
EFFECTS OF PANTOY'L LACTONE ON TRAN$PORT 

AND FATTY' ACID COMPOSITION IN 

MICROCOCCUS LYSODEIKTICUS 

RICHARD ELDO STAERKEJL 
# 

Bachelor of Science 

Oklahoma State University 

Stillwater, Oklahoma 

1971 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

July 1 1973 



EFFECTS OF PANTOYL LACTONE ON TRANSPORT· 

AND FATTY ACID COMPOSITION IN 

MICROCOCCUS LYSODEIKTICUS 

Thesis Approved: 

ii 

OK1.AHOMA 
STATE UNIVEISl'IT 

UIRAltY 

NOV 16 1913 



ACKNOWLEDGMENTS 

The author wisheq to express sincere appreciation to Dr. Edward 

A. Grula, under whose direction this investigation was cond~cted, for 

his inspiration, guidance, encouragement, and understanding. 

Appreciation is extended to Dr. Mary Grula for her constructive 

criticism throughout this investigation and in the writing of this 

thesis. 

Appreciation is also extended tQ Drs. Lynn L. Gee and Norman N. 

Durham for their service as committee members, and to Dr. George v. 

Odell for his invaluable suggestions and technical assistance. 

Financial assistance furnished by the Nation~l Institutes of 

Health through a grant award (02530) to Dr. Edward A. Grula, is deeply 

appreciated. Financial suppqrt, received from the Oklahoma State 

University Microbiology Department in the form of teaching assistant

ships is acknowledged. 

Also I want to express appreciation to my fellow graduate students 

(Linda Albert, Roy Hopfer, Tom Rice, Clifton Savoy, and Bill Taylor) 

for their continual friendship and help during some special aspects 

of these studies. 

Finally, special appreciation is extended to my wife, Claudia, 

for continual encouragement, understanding, and assistance in pre

paring and typing this thesis. 

iii 



TABLE OF CONTEN~S 

Chapter Page 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . 1 

II. MATERIALS AND METHODS , ~ . ~ . . . . . ~ . . . . . . . 7 

III. 

Test Organism. • • • •••••••• . . . . . 
Medium and Growth ••••••••• , •••• 
Uptake Studies •••••••••• 
Is9lation of Cell Membranes •• • •• 

. . . . . . . . . . . 
Surface Tension Measurements •••• , , • • 
Polyac.rylamide Gel Electroph~resis • , • •• 
Efflux Experiments • • • • ••••••• 
Shock Procedure, ••••••• . . . ' 
Division Inhibition •• . . . . . . . . . 

. .. . ~ . 
• 11! • • • . . . . . . . . . . . ~ . 

Lipid Extraction. • • • • •••••••• f • 

Preparation of Methyl Esters •• • ••• • , ••••• . . Gas-Liquid Chromatography ••••••••••• 
Identification of Methyl Esters of Fatty Acids •••• 

RESULTS •• . . . . . . . . . . . . . . ' . ~ ~ . . 

7 
7 
8 
9 
9 
9 

10 
10 
10 
11 
11 
12 
12 

14 

Up.take St;udies • • • • • • • • • • • • • • • • • , 14 
Characterization of the D-Alanine Vptake 

System in~· lysodeikticus ••••••••••• 14 
Inhibitipn of Passive Uptake by PL. • • • 40 
Efflux of 2-Deoxy~D-Glucose and D-Alanine 

in the Presence of PL ••••••••••••• 46 
Effects of PL and Physical Properties of 

the Growth Mediyf on Growth and Uptake 
of D-Alanine-U- C ••••• • ••••••••• 49 

AJ:;iility of~· lysodeikticus to Transport 
Acetic Acid-2-I4c in the Presence of PL. 67 

Polyac.rylamide Gel Electrophoresis. , • • • •• • 72 
Polyacrylamide Gel Electropho.t;'esis of 
Isolated Cell Membranes From Cells 
Grown at 37 C and 15 c •••• • ••••••••• 72 

Fatty Acid Analyses •••••• • • • • • • • • • 79 
Fatty Acid Compositi~n of~· lysodeikticus 

Whole Cells Grown Under Different Environ-
mental Conditions ••• . . . . . . . . . . . . 79 

IV. DISCUSSION, ,. • ~ . . . . . . . . . . . . . ' 
LITERATURE CITED •• . . . . • • • . . . . . • • • • . . . •• 106 

iv 



LIST OF TABLES 

Table Page 

I. Effect of Metabolic Inhibitors on D-Alanine-u- 14c 

II. 

III. 

IV. 

v. 

Uptake Activity. . . . . ' . . . . 
Effect of PL on Uptake of Various Compounds ];)y 

Cells of Micrococcus lysodeikticus dis-IIp+ • 

Fatty Acid Composition of Lipids Extracted from 
Whole Cells of Micrococcus lysodeikticus ••• 

A Comparison of the Fatty Acids Extraqted 
Whole Cells or Membranes of Micrococcus 
lysodeikticus di$-IIp~ • • • • • · ~ • • • 

from 

. . . 

. . . . . 
. . . . . . 
fl • • • ~ • 

. . . . . . 
The Effect of Growth Temperature on the Fatty 

Acid Composition of Lipids from Micrococcus 
lysodeikticus dis-IIp+ ••••••••••• . . . . . . . 

VI, Effects of DCS and PL on Growth of Micrococcus 
lysodeikticus . . . . . . . . . . . . . . . . . . . 

v 

27 

41 

81 

82 

84 

89 



• 

LIST OF FIGURES 

Figure 

1. Uptake of D-Alanine-u-14c in the Presence and Absence 
of PL • • • • • • • • • • • • • • • fl • • • • • • • . " . . 

2 .. 

3. 

4. 

5. 

Influence of Sodium Pantoic Acid and PL on Uptake of 
D-Alanine-u-14c •• • •• ., • • • ••••• , 

lnfluence of PL on Uptake of D-Alanine-u-14c by Cells 
Grown in the Presence and Absence of PL •••••••• 

Uptake of D-Alanine-u-14c by Control and Shpcked Cells, • 

Influence of PL and 2,4-Dinitrophenol qn Uptake Qf 
D-Alanine-u-14c in~· lysodeikticus • •••••• 

6. Influence of PL on Uptake of D-Alanine-u-14c in 

• • 

. . 

Page 

16 

18 

21 

23 

25 

~· lysodeikticus ••••• , •••••••••••••••• 29 

7. Uptake of D-Alanine-v-l4c in the Presence of PL with 
Either Sodium Buffer, Potassium Buffer, or Distilled 
Water. . . . . . . . . ' . . . . ~ . . . . . ' . . . 

8. Influence of pH on P-Alanine-u-14c Uptake Activity in 

32 

~· lysodeikticus .......... • , ............ 34 

10. 

ll. 

12. 

13. 

14. 

Influence of 2-Mercaptoethanol on D-Alanine Transport 
in the Presence and Absence qf PL ......... . 

Influence of Temperature Dur;ing Growth and Uptake on 
Transport of D-Alanine in the Presence and Absence 
of PL • • • • • • • • • • • • • • • • • • • • • • • 

14 14 Uptake of Pyruvate-2- C and 2-Deoxy-D-Glucose-1- C 

. . . . 

. .. . . 
by~· lysodeikticus in the Presence of 2,4-Dinitrophenol 
(DNP) • • • • • • • • • • • • • • • • • • • • • • • • • • • 

14 14 Uptake of ~ruvate-2- C and 2-Deo:xry-D-Glucose-1- C 
by~· lysodeikticus in the Presence of PL .......... . 

Influence of PL and Toluene on Efflux of 2-Deoxy-D
Glucose-i-14c, ••• , ••••••••••••• 

Influence of PL on Efflux of D-Alanine-u-14c ••••• 

vi 

. . . . 

37 

39 

43 

45 

48 

51 



Figure 

15. 

16. 

17. 

Growth Response of Cells to PL, Carbowax-400~ Sodium 
Chloride, and Sucrose Added after Twelve Bours ••• 

Restoration of Growth by Washing Cells which had been 
Treated for Five Minutes with Either PL, Carbowax~ 
400, or Sodium Chloride •••••••••••• 

Effect of PL, Carbowax-400, Sodium Chloride, and 
Sucrose on Uptake of D-Alanine-u-14c •••••• • • • 

18. Reversal of D-Alanine Uptake Inh:ibition. . . . . . . 
19. Uptake of D-Ala~ine-u-14c in the Absence and Presence 

of Spermine ••• ~ •• . . . ~ . . . . . 
20. Reduction in Surface Tension Caused by Sodium Lauryl 

Page 

54 

56 

59 

61 

64 

Sulfate (SLS), Tween 80, and PL. • • • • • • • • • • 66 

21. Inhibition of D-Alanine-u-14c Uptake Activity by Sodium 
Lauryl Sulfate (SLS), Tween 80, and PL ••••••••••• 69 

22. Percent Inhibition of D-Alanine-u-14c Uptake Activity 
as a Function of PL Concentration, Sodium Lauryl 
Sulfate (SLS) Concentration, and Tween 80 Concentration 

23. 

24. 

and Surface Tension •••••••• . . . . . . . . 
Influence of PL and 2,4-Dinitrophenol on the Ability 

of~· lysodeikticus to Transport Acetic Acid-2-14c. 

Influence of PL on ~ransport of Acetic Acid-2- 14c in 
Control Cells and PL Grown Cells. • • • • • • • 

25. Electropherogram Patterns (SLS gel system) of Isolated 
Membranes From Cells Grown at 37 C and 15 C • • 

26. Effects of PL on Fatty Acid Composition of Lipids in 

• • • • 

71 

74 

76 

78 

Micrococcus lxsodeikticus • • • • • • • • • • • • • • • 87 

27. Effects of DCS on Fatty Acid Composition of Lipids in 
Micrococcus lysodeikticus ••••••••••••••••• 91 

vii 



CHAPTER I 

INTRODUCTION 

Grula (1960b) observed that both growth and cell division in a 

species of Erwinia were profoundly inhibited by the D-forms of serine, 

methionine, phenylalanine, threonine, tryptophan or histidine, Durham 

and Milligan (J.961) reported that D-serine was also able to inhibit 

growth and cell division in a Flavobacterium species. In addition to 

the six D-amino acids, Grula and Grula (1962a; 1964) reported that 

penicillin, mitomycin £, vancomycin, D-cycloserine, aminopterin, 

hydroxylamine, S-(dichlorovinyl)-L-cysteine, and ultraviolet light 

will inhibit both growth and cell division in Erwinia species. 

Division inhibitiQn caused by D-serine can be prevented by 

adding D- or L-alanine, para-aminobenzoic acid, calcium pantothenate, 

or inorganic ammonium salts (Grula, 1960a; Grula and Grula, 1962a). 

In addition, it was reported that addition of pantoyl lactone (PL) 

prevents the effects of all inhibitory agents tested on cell division 

in Erwinia species~ It was also reported that addition of PL promotes 

division in preformed filamentous cells of Erwinia sp. either in the 

presence or absence of a division inhibitor (reversal action of PL). 

Because it appeared improbable that synthesis of PL could be in

hibited by all the chemically diverse agents that cause oiv,ision in

hibition, Grula and Grula (1962a) proposed that the cell division 

nsystemtt undergoes varying degrees of physical damage in the presence 

1 



of all agents that .;i.nhibit cell division, and is e~tremely susceptible 

because it is located near the cell periphery. 

Because hypertonic conditions also prevent division inhibition 

2 

in Erwinia sp. it has been suggested that the qell membrane is iBti

mately involved in the cell division process (Grula and Grula, 1964). 

Further evidence to substantiate this belief was obtained by observing 

that osmotic protective conditions significantly lower leakage of pro

teins and nucleic acids from cells of Erwinia sp. in the presence of 

division inhibiting agents. It has recently been concluded (Grula and 

Hopfer, 1972) that the release area of proteins is the cell periphery 

(cell wall plus periplasmic space). Observations of this type suggest 

that hypertonic conditions and PL probably stimulate division activity 

by preventing "secondaryrt cell membrane damage (Grula and Grula, 1964). 

