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PREFACE

In this thesis, the liﬁit and dead center positions of a geared
five-link mechanism are first derived analytically. A sample derivation
for a gear train speed ratio of two is included to demonstrate the pro-
cedure. Secondly, a graphical solution is studied, and a siwmple graphi-
cal procedure is presented. Finally, the positioning of the instant
centers of velocity of this mechanism are studied.
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NOMENCLATURE

r, length of ground 1link MQ

r, length of input link MA

T, length of input link AB

1, length of coupler link BC

o length of output link CQ

6, displacement angle of ground link MQ
6, displacement angle of input link MA
Oa displacement angle of input link AB
A displacement angle of couﬁler link BC
Os displacement angle of output link CQ
G, gear fixed to the ground link MQ

Gy . gear fixed to the input link AB

R, radius of G

Ry radius of G,

W, angular velocity of the fixed gear G,
Wy angular velocity of input link MA

g angular velacity of input link AB

vy, (i =2,3) velocity vectors

GR ratio of R, /R,

o . initial displacement angle of input link AB

r,, (1 =1,..,5) vectors

Gi, (1 = 1,..,5) 'unit vectors

viii



IC

any angle
small angle
instantaneous center of velocity

gear train speed ratio



CHAPTER I

INTRODUCT ION

There is considerable interest in the design and analysis of
geared mechanisms [1-7]*. Freundenstein claims that the work on geared
mechanisms dates back to the eighteenth century. An excellent contri-
bution in the study of motion of geared five-link mechanisms is by
Freundenstein and Primrose [2,3]. The dimensional synthesis of geared
five-link mechanisms is considered by Sandor and his associates [4-6].
The study on the coupler cognate mechanism is conducted by Hartenberg
[1] and by Soni and Pamidi [7]..

An interesting topic and one that is of practical importance in
design and analysis of geared five-link mechanisms is to develop the
"Grashof Criteria'" for these mechanisms. A systematic approach in the
development of such criteria, however, requires one to develop analyti-
cal methods to determine the conditions for the existence of limit
positions and dead center positions. Accordingly, the objective of
this thesis is to develop mathematically the criteria for the existence
of limit positions and dead center positions and show their relation-
ships with the instantaneous centers of velocity of one of the
inversions of a geared five-link mechanism.

Chapter II presents an analytical description of the geared

*Numbers in brackets designate references.



five-link mechanism under investigation.

In Chapter III, an analytical procedure is developed to obtain the

existence conditions for the limit positions and dead center positions.

In Chapter IV, the geometric properties of the limit positions and

dead center positions of the geared five-link mechanism are studied.

In Chapter V, the motion of the instantaneous centers of velocity

is studied. It is observed that at the limit positions and dead center

positions these instantaneous centers of velocity arrange themselves in

predictable manners.

The significant contribution of this thesis is summarized below.

(1)

(2)

(3)

(4)

(5)

Development of a generalized approach to determine the limit
positions and dead center positions of any given mechanism.
Development of the existence conditions for the limit posi-
tions and dead center positions of a geared five-link
mechanism.

Development of a graphical construction method to determine
the limit positions and dead center positions of the geared
five-link mechanism under investigation.

Development of relationships between the instantaneous centers
of velocity and the limit positions and dead center positions.
Development of theorems on instantaneous centers of velocity

and limit positions and dead center positions.



CHAPTER II

GENERAL DESCRIPTION OF THE GEARED

FIVE-LINK MECHANISM IN STUDY

Figure 1 shows the geared five-link mechanism studied in this
thesis.

In this figure, M, A, B, C, and Q are revolute pairs joining the
links. 4 and-ei, i=1,...,5, are the link lengths and displacement

angles of the links. The links are:

i =1, ground link MQ
i =2, input link MA
i = 3, input link AB
i =4, coupler link BC

* i =5, output link CQ

Also, R, 1s the radius of the gear G;, which is fixed to the ground

link MQ, and R, is the radius of the gear G; pivoted on input link

MA at point A onto which is rigidly fixed input link AB.
The%following definitions will prove to be helpful in the under-

standing of the contents of this thesis:

(a) Limit position: occurs when the output link reaches

an extrema, and reverses its motion at this extrema.



Figure 1. Illustration of Notation and Configuration
of the Geared Five-Link Mechanism in Study



(b) Pseudo-limit position: occurs when the output link
is at a dwell, and continues the motion in the same
direction prior to the dwell.

(¢) Dead center position: occurs when the input link
reaches an extrema. The mechanism is permanently
locked at this position. The mobility of the
mechanism is restored by an external force. The
dead center position of the output link is the limit
position of the input link.

(d) Instantaneous centers of velocity (IC): are a pair

of coincident points which have zero relative velocity.



CHAPTER III

ANALYTICAL DERIVATION OF THE LIMIT POSITIONS

AND DEAD CENTER POSITIONS

The development of the mathematical conditions for the limit

positions requires one to

(1) derive in a closed form the input-output displacement
relationships;

(2) obtain in a closed form the relationship which describes
df; /d8, = O where B, and 85 are the input and output
angular displacements;

(3) develop conditions for the limit positione by

eliminating the unwanted output parameter 8.

The procedure discussed in this chapter can be used for any

type of mechanism.
3.1 Displacement Analysis

The displacement analysis is accomplished by finding the vector
loop-closure equation of the mechanism shown in Figure 2.
The gear arrangement for the mechanism in Figure 2 is shown in

Figure 3; from this figure we write

U, = (kwy) x § IR R, ©(3.1.1)
Vy = (kwg) x (-5 Ry) (3.1.2)



Figure 2., Vectorial Representation
of the Geared Five-
Link Mechanism in
Study

2

Figure 3. Input Velocity Vectors



where, V, and 63 are velocity vectors,
wé is the angular velocity of the input link MA,
wa 1s the angular velocity of the input link AB,
i, 5 and k are unit vectors on the x, y and z axis
respectively.

Adding the velocity vectors, the following results:

2 TV =0;

that is,

-iw, (R, +Ry) + iw, Ry = O.

Simplifying and rearranging the above equation, the following results:

or

wy = (GR+ 1) w, (3.1.3)

Since the angular velocities are the first time derivatives of the

displacements, then,

2

de, de,

T (GR + 1) EE—’ .

