& \left.\left.+2 \cos \theta_{2} \sin \theta_{2} \sin \alpha\right)+r_{1}\right] .
\end{aligned}
$$

Equation (3.3.3) is rewritten,

$$
\begin{equation*}
K_{7} \tan ^{2} \frac{\theta_{5}}{2}+K_{8} \tan \frac{\theta_{5}}{2}+K_{9}=0 \tag{3.4.9}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \mathrm{K}_{7}=\mathrm{C}_{4} \\
& \mathrm{~K}_{8}=-2 \mathrm{C}_{5} \\
& \mathrm{~K}_{9}=-\mathrm{C}_{4}
\end{aligned}
$$

with the C's found in equation (3.4.8). In order to find a common root of $\theta_{\overline{5}}$ in equations (3.4.5) and (3.4.9), Sylvester's dyalitic eliminant technique is applied. This procedure yields a 16 th degree polynomial;

$$
\begin{align*}
& W(17) t^{16}+W(16) t^{15}+W(15) t^{14}+W(14) t^{13}+W(13) t^{12}+ \\
& +W(12) t^{12}+W(11) t^{10}+W(10) t^{9}+W(9) t^{8}+W(8) t^{7}+ \\
& +W(7) t^{6}+W(6) t^{5}+W(5) t^{4}+W(4) t^{3}+W(3)^{2}+W(2) t+ \\
& +W(1)=0 \tag{3.4.10}
\end{align*}
$$

where, $W(i), i=1, \ldots, 17$, are defined in Appendix A.
The real roots of the above equation give the necessary and sufficient conditions for the existance of the dead center pósitions.

Examples of limit, pseudo-limit and dead center positions are presented in Table I; in this table,
$r_{1}, i=1, \ldots, 5=1$ ink lengths
Alpha = initial input link $A B$ displacement
Theta 2 = input link MA displacement
Theta 3 = input link $A B$ displacement
Theta $4 \mathrm{~N}=$ coupler link BC displacement - mechanism in normal configuration

Theta $5 \mathrm{~N}=$ output link CQ displacement - mechanism in normal configuration

Theta 4C = coupler link BC displacement - mechanism in crossed configuration

Theta 5C = output link CQ displacement - mechanism in crossed configuration

## Position;

$$
\begin{aligned}
& 1111 \text { = limit position } \\
& 2222 \text { = pseudo-limit position } \\
& 3333 \text { = dead center position }
\end{aligned}
$$

TABLE I
NUMERICAL EXAMPLES


TABLE I (CONTINUED)


## CHAPTER IV

## GRAPHICAL STUDY OF THE LIMIT AND DEAD CENTER POSITIONS

In actual design work, in many instances a designer is interested in a quick and simple technique to check the motion characteristics of the output of a mechanism.

In this chapter a graphical procedure is explained that will enable the designer to find all the limit and dead center positions of a geared five-link mechanism for both normal and crossed configurations.

### 4.1 General Motions of Trochoids

A trochoid is a curve traced by a point on a circle when the circle rolls on another fixed circle. The number of convolutions and geometry of this curve depends on the ratio of the radii of both circles, and the distance of the point generating the trochoid from the center of the rolling circle. In figure 3, point $B$ generates a trochoid.

### 4.2 Limit Positions

In order to understand the occurrence of the limit positions of a geared five-1ink mechanism, consider a vector $\overline{\mathrm{V}}$ (see Figure 4 a ) which is the velocity vector corresponding to the angular velocity ( $\omega_{s}$ ) at which point $B$ moves about the rolling contact point $P$ of the two gears.


Figure 4. Velocity at Revolute Pair B when $\omega_{2}$ is the Input Angular Velocity; (a) General Configuration; (b) Limit Position; (c) Dead Center Position

That is $\overline{\mathrm{V}}=\omega_{\text {s }} \times \overline{\mathrm{PB}}$, where $\overline{P B}$ is the distance between point $P$ and $B$, or simply $\overline{\mathrm{V}}$ is perpendicular to line PB at point $B$. In the same figure, vectors $\bar{V}_{B C}$ and $\overline{\mathrm{V}} \mathrm{t}_{\mathrm{BC}}$ are the normal and tangential components of $\overline{\mathrm{V}}$ with respect to the coupler link $B C$.

At a limit position, $\overline{\mathrm{V}} \mathrm{n}_{\mathrm{BC}}$ must be zero, and after this condition occurs, $\bar{V}_{n C}$ must have opposite direction as prior to the occurence of this condition, otherwise it is at a dwell (pseudo-limit position). For $\overline{\mathrm{V}}_{\mathrm{n}}{ }_{\mathrm{BC}}$ to become zero. Iine $\overline{\mathrm{PB}}$ must be collinear to coupler link BC see Figure 4b.

Any gear train with several gears has a speed ratio equivalent to a gear train with only two gears; these two gears will be named. equivalent gears.

The following theorem can be stated:

Theorem 非2: A limit or pseudo-1imit position of a geared five-1ink mechanism with any gear train speed ratio exists only when the coupler link or its prolongation passes through the point of contact of the two equivalent gears.
4.3 Graphical Procedure to Obtain the Limit Positions

A simple graphical procedure to obtain the limit positions is as follows:

1) Plot circle $C_{1}$ of length $r_{a}$ (input link MA) about $P_{1}$, that is,

$$
\begin{align*}
& X_{z}=r_{2} \cos \theta_{2}  \tag{4.3.1}\\
& Y_{2}=r_{2} \sin \theta_{2} \tag{4.3.2}
\end{align*}
$$

2) On the same graph plot the trochoid $T_{1}$ corresponding to the gear ratio and link lengths selected as inputs ( $r_{2}$ and $r_{3}$ ) that is,

$$
\begin{align*}
& X_{3}=X_{2}+r_{3} \cos \theta_{3}  \tag{4.3.3}\\
& Y_{3}=Y_{2}+r_{3} \sin \theta_{3} \tag{4.3.4}
\end{align*}
$$