Grula and King (1970; 1972) reported that D-serine, D-cycloserine, 

mitomycin ~, penicillin, hydro;x:ylamine or suboptimal concentrations of 

magnesium inhibit division activity in a nutritional mutant of M. 

lysodeikticus (dis II or dis II p+). These investigators also reported 

that PL is able to prevent but not reverse division inhibition caused 

by D-cycloserine or D-serine in these mutant organisms. Data were also 

presented which show that PL largely but not completely prevents the 

quantitative and conformational changes induced in cell membrane pro

teins during growth in the presence of D-cycloserine (Gru+a and King, 

1971). 

These investigators also observed that cells grown in the presence 

of D-cycloserine (non-dividing) possess an impaired uptake mechanism; 

this inhibition can be slightly overcome by PL. Because the restora

tion in uptake ability is not pronounced, they further investigated the 
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effects of PL on uptake of a variety of compounds. It was shown that 

presence of PL causes an immediate inhibition in uptake of D-alanine, 

L-phenylalanine, glycerol, or glycine in normal cells of~· 1¥sodeikti

cus. In a concurrent study, Hopfer (1972) also demonstrated that PL 

inhibits uptake of a variety of compounds in normal cells of Erwinia 

species. Ho~fer demonstrated additional effects of PL which appear to 

be mernbrane oriented. As examples: a) PL potentiates lysis of Erwinia 

species in the presence of sodium lauryl sulfate. b) At low concentra

tions, PL causes horse erythrocytes to undergo crenation; at higher 

concentrations, PL causes lysis. c) A significant reduction in ag

glutination of horse erythrocytes by specific antibodies occurs in the 

presence of PL. This effect is readily reversed by washing PL out of 

the system. 

After having demonstrated that at least one major site of action 

of PL is the cell membrane (Hopfer, 1972), experiments were designed 

to aid in determining which type of molecules (lipids or proteins) 

associate or react with PL. No effect was observed on activity of 

lactate dehydrogenase (soluble form from Erwinia sp.), NADH dehydro

genase (whole membrane preparation from~· lysodeikticus), lysozyme 

(water soluble pure commercial product), aspartic acid "binding" pro

tein (obtained from Erwinia species), or catalase (whole membrane 

preparation from~· lysodeikticus). 

Although evidence could not be obtained which would indicate that 

PL associates or reacts with proteins in the cell membrane of bacteria, 

evidence for association with lipids was presented. For example, it 

was shown that PL is soluble to varying degrees in relatively non

polar solvents such as hexane or chloroform. In equilibrium dialysis 
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type experiments, association of PL occurs only with membranes which 

have not had their lipids removed~ Based on UV absorption spectra and 

data obtained from partitioning experiments, it was suggested that PL 

most probably alters structural and functional characteristics of mem-

b~anes because of some type of weak association with phospholipids 

containing unsaturated fatty acid (uFA) side chains. Such a molecular 

association should decrease membrane fluidity, which could, in turn, 

allow activation of the cell division process (Hopfer, 1972). 

Many reports have recently appeared in the literature which 

address themselves to a possible relationship of uFA to membrane 

structure and function. Marr and Ingraham (1962) reported that cells 

of Escherichia coli contain large amounts (40-50%) uFA. ~to et al. 

(1972) noted that uFA decrease in amount in cultures of Escherichia 

coli Bas the cells enter the stationary growth phase, or as the ~-.- . 

temperature of growth is increased. Other investigators (Cullen, 

Phillips, and Shipley, 1971; Shen et al., 1970; $haw and Ingraham, 

1965) observed that the degree of unsaturation increases with de-

creasing growth temperature. Fox and Tsukagoshi (1972) demonstrated 

that fluidity of cellular membranes is related to degree of unsatura-

tion of membrane lipids. Cullen, Phillips, and Shipley (1971) sug-

gested that the degree of unsaturation within the fatty acids of cell 

membranes acts as~ control mechanism which allows cells to maintain 

a "constant" membrane structure. Although confirmatory data have not 

yet appeared, Hunter et al. (1959) suggested that phospholipid-amino 

acid complexes may be involved in the transfer of amino acids from 

the site of amino acid activation to the final site of protein synthe-

sis. 
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Many investigators find that the degree of unsaturation plays an 

important role in uptake of various compounds. Haining, Fukui, and 

Axelrod, (1960) working with mitochondria of rat tissues have shown 

that the extent of amino acid uptake by the lipid fraction of mito

chondria varies with the type of compounds studied, but that they are 

taken up without degradation or alteration. Hendler (1959) concluded 

from his studies with hen oviduct that lipids appear to be an inter

mediate carrier of amino acids entering the cell, He characterized 

the lipid amino acid bond as being highly labile in contrast to the 

stable bond linking an amino acid component in a nucleic acid fraction. 

Hokin and Hokin (1959) have proposed, as a result of their studies, 

a mechanism of transport of enzymes across lipid membranes of the cell, 

with the phospholipids acting as some type of intermediate in the 

transfer. 

Gale and Llewellin (1971) reported that uptake of aspartic acid 

in osmottcally shocked cells of Staphylococcus aureus is stimulated 

by the addition of UFA to the uptake medium. Fox (1969) concluded 

that uFA are necessary for incorporation of the lactose transport 

system into the membrane of an auxotrophic strain off~ coli. 

Esfahani et al. (1971) have shown that proline uptake activity is also 

stimulated by uFA. The possibility that a combination between amino 

acids and lipids fulfills the postulated role of an intermedia,te in 

active transport has been proposed (Ames, 1968). 

Romijn, et al~, (1972) suggested that Acholeplasma laidlawii B 

is equipped with a mechanism to control the fluidity of its membrane 

lipids and, hence, permeability of the membrane by controlling the 

total degree of unsaturation of the membrane FA. Beebe (1972) 
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demonstrated that a phosphatidylethanolamine deficient mutant of 

Bqcillus subtilis exhibits decreased uptake of several compounds when 

compared to the parent strain: (L-aspartic, L-tryptophan, L-serine, 

L-threonine, L-proline, L-methionine, glycine, pyruvate, uracil, 

thymine, uridine, and adenosine). 

After considering the data which relate to membrane alterations 

by PL, it was felt that I should examine possible functional changes 

in the membrane by measuring uptake ability of cells. Therefore, the 

central theme of the experiments reported in this thesis has been to 

define the parameters involved in uptake activity in M. lysodeikticus 

and, further, to attempt definition of those components possibly 

altered or influenced by PL. 



CHAPTER II 

MATERIALS AND METHODS 

Test Organism 

The organism used in this study is a mutant of the Purdue Uni

versity strain of Micrococcus lysodeikticus. This mutant, which has 

been designated dis-IIp+ (division inhibited by D-serine; purine not 

required for growth), was isolated by nutritional selection using 

aspartic acid as the major source of carbon, nitrogen~ and energy in 

a chemically defined medium (Grula, 1962; Grula and King, 1970). 

Biochemical characteristics of this organism are identical to those 

described for the parent strain by Grula, ('.1.962). 

Stock cultures were maintained on slants of defined (basal) 

medium solidified by addition of 2.0 percent agar agar No. 3 (Oxoid

Consolidated Laboratories, Incorporated, Chicago Heights, Illinois). 

Stock cultures were transferred approximately every two months. 

Twenty-four hour old cells grown at 37 C were used as the source of 

inoculum for all experiments~ 

Medium and Growth 

The basal medium utilized contained the following compounds per 

100 ml: biotin (50 ug), L-glutamic acid (358 mg), L-aspartic acid 

(358 mg), L-phenylalanine (40 mg), L-tyrosine (30 mg), Na2HP04 

(200 mg), and Mgso4 •7H2o (2 mg)~ The pH of the complete medium was 

7 
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always adjusted to pH 7.6 to 7.8 using solid KOH prior to autoclaving 

(15 minutes at 250 F). A saturated solution of Feso4 (NH4 ) 2so4 •6H20 was 

autoclaved separately and the resulting red precipitate removed by 

filtration before an aliquot (0.5 ml per 100 ml culture medium) was 

added aseptically to the medium. 

Media were inoculated using cells grown on slants of defined 

media. The cells were wa~hed twice in 0.85 percent sterile saline and 

adjusted to an 0ptical density of approximately 0.5 (Coleman Juni0r 

Spectrophotometer). Five drops of this suspension were used to inocu~ 

late 100 ml of medium contained in 250 ml Erlenmeyer flasks. The 

cultures were incubated at 37 Con a Gyrotory shaker (New Brunswick 

Scientific Company, New Jersey, Model G~26) set at a shaking speed of 

8.5~ Cells grown under stationary conditions were grown in either 15 

ml of basal medium contained in 250 ml Erlenmeyer flasks (with side 

arms) or 150 ml of basal medium contained in 1000 ml Erlenmeyer flasks 

and incubated at appropriate temperatures. 

Uptake Studies 

After 16 hours growth, cells were harvested, washed two times 

in ttuptake buffer" (contains all salts present in the growth medium), 

and resuspended in the same buffer to an optical density of approxi

mately 0.5 (measured at 540 nm)o The suspensions were then incubated 

on a Burrell Wrist-Action shaker at a setting of 1.0 at romm tempera

ture, unless otherwise stated, for 20 minutes before addition of 

labeled compounds. Labeled compounds (0.15 ml of a stock solution 

containing 5 .O uC labeled compo1.md and 100 ug "cold carrier" pe.i::- 10 ml, 

unless otherwise stated) were added to 3 ml of cell suspension. 
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Compounds being investigated for inhibition of uptake activity 

were added 30 seconds prior to addition of the labeled compound. At 

appropriate time intervals, 0.5 ml of sample was withdrawn and passed 

through a 0.45 um size Millipore filter using vacuum suction. The 

filters containing the cells were then washed immediately (3 times) 

using 1 ml volumes of uptake buffer (25 c). The filters containing 

the washed bacterial cells were then placed in scintillation vials 

and allowed to dry (room temperature, overnight) before addition of 

10 ml Aquasol. Samples were shaken at 37 C for 4 hours before counting 

to permit dissolution of the membrqne filters. 

The following labeled comp<r>unds were used: D-alanine-u-14c (32 

mC/mM), acetic acid-2~14c (6 mC/mM), L~aspartic-u-14c (154 mC/mM), 

2-deoxy-D-glucose-l-14c (60 mC/mM), L-glutamic-u-~4c (206 mC/mM), 

uracil-2-14c (6.22 mC/mM), L-phenylalanine-u-14c (135 mC/rnM), glycerol-

2-14c (7 .o mC/mM), P.('ruvate-2-14c (6.0 mC/mM) 1 L-malic acid-u-14c (26 

rnC/rnM). 

Isolation of Cell Membranes 

Whole cell membranes of~· lysodeikticus dis-IIp+ were prepared 

according to the procedure described by Butler, Smith, and Grula (1967). 

Surface Tension Measurements 

All measurements were made using a Cenco Tensiometer equipped 

with a 4 cm ring. All compounds were tested in growth media to ensure 

conditions equivalent to those found during growth of the organism, 

Polyacrylamide Gel Electrophoresis 

Sodium lauryl sulfate (SLS) gel electrophoresis was run according 
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to Weber and Osborn (1969) as modified by Grula and Savoy (1971). 

Efflux Experiments 

Sixteen hour old cells were labeled for 30 minutes in basal 

d . . "th 2 1 1 14 1 . 14 me i~m using ei er -deo:xy-D-g ucose- - C or D-a anine-U- C. The 

cells were then passed through 0.45 um size Millipore filters using 

vacuum suction and resuspended in 40 ml of uptake buffer, uptake 

buffer plus pantoyl lactone (0 .. 22M), or uptake bL1ffer plus toluene 

(0.02 ml/ml of uptake buffer)~ Immediately following resuspension, 

2.0 ml samples were removed and passed through 0 .. 45 um size Millipore 

filters. Additional samples were taken at appropriate times after 

which the filters containing the bacteria were dissolved and radio-

activ:ity measured as described under Uptak~ Studies .. 

Shock Procedure 

The procedure reported by Gale and Llewellin (1970) was utilized 

for release of binding fractions. 

Division Inhibition 

D-Cycloserine was dissolved in O.lM K2HP04 , pH 7.2, and filter-

sterilized. The antibiotic was added to growing celJ.s after twelve 

hours incubation (approximately 0 .. 15 O.Dm at 540 nm) to a final con

centration of 2 X 10-4M~ Compounds tested for prevention of division 

inhibition were also added at this time. Each compound was adjusted 

to pH 7.0 prior to sterilization by filtration (0.45 um size Millipore 

filters). 



