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CH.APT.Et,t,·1 

INTRODUCTION 

The response of nonlinear systems to stochastic inputs has been 

receiving an increa!ling amount of attention in recent years. This 

renewed interest has been primarily due to new applications in such 

diverse areas as communications and control theory, information 

theory, structural vibrations, acoustical noise, economic modeling, 

and operations research. Since the superposition principle does not 

apply for nonlinear system!;!, it is difficult, if not impossible, to 

obtain a closed-form solution for nonlinear systems. Gibson ( 1) and 

Cunningham (2) discussed several approximate techniques for finding 

response characteristics of deterministic nonlinear systems. How­

ever, nonlinear differential equations are much more difficult to 

solve when tp.ey are subjected to random excitations. The purpose of 

this research is to obtain response statistics for a particular class 

of nonlinear systems subjected to narrowband random excitations. 

Background 

A simple example of a nonlinear system is a pendulum with 

viscous damping under a constant driving torque. Common electrical 

1 
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systems c onsist of resistors, capacitors, and inductors, one of which 

may be nonlinear . In the design of servomechanisms the use of relay 

devices with hysteresis and deadband characteristics are very com­

m on sourc es of nonlinearity. Since these and many other such physical 

nonlinear systems are o f interest to engineers, several attempts have 

been made to solve the n onlinear differential equations describing s uch 

systems (2 , 3, 4). 

The stationary response of nonlinear osc illators having white 

noise inputs may be obtained by using the Fokker-Planck equation (5) . 

This approach was used by Chuang and Kazada (6), Ariaratnam (7 ), 

Lyon (8), Crandall (9) , and Caughey (10) . The solutions of partial dif­

ferential equations resulting from the Fokker-Planck equation have 

been o btain ed on ly in special cases . For example , Caughey (10) ob­

tain ed a sol ution for one case where the input was white Gaussian noise 

an d the n onlinearity involved only displac ement. As a result , many 

appr oximate analytic al techniques have emerged for systems wit h 

small n onlinearities (1, 2 , 4 , 11, 12 ). Various names which have been 

used to iden tify these techniques are perturbation methods, variational 

methods , and equivalent linearization. For stochastic systems, the 

statistical c ovarianc e te chnique of linear systems theory' may be use d 

to c alculate the m e a n squ are value of the equivalent linear system res­

ponse . The Mont e Carlo technique is a direct approach for simulatin g 

the re sponsf. statistic s of a stochastic system. A brief backgro und of 



these methods is presented in this chapter, and an anlytical treatment 

is given in Chapter II. 

Perturbation Method 

3 

The perturbation method provides an approximate solution as a 

power series with terms of the series involving a small system param­

eter raised to successively higher powers. The independent variable 

is expressed as a function of this series. Since the small parameter is 

associated with the nonlinearity, a few terms in the series may often 

provide a fairly accurate, but approximate, solution. Due to its origin, 

the perturbation method is sometimes referred to as the method of 

Poincare (11). Stokar (4) discussed the method and proof of conver­

gence and Cunningham (2) and Minor sky (12) provided a more rigorous 

treatmenL A modification, where several steps are reduced to a set 

of algebraic formulas, was shown by Pipes (13) and Cohn and Solzberg 

(14). This method has been extended to stochastic systems by 

Cr and all (15 ) , 

Variational Methods 

While the perturbation method is useful for those systems where 

the effect of the nonlinearity can be handled by adding correction terms 

to the linear solution, variational methods do not require such as sump­

tions. Variational methods are based in concept on formulating the 

equations of motion in the Lagrangian form, and a specific form of an 



4 

approxirnate solution is selected such that an integral of the residual is 

minimized. The residual is found by substituting the assumed solution 

into the differential equation. Then the parameters of the assumed 

solution are adjusted such that some specified property of the residual 

is minimized (16, 17). Some knowledge of the type of solution is needed 

to make an initial assumption of an approximate solution. While a 

physical insight into a given problem provides an educated initial guess, 

a more general method based on Hamilton's modified principle was 

suggested by Hagler, Kristiana, and Clark ( 18). 

An approach termed the Indirect Method developed by Zirkle ( 19) 

is an extension of deterministic variational methods to stochastic sys­

tems, Zirkle' s method requires that the assumed solution must be a 

determ.inistic function of time with parameters being random variables 

such that the required integration can be performed and the principle 

of virtual work can be used. The principle of virtual work states that 

the integral of virtual work for a given system for an arbitrary period 

of time must be equal to zero. Zirkle' s method requires that the joint 

probability density of the input must be known. The joint probability 

density of the output can then be calculated by a nonlinear transforma-

Equivalent Linearization 

For oscillatory solutions one of the most popular method for 

nonlinear analysis is that which was proposed by Krylov and 



Bogoliubov (20). One form of this method, called Equivalent Lineari­

zation, replaces the nonlinear term by an equivalent linear term sq.ch 

that the error introduced by linearization is minimized. This method 

has been extended to stochastic systems by Booten (21) and Caughey 

(22, 23). Once the equivalent linear system has been obtained, linear 

systems techniques, such as the statistical covariance technique, can 

be used to determine the statistics of interest. 

Statistical Covariance Technique 

5 

The statistical covariance technique is an approach for the calcu-

1 ation of the state covariance based on using a state variable 

formulation. It results from the propagation of the error covariance 

matrix in the Kalman filtering equations (24, 25). For Gaussian white 

noise inputs, this technique results in a deterministic differential 

equation which, when integrated, provides the mean square value of 

the solution both in the steady state and in the transient region. The 

statistical covariance technique is discussed in recent books in esti­

mation and control theory (26). In recent years, it has been 

successfully applied to many control, guidance, and estimation pro-

blems (27, 28). 

Monte Car lo Studies 

Until recent years Monte Carlo studies were limited to using ana­

log noise generating devices such as a gas tube in a magnetic field. 
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Bekey and Karplus (29) have pointed out that analog noise generators 

are approximate and that other available devices such a$ tables of ran­

dom numbers and digital pseudo random number generators yield 

better results. However, the disadvantage of using tables of random 

numbers (30) is that some kind of storage device is required, 

Chambers (31), Hull and Dobell (32), and Gelder (33) are among those 

who have developed on-line methods for generating pseudo random 

numbers by using mixed congruential and ;multiplicative recurrence 

formulas. Usually, uniform numbers are generated on the 1,11;1it 

interval (0, 1) and then transformed into another distribution by a non­

linear transformation. Box and Muller (34) derived the relationship 

for transforming a uniform sequence into a Gaussian sequence. For 

digital Monte Carlo studies it is also important to digitize the continu­

ous process smoothly. Rowland and Gupta (35) presented a simple 

approximate procedure for performing this digitization. 

A Nonlinear Phenomenon 

An oscillator with a cubic nonlinearity involving displacement 

only is known as Duffing' s equation in the theory of nonlinear systems. 

In the steady state response this equation can have three distinct values 

of amplitude. The jump phenomenon occurs when the system is excited 

by a pure tone of slowly varying frequency. The response of this sys­

tem when excited by white noise was studied by Lyon (8, 36, 3'7), 

Smith (38), and Caughey ( 10). Lyon and Smith concluded that the joint 



displacement velocity density is of the Boltzman type. They showed 

that for a white noise input, the jump-type response did not exist. 

Lyon (39) considered a narrowband Gaussian input and indicated that a 

jump in the mean square value of the system response can occur. 

Using the method of equivalent linearization, Lyon utilized the power 

spectral density approach to calculate the mean square value of the 

response for the resulting linearized system, 

7 

The presence of the jump phenomenon in nonlinear stochastic 

systems has received very little attention in the literature. The objec­

tive of this research is to study the jump phenomenon for a nonlinear 

stochastic system and to obtain various statistics of interest by several 

different methods. This chapter introduces the problem and discusses 

the broad goals of this research. A specific problem definition is 

stated in Chapter II. 

Response Properties of Interest 

Response properties of deterministic systems may be described 

in time and frequency domains. The statistical properties of the res­

ponse of stochastic systerns depend upon the paJ;"ticular criterion of 

interest. The basic proJ?erties of interest are expected (mean) value, 

variance, correlation, and power spectral density. The mean value is 

the static part of the response which is the average of all samples. 

The variance is the mean square value of the system response com­

puted around the mean value. Correlation describes the general 
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dependence of the response at one time on the response at some other 

time. The power spectral density indicates the frequency compo.sition 

of the response in terms of mean square value at a given frequency. A 

random process can be described completely in terms of its joint 

probability density with respect to the other properties of response. 

The joint probability density of linear constant coefficient systems sub­

jected to Gaussian white noise is well known (26, 40). Moreover, some 

analysis has been performed for non-Gaussian inputs (41, 42). The 

problem is more difficult for nonlinear systems even when the input is 

Gaussian. 

Research Objectives 

The dynamical systems considered in this research can be 

modeled by a nonlinear differential equation known as Duffing' s equa­

tion, The objective is to demonstrate the jump-type phenomenon in the 

system response when excited by Gaussian narrowband random noise. 

Also considered is the case where the input is white noise. 

~o peaks in the power spectral density of the system response 

subjected to narrowband random excitation are to be shown: one at the 

center frequency of the narrowband input and the other near the natural 

frequency of the linear part of the system. 