Integration of both sides gives the following:
8 = (GR+ 1) o Tt - (3.1.4)

Where, 6, and 6, are the displacements of input link MA and input link

AB, GR is the ratio of R /R,, and ¢ is the initial displacement of the



input link AB, or more simply,
8 = No, + o, (3.1.5)

where N is the gear train speed ratio (GR + 1).
Now the output displacement will be derived from Figure 2. The

vectors are r, = u,r,, i = 1l,...,5, where r

' (T are the link lengths and

1

u, are unit vectors corresponding to each r, . They can be arranged

in the following vector loop closure equation;
r. +r. +1¢ - r, -1 =0, (3.1.6)

The vectors can be represented as

I,o=r ety =1,

From the theory of complex numbers,

T eJei = x, (cosg, + jsing, ), 1 =1,...,5. (3.1.7)

1

Equation {3.1.6), after expansion and separation of the real and

complex parts, becomes,

rgcoseé + chos%54-r4coseg - r,cosf, - rgcosfy = 0. (3.1.8)
r,sing, + r,sing, + r,sing, - r, sing, - rgsingy = 0. (3.1.9)

To simplify the calculations 6, may be assumed equal to 360 degrees
without any loss of generality. Since the output displacement g is
desired, the coupler link displacement ¢, must be eliminated from
equations (3.1.8) and (3.1.9). Therefore, rearrangement of these
equations gives the following:

r_cosea + r,Ccosf, - L

2 1 %

5COS@; = -, Ccosp, (3.1.10)
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T, sineg +r

2 51nea - T

singg = -r,sing, . (3.1.11)

5 4

3

Squaring both sides of equations (3.1.10) and (3.1.11) and then adding

them together gives the following:

2 2 2 _ .2 4 .2 -a).
L%+, +r, r,? +r? + 2r2r3cos(ea 92

21 Y 2 '

-2r, r,cos@, - 2r,r,cos@, - 2r,TI,COSA,COSHg -

-2r3r'5coseacose5 + 2r1r5coses- (3.1.12)
-Zrarssineasine5 - ZrBrssineasine5 = 0.

Rearrangement and collection of the terms results in:

Alcose5 + Aasine5 +A, =0 (3.1.13)
where,
= 2r5(r1 - r,cosf, - racosea)
Aa = -ZrE(rgsine? + rssines)
= + 2 2 2 _ .2 2 - -
Aa =r +r,° +r, r,? +rg® + 2[ra(r3cos(e2 93)

-r, cosg,) - T

A 1rncoseg].

The following trigonometric relationships are used to find g

explicitly:

_ ~ (g tan (V/2)
SInY = \1¥ tan® (v/2)

- (1 - tanz(Y/Zj
€OS Y T N ¥ tan® (v/2) (3.1.14)

for any vy . Substituting the relationships (3.1.14) in equation

(3.1.13) gives

gtanzes + K tan® + K = 0 (3.1.15)
- * 7 °
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where,

Ky =8 - A
: s
K, = 24,
Ky, = A3 + A

from where,

il

_K? + 2 - 4KJ.K3)

7K, . (3.1.16)

B 2 artan

Two values of §; are found to describe the normal and crossed config-
urations,
Now the displacement of the coupler link Oy will be found. To

accomplish this, equation (3.1.11) is rearranged so that,

g, = arsin(l [r.sing. - r_sing_, - r_.sin@,]) (3.1.17)
% r,  ® 3 2 2 3 3

There are two values of §, corresponding to the two values of gg.
3.2 Limit Positions

At the limit positions of the output link, a reversal of motion
can be observed. Hence, the velocity of the output link must be zero
and the mathematical condition for the existence of the limit positions

is obtained by setting dg;/de, = 0. That is,

deg _ cosfg[-rg (rysing, + 1y8ind, )] +sin6g [ 1y (r cos0,+

deﬁ + facoséa)] + [rérssin(ez- ea)'r1(rzSinea+ rasineé)] =
T (3.2)

This can be written in a simpler form,

ClcoseB + G singy + C; = 0 (3.2.2)
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where,

(9]
[

, = -r5(rgsing, + rysing,)
C, = rg(rycosby + rzcosdy)

a = Tprzsin(B, - 85) - r, (rgsing, + rzsing;).

Using relationships (3.1.14), the above equation becomes,

e &) _ .
K4tan2§5- + KﬁtanEE‘- +K =0 (3.2.3)
where,
K, = C3 - G
Ks = 2C,
Ky =Gy +C .

Equation (3.2.3) forces the velocity of the output link to be zero.
Equation (3.1.15) describes the loop closure condition which is also
valid at the limit positions. Both of these relationships involve @,
and @5 and are not linearly related. To obtain the position of the
input link MA corresponding to each of the limit positions of the
output link CQ, 8 must be eliminated from these two independent
equations. This elimination of @y is accomplished using Sylvester's
dyalitic eliminant technique. Application of this technique yields

the determinant condition written below.

K K3 K3 0
0 K K, Kg
K Kz Kg O
0 K, K K (3.2.4)
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The above determinant when expanded and simplified yields a polynomial
in tan 65/2.

The order of this polynomial will depend on the gear train speed
ratio since K, i = 1,...,6, are functions of ¢, and ¢;, where gz =
Ne, + «.

The above statement is valid for any integer or noninteger value

of N. The noninteger value of N can be delt in the following manner:
= 0,
cos(p 63) = COS(A1A2<Z;>)’
, ]
cos(8, - A, 0;) = cos(ag(l - A )&zi.))
3

cos(ez) = cos(A2<§§>)

and

where,

&
i

non integer number

Ve
L]

a number that makes A B, and

A (L - A;) an integer.

The same is true for the sine terms; and the problem now will be
. )
to find the <“>.
Ly
From relationships (3.1.14), it can be observed that the half
tangent terms. are squared for each corresponding cosine term. Since
the solution of equation (3.2.4) results in a polynomial in terms of

tan EE. only, the following theorem will be stated:
2

Theorem #1: The degree of the polynomial, solution of the
Sylvester's dyalitic eliminant, is function of

the gear train speed ratio only.
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The real roots of the polynomial give the necessary conditions for a
limit position to exist. These roots must be replaced in equation
(3.1.16), which will give two values to 65, that must be checked with
equation (3.2.1) to see which value of 6y make the equation equal to
zero, thus obtaining the possible 1limit positions of the normal and
crossed configurations.

To determine the existence of the limit positions, the second

derivative of equation (3.1.12) must be obtained, That is:

cos®g [ -rg (rycos8, + rycosbz)] +

+ sin6g[-r5 (rysinb, + rysinb,)] -

d®eg - [rg (-rzcos(6; - 6;) + rycos6,) + ryrgcosby]
deg” - cosBg [ -r5 (rysin, + rgsinfy)] +
+ sing[ -r5 (r; - rycos6; - rzcosby)] 1 (3.2.5)

If d°65/d6,® # 0, then 85 is at a limit position and this is a
sufficient condition. If dzes/degz = 0, then further derivatives are
to be téken to determine if 6 is a limit position or a pseudo-limit
position.

Pseudo-limit position as previously defined is the condition in
which the output during its motion has a dwell, and continues moving
in the same direction as prior to the dwell [8]. The dwell can be
instantaneous if d365/d6;® # 0 or longer if dmes/demB # 0, m is odd.