3) On the same graph plot two new trochoids $T_{2}$ and $T_{3}$, with the same data as step (2); except that for ${\underset{1}{1}}^{2}, r_{3}$ becomes $r_{3}+r_{4}$ and for $T_{3}, r_{3}$ becomes $r_{3}-r_{4}$; that is,

$$
\begin{equation*}
X_{31}=X_{2}+\left(r_{3}+r_{4}\right) \cos \theta_{3} \tag{4.3.5}
\end{equation*}
$$

$$
\begin{equation*}
Y_{31}=Y_{2}+\left(r_{3}+r_{4}\right) \sin \theta_{3} \tag{4.3.6}
\end{equation*}
$$

$$
\begin{equation*}
X_{32}=X_{2}+\left(r_{3}-r_{4}\right) \cos \theta_{3} \tag{4.3.7}
\end{equation*}
$$

$$
\begin{equation*}
Y_{32}=Y_{2}+\left(r_{3}-r_{4}\right) \sin \theta_{3} \tag{4.3.8}
\end{equation*}
$$

4) On the same graph, select a point at a distance $r_{1}$ (gound link MQ) from the center of rotation $P_{1}$ of circle $C_{1}$. Then with a length $r_{5}$ (output link $C Q$ ) as radius, plot circle $C_{2}$ about $P_{0}$ as fixed center.
5) A11 the points $P_{C L}$ where $C_{2}$ cuts trochoids $T_{a}$ and $T_{3}$ are one of the ends of the coupler link $B C$. In order to find the other end, draw a line $\mathrm{L}_{1}$ perpendicular to the trochoid $\mathrm{T}_{2}$ or $\mathrm{T}_{3}$ where the intersection with $\mathrm{C}_{2}$ occurred until $\mathrm{L}_{2}$ cuts trochoid $T_{1}$ perpendicularly at point $P_{B L}$; this will be the other end of the coupler link BC.
6) Now to find the position of the input link MA, draw a circle $C_{3}$ with radius corresponding to the input link $A B$ length ( $r_{3}$ ) with center at $P_{B L}$; it will cut circle $C_{1}$ at two points (or at one point if tangent to $C_{1}$ ). Draw another circle $C_{4}$ with radius corresponding to the equivalent fixed gear ( $R_{2}$ ) about
point $P_{1}$. Draw line $L_{a}$ collinear with $L_{1}$ until it cuts circle $\mathrm{C}_{4}$ (it may cut $\mathrm{C}_{4}$ at two points). The point $\mathrm{P}_{3}$ of the intersection of $C_{3}$ and $C_{1}$, which is collinear with the point $P_{4}$ of the intersection of $\mathrm{I}_{2}$ with $\mathrm{C}_{4}$, and point $\mathrm{P}_{1}$ will be the point $P_{3}$ determining the location of input link MA.
7) Repeat steps (5) and (6) until all input positions are found. A11 these input positions correspond to limit or pseudo-limit position of the output link.

Figure 5a shows one of the limit positions which was obtained using the procedure just outlined.

### 4.4 Dead Center Positions

In order to understand the occurrence of the dead center positions of a geared five-link mechanism see Figure 4 a where $\overline{\mathrm{V}}, \overline{\mathrm{V}}_{\mathrm{BC}}$ and $\overline{\mathrm{V}} \mathrm{t}_{\mathrm{BC}}$ are as previously defined in Section 4.2. For a dead center position to occur, the velocity vector $\overline{\mathrm{V}}$ must become zero; this will only occur if the geometric configuration of the links force the input links to become stationary. The geometric configuration (see Figure 4c) that will hinder the input link MA from rotating occurs when links $B C$ and $C Q$ (coupler and output links) are collinear.

As explained in Section 4.2, any gear train with several gears has a speed ratio equivalent to a gear train with only two gears; and these two gears are named equivalent gears.

The following theorem can be stated:

Theorem 非3: A dead center position of a geared five-1ink mechanism with any gear train speed ratio exists


Figure 5. Graphical Procedure; (a) Sample Limit Position; (b) Sample Dead Center Position

```
on1y when the coup1er and the output links are
collinear.
4.5 Graphical Procedure to Obtain
    the Dead Center Positions
```

A simple graphical procedure to obtain the dead center positions

1) Carry out steps (1), (2), and (4) of Section 4.3 (graphical procedure to obtain the limit positions). Then circle $C_{1}$, trochoid $T_{1}$, circle $C_{2}$ and fixed points $P_{1}$ and $P_{B}$ are given.
2) On the same graph, plot two new circles $C_{5}$ and $C_{8}$ with radius $r_{5}+r_{4}$ and $r_{5}-r_{4}$ respectively with center at point $P_{2}$; that is,

$$
\begin{align*}
& x_{51}=r_{1}+\left(r_{5}+r_{4}\right) \cos \theta_{5}  \tag{4.5.1}\\
& Y_{51}=\left(r_{5}+r_{4}\right) \sin \theta_{5}  \tag{4.5.2}\\
& x_{52}=r_{1}+\left(r_{5}-r_{4}\right) \cos \theta_{5}  \tag{4.5.3}\\
& Y_{52}=\left(r_{5}-r_{4}\right) \sin \theta_{5} \tag{4.5.4}
\end{align*}
$$

3) All the points $P_{B D}$ where circles $C_{5}$ and $C_{6}$ cut trochoid $T_{1}$ are one of the ends of the coupler link $B C$. In order to find the other end draw a line $L_{3}$ passing through $P_{B D}$ and $P_{z}$; this line $\mathrm{L}_{3}$ will cut circle $\mathrm{C}_{5}$ in two places. The point $\mathrm{P}_{\mathrm{CD}}$ on line $\mathrm{L}_{3}$ which is at a length $\mathrm{r}_{4}$ from point $\mathrm{P}_{\mathrm{BD}}$ is the other end of the coupler link BC.
4) To obtain the position of the two input links $M A$ and $A B$, draw circle $C_{7}$ with radius $r_{B}$ of the input link $A B$ about $P_{B D}$; circle $C_{\text {y }}$ will cut circle $C_{1}$ at two points (or at one point if


