in station of the second s Second second

A MICRO-MODEL FOR DESIGN AND STUDY OF TRICKLING FILTERS

By DONALD LEE SPURRIER Bachelor of Science Oklahoma State University

Stillwater, Oklahoma

1968

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1973

OKLAHOMA STATE UNIVERSITY LIBRARY

OCT 9 1973

Representation of the second second second second

A MICRO-MODEL FOR DESIGN AND STUDY OF TRICKLING FILTERS

Thesis Approved:

Thesis Adviser n. QU ٨ úî the Graduate College Dean of

. .

ACKNOWLEDGMENTS

Grateful and sincere thanks to Dr. D. F. Kincannon for guidance and invaluable advice as my advisor, my taskmaster and, above all, my friend during my graduate training program.

Special appreciation is also due to Drs. A. F. Gaudy, E. T. Gaudy, Richard DeVries, and all the faculty members who encouraged and guided me during the past two years.

Ms. Charlene Fries carefully edited and prepared the manuscript and my fellow graduate students suffered through repeated drafts. My gratitude is extended to them also.

Most importantly, a sincere thanks to my wife Melba and my family for their support and encouragement in these last two years of study and investigation.

TABLE OF CONTENTS

Chapte	er	Page
Ι.	INTRODUCTION	. 1
II.	LITERATURE REVIEW	. 6
	Phelps	. 7 . 8 . 8 . 9 . 9 . 11
III.	MATERIALS AND METHODS	. 13
	Apparatus	. 15
IV.	RESULTS	. 18
	Experimental Results	. 18 . 21 . 21 . 21 . 21 . 22 . 22
۷.	DISCUSSION	. 40
	Model Correlation	. 40 . 41
VI.	CONCLUSIONS	. 45
VII.	SUGGESTIONS FOR FUTURE STUDY	. 46
A SELI	ECTED BIBLIOGRAPHY	. 47

LIST OF TABLES

Table		Page
Ι.	Composition of Sucrose Synthetic Waste	16
II.	Processed Data From Regression Analysis After Statistical Elimination Procedures	25
III.	Previous Oklahoma State University Composite Data	30

v

LIST OF FIGURES

Fig	ure	Page
1.	Relation Between Filter Loading and Efficiency for All Filter Plants of NRC Summary of Sewage Treatment at Military Installations	10
2.	Rotating Tube Trickling Filter Micro-Model	14
3.	Removal Efficiency Versus Total Organic Loading. Raw Data	19
4,	Removal Efficiency Versus Total Organic Loading. Raw Data	20
5.	Removal Efficiency Versus Total Organic Loading. Purified Data	27
6.	Removal Efficiency Versus Total Organic Loading. Purified Data	28
7.	Removal Efficiency Versus Total Organic Loading. Previous O.S.U. Composite Data	3 8
8.	Removal Efficiency Versus Total Organic Loading. Selected Sources	42

CHAPTER I

INTRODUCTION

In 1858 the Royal Sewage of Towns Commission of England (1) con-

cluded that

The increasing pollution of the rivers and streams of the country is an evil of national importance, which urgently demands the application of remedial measures; that the discharge of sewage and of the noxious refuse of factories into them is a source of nuisance and danger to health; that it acts injuriously not only on the locality where it occurs, but also on the population of the districts through which the polluted rivers flow; that it poisons the water, which in many cases forms the sole supply of the population for all purposes, including drinking; that it destroys the fish; and generally that it impairs the value and the natural advantages derived from rivers and streams of waters.

This 115-year-old assessment is still just as valid today as when it was written. What has changed, however, is public awareness of this age-old problem. Study and observation of this problem has shown that "impairment of value and natural advantages" occur when the dissolved oxygen in surface waters is seriously depleted. The cause of this depletion is primarily that of aerobic and subsequent anaerobic metabolism of microorganisms feeding upon the organic, domestic and industrial wastes (food) mentioned above.

Man has treated these wastes in a variety of ways. The most widely used methods employ the same biological processes that caused the problem originally. These processes, controlled and accelerated, are employed before these wastes are discharged to the streams and rivers. The object of this treatment is to reduce or eliminate the organic "food"

prior to reaching the streams, thus preventing the serious depletion of dissolved oxygen in natural bodies of water by biological action.

In 1870, Dr. E. Frankland, an early sanitary researcher in England and member of the Rivers Pollution Commission, formulated a theory of "intermittent downward filtration" in which "a field of porous soil irrigated intermittently virtually performs an act of respiration, copying on an immense scale the lung action of a breathing animal, for it is alternatively receiving and respiring air and thus dealing as an oxidizing agent." This intermittent application of sewage to land for the destruction of its organic impurities by bacterial oxidation was tested (1) both in Merthyl Tydfil (Wales), and at Lawrence, Massachusetts, and was the forerunner of the contact filter, a bed of broken stones filled and drained intermittently with sewage. A logical follow-on was the trickling filter, a bed of stones or other media to which microorganisms could attach through which the liquid waste is percolated. The medium of the filter provides the support for a growing biological slime layer of microorganisms and their capsular material. Periodically, portions of this layer slough away and are carried away by shear and gravitational forces.

The microorganisms attached to the trickling filter remove the organics contained in the waste flow for use as nutrients for biological metabolism. This process converts the organic carbon in the waste into carbon dioxide, energy, and new cell constituents. Most of the carbon dioxide passes into the atmosphere and the microorganisms manufacture new cells utilizing the energy for synthesis.

Many investigators have gathered data and developed the relationships relative to design of trickling filters. Many different empirical

design equations have resulted, each of which suggests a different design size for identical removal efficiencies. The dimensions of each of the design parameters vary also. This dilemma is particularly confusing when the engineer begins a treatment plant design. How can one logically size a trickling filter with such a diverse array of facts presented in the literature? Since most studies have been made on relatively weak domestic sewage, another uncertainty is introduced when the waste to be treated is an industrial waste far stronger than sewage and possessing different chemical components. Some designs performed under these circumstances have met with success despite the uncertainties involved and others have not.

A logical procedure to employ in treatment plant design is to study, on a micro-scale, the process in the laboratory using the particular waste to be treated. Definitive design parameters and expected efficiencies may be determined from these studies. The engineer then has a sound basis from which to design and the ultimate success of the design may be reasonably assured.

Laboratory modeling of the trickling filter process is not an easy task. Scale models of the trickling filter itself have several shortcomings. The smallest successful laboratory designs may require hundreds of gallons of waste per day. The cyclic nature of intermittent wetting followed by atmospheric exposure without significant drying is difficult to maintain. Other styles of models that simulate the conditions in trickling filters have been tried from time to time. One such model, an inclined rotating tube, had considerable merit. A biomass contained within the tube and fed metered amounts of synthetic waste theoretically possesses many of the characteristics of a trickling filter biomass. It

is intermittently wetted and exposed to the atmosphere. Resultant washing action and the cyclic nature of gravitational forces during tube rotation simulate the forces involved in filter sloughing. The model is very flexible. Speed of tube rotation, angle of inclination, and hydraulic flow are capable of infinite variation. Credit for the concept of this model goes to P. N. J. Chipperfield (Brixham Research Laboratory, Imperial Chemical Industries Ltd., England), who spoke of using such a model in his laboratory during a discussion with American colleagues (2) in 1972 at New Orleans, Louisiana.