In case that dm65/d92m # 0, m is even, then the output is at a
~limit position with a dwell occurring at that extrema.

If d®6;/dez® = 0 occurs, then a practical approach to know if the

output is at a limit or pseudo-limit position is to check with 6, * £,

where £ is a small angle, the displacement analysis, and observe if
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the output reverses its motion (limit position), or continues in the

same direction (pseudo-limit position).
3.3 Dead Center Positions

In order to find the dead center positions, the first derivative
of the input with respect to the output displacements, must be set
equal to zero. This is accomplished by taking dez/des = 0 of equation

(3.1.12) obtaining:

de, _ cosBs[ -rs (rpsin; + rzsing,)] +

EB;. + sinbg[rg (rycos8; + rycosfy)] =0 (3.3.1)
or,

C,cos6g + Cysinb; = 0 (3.3.2)
where,

C, = -rg(rasind; + r3sings)

Cs = rs(rycosfy + rzcosby).

The above equation, with the use of relationships (3.1.14), becomes:

K,,tanz_gé_ + K‘etanga_ +K =0 (3.3.3)
where,

K, =¢C,

Ke = '2C5
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Similarly as for the limit positions, a common root O must be
found for equations (3.1.15) and (3.3.3). Here again, two equations
with two unknowns are provided. In order to obtain an equation in
terms of 8, only, Sylvester's dyalitic eliminant technique is used to

obtain:

K, Ky K O
0 K K K
Ky Kg Ky O
0 Ky Ky Kg (3.3.4)

Solving, a polynomial in terms of tan g; results, Theorem #1 applies
here, too. The real roots of the polynomial provide the necessary
and sufficient conditions for the existence of dead center positions,

since the mechanism becomes a structure at these positions.

3.4 Sample Derivation of the Limit and
Dead Center Positions of a Geared
Five-Link Mechanism of Gear

Train Speed Ratio = 2

The general approach presented in the previous section is reexam-
ined to obtain numerical results for a geared five-link mechanism with
a gear train speed ratio = 2. For this purpose, the displacement
analysis will first be performed.

Since N = 2, equation (3.1.5) becomes
8, = 20, + « (3.4.1)

substituting 8; in equation (3.1.12), the following is obtained:
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r,? +r® + ry° - r® +rs® 4+ 2ryrycos(8; + o) - 2r r cos6, -
-2r, racos(26; + o) - 2ryrzcosbycosfy -
-2rgrgcos (26, + a)cosb; + 2r; rgcosfy -

-2r rgsin®,sinbs - 2ryrgsin(26, + o)sinB; = 03 (3.4.2)
equation (3.1.13) becomes,

A cosB + A sinBy +A; =0 (3.4.3)
where,

A, = 2rg[r, -rycosp, - ra(cosoz(c03292 - singee) -
-2sinB,cos0, sinw)]

A, = -2rg[r sinb, + rz; (2sin6,cosb,cosa +
+ sina(coszez - singez))]

2

- 2 2 2

A =1 " tr,” -, +rs” + 2[r;(ry (cosbycosy -
. . 2

- 31n9231na) - rlcosez) - rlra(cosa(cos 0, -

sinzeg) - 2sin6 cos6ysina)].

To obtain the conditions for the limit positions, the first derivative
of the output with respect to the input displacement must be equated
to zero. To accomplish this, take d6s/d6, = 0 of equation (3.4.2),

rearrange and collect terms. Thus,

deg .

Es; = C,cosf; + Cysinfy + C; = 0 (3.4.4)
where,

C, = rs[rysing, + 2r; (2cosf,sinfycosy +

4 sing(cos®g, - singeg))]
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C, = -rglrycose, + 2r3(cosa(cos‘?92 - sin292) -
- 2singcos@gsing, )]

Cy = -rzra(cos_asinQa + sinacosea) +
+ rl[rasinea + 2ry (2cosacosfysing +

+ sino:(coszea - sinzea))].

Equations (3.1.15) and (3.2.3) are rewritten,

K, tan®g; + K tang; + Ky = 0 (3.4.5)
2 2
and
K tan®f; + Kgtangs + Kg = 0 (3.4.6)
2 2
where,
K = Ay = A
Ky = 24,
Ky = A3 + A
K, =G -G
Kg = 2C,
Kg =C; + Cl

with the A's and C's found in equations (3.4.3) and (3.4.4). 1In order
to find a common root of g in the above equations, Sylvester's
dyalitic eliminant technique is applied. This procedure yields a

16th degree polynomial;

V(17)tY8® + V(16)tl® + V(15)t** + V(14)t*2® + v(13)t*® +

+ V(12)t + vt + v(10)t® + V(9)t® + v(8)t? + V(7)t® +
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+ V(6)t® + V(5T + V()2 + V(3)t? + V(2)t + V(1) = 0
‘ (3.4.7)

Where V(i), 1 =1,...,17, are defined in Appendix A and " = tanmga,
m=1,...,16.

The real roots of the above polynomial must be introduced in
equation (3.1.16) and then in (3.4.4) to find the possible limit
positions of the normal and crossed configurations.

Introduce the values of the real roots in equation (3.2.5) and
follow the procedure outlined in Section 3.2 to check the existance
of a limit or a pseudo-limit position.

For the dead center positions, equation (3.3.2) becomes,

de

3—5: = C,cosfs * Cgsinbs = 0 (3.4-8)

where,

, = Islrysing, + rz(2cos@zsinggcosa +
. 2 P~
+ sina(cos®8, - sin“0;))]
Cs = rgl[-rycosg, + ra(cosa(sinzez - cosaea) +

+ 2cosezsinezsina) +r].

‘Equation (3.3.3) is rewritten,

Ky tan®fs + Kgtangs + K = 0 (3.4.9)
2 2
where,
K =G
Ke = -2C5
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with the C's found in equation (3.4.8). 1In order to find a common
root of & in equations (3.4.5) and (3.4.9), Sylvester's dyalitic
eliminant technique is applied. This procedure yields a 16th degree

polynomial;

w<17)1;lEs + W(16)t*° + W(15)t** + W(14)t*® + W(13)t*® +
+ W2)tPT + WD) + W(10)® + W(9)t® + Ww(8)t” +
+ W(7)t® + W(BIt® + W(S)t* + W()t® + W(3)® + W(2)t +

+ W(l) =0 (3.4.10)

where, W(i), i = 1,...,17, are defined in Appendix A.
The real roots of the above equation give the necessary and
sufficient conditions for the existance of the dead center positions.
Examples of limit, pseudo-limit and dead center positions are

presented in Table I; in this table,

ry, 1 =1,...,5 = link lengths

- Alpha = initial input link AB displacement

Theta 2 = input link MA displacement
Theta 3 = input link AB displacement
Theta 4N = coupler link BC displacement - mechanism in normal

configuration

Theta 5N = output link CQ displacement - mechanism in normal
configuration

Theta 4C = coupler link BC displacement - mechanism in crossed

configuration

Theta 5C output link CQ displacement - mechanism in crossed

configuration



Position;