#### Abstract

tangent to $C_{1}$ ). One of these two points $P_{A \cdot 1}$ or $P_{A 2}$ will give the position of the input link MA. To determine the appropriate position, first assume $\mathrm{P}_{\mathrm{Al}}$ is the solution, and try to rotate input link MA in the direction of $\omega_{2}$ (clockwise or counterclockwise, depending on which one was selected for the mechanism); a. If the coupler link $B C$ could move, then the other point $P_{A 2}$ is the position of the input link. b. If the coupler link could not move, that is, the mechanism remains in locked position then point $P_{A 1}$ is the initial position of the input link. 5) Repeat steps (3) and (4) until all input positions are found. This input position corresponds to dead center positions of the output link.


Figure 5b shows in the same example as Section 4.3 one of the dead center positions using the procedure just outlined.

### 4.6 Study of the Inverse Mechanism

In this section the motion of the geared five-link mechanism is studied for the case when $\theta_{5}$ is the input displacement, $\theta_{3}$ is the output displacement and $\omega_{5}$ is the input angular velocity.

Consider the vectors shown in Figure 6 a where $\bar{V}_{C}$ is the vector corresponding to $\omega_{5}$ (input angular velocity) crossed with link length $r_{5}$ (input link $C Q$ ), $\bar{V}_{C B}$ is the projection of $\bar{V}_{C}$ on coupler link $B C$, $\overline{\mathrm{V}} \mathrm{n}_{\mathrm{BP}}$ and $\overline{\mathrm{V}} \mathrm{t}_{\mathrm{BP}}$ are the normal and tangential components of velocity vector $\bar{V}_{C B}$ on line $\overline{\mathrm{BP}}$ at point $B$.


Figure 6. Velocity Vectors at Revolute Pair C when $\omega_{5}$ is the Input Angular Velocity; (a) General Configuration; (b) Limit Position; (c) Dead Center Position

A limit or pseudo-limit position occurs when $\bar{V}_{C B}$ is zero, that is, $\overline{\mathrm{V}}_{\mathrm{C}}$ is perpendicular to link BC ; this occurs when the input link $C Q$ is collinear with coupler link $B C$ see Figure 6 b . If the direction of $\overline{\mathrm{V}}_{\mathrm{CB}}$ after a small increment of $\omega_{5}$ is opposite to prior to $\overline{\mathrm{V}}_{\mathrm{CB}}=0$, then the mechanism at $\overline{\mathrm{V}}_{\mathrm{CB}}=0$ is at a limit position; otherwise, it is at a pseudo-limit position.

A dead center position may only occur if the vector $\bar{V}_{C}$ becomes zero. This happens when the geometric configuration of the links force the input link $C Q$ to become stationary; that is, line $P B$ must be collinear with coupler link BC see Figure 6c. If, for an increment of $\omega_{5}$ the mechanism remainselocked, then it is at a dead center position. Let

MECH 1 , when $\theta_{2}=$ input, and $\theta_{5}=$ output, and MECH 2 , when $\theta_{5}=$ input, and $\theta_{2}=$ output,
then, it can be concluded that,

1) When MECH 1 is at a limit position, MECH 2 is at a dead center position.
2) When MECH 1 is at a dead center position, MECH 2 is at a limit position.
3) When MECH 1 is at a pseudo-1imit position, MECH 2 is at a dead center position.
4) When Mech 2 is at a pseudo-limit position Mech 1 is at a dead center position.

In other words the analysis of the limit, pseudo-limit and dead center positions is independent of which link MA or CQ is considered as input.

## CHAPTER V

## INSTANTANEOUS CENTERS OF VELOCITY

IN THE ANALYSIS OF THE LIMIT

AND DEAD CENTER POSITIONS

Once some specific geometric configurations of the limit and dead center positions are available, the next logical step is to analyze the instantaneous centers of velocity (represented as IC all throughout this chapter); with the objectives to understand other additional geometrical properties of limit and dead center positions.

### 5.1 General Notions of Instantaneous <br> Centers of Velocity

Instantaneous centers of velocity as defined previously are a pair of coincident points having zero relative velocity [1].

In the study of the IC's in this chapter the concepts of Kennedy's theorem will be used. The theorem reads: "The instantaneous centers of velocity of any three rigid bodies having planar motion lie on the same straight line."
5.2 Instantaneous Centers of Velocity of
a Geared Five-Link Mechanism

The number of IC of a mechanism can be determined by,

$$
\begin{equation*}
N=\frac{M(M-1)}{2} \tag{5.2.1}
\end{equation*}
$$

where, $N=$ number of $I C$, and $M=$ number of links of the mechanism. The use of equation (5.2.1), with $M=5$ (five-1ink), gives ten $I C$. These are:

$$
\begin{array}{rlll}
\mathrm{IC}_{12} & \mathrm{IC}_{13} & \mathrm{IC}_{14} & \mathrm{IC}_{15} \\
& \mathrm{IC}_{23} & \mathrm{IC}_{24} & \mathrm{IC}_{25} \\
& \mathrm{IC}_{34} & \mathrm{IC}_{35} \\
& & \mathrm{IC}_{45}
\end{array}
$$

Figure 7 presents all the IC, and for ease of understanding the IC of the frame of the mechanism, and the IC corresponding to the point of contact of the gears will be named fixed IC. The other ones will be named floating $I C$. Thus, $I C_{1,}, I C_{23}, I C_{34}, I C_{45}, I C_{15}$, and $I C_{13}$ are fixed $I C$, and $\mathrm{IC}_{14}, \mathrm{IC}_{24}, \mathrm{IC}_{25}$ and $\mathrm{IC}_{35}$ are floating IC.