A four-unit inclined rotating tube model was designed and built in the Oklahoma State University laboratories. This report includes the initial results obtained in studies using this rotating tube laboratory model. Organic wastewater removel characteristics of this model are compared to the characteristics of scale model pilot plants and actual trickling filter characteristics. Wastewater requirements are far less using this model. The results obtained suggest that a simple first order relationship of percent removal efficiency to <u>organic loading</u> rather than hydraulic loading exists. Organic loading is defined as the total mass of organic matter applied per unit of washed filter surface per unit time. Hydraulic loading is similarly defined as volume of carrier water for the organic matter above per unit time. The concept of using statistical variability in trickling filter design parameters is also advanced.

An independent development of the rotating tube model has been found. Pictures of a device known as a "Renn Trickling Filter" (3) are attributed to Dr. Charles Renn, Johns Hopkins University. The pictured apparatus is strikingly similar to the design developed in the Oklahoma

State University laboratories. Results of treatability studies on detergents (4) and photographic industrial wastes were reported.

CHAPTER II

LITERATURE REVIEW

The trickling filter process has been variously described as a "film flow reactor," "fixed bed reactor," or "fixed film biological tower." Each process reported is described, however, as a function of many different parameters.

Phelps

In 1925, Phelps (5) proposed that "the rate of biochemical oxidation of organic matter is proportional to the remaining concentration of unoxidized substance, measured in terms of oxidizability."

This describes the monomolecular reaction:

$$-\frac{dL}{dt} = KL$$
(1)

which, when integrated, becomes

$$\frac{L}{L} = e^{-kt}$$
(2)

where

L = final oxidizability in terms of oxygen demand mg/l

- L = initial oxidizability in terms of oxygen demand mg/l
- k = reaction rate constant (dependent on character of organic matter and temperature)
- t = elapsed time in days.

In 1948, Velz (6) presented a theory applicable to biological beds and high and low rate trickling filters that was very similar to the Phelps formulation. Velz concluded that "The rate of extraction of organic matter per interval of depth of a biological bed is proportional to the remaining concentration of organic matter, measured in terms of its removability."

This relationship can be expressed as

$$-\frac{dL}{dD} = KL$$
(3)

which integrates to

$$Ln \frac{L_D}{L} = -KD$$

or

$$\log \frac{L_D}{L} = -.0.434 \text{ KD} = -kD$$
 (4)

which can be rearranged to yield

$$f = \frac{L_D}{L} = 10^{-kD}$$
(5)

where

f = fraction remaining oxidizable organic

K = reaction rate constant (naperian logarithm)

k = reaction rate constant (common base logarithm)

D = depth of filter bed in ft

 $L_{\rm D}$ = final oxidizability in terms of oxygen demand in mg/l

L = initial oxidizability in terms of oxygen demand in mg/l.

In forming this relationship, Velz did not consider how the reaction occurs or whether the limiting controls on the reaction are biological

in nature or dependent on diffusion of oxygen through a liquid film, biological slime, or the organisms themselves.

Swilley and Atkinson (7) addressed themselves to these questions and developed, utilizing fluid mechanics and mathematical techniques, a reaction controlled model that can be expressed as:

$$f = \exp[-1.50 \ \eta k]$$
 (6)

where

n = .9084 Sc Re^{$\frac{1}{3}}$ Ra^{$\frac{1}{3}}$ </sup> k = 2.932 Sc⁻¹ Re^{- $\frac{1}{3}}$ </sup> Ra^{$\frac{1}{3}}$ </sup> Sc = Schmidt number Re = Reynolds number</sup>

Ra = reaction number;

and two diffusion controlled models with the form:

$$f = f(n, k)$$
. (7)

These theoretical mathematical models all degenerate back to Velz's Equation (5) with appropriate adjustment of the accounted parameters.

National Research Council

Another significant step in seeking appropriate design criterion was the effort of the National Research Council Committee on Sewage Treatment (8, 9) at the conclusion of World War II. Their comprehensive survey of filter performance at military installations provided the empirical relationship:

$$E = \frac{100}{1 + 0.0085 \sqrt{\frac{W}{V}}}$$
(8)

where

E = percent BOD removed

W = organic load applied in 1b BOD/day

V = volume of filter medium in acre ft.

The NRC summary report (9) published two years later included a graphical presentation of <u>all</u> trickling filter efficiencies versus filter loading. This significant graph (Figure 1), not in the original publication, depicts the same first order relationship that will be discussed in Chapter V.

Eckenfelder

Eckenfelder (10) has advanced several equations for filter design, the latest being

$$\frac{S_e}{S_o} = e^{-k} \frac{D}{Q^n}$$
(9)

where

S_e = effluent oxygen demand in mg/l
S_o = influent oxygen demand in mg/l
k = reaction rate constant
D = depth, ft

 $Q = hydraulic loading in gal/min-ft^2$

n = constant related to specific surface and configuration.

Galler and Gotaas

Galler and Gotaas (11) analyzed data from worldwide existing plants by using multiple regression techniques and a digital computer. They compared each known parameter against each other parameter statistically

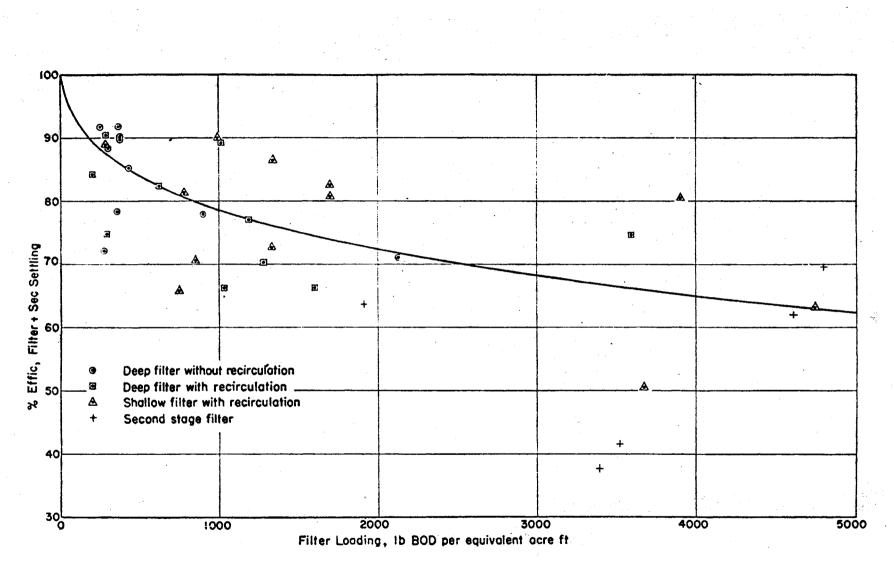


Figure 1. Relation Between Filter Loading and Efficiency for All Filter Plants of NRC Summary of Sewage Treatment at Military Installations

to determine the effect on filter performance. Their conclusions discounted hydraulic loading but considered applied BOD, depth of filter, and temperature as the most significant factors governing concentration of BOD remaining in a trickling filter effluent. Their equation for a filter without recirculation is:

$$L_{e} = \frac{1.298 L_{o}^{0.98} Q^{0.12}}{(1 + D)^{0.66} T^{0.15}}$$
(10)

where

L_e = concentration of BOD remaining in mg/l L_o = concentration of influent BOD in mg/l Q = hydraulic loading, mgd/acre

D = depth, ft

T = temperature of waste water, °C.