Lipid Extraction 

After growth in a particular medium, 100 ml of cells (approxi

mately 0.5 O.D~ at 540 nm) were harvested, washed one time in saline 

and resuspended in 5 ml methanol in a screw cap tube. The samples 

were then sealed with teflon tape and capped under nitrogen. The 

sealed tubes were heated for 30 minutes in a 55 C water bath. After 

cooling to room temperature, 10 ml of chloroform was added and the 

extraction at 25 C continued for twenty-four hours under nitrogen. 

The following day 9 insoluble material was removed with suction using 

0.45 um size Millipore filters. The liquid samples were then washed 

twice using 15 ml of 2M KCL followed by one wash using 10 ml of dis

tilled water. The washed chloroform solution was then passed through 

fresh sodium sulfate columns (1/2 cm by 14 cm) and dried under nitro

gen at 50 C (the last 1/2 ml was dried at ro9m temperature to prevent 

possible oxidation). 

Preparation of Methyl Este.rs 

A solution of 2% H2so4 in column dried (Na2so4 ) methanol (v/v) 

was used to prepare methyl esters of the phospholipid fatty acids. 

Phospholipids (from a cell volume of 100 ml, 0.5 O~D. measured at 

11 

540 nm) were dissolved in 4.5 ml of the methanolic H2so4 and sealed 

with teflon tape under nitrogen. After twenty-four hours at room 

temperature, 4.5 ml water was added and each sample was then extracted 

three times with 4 ml of hexane. The hexane extracts were pooled and 

washed one time with 4 ml distilled water, followed by passage through 

fresh columns of sodium sulfate (1/2 cm by 14 am). The washed hexane 
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solutions were then oried under nitrogen at 50 C (except for approxi

mately the last 1/2 ml, which was dried at room temperature to prevent 

possible oxidation). The resulting methyl esters were dissolved in 

0.1 ml iso-octane immediately prior to injection into the gas-liquid 

chromatography unit. 

Gas-Liquid Chromatography 

Volume of sample injected --- 1 to 4 ul 

Column conditions were as follows: 

Column --- 6 1 X 1/4" glass 

Column Packing --- Diethylene Glycol Succinate (5%) 

Column Temperature-,-- 165 C 

Injection Port Temperature --- 250 C 

Detector Temperature --- 250 C 

Carrier Gas --- Nitrogen 

Flow Rate --- 40 ml/min. 

Detector--~ Hydrogen Flame 

Hydrogen Pressure --- 15 PSI 

Air Pressure --- 40 PSI 

Instrument --- Perkin Elmer 990 Gas Chromatograph 

Identification of Methyl Esters of Fatty Acids 

The methyl esters of saturated and unsaturated fatty acids were 

tentatively identified by comparing retention times (relative to 

C +6:0) using known methyl ester standards. Branched-chain acids were 

tentatively identified by comparison with reported relative (C 16:0) 

retention times (Thorne and Kodicek, 1962). Further identifications 



were obtained by analysis using the coupled mass spectrometer-gas 

chromatography unit in The Department of Biochemistry. 
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CHAPTER III 

RESULTS 

Uptake Studies 

Characterization of~ D-Alanine 

Uptake System in~· lysodeikticus 

Grula and King (1971) have shown that pantoyl lactqne (PL) 

inhibits the upta~e of D-alanine, L-phenylalanine, and glycerol in 

~· lysodeikticus dis-IIp+. The uptake ability of Erwinia sp. for 

D-glµcose, L-aspartic acid, L-malic acid, D-alc)l'J,ine, thymidine, and 

2-ketoglutaric acid was also shown to be inhibited in the presence 

of PL (Hopfer, 1972). 

D-Alanine was selected as the compound of choice for uptake 

studies because sugar transport into cells of~· lysodeikticus is 

minimal. Also, it had previously been established (Grula and King, 

1971) that D-alanine uptake activity is very good in this organism and 

inhibition by PL occu~s inunediately (within 30 seconds). 

Within a four minute time period, uptake of D-alanine in the 

presence of 0.22M PL is inhibited approximately 50 percent (Figure 1). 

These data also reveal that the effect of PL.on uptake of D-alanine 

is readily removed by washing cells free ~f PL. Data presented in 

Fig. 2 illustrate that the lactone structure is necessary to inhibit 

D-alanine uptake activity since pantoic acid has little if any effect 

14 



Figure 1. Uptake 0f D-Alanine-u-14c in the Presence and 
Absence of Pk~ Q , control ceHEJ; • , with 
PL (0.22M);W, celJ.,s pre-trea.ted (5 minutes) 
with PL (0.22M) and washed two times in uptake 
buffer prior to determination of uptake ability, 
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Figure 2. Influence of Sodiy~ P.a~oic Aci.d a .. nd PL o~ptake 
of D-Alanine-U- C. U , contr~l cells; · , with 
sodium panto .. ic acid (.Q,lM)·;·.·, with PL. (O .• lM); 
~, with PL (0.2M); ... , with sodium pantoic 
acid (O~lM) plus PL (O.lM). 
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on the system. 

When cells are grown in the presence of PL and washed free pf the 

compound (Fig. 3) less inhibition of upt9ke is evident when PL is added 

bqck to these cells (37% average decrease) than in control cells not 

grown in the presence of PL (average decrease of 57%). 

Many investigators have studied transport systems ror the dif-

ferent amino acids (Wilson and Holden, 1969; Rosen, 1971; Weiner, 

Furlong, and Heppel, 1971; Gale and Llewellin, 1971). Binding pro-

teins which have varying degrees of affinity for substrate molecules 

are believed to be involved in both active and facilitated transport. 

Usually, binding proteins can be released from cells by the cold-

osmotic shock procedure (Heppel 1 1~67) without complete loss of 

nbinding" activity. In addi ti<:>n to tne requirement fo+ binding pro-

teins, active transport requires ene.i;rgy to "drive" the tra.T).sport 

system, whereas facilitated transport does not haye an energy require-

ment. 

Although, cold-osmotic shock will not decrease uptake activity .of 

D-alanine in~· lysodeikticus, the shock procedure of Gale and Llewel-

lin (1970) significantly reduces ability of cells to take up D-alanine 

(Figure 4). These data can be interpreted to mean the shock treatment 

causes release of tne D-alanine binding fraction(s); thus, reducing 

uptake ability. 

The need for energy in uptake of D-alanine is suggested by the 

data given in Fig. 5. An inhibitor of oxidative phosphorylation, 

2,4-dinitrophenol (DNP), at a concentration of l0- 2M drastically 

reduces uptake ability. When PL is added to the uptake system in the 

-2 presence of DNP (10 M), a further reduetion in 11uptaken activity 



Figt,1re 3. J:nfluence of PL on Uptake of D-Alanine-u- 14c by 
Cells Grow.n in the. !:z.' esen.ce. an.ct Absen.ce of PL. 
Q , control ce;Lls;Q,PL _(0.22M) present (6 
hours) during growth (~ellq washed two times 
prior to determination of uptake aJ::?ility);., 
contro;L ceils plus P~ (0.22M);~, PL grown 
cells which had been washe4 twq times befqre 
re-addition of PL (0.22M) to the uptake medium. 



21 

IOr-------T""------...,.._------,------..0,..------. 

8 

,,., 
I 

0 

x 
...,: 

6 3: 
> 
a:: 
0 

...J 

...J 
w 
(.) 

4 
(!) 

~ 

' ~ 
a.. 
(.) 

2 

OO I 2 3 4 5 

TIME ( MINUTES AFTER ADDITION OF LABEL) 



Figure 4. Uptake of D-Alanine·u-14c by Control a,nd Sh<!:;>cked 
Cells •• , untreated centrol c;ells; Q, shocked 
cells. 
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Figure 5. Influence of Pt4and 2,4~Dinitrophenol on UptaKe of 
D-Ala.nin~-U- C in !'.!· l~so<;:leikticus. Q , control 
cells;., with ~~ (0.22M);. , w;i.th 2,4-dinitro
phenol (l!9 x 10 M);~, with 2,4-dtnitrQphenol 
(1,0 x 10. M} plus PL (0~22M). 



25 

36r--------,-------.._....----___,--------

32 

to 28 
I 

0 
)( 

r= 24 
~ 

>-
~ 20 

.....J 

.....J 
w 16 (.) 

(!) 

:E 
......... 

:E 
12 

a.. 
(.) 

8 

4 

0o 2 3 4 
TIME (MINUTES AFTER ADDITION OF LABEL) 



occurs. This inhibitiqn of residual uptake activity probably repre~ 

sents an inhibition in the ability of the substrate to bind to the 

binding protein, rather than a t.J:!'Ue inhibition of uptake. 

26 

The effects of several additional metabolic inhibitors on uptake 

of D-alanine are presented in TabJ.e I. Sodium azide, sodium arsenate, 

potassium cyanide, and iodqacetate, which inhibit electron transport, 

are also effective inhibitors of P~alanine uptake activity. Potassium 

cyanide and DNP cause the greatest amount of inhibition while sodium 

azide appears to be the least effective inhibitor investigated. These 

data suggest that PL is probably not acting as an unco~pler of oxida

tive phosphorylation or an inhibit~r of the electron transport system 

since the effective concentration of the metabolic inhibitors needed to 

cause an equivaJ.ent reduction in D-alanine uptake ability is much 

smaller than the concentration of PL required. 

An additional diagnostic tool to indicate uptake of D-alanine is 

of the active type can be obti':iined l;:,y l!IJ:iservin,g fo+ saturation kinetics 

(Eagon, 1971). As shown in Fig. 6, uptake of D-alanine both in the 

presence and absence of PL ol::leys saturation kinetics. Also, both the 

initial rate and concentration necessary for saturation of the uptake 

"system" are lowered in t;he presence of PL. 

According to Schultz and Curran (+970) the spontaneous movement 

of Na+, and possibly K+, across the plasmalemna of the mammalian cell 

membrane provides the energy that is needed to transport amino acids 

against a concentration gradient. 

Harold and Papineau (1972a, b) reported that cells of Stre:pt0-

coccus faecalis accumulate large quantities of dibenzyldimethylammonium 

(DDA+) and triphenylmethylphosphpnium (TPMP+) and other lipid-soluble 



TABLE I 

EFFECT OF METABOL~C INHIBITORS ON 
D-ALANINE-u-14c UPTAKE ACTIVITY 

27 

Inhibitor* Final % Inhibition** 
Concentration 

Sodium azide J, x l0- 3M 

1 x l0- 2M 

Potassium cyanide 1 x l0- 3M 

1 x 10- 2M 

Iodoacetate J, x l(j"" 3M 

Sodium ars~nate 1 x l0- 3M 

2,4-Dinitrophenol 1 x 10- 3M 

*Inhibitors were added 30 seconds prior to tpe addition of 
D-alanine-..u-14c. 

**Values Galculated from u£4ake readings made after 4 minutes 
exposure to D-alanine-U- C. 

11% 

51% 

65% 

79% 

45% 

44% 

65% 



Figure 6, Influence qff PL on UEtak~ of D-~iaRine-u-14c i~ 
~- lrs~de:l,kt;i.5:us. O, (;;ll>;trltrol c:ell,~; •. , with 
PL (Q~ 22M) •. 1Dati;i ciiven a.re fo.1:; 30· s~cc,:pd up
take period$~ 



29 

2Qr----r---~--------,..---------------

rt) 
I 

Q 16 
)( 

I-= 
3: 
>- 12 0:: 
Cl 

..J 

..J 
w 
() 8 
(!) • 
~ ,, 
~ 4 a.. 
u 

0o 2 4 6 8 12 
SUBSTRATE CONCENTRATION ( µ.m) 



~o 

cations by exchange for Na+. It is their contention that glycolyzing 

11 t d +. h +( +/ + ) + ce sex~ e Na 1n exc ange for H ,Na H antiport; the H is then 

ext~ded by a membrane-located proton p1,1mp th1Ji; gen!=l,rating an elecrt:ri-

cal potential across the mernl;:>rane (interior of the cell membrane be-

come~ negative). Accumulation of the lipid-solu,ble cations thus 

becomes a therm0dynamically passive response to the potential gradient. 