1111

2222

3333

limit position
pseudo-limit position

dead center position
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TABLE I

NUMERICAL EXAMPLES

Rl | R2 |} R3 | R4 | R5 | ALPHA {THETA 2 |THETA 3 |THEYA &N|ITHETA S5NJTHETA 4CITHETA SC{ POSITION
------ D Bt B I et B T B L ey P T
500 1.C0 1. 25 3.25 2. 75 75+ 00 348.7 52 4 . 35.5 102.8 1111

51.1 177.3 3344 4 161.9 1111
312.1 339 .2 331.6 263, 7 1111
6942 213.5 ' 14,4 157.5 1111
119.9 314.8 324. 4 22441 1111
145.7 6.4 2669 127.8 1111
265.1 245,.2 20 .7 200.9 20,9 200,.7 3333
185.0 85.0 348,11 169.8 349,7 157.9 1333

------ f==m===fmm === [mmm oo fmmmm s fommm oo | oo leee B e B L Py P e
1.50 2.00 1.75 3.00 2425 75, 00 82.9 240.7 3642 81l.9 1111
110.2 295.3 302.1 27440 1111
133.2 341 .4 10.0 39,2 1111
185.5 86.1 297.9 209,2 1111

------ et B B e B B B P L T Lt et
1.00 24 50 1. 25 3.00 2.25 90. 00 87.3 264 .7 . 35640 27.7 2222
90. 0 270.0 278. 7 229. 7 1111
30.9 270 .0 356.1 27.7 2222
90.0 270.0 278.7 2297 1111
90, 0 276. 0 356.1 27.7 - 2222
153.9 37.8 275.8 209.8 1111

—————— R i e e i B L B B B o ot BRSPS P
1.00 2.50 0.95 3.00 2425 90 .00 97.2 2864,3 283.9 216.9 1111
141,99 11,9 272 o4 213.0 1111

------ Rl e R el et Bt B B B B P
1.00 2.50  1.50 3,30 2.25  90.00 8949 269.8 270.6 262.7 1111
T1.3 23246 0.8 32.9 1111
106.9 303.8 354.0 21.7 1111
158.7 47 .4 275.4 205, 7 1111

(A4



TABLE I (CONTINUED)

rRY | R2 | R3 | R4 | R5 | ALPHA |THETA 2 ITHETA 3 JTHETA 4N{VHETA SNITHETA 4C |THETA 5C| POSITION
—————— e o B L B R e B ] i PR
1.75 1.0) 2,00 3.25 275 - 270.00 272. 0 9%, G 274.7 234,7 1111
' 192.9 295.8 i 78, 7 155.0 1111
238.8 2746 349 ,8 349 .4 354.0 35444 3333
232.8 1%.6 29.1 28. 8 33,1 33.5 3331
------ B e e e T T e B B B P et
4.00 1.00 0. 00 2. Q0 3. 25 0.0 143,6 287.2 323 .5 150.5 1111
216.4 12+ 8 36.4 169.5 1111
307 .0 254 .0 307.0 227.5 1111
53.0 106, 0 53.0 132.5 1111
------ R e e e R B B B Bt B f====mmm-
1.00 4. 00 C. JU 3.25 2.00 0.0 NO EXTREMAS OR DWELLS EXIST FJOR THIS CASE
------ e D e P B e Il e B e B R B i -
2.00 3,25 0.00 1.00 4 400 0.0 250.9 221.8 290.9 263.0 1111
69,1 138,2 69.1 97.0 1111
140. & 280, 9 320. 4 159.0 111}
219.6 7941 39,6 201.0 1111
64.7 129.3 71.6 103.5 8447 100,2 3333
295, 3 230..7 275.3 259. 8 28844 256 .5 3333
143 .4 286 .8 333,9 157.9 340.3 15643 3333
216. 6 7362 19.7 203,.7 2641 202.1 3333
—————— e Dt e B B B L el E e B B I
2,00 3,25 0, 00 4400 1.00 U0 64e7 129.3 28042 275.3 283,.5 288. 4 3333
295, 3 230.7 T76.5 T1 .6 79.8 B84.7 3333
143.4 28¢.8 337.2 157.3 337,2 157.1 3333
21646 73.2 22 .8 202 .9 22.8 202.7 3333
------ R e T B B B B R e o D et
1.00  0.00 3,25 4,00 2.00 0.0 NO EXTREMAS OR DWELLS EXIST FOR THIS CASE

€¢



CHAPTER IV

GRAPHICAL STUDY OF THE LIMIT AND

DEAD CENTER POSITIONS

In actual design work, in many instances a designer is interested
in a quick and simple technique to check the motion characteristics of
the output of a mechanism.

In this chapter a graphical procedure is explained that will enable
the designer to find all the limit and dead center positions of a geared

five-link mechanism for both normal and crossed configurations.
4.1 General Motions of Trochoids

A trochoid is a curve traced by a point on a circle when the
circle rolls on another fixed circle. The number of convolutions
and geometry of this curve depends on the ratio of the radii of both
circles, and the distance of the point generating the trochoid from
the center of the rolling circle. In figure 3, point B generates a

trochoid.
4.2 Limit Positions

In order to understand the occurrence of the limit positions of a
geared five-link mechanism, consider a vector V (see Figure 4a) which
is the velocity vector corresponding to the angular velocity (ws) at

which point B moeves about the rolling contact point P of the two gears.

24



(b)

Figure 4. Velocity at Revolute Pair B when w is the Input Angular Velocity; (a) General
Configuration; (b) Limit Position; (c¢) Dead Center Position

(c)

6C
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That is V = g X fh, where PB is the distance between point P and B, or -
simply V is perpendicular to line PB at point B. In the same figure,
vectors VnBC and VtBC are the normal and tangential components of v

with respect to the coupler link BC.

At a limit position, Vn must be zero, and after this condition

BC

occurs, Vn must have opposite direction as prior to the occurence of

BC
this condition, otherwise it is at a dwell (pseudo-limit position).
For VnBC to become zerof line PB must be collinear to coupler link BC
see Figure 4b.

Any gear train with several gears has a speed ratio equivalent to
a gear train with only two gears; these two gears will be named.

equivalent gears.

The following theorem can be stated:

Theorem #2: A limit or pseudo-limit position of a geared five-link
mechanism with any gear train speed ratio exists only
when the coupler link or its prolongation passes
through the point of contact of the two equivalent

gears.