Cook (13) substantiates the conclusion that hydraulic loading does not affect filter performance. However, the main disagreement with Galler and Gotaas (12) was that of the influence of hydraulic loading rate.

Cook and Fleming

Cook (13) concluded that the amount of microorganism surface area is the prime factor in the removal of organics in trickling filters. He also summarized the conflicting ideas of the relative importance of hydraulic loading versus organic concentration in trickling filter performance. He operates a scale model pilot plant through a wide range of hydraulic flow rates and organic concentrations. His data substantiates that the combination of organic concentration and hydraulic flow rate, or total organic loading, affects filter performance. This data is used in Chapter V for comparison with the rotating tube model data. Cook also discusses the relationship of trickling filter removal efficiency to the basic microbial kinetic constants. He concluded that the Monod relationship is valid for trickling filters.

Fleming (14) continued the scale model pilot plant operation and reported increased acidity of effluent as organic loading increased and filter efficiency decreased. He hypothesized that increased anaerobic respiration and intermediate organic acid production resulted from increased loadings. Fleming also observed and concluded that although available surface area of a filter medium has a definite bearing on removal rates, there is an upper boundary condition at approximately $27 \text{ ft}^2/\text{ft}^3$ beyond which the removal rate and efficiency increase tapered off.

Gaudy

The extreme variability of kinetic constants when measured in heterogeneous microbial populations has been discussed in detail in Gaudy and Ramathan (16), Gaudy and Gaudy (17), and Peil and Gaudy (18). A possible biochemical basis is discussed and the concept of reporting the statistical parameters of variability is proposed.

CHAPTER III

MATERIALS AND METHODS

Apparatus

The rotating tubes used in this model (Figure 2) are two-foot lengths of three-inch inner diameter polyvinylchloride pipe. Four such lengths were supported on an array of four-and-one-half-inch diameter wheels and driven by means of a chain drive to the support wheels. The chain drive was energized by a 1/24 horsepower variable speed electric motor and 1/3600 gear reduction drive. By use of a laboratory "variac" variable voltage transformer, constant tube rotational speeds of 0-24 revolutions per minute could be selected. Axial thrust was supported by grooving the tube exterior at the point of contact with the drive and support wheels. The wheels were appropriately shaped to fit these grooves. The entire assembly was fitted with a variable length adjusting screw on the influent end to provide a means of varying the tube inclination with respect to the horizontal.

The feed apparatus consisted of a Milton Roy 4-gang positive displacement Mini-Pump, model MM-4, capable of moving 0-12 ml/min connected with a tubing and feed bottle manifold to enable common or separate tube feeds. The biomass in the inside surface of the rotating tubes was fed through 1 mm diameter drawn glass discharge nozzles placed at the upper (influent) end approximately 1/4 inch from the inner wall. Total wetted surface per tube was 1.57 square feet. The effluent end of the tubes

Figure 2. Rotating Tube Trickling Filter Micro-Model

discharged to a sheet metal trough (for recirculation at initial seeding) or to a rack holding 3½ Pyrex glass funnels. The entire apparatus was located on a laboratory workbench over a sink so that effluent could easily flow into the collection system when samples were not being taken.

Experimental and Analytical Procedures

Initial startup and subsequent restarts were made by seeding one liter of raw settled sewage from the primary clarifier of the Stillwater Sewage Treatment Plant with three liters sucrose synthetic waste (Table I) in a four-liter catch basin. The basin was replenished from a sheet metal trough placed under the effluent end of the rotating tubes. A supplementary recycling pump, a 220 V "Little Giant" centrifugal pump, recirculated the seeded feed water from the catch basin, utilizing separate tubing and nozzles through the rotating tubes. After 24 hours of recirculation, the primary feed system was activated and fresh sucrose synthetic waste was introduced. The respective rates were:

Recirculation = 50 L/hr

Feed = 300-500 m1/hr

Detention time = 3.3 hrs (seed basin).

A one-day period of recirculation only followed by a two-day period of recirculation and feed flow provided a thin shiny gelatinous-appearing translucent biological slime inside each tube. After approximately three additional days of feed operation alone, the COD values between successive daily samples and between tubes approached a common steady value.

A varied selection of feed concentrations was run, changing values after two successive equal COD effluent values were achieved. Influent samples were taken from the feed discharge nozzles. A time clock and

COMPOSITIO	N OF SUCROSE	SYNTHETIC WAS	TE_PER
100 M	G/L COD EQUI	VALENT INCREME	NT ¹

TABLE I

Constituent	Concentration (mg/l)
Sucrose	87
Mn SO ₄ •H ₂ O	1
Mg SO ₄ •7H ₂ O	10
Fe Cl ₃ •6H ₂ O	.05
Ca Cl ₂	.75
(NH ₄) ₂ SO ₄	100
$K_2 H PO_4^2$	6
(K ₂ H PO ₄	1070
$\begin{cases} K_2 H PO_4 \\ K H_2 PO_4^3 \end{cases}$	527

 $^1 \mbox{Carbon}$ is the growth limiting nutrient.

 $^{2}\ensuremath{\mathsf{Phosphorus}}$ nutrient added when buffer not used.

 $^{3}\!Buffer$ concentration for 1M.

graduated cylinders were used to rate the hydraulic loading at each sampling. Periodic routine analyses of the influent and effluent Chemical Oxygen Demand (COD) were made using the dichromate reflux method (15). Samples of effluent were taken, allowing 30 minutes to 1 hour of quiescent settling prior to decanting for tests. Occasional checks were made on COD of filtrate of this same settled effluent after passing through white plain 47 mm millipore filter paper, pore size 0.45µ.

Gross estimates of influent and effluent acidity were made with pHydrion paper (Micro Essential Laboratories, Brooklyn, New York). After the growth and the data phase began, pH adjustments of feed water became necessary. These pH adjustments were made with 2N NaOH and 36N H₂SO₄.

Processing and Analysis

All analytical results were recorded in card form and an IBM 1620 digital computer with CALCOMP 565 plotter was used for data reduction, regression analysis, plotting and printing. The IBM 1620 FORTRAN II-D programming system was used throughout.