This research is also concerned with calculating various statis­

tics such as the mean value, mean square value, autocorrelation, 

power spectral density, and probability density. These statistics are 



to be calculated using equivalent linearization, the indirect method, 

and Monte Carlo simulation, 

Thesis Outline 

The thesis problem is formulated mathematically at the begin­

ning of Chapter Il, and the remainder of the chapter is devoted to a 

discussion of the analytical methods to be useq.. In Chapter III, the 

thesis problem is handled by analytical methods. Numerical results 

for all methods are presented in Chapter IV. Chapter V contains the 

conclusions of the thesis results and suggestions for future work. 

9 



CHAPTER II 

ANALYTICAL METHODS 

This chapter provides a statement of the problem and presents a 

detailed description of the analytical methods used to calculate the 

response statistics of interest . Among the analytical techniques dis -

c ussed are the method of equivalent linearization and the indire c t 

method. The statistical covariance technique is used along with 

equ ivalent linearization, and a description of the Monte Carlo tech-

nique is presented. Each of the methods is illustrated by a simple 

example. Finally, a short discussion is presented to compare the 

indirect method and the method of equivalent linearization. 

Problem Statement 

The systems considered in this research can be described by a 

nonlinear differential equation with a c ubic nonlinearity involving dis-

plac ement o n l y . The input to the system is Gaussian narrowband 

rando m noise, which is obtained by passing a Gaussian white noise 

signal through a second-order filter. Mathematically, the nonlinear 

system and linear pre - filter may be de sc;:ribed as 

.. . 
X(t) + 2 8 X(t) + w 2 X(t) = w 2 h(t) . c c 

(2 - la ) 

1 n 
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Y(t) + 2!;w Y(t) + w 2 (Y(t) + e Y3 (t)) = w 2 X(t) (2-lb) 
0 0 0 

where the linear pre-filter in (2 - la) has a center frequency w and 
c 

bandwiq.th 8, w is the natural frequency of the linear part of the sys­
o 

tern, I; is the damping of the system, and e is a constant scalar coeffi-

cient governing the influence of the nonlinearity. The pre-filter input 

is Gaussian white noise with zero mean and unity variance, The output 

of the pre-filter X(t) is a Gaussian narrowband signal. Because of the 

stationary input and the small nonlinearity, the system response Y(t) is 

assumed to be weakly stationary. 

It is desired to demonstrate the existence of the jump phenomenon 

in the mean square value of the system response and to calculate by 

various methods certain statistics of interest; such as the mean value, 

mean square value, autocorrelation, power spectral density, and the 

probability density function. 

Equivalent Linearization 

Equivalent linearization for stochastic systems was first derived 

and used by Booten (21) and Caughey (22) " Based on the assumption 

that the amplitude and phase of the system response both vary slowly, 

the method is especially useful for systems with oscillatory responses. 

This method can be illustrated by a second-order nonlinear system 

s ubjected to a white noise input. 
" 

X(t) + 2 SX(t) + w 2 (X(t ) + e f(X, X, t )) = w 2 h(t) 
0 0 

(2-2) 
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It is assumed that S and e are both sufficiently small such that the 

system is lightly damped and weakly nonlinear. The nonlinearity can 

be a function of velocity and displacement. The input h(t) is assumed to 

be stationary. The above system can be replaced by an equivalent sys-

tern as 

.. . . 
X(t) +2 S X(t) + w 2 X(t) + ew 2 e(X, X, t) = w:ah(t) 

eq eq o o 
(2-3) 

where S is the equivalent term for S, w is the equiv:alent linear 
eq eq 

stiffness, and e is the error term which can be described as 

e(X, X, t) = (S - S )X(t) + (w 2 - w 2 )X(t) + 
eq o eq 

w 2 e f(X, X, t) 
0 

(2-4) 

The selection of S and w 2 should be made such that the mean square 
eq eq 

value of the error is minimum. 

. . 
E[e 2 (X, X, t)} = E[((S - S )X + (w 2 - w 2 )X + 

eq o eq 

. 
w 2 e f(X, X, t)] 2 } (2-5) 

0 

The only parameters that can be adjusted are S and w 2 • To mini-
eq eq 

mize the mean square error, the first partial derivatives of E(e 2 ) with 

respect to S and w 2 should be equal to zero and the second partial 
eq eq 

derivatives should be greater than zero. Taking the first partial 

derivative yields 

and 

oE(e:a) = - E[2(S - S )X 2 + 2(w 2 - w:a )XX+ 
oSeq eq o eq 

. . 
2 e w 2 Xf(X, X, t)} 

0 



oE( e 2 ) 
;:iw2 ::; - E[2 (13 - 13 )XX + 2(w 2 - w 2 )X 3 + 

eq o eq 
eq 

2 e w 2X f(X, X, t)} 
0 

13 

(2-6) 

Setting (2-6) equal to zero and evaluating the resulting equations to find 

13eq and w 2 gives eq . . . 
e w 2 [E(Xf) E(X 2 ) - E(Xf) E(XX)} w2 ::; w2 + __ o ________________ _ 

eq o E(X: 2) E(X 2) - E 2(X2t) 

13 =13+ eq 

. . 
ew2 [E(Xf) E(X 2) - E(Xf) E(XX)} 

0 

E(X 2 ) E(X 2 ) - E~ (XX) 

Second partial derivatives may be expressed as 

oE{e2} = 2E{ x2} > o 
-'\ (w2 )2 

eq 

o2E[e2} 
0!3 w 2 

eq eq 
= 2E{XX} 

. 

(2- 7) 

(2-8) 

(2-9) 

For a stationary process, E{XX} is equal to zero in the steady-

state region (43). From (2-9) the matrix of the second partial 

' derivatives is positive definite. Substituting in (2-8) would result in 

. . 
ew2E{X f(X, X, t)} 

0 
13 =13+ eq 

w2 = w2 + 
eq o 

E[X 2 } 

e w2E [X f(X, X, t)} 
0 

E{X 2 } 

(2 -10) 

Using (2-10) and neglecting the error term the equivalent linear 

system results in the minimum error. The following example illus-

tr ates this method. 
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Example 

Consider an example of a cubic nonlinearity involving displace-

ment only, i.e. 

From (2-10) 

w2 = wa + 
eq o 

w 2 e E[X4 } 
0 

(2 -11) 

(2-12) 

If the input is Gaussian and if the error term in (2-3) is neglected, 

the response will be Ga,ussian. For a zero-mean Gaussian process the 

fourth mon1ent may be written in terms of the seco,nd moment (44) as 

E[X4 } = 3EfX 2 }2 

Substituting (2-13) into (2-12) 

w 2 =w 2 (1+3e(X 2 }) 
eq o · 

The above choice of w 2 results in a minimum error. By 
eq 

neglecting the error term in (2-3) 

.. . 
X(t) + 2 ~ X(t) + w 2 ( 1 t 3eE[X 2 } )X(t) = w:ah(t) 

0 0 

(2 -13) 

(2 -14) 

(2-15) 

Equation (2-15) is used to calculate the response statistics of the 

system. 

Statistical Covariance Technique 

The statistical covariance technique is an analytical method for 

calculating the variance of the system states. The main advantage of 

this method is that it transforms the set of stochastic differential 
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equations into a set of deterministic differe ntial equations. It has been 

shown in (45) that the computational effort is reduced considerably over 

Monte Carlo simulation and that a better acc u racy is obtained. Since 

the derivaticH1 of this technique is based on the assumption that the 

state transition matrix can be obtained, it is valid only for linear sys-

terns. Whenever it is possible to linearize a nonlinear system, this 

technique also provides a good approximation. A mathematical des-

cription is presented for linear systems, and the method is applied 

for an approximate analysis of nonlinear systems. 

Consider a state variable formulation of system equations as 

X(t) = AX(t) + B~(t) (2-16) 

where X is an n-dimensional state ve~tor, ~ is an m-dimensional input 

vecto r, A is an n by n coefficient matrix, and B is an n by m coeffi-

cient matrix. The prior statistics are assumed to be 

~ (t) 
w 

= E(~(t)) 

= E(X(t )) 
- 0 

T 
E [~ ( t) ~ ( 1" ) } = Q ( t) o ( t - T ) 

The general mathematical description of this technique is pre-

s ented in (26 ). A special case where the input w(t) is a white noise 

process is considered here. Taking expectations on both sides of 

(2-16) yields 

E(X(t)) = AE(X(t)) + BE(~(t)) 
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(2 -1 7) 

where u. is the expected value of X. x -
Define P(t) = E(1f(t) ~T (t)) and take the derivative of P(t), 

omitting the time argument$ for convenience, 

where the dot represents the derivative with respect to time. Substi-

tuting (2-16) into the above equation yields 

The solution of (2-16) can be written as 

t 

X(t) = 0(t 1 t ) X(t ) + J. 0 (t, 1') B(T) w(T) d(T) 
0 0 

t 
0 

(2 -18) 

where 0(t, t ) is a state transition matrix with 0(t , t ) = I. Substituting 
0 0 0 

X(t) into (2-18) and using the shifting property of the delta function .. the 

result would be 

BE(wXT) + E(XwT )BT = BQB T (2 - 19) 

Substituting (2-19) into (2-18) gives the statistical covariance matrix 

differential equations 

. T T 
P = AP + PA + BQB (2 - 2 0) 
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Due to the symmetry of the covariance matrix P, the number k 

of equations resulting from (2-10) can be calculated by 

k := n(n + 1) /2 (2 -21) 

where n is the order of the system, The resulting set of the equations 

is usually solved on a digital computer, 

The problem of interest in this thesis is the behavior of nonlinear 

systems subjected to random excitation. The statistical covariance 

technique is applied only if the nonlinear system can be linearized by 

some method, Several approaches may be used to linearize a nonlinear 

system, One approach is to linearize the nonlinear system along the 

nominal trajectory. The nominal trajectory may be obtained by inte-

grating the system equation with the excitation being the mean value of 

the input noise. Another approach is to use the method of equivalent 

linearization as discussed before. The second approach is used here. 