4.3 Graphical Procedure to Obtain

the Limit Positions

A simple graphical procedure to obtain the limit positions is as

follows:

1) Plot circle C; of length ry (input link MA) about P, , that is,

X3

Y

T cosf, (4.3.1)

- r,sinf, (4.3.2)



2)

3)

4)

5)

6)
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On the same graph plot the trochoid T, corresponding to the

gear ratio and link lengths selected as inputs (rz and rs)

that is,
X; = X; + rpcosf; (4.3.3)
Y; =Y, + rysing, (4.3.4)

On the same graph plot two new trochoids T, and T,, with the

same data as step (2); except that for Ir,r becomes T, +-r4

3
o
and for Eﬁ’ r, becomes r, - r,; that is,.’
Xaq - X, + (rz + r4)cosfy (4.3.5)
Y3, = Y, + (rz3 + 1ry)siné, (4.3.6)
Xgz = X, + (xr3 - r4)cosb, (4.3.7)
Yap = Y, + (r3 - 1,)sin@s (4.3.8)

On the same graph, select a point at a distance r, (gound
link MQ) from the center of rotation P, of circle C, - Then
with a length rg (output link CQ) as radius, plot circle C,
about P; as fixed center.

All the points Rﬂ; where Cz cuts trochoids Ty and T, are one
of the ends ofbthe coupler link BC. 1In order to find the
other end, draw a line L; perpendicular to the trochoid T,
or T; where the intersection with C; occurred until L, cuts

trocheid T, perpendicularly at point P this will be the

BL’
other end of the coupler link BC.

Now to find the position of the input link MA, draw a circle
Cz with radius corresponding to the input link AB length (rg)

with center at P it will cut circle C, at two points (or at

BL’

one point if tangent to C;). Draw another circle C, with

radius corresponding to the equivalent fixed gear (R;) about
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point P, . Draw line Ly collinear with L, until it cuts circle
C, (it may cut G, at two points). The point P, of the inter-
section of C3 and C,, which is collinear with the point P, of
the intersection of I; with C , and point P, will be the point
P, determining the location of input link MA.

7) Repeat steps (5) and (6) until all input positions are found.
All these input positions correspond to limit or pseudo-limit

position of the output link.

Figure 5a shows one of the limit positions which was obtained

using the procedure just outlined.

4,4 Dead Center Positions

In order to understand the occurrence of the dead center positions
of a geared five-link mechanism see Figure 4a where G, GnBC and GtBC
are-as previously defined in Section 4.2, For a dead center position
to occur, the velocity vector V must become zero; this will only occur
if the geometric configuration of the links force the input links to
become stationary. The geometric configuration (see Figure 4c) that
will hinder the input link MA from rotating eccurs when links BC and CQ
(coupler and output links) are collinear.

As explained in Section 4.2, any gear train with several gears has
a speed ratio equivalent to a gear train with only two gears; and these

two gears are.named equivalent gears.

The following theorem can be stated:

Theorem #3: A dead center position of a geared five-link

mechanism with any gear train speed ratio exists



Figure 5.

(b)

Graphical Procedure; (a) Sample Limit Position;
(b) Sample Dead Center Position

29
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only when the coupler and the output links are

collinear.

4,5 Graphical Procedure to Obtain

the Dead Center Positions

A simple graphical procedure to obtain the dead center positions

is as follows:

L)

2)

3)

4)

Carry out steps (1), (2), and (4) of Section 4.3 (graphical
procedure to obtain the limit positions). Then circle Cl»
trochoid T,, circle C, and fixed points P, and Pg are given.
On the same graph, plot two new circles C; and Cg with radius

r; + 1, and rz; - r, respectively with center at point P_; that

is,
X5, = 1, + (rs + 1 )cosfs (4.5.1)
Y5, = (rs + 1,)sinBg (4.5.2)
Xsg =1, + (rs - 1y)cosBs (4.5.3)
Y55 = (rs - 1r,)sinBg (4.5.4)

All the points P . where circles Cz and G; cut trochoid T, are

BD

one of the ends of the coupler link BC., In order to find the
other end draw a line Lz passing through PBD and P,; this line

Lz will cut circle Cg in two places. The point P, on line ILg

cDh

which is at a length r, from point PB is the other end of the

D
coupler link BC,

To obtain the position of the two input links MA and AB, draw
circle G, with radius rs of the input link AB about PBD;

circle G, will cut circle C, at two points (or at one point if
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tangent to C,). One of these two points PAl or PA2 will give
the position of the input link MA. To determine the appropri-

ate position, first assume P,. is the solution, and try to

Al
rotate input link MA in the direction of w, (clockwise or
counterclockwise, depending on which one was selected for the
mechanism) ;

a. If the coupler link BC could move, then the other point
PA2 is the position of the input link.

b. 1If the coupler link could not move, that is, the mechanism
remains in locked position then point PAl is the initial
position of the input link.

5) Repeat steps (3) and (4) until all input positions are found.

This input position corresponds to dead center positions of

the output link.

Figure 5b shows in the same example as Section 4.3 one of the dead

center positions using the procedure just outlined.
4.6 Study of the Inverse Mechanism

In this section the motion of the geared five-link mechanism is
studied for the case when 65 is the input displacement, 6 is the out-
put displacement and ws is the input angular velocity.

Consider the vectors shown in Figure 6a where GC is the vector

corresponding to ws (input angular velocity) crossed with link length

rs (input link CQ), V. is the projection of V. on coupler link BC,

CB C

GnBP and vtBP are the normal and tangential components of velocity

vector V., on line BP at point B.

CB



Figure 6.

(a) (b)

Velocity Vectors at Revolute Pair C when wg is the Input Angular Velocity;
(a) General Configuration; (b) Limit Position; (c) Dead Center Position
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A limit or pseudo-limit position occurs when VCB is zero, that is,

VC is perpendicular to link BC; this occurs when the input link CQ is

collinear with coupler link BC see Figure 6b. If the direction of VCB

after a small increment of wg is opposite to prior.to V, =0, then

CB

the mechanism at VCB = 0 is at a limit position; otherwise, it is at a
pseudo-limit position.

A dead center position may only occur if the vector VC becomes
zero. This happens when the geometric configuration of the links force
the input link CQ to become stationary; that is, line PB must be
collinear with coupler link BC see Figure 6c. If, for an increment of

wg the'mechanism remainsclocked, then it is at a dead center position.,

Let

MECH 1, when 6, input, and 6g output, and

MECH 2, when 65 input, and 6, output,

then, it can be concluded that,

1) When MECH 1 is at a limit position, MECH 2 is at a dead center
position.

2) When MECH 1 is at a dead center positien, MECH 2 is at a limit
position.

3) When MECH 1 is at a pseudo-limit position, MECH 2 is at a dead
center position.

4) When Mech 2 is at a pseudo-limit position Mech 1 is at a dead

center position.