A significant reduction in upta,ke of D.,.,alanine results when 

potassium is substituted fC;lr sodium in the uptake medium {F:j_gure 7). 

After one minute, u,ptake activity appears to be stopped when potassium 

is the major mc:m<Dvalent ion present. 'J'he i,n:,i..tial. uptake of D-alanine 

is very similar to that obtained in the presence of sodi1,1m and may be 

du,e to contamina.ting sodium since qptake aetivi-cy levels cr,ff after one 

minute. Such peculiar kinetics suggest that the CQ~ponent necessary 

for active uptake is rapidly depleted. lf this is true, tp~n the ac-

cumulation of D-alc;).nine ip. the pre;,!;lence of potassil.lm i$ probab;l.y a 

result of passive diffu,sion rathe~ than active uptake. As also shown 

in Fig. 7 1 inhibition by PL in the presence of sodium ions is much 

more severe than in the presence only of potassium iQn$ o~ in distilled 

water. 

To determine if transport of D-aJ,1:mine is pH dependent, uptake 

ability was measured at three values; maximum activity occurs at pH 

7.0 (Figure 8), Because a reduction in uptake activ~ty occurs on 

either side of pH 7.0, uptake activity at a~ditional pH values was not 

determined. Data also presented in Fig. 8 illustrate that transport 

of D-alanine· in the presence of PL is inhibited very extensively 

whether measured at pH 6.0, 7.0, or 7,8. 



Figure 7. Uptake ef D-Alanine-u~14c in th~ Presence of PL 
with Either Sodium Buffer, Potas$ium Buffe,£., or 
Distilled Wat~r. (), wibh sodium buffer; LJ, 
with potassium bµffer; A,~ with distilled water; e, l1ith sodium buffer p;I,us PL (0.22M);., with 
potassium ~uffer plus PL (Or22M);~, with dis
tilled water plus PL (0.22M). 
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Figure 8~ In:luence of pH.· o~ D-Ala,Rine~u~14c.upta.Ke Acti~ity 
in ~· 1 sodeJ..kt1:c;:us. ~, pH 6.0, Q, :pH 7 .O, 0, 
pH 7 .B; , pH 6.0. p:J..us PL (Q.22:M);. , pH 7 .O 
plus PL C0.22M); .• , pH"7,& pl:us l;'L C0.22;M). 
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Kaback and Barnes (1971) suggested that carriers for the lactose 

transport system are transfer intermediates which under~o reversible 

oxidation-red~ction. The carrier, in the oxidized state, is depicted 

as having a high affinity site for ligand which it binds on the ex-

terior surface of the membrane. By some type of mechanism a critical 

disulfide in the carrier molecule becomes reduced; this, in turn, 

causes a conformational change. As a result of this conformational 

change, the affinity of the carrier for its ligand is decreased and 

ligand is then released on the interior surface of the membrane. 

It was thought that PL could aid in causing a premature reduc-

tion in a critical disulfide group(s) resulting in decreased affinity 

of the carrier for its ligand; thus inhibiting upt~ke ability. As 

shown in Fig. 9, evidence could not be obtained to implicate reduced 

disulfide groups in D-alanine tranpport since inhibition of uptake 

-3 does not occur in the presence of 2-mercaptoethanol (1.7 X 10 M). 

The ability of.!:'.!· 1:xsc,deikticus to take up D-alanine appears to 
' ' 

be a function of both the temperature at which the determinations are 

performed as well as the temperature of grqwth (Figure 10). Of the 

four temperatures at which uptake ability was measured, 37 C appears 

to be optimal (uptake activity measured at 4 C may represent only 

external binding capacity). It is inte~esting that cells grown at 26 

and 15 C exhibit greatest uptake a~ility; however, this ability is 

most apparent only when uptake is measured at 37 c. The decreased 

uptake at 4 C is a further indication that D-alanine is transported 

by an active process. 

When uptake ability of cells grown at the different temperanires 

is measured in the presence of PL at different temperatures, inhibition 



Figure 9. Influenc~ of 2-Mercaptoethanol on P-Alanine Tr~ns
port in the Presence a~d ,l\1osence of Pi.(), 
control cells; • 1 wi try !Pf,~ ( 0. 22M) ; A , with 2 .... 
mercaptoethanol (1 ~ 7 x -~O M); CJ , with ~-mer
c~ptoethanol (1~7 x 10 M) plus PL (0.22M). 
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Figure 10. lnflµence of Temperatµre During Growth a,nd Uptake 
on Transport of D~Alanine in the Presen~e and 
Apsence qf PL. All cells were grown under 
stat.ionacy conditions and ra,dioac:tiv;i,ty meas~ 
ured four minutfliS after addition of the labe:l. 
The solid ~ars repr~sent det~r~inatipnp made 
in the a~sence pf PL wnile the striped ~ars 
rep+esent dete~minati9ns made in the presence 
of PL (0.22M). 
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always qccurs. Least inhibitipn occurs ei.t 4 C where an ac::tive type 

transport is probably not Qccur:µig and uptake represents binding 

ability. 

Considering the data presented on the uptake ability of M. 

1xsodeikticus for D-alanine, it appears highiy likely that D-alanine 

is ta~en up via an active process. This conclusion is in agreement 

with results reported by Ariel and Grossowicz (1972). It follows 

therefore that PL can inhibit active type transport processes. 

Inhibition of Passive Uptake~ PL 

Since the active uptake of D-alanine is inhibited in the presence 

of PL, experiments were undertaken to determine whether PL also inhi-

bits uptake of molecules that enter the cell by passive diffusion. 

Data presented in Table II demonstrate that PL i~hibits the uptake of 

a variety of compounds in !!• 1¥.sodeikt;icus d.J,.s ... IIp +. Tl')ese E:ixperiments 

14 14 revealed that neither pyruvate-2- C nor 2~cteo;xy-D-glucose-l- Care 

taken up readily by M. lysodeiktio~s; thus their ~ptake is probably of 
,... I • • ' 

the passive type. To obtain significant uptake of these two compounds, 

cold carrier molecules could not be added and much higher concentra-

tions of the labeled compound were used. 

The absence of a cl,eteetable inhibition ~f both 2-de~xy-D-glucose 

and pyruvate uptake activity in the presence of DNP C+0- 3M) is addi-

tional evidence that these two compounds enter the cell by a passive 

type process (Figure 11)~ Data presented in Fig. 12 shQW that PL also 

inhibits uptake of these compounds, Similar results were reported by 

Hopfer (1972); he demonstrated the inhibition of uptake of several 

compounds thought to be taken up by a passive process into Erwinia 



Labeled Compound 

L-Aspartic Acid 

L- Phenylalanine 

2-Deoxy-D-Gluc-0sel 

Uracil," 

Glycerol 

Pyruvate,' 

L-Malic Acid 

TABLE II 

EFFECT OF PL ON UPTAKE OF VARIOUS COMPOUNDS BY 
CELLS OF MICROCOCCUS LYSODEIKTICUS dis-IIp+ 

CPM Taken up/mg Dry Wt. Cells 
C-ontrol Pantoyl Lactone 

{0.22M) 

12,000 6,500 

11,500 7,500 

1.,500 1-,000 

5,000 3,000 

14,000 10,000 

3,500 1,500 

7,500 5,000 

Percent Decrease 
Caused by PL* 

46 

34 

33 

40 

29 

57 

33 

*Values calculated from uptake readings made after 4 minutes exposure to the labeled substrate 
as given in Materials and Methods. 

,'Cold carrier was not present during -the uptake of these compounds. 

~ 
I-' 



Figure 11. 

• 
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Figure 12. 14 
Uptaf! of Pyruva~e-2- · C and 2-De~:x:y~D~Glucose-

1- C by !:'.!· 1:xsodeiktiq1.,1s ;in th~ Presence of PL • 
. fl., 2-deoxy<-D-<;rlii.f=ose; A, 2-.~e~f['"'D'.'"gl1.,1cpse 
plus PL <2422M); O,, pyruvate-2- C;., py
ruvate-2- C plus PL (0~22M). 
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species (thymine, thyrnidine, 2-ketogl~taric acid, and malic acid), 

Efflux of 2-DeP?R(-D-Gluaose and 

D-~lanine in the Presence qf PL 
---,.-.....i -~ 

Several investigators have reported that with either active 

transport or facilitated diffusion the carrier functions in both 

directions; that is, in both efflu~ and influx. The efflux mechanism 

in a transport system has a twofold role. First, efflux may aid a 

control mechanism to prevent the c0nc:entration from building up in the 

cytoplasm to dangerously high levels, Sec0nd, the efflux mechanism 

could provide for return of the carrier (®r a reorientation) to the 

location necessary f®r con.tinued influ:x; (Winkler? 1971). 

Konings and Freese (1972) wo~king wi~h Bacillus subtilis demon-

strated that uptake of amino acids stops when the available energy 

scource hc1,s been completely oxidi~ed; the accumulated c1,mino acids then 

leak out at a rate of ab9ut 8 percent pe~ minute. 

~ecause of the possibility that PL could be causing an increased 

efflux rate rather than an actual inhibition of uptake, the efflux of 

2-deo::ey--D-glucose, a non-metab~liza,ble compound, wa$ investigated. 

Kirkland and Durhc1,m (1965) used toluene to faci;Litate enzyme 

assays in Pseudomonas fluorescens since it readily dis+u.pts the per-

meability barrier of the cell. For this reason, toluene (Q.02ml/ml 

samp~e) was selected as a positive control in these experiments, Data 

presented in Fig. 13, indicate that PL does not increase the efflux 

rate of 2-deoX¥-D-glucose. Instead, it appears that PL not only 

prevents uptake but also decreases efflux. 

Since an increase in the rc1,te of efflux of 2-deoxy-,D..-glucpse, 



Figure 13. :I;?)fluen~e or P~4and Tol~e~~ Qn.· .~f .. f.·lu~ o.{ 2~0eoxy
D-Glucose-;L- c~ 0 ~ c:ontrql Geils;•, w,ith 
t!!)luene (0.02 ml/m1, s~mple); • , with PL C0.22M). 
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could not be detected and because D-alanine was the c9mpeund of primary 

interest, a similar type of efflux experiment was performed using 

D-.alanine instead ef 2.-deo:x;y-D-gl\ic9se. Again it can be seen (Fig. 14) 

that the rate of release of D-alanine is not increased; rather it is 

slowed in the presence of PL. 

Effects of.~ and Physical Properties 
' . . . . \.,. ,. 

2f the Growth Medium .9!l Growth~ Up

take of D-Alanine-u- 14c 
-.,..,... -

Division of !:!• ll':SOd!'=ikticu,s is definite~y inhibited after six 

hou~s of incubation in the presence of D-c;yc:j.cpserine (DCS) as evidenced 

by the presence of large cells and inhibition of gr~wth. Lysis of 

cells is initiated at about this time and m9ny ghost cells can be de-

tected throughout the remainder of the gr~wth cy~~e. Grula and King 

(1971) have shown that PL C0.22M) will prevent this inhibition cf divi-

sion. Because of the hi.gh concentrati~n of PL required to inhibit 

uptake activity or prevent division inhibiti.Qn in the presence of DCS 

and the ease by which these effects of PL can be removed (simply 

washing the cells free of PL), it seemed possible that some or all of 

the effects of PL might result from changes in the physical prG>per-

ties of the growth medium~ 

Grula and Grula (1964) reported that either PL or qsmotic 

protective conditions significantly lower leakage of proteins and 

nucleic acid from rilamento\l.s cells of Erwin;i.a species, while stimu-

lating significant amounts of division even in the absence of normal 

mucopeptide synthesis. 

ln yiew of their findings it was felt that PL might possibly be 



Figure 14. Influence of PL on Efi:fl.u~ of D-Ali:inine-u-14c. 
Q, c;:ontrol cells; • , PL (0.22M) t;.J;'eated cells; 
Q, filt:r;:-ate from cont,i::-ol cell.s;., fil.t+ate 

from PL (0.22M) t.J;'eated cells. The top figure 
represents cells while the bottom f~~re repre
sents the supernatant. 
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acting by inc.t:'ei;l.sing osmotic ;r;>ressulj'e, thus caus:i,ng the ~rowth medium 

to become more hypertqnic;:. To ascertain whet1').er this is t,he manner py 

which PL is acting, the effects of several other so~pounds on growth 

and uptc;J.ke activity were investigated. The compounds selec;ted for 

study included suc:rpse, Carbowa,x.-400 (:Fisher Scientific C®mpany) , 

sodium chloride and spermine. 