Example 

Consider the example of the previous section. From (2-15), an 

equivalent linear system can be written as 

.. . 
X(t) + 2 ~ X(t) + w 2 ( 1 + 3 e E(X 2) )X = w 2 h(t) 

0 0 
(2-22) 

The method of equivalent linearization linearizes the nonlinear 

equations based on the steady state region. So only the steady state 

solution of (2-22) should be considered. Equation (2~22) can be 

expressed in state variable form as 

X =AX+ Bh (2-23) 



where 

0 1 

-2 ~ 
and B = 

0 

w:a 
0 
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From (2-20) E(X/) can be calculated from the set of nonlinear differen-

tial equations 

(2 - 24) 

where E(X1;) = P 11 and Qh is the variance of the input. Equation (2-24) 

can be integrated on a digital computer with the initial conditions 

P 11 (t ) = P 12 (t ) = P 28 (t ) = O. These initial conditions are obtained 
0 0 0 

from the initial state of the system. 

Indirect Method 

The indirect method is an extension of deterministic variational 

methods to stochastic systems. This method requires that an initial 

assumed solution be an explicit function of time with parameters being 

random variables, Fol;" example, an assumed solution could be of the 

form 

X ( t) = X ( ~, a2 , •• , , a , t) 
q 

(2-25) 

where a1 , ~· • , , , a are random variables. For a particular deter­
q 

ministic value of these variables, X(t) is a deterministic process. 

Selection of parameters a1 , ~· •• , , should be made such that the 
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statistical properties of the assumed solution X(t) are approximately 

the same as the statistical properties of the system response. 

Mathematically, this method can be illustrated by assuming an 

approximate solution X(t) and performing an integration motivated by 

the principle of virtual work, as 

~ A I R.oX. dt = 0, 
1 1 

i = 1, 2, •.. , n (2-26) 

tl 

where R. is the ith residual calculated by substituting the assumed solu-
1 

tion into the system (2-2) and Xi, ... , X are generalized coordinates 
n 

of the Lagrangian form of the equations of motion. The residual may 

be defined as 

R.(t) = G.(Xi, .. , X , .. , :x: , al' ~· ... , a , h(t), t) (2-27) 
1 1 n n q 

It is difficult to select an explicit function of time for a random 

process. A detailed discussion is presented in (19) regarding the 

selection of the form of the approximate solution. Pugachev (46) des-

cribed a second-order random process X.(t) as an infinite series 

00 

(2-28) 

where Gk are uncorrelated random variables, and Xk(t) are known 

functions of time. The series expansion (2-28) is valid for virtually 

any second-order system. The difficulty encountered in this expansion 

is that functions Xk(t) are not arbitrary because the bi-orthogonality 
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condition must be satisfied. A special case of expansion (2-28) is 

Karhunen-Loeve's expansion (47) 

co 

X(t),..., I: A '±' (t) 
n n 

(2-29) 
n=l 

where T 1 is a period, and the random variables Ai are such that 

~ 
Ai= J X(t) '±' i(t) dt i = 1, 2, ... (2 - 30) 

tl 

The equation (2-29) will converge provided the functions '!' (t) are 
n 

orthogonal in the interval (-T 1/2 , T 1/2) 

= j 
(2-31') 

i # j 

A random process may be represented by a Fourier-type exponential 

series 

X(t),..., 
00 

I inwt 
A e dt 

n 
n=- oo 

(2-32) 

This series will converge to the random process X(t) provided the 

autocorrelation function of X(t) may be expanded in a double Fourier 

series. 

The residual term in (2-27) includes the input function h.(t), 
1 

Since the integral (2-26) must be performed it is useful if h.(t) is also 
1 

an explicit function of time and a function of random variables. Based 

on expansion (2-29), a Gaussian random process may be expressed as 
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h.(t) = µ,h (t) + t c .. 'Y .(t) 
1 . . l lJ J 

(2-33) 

i r= 

The process (2-33) can be approximated by finite terms as 

q 
h. (t) ~ µ,h (t) + I: c .. 'I' .(t) 

1 . . l lJ J 
i r= 

(2-34) 

The probability density of the coefficients C ... depends upon the type of 
.lJ, 

expansion. When the system input and the system output have the same 

type of expansion, the integral (2-26) will become 

and 

~ J·H.(a .. , b .. , 
l lJ lJ 0 • ' ' 

c .. , t) 
lJ 

oX. 
l C 6C .. dt = 0 a . . lJ 
lJ 

i = 1, 2, • , . , n and j = 1, 2, ... , m 

H . ( a .. , b .. , • . • , C .. , t) = G. ( X . , X , a 1 , ~ , h . ( t) , t) 
1 lJ lJ lJ 1 1 n 1 

(2-35) 

When the integral (2~35) is evaluated, it will result in a set of 

nonlinear algebraic equations. This set of nonlinear algebraic equa-

tions becomes a nonlinear transformation for calculating the joint 

probability density of the output from the joint probability density of 

the input. 

Example 

Consider (2-2) where h(t) is a zero-mean and unity-variance 

Gaussian white noise which can be expanded in a series as 

co 
h(t) ;:: ~ 

n=-= 

C einwt 
n 

(2-36) 
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where 

E(C C ) = 0 n -:fi m 
nm 

E(C ) = 0 
n 

>l: 
E(CC)=2nQ/T 

n n I 

is the variance of the white noise, 

Assl,\me an approximate solution of the form 

" inwt 
X(t) = !: B e 

N n 
(2-38) 

n 

where 

- (k-N) (k+N) 
I: =I: (' +I: (') 
N n=-(k+N) n=(k-N) 

n 

and select w = w /k where k is dependent upon the system bandwidth, 
0 

A short discussion on the selection of bandwidth is presented in 

Chapter IV. 

Applying the approximate solution to (2-2) with f(' - eX3 

k+jT 

J [ ~ (w~ 

kT Nn 

co 
. inwt inwt 

- n 2 w 2 + 1j3nw )B e · - w'il I: C e + 
n o. n 

n=-oo 

€ wli ~ I; ~ B B B e i(n+m+P)wt]· o B * e -iqwt dt 
oN N N nmP q 

n m P 

(2-39) 

where q = -(k-N), .•• , -(k+N); (k-N), ..• , (k+N). 

Evaluating the integral of (2-39) and neglecting the terms of 

higher order harmonics, one can obtain a set of algebraic equations 
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(w 2 - q 2 wi +il3qw) B + ew 2 I: ~ BB B 
o q o N N n m (q-n-m) 

n m 

= w 2 C (2-40) 
O q 

Provided the Jacobian 

clC -(k+N) ;:,C -(k+N) 

oB -(k+N) oB (ktN) 

!JI= 
. 

(2-41) 

c,C (k+N) oC (k+N) 

oB -(k+N) oB(k+N) 

does not vanish, the joint probability density of the B. 1 s can 'be obtained 
1 

in terms of the joint probability density of the C. 1 s by the relation 
1 

p (B ( )' ..• , B t) 
B -(k+N)'',' .,'B(k+N) - k+N (k+N, 

= !JI P c (C (k ), ... ,c( )) (2-42) 
rC -(k+N)' .•• , (k+N) - +N k+N 

From this joint probability density, various moments of interest can be 

calcuJated. 

Monte Carlo Simulation 

Two important aspects of Monte Carlo simulation are the genera-

tion of random numbers on the digital computer and ,the digital 

representation of a continuous random process. Chambers (31) pre-

sented a tutorial discussion on the generation of random numbers on 

the digital computer and concluded that multiplicative pseudo random 
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number generators are more economical and accurate. A basic form-

ula used to generate multiplicative pseudo random numbers is 

(Modulo M) (2-43) 

where scalar constants A and M are chosen such that the resulting 
a 

sequence of numbers have the desired statistical properties. Brown 

and Rowland (48) discussed some of the statistical requirements for 

choosing scalars A ·and M. Based on their suggestions A = 1366853 
a a 

and (for the IBM 360/mod 65) M == 231 are selected for (2-43 ). Basic 

operations required for the generation of a uniformly distributed 

sequence of random numbers is that the product of AaZk is divided by 

M and the remainder is normalized to a unit interval by a division by 

M. To start the sequence Z = 31571 is recommended by Rowland and 
0 

Holmes (45) to ensure the desired statistical properties of the sequence. 

A normally distributed sequence of pseudo random numbers is 

required to study the response properties of Gaussian processes on 

digital computers. Two methods are presented in the literature to 

transform uniformly distributed random numbers. First, a popular 

approach is based on the central limit theorem. This tra:qsformation 

can be written as 

y 
n 

12 

= S d [ I: Z . ] - 6 + AM 
i=l l 

(2-44) 

where S d is the required standard deviation. AM is the required mean, 

and Y is a normal random number. 
n 
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A second method, developed by Box and Muller (34), is a direct 

(and exact) transformation which requires two independent uniform 

random numbers and generates a pair of normally distributed random 

numbers with zero mean and unity variance. Mathematically this 

transformation can be presented as 

(2 -45) 

where Y and Y are two independent Gaussian random numbers and 
n1 !l.2 

Z1 and Za are .two unifor:rnly distributed random numbers. Due to its 

exactness and less computational effort, the second approach is :more 

desirable. 