The fixed IC are defined geometrically as follows, (see Figure 7):

$$
\begin{align*}
I C_{23}: X_{23} & =r_{2} \cos \theta_{2}  \tag{5.2.2}\\
Y_{23} & =r_{2} \sin \theta_{2}  \tag{5.2.3}\\
I C_{45}: X_{45} & =r_{1}+r_{5} \cos \theta_{5}  \tag{5.2.4}\\
Y_{45} & =r_{5} \sin \theta_{5}  \tag{5.2.5}\\
I C_{12}: X_{12} & =0  \tag{5.2.6}\\
Y_{12} & =0  \tag{5.2.7}\\
I C_{15}: X_{15} & =r_{1}  \tag{5.2.8}\\
Y_{15} & =0  \tag{5.2.9}\\
I C_{34}: X_{34} & =X_{23}+r_{3} \cos \theta_{3}  \tag{5.2.10}\\
Y_{34} & =Y_{23}+r_{3} \sin \theta_{3}  \tag{5.2.11}\\
I C_{13}: X_{13} & =R_{1} \cos \theta_{2}  \tag{5.2.12}\\
Y_{13} & =R_{1} \sin \theta_{2} \tag{5.2.13}
\end{align*}
$$



Figure 8. Velocity Vectors at $\mathrm{IC}_{34}$

Figure 7. Instantaneous Centers of Velocity of a Geared Five-Link Mechanism
and the floating IC are defined in Appendix $B$.
Now that all the IC have been defined, the next step is to find the angular velocity of each link.

Using Kennedy's theorem and simple geometry, the relative velocity vector of any two links can be found [1]. The angular velocities are:

1) Ground link MQ: $\omega_{1}=0$
2) Input link MA: $\omega_{2}=$ input velocity
3) Input link AB : $\quad \omega_{3}=(1+G R) \omega_{2}$
(for a derivation see Section 3.1)
4) Coupler link BC:

$$
\begin{equation*}
\omega_{4}=\omega_{s} \frac{\left(\mathrm{IC}_{13}--I C_{34}\right)}{\left(\mathrm{IC}_{14}--I C_{34}\right)} \tag{5.2.17}
\end{equation*}
$$

Where $\omega_{s}$ is found from the following derivation in Figure 8, $r_{3}$ and $R_{2}$ are known, and $S$ is the distance from $I C_{13}$ to $I C_{34}$. Therefore,

$$
\begin{align*}
& \cos \beta=\frac{r_{3}^{3}+s^{2}-R_{2}^{2}}{2 r_{3} S}  \tag{5.2.18}\\
& \bar{V}_{34}=\omega_{3} r_{3} \tag{5.2.19}
\end{align*}
$$

and,

$$
\begin{equation*}
\bar{V}_{s}=\frac{\bar{V}_{34}}{\cos \beta} \tag{5.2.20}
\end{equation*}
$$

so;

$$
\begin{equation*}
\omega s=\frac{\bar{V}_{S}}{S} \tag{5.2.21}
\end{equation*}
$$

5) Output link CQ:

$$
\begin{equation*}
\omega_{5}=\omega_{4} \frac{\left(\mathrm{IC}_{14}--\mathrm{IC}_{45}\right)}{\left(\mathrm{IC}_{15}--\mathrm{IC}_{45}\right)} . \tag{5.2.22}
\end{equation*}
$$

$\omega_{4}$ and $\omega_{5}$ may also be obtained by taking other IC in consideration, but the procedure above is the simplest.

### 5.3 Limit Positions

Since the limit and the pseudo-limit positions occur when the output link has zero velocity, and since $\omega_{2}, \omega_{3}$ and $\omega_{4}$ are in motion while the limit or pseudo-limit position occurs. The only way $\omega_{5}$ in equation (5.2.22) can become zero is if the distance $I C_{14}$ to $I C_{4} 5$ becomes zero. See Figure 9a where the limit position presented in Figure 4 b is redrawn. It is interesting to observe that as a result of Kennedy's theorem, the $I C_{13}$ coincide with $I C_{35}$, and $I C_{12}$ coincide with $I C_{25}$.

The following theorem can be stated:

Theorem 非: A limit or pseudo-limit position of a geared fivelink mechanism exists if the instantaneous center of of velocity corresponding to the input and output links coincides with the instantaneous center of velocity coincident with the output moving pivot.

### 5.4 Dead Center Positions

A dead center position will occur when input link MA reaches an extrema ( $\omega_{z}$ becomes zero). That is, the mechanism becomes locked. This can be explained as follows; a dead center position occurs only

(a) ${ }^{5}$

(b) a

Figure 9. Position of the Instantaneous Centers of Velocity; (a) Limit Position; (b) Dead Center Position
when $\omega_{4}$ in equation (5.2.22) is zero, therefore, $\omega_{5}$ is zero. For $\omega_{4}$ to become zero in equation (5.2.17) the $\mathrm{IC}_{14}$ must coincide with the $\mathrm{IC}_{34}$ at a dead center position. Thus, $\omega_{4}$ would be $\infty$, but this condition can only occur when $\omega_{3}$ is zero (that is, $\omega_{s}=0$ ), therefore $\omega_{4}$ is zero. Since $\omega_{3}$ is zero, this implies that $\omega_{2}$ is zero from equation (5.2.16). It is interesting to observe that as a result of Kennedy's theorem, $\mathrm{IC}_{24}$ is also coincident with $\mathrm{IC}_{14}$ and $\mathrm{IC}_{34}$; this in turn, will make the $I C_{25}$ and $I C_{35}$ coincide with $I C_{15}$. See Figure $9 b$ where the dead center position presented in Figure 4c is redrawn.

The following theorem can now be stated:

Theorem 非5. A dead center position of a geared five-1ink mechanism exists if the instantaneous centers of velocity corresponding to the input and output links are coincident with the instantaneous center of velocity of the input's moving pivot.