It was observed that sodium chloride at a oc;mcentration of O. llM 

and sucrose (0.,22M) do not prevent division inh;ipition caused by ocs, 

although this concentration of so~ium chloride does reduce the extent 

of J.ysis. Carbowax-400 (0,2~) prevf:;!nts large cell f(llrrnation for 

eleven hours after DCS addition; howevex;-, after this timl;:! period many 

intermediate sbe cells can be seen., Although Cc;l.~bowax-400 and PL are 

the only compounds which prevent division inhibition caused by.Des, 

growth in the J?resence and i;ibsepce qf all compounds was investiga,ted. 

As shown in Fig. J,5, sucrose at a ooncentratipn. pf 0.22M has no effect 

on growth of M. lysodei)<tieus. Also very little inhibition is observed 
~ ., . -,, .. [,,' 

using high levels (O.,llM) of sodium chloride, whereas PL and Carbowax ... 

400 at equivc;1;t.ent conc:ent.Jratic;ms inh,ibit growth appreciaply. 

'.L'o determine if any of the compcn..md$ 9r ~ono.i tions had lasting 

!=lffec;ts, the cells were treated with ea~h CO!tl:PPUnd :for five minutes, 

followed by tw9 washings with min~mal salts c;1nd then c~ecked for growth 

resl'Onse by reinoculating the cells in,ta medium free ~f the compound 

under investigation,. As can be seen in Fig. 16, the inhibition, of 

growth is completely removed in each case by the washing procedure. 

Even though hypertonic:: condi tic;ms do not appea.r to be J:;'esponsible 

for inhibition of growth by PL, effect of tri,ese ~a>mpounds and condi-

tions on uptake a~tivity was ~nvestigatect. 



Figt:tre 15. Growth Response 9f Cells to PL, C~rb~wax·400, 
Sodium Chloride, a11-d .Suc;:rose l\dd!;:!d after 
Twelve HQurs In~ubation. (), co~t~Gl cells; 
• , with PL (0.22M); • , wii;:h Ca.!;'1DPWB)C.,40C) 
(0.22M); 4, with $Odi,um c;hll'.)ride (O.llM); +, w,ith suc:;:r'l'se (0.22M). 
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Figure 16. Restoration of Growth by Washing Cells which had 
been Xr~ated for Five Minutes with Eith~r PL, 
Carbowax-400, or Sodium C:h;).o,ride, 0, cont;rol 
cells;., with PL (0.22M); • ; with Carbowax.,.. 
400 C0.22M);~, with sodium ~hloDide {O.llM). 
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As illustrated in Fig. 17, hypertonic levels of Carbowax-400, 

sucrose, and sodium chloride do not ~nhibj.t uptake ~f D-qli3.nj.ne to the 

same extent as PL (15-20% as oppcsed to about 50% for PL). Data 

presented in Fig. l~ reveal that all inhibitions on µptake activity 

are removed by washing. 

The minimal inhibition of uptake observed in the presence of Car-

bowax-400 is interesting since Car~owax-400 qaused the greatest amount 

of growth inhibition and, like PL, also prevents division inhibition by 

DCS. Wargel, Shadur, and Neuhaus (~970) reported using~· coli that 

uptake of D-alanine, glycine, and P-crcl~serine is mediated by the same 

transport system. Since Carb~wax-400 did not signifi~antly inhibit 

uptake of D-alanine, it is improbabl~ that the beneficial effects of 

this additive on cell division are due to exclusion of DCS. Neverthe-

less, since transport in M~ lysodeikticµs could be quite different from - ,.; 

~· S21! the effect of Carbowax-400 an. uptake activity using L-glutamic

u-14c and L-aspartic-u-14c, which a~e the majQr carbon sources in the 

basc;tl medium for!'.!• lysodeikti(:us, was investigated. Although the data 

are not shown, it was opserved that C<trbowax-,400 does not inhibit the 

uptake of these two compounds; instead, a slight stimulation may be 

effected. 

Although the ease of restoration of both growth and uptake 

activity after treatment of cells with hypertqnic levels of sucrose 

and sodium chloride closely resemb~es the situation seen using PL, 

equal molar concentratiqns of sodium chloride or sucrose do not inhi-

bit growth or uptake of D-alanine to the same extent as PL. Also, 

neither prevents division inhi~ition caused by DCS. Thus, it appears 

reasonable to conclude that the ability qf PL to stimulate division and 



Figure l7~ ~ffect of PL, Ca~bowax-4QO, S~dium Chlo~ide, 1~nd 
Sucrose on Upta~e Activity of D-Alan.ine.-U- C • 
• , control cells; 0, p;Lt,iJ PL (Q.32M);. , 
plus Carbowa~-400 (0~22M); .. , plus $OQium 
chloz-ide <o,lJ.M); ., plU$ St,l<!t'QSe (0.22M), 
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Figure 18. Reversal of D-Alanine Uptake Inhib~tion. Cells 
Pre-treated (5 minutes) with Either PL, Carbo
wax-400, Sodiu~ Chloride, o~ $ucrose then Washed 
'I'wp Times in µptake Buffer prior to Determina
tion of Uptake. 0 , c~n"t;;r;q], c:e11$; • , PL 
(0.22M) treated .. .,._ Orei;L$;. , Ca.1:(qowa~...,4QQ. (0.22M) 
treated c;e;l.ls; •, sC;?d.ium chloride (O.UM) 
treated cells;~, su~r~se (0.22M) treated eells. 
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inhibit uptake is not due to any effects by this compound on tonicity 

of the growth or uptake media. 
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Grossowicz and Ariel (1963) demonstrated that spermine can pro

tect protoplasts of M. lysodeikticus against lysis under hypotonic 

conditions. They also reported {1972) that spermine inhibits uptake 

of D-alanine in~· lysodeikticus. Secause G.rula and Ki~g {1971, 1972) 

reported that spermine prevents inhibition of division caused by DCS 

in~· 1isodeikticus, the effec;:t of spe;rmine on uptake q,fD-alanine was 

also studied. 

Data presented in fig. 19 show that spe,rmine (6uM/ml) stimulates 

uptake activity in the dis-IIp+ strain of~· lysodeikticus. The dis

similarity of these J;'e·sul ts from those ,reported by Ariel and Grossowicz 

may have occurred becau~e of a difference in strains of or~anisms 

employed (dis-IIp+ is a nutritional mutant of~· lysodeikticus). It is 

possible that the carrier molecule(s) for D-alanine are different in 

· the two strains part~cularly since in later studies Ariel and Grosso

wicz (1972) have qmcluded that t;he inhibition by spermine is most 

likely dµe to a speoific l::>inding of spermine to the carrier molecule(s) 

for D-c;;!,lanine. 

It has ~ften been observed j,n our laboratory that when making 

slides of eultures containing PL, the droplet containing the bacteria 

has a tendency to glide apout on the sl;i.de rather than spreadin<g 0ut as 

normal. This observation suggests that PL causes an alteration in the 

physical properties of the growth medium. Since PL doesn't appear to 

be exerting its effects by increa:;;ing the hypertonicity of the growth 

medium, the possibility that PL alters surface tension was investigated. 

As shown in Fig. 20, PL will cause a decrease in surface tension. 



Figure 19. Uptake of D~Alanine-u-14c in t~e Apsence and 
Presence or Spermine. 0 , contre:>J., ceJ.,ls; 
A , with spe.r;:-rnine (6ul"l/mJ.). 
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Figu;re 20. Reduction in Surfa.ce r.i:'enston C:a.used, by iSodi'um 
La.uryl Sulfa. .. te (SL.S), 'l'w.i.€ en 80, and PL • 
• , SLS; • , 'l'ween 80;., Pli. 
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Included in Fig. 20 are data relative to decrease in surfaoe tension 

ca;1.,tsed by an anionic detergent sodium lc;turyl sulfate (SLS) e.nd a non-

ionic detergent 'l'ween so. Compe.red to the deterge:n,t;s, much higher con-

centrations of PL are required to cause equivalent red~ctions in sur-

fa,ce tension. 

Data presented in fig. 21, show that SLS at a concentration of 

0.01% (33 ·qynes/cm) inhibits uptalce activity approxime.tely 55 percent, 

whereas 'l'ween 80 at e.n equ:i,valent su.J;"face tension value exhibits little 

if any effect on uptake activity of the cells for D-alanine. Since the 

molar concentration of 'l'ween 80 cannot be calculated due to the impure 

nature of this detergent mixture, t~e effect of increasing concentra-

tions of the mixture 1 as well as PL and SLS, was investigated. Results 

from this series of studies are shown in Fig. 22, wherein percent in-

hibition of uptake is plotted against su1;face tension. As the surfa,ce 

te~sion is lowered by bpth SLS a~d PL the peroent inhipition of uptake 

increases to very nee.r 90 percent. However, with 'J;ween 80 no inhibi-

tion of uptake is detected even after the surface tension has been 

lowered to 40 dynes/cm. Since the ccmcentrai;:ion of PL required to 

lower surface tension to a value of 40 dynes/cm inhibits uptake of 

D-alanine approximately 85 percent, it appears that some effect other 

than a reduction of surface tension is res}?®nsible for inhibition of 

uptake activity by PL. 

Ab;i.l;i.ty 2f !'i· :J.ysodeikticus to TrcmsJ;?<?f't 

Acetic Acid-2-14c in the Presence of PL 

Overath, et al. 0.971) reported that only fi';ltty acids with more 

than eight carbons are actively transported into~·~· Data 



Figure 21. J;nhibitipn ot D·Alanine·V~14c Uptqk~ ~ctivity by 
S~dium La~ryl Su,lfate (S4S), 'rween 80, .ax'J.d~L· 
0, cont.)::'ol cells;. '9Plua SLS (0.01%); •, 
plus 'l'wei:n 80 (0~(;>1,%);•, plus PL <O-Ol%). 
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~igure 22. Percent J;nhipition of o~Al~nine~u~i4c Uptake 
~ctivitr as a Flllnction of PL Concentrq.tton, 
Sodium La1.1tyl Sulfat~ (SL$) CQni;ientration, 
and Tween 80 Concent,rq.tion 2tnP S4rf~~e Tensiqn. 
6 , PL; C] , ~LS; 0, ';l!weein EIO, 



71 

5.0% 

0% 10.0% 
0 ~---------------13 3.0% 

0.1 % 

20 

w 
::.::: 

3.a x 10-2 m <l: 30 r- D, 
a.. 
::) 

LL. 
0 40 
z 
0 
r-
al 

50 -I 
z 
~ 0 

60 

1.7 x 10-31!) 

70 

80 

90.__ ___ _._ ______ .__ ___ _._ ______ .__ ___ _._ ___________ _..,.... ___ __. ______ _._ ___ -,J 

70 60 50 40 30 
SURFACE TENSION ( DYNES/CM) 



presented in Fig. 23 show that~· 1¥sodei~ti.c~s is able to transport 

acetic ac;:;id by what cippea.rs to :Pe an act;ive type proc:eiss (78 percent 

inhibition in the presence of 10~ 2M DNP). 

Also presented in Fig. 23 are data showing that PL may actually 

stimulate the uptake pf acetate. This is tpe only compound tested, 

72 

wherein an inhibition in upta~e ability does nQt oqcur when PL is 

present. Also, if cells are grown in the presence of PL, they exhibit 

a much greate.t;' ability to transport acetate than eel1$ grown in media 

without PL (Figure 24). lncorporation of PL intq the uptake medium 

only slightly decreases uptake ability qf such cells when acetate is 

the compound being transported, These da~a su~gest that the transport 

system for acetate may be quite different; p~ssibly located in an en-

vironment not common to the other compQunds investigated. 