In other words the analysis of the limit, pseudo-limit and dead
center positions is independent of which link MA or CQ is considered

as input.
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CHAPTER V

INSTANTANEOUS CENTERS OF VELOCITY
IN THE ANALYSIS OF THE LIMIT

AND DEAD CENTER POSITIONS

Once some specific geometric configurations of the limit and dead
center positions are available, the next logical step is to analyze the
instantaneous centers of velocity (represented as IC all throughout
this chapter); with the objectives to understand other additional geo-

metrical properties of limit and dead center positions.

5.1 General Notions of Instantaneous

Centers of Velocity

Instantaneous centers of velocity as defined previously are a pair
of coincident points having zero relative velocity [1].

In the study of the IC's in this chapter the concepts of Kennedy's
theorem will be used. The theorem reads: ''The instantaneous centers
of velocity of any three rigid bodies having planar motion lie on the

same straight line."

5.2 Instantaneous Centers of Velocity of

a Geared Five-Link Mechanism

The number of IC of a mechanism can be-determined by,

o MOED

2 (5.2.1)
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where, N = number of IC,

use of equation (5.2.1),

are:

IC 2

IC, 4

14

IC, s

ICos ICz, IG5

ICGs, ICag

IC, s

with M = 5 (five-link), gives ten IC.

36

and M = number of links of the mechanism. The

These

Figure 7 presents all the IC, and for ease of understanding the IC of

the frame of the mechanism, and the IC corresponding to the point of

contact of the gears will be named. fixed IC.. The other ones will be

named floating IC.

fixed IC, and IC

149

ICy, , IC;5 and IC 45 are floating IC.

Thus, IC 5, ICy3, ICs,, IC s, IC g, and IC, 4 are

The fixed IC are defined geometrically as follows, (see Figure 7):

IC,5:

IC, s

4

Iclg:

IC15:

IC34 .

IC 5

Xs
Yaa
Xy 5
Y5
%2

YlB

Ty cos6y

r,singy

r; + r5 cosfs
rg Sinbg

0.

0.

I

0.

Xz2a + racosfg
Yo5 + rzsing,

R, cos gy

R; sinfy

(5.2.2)
(5.2.3)
(5.2.4)
(5.2.5)
(5.2.6)
(5.2.7)
(5.2.8)
(5.2.9)
(5.2.10)
(5.2.11)
(5.2.12)

(5.2.13)



IC14

“Figure 7. Instantaneous Centers of Velocity of a Geared
Five-Link Mechanism

Figure 8. - Velocity Vectors at ICy,

LE
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and the floating IC are defined in Appendix B.

Now that all the IC have been defined, the next step is to find
the angylar velocity of each link.

Using Kennedy's theorem and simple geometry , the relative
velocity vector of any two links can be found [1].

The angular velocities are:

1) Ground link MQ: w, =0 (5.2.14)
2) 1Input link MA: @, = input velocity (5.2.15)
3) Input link AB: wg = (1 + GR)w, (5.2.16)

(for a derivation see Section 3.1)
4) Coupler link BC:

(IC,5--1Cy,)

w =
4 8 (IC 4 --ICs,) (5.2.17)

Where W, is found from the following derivation in Figure 8, 1,

and Ry are known, and S is the distance from IC,; to IC,, . Therefore,

3 2 2
r,” + 57 - R,

CcOSs =
B T s (5.2.18)
Vag, = WwaTy (5.2.19)
and,
- \Y
v = .84
5~ CosB (5.2.20)
S0;
_ Vs
ws =73 (5.2.21)
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5) Output link CQ:

(IC14 "‘IC4E)
W = W
® % (1s--1C5) (5.2.22)
w, and wy may also be obtained by taking other IC in consideration, but

the procedure above is the simplest.
5.3 Limit Positions

Since the limit and the pseudo-limit positioms occur when the out-
put link has zero velocity, and since w,, ws and w, are in motion while
the limit or pseudo-limit position occurs. The only way wg in equation
(5.2.22) can become zero is if the distance 1C,, to IC,s becomes zero.
See Figure 9a where the limit position presented in Figure 4b is
redrawn. It is interesting to observe that as a result of Kennedy's
theorem, the Ig;coincide with ICaz, and IC,; coincide with IC,5.

The following theorem can be stated:

Theorem #4: A limit or pseudo-limit position of a geared five~-
link mechanism exists if the instantaneous center of
of velocity corresponding to the input and output
links coincides with the instantaneous center of

velocity coincident with the output moving pivot.
5.4 Dead Center Positions

A dead center position will occur when input link MA reaches an
extrema (w, becomes zero). That is, the mechanism becomes locked.

This can be explained as follows; a dead center position occurs only



Figure 9.

Position of the Instantaneous Centers of Velocity;
(b) Dead Center Position

() 2

(a) Limit Position;

oY
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when w, in equation (5.2.22) is zero, therefore, wg is zero. For w, to
become zero in equation (5.2.17) the IC,, must coincide with the IC,,
at a dead center position. Thus, w, would be =, but this condition can
only occur when w,; is zero (that is, wg = 0), therefore w, is zero.
Since wy is zero, this implies that w, is zero from equation (5.2.16).
It is interesting to observe that as a result of Kennedy's theorem,
IC;, is also coincident with IC,, and IC;,; this in turn, will make the
IC,5 and ICs; coincide with IC, 5. See Figure 9b where the dead center

position presented in Figure 4c is redrawn.

The following theorem can now be stated:

Theorem #5. A dead center position of a geared five-link
mechanism exists if the instantaneous centers of
velocity corresponding to the input and output links
are coincident with the instantaneous center of

velocity of the input's moving pivot.

In other words when IC,, coincides with IC,,, a dead center posi-
tion has been achieved (IC,, can only be coincident with IC 5, at IC,,,

because of the geometry involved in the construction of the IC).



CHAPTER VI

SUMMARY AND CONCLUSIONS

In this thesis a generalized approach is developed to find the
limit and dead center positions of a geared five-link mechanism. This
approach is applied to study the existence of limit and dead center
positions of a geared five~link mechanism with a gear train speed ratio
of two,

The analytical study show that the first and second derivative
relationships give the necessary and sufficient conditions for the exis-
tance of the limit and dead center positions. It was found that the
degree of the polynomials resulting from the expansion of Sylvester's
dyalitic eliminant technique to determine the extremas is function of
the gear train speed ratio of the mechanism.

The graphical approach is proposed to study to specific geometric
configurations at the limit and dead center positions.

The motion of the instantaneous centers of velocity of geared five-
link mechanisms show that they (IC) position themselves in a specific

predictable manner at the extermas.
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APPENDIX A

DERIVATION OF THE COEFFICIENTS

OF THE POLYNOMIALS

In the following sections the coefficients of the polynomials that
provide the necessary conditions for the limit and dead center posi-
tions of a geared five-link mechanism with gear train speed ratio = 2

are derived.