In other words when $\mathrm{IC}_{14}$ coincides with $\mathrm{IC}_{34}$, a dead center position has been achieved ( $I C_{14}$ can only be coincident with $I C{ }_{34}$ at $I C_{34}$, because of the geometry involved in the construction of the $I C$ ).

## CHAPTER VI

## SUMMARY AND CONCLUSIONS

In this thesis a generalized approach is developed to find the limit and dead center positions of a geared five-link mechanism. This approach is applied to study the existence of limit and dead center positions of a geared five-link mechanism with a gear train speed ratio of two.

The analytical study show that the first and second derivative relationships give the necessary and sufficient conditions for the existance of the limit and dead center positions. It was found that the degree of the polynomials resulting from the expansion of Sylvester's dyalitic eliminant technique to determine the extremas is function of the gear train speed ratio of the mechanism.

The graphical approach is proposed to study to specific geometric configurations at the limit and dead center positions.

The motion of the instantaneous centers of velocity of geared fivelink mechanisms show that they (IC) position themselves in a specific predictable manner at the extermas.
(1) Hartenberg, R. S., and J. Denavit. Kinematic Synthesis of Linkages. New York: McGraw-Hill, 1964.
(2) Freudenstein, F., and E. J. F. Primrose. "Geared Five-Bar Motion. Part 2 - Arbitrary Commensurate Gear Ratio." Trans. ASME Journal of Applied Mechanics, (1963), 170-175; Discussion, (1964), 360-362.
(3) Freudenstein, F., and E. J. F. Primrose. "Geared Five-Bar Motion. Part 1 - Gear Ratio Minus One." Trans. ASME Journal of Applied Mechanics, (1963), 161-169.
(4) Sandor, G. N., and R. E. Kaufman. "Kinematic Synthesis of Geared Linkages." Rev. Roum. Sci. Techn.- Mec. App1., No. 2. Bucarest: 1970, pp. 841-869.
(5) Erdman, A. G., and G. N. Sandor. "Kinematic Synthesis of a Geared Five-Bar Function Generator." Trans. ASME Journal of Engineering for Industry, (1971), 11-16.
(6) Dimarogonas, A. D., G. N. Sandor, and A. G. Erdman. "Synthesis of a Geared N -Bar Linkage." Trans. ASME Journal of Engineering for Industry, (1971), 157-164.
(7) Soni, A. H., and P. R. Pamidi. "Coupler Cognate of Geared FiveLink Mechanism." Trans. ASME Journal of Applied Mechanics, (1970), 1176-1179.
(8) Harding, B. L., "Hesitation." Trans. ASME Journal of Engineering for Industry, (1965), 205-212.

## APPENDIX A

## DERIVATION OF THE COEFFICIENTS

OF THE POLYNOMIALS

In the following sections the coefficients of the polynomials that provide the necessary conditions for the limit and dead center positions of a geared five-link mechanism with gear train speed ratio $=2$ are derived.

## A. 1 Expansion of the Sylvester's

Dyalitic Eliminants

The expansion of the Sylvester's dyalitic eliminants (3.2.4) and (3.3.4) give respectively for limit positions;

$$
\begin{align*}
& K_{1}^{2} K_{6}^{2}+K_{1} K_{3} K_{5}^{2}-2 K_{1} K_{3} K_{4} K_{6}-K_{1} K_{2} K_{5} K_{8}+ \\
& K_{2}{ }^{2} K_{4} K_{8}+K_{3}{ }^{2} K_{4}^{2}-K_{2} K_{3} K_{4} K_{5}=0 \tag{A.1.1}
\end{align*}
$$

for dead center positions,

$$
\begin{align*}
& \mathrm{K}_{1}^{2} \mathrm{~K}_{9}^{2}+\mathrm{K}_{1} \mathrm{~K}_{3} \mathrm{~K}_{8}^{2}-2 \mathrm{~K}_{1} \mathrm{~K}_{3} \mathrm{~K}_{7} \mathrm{~K}_{9}-\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{9} \mathrm{~K}_{9}+ \\
& \mathrm{K}_{2}^{2} \mathrm{~K}_{7} \mathrm{~K}_{9}+\mathrm{K}_{3}^{2} \mathrm{~K}_{7}^{2}-\mathrm{K}_{2} \mathrm{~K}_{3} \mathrm{~K}_{7} \mathrm{~K}_{9}=0 \tag{A.1.2}
\end{align*}
$$

where the $K j, j=1, \ldots, 9$, are defined as follows:

## A. 2 Definition of the $K_{j}$

In order to simplify the data supplied for the computer $K(j)=$ $K_{j}, j=1, \ldots, 9$. Permute the following equation,

$$
\begin{align*}
& K(J)=S(I) t^{4}+S(I+1) t^{3}+S(I+2) t^{2}+ \\
& S(I+3) t+S(I+4) \tag{A.2.1}
\end{align*}
$$

with,

$$
\begin{aligned}
& J=1,2,3,4,5,6,7,8,9 \\
& I=1,6,11,16,21,26,31,36,41
\end{aligned}
$$

where the $S(I), I=1, \ldots, 45$ as defined as follows:

## A. 3 Definition of the $S(I)$

The $S(I)$ 's are:

$$
\begin{aligned}
& S(1)=P(1)-P(2)+P(6) \\
& S(2)=2[P(4)-P(5)] \\
& S(3)=2[2 P(3)-P(1)+P(6)] \\
& S(4)=2[P(4)+P(5)] \\
& S(5)=P(1)+P(2)+P(6) \\
& S(6)=P(7) \\
& S(7)=2[P(9)-P(10)] \\
& S(8)=2[2 P(8)-P(7)] \\
& S(9)=2[P(9)+(10)] \\
& S(10)=P(7) \\
& S(11)=P(11)-P(12)+P(16) \\
& S(12)=2[P(14)-P(15)]
\end{aligned}
$$

```
S(13) = 2[2P(13)-P(11) + P(16)]
S(14) = 2[P(14) + P(15)]
S(15) = P(11) + P(12) + P(16)
S(16) = P(17) - P(18)
S(17) = 2[P(20) - P(21)]
S(18) = 2[2P(19) - P(17)]
S(19) = 2[P(20) + P(21)]
S(20) = P(17) + P(18)
S(21) = P(22) - P(23)
S(22)= -2P(25)
S(23) = 2[2P(24) - P(22)]
S(24) = 2P(25)
S(25) = P(22) + P(23)
S(26) = P(26) - P(27)
S(27) = 2[P(29) - P(30)]
S(28) = 2[2P(28) - P(26)]
S(29) = 2[P(29) + P(30)]
S(30) = P(26) + P(27)
S(31) = P(31)
S(32) = 2[P(33)-P(34)]
S(33) = 2[2P(32) - P(31)]
S(34) = 2[P(33) + P(34)]
S(35) = P(31)
S(36) = P(35) - P(36) + P(39)
S(37) = -2P(38)
S(38) = 2[2P(37) - P(35) + P(39)]
S(39) = 2P(38)
```

```
S(40) = P(35) +P(36) + P(39)
S(41) = -S (31)
S(42) = -S (32)
S(43) = -S(33)
S(44)=-S(34)
S(45) = -S (35)
```

Where the $P(K), K=1, \ldots, 39$ are defined as follows:

## A. 4 Definition of the $P(K)$

The $P(K)$ 's are:

$$
\begin{aligned}
& P(1)=2 r_{3}\left(r_{5}-r_{1}\right) \cos \alpha \\
& P(2)=2 r_{2}\left(r_{3} \cos \alpha-r_{1}+r_{5}\right) \\
& P(3)=2 r_{3}\left(r_{1}-r_{5}\right) \cos \alpha \\
& P(4)=-2 r_{2} r_{3} \sin \alpha \\
& P(5)=4 r_{3}\left(r_{1}-r_{5}\right) \sin \alpha \\
& P(6)=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}-2 r_{1} r_{5} \\
& P(7)=-4 r_{3} r_{5} \sin \alpha \\
& P(8)=-P(7) \\
& P(9)=-4 r_{2} r_{5} \\
& P(10)=-8 r_{3} r_{5} \cos \alpha \\
& P(11)=-2 r_{3}\left(r_{1}+r_{5}\right) \cos \alpha \\
& P(12)=2 r_{2}\left(r_{3} \cos \alpha-r_{1}-r_{5}\right) \\
& P(13)=2 r_{3}\left(r_{1}+r_{5}\right) \cos \alpha \\
& P(14)=-2 r_{2} r_{3} \sin \alpha \\
& P(15)=4 r_{3}\left(r_{1}+r_{5}\right) \sin \alpha \\
& P(16)=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}-r_{4}^{2}+r_{5}^{2}+2 r_{1} r_{5}
\end{aligned}
$$

$$
\begin{aligned}
& P(17)=4 r_{3}\left(r_{1}-r_{5}\right) \sin \alpha \\
& P(18)=-2 r_{2} r_{3} \sin \alpha \\
& P(19)=4 r_{3}\left(r_{5}-r_{1}\right) \sin \alpha \\
& P(20)=2 r_{2}\left(r_{1}-r_{3} \cos \alpha-r_{5}\right) \\
& P(21)=8 r_{3}\left(r_{1}-r_{5}\right) \cos \alpha \\
& P(22)=-8 r_{3} r_{5} \cos \alpha \\
& P(23)=-4 r_{2} r_{5} \\
& P(24)=8 r_{3} r_{5} \cos \alpha \\
& P(25)=16 r_{3} r_{5} \sin \alpha \\
& P(26)=4 r_{3}\left(r_{1}+r_{5}\right) \sin \alpha \\
& P(27)=-2 r_{2} r_{3} \sin \alpha \\
& P(38)=-4 P(31) \\
& P(28)=-4 r_{3}\left(r_{1}+r_{5}\right) \sin \alpha \\
& P(29)=2 r_{3}\left(r_{1}-r_{3} \cos \alpha+r_{5}\right) \\
& P(30)=8 r_{3}\left(r_{1}+r_{5}\right) \cos \alpha \\
& P(31)=2 r_{3} r_{5} \sin \alpha \\
& P(32)=-P(31) \\
& P(34)=2 r_{3} r_{5} \\
& P(35)=4 r_{3} r_{5} \cos \alpha \\
& P(34) \\
& P(34) \\
& P(33) \\
& P(3)
\end{aligned}
$$

Where $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$, and $\alpha$ are the initial conditions (link lengths and initial position of input link $A B$ ).

## A. 5 Definition of the $\mathrm{K}(\mathrm{L}) \mathrm{K}(\mathrm{M})$

Permute the following equation:

$$
\begin{align*}
& K(L) K(M)=Q(K) t^{8}+Q(K+1) t^{7}+Q(K+2) t^{8}+ \\
& Q(K+3) t^{5}+Q(K+4) t^{4}+Q(K+5) t^{3}+ \\
& Q(K+6) t^{2}+Q(K+7) t+Q(K+8) \tag{A.5.1}
\end{align*}
$$

with,

$$
\begin{aligned}
\mathrm{L}= & 1,2,3,4,5,6,7,8,9,1,1,2,4,4,5,7,7,8 \\
\mathrm{M}= & 1,2,3,4,5,6,7,8,9,2,3,3,5,6,6,8,9,9 \\
\mathrm{I}= & 1,6,11,16,21,26,31,36,41,1,1,6,16,16,21,31,31,36 \\
\mathrm{~J}= & 1,6,11,16,21,26,31,36,41,6,11,11,21,26,26,36,41,41 \\
\mathrm{~K}= & 1,10,19,28,37,46,55,64,73,82,91,100,109,118,127,136,145, \\
& 154
\end{aligned}
$$