Values for flow rates, influent and effluent COD's, removal efficiencies, organic loading, logarithms of removal efficiencies, and the change in COD values of each tube for each run were calculated. Each variable was compared graphically with every other variable to ascertain if dependent relationships could be easily defined.

CHAPTER IV

RESULTS

Experimental Results

Forty experimental data runs were made during the course of this model study to assess organic removal efficiencies. The results of the COD analyses are displayed in Figures 3 and 4. Many difficulties were experienced that highlighted some of the shortcomings of biological treatment in general and trickling filters in particular.

Phosphorus Deficiency

During the initial startup and preliminary runs, considerable difficulty was experienced in maintaining satisfactory biological growth. The feed pump valves clogged repeatedly with hard water scale at flow rates of 5 ml/min. Subsequent operation under the same chemical conditions but at higher flow rates were satisfactory. The buffer was discontinued and feed make-up water switched from tap to distilled in an attempt to solve the scaling problem. Within two days efficiency fell off and the biological slime layer became mottled and dark brown. When supplemental phosphorus was again added to the waste and reseeding completed, the efficiency returned to expected levels.

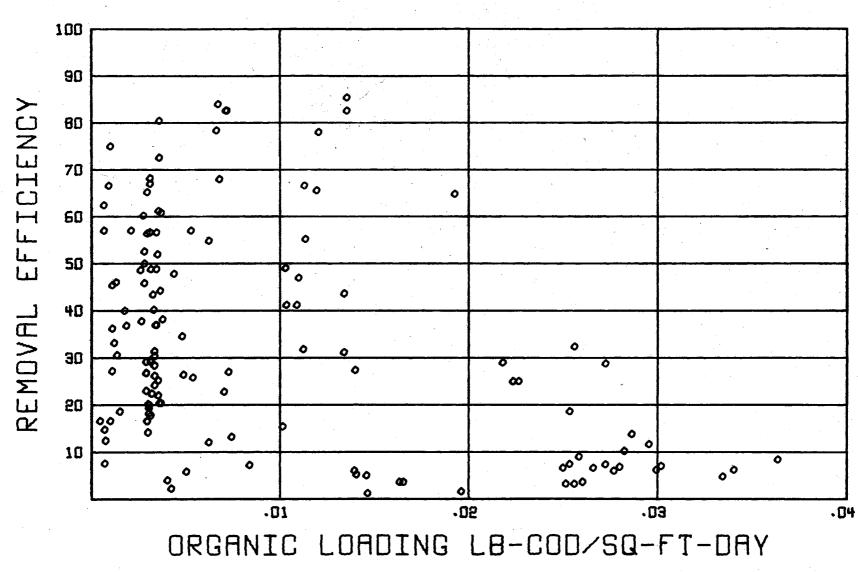
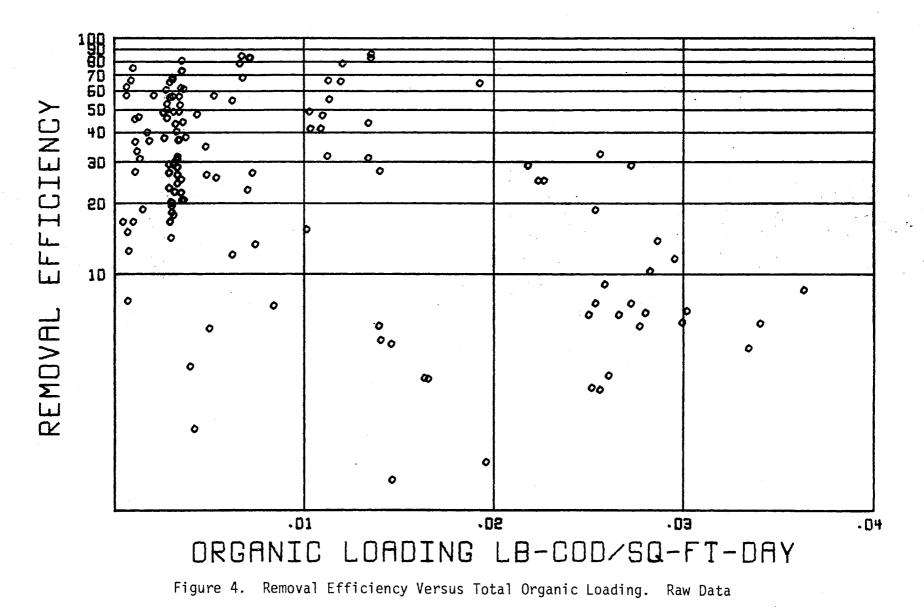



Figure 3. Removal Efficiency Versus Total Organic Loading. Raw Data

Iron Excess

Concentrated feed solutions were prepared and stored for several days' use. One such preparation contained a FeCl₃ concentration inadvertently stronger than normal in the order of magnitude of ten. A gradual deterioration of removal efficiency resulted when this feedstock was used with large blocks of biological slime sloughing.

Temperature Effect

A problem in the heating system occurred in the laboratory of several days duration and the resultant loss in efficiency closely paralleled the van't Hoff rule (19) of twofold increase or decrease with 10°C increase or decrease.

pH Control

Soon after the buffer was discontinued and supplemental phosphorous added, the removal efficiency began to fall off once again and the effluent began to take on a yellowish-orange color. Investigation revealed that the distilled water used for feed make-up had a pH of 5.5 and that the unbuffered synthetic waste ran between pH 6.5 and pH 6.0. Effluent pH readings of 5.0 were not uncommon during this period. Gross microscopic examination of the effluent showed small clumps of tiny yellow cocci. The clumps would not settle out but would filter out on the previously mentioned .45µ millipore filter paper.

The buffer supplement was resumed and the apparatus reseeded once more. Again, the expected removal values were reached in three days. Influent pH remained constant at 7.0 and the effluent pH ranged from 6.5 - 7.0.

Insufficient Hydraulic Flow

A curious phenomenon peculiar to the rotating tubes soon became apparent. Whenever the biological film was allowed to dry only slightly, during feed system sterilization or shutdown for repairs, resumption of the normal feed flow rate produced a spiral "rifling" pattern. This pattern tended to stabilize and cut down the surface area wetted by the synthetic waste. A distilled water wash procedure was instituted at start-up after any significant drying had occurred. No further difficulty was experienced.

General Results

The switches from tap water to distilled water and then later in the experiment back to tap water were monitored carefully. Other than the pH difficulty and phosphorus deficiency mentioned above, no discernible effect was observed in removal efficiency. Biological growth frequently contaminated the feed system. The contamination was presumed to be that caused by airborne bacterial debris or trace contamination from the chemical feed bottles and glassware. As the experiment progressed, however, the contamination was almost always observed first in the feed discharge nozzles adjacent to the bacterial film inside the rotating tubes. The turbid-appearing growth would then progress upstream against the flow of synthetic waste to eventually contaminate the entire 20 liter feed storage bottle. When the feed rate was doubled at the end of the experiment, the duration between required cleaning for contamination also doubled in time. Regular flushing with 10% (by volume) commercial Clorox bleach through the pump and tubing and acid dichromate washing of the glassware controlled the problem.