P~1yacryla~ide Gel Electrophoresi~ 

P0lxac:r.xlamide Gel Electro;pho~~~is 

of lsolated Cell Membranes from - ~~-· ~ 

Cells Grown at 37 C and 15 C ~--~--
Data presented in Fig, 25 represent eleqtropherogram patterns of 

proteins from membranes of cells gr~n at 37 C (shaking and standing 

cultures) and 15 C (standing cul ti.ires c;ml.y). Cells grown at the lower 

temperature (15 C) have a greater ability to concentrate P-alanine than 

cells grown at 37 C under standing condi.tions (F.i,g. 10)~ and differ-

ences of a quantitative nature are apparent in the meml;:>rane proteins 

when these cells are compared. There is pne band (starred) that is 

present in greater amounts in the cells grown at 15 C; however, it is 



Fi~re 23. Influence of P~ and 2,4-Dinitrophenol on the 
Abil~ty (:): !':!· ~qdeikti~lJS to T;r:'c!,l'lSJ;'Ofl 
AcetJ..c Aci.d .. 2 .. J. t • . . , acn;etic c;1cid.- 2- c;:; 
C), acetic ~~ia-2~ 4c pius PL (0,44M>;II, 

ace~~c acid~2· C pl~s 2,4-dipit~ophe~ol 
( 10 M). 
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Figure 24. Influence of PL qn lr~ns]1)eft ~f Aqet!~ Acta-2~+4c 
in C9ntrol Cells a~d PL ~r~ Cells. (), con~ol 
cells; A , cell,s g.l;'own ii:q tn~ ~.:j:;esence of PL 
<0.22M) f~r 6 ho~rs then wasned twice w~th mini~ 
mal salts and uptc:ik;e abil:i,ty dete.t'rni;oed;., 
control, cells pJ,.us PL (Q,22:M); A, Pt, g.li'own. asils 
(6 hours) whioh were wash!;!!d tw<> times ];,~:fore 
readdition of PL (0.22,M) to t;:J,.E;:i uptalq;~ ~Yl:!tem. 
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fig\,lre 25, E;lectropherog.ram Patterns (SI.i$ gel systfem) of 
Iso~ated Membranes Frqm Ce~ls Grown at 37 C 
and 15 c. 
A, Cells grown at 15 C un,de.ir static:,nary ~onditions 
a. Cells grown at 37 C under stqtional;'y conditiqns 
c. Cells growr.i, at 37 C u~der shaki~g conditions 
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highly improbable that the prote,in(s) in this band is responsil;,1e for 

increased uptake ability of these cel,ls since there i$ little or no 

increase in this band in cells grown under shaking conditions at 37 C, 

Although not shqwn, cells grown at 37 C with shaking have uptake 

ability which is equal to cells grown µnder stationary cpnqitions at 

J.,5 c. Thus although it is entirel,y possible that inc::reai:;ed µptake 

ability of cells grown at the lower temperature is due to increased 

synthesis of some critical protein(s), such synthesis could not be 

demonstrated utilizing the technique of pqlyacrylamide disc gel elec

trophoresis. 

Fatty Acid Analyses 

Fatt:l Acid ComP<?~ition ~ !:!• lXs9deikt,icus 

Whole qells GrQwn Under Pifferent 

Environmental Conditions 

Cho and Salton (1966) reported that lipids in the membranes of 

ae~obic Gram-positive bacteria contain a high pr~portion (over 50 

percent) of branched-chain fatty acids, They further observed that the 

great majority of cellular lipids are localized e~clusively in the mem

brane $yi::tems of Gram~wsitive org~nisms whereas these compound$ are 

found in the "wall" or "envelope" fraction of Gram-negative bacteria. 

Since it had been suggested that PL might be causing an altera

tion in membrane fluidity by associating with ~nsaturated fatty acids 

(Hopfer, 1972) a survey 0£ the fatty acid composition of the J.,ipids 

present in whole cells of.£:!• ixsodeiktict,ts grown under different: en

vironmental conditions was performed. 



80 

The results of these analyses are snown i~ Taple Ill. The data 

are in good agreement with those reported from other la.lDe>ratories (Cho 

and Salton, 1966; Thorne and Kodice)c, 1962). Beth st,i:;-ains of !'.!· 1¥so

deikticus (dis-lip+ and Salton's strain) contain very large amounts of 

the C 15 branched-chain fatty acid, Although the quantitative differ

ences in fatty acid c;om:posit,ion ;between the tr10 ~r~anisms are probably 

not significant,!'.!• lysodeikticus dis-Ilp+ has a small quantity of one 

additional fatty acid which was not detected in Salton's strain (C 15). 

A significant reduction in the percent of C 15:br{anteiso) fatty 

acid occurs when cells are grown in defined medium as opposed to cells 

grown on PWYE medium (14 percent reduction). This reduction is accom

panied by an increase in several fatty acids LC 15:0, C 16:br, C 16:1, 

and C 17:br{anteisol/• This quantitative variation in fatty acid com

position is not surprising in view of the marked effect cultural condi

tions have on lipid com:J?Osition in other organisms (Marr and Ingraham, 

1962; Houtsmuller and VanQeenen, 1964). 

Vorbeck and Marinetti (1965) pepc,rted that at lec1,st 95 percent 

of cellular phospholipids are found in the membrane fraction of Gram

positive bacteria and the remaining 5 percent, which are found in the 

cytoplasmic fraction, have a c0mposition identical to meJ:riQrane phospho-

lipids. Data presented in ':r:'a)Jle IV reveal that tne fatty acids ex

tracted from whole cells and isolated cell membranes of~· lysodeikti

cus are very similar, if not identical. Because of this similarity, 

most data were obtained py extraction of whole cells. This decreased 

much qf the tedium involved and Rermitted more extensiv~ samplings to 

be made. 

Many reports are available on the effect qf environmental 



TABLE III 

FATTY ACID COMPOSITION OF LIPIDS EXTRACTED FROM 
WHOLE CELLS OF MICROCOCCUS LYSODEIKTICUS 

Average Percent Composition* 
!:!• lysodeikticus dis-IIp+ ~· lysode1kticus 

Defined mediuma PWYE Mediumb (Salton's strain) 
Relative Retention Fatty Acid 

Time** Designation 
PWYE medium 

0-28 C 12:0 
0-.32 C 13:0 
0.42 C 14:br 
0.48 C 14:0 
0.59 C 15 :br(anteiso) 
0.64 .c 15 :0 
0.:80 C 16-:br 
1.00 C 16:0 
1.13 C 16:1 
1.24 C 17:br(anteiso) 
1.57 Ad 

tracec 
trace 

2 
2 

65 
3 

11 
5 
4 
6 

trace 

trace 
trace 

1 
4 

79 
1 
3 
5 
l 
4 

trace 

trace 
1 
2 
1 

86 

1 
3 

trace 
4 

trace 
1.81 C 18:0 trace trace trace 
l.95 C 18:1 trace trace trace 
2.27 .c 19:br(anteiso) trace trace trace 

*The average number is based on two experimental determinations made at different times~ 
The percentage of each acid was calculated after measurement of the total area under each 
peak (height of each peak times width at one-half peak height). 

**Retention times were calculated relative to C 16:0. 
~Defined medium: as presented under Materials and Methods. 

PWYE medium: 1% w/v Bactopeptone, 0.1% w/v Difeo yeast extract, 0.5% w/v NaCl, pH 7 .5 (KOH). 
c Percentages less than l are reported as trace amounts. 

Ad: unknown methyl ester. 
All cell cultures were incubated at 30 C for 16 hours. 

(X) 
I-' 



TABLE IV 

A COMPARISON OF THE FATTY ACIDS EXTRACTED FROM WHOLE CELLS 
OR MEMBRANES OF MICROCOCCUS LYSODEIKTICUS dis-IIp+ 

Fatty Acid Percentage Fatty Acid Com~sition* 
Designation Whole Cells Cell Membranes*-* 

C 12i0 trace a trace 
C 13:0 trace trace 
C 14:br 2 2 
C 14:0 3 3 
-C 15.:br(anteiso) 61 60 
C 15.:0 3 4 
C 16:br H 15 
C 16:0 8 6 
C 16:l 6 5 
C 17:br(anteiso) 5 1 

Ab trace trace 
C 18:0 trace 1 
C 18:1 trace trace 
C 19:br(anteiso) trace trace 

*As given under Table III. 

**Cell membranes were prepared as described under Materials and Methods. 

a Percentages less than 1 are reported as trace amounts. 

b A: unknown methyl ester. 

All cell cultures were incubated at 37 C for 16 hours. co 
N 
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temperature on the fatty acid GornPQsition of bacterial lipids, showing 

that, in general, cells grown at low temperatures contain increased 

amounts of unsaturated fatty acids (Kates, 1964; Marr and Ingraham, 

1962). Ok:uyama (1969) sug~ested that these changes enaRle cells in a 

cold environment to maintain {l~id membranes since unsaturated fatty 

acids have lower melting points than saturated forms. 

Although only a small percentage of unsaturated fatty acids are 

present in !1• lysodeikticus, it appeared of interest to compare the 

fatty acid composition of cells grown at 15 C and 37 c. A slight 

increase in the two unsaturated fatty acids (C 16:l and C 18:1) occurs 

when cells are grown at 15 C (Table v). Accompanying the increase in 

unsaturated fatty acids (at 15 C) is a decrease in per~enta~e of C 14, 

C 14:br, and C 16:br~ Although several differences in percent fatty 

acid composition are apparent at the two tem~eratures, the extent of 

each alteration is less than 5 percent, while the total of all the per

cent differences is only about 15 percent. T):lus, it appears that only 

little change in percent fatty acid results when these eells are grown 

at 15 C as opposed to 37 c. 

Because the fatty acid compesition qt the two different tempera

tures represent lipids extracted from cells grown under stationary 

c9nditions (non-shaking), data are also prE:lsented in Table V that 

represent aerated (shaking) cells, grown at 37 c. Again, there ap

pears to be little overall difference in fatty acid comp0sition be

tween cells grown under stationary conditions and cells grown with 

shaking. 

The possible involvement of pnospholipids in the oarrier-mediated 

transport of monosaccharides across erythrocyte membranes has been 



Fatty Acid 
Designation 

C 12:0 
c 13-:0 
C 14:br 
C 14:0 
C 15:br(anteiso) 
C 15:0 
C 16:br 
C 16:0 
C 16:1 
C 17:br(anteiso) 

A 
C 18:0 
C 18-: 1 
C 19:br(anteiso) 

TABLE V 

THE EFFECT OF GROWTH TEMPERATURE DN THE FATTY ACID COMPOSITION 
OF LIPIDS FROM MICROCOCCUS LYSODEIKTICUS dis-IIp+ 

Average Percent Composition* 
Cells Grown at 37 C 

(shaking) (stationary) 

trace trace 
trace l 

2 5 
2 3 

64 67 
trace trace 

12 7 
7 7 
1 · trace 

10 8 
trace trace 
trace trace 
trace trace 
trace trace 

Cells Grown at 15 C 
(stationary) 

trace 
trace 

1 
1 

68 
trace 

4 
7 
3 
9 

trace 
2 
l 

trace 

*The average number is based on two experimental determinations made at different times. All 
other conditions and calculations as given under Table III. 

All cell cultures were harvested at an optical density of approximately 0.5. 

00 
,r:,,. 
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su9gested by LeFevre et al. (1964) and Mc;J.wdsley and Widdas (1967), who 

found that phospholipids extracted from these membranes had tne ability 

to bind various rnonosaccharides. Also data pres~nted by Fox (1969) 

demonstrated that unsaturated fatty acids ar~ required during the 

course of induction of the lac operon in E.coli to permit synthesis ~- ~ ~ 

of a functional lactose transport syste~. 

Since the transport system for various compounds in~· lysodeik-

ticus is inhibited by PL, studies were initiated to determine what 

effect(s) PL has on fatty acid compc,sition of lipids in M. lysodeikti-

~· 
A shift in the percent of :i,ndividm~l fatty acids qccurs as normal 

(control) cells enter the logarithmic growtn phase (Fig. 26). A 

gradual decrease in th~ percent of three fatty acids is sh~wn; C 14, 

C 16, and C 18. This decrease appears to level off after about 18 

hours at which time cells are entering the stationary growth phase. 

During this same time period an increase in the percentage of C 15:br 

(anteiso)~ C 16: br, and C 16:l o~curs. 