Another important feature of Monte Carlo simulation is the digi-

tal representation of a continuous random process, When pseudo 

random numbers are held constant over some sampling period T, the 

corresponding autocorrelation will have a triangular shape (35), This 

triangular function must closely re pre sent the impulse function of con-

tinuous case. Keeping the power spectral density of the discrete 

process fairly constant at the frequency of interest, the following 

relation is derived in Appendix A 

Qc = 2Qd(l - cos (wT))/Tw 2 (2 -46) 

where Qc is the variance of the continuous process, Qd is the variance 

of the discrete process, w is the frequency of interest, and T is the 
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sampling interval. Equation (2-46) for w equal to zero can be written 

as 

Q =QT 
c d 

(2 -4 7) 

Notice that to obtain (2-47) from (2-46) L'hopital's rule is used twice, 

For Monte Carlo simulation, the relations shown in (2-43), (2-45) and 

(2 ~4 7) are very important. 

Example 

Consider a first-order system subjected to Gaussian white noise 

( 0, Q ) 
c 

X = -X + h 

From (2-20) or the statistical covariance technique 

P = -2P +Q (2-49) 
c c c 

where the subscript c denotes a continuous p.t;"ocess. The steady state 

solution of (2-49) obtained by setting P =O is 
c ' 

(2-50) 

Consider the discrete process 

-T -T 
Xd(k+l T) = e. Xd(kT) + (1 - e )wd (kT) (2-51) 

P d(k+l T) = (e -T )2 P d(kT) + (1 e -T )2 Qd (2 - 52) 

where the subscript d denotes a discrete process. For steady state 

P d(k+l T) = P d(kT) 

Pd(kT) = Pd(kT) (e~T) 2 + (1 - e-T)aQd 



-T 
1 - e 

-T Qd 
1 + e 

Since the objective here 1s Pd == P for steady state, 
c 

-T 
1 - e 

-T Qd 
1 + e 

Q 

2 
c 

Qc c::::i Qd T for small T 
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(2 - 53) 

(2 - 54) 

From (2-54) it is apparent that (2-4 7) is a good approximation of a 

continuous random process, 

Summary 

In this chapter a short discussion on each of the analytical 

methods used in this research has been presented. Due to inefficient 

numerical techniques and finite pseudo random numbers, an exact 

digital simulation is not possible. However, an acceptable accuracy 

may be obtained by the approach presented in this chapter. The 

method of equivalent linearization minimizes the error while lineari-

zing the nonlinear equation. The indirect method requires an assumed 

form for the response as an explicit function of time and provides a 

nonlinear transformation to calculate the response statistics from the 

input statistics. The statistical covariance technique is an exact 

method for linear systems, but when used with equivalent linearization 

for nonlinear systems it also provides only an approximate answer. 

A special formulation of the indirect method results in the method of 

Elquivalent linearization ( 19 ). 



CHAPTER III 

ANALYTICAL RESULTS 

A nonlinear system which is modeled by a nonlinear differential 

equation involving a cubic nonlinearity and excited by a narrowband 

random signal is treated in this chapter. In particular, the statistics 

of an approximate response are obtained by the analytical methods 

described in Chapter II. The total system may be considered as two 

separate cascaded parts, i.e., the pre-filter in (2-la) and the second­

order system de scribed by (2-1 b). A block diagram representation is 

given in Figure 1. The nonlinear system may be represented in a 

block diagram form as in Figure 2. 

A Physical System 

The circuit shown in Figure 3 may be modeled by the nonlinear 

differential equation of the form described in (2-1 b), The circuit 

equation may be written as 

~ + e R + e L ::: e sin (wt) ( 3 -1) 

where q is the instantaneous charge on the capacitor, C is the capaci­

tance, eR is the instantaneous voltage across the resistor, and eL is 

the instantaneous voltage across the inductor. Figure 4 represents 

7.R 
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the magnetization curve for an iron-core inductor. This curve is a 

relationship between the total instantaneous flux in the core and the 

instantaneous current in the coil. For a sinusoidal current, a hystere-

sis loop is obtained. If the amplitude of the cur rent is changed, the 

tips of the hysteresis loop will trace the magnetization curve. An 

approximate relation for the magnetization curve may be de scribed as 

N(i1L 
i --- + a (i13 

L J, L 
(3 -2) 

0 

where N is the number of turns on the coil-carrying current i, and L 
0 

and a are some positive constants. 
R, 

Since the rate of change of charge is equal to the current in the 

circuit, the instantaneous flux may be related to the charge as 

(3- 3) 

The instantaneous voltage across the resistor is proportional to the 

flux and the instantaneous voltage across the inductor is proportional 

to the rate of change of flux, i, e., 

(3-4) 

Differentiating the circuit equation (3-1) and substituting (3-2), (3-3) 

and (3-4) results in 

= e w cos wt 
u 

(3- 5) 
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Letting N~L = Y and substituting into (3-5) gives 

.. . 
Y(t) + 20tY(t) + w 2 (Y(t) + e:Y3 (t)) = e w cos wt 

O U 
(3-6) 

where o, = R/2N w a= 1 /L C, and e: = a L /N3 • Equation (3-6) is of 
' 0 0 £ 0 

the same form as (2-1 b). When the input is a narrowband signal rather 

than sinusoidal, the circuit describes the precise problem considered 

in this thesis. 

Equivalent Line arization 

An equivalent linear form for the cubic nonlinearity is derived in 

(2-14) of Chapter II as 

w 2 = w 2 (1 + 3e: cr ·2 ) 
eq o Y 

( 3- 7) 

where crY 2 is the mean square value of the system response. 

Since the input to the system is Gaussian and the nonlinearity is 

small, the system response may be considered to be approximately 

Gaussian. The probability density of the system response may be 

described (approximately) as 

1 

,J2 . -a 
TT CJ y 

1 ( ya) 
e-~ cr-·a 

y (3-8) 

The power spectral density of the equivalent linear system is 

= 
w4 w4 Q 

O C 

[(w2 -wa)a + (20'w)a} 
eq 

(3-9) 

where 01 = I; w . Using the Laplace Transform, the autocorrelation 
0 

function may be calculated as 
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kaY) sin yr} e-ST/4Sy(k12 + k/) + w 4 w 4 Q[(k .. 6 -
O C ,, 

-et T i k 4 et) cos f)T + (k.~et + k 4 6) sin 6T} e /4w 2 ot6(k .. + eq ., 

where 

= 4S y [(wa -w2) - 2(.0/2 -Sa)} 
eq c 

6 a = w2 - °' :a and y :a = w2 - S :a 
eq c 

(3-10) 

To evaluate (3-8), (3-9) and (3-10), it is necessary to compute· 

(3-7), which requires the mean square value of the system response. 

In the next section,·. the statistical covariance technique is applied to 

the equivalent linear sy$tem to calculate the mean square value of the 

system response in the steady state. Once cr 2 is·calculated, equa­
y 

tions (3-8), (3-9) and (3-10) may be easily evaluated on a digital 

computer. Figure 5 shows the probability density curves of the system 

response for different parameters, and Figures 6 and 7 show the power 

spectral density curves of the system response and autocorrelation 

curves of the system response, respectively, for different parameters. 
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In the next chapter, a comparison is made between these curves and 

Monte Carlo simulation results to show the error due to approxima-

tions. 

Statistical Covariance Technique 

Substituting (3-7) into (2-1) and expressing the resulting equation 

in a vector form yields 

X(t) = AX(t) + B h(t) (3-11) 

where X(t) is a four-dimensional state vector, h(t) is a scalar white 

noise input, and A and B are matrices given by 

0 1 0 0 0 

-wa -2S 0 0 1 
A= 

c 
B = 

0 0 0 1 0 

wa 0 -w2 -2Cc' 0 
0 eq 

Taking expectations on both sides of ( 3 - 11 ) gives 

µ. X = Aµ. X + BLL h (3-12) 

where LL h is the mean value of the input. The prior statistics are 

LL = 0 
h and LL X(O) 

u. = ALL x x 

= 0 

Since LLX(O) = 0, the solution of (3-13) is 

u = 0 x -

Thus, the mean value of the response is zero. 

(3-i3) 

(3-14) 
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The covariance matrix may be obtained from (2-20) as 

· T T 
P =AP+ PA + BQB (3-15) 

where Pis a four-by-four symmetric matrix. The evaluation of (3-15) 

results in ten simultaneous nonlinear differential equations. An alter-

nate computation involving the integral solution for P(t) in terms of the 

state translation matrix ~ (t-t ) is sometimes simpler for hand calcu­
o 

lations. This set of equations may be represented as 

plt:! =P2::;+P14 

p14 = Pa4 + wa P11 wra p - 20!P14 
0 eq 1::; 

Paa = -2waP1a - 2 ~Paa + w4 
c c 

(2 - 16) 

Pa.~ = -w~P1 .~ 2SPar.1+P24 

P24 ;:: -w 2 P - 2 ( C't + S) P2 4 + w.2 Pia wa p 
c 14 0 eq 2~ 

P.~s = 2P::; 4 

The integration of the equations in (3-16) on a digital computer gives 

the time solution shown in Figure 8. A fourth-order polynomial in 

w 2 re sµlts from t}:l.e steady state solution as 
eq 
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(3ew 6 w 2 S (O' + S)} w 8 + 3ew6 w 2 a w 6 + 
o c 1 eq o c eq 

4G- 8 = 0 (3-17) 

where sl = w 2 + 40' (o,, +s ). 
c 

The solution of polynomial (3-1 7) has either one or three real 

positive roots for w 2 • Thus, there exists either one or three mean 
eq 

square values of the syE1tem response. This corresponds to the deter-

ministic sinusotdal input to the system in (2-1 b) where there exists one 

or three values of the square of the output amplitude. Figure 9 shows 

a response of this nature where for certain range of parameters there 

exists three levels of er y 2 • In the next chapter it is shown that the only 

stable levels of cry 2 are the highest and lowest levels. 