The spontaneous sloughing of biomass so characteristic of trickling filters and expected of this model failed to occur. Only at extremely large organic loadings far in excess of any known trickling filter application did sloughing occur. Since removal efficiency would fall off without sloughing, it was done periodically by hand. Some variation in removal efficiencies was observed after each mechanical sloughing. Poor settling and turbid effluent would be discharged for approximately two hours after each such disruption.

The normal settled effluent COD's seldom tested higher than 5% over the filtrate COD's of the same samples. If the difference was more than 10% the run was not recorded in the raw data. Other than the yellow effluent mentioned above, good settling and clear effluents were the rule during the five-month experimental period.

The raw COD's and flow rates were processed approximately weekly as each COD titration was completed. The computed data was transferred to IBM cards and then reprocessed at the end of the experimental phase. The plotted results are shown in Figures 3 and 4. Note that all points including known low points are retained. These points represent the occasional behavior in the field in trickling filter performance using heterogeneous microbial populations. They also affect the statistical analyses described later.

Analytical Results

The raw COD data taken during the course of the experimental presented a dilemma. Prior to each one of the biological setbacks and catastrophes previously mentioned, the removal efficiencies would fall off. Occasional premature readings would be taken before a "steady

state" balance or psuedo-equilibrium was reached. The problem of separating the erroneous from the valid data was treated first.

Each set of calculated values from the initial data was compared graphically against each other set of values. A linear dependent relationship could be observed between the logarithm of removal efficiency and organic loading indicating a relationship

$$\frac{S_e}{S_o} = \exp[-KZ]$$
(11)

where

 $S_{a} = effluent COD in mg/l$

 $S_0 = influent COD in mg/l$

K = reaction rate constant

Z = organic loading.

Since the data points were so widely dispersed, a tool of statistical quality control was used to separate the data. The Shewart Control Chart method (20) could be applied to a linear regression line to eliminate excessively low data points. This method is based on the point of view that for a normal distribution, a "stable system of chance causes" exists such that variations outside this stable pattern may be discovered and corrected.

A linear regression analysis of the processed data and subsequent application of 99% confidence limits identified the abnormally low removal efficiency logarithms and provided a logical basis for their elimination. Subsequent analysis of the "purified" data (Table II) provide a removal rate constant k and standard deviation σ for the experimental data. The semi log plot is included in Figure 5. Figure 6 is an arithmetic plot of the same data.

.

PROCESSED DATA FROM REGRESSION ANALYSIS AFTER STATISTICAL ELIMINATION PROCEDURES

.

-	DATE-RUN	COD-IN	COD-OUT	PCT-EFF	LOADING	LOG-EFF	DELTA-COD	CODE
		MG/L	MG/L		LB/FT2D		MG/L	
	10 NOV 7-2	346	149	56	•00349	1.75359	196	2
	10 NOV 7-3	346	217	37	•00347	1.56953	128	3
	10 NOV 7-4	346	135	- 60	•00370	1.78408	210	4
	12 NOV 8-1	278	121	56	•00295	1.75135	157	5
								6
	12 NOV 8-2	278	139	50	•00280	1.69896	139	
	12 NOV 8-4	278	96	65	•00298	1.81547	182	8
	14 NOV 9-1	264	142	45	•00280	1.66224	121	9
	14 NOV 9-2	264	164	37	•00266	1.57792	100	10
	14 NOV 9-3	264	135	48	•00264	1.68707	128	11
	14 NOV 9-4	264	124	52	•00282	1.72183	139	12
	16 NOV 10-1	328 .	167	48	•00348	1.68942	160	13
	16 NOV 10-2	328	196	40	•00331	1.60441	132	14
	16 NOV 10-3	328	185	43	•00329	1.63827	142	15
	16 NOV 10-4	328	157	52	•00351	1.71745	171	16
	19 NOV 11-1	317	217	31	•00337	1.49776	100	17
				22				18
	19 NOV 11-2	317	246		•00320	1.35164	71	
	19 NOV 11-3	317	224	29	•00318	1.46558	92	19
	19 NOV 11-4	.317	199	37	•00340	1.56912	117	20
	29 NOV 12-1	336	262	22	•00357	1.34449	74	21
	29 NOV 12-16	336	251	25	•00357	1.40248	85	22
	29 NOV 12-2B	336	241	28	•00339	1.45364	95	23
	29 NOV 12-2B	336	234	30	•00339	1.48467	102	24
	29 NOV 12-38	336	248	26	.00337	1.42021	88	2.5
	29 NOV 12-38	336	255	24	.00337	1.38400	81	26
	29 NOV 12-48	. 336	92	72	•00360	1.86112	244	27
	29 NOV 12-4B	336	92	72	•00360	1.86112	244	28
	3DEC 13-18	297		17	•00315		53	29
			244			1.25181		
	3DEC 13-2	297	255	14	•00300	1.15490	42	30
	3DEC 13-28	297	237	20	•00300	1.30616	60	31
	3DEC 13-3	297	248	16	•00298	1.22184	49	32
	3DEC 13-3B	297	248	16	•00298	1.22184	49	33
	3DEC 13-4	297	209	29	•CO318	1.47366	88	34
	3DEC 13-4B	297	152	48	.00318	1.68850	145	35
	4DEC 14-1	- 290	237	18	 00308 	1.26227	53	36
	4DEC 14-18	290	234	19	•00308	1.29030	56	37
	4DEC 14-2	290	205	29	•00293	1.46639	85	38
	4DEC 14→28	290	212	26	•00293	1.42860	73	39
				23	•00295	1.36493	67	40
	4DEC 14-3	2.90	223					41
	4DEC 14-38	290	212	26	•00291	1.42860	73	
	4DEC 14-4	290	92	68	•00311	1.83437	198	42
	4DEC 14-48	290	95	67	.00311	1.82654	195	43
	6 DEC 15-1	1029	603	41	•01091	1.61643	425	44
	6 DEC 15-2	1029	603	41	•C1037	1.61643	425	45
	6 DEC 15-3	1029	524	49	•01031	1.69053	504	45
	6 DEC 15-4	1029	544	47	•01102	1.67316	485	47
	7 DEC 16-1	1128	386	65	.01196	1.81815	742	48
	7 DEC 16-2	1128	504	55	•01137	1.74243	623	49
	7 DEC 16-3	1128	376	66	.01130	1.82390	752	50
							881	51
	7 DEC 16-4	1128	247	78	•01208	1.89248		
	13 DEC 17-EF	1089	742	31	•01127	1.50267	346	52
	15 DEC 18-1	960	811	15	•01018	1.18931	148	53
	15 DEC 18-2	742	643	13	•00748	1.12493	99	54
	15 DEC 18-4	336	267	20	•00360	1.31361	69	56
	7 DEC 19-4	1306	1227	6	•01399	•78251	79	59
	23 DEC 22-1	2613	2455	6	•027 7 1	•78251	158	66
	23 DEC 22-3	2534	2059	18	• 02539	1.27300	475	67
	23 DEC 22-4	2336	2178	6	•02501	•83120	158	68
	26 DEC 23-1	2138	1603	24	• 02267	1.39793	534	69
	26 DEC 23-2	2217	1663	25	•02235	1.39793	554	70
								71
	26 DEC 23-3	2178	1544	29	•02182	1.46375	633	11