When PL (0.22M) is present in the growth medium several altera-

tions in fatty acid composition o~cur (Fig. 26). While the~e appears 

to be little difference in the percentage of saturated straight-chain 

fatty acids in normal and PL grc;,wn cells a significant c;l.ifference can 

be seen in two branched-chain fatty acids. After 2 hours of inauba-

tion in the presence of PL the percent of C 15:br(anteiso) is only 37 

percent of the total (53 percent in control cells). 'rhis level is 

maintained for the full incu~ation peripd (38 percent after 10 hours). 

The other branched-chain fati:y acid affected by PL is designated C 16: 

bt. It steadily increases in amount to a value of 31 ~erc:ent after 



Figure 26. Effects of PL on Fatty Ac~d C~mpositipn of Lipids 
in Micrgcoccus J,ysodeikticus. PL (0.22M) was 
added after twelve hours inc;::ubation at 37 C 
and percentage fatty acid composition of lipids 
was determined after O, 2, 4, 6, and 10 hours 
additional incµbation. Dotted bars rep.t;'esent 
control cells. Striped bars represent PL grown 
cells. 
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10 hours. This is 22 percent above the value for control cells at this 

time and appears extremely significant. 

Growth in the :presence of PL can be termed "stress conditions" 

since amount of growth obtained is severly inhibited (Table VI). To 

determine if D-cycloserine (DCS) 1 which inhibits growth as well as cell 

division, induces the same general type of effect, cells were grown in 

the pre:;;ence of this compound for varying periods of time. Data which 

relate to growth and cell size are presented in Table VI. Although the 

effects of PL on growth are seen within 2 hours, inhibition of growth 

in the presence of DCS is not evident until 4 hours. At the end of 

this time, cells growing in the presence of DCS have begun to lyse 

(approximately 10 percent); however, lysis of cells never occurs in 

the presence of PL. 

Data presented in Table VJ aiso show that DCS-grown cells initi

ate enlargement (cells fail to divide) after 2 hours incubation as 

opposed to PL grown cells which never enlapge. By 10 hours, cells 

grown in medium containing DCS can be considered large (average size 

is 1.7 um which represents a volume increase of 9 times) and lysis of 

approximately 80 percent of the cells has occurred. 

The effects of DCS on the fatty acid composition of membrane 

phospholipids occurs somewhere between the fourth and sixth hour of 

incubation since only slight changes can be measured in 4 hour cells; 

however definite changes can be seen 6 hours after addition of this 

cell wall and cell division inhibiting compound (Figure 27). After 6 

hours, the percent of C 15:br(anteiso) is reduced by about 17 percent; 

however, by 10 hours the amount of this fatty acid is reduced 48 per

cent below the control value. The reduction in this C :).5 branched-chain 



TABLE VI 

EFFECTS OF DCS AND PL ON GROWTH OF 
MICROCOCCUS LYSODEIKTICUS 

Time O. D.* Percent lisis*-* 
DCSD p£15 (Hours After Additions) Control DCS PL 

0 0.20 0.20 0.19 0 0 

2 0.31 0.30 0.24 0 0 

4 0-.53 0.26 0-.30 10 0 

6 D. 71 0.21 0.35 30 0 

10 1.10 0.18 0.39 80 0 

*O. D.: optical density measured at 540 nm. 

**Percent lysis estimated by observation of cells using light microscopy. 

aCell size estimated by measurement of cells using electron microscopy. 

bDCS: D-cycloserine, (2.0 x 10-4M final concentration); PL, (0.22M final concentration) 
Both compounds were added after incubation of cells for 12 hours at 37 c. 

Av. Size (um}a 
DCS PL 

0.78 0.78 

0.92 0.78 

1.13 0.7B 

1.30 0.78 

1.74 0.78 

0) 
\0 



Fig1.1re 27. ~ffects of DCS on Fatty ~cid C~rnposition of ~!pids 
in Microceocus lys0deikti~us. DCS (2 x 10 M) 
was added after twelve h,uns i.nc1,,1batfon at 37 c. 
Percentage fatty ac;:id aorn:ppsition of lipids was 
determined after o, 2, 4, 6, and lQ houps fur
ther inGubation« Dotted bars represent control 
cells. Striped b&rs ~epresent DCS growp ceils. 
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fatty acid is accompanied by an increase in four fatty acids, three of 

which are saturated straight~chain acids {C 14, C 16, and C 18) and one 

unsaturated fatty acid, C 16:1. The C 16 straight-chain fatty acid is 

increased to a much higher level than any pf the other fatty acids (28 

percent above the control value after 10 hours). 

Lysis is a],ways a problem and must be considered when a wall 

inhibiting compound such as DCS is present. At 6 hours, apprpximately 

30 percent of the cells are lysed and this may have an effect on the 

percentage of fatty acids. This seems highly unlikely however since 

at 4 hours at least 10 percent of the cells are lysed and effects which 

appear to be due to pcs at this time are opposite those detected at 

6 and 10 hours. 

The effects of DC$ and PL on the C 15:br(anteiso) fatty acid are 

of more than passing interest. This c0mpcn.md appears to be the "bell

wether" fatty acid since it seems to undergo change and the large 

amounts present allow for ready detection of change. Amounts are de

creased both by DCS and PL; however, the decrease is evident within 2 

hours in cells grown in the presence of PL, but is not apparent until 

between the fourth and sixth hour when cells are grown in the presence 

of ncs. Further, in the presence of ncs, the amount continues to drop 

until a very low level is reached after 10 hours (from 60 to 13 per

cent of total lipid content); however, after the initial decrease 

caused by PL, which is small by comparison, further decreases are not 

evident. Also, cells grown in the presence of PL possess a signifi

cantly higher percentage of the C 16:br fatty ?cid whereas growth in 

the presence of DCS causes a significant increase in the level of the 

C 16:0 fatty acid. Thus, although both PL and DCS cause a decrease in 
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the amount of the C 15:br(anteiso) fatty acid, a different type of C 16 

fatty acid is synthesized to ~ompensate for this los~. 

When lipids from cells grown in the presence of both PL and DCS 

(for 6 hours) are analyzed for their fatty acid composition the pattern 

obtained is very similar to cells grown only with PL present, Rather 

than a combination of the effects of PL and DCS occurring it appears 

that PL is able to prevent the alterations in fatty acid composition 

caused by DCS. However, after 10 hours of growth in the presence of 

both DCS and PL the effects of each compound are apparent. 



CHAPTER IV 

DISCUSSION 

Pantoyl lactone (PL) has been shown t0 be an effective inhibitor 

of the D-alanine transport system in~· lysodeikticus dis-IIp+. In

hibition in uptake ability occurs immediately after the addition of 

PL (within 30 seconds) and can be easily +emoved by aqueous washing of 

the cells. This effect of PL appears to depend on the lactone struc

ture since pantoic acid has little or no deleterious effect on D-ala

nine,Jptake activity~ 

~· lysodeikticus is able to t.1;i3,nspqrt D-i3.lanine by what a,ppears 

to be an active process. A reduction in uptake occurs when cells are 

shocked by the procedv.re of Ga.le and Llewellin (1970) or when uptake 

activity is measured in the presence of 2,4~dinitrophenol (DNP), an 

uncoupler of oxidative phosphorylation. Additional evidence for an 

active type process is the observation that uptake of D-alanine obeys 

saturation kinetics~ 

The direct energy donor and coupling mecnanisms for the active 

transport of many metabolites across microbial membranes hi3.ve yet to be 

clearly established. In.the case of many sugar transport systems in 

bacteria, evidence has accumulated indicating that the high energy 

phosphate pond present in phosphoenolpyruvic acid drives the transport 

by way of a vectorial phosphorylation of the sugar (Roseman, l9p9). 

Other transport systems, thG>se involving amino ac;ids or lactose, 

94 
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do not appear to require or utilize the phosphotransferase system. 

Recently it has been found that transpc,rt of these compo~nds is mp.rked-

ly stimulated, in cell-free bacterial membrane preparations (vesicles) 

from E. ~ and f• subtilis, by D(-)lactate or succinate and the sug-

gestion has been made that specific dehydrogenase activity in these 

preparations supplies the energy fo+ transport via some mechanism 

other than the formation of high energy phosphate bonds (Kaback and 

Milner, 1970; Barnes and Kaback, 1970; Konings and Freese, 1972). 

Additional results reported by Konings and Freese (1972) indicate no 

involvement of a phosphorylated inte,J;:"mediate in such b;-ansport systems; 

however, the possibilit~ of a rapid turnover of such a compound was not 

eliminated. 

Although the energy-coupling mechanism for transport in aerobi-

cally grown cultures of organisms such as E~ coli and B. subtilis 
~ ~ -

seems to depend on dehydrogenase activity, the uptake of K+ and cycle-

leucine in Streptococcus faecalis gr©wn under microaerophilic condi

tions appears to be coupled to the activity of a membrane ATPase 

(Abrams, Smith, and Baron, 1972). It would appear therefore that 

organisms, such as~· faecalis, grown under conditions of limiting 

oxygen could require energy-coup~ing mechanisms for transport different 

from those utilized, in aerobically grown organisms. 

l'he drastic reduction in D-alanine uptake which occurs in M. 

llsodeikticus with the addition of DNP might be considered as evidence 

that tne D-alanine transport carrier has become uncoupled from the 

electron transport chain; however, Konings and Freese (1972) have 

suggested that an additional effect of DNP may be to alter the per-

meability properties of the membrane. 



Other metabolic inhibitors (cyanide, azide, arsenate, and iodo

acetate) are also effective inhibitqrs of D-alanine uptake. The large 

degree of inhibition observed in the presence of cyanide and arsenate 

(65 percent and 44 percent inhibition respectively) suggests that both 

a high energy phosphate bqnd and electron transport are necessary for 

~· lysodeikticus to concentrate D-alanine. Since cyanide inhibits up

take ability to a greater degree than arsenate, it seems probable that 

the electron transport system is somewhat more important in coupling 

energy to D-alanine uptake than formation of high energy phosphate 

bonds. 

When PL is added to the uptake system in the presence of DNP a 

further reduction in uptake results. This can be considered as in

direct evidence that PL is altering the binding proteins for D~alanine 

or in some manner changing the permeability properties of the membrane, 

or both. This would be in agreement with data showing that saturation 

of D-alanine uptake occurs at a lower substrate concentration in the 

presence of PL. However, the additional reduction in uptake activity 

in the presence of DNP also might occur if PL were further uncoupling 

oxidative phosphorylation. This seems unlikely since the effective 

concentration of the metabolic inhibitors needed to cause an equivalent 

reduction in D-alanine uptake ability is m~ch smaller than the concen

tration of PL required. Further evidence against PL acting as an in

hibitor of energy generation by interfering with electron transport 

has been obtained in studies performed by Dr. Mary Grula (unpublished 

data). She has shown that in the presence of certain substrates, PL 

does not inhibit and may slightly stirm.i.late oxygen uptake by cells of 

M. lysodeikticus. 
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One of the most significant attributes of the chemiosmotic hypo-

thesis (Mitchell, 1966) is that it relates not only to oxidative phos-

phorylation, but to all of the many energetic and c:onb:-ol functions 

associated with cellular membranes. In regard to transport, it could 

be predicted that both the major components of the protomnotive force, 

membrane potential and pH gradient, might be capable of driving the 

transport of ions and nutrients across mempranes against thei~ pre-

vailing electrochemical gradients. A flux of cations might therefore 

be driven by the membrane potential (inside of the membrane becomes 

negative), while according to Niven, Jeacocke, and Hamilton (1973) 

anion transport might respond to the pH gradient through the action 

of a proton-symport (inside is alkaline), 

A drastic reduction in ~ptake ability results when potassium is 

substituted for sodium in the uptake buffer of~· lxsodeikticus or when 
' , .. 

uptake ability is measured in th~ absence of any ions (distilled water 

only). Thus, it would appear that sodium ions may be functioning in 

some type of exchange reaction to help concentrate D-alanine. Addi-

tional experiments, such as the monitoring of sodium ion efflux during 

uptake, will be necessary to resolve this problem. 

As mentioned earlier the membrane potential may also be modified 

:by varying the external pH. Additi~n of alkali could result in proton 

efflux and sodium influx with consequent increase in potential. 