where $Q(K)$ 's are:

$$
\begin{aligned}
Q(K)= & S(I) S(J) \\
Q(K+1)= & S(I) S(J+1)+S(I+1) S(J) \\
Q(K+2)= & S(I) S(J+2)+S(I+1) S(J+1)+S(I+2) S(J) \\
Q(K+3)= & S(I) S(J+3)+S(I+1) S(J+2)+S(I+2) S(J+1) \\
& +S(I+3) S(J) \\
Q(K+4)= & S(I) S(J+4)+S(I+1) S(J+3)+S(I+2) S(J+2) \\
& +S(I+3) S(J+1)+S(I+4) S(J) \\
Q(K+5)= & S(I+1) S(J+4)+S(I+2) S(J+3)+ \\
& S(I+3) S(J+2)+S(I+4) S(J+1) \\
Q(K+6)= & S(I+2) S(J+4)+S(I+3) S(J+3)+ \\
& S(I+4) S(J+2)
\end{aligned}
$$

$$
\begin{aligned}
& Q(K+7)=S(I+3) S(J+4)+S(I+4) S(J+3) \\
& Q(K+8)=S(I+4) S(J+4)
\end{aligned}
$$

where the $S(I), I=1, \ldots, 45$, and the $S(J), J=1, \ldots, 45$, are defined in Section A. 3.

## A. 6 Definition of the $\mathrm{K}(\mathrm{L}) \mathrm{K}(\mathrm{M}) \mathrm{K}(\mathrm{N}) \mathrm{K}(\mathrm{Y})$

Permute the following equation:

$$
\begin{align*}
K(L) K(M) K(N) K(Y)= & T(K) t^{16}+T(K+1) t^{15}+T(K+2) t^{14}+ \\
& T(K+3) t^{13}+T(K+4) t^{12}+T(K+5) t^{11}+ \\
& T(K+6) t^{10}+T(K+7) t^{9}+T(K+8) t^{8}+ \\
& T(K+9) t^{7}+T(K+10) t^{6}+T(K+11) t^{5}+ \\
& T(K+12) t^{4}+T(K+13) t^{3}+T(K+14) t^{2}+ \\
& T(K+15) t+T(K+16) \quad \text { (A.6.1) } \tag{A.6.1}
\end{align*}
$$

with,

$$
\begin{aligned}
& L=1,1,1,1,2,3,2,1,1,1,1,2,3,2 \\
& M=1,3,3,2,2,3,3,1,3,3,2,2,3,3 \\
& N=6,5,4,5,4,4,4,9,8,7,8,7,7,7 \\
& Y=6,5,6,6,6,4,5,9,8,9,9,9,7,8 \\
& I=1,91,91,82,10,19,100,1,91,91,82,10,19,100 \\
& J=46,37,118,127,118,28,109,73,64,145,154,145,55,136 \\
& K=1,18,35,52,69,86,103,120,137,154,171,188,205,222
\end{aligned}
$$

where the $\mathrm{T}(\mathrm{K})$ 's are:

$$
\begin{array}{ll}
T(K) & =Q(I) Q(J) \\
T(K+1) & =Q(I) Q(J+1)+Q(I+1) Q(J)
\end{array}
$$

$$
\begin{aligned}
& T(K+2)=Q(I) Q(J+2)+Q(I+1) Q(J+1)+Q(I+2) Q(J) \\
& T(K+3)=Q(I) Q(J+3)+Q(I+1) Q(J+2)+ \\
& Q(I+2) Q(J+1)+Q(I+3) Q(J) \\
& T(K+4)=Q(I) Q(J+4)+Q(I+1) Q(J+3)+ \\
& Q(I+2) Q(J+2)+Q(I+3) Q(J+1)+ \\
& Q(I+4) Q(J) \\
& T(K+5)=Q(I) Q(J+5)+Q(I+1) Q(J+4)+ \\
& Q(I+2) Q(J+3)+Q(I+3) Q(J+2)+ \\
& Q(I+4) Q(J+1)+Q(I+5) Q(J) \\
& T(K+6)=Q(I) Q(J+6)+Q(I+1) Q(J+5)+Q(I+2) \\
& Q(J+4)+Q(I+3) Q(J+3)+Q(I+4) Q(J+2)+ \\
& Q(I+5) Q(J+1)+Q(I+6) Q(J) . \\
& T(K+7)=Q(I) Q(J+7)+Q(I+1) Q(J+6)+Q(I+2) \\
& Q(J+5)+Q(I+3) Q(J+4)+Q(I+4) Q(J+3)+ \\
& Q(I+5) Q(J+2)+Q(I+6) Q(J+1)+Q(I+7) \\
& \text { Q(J) } \\
& T(K+8)=Q(I) Q(J+8)+Q(I+1) Q(J+7)+Q(I+2) \\
& Q(J+6)+Q(I+3) Q(J+5)+Q(I+4) Q(J+4)+ \\
& Q(I+5) Q(J+3)+Q(I+6) Q(J+2)+ \\
& Q(I+7) Q(J+1)+Q(I+8) Q(J) \\
& T(K+9)=Q(I+1) Q(J+8)+Q(I+2) Q(J+7)+Q(I+3) \\
& Q(J+6)+Q(I+4) Q(J+5)+Q(I+5) Q(J+4)+ \\
& Q(I+6) Q(J+3)+Q(I+7) Q(J+2)+Q(I+8) \\
& Q(J+1) \\
& T(K+10)=Q(I+2) Q(J+8)+Q(I+3) Q(J+7)+Q(I+4) \\
& Q(J+6)+Q(I+5) Q(J+5)+Q(I+6) Q(J+4)+ \\
& Q(I+7) Q(J+3)+Q(I+8) Q(J+2)
\end{aligned}
$$