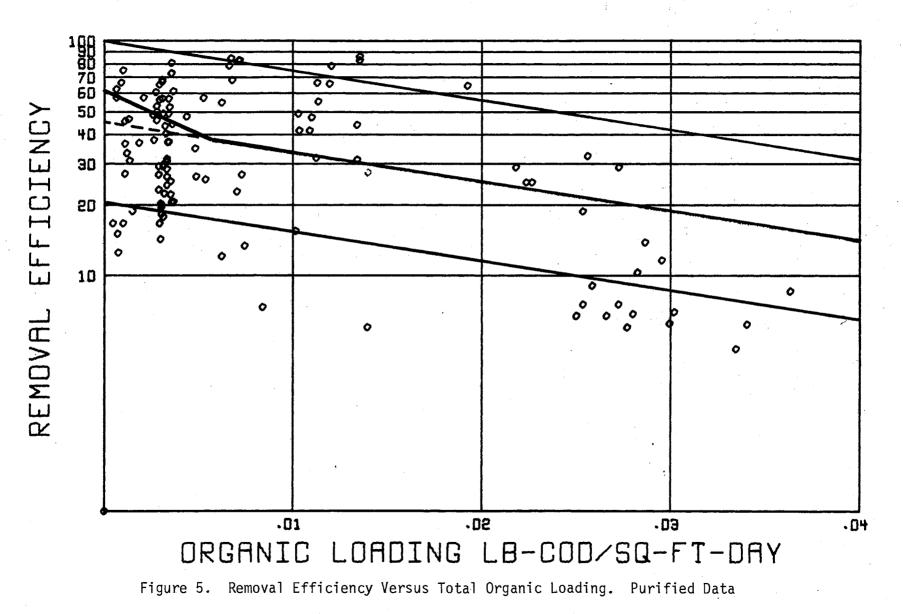

	1997 - 1997 -					
 COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	
1801	633	64	•01929	1.81181	0	
590	266	54	•00626	1.73908	323	
438	228	47	•00441	1.67966	209	
533	228	57	•00534	1.75696	304	
285	228	20	•00305	1.30103	57	
676	117	82	•00717	1.91702	5 5 8	
676	215	68	•00681	1.83324	460	
676	107	84	•00677	1.92457	568	
676	117	82	•00724	1.91702	558	
2666	2392	10	•02827	1.01258	274	
2705	2501	7	•02727	•87715	203	
1352	235	82	•01355	1.91702	0	•
1254	862	31	•01343	1.49485	392	
2666	2392	10	•02827	1.01258	274	
2705	1921	28	•02727	1.46218	784	
1262	104	95	01255	1 02200	0	

TABLE II (Continued)

DATE-RUN

20	DEC	221	1001		622		ć	i.	01020	1	.81181		0	. 7.2
		23-4	1801		633			4	•01929				0	72
3		24-1	590		266			4	•00626		•73908		23	73
3	JAN	24-2	438		228		4	7	•00441	્ર 1	67966	2	09	74
3	JAN	24-3	533		228		5	7	•00534	1	•75696	3	04	75
3	JAN	24-4	285	1.1	228			0	•00305	Ì	.30103		57	76
8		25-1	676		117			2	•00717		•91702	5	58	77
-														
		25-2	676		215			8	•00681		•83324		60	78
		25-3	676		107			4	•00677		•92457		68	79
		25-4	676		117			2	•00724		.91702	5	58	80
11	JAN	26-1	2666		2392		1	0	•02827	1	•01258	2	74	81
11	JAN	26-2	2705		2501		di di	7	•02727		87715	2	03	82
		26-3	1352		235			2	•01355	1	•91702		Ō	 83
		26-4	1254		862			1	•01343		•49485	2	92	84
		27-1	2666	5	2392			0	•02827		•01258		74	85
		27-2	2705		1921			8	•02727		46218	· /	84	86
11	JAN	27-3	1352		196		8	5	•01355	1	•93200		0	87
11	JAN	27-4	1254		705		4	3	•01343	. 1	•64097	5	49	88
11	JAN	28-1	294		127		5	6	.00311	1	•75332	1	66	89
		28-2	186		117			6	•00187		•56634	-	68	90
					68			2	•00078				9	91
		28-3	78								•09690			
		28-4	127		88			0	•00136	1	48811	_	39	92
15	JAN	29-1	3428		3135			8	•03635		•93224	2	93	93
15	JAN	29-2	3279		3119			4	•03345		68824	1	60	94
15	JAN	29-3	2967		2780			6	•02996		•79865	1	86	95
15		29-4	2773		2582		1.143	6	•02800		83683	1	.90	96
17		30-2	3441		3227	t de la		6	•03406		•79337		13	97
							1			1	,			
17		30-3	3049		2693		T	1	•02956	T	•06775		56	98
17		30-4	2930		2732			6	•02663		•82973	1	98	99
18	JAN	32-1	6780		6697			1	•07121		•09200		83	100
18	JAN	32-2	2514		2285			9	•02589		•95860	2	28	101
		32-3	2514		2323			7	•02539		.87942		90	102
20		33-1	6438		5561		1	3	•06839	1	.13384		876	104
		33-2	2990		2780		-	7	•03020	-	•84549		209	105
20		33-3	2895		2495			.3	•02865		L•14037		100	106
		33-4	2819		1904			2	•02562		l•51097		914	107
22	JAN	34-1	660		509		· 2	2	•00706]	l•35902	1	.50	108
22	JAN	34-2	698		509		2	27	•00733	J	l•43179	1	.88	109
22	JAN	34-3	622		547		1	2	•00628]	l•08354		75	110
		34-4	584		433			25	•00543		L•41172	1	50	111
25		35-1	462		301			34	•00485		1.54025		60	112
25		35-3	367		292			0	•00371		.31202	_	75	114
25	JAN	35-4	449		330			6	•00491		l•42276	1	18	115
27	JAN	36-2	74		62		1	. 4	•00074]	L•17609		11	117
27	JAN	36-3	64		27		5	57	•00065]	l•75696		37	118
27		36-4	55		46		1	.6	•00049		L•22184		9	119
		37-1	58		39			33	•00123		L.52287	•	19	120
		37-2	44		14			6	•00090		L 82390		29	121
		37-3	53		. 29			⊧5 ·	•00114		1.65757		24	122
	. –	37-4	58		14			4	•00101		1.87506		44	123
8	FEB	38-1	53		39		2	27	•00113		1•43572		14	124
8	FEB	38-2	102		· 44		5	ō7	•00212		1.75696		58	125
		38-3	53		. 34			86	•00114		1.56066		19	126
		38-4	39		14			52	•00067		1.79587		24	127
			176		34			30	•00363		1.90609	1	142	128
		39-1										-		
		39-2	78		63			8	•00153		1.27300		14	129
8		39-3	63		34			+6	•00133		1.66420		29	130
8	FEB	39-4	58		49		1	16	•00102		1.22184		9	131
		40-1	401		372			7	•00841		86433		29	132
		40-2	722		524		2	27	.01401		1.43788	•	198	133
		40-4	411		88			78	•00668		1.89526		323	134
-0		-10 -1	741		00							•		
 						1			 		••••••			