Changing the pH f.t0m 6.0 to 7.0 results in an increase of D-alanine 

uptake activity; however, a further increase in pH to 7.S reduces the 

ability of~' lysodeikticus to concentrate D-alanine (Figure 8). There-

fore, it would appear that transport of D-alanine cannot be directly 

related to decreasing concentration either of H+ or OH- ions. It 
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should be cautioned that the binding protein(s) for D-alanine probably 

have different affinities for substrate at the various pH values; this 

would also result in altered ~ptake ability thus complicating any 

attempted interpretation. Whatever the cause for the variation in up

take activity, maxirnµm u~take occurs at pH 7.0, and percent inhibition 

in the presence of PL is the same whether measured at pH 6.0, 7.0, or 

7.8. Since a slightly acid pH does not stimulate transport of D-ala

nine, it is probable that movement of hydrogen protons through the cell 

membrane is not the driving force in uptake of this compound. 

Because PL is able to ;inhibit the transport of a number of com

pounds (L-aspartic acid, L-phenylala.nine, 2-deoxy-D-glucose, uracil, 

glycerol, pyruvate, and malic acid), it is highly unlikely that the 

inhibition is due to specific binding of PL to the active site of all 

the various binding proteins that cpuld be involved (specific analog 

effect). Also the ease by which the effects of PL are removed by 

simple washing argues against a PL-protein interaction. Instead, it 

would appear that PL is causing some generalized alteration in membrane 

permeability. The observation that PL inhibits the uptake of 2-deoxy

D-glucose and pyruyate, which appear to be entering the cell by a 

passive diffusion process, supports this hypothesis. 

A dis.t'Uption in membrane permeability should result in loss of 

compounds through an efflux type mechanism, However, efflux experi

ments performed using two compounds (2-deoxy-D-glucose, a non-metabo

lizable compound, and D-alanine), showed that PL has a negative effect 

on efflux. These experiments help explain the observed increase in 

endogenous oxygen consumption which occurs in the presence of PL (Dr. 

M. Grula, unpublished). Oxygen uptake would ~e expected to continue as 
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long as substrates are present within the cell. 

Experiments performed to determin~ whether PL is exerting its 

effects on uptake ability by altering a physical property of the up

take medium revealed that neither hypertonic conditions nor a lowering 

of surface tension inhibit transport of P-alanine. 

It is extremely interesting that.the uptake ability 0f ~· 1¥so

deikticus for acetate is not inhibited by PL. This observation tends 

to r1.,1le 01Jt a general type blc,ckage of membrane "pores" by PL. Since 

acetate transport occurs by what appears to be an active process, the 

lack of inhibition in the presence of PL suggests that PL is also pro

bcl.bly not influencing energy generating processes within the cell. It 

appears more likely that the transport proteins for acetate are located 

in some sort of different environment or one which is inaccessible to 

PL. It is also possible th~t transport of this particular molecule 

(in this organism) depends on a different set of membrane components 

and, for some unknown reason, these are not influenced by PL. The 

possibility that the transport of different molecules might depend cm 

independent energy compartments also cannot be completely ruled out. 

Several reports are available on the effect of temperature on the 

lipids of microorganisms showing that, in organisms grown at tempera

tures below their optimum mernprane phospholipids contain higher pro

portions of unsaturated fatty acids than organisms grown at optimum 

temperatures (Pearson and Raper, 1927; Gaughran, 1947a; Marr and 

Ingraham, 1962). The converse effect of temperature, that organisms 

growing at temperatures above their optima have higher proportions of 

saturated acids and a lower degree of unsaturation, does not always 

apply (Bishop and Still, 1963b; Gaughran, 1947b). 
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Growing~· lysodeikticus at 15 C rather than 37 C results in 

little change in fatty acid composition. Thus, it would appear that 

there is not a direct re+ationship betw~en fatty acid composition and 

growth temperature. Similar results were reported by Marr and Ingraham 

(1962) who demonstrated that growth of E. S2]j, at a particular tempera

ture does not always result in a unique fatty acid composition, since 

altering the nutrition or time of cell sampling, independent of temp~ 

erature, also results in major changes in fatty acid composition. 

A direct correlation petween fatty acid composition of phospho

lipids and uptake of D-alanine in ~· lzsode.ikticus does not appear to 

exist. Alterations (significant increase as shown in Fig. 10) in up

take ability can be observed in cells grown at a lower temperature 

(15 C), wherein only slight alterations in percentage of fatty acids 

occur. The converse, that is altering fatty acid composition of phos

pholipids without affecting uptake ability of~, lysodeikticus for 

D-alanine, is also true (cells grown in the presence of PL as shown in 

Fig. 3). Therefore, it appears that the transport ability of~· lyso

deikticus for D-alanine probably is not directly related to a unique 

fatty acid composition within membrane phospholipids. 

Data presented in Fig. 25 were obtained utilizing isolated mem

branes from cells grown at two temperatures (15 and 37 C) wherein 

changes in uptake ability were observed. The protein band patterns 

obtained were essentially the same from a qualitative standpoint. One 

band (molecular weight about 30,000), is significantly increased in 

cells grown at 15 c. The function of this and other proteins resolved 

utilizing this procedure are not known; however, it seems highly im

probable that the increased uptake ability demonstrated by cells grown 

I Iii/I 



at lS C is a result of an increase in this particular protein band. 

Cells grown under shaking conditions (37 C) also are able to take up 

large amounts pf D-alanine without a corresponding increase in this 

particular protein band. 
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Since it has not been possible to demonstrate any large and there

fore possibly significant changes either in phospholipid fatty acids or 

proteins within the cell membrane which would account for the increased 

uptake ability of cells gro1'1f!1 at 15 c, it is necessary to conclude that 

the increase probably occurs because of a more subtle type of change in 

these cells. Examples might pe: (1) Increased synthesis of some small 

molecule specifically linked and required in transport such as iono

phores, (2) Greater charging of the cell interior because of greater 

ability to maintain a higher intracellular Na+ content, (3) ~reater 

ability to synthesize comp<;?nents responsible for generation of energy, 

and (4) Some type of subtle change in association of those phospholipids 

and proteins involved in the active uptake process. 

When phospholipids from cells grown in the presence of PL or DCS 

are analyzed for their fatty acid composition two significant changes 

can be seen. A significant reduction in the major fatty acid, C 15:br 

(anteiso), occurs in the presence of both compounds. However, in the 

presence of PL this reduction is accompanied by an increase in the fatty 

acid designated C 16:br (goes from 9 to 31 percent of the total), where~ 

as with DCS an increase in the fatty acid designated C 16:0 (goes from 

13 to 41 percent of the total) occurs. 

Willecke and Pardee (1971) have recently shown that the methyl

branched portion of fatty acids in B. subtilis is derived fr9m carbon 

skeltons of the three branched chain amino acids: valine, isoleucine, 
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and leucine. Oxidative decarbox:ylation of the corresponding 2-keto 

acids leads to the branched chain c4 and c5-coenzyme A derivatives, 

which are the "primer" molecules that are lengthened by successive 

addition of c2 units derived from malonyl-CoA. Oxidative decarbox:yla

tion of 2-ketoisocaproate leads to formation of isovaleryl-CoA (as 

primer) and odd-numbered branched chain iso acid forms are produced 

(leucine serves as the precursor amino acid). Oxidative decarbox:yla

tion of 2-ketoisovalerate results in the production of isobutyryl-CoA 

as the primer molecule and even-numbered iso acid forms result (valine 

serves as the precursor amino acid). Synthesis of anteiso-branched 

odd-numbered fatty acids occurs by way of the 2-methylbutyryl CoA 

system which results from oxidative decarbox:ylation of 2-keto-3-methyl

valerate with isoleucine serving as the precursor amino acid (Willecke 

and Pardee, 1971; Horning et al., 1961). 

Evidence has also been reported by the above authors indicating 

that a single enzyme catalyzes the oxidative decarbqx:ylation of all 

three branched chain 2-keto acids in B. subtilis. An inhibitory effect 

by PL or DCS on this decarbox:ylating enzyme could explain the decrease 

caused by both compounds in synthes~s of the C 15:br(anteiso) fatty 

acid; however, the problem is more complex since a different C 16 fatty 

acid (branched- and straight-chain) is synthesized as a result of their 

presence. It appears more likely that both PL and DCS are exerting an 

influence on fatty acid composition by affecting synthesis of the primer 

fatty acids. This is the most likely possibility since chain elonga

tion of all types of fatty acids occurs by way of 2-carbon additions 

involving the malonyl CoA system. 

The metabolic basis for the shift from an odd-numbered branched 



103 

chain fatty acid to an even~numbered straight chain acid caused by DCS 

is not known. A reduction in the amount of available isoleucine would 

explain the decrease in C 15:br(anteiso) fatty acid; however, this 

would not explain the large inorease in the C 16;0 form~ For whatever 

reason the cell brings about this change it is worth noting that the 

greatest change in fatty acid composition is apparent after 10 hours 

of growth in the presence of DCS (figure 27), at which time cells are 

very large (Table VI) and also quite old. 

The changes effected in fatty acid composition by PL LC 15:br 

(anteiso) to C 16:b.£/ might possibly result because either more valine 

and/or 2-ketoisovaleric acid (would yield isobutyryl CoA after oxida

tive decarboxylation and reaction with CoA) is available. 

As has been pointed out by Kodicek (1963), an ideal semipermeable 

membrane must have some means of remainin~ elastic and not becoming 

too rigid or brittle. This cc;3.n be accomplished if the fatty acid 

chains in the phospholipids resist being packed very closely. Packing 

(or crystallization) of saturated forms of fatty acids is disrupted to 

varying degrees by short chain, branched chain (both iso and ,mteiso), 

cyclopropane, cis-forms and unsaturated fatty acids. 

Since both DCS and PL induce ~hifts which result in decreased 

levels of the C 15:br(anteiso) fatty acid (to C 16:0 and C 16:br 

respectively), it is possible that such changes are beneficial and 

necessary to permit the cell to adapt itself to new requirements 

either of a more or less hostile environment. Increased synthesis of 

the C 16:0 fatty acid (DCS induced response) probably indicates that 

the bilayer portions of the cell membrane are more closely packed. 

Su.ch a response could be beneficial and necessary because DCS causes a 



104 

decrease in synthesis of mucopeptide (King anq Grula, 1972). This 

would bring about a closer association of the cell membrane with the 

external environment. The increased synthesis of C 16:br (PL induced 

response) could also indicate a general tightening of the cell mem

brane; most particularly if this fatty acid is of the iso rather than 

a anteiso form (data not avaiiable to make this distinction; however, 

no reports exist designating a possible primer molecule for an even

numbered branched anteiso fatty acid). 

When uptake of D-alanine is measured in cells grown in the pres

ence and absence of PL no measurable difference in activity is detected 

after washing cells free of PL. However, when PL is added back to the 

uptake system the percent inhibition in uptake py PL is significantly 

reduced (from 60 percent in control cells to 40 percent inhibition in 

PL grown cells as shown in Figure 3). This reduction in inhibition 

cannot be attributed to an increa~e in number of transport proteins 

since in the absence of PL, control cells and PL-grown cells possess 

equal ability to take up D-alanine {Figure 3). It appears instead that 

some adjustment in membrane phospholipids has occurred. 

Because such a high concentration of PL is required to inhibit 

transport, it seems possible that some or all of the added PL could 

become partitioned into the phospholipid fatty acid residues within the 

bacterial membrane, thereby disrupting the natural state of the mem

brane lipids. Such a change in the physical state of the membrane 

phospholipids could result in a decreased permeability as well as 

uptake ability. Since iso-fatty acids in monolayer films have a 

smaller cross-sectional area th~n anteiso acids (Weitzel, Fretzdorff, 

and Heller, 1951) a shift from C 15:br(anteiso) to C 16:br(iso) could 
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result in less available space to accommodate PL, t~ereby reducing the 

effectiveness of added PL. 

The decreased cross-sectional area (inc~eased rigidity) caused by 

a shift from C 15:br(anteiso) to C 16:0 might also help explain why 

growth in the presence of DCS inhibits the division process. The 

ability of PL to prevent this change and increase sy,nthesis of C 16:br 

fatty acid could be the basis for the prevention of division inhibi

tion in M. lysodeikticus in the presence of DCS. 
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