A.1 Expansion of the Sylvester's

Dyalitic Eliminants

The expansion of the Sylvester's dyalitic eliminants (3.2.4) and

(3.3.4) give respectively for limit positions;

K2 Ke® + K KKe® - 2K KK Kg - K KyKgKg +
KoK, Kg + K%K, 2 ~ KoKyK Kg = 0 (A.1.1)

for dead center positions,

K °Ke® + K KgKg® - 2K KyR, Ky - K KyKgKy +
K"Ky Ky + K3®K,® - KKK, Ky = 0 (A.1.2)

where the Kj, j = 1,...,9, are defined as follows:
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A.2 Definition of the Kj

In order to simplify the data supplied for the computer K(j) =

K., j=1,..,9. Permute the following equation,

KJ) = S(I)t* + S(I + 1)t2 + S(I + 2)t® +

S(I + 3)t + S(I + 4) (A.2.1)

with,

o
i

=1,2,3,4,5,6,7,8,9

I1=1,6,11,16,21,26,31,36,41
where the S(I), I =1,..,45 as defined as follows:
A.3 Definition of the S(I)
The S(I)'s are:

S(1) = P(1) - P(2) + P(6)
S(2) = 2[P(4) - P(5)]

S(3) = 2[2P(3) - P(1) + P(6)]
S(4) = 2[P(4) + P(5)]

S(5) = P(1) + P(2) + P(6)
S(6) = P(7)

S(7) = 2[P(9) - P(10)]

S(8) = 2[2P(8) - P(7)]

S(9) = 2[P(9) + (10)]

S(10)

P(7)

S(11)

P(11) - P(12) + P(16)

S(12) 2[P(14) - P(15)]



S(13)
S(14)
S(15)
S(16)
S(17)
- §(18)
S(19)
$(20)

s(21)

S(22)

S (23)
S (24)
S(25)
S(26)
S(27)
S (28)
5(29)
S (30)
S(31)
S (32)
S(33)
S (34)
$(35)
S(36)
S(37)
S(38)

S(39)

2[2P(13) - P(11) + P(16)]
2{P(14) + P(15)]

P(11) + P(12) + P(16)

P(17) - P(18)
2[P(20) - P(21)]
2[2P(19) - P(17)]
2[P(20) + P(21)]
P(17) + P(18)
P(22) - P(23)
-2P(25)

2[2P(24) - P(22)]
2P (25)

P(22) + P(23)
P(26) - P(27)
2[P(29) - P(30)]
2[2P(28) - P(26)]
2[P(29) + P(30)]
P(26) + P(27)
P(31)

2(P(33) - P(34)]
2[2P(32) - P(31)]
2[P(33) + P(34)]

P(31)

P(35) - P(36) + P(39).

-2P(38)

2[2P(37) - P(35) + P(39)]

2P(38)
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S (40)
S (41)
S (42)
S (43)
S (44)

S(45)

Where the P(K),

The P(K)'s are:

P(1)
P(2)
P(3)
P(4)
P(5)
P(6)
P(7)
P(8)
P(9)
P(10)
P(11)
P(12)
P(13)
P(14)
P(15)

P(16)
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P(35) + P(36) + P(39)
-S(31)

-5(32)

= -5(33)
= -S(34)

= -5(35)

K=1,...,39 are defined as follows:

i

A.4 Definition of the P(K)

2ry (r5 - 1, )cosy
2rp(rz cos @ - r; + r5)
2ry (r; - rs)cosy
-2rprg sing
4ra (r; - rs)siny
rlz + rgz + raz - r42 + r52 - 2r, 15
~4rarssiny
-P(7)
~41, 18
-81a rs cosy
-2rg (r; + r5)cosy
2ry (rzcos o - 1] - r5)
213 (r; + 15 )cosy
-2r, 13 siny
4rg (r;, + 15)siny

6+, +° -+ + g



P(17) =
P(18) =
P(19) =
P(20) =
P(21) =
P(22) =
P(23) =
P(24) =
P(25) =
P(26) =
P(27) =
P(28) =
P(29) =
P(30) =
P(3l) =
P(32) =
P(33) =
P(34) =
P(35) =
P(36) =
P(37) =
P(38) =

P(39) =

Where r, , 1y, Ig,
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4rg (ry - rg)sing
-2rprasing

brz (rs - ry)sing
2rp (r; - racosy - rg)
8r3 (r; -~ rs)cosy
-8rarscosy

~-4rors

8rarscosy
l6rargsing

4rz (r; + rs)sing
-2rarasing

~4r3 (r, + r5)sing
2rg(r; =~ rzcosy + rs5)
8ra (r; + rs)cosy
2rarssing

-P(31)

2rgTE

41s rgcosy

P(34)

2P(33)

-P(34)

-4P(31)

-4r, 15

r,, s, and ¢ are the initial conditions (link

lengths and initial position of input link AB).
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A.5 Definition of the K(L)K(M)

Permute the following equation:

K(L)KM) = Q(RK)t® + QK + 1)t7 + QK + 2)t® +

Q(K + 3)t® + Q(K + 4)t* + Q(K

+ 5)t2® +

Q(K + 6)t® + Q(K + 7)t + QX + 8) (A.5.1)

with,

L=1,2,3,4,5,6,7,8,9,1,1,2,4,
M=1,2,3,4,5,6,7,8,9,2,3,3,5,
I =
J =

K =1,10,19,28,37,46,55,64,73,

154

where Q(K)'s are:

Q(K) = S(I)8(J)

QX + 1) =S(I)S(I + 1) +8(I

QK + 2) = S(I)S(JT + 2) +S(I

QR + 3) =8(I)S(T + 3) +8(1
+ S(I + 3)s5(J)

Q(K + 4) = S(I)S(J + 4) + S(I
+S(IL +3)S(J +1)

QK + 5) = S(I + 1)S(J + 4) +
S(I + 3)S(J + 2) +

QK + 6) = S(I + 2)S(J + 4) +

S(I + 4)S(J + 2)

4,5,7,7,8

6,6,8,9,9

1,6,11,16,21,26,31,36,41,1,1,6,16,16,21,31,31,36

1,6,11,16,21,26,31,36,41,6,11,11,21,26,26,36,41,41

82,91,100,109,118,127,136, 145,

+ 1)s(@J)
+ 1)S(J + 1) + S(I + 2)S(J)

+ 1)S(J + 2) +S(I +2)S(J + 1)

+ 1)S(J + 3) + S(I + 2)S(J + 2)
+ S(I + 4)S(J)

S(I + 2)S(J + 3) +

S(I +4)S(J + 1)

S(I + 3)S(J + 3) +
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QK + 7)

S(I +3)S(JT+4) +S(I+4)SWT+3)

Q(K + 8)

S(I + 4)ST + 4)

where the S(I), I = 1,..,45, and the S(J), J = 1ls..,45, are defined in

Section A.3.