CODE

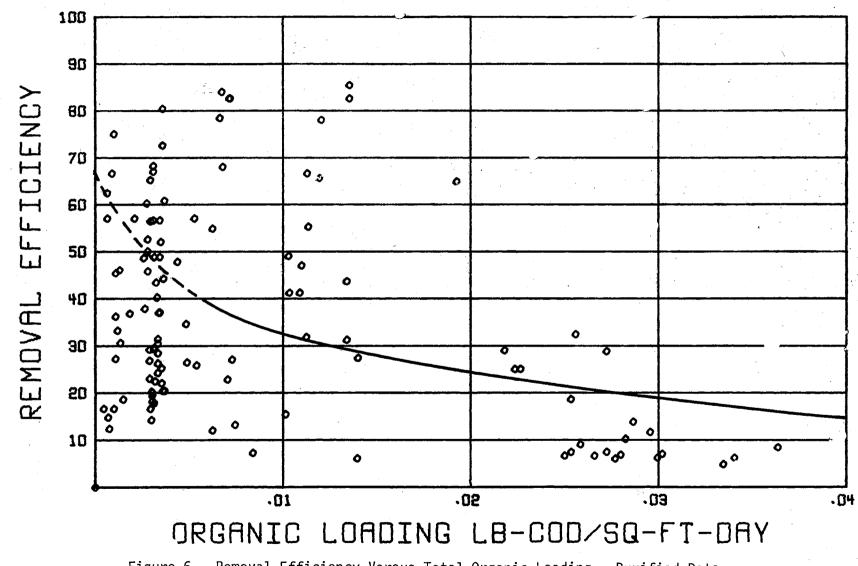


Figure 6. Removal Efficiency Versus Total Organic Loading. Purified Data

The next phase of the investigation dealt with a comparison of this data with known trickling filter data. Cook (12) and Fleming (13) have reported a considerable number of closely controlled experiments with pilot size plastic media trickling filters. Precise values for washed biomass surface area, hydraulic and organic loading rates and temperatures were readily available. Identical synthetic waste formulations were also used. Identical values that were calculated above for the experimental data were also calculated for Cook's and Fleming's data taken at Oklahoma State University. The Cook and Fleming experiments had carefully sampled at each foot of depth in their pilot studies. Each of these unity volumes provided a separate set of values in analysis. A total of 453 data sets were developed (Table III and Figure 7). The same regression analysis techniques were applied as described above for the rotating tube analysis. Since linear regressions were available for the inclined rotating tube model data (k = -16.3 and psuedo-intercept 1.6) and the composite Oklahoma State University data (k = -12.5 and psuedo-intercept of 1.6), comparisons of the two could be made. A covariance analysis (21) of the two simple regressions was made at the five percent level. The hypothesis that the two slopes and the two intercepts were equal for more than ninety-five percent of all expected samples was not rejected.

The dimensions of the organic loadings in the Cook and Fleming data differed from the initial model loadings. A common or normalized unit of organic loading per unit area of washed biomass was developed. The dimensions of this unit are

$$Z = \frac{1b \text{ COD applied}}{sq \text{ ft-day}} .$$
 (12)

TABLE III

PREVIOUS OKLAHOMA STATE UNIVERSITY COMPOSITE DATA

FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB7FT2D	LOG-EFF	DELTA-COD MG/L	COD
100	88	10	88	.00048	1.94761	78	2
100	88	10	88	.00036	1.94761	78	3
100	33	15	54	•00055	1.73675	18	4
100	33	10	69	•00027	1.84321	23	5
100	33	10	69	•00018	1.84321	23	6
100	15	10	33	•00025	1.52287	5	7
100	15	10	33	•C0012	1.52287	5	8
150	97	31	68	•00242	1.83277		9
150	97	19	80	•00121	1.90532	66 78	
150	97	11	88	•00080			10
150	97	14	85		1.94772	86	11
150	31	14	38	•00060	1.93230	83	12
150				•00077	1.58781		13
150	31	11	64	•00038	1.80966	20	14
	31	14	54	•00025	1.73908	17	15
150	19	11	42	•00047	1.62433	8	16
150	19	14	26	•00023	1.42021	5	17
200	107	58	. 45	•00356	1.66081	49	18
200	107	27	74	•00178	1.87370	80	19
200	107	20	81	•00118	1.91013	87	20
200	107	23	78	•0008 <u>9</u>	1.89489	84	21
200	58	27	53	•00193	1.72793	31	22
200	58	20	65	•00096	1.81635	- 38	23
200	58	23	60	•00064	1.78064	35	24
200	27	20	25	•00090	1.41373	7	25
200	27	23	14	•00045	1.17069	4	26
250	110	54	50	•00458	1.70679	56	27
250	110	23	79	•00229	1.89812	87	28
250	110	20	81 .	•00152	1.91284	90	29
250	110	13	88	•00114	1.94537	97	30
250	54	23	57	•00225	1.75896	31	31
250	54	20	62	•00112	1.79908	34	32
250	54	13	75	•00075	1.88039	41	33
250	23	20	13				
				•00095	1.11539	3	34
250	23	13	43	•00047	1.63827	10	35
250	20	13	35	•00083	1.54406	7	36
300	110	60	45	•00550	1.65757	50	37
300	110	37	66	•00275	1.82193	73	38
300	110	18	83	•00183	1.92239	92	39
300	110	18	83	•00137	1.92239	92	40
300	60	37	38	•00300	1.58357	23	41
3∪0	60	18	70	•00150	1.84509	. 42	42
300	60	18	70	•00100	1.84509	42	43
300	37	18	51	•00185	1.71055	19	44
300	- 37	18	51	•00092	1.71055	19	45
600	95	57	40	•00950	1.60205	38	46
600.	95	43	54	•00475	1.73827	52	47
600	95	28	70	•00316	1.84835	67	48
600	95	21	77	•00237	1.89150	74	49
600	57	43	24	.00570	1.39025	14	50
600	57	28	50	•00285	1.70652	29	51
600	57	21	63	•00190	1.80042	36	52
600	43	28	34	•00430	1.54262	15	53
600	43	21	51	•00215	1.70895	22	54
6.00	28	21	25	•00280	1.39793	7	55
	204	118	42			86	56
100				•00340	1.62486		
100	204	50	75	•00170	1.87789	154	57
100	204	31	84	•00113	1.92841	173	58
100	204	27	86	•00085	1.93834	177	59
. 100	118	50	57	•00196	1.76062	68	60
100	118	31	73	•00098	1.86763	87	61