In the next section, frequency domain approach is used for the 

equivalent linear system to show that the narrowband input is sufficient 

to produce a jump-type behavior in the mean square value of the sys-

tern response, Also considered is a case where the input is white 

noise and no jump-type behavior is predicted, 

Frequency Domain Approach 

In this section the frequency domain approach is used to calculate 

the mean square value of the equivalent linear system response in the 

steady state region. 
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White noise input. First, consider the case where the input is 

white noise. The power spectral density of the equivalent linear system 

would be 

Qw4 
0 =----------------[ ( j w + Q' ) 2 + 0 2 } [ ( - j w +0t ) 2 + 0 2 } 

(3-18) 

The mean square value of the system response may be calculated as 

(3-19) 

- 00 

From the set of formulas given in (49), the integral in (3-19) 

may be evaluated as 

(3-20) 

w he re s = 0, s 1 = Qw 4 , Q = 1 , r = 1 , r 1 = 2 oi , and r 2 = w 2 • 
o o o eq 

w4 
er ·:a = o 

Y 4Q'W 2 
(3-21) 

eq 

Substituting w 2 from (3-7) into (3-21) and rearranging, a second-order 
eq 

polynomial in cr ·2 results as 
y 

(cry· ·2)2 + _l_ GT 2 
3s Y 

Qwa 
0 

12 SQ' 
= 0 

The solution of this polynomial may be easily obtained as 

I 3s Qw 2 

-1+1\/1+ 0 

Ot 

6s 

(3-22) 

(3-23) 
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From (3-23) it is evident that there exists only one real positive value 

for crya, 

Narrowband input. Consider a narrowband random input. The 

power spectral density of the system response of the equivalent linear 

system would be 

(3-24) 

The mean square value of the system response may be obtained as 

shown in (3-19). Applying the exact integration formulas, crY 2 may be 

written as 

crY~ = 

(3-25) 

wheres = 0, s 1 = 0, s.., = 0, s~ = Qw4 w 4 , r = 1, r 1 = 2(0!+8), 
0 ,.., '" 0 C O ' 

r 4 = (ya+13 2 )(o- 2 +o 2 ). Substituting these values in (3-25) and simplifying, 

a fourth-order polynomial in w 2 results as 
eq 

R 1R 8 w 8 + R 8 (R2 -R1w:.) w 6 + R 8 (R~- Raw )w4 + 
eq o eq o eq 

R = etw 2 w 4 , and R 6 = 4/3e:w 2 • 
S C O O 

(3-26) 
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When the same set of system parameters are used for the polynomials 

(3-17) and (3-26), identical results were obtained. The results of one 

such set of parameters is presented in Figure 9, 

From (3-26), it is apparent that a narrowband input to the non-

linear system (2-lb) is sufficient to provide multiple values of the 

mean square value of the, system response in the steady state, On the 

other hand, as shown in (3-23), a y:.,hite noise input does not provide 

multiple values of the mean square value of the system response, 

The Indirect Method 

The problem of interest is composed of two parts as discussed in 

the beginning of this chapter, First, consider the pre-filter. The res-

ponse of the pre-filter is a narrowband Gaussian noise. An 

approximate solution for the narrowband noise may be considered to be 

a series of the form 

X(t) = !: 
N 

n 

B einwt 
n 

(3-27) 

where B are uncorrelated random variables. A series approximation 
n 

of white noise 1s suggested by Zirkle ( 19) as 

n=oo 
h(t) = t 

n=-oo 

inwt 
C e 

n 
(3-28) 
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where the statistics of the coefficients were presented in Chapter II. 

From (2-40), the following two simultaneous linear algebraic equations 

may be obtained as 

n 2 n 
wc2 (1 - k"' ) c + 21; w 2 - d. = w 2 a 

"' n c ck n c n 
(3-29) 

where C = a - i b , C = a +i b , B = c - id $ and B - c +id 
n n n -n n n n n n -n ·- n n' 

w = kw, and w is the fundamental firequency. From (3-29) 
c 

c 2 + d 2 = 
n n w4 

c 
n 2 n 

(l--)2 + (21; w2-)2 
k 2 c ck 

(3- 30) 

The joint probability density of c and d may be obtained from the 
n n 

joint probability density of a and b as 
n n 

Pc ,d 
n n 

a2 

= _ _..!_J,_!_ e -(o ~ 
ZTI a o a 

a b n 
n n 

where J 1 is the Jacobian of (3-29). 

b2 

+ _!!__) 
cr2 

b 
n 

(3-31) 

Since the input white noise is a Gaussian process, the random 

variables C are also Gaussian, The series representation of (3-28) 
n 

• may be expressed as 

co 
h(t) = I: 2 ( a cos (nwt) + b sin (nwt)} 

n n 
(3-32) 

n=-co 

Taking the expectations on both sides of (3-32) results in 

co 
0 = !; 2E(a ) cos (nwt) + 2E (b ) sin (nwt) 

n n 
(3-33) 

n:=:-co 
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Since the white noise is weakly stationary, the statistics of a and b 
n n 

are independent of time. It may be easily shown that 

E(a ) = E(b ) = 0 
n n 

(3-34) 

Taking expectations on both sides of (3-29) and using (3-34), it may 

also be shown that 

E(c ) = E(d ) = 0 
n n 

Now consider the mean square value of white noise as 

n=oo m=oo 
E(h(t)h(t)} = E[~ r; 4(a cos (nwt) + 

n 
n=-oo m=-oo 

(3-35) 

b sin (nwt))(a cos (mwt)+b sin (mwt)) 
n m m 

(3-36) 

Using the basic properties of white noise as described by (2-37), (3-36) 

becomes 

n=oo 
E (h 2 (t)} = !: 4E [ a 2 cos 2 (nwt) + b 2 sin2 (nwt) + 

n n 

n=oo 
where E [h2 (t)} = I: 

n=-oo 

n=-oo 

2a b sin (nwt) cos (nwt}} 
n n 

Q-co' 

(3-37) 

Since the white noise is a stationary process, the mean square 

value is independent of time and 

E[a2 } = E[b 2 } =. 25Q 
n n 

(3-38) 

From (3-37) and (3-38), it may be easily shown that E(a b ) = 0. 
n n 

From the similar arguments for the narrowband random signal 

(3-39) 
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The autocorrelation of X(t) is 

E(X(t) X(t+T)} = 4EE[ [c cos (nwt) + 
n 

d sin (nwt) }[ c cos (nw(t+T) )+ d sin (nw(t+,- )) } 
n n n 

From (3-39) and (3-40), the autocorrelation is 

R(t+T) = 4!:;E(c~) cos (nw,-) 
n 

R(O) = 4E(c 2 ) 
n 

The power spectral density is 

n=oo 
= !:: Q 

n=-oo 
n 2 n w4(1--)2 + (21=' wa -)a 

c k 2 -;,c c k 

(3-40) 

(3-41) 

(3-42) 

(3-43) 

The response obtained from (3-43) is an exact power spectral density 

at the discrete points. This shows that for a linear system the indirect 

method would provide the exact power spectral density as presented in 

Figure 10, In the ne:xit chapter it is shown that the proper selection of 

the fundamental frequency would provide the exact mean square value 

of the linear system. 

One term solution. The second part of the problem is the non-

linear system equation. For the response of the system subjected to 

the narrowband random noise excitation, an approximate solution of 

the form 

Y(t) = ~ D einwt 
Nn n 

(3-44) 
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may be assumed. From (2-40) the set of nonlinear algebraic equations 

may be written as 

(3-45) 

where D = e -if and D = e tif . The joint probability density of 
n n n -n n n 

e and f may be obtained from the joint probability density of c and 
n n n 

d as 
n 

c2 

(cr ~ 
c 

n 

where J2 is the Jacobian of (3-45 ), i.e., 

1 n 2 n n 
J = - [[w2 (1--) t 4~w 2 -} 2 t (2~w 2 -) 2 -

2 w 4 o k 8 o k o k 
0 

(3-46) 

(3-47) 

Considering a one-term expansion of (3-44), the mean square value- of 

the system response is approximately 

"' 
E[Y 2 (t)} = 2E[e~} t 2E[f~} t 2[E[e~} - E(f:}] cos (2nwt) + 

4E[ ~ f } sin (2nwt) 
nn 

(3-48} 

The autocorrelation of the system response is 

R (t, T) = 2E[e 2 tf2 } cos (nwT) t 2 E[e 2 -f2 } cos nw(2 ttT) t 
r n n n n 

4f e sin nw(2ttT) 
n n 

Substituting T -- 0 in (3-49) results in (3-48). 

(3-49) 
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For a small nonlinearity and the type of input considered, the 

response may be assumed to be approximately stationary. Therefore, 

the mean square value of the response and the autocorrelation yield 

A 

EfY 8 } = 2E[e 8 + f 8 } 
- n n 

(3-50) 

R (T) = 2E[e 8 + f 2 } cos (nw-r) 
r n n 

(3-51) 

The power spectral density of the response may not be expressed as in 

the case of (3-43) due to the fact that superposition is not applicable to 

nonlinear systems. The selection of the fundamental frequency is very 

important for the one-term solution. This selection is discussed in 

detail in the next chapter with some numerical results. 