A.6 Definition of the K(L)K(M)K(N)K(Y)

Permute the following equation:

with,

where the

KL)KMEK@MK(Y) = T(K)t*® + T(K + 1)t5 + T(K + 2)t*¢ +
T(K + 3)t?® + T(K + 4)t*® + T(K + 5)t!t +
T(K + 6)t° + T(K + 7)t2 + T(K + 8)t® +
T(K + 9t7 + T(K + 10)t® + T(K + 11)t° +
T(K + 12)t* + T(K + 13)t® + T(K + 14)t® +

T(K + 15)t + T(K + 16) (A.6.1)

L=1,1,1,1,2,3,2,1,1,1,1,2,3,2
M=1,3,3,2,2,3,3,1,3,3,2,2,3,3

N = 6,5,4,5,4,4,4,9,8,7,8,7,7,7

Y =6,5,6,6,6,4,5,9,8,9,9,9,7,8
I=1,91,91,82,10,19,100,1,91,91,82,10,19,100

J = 46,37,118,127,118,28,109,73,64,145,154,145,55,136

K = 1,18,35,52,69,86,103,120,137,154,171,188,205,222

T(K)'s are:
T (K) = Q(I)Q(J)
T(K + 1) =

(DA + 1) + (I + 1)Q(J)



T(K + 2)
T(X + 3)
T(K + 4)
T(K + 5)

T(X + 6)

T(K + 7)

T(K + 8)

T(K + 9)

T(K + 10)

=
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Q(IQW + 2) +Q(I + 1)Q(JI + 1) + Q(T + 2)Q(J)
Q(I)Q( + 3) + Q(I + 1)QWJ + 2) +

Q(I + 2)Q(J + 1) + Q(I + 3)Q()

Q(I)Q(I + 4) + Q(I + 1)Q(JI + 3) +

QI + 2)QMI + 2) + (I +3)QUI + 1) +

Q(T + 4)Q(J)

Q(I)QI + 5) + QI + 1DQW + 4) +

Q(I +2)QMJ + 3) + Q(I + 3)Q(T + 2) +

Q(I +4)QI + 1) + Q(I + 5)Q(J)

Q(I)Q(I + 6) + Q(I + 1R(JI + 5) + Q(I + 2)

QU +4) + I +3)QI +3) +Q(I +4)QU1+2) +

Q(I + 5)Q(J + 1) + QI + 6)Q(J).

QDI +7) + QI +1)Q(I +6) +Q(I + 2)

QI +5) + QI +3)QUI +4) + QT +4)Q(T +3) +
QI +5QT +2) + I +6)QUI + 1) + QT +7)

Q(I)

Q(I)Q(I + 8) + QI + 1)Q(JI + 7) + QI + 2)

QI +6) +Q(I +3)QI +5) +Q(I +4)QJ +4) +
Q(I +5)Q(J + 3) + Q(I +6)Q(J + 2) +

Q(I + 7)QI"+ 1) + Q(I + 8)Q(T)

Q(I + 1)Q(I +8) + Q(I +2)QUI +7) + Q(I + 3)
Q(J +6) + Q(I +4)Q(IJ +5) +Q(I +5)Q(J + 4) +
Q(I +6)Q(I + 3) + QI + 7)Q(J + 2) + Q(I + 8)
QI + 1)

Q(I + 2)Q(J +8) + QI +3)QUI + 7) + Q(I + 4)
QI +6) + Q(I +5)Q(J + 5) +Q(I +6)Q(J.+ 4) +

Q(I + 7)Q(JI + 3) + Q(I + 8)Q(J + 2)



T(K + 11) =

QU

QW

T(K + 12)

T(X + 13)

T(K + 14)

T(K + 15)

T(K + 16)

1

The Q(I)'s and Q(J)'s

(I
Q1
QI
Q(1
Q(J
Q1
QI
Q1
Q1

+ 3)QJ + 8) + Q1
+6) + Q(I + 6)Q(J
+ 8)Q(J + 3)
+4)Q(J + 8) + QI
+6) + Q(I + 7)Q(J
+ 5)Q(J + 8) + QI
+ 6) + Q(I + 8)Q(J
+ 6)Q(J + 8) + QI
+ 6)

+ 7)Q(J + 8) + Q(I

+ 8)Q(J + 8)

52

+ 4)QT +7) + Q(I + 5)

+.5) + Q(I + 7)Q(J + 4) +

+ 5)Q(J +7) + Q(I + 6)
+ 5) + Q(I + 8)Q(J + 4)
+6)QUI+7) + QT +7)
+ 5)

+ 7DQI + 7) +Q(I + 8)

+ 8)Q(T + 7)

are defined in Section A.S5.

A.7 Definition of the coefficients V(j) and W(j)

These are the coefficients of the polynomials (3.4.5) and (3.4.7).

Permute the following

V(18 - I)

W(18 - 1)

equation:

T(I) + T(I + 17) - 2T(I + 34) - T(I + 51) +

T(I + 68) + T(I + 85) - T(I + 102) (A.7.1)

T(I + 119) + T(I + 136) - 2T(I + 153) -

T(I + 170) + T(I + 187) + T(I + 204) -

T(I

+ 221)

(A.7.2)

with I = 1,2,3,....17, where the T(I)'s are defined in Section A.6.



APPENDIX B

GEOMETRICAL DEFINITION OF THE FLOATING
INSTANTANEOUS CENTERS OF VELOCITY
OF A GEARED FIVE-LINK

MECHANISM

A floating IC is the intersection point of two lines with equa-

tion of this form:

Y=mX+b (B.1.1)

where, m is the slope of the line and b is the x-intercept.

The point of intersection of two lines is at,

= =} B.1.2
X = m=m ( )
Y=mX+b (B.1.3)
where,
Ay - Ay

m =K1X -Kax

le - Bgx
b1 = Aly - H&Alx

by = By - mgB, x

and, (A x, Ajy), (A%, Agy), (B x, By), and (B x, Byy) are the XY
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coordinates of points A, , A;, B, , and By respectively. Therefore, to

find the floating IC, permute with equations (B.1.2) and (B.1.3), the

following:

Floating IC A, A, B, By
IC,, ICy, IC,, IC,s ICs
ICes IC,q IC,, ICaq ICza
ICys IC,, IC, s IC, , IC, ¢
IC,q IC,, IC,q IC,, IC,s

IC IC IC

where, IC ., IC ., 23> 1Cs4s IC,5 and IC,; are fixed IC, and were

defined in Section 5.2.
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