$$
\begin{aligned}
T(K+11)= & Q(I+3) Q(J+8)+Q(I+4) Q(J+7)+Q(I+5) \\
& Q(J+6)+Q(I+6) Q(J+5)+Q(I+7) Q(J+4)+ \\
& Q(I+8) Q(J+3) \\
T(K+12)= & Q(I+4) Q(J+8)+Q(I+5) Q(J+7)+Q(I+6) \\
& Q(J+6)+Q(I+7) Q(J+5)+Q(I+8) Q(J+4) \\
T(K+13)= & Q(I+5) Q(J+8)+Q(I+6) Q(J+7)+Q(I+7) \\
& Q(J+6)+Q(I+8) Q(J+5) \\
T(K+14)= & Q(I+6) Q(J+8)+Q(I+7) Q(J+7)+Q(I+8) \\
& Q(J+6) \\
T(K+15)= & Q(I+7) Q(J+8)+Q(I+8) Q(J+7) \\
T(K+16)= & Q(I+8) Q(J+8)
\end{aligned}
$$

The $Q(I)$ 's and $Q(J)$ 's are defined in Section A. 5.
A. 7 Definition of the coefficients $V(j)$ and $W(j)$

These are the coefficients of the polynomials (3.4.5) and (3.4.7). Permute the following equation:

$$
\begin{align*}
V(18-I)= & T(I)+T(I+17)-2 T(I+34)-T(I+51)+ \\
& T(I+68)+T(I+85)-T(I+102)  \tag{A.7.1}\\
W(18-I)= & T(I+119)+T(I+136)-2 T(I+153)- \\
& T(I+170)+T(I+187)+T(I+204)- \\
& T(I+221) \tag{A.7.2}
\end{align*}
$$

with $I=1,2,3, \ldots .17$, where the $T(I)$ 's are defined in Section A.6.

# APPENDIX B <br> GEOMETRICAL DEFINITION OF THE FLOATING <br> INSTANTANEOUS CENTERS OF VELOCITY <br> OF A GEARED FIVE-LINK <br> MECHANISM 

A floating IC is the intersection point of two lines with equation of this form:

$$
\begin{equation*}
Y=m X+b \tag{B.1.1}
\end{equation*}
$$

where, $m$ is the $s$ lope of the line and $b$ is the $x$-intercept.
The point of intersection of two lines is at,

$$
\begin{align*}
& X=\frac{b_{2}-b_{1}}{m_{1}-m_{2}}  \tag{B.1.2}\\
& Y=m_{1} X+b_{1} \tag{B.1.3}
\end{align*}
$$

where,

$$
\begin{aligned}
& m_{1}=\frac{A_{1} y-A_{2} y}{A_{1} x-A_{2} x} \\
& m_{2}=\frac{B_{2} y-B_{2} y}{B_{1} x-B_{2} x} \\
& b_{1}=A_{1} y-m_{1} A_{1} x \\
& b_{z}=B_{1} y-m_{2} B_{1} x
\end{aligned}
$$

and, $\left(A_{1} x, A_{1} y\right),\left(A_{2} x, A_{2} y\right),\left(B_{1} x, B_{1} y\right)$, and $\left(B_{2} x, B_{2} y\right)$ are the $X Y$
coordinates of points $A_{1}, A_{2}, B_{1}$, and $B_{2}$ respectively. Therefore, to find the floating IC, permute with equations (B.1.2) and (B.1.3), the following:

| Floating IC | $\mathrm{A}_{1}$ | $\mathrm{~A}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{2}$ |
| :---: | :---: | :---: | :---: | :--- |
| $\mathrm{IC}_{14}$ | $\mathrm{IC}_{34}$ | $\mathrm{IC}_{12}$ | $\mathrm{IC}_{45}$ | $\mathrm{IC}_{25}$ |
| $\mathrm{IC}_{24}$ | $\mathrm{IC}_{12}$ | $\mathrm{IC}_{14}$ | $\mathrm{IC}_{34}$ | $\mathrm{IC}_{23}$ |
| $\mathrm{IC}_{35}$ | $\mathrm{IC}_{34}$ | $\mathrm{IC}_{45}$ | $\mathrm{IC}_{13}$ | $\mathrm{IC}_{25}$ |
| $\mathrm{IC}_{25}$ | $\mathrm{IC}_{24}$ | $\mathrm{IC}_{45}$ | $\mathrm{IC}_{23}$ | $\mathrm{IC}_{35}$ |

where, $I C_{12}, I C_{13}, I C_{23}, I C_{34}, I C_{45}$ and $I C_{15}$ are fixed $I C$, and were defined in Section 5.2.

# $N$ <br> VITA <br> Amnon Fekete Vadasz <br> Candidate for the Degree of <br> Master of Science 

Thesis: LIMIT AND DEAD CENTER POSITIONS OF A GEARED FIVE-LINK MECHANISM
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Nahariya, Israe1, July 15, 1951, the son of Eszter Fekete de Zadory and Bela S. Vadasz. Presently with Venezuelan nationality.
Education: Graduated from "Colegio Humboldt", in Caracas, Venezuela, in July, 1968; received the Bachelor of Science degree in Mechanical Engineering from Oklahoma State University in May, 1972. Received the Masters of Science in December, 1973.
Professional Experience: Two months as engineering trainee at "E1 Palito" refinery of Mobil Oil Company of Venezuela, 1970; two months as mechanical engineer at "E1 Palito" refinery of Mobil Oil Company of Venezuela, 1972; teaching assistant, Fall, 1972, and research assistant, Spring and Fall, 1973, at Ok1ahoma State University.
Non-Professional Organizations: Member of the Honorary Mechanical Engineering Fraternity ( $\pi \tau \Sigma$ ), member of the Honorary Engineering Society ( $\Sigma \tau$ ), member of the Amateur Fencers League of America.
Professional Organizations: Associate member of the American Society of Mechanical Engineers.