Discussion of the Two-Term Solution 

for the Indirect Method 

Equation (3-44) is the assumed solution for the system response 

and (3-45) is the set of resulting algebraic equations for one term in 

the series. When more than one term in the series is considered, a 

complicated set of algebraic equations results. Two terms, one at the 

system frequency and the other at the center frequency of the pre-filter, 

in the series were considered to derive the set of resulting algebraic 

equations. A set of four simultaneous nonlinear algebraic equations 

were obtained and a computer program was written to evaluate these 

equations. It was quite difficult to select the fundamental frequency 

for the evt3-luation of the probability density and the required moments. 
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Even for a simple solution, a considerable amount of computer time 

was required, and the resulting accuracy was not better than the one-

term solution, One major problem involved in the integration proce-

dure was to select the proper step size so that a reasonable 

computational effort would provide an acceptable accuracyo Due to 

such difficulties, more than one term in the series was considered 

impractical from the computational point of view. A further research 

effort may be concentrated on the integration procedures for such non-

linear integrals and methods for reducing the computational time. It is 

also recommended that when two or more terms are used in the expan-

sion, the fundamental frequency should be the function of each of the 

frequencies in the expansion. 

Summary 

Analytical results for the thesis problem have been presented m 

this chapter. First, an example of a physical system modeled by 

Duffing's equation was given. The method of equivalent linearization 

was used to linearize the nonlinear equation and then the statistical 

covariance technique was used to obtain the steady state response. A 

fourth-order polynomial in w 2 was obtained by solving the ten simul-, eq 

taneous nonlinear covariance equations. The same form of polynomial 

in w 2 was obtained by using frequency domain approach. The indirect 
eq 

method was applied to the problem for the one-term solution and a dis-

cuss ion on the two-term solution was also presented. 



CHAPTER IV 

NUMERICAL RESULTS FROM DIGIT AL 

SIMULATIONS 

This chapter presents numerical results obtained by using the 

various methods on the system (2-1) discussed in Chapter IL Results 

are presented in different sections describing the several important 

considerations of the Monte Carlo Simulation, jump phenomenon, com­

parisons of mean square values obtained from different methods, a 

discussion on the selection of the fundamental frequency for the indirect 

method, existence of two peaks in the power -spectral density of the 

system response, and the effect of nonlinearity on the mean square 

value of the system response, 

Monte Car lo Simulation 

Extensive digital simulations were performed by using the Monte 

Carlo method discussed in Chapter IL Before applying this method to 

the nonlinear system considered in this thesis, several important con­

siderations for digital simulation, such as the discretization procedure, 

pseudo random number generation, the integration step size, the 

method of integration, and the required number of the samples, were 

52 
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investigated by examining a corresponding linear system. Since the 

exact solution of a linear system could be calculated, the accuracy of 

the Monte Carlo method was determined with regard to the given con-

siderations. 

Discretization Procedure 

In the latter part of Chapter II, the discretization procedure for 

simulati.on of white noise was outlined in some detail. The spectral 

density (2-46) is a decaying periodic curve where the period is equal 

to 2rr/T, where T ~s the step size. Figure 11 shows this relation and 

the change in period for different step sizes is indicated, For narrow-

band noise, only the frequencies near the center frequency of the 

narrowband are of interest, so w = w was selected to obtain a flat 
c 

spectrum of the discrete white noise near w . Therefore, the magni­
c 

tude of the spectral density of the simulated white noise near the center 

frequency of narrowband would be equal to the magnitude of the power 

spectrum of the continuous white noise. 

Pseudo Random Number Generation 

Multiplicative pseudo random number generators were discussed 

in Chapter IL Two generators (Modulo 2 20 with A ::: 19971 and Modulo 
a 

2:11 with A = 1366853) were tested. Results of both generators are 
a 

presented in Figure 12. Slightly better results for the mean square 
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value of the system response were obtained by using the second 

generator on the IBM 360/65. 

Time Average 
I 

The term "time average" is frequently used in this chapter. 

When one long sample time history is considered for calculating vari-

ous statistics of interest by the Monte Carlo method, it is referred to 

as a time average in this thesis. It is assumed that the system res-

ponse is ergodic in the mean. To calculate the steady state statistics, 

the first 600 time steps were considered as the transient region, where 

the step size is T = (1/5) w , 
c 

and the transient region is deleted in 

calculating the steady state statistics. The mean square value of the 

system response for different number of steps is shown in Figure 13. 

These results suggest that after 20, 000 samples the mean square value 

varies within a small bound of less than five percent around the exact 

mean square value. More samples require additional computer time 

especially for autocorrelation and power spectral density calculations. 

In these situations, there is a trade-off between the accuracy desired 

and the computer time. Table I shows that 27, 000 samples provide 

satisfactory accuracy. 

Ensemble Average 

To obtain the ensemble average, a number of sample functions of 

the system response were considered. The mean and the mean square 
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TABLE I 

TIME AVERAGE FOR STEP SIZE CONSIDERATION 

Noo of Pre-filter System 
Samples 

w s w s T 
Exact Digital Digital 0 c c Exact 

87000 50 . 2 100 0 05 . 002 500 501,03 154.16 154.1 

87000 50 .2 75 • 05 . 002 375 363.31 337.54 331. 7 

87000 50 . 2 75 . 05 . 00266 375 379.32 337.54 335.9 

27000 50 . 2 50 0 05 . 004 250 248.82 1300. 1302. 

27000 50 . 15 25 . 05 . 008 125 124.41 218.38 217.7 

45600 50 • 15 5 • 05 . 04 25 25.05 25.49 25.54 

27000 5 . 01 20 . 01 . 01 500 524. 2 

27000 5 . 01 20 • 01 . 002 500 376.6 

27000 200 • 15 5 0 05 . 04 no divergence 
solution 

The above suggests that the T = 1 /(5 w ) provides acceptable accuracy. 
c 

U1 
00 
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values were calculated at every point in time. Figure 14 shows the 

results of ensemble averages for the filter response obtained by using 

25 and 100 sample functions. In the steady state region the mean 

square value varies around the exact mean square value" As the num-

ber of sample functions increases, the envelope of the peaks of this 

variation approaches the exact result. To decrease the computational 

time, only a few sample functions were considered and then a time 

average of the mean square values (obtained from the ensemble 

average) in the steady state region was calculated to obtain a single 

value. Figure 15 shows the result of this procedure for a linear sys-

tern" This result suggests that 25 sample functions in the ensemble 

provide a reasonable accuracy. 

Integration Step Size 

For deterministic systems a rule-of-thumb is to select the step 

size as one-tenth of the reciprocal of the highest frequency in the sys-

tern, It was observed that for the type of system considered in this 

the sis a different step size criterion provided a somewhat better result. 

The step size was selected as 

T = 1 /5 w 
c 

(4-1) 

where w is in rad/sec. Figure 16 presents the results of ensemble 
c 

averages for the diffe1rent step sizes. Total percentage error in the 

mean square value was calculated by adding the percentage error in the 

narrowband response and the percentage error in the system response, 



Q) 
::, 

....... 
n:I 
> 

Q) 
1-4 
n:I 
~ 
O" 

CJ) 

i::: 
~ 
Q) 

~ 

800 

600 

400 

200 

100 .Sample Functions 

~r, 
l \ 

25 Sample Functions 

o---~~~--t--~~~--~~~~--~~~~--~~~~--~~~---,....,._~~~--~ 
0 • 2 .4 • 6 • 8 1. 1. i 1. 4 

Time in Secontls 

Figure 14. Ensemble Average for 25 and 100 Sample Functions 

O' 
0 



(I.) 
::::, 

,-j 

155 

"' > 150 
(I.) ,.. 
"' :::l 
C" 

Vl 

i:: 
~ 145 

~ 

/ 
Exact Solution 

o,__--~----~~--------------1---------...----~----~-----. 
0 50 100 150 200 250 300 

Number of Sample Functions 

Figure 15. Mean Square Value of the System Response versus Number 
of Sample Functions 

O' 
...... 



lot 
0 
lot 
lot 

4. ~ 
Q.) 
b.O 
Ill 
~ 

S::· 
Q) 
u 
lot 
(I) 

2. P-4 
,-t 

"' ~ 0 
[,-1 

0 
0 • 001 

l?ara.meters 

w = 50 
0 

~ = • z 

• 002, 

Step Size 

w = 100 
c 

t = • 05 
c 

• 003 

Fisure 16. Tota.l l?ercentage Er.\"or in 
Mean Square Value versus 
Step Size 

62 



63 

Ensemble average was used to calculate the error, Six examples were 

considered by selecting the step size from ( 4-1 ). The results presented 

in Table I show that when Tis selected from (4-1) a satisfactory accu-

racy was obtained in each example. When the system frequency is 

considerably higher than the center frequency of the pre-filter, w in 
c 

(4-1) should be replaced by w. Figures 17a and 17b present the 
0 

results for different ste:p sizes for the given number of sample func-

tions in an ensemble. These results show that the step size suggested 

by (4-1) provides an acceptable accuracy. 

Method of Integration 

Runge-Kutta methods of integration were considered and results 

of second-order Runge-Kutta (RK-2) and fourth-order' Runge-Kutta 

(RK-4) were compared as shown in Figures l Sa and 1 Sb. These are 

time average results using the same step size, A better accuracy for 

the system response is obtained by the second-order Runge -Kutta 

method whE:lreas the fourth-order Runge -Kutta-method provitles a better 

accuracy for the filter response. Due to the lower computational time 

requirements without a significant loss in accuracy, the second-order 

Runge-Kutta method was selected. 

Summary 

In this section several important aspects of digital simulation 

were considered. Equation (2-46) provides a discretization procedure 
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and the pseudo random number generator, Modulo 231 with A =1366853, 
a 

provides a sequence of pseudo random numbers which yields an accep-

table accuracy for the mean square value of the system response. The 

second-order Runge-Kutta method of integration with the step size 

selected from (4-1) is suggested for integration purposes. Satisfactory 

accuracy was obtained for 2 7, 000 points for time averaging and 25 

sample functions, with each sample function having 800 time steps, 

for ensemble averaging. 

Jump Phenomenon 

The response characteristics of nonlinear systems can exhibit 

an unusual behavior. For example, the type of nonlinear system con-

sidered in this thesis provides multiple values for the system response 

amplitude as shown in Figure 19. Equations (3-17) and (3-26) are 

polynomials in the mean square value of the system response. The 

curve indicated by the broken line in Figure 19 is obtained from the 

solution of (3-26). Both of these curves have the same type of shape 

but the peaks have different heights and the multiple values occur in 

different frequency ranges. The input frequency for the deterministic 

system with sinusoidal input is the frequency of the sinusoidal signal, 

whereas for the narrowband input the input frequency is the center fre-

quency of the narrowband signal. The difference in these curves is 

due to the input amplitude for the sinusoidal input being fixed, while 
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the mean square value of the narrowband is dependent upon the center 

frequency of the narrowband. 

It is shown in Chapter III that the narrowband type of random 

input to (2-lb) would provide multiple values of the mean square value 

of the system response. For the same set of parameters and for dif­

ferent nonlinearities, the shape of the mean square value of the system: 

response curve changes as shown in Figure 20. This is the same type 

of behavior as that exhibited by the deterministic system. Figure 20 

shows that increasing the nonlinearity increases the peak frequency. 

If the system damping is decreased the multiple values of the mean 

square of the system response occur at higher input frequencies and 

the peak increases in amplitude· and becomes sharper as shown in 

Figure 21. A similar behavior has been shown for deterministic sys-

tems (2). 

Stable Response 

Although a physical system ca.n yield only one value at a time, 

Figures 19, 20 and 21 sh~w that there exists three possible values of 

the response in the steady state region. The middle value of these 

thr.ee is unstable. Whether the response will assurhe the upper value 

or the lower value depends upon the history of the system. When the 

system moves into the jump region from the low frequency range, the 

system will assume the upper value of the response. On the other 

hand, when the system moves into the jump region from the high 
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frequency range, the system will assume the lower value of the res­

ponse. This situation was simulated on the digital computer using both 

a sinusoidal input and a narrowband random input. In the random case 

the method of equivalent linearization and the Monte Carlo method were 

utilized. Figure 22 shows the response of the system when the input is 

sinusoidal. The solid line is an approximate solution from (B-5) which 

has three values of the response amplitude. The broken line is the 

result obtained from direct digital integration. For the integr~tion 

method the input frequency was first increased and the steady state 

response followed the upper curve as indicated. When the input fre­

quency was decreased from the higher input frequency, the response 

followed the lower curve as indicated. The integration performed on 

the digital computer produced transient as well as steady state res­

ponses but only the steady state responses were considered. 

The statistical covariance technique was used to calculate the 

mean square value of the response in the steady state region for the 

narrowband input. The procedures outlined in the previous paragraph 

were used to obtain the result in Figure 23. When the center frequency 

of the narrowband input was increased the response followed the upper 

curve. Furthermore, when the center frequency of the narrowband 

input was decreased, the response followed the lower curve. 

Monte Carlo simulation results as presented in Figure 24 show 

different results. The system response in all simulation runs, tended 

to follow the lower curve regardless of whether the center frequency 
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was increasing or decreasing. One possible explanation is that the 

response at any point in time depended upon the particular random 

numbers being used to simulate the input and the previous point in 

time as required in the digital integrati.on, Therefore, the response 

might be fluctuating between upper and lower values and the resulting 

value obtained would be between the two extreme values, Figure 24 

tends to support this explanation, Another possible reason is that 

many frequencies are present in the random numbers being generated, 

When the resulting random sequence is filtered by a narrowband filter 

the effect of other frequencies is small but still present, A more 

detailed study would be required to investigate this behavior. 

Comparison Between Different Methods 

Four examples with different parameters were considered to 

compare the results obtained by Monte Carlo simulation, the method of 

equivalent linearization, and the indirect method. The mean square 

value of the system response was the criterion used to compare the 

accuracy. Monte Carlo simulation (time average) was the basis of 

comparison, since the results from simulating the linear system in 

(2-lb) differed from the exact solution by only approximately L 5 per­

cent, It was assumed that an error of approximately the same 

magnitude would result in the nonlinear case. 

The results of these four examples are presented in Table IL 

These results indicate that the indriect method was more accurate than 



TABLE II 

MEAN SQUARE VALVES OF THE SYSTEM RESPONSE BY DIFFERENT METHODS 

Example Monte Carlo Equivalent ~% Error Indirect ~% Error Fundamental 
Number Simulation Linearization Method Frequency 

l 35.38 25.70 27.4 36.77 3.0 5.0 

2 227.67 175.09 23.0 217.20 4.0 3. 75 

3 68. 58 56.06 18. 5 72.4 5. O 5. 0 

4 lo. 5 8.41 20.0 lo. 0 5.0 5.0 

Parameters 

Example 
w s w sc e 

Number 0 c 

t 50 0 2 100 . 05 . l 

2 50 . 2 75 . 05 0 005 

3 50 . l 50 . l . 01 

4 50 O l 25 . 2 . 05 
-.J 
00 
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the method of equivalent linearization for all four examples. The 

indirect method gave about five percent error, while the equivalent 

linearization yielded about twenty percent error. The primary sources 

of error in the equivalE:mt linearization were the assumptions that the 

output signal was Gaussian and that the error term (2-4) could be 

neglected. The error in the indirect method was due to neglecting 

higher order harmonics due to the use of only one term in the series 

expansion, The choice of the fundamental frequency was also a factor 

contributing to the total error, The procedure used to select the fun­

damental frequency is described in the next section, 

Figures 25, 26, 27, and 28 show the probability density of the 

response obtained by Monte Carlo simulation, indirect method, and by 

the method of equivalent linearization, The solid 1 ine in each of these 

figures is the probability density of a Gaussian process with mean and 

mean square values obtained by Monte Carlo simulation. The dots 

obtained by Monte Carlo simulation indicate that the probability density 

is not Gaussian, It should by recognized that error is inherent in the 

dotte.d curve because only a finite amount of data was used. The 

probability density curve obtained by equivalent linearization is above 

the solid line near the mean value because the mean square value of the 

system response is always lower than the Monte Carlo simulation. 

Probability density of the system response by indirect method 

was calculated as a function of time and then averaged over one period 

to obtain an estimate of the probability density of Y. These densities 
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are shown in Figures 25, 26, 27, and 28. These density functions are 

somewhere between the density function by the method of equivalent 

linearization and Monte Carlo simulation and tend to be flat at Y = 0 

as in the Monte Carlo simulation. 

Figures 29, 30, 31, and 32 show the power spectral density of 

each example. The power spectral density curves obtained by Monte 

Carlo simulation were generally higher than the ones obtained by 

equivalent linearization. This effect resulted from approximations in 

the use of equivalent linearization which also explains why the mean 

square value of the system response was lower than that for the Monte 

Carlo simulation. The power spectrum by simulation was not as 

smooth as expected, which might be due to three possible reasons. 

Fir st, only a finite number of autocorrelation points was used. 

Secondly, a finite number of points was used to calculate these auto­

correlation points. Finally, the procedure used for smoothing the 

power spectral density, i.e., Tucky's window, is not exact. 

Figures 33, 34, 35, and 36 show the autocorrelation function for 

these examples. The autocorrelation function by equivalent lineari­

zation was lower and the envelope died out faster than the 

autocorrelation function by simulation, 

The autocorrelation and the power spectral density by indirect 

method were not calculated, because (3-51) is not a true representa­

tion of the autocorrelation function since ( 3- 51) is not a decaying 

periodic function. Thus, a one-term expansion of (3-44) provides a 
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good measure for the mean square value of the response but fails to 

give the correct autocorrelation function and, hence, the power spec-

tral density. 

Selection of the Fundamental Frequency 

for the Indirect Method 

The one-term expansion of (3-44) may be written as 

Y(t) = 
inwt -inwt 

D e + D e 
n -n 

( 4-2) 

where w is the fundamental frequency. The choice of w is very impor-

tant in the one-term expansion since the mean square value of the 

system response, calculated by means of (4-2), is dependent upon the 

fundamental frequency. Tfible III presents the mean square value of 

the response of a linear system by the indirect method for several 

parameters and fundamental frequencies. When the input to the system 

is white noise, the recommended fundamental frequency is half the 

b.andwidth of the system. When the input is a narrowband signal, the 

fundamental frequency depends upon the form of the power spectral 

density curve of the system response. If the power spectral density 

has two peaks, then the fundamental frequency should be the average of 

half of the system bandwidth and half of the input bandwidth. The first 

three lines in Table III show this averaging effect where half of the 

system bandwidth is 10 rad/ sec. and half of the input bandwidth is 5 

rad/ sec. The selection of fundamental frequency as 5 or 10 rad/ sec. 
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results in an error of 30%, whereas selecting the fundamental fre­

quency as 7. 5 rad/sec. results in an exact answer. If there is only 

one dominant peak in the power spectral density curve, then the selec­

tion of the fundamental frequency should be based on that frequency 

corresponding to the dominating peak. If the peak is due to a narrow­

band noise, the fundamental frequency should be equal to half of the 

bandwidth of the narrowband signal. If the peak is due to the system 

.tesponse characteristic then the fundamental frequency should be equal 

to half of the bandwidth of the system. The four examples in the pre -

vious section illustrate the selection of the fundamental frequency 

based on the dominant peak in the power spectral density curve of the 

system response. From Figures 29, 30, 31, and 32, the fundamental 

frequency in the first, third, and fourth examples was selected as 5 

rad/sec. and in the second examples as 3. 75 rad/sec. 

Two Peaks in the Power Spectral 

Density of the System Response 

The power spectral density of the system response subjected to a 

narrowband random input can have two peaks as shown in. Figure 6 of 

Chapter III. That figure presented results for both a linear system 

and a nonlinear system. For the linear system the parameters were 

adjusted such that the two peaks would be approximately the same 

height would result. The same parameters for the nonlinear system 

had two peaks but the peak at the center frequency of the narrowband 
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was higher than the other peak due to the system characteristics, The 

highest peak was at w ::: 50 rad/sec. for the linear system, but was 

shifted to 145 rad/sec. for the nonlinear system. From these res­

ponses, one may select a set of parameters that will have two peaks 

of about the same beight for a nonlinear system, as shown in Figure 

Effect of the Nonlinearity 

The effect of the nonlinearity was considered for three different 

sets of parameters. When the nonlinearity was increased the mean 

square value of the system response decreased monotonically, This 

effect is shown in Figures 38 and 39, An unexpected result was 

obtained for that set of parameters for which the center frequency was 

twice the natural frequency of the linear part of the system. In that 

case, as shown in Figure 40, when the nonlinearity was very small 

the mean square value jumped up and then decreased exponentially. A 

satisfactory explanation for this behavior has not been obtained, and 

further investigation is recommended in Chapter V. 

Summary 

A detailed Monte Carlo simulation was performed to validate 

various considerations such as the discretization procedure, pseudo 

random number generation, step size considerations, and the method 

of integration. A comparison between the different methods has been 
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provided with a discussion of the reasons fbr errors in the approxi­

mations, Results showing the jump phenomenon have also been 

provided. An unexpected result with a small nonlinearity was obtained 

and two peaks of about the same height in the power spectral density of 

the system response are obtained, A criteria for choosing the funda­

mental frequency for the indirect method is discussed. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Various statistics of the response of the nonlinear system 

modeled by the Duffing' s equation (2-1 b) subjected to narrow band 

Gaussian noise have been obtained by the method of equivalent lineari­

zation, the indirect method, and Monte Carlo simulation, 

Monte Carlo simulation for the corresponding linear system has 

prdvided an accuracy of 1. 5 percent for the mean square value of the 

system response, When the response statistics of the nonlinear sys­

tem were compared with Monte Carlo simulation, the method of 

equivalent linearization resulted in about 20 percent error and the 

indirect method resulted in about 5 percent error. Neglecting the 

error term in the linearization procedure was the main source of error. 

The error in the indirect method was due to neglecting the higher­

order harmonics and in particular the use of only one term in the 

series of the assumed solution. Errors in the Monte Carlo simulation 

resulted from the use of only a finite number of samples in the simu­

lations, 

102 



103 

The existence of the jump phenomenon for a narrowband random 

input was demonstrated. The mean square value of the system res­

ponse showed the same jump-type characteristics as that for 

deterministic systems. It was also shown by the method of equivalent 

linearization that the white noise input does not provide the jump 

phenomenon. It was surprising to find that Monte Carlo simulations 

failed to verify the jump phenomenon for narrowband inputso 

The one-term expansion of the assumed solution for the indirect 

method provided good results for the mean square value of the res­

ponse but failed to give any reasonable autocorrelation function and, 

hence, power spectral density of the system response. An improved 

method has been suggested for selecting the fundamental frequency for 

the indirect method. 

A discussion of the two-term expansion for the indirect method 

was presented, and it was found that the resulting accuracy was not 

significantly better than that for the one-term expansiono The addi·­

tional complexity resulting from the two-term expansion introduces 

computational difficulties and corresponding inaccuracies which tend to 

offset any gain in accuracy. 

Recommendations for Further Work 

The three following .areas are recommended for the future 

research: 
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1. Monte Carlo methods for specific applications like the one 

considered in the thesis require special considerations for step size, 

number of samples, and the method of pseudo random number genera-

tion. An extensive amount of work is required to investigate the jump-

type phenomenon. A suggested approach is to consider two consecutive 

sample functions of the system response and corresponding linear part 

of the system and the sequence of pseudo random numbers used. This 
i 

approach would provide some basis for judging the resulting amplitude 

in the steady state region. 

2, The selection of the initial guess of the solution for the 

indirect method is still a very difficult task, especially when the input 

is white noise. A series solution is used in this thesis but other 

approaches are aho possible. A series solution has the disadvantages 

of requiring a large number of terms in the series, A one-term solu-

tion was considered in this the sis and the use of two terms was 

discussed in Chapter III. A multiple-term expansion of the assumed 

solution is suggested for future research in this area, When more 

than one term in the series solution is considered, it becomes a diffi-

cult task, since even a simple solution requires a considerable 

computer time, The selection of the fundamental frequency would be 

very difficult when two or more terms are used in the series, Thus, 

special considerations based on some criterion other than the power 

spectral density curve of the system response would be required, 
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3, A third extension of the work performed in this thesis would 

be to determine the conditions for which the unusual response shown in 

Figure 40 exists. This is a difficult problem since such behavior 

apparently occurs only for a given set of parameters. 

Basic conclusions of this research are presented in the first 

section of this chapter. More detail of these conclusions may be found 

in Chapters III and IV. The second section of this chapter outlines the 

possible areas of future work such as specific applications of the Monte 

Carlo methods, selection of the initial form of the approximate solu­

tion for the indirect method, and the conditions for the unusual behavior 

shown in Figure 40. 
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APPENDIX A 

DIGITAL SIMULATION OF CONTINUOUS 

WHITE NOISE 

The problem is to model the continuous white noise process by 

the sequence of pseudo random numbers, Continuous white noise has 

the constant power spectral density and an impulse autocorrelation 

function as shown in Figure 41. 

White Noise Process 

s 
R (,.) 

w w 
c c 

(w) 

Q 
c ----...--- ,.__, 

Power Spectral Density Autocorrelation 

Figure 41. Continuous White Noise Process, Its Power 
Spectral Density and Autocorrelation Function 
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In a digital simulation each number is held constant until a new 

number arrives, This means that for the given time, the input is a 

step with a magnitude given by the pseudo random number. Thus, the 

continuous process is represented by a discrete process along with the 

autocorrelation function and power spectral density as shown in the 

Figure 42. 

t 

Discrete Process 

S (w) 

----t---- wdwd 

-T 0 T 
'T ~---------~w 

0 

Autocorrelation Power Spectral Density 

Figure 42. Discrete White Noise, Its Power Spectral 
Density and Autocorrelation Function 
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Power spectral density of the discrete process can be repre-

sented as 

S (w)=J
00

R (r)e-jwTdT 
wdwd wdwd 

(A-1) 

-co 

The autocorrelation function shown in Figure 42 may be written 

as 

R ( T ) = Q d ( 1 - I~ I ) for ! T I < T 
wdwd 

(A-2) 

= o for IT I ;;:: T 

where T is the step size. Using (A-2 ), equation (A-1) can be written 

as 

Evaluating this integral will result in 

Qc = 2Qd (1 - cos (wT))/Twa (A-3) 

Equation (A-3) is the basic equation used for modeling a con-

tinuous white noise process where power spectral density is kept 

constant and e<qual to Q . When this process is modeled for w = 0, 
c 

i.e., for low frequencies, (A-3) will become Q = QdT. In most 
c 

applications w = 0 is of interest. Also notice that the power spectral 

density of the discrete process is not constant but decaying periodic 

where the period is equal to 2rr/T. 



APPENDIX B 

DETERMINISTIC INPUT 

When the input to the nonlinear system (2-1 b) is sinusoidal, an 

approximate solution may be assumed as 

Y(t) = K cos (wt) (B-1) 

substituting (B-1) into the following nonlinear equation 

.. . 
Y(t) + 2f3Y(t) + w 2 (Y(t) + sY 3 (t) = G cos wt + G sin wt 

O C S 

(B-2) 

and collecting terms in sin (wt) and cos (wt) yields the algebraic 

equations given by 

-2~wk = G 
s 

The square of the input amplitdue is 

Ga =Ga+ Ga 
h c s 

Thus (B-3) becomes 

((w 2 - w 2 )k t. 75w 2 sk3 }~+ (2~wk) 2 = G 2 
0 0 h 

{B-3) 

(B-4) 

(B-5) 

Equation (B-5) is a third-order polynomial in ka. The solution of 

(B-5) results in one or three values of k 2 as shown in Figure 19. 
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