TABLE III (Continued)

FLOW RATE GAL/DAY COD-IN (GAL/DAY COD-IN (Mo/L) PCT-EFF (LB/F12D) LG0E-EFF (LB/F12D) DCG-EFF (LB/F12D) DCGG-FF (LB/F12D) DCG-EFF (LB/F12D) <t< th=""><th></th><th>·</th><th></th><th>·</th><th></th><th></th><th></th><th></th></t<>		·		·				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				PCT-EFF		LOG-EFF		CODE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	118	27	77	•00065	1.88715	91	62
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	50						
	100	- 50						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.31575		75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			106	50	•00707	1.69896	106	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		87	58	•00353	1.77057	125	77
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	212	57	73	•00235	1.86399	155	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	212	28	86				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	106	87					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•00427			87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				73	•00284	1.86433	150	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		205	34		•00213	1.92124	171	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		134	87	35	•00558	1.54499	47	. 90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	250	134	55	58	•00279	1.77052	79	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250	134	34	74				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		87						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1•44804		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				61	•00347	1.78640	85	101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	139	35	74	•00231	1•87401	104	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 300	100	54	46	•00500	1.66275	46	103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	100	35	65	•00250	1.81291	65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.02045		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
5001016238.008421.58674391135001015149.004211.6946450114500625117.005171.249001111510031618142.005271.630641351161003169868.002631.838762181171003166679.001751.898252501181003163788.001311.945912791191001819845.003011.6613983120								
500 101 51 49 .00421 1.69464 50 114 500 62 51 17 .00517 1.24900 11 115 100 316 181 42 .00527 1.63064 135 116 100 316 98 68 .00263 1.83876 218 117 100 316 66 79 .00175 1.89825 250 118 100 316 37 88 .00131 1.94591 279 119 100 181 98 45 .00301 1.66139 83 120							<u>,</u> 66	
500 62 51 17 .00517 1.24900 11 115 100 316 181 42 .00527 1.63064 135 116 100 316 98 68 .00263 1.83876 218 117 100 316 66 79 .00175 1.89825 250 118 100 316 37 88 .00131 1.94591 279 119 100 181 98 45 .00301 1.66139 83 120								
10031618142.005271.630641351161003169868.002631.838762181171003166679.001751.898252501181003163788.001311.945912791191001819845.003011.6613983120				49				
10031618142.005271.630641351161003169868.002631.838762181171003166679.001751.898252501181003163788.001311.945912791191001819845.003011.6613983120	500	62	51	17	•00517	1.24900		
1003169868.002631.838762181171003166679.001751.898252501181003163788.001311.945912791191001819845.003011.6613983120	100							
100 316 66 79 •00175 1.89825 250 118 100 316 37 88 •00131 1.94591 279 119 100 181 98 45 •00301 1.66139 83 120								
100 316 37 88 •00131 1.94591 279 119 100 181 98 45 •00301 1.66139 83 120								
100 181 98 45 •00301 1•66139 83 120								
	100	101	00	60	•00150	100001	110	171

FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	COD
100	181	37	79	•00100	1.90068	144	122
100	98	66	32	•00163	1.51392	32	123
100	9 8	37	62	•00081	1.79410	61	124
100	66	37	43	•00110	1.64285	29	125
200	312	199	36	•01040	1.55892	113	126
200	312	156	50	•00520	1.69896	156	127
200	312	100	67	•00346	1.83218	212	128
• 200	312	50	83	•00260	1.92414	262	129
200	199	156	21	•00663	1.33461	43	130
200	199	100	49	•00331	1.69678	99	131
200	199	50	74	•00221	1.87433	149	132
200	156	100	35	•00520	1.55506	56	133
200	156	50	67	•00260	1.83218	106	134
200	100	50	50	•00333	1.69896		135
250	316	242	23	•01317	1.36954	. 20 74	136
250	316	196	37	•00658	1.57949	120	137
250	316	150	52	•00439			
250	316	91	71		1.72042	166	138
250	242	196		•00329	1.85249	225	139
			19	•01009	1.27894	46	140
250	242	150	38	•00504	1.57997	92	141
250	242	91	62	•00336	1.79516	151	142
250	196	150	23	•00817	1.37050	46	143
250	196	91	53	•00408	1.72893	105	144
250	150	91	39	•00625	1.59476	59	145
100	417	245	41	•00695	1.61539	172	146
100	417	149	64	•00347	1.80799	268	147
100	417	66	84	•00231	1.92517	351	148
100	417	33	92	·00173	1.96419	384	149
100	245	149	39	•00408	1.59310	96	150
100	245	66	73	•00204	1.86368	179	151
100	245	33	86	•00136	1.93716	212	152
100	149	66	55	•00248	1.74589	83	153
100	149	33	77	+00124	1.89127	116	154
100	66	33	50	•00110	1.69896	33	155
150	412	293	28	•01030	1.46064	119	156
150	412	229	44	•00515	1.64755		150
150	412	163	60			183	
150	412	105		•00343	1.78130	249	158
150	293	229	73	•00257	1.86797	304	159
			21	•00733	1.33931	64	160
150	293	163	44	•00366	1.64707	130	161
150	293	108	63	•00244	1.80030	185	162
150	229	163	28	•00572	1.45970	66	163
150	229	108	52	•00286	1.72294	121	164
150	163	108	33	•00407	1.52817	55	165
250	399	264	33 ·	•01663	1.52936	135	166
250	399	244	38	•00831	1.58935	155	167
250	399	160	59	•00554	1.77742	239	168
250	399	127	68	•00415	1.83359	272	169
250	264	244	7	•01100	•87942	20	170
250	264	160	39	•00550	1.59542	104	171
250	264	127	51	•00366	1•7151ľ	137	172
250	244	160	34	•01017	1.53688	84	173
250	244	127	47	•00508	1.68079	117	174
250	160	127	20	.00667	1.31439	33	175
100	511	303	40	.00852	1.60964	208	176
100	511	211	58	•00426	1.76870	300	177
100	511	138	72	•00284	1.86328	373	178
100	511	79	84	•00213	1.92706	432	179
100	303	211	30	•00505	1.48234	4 <i>32</i> 92	180

	n an	: • • • • • • • • • • • • • • • • • • •					
FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	CODE
100	303	79	73	•00168	1.86880	224	182
100	211	138	34	•00351	1.53904	73	183
100	211	79	62	•00175	1.79629	132	184
100	138	79	42	•00230	1.63097	59	185
200	514	322	37	•01714	1.57233	192	186
200	514	, 295	42	•00857	1.62948	219	187
200	.514	223	56	•00571	1.75292	291	188
200	514	198	61	•00428	1.78872	316	189
200	322	295	8	•01074	•92350	27	190
200	322	223	30	•00537	1•48777	99	191
200	322	198	38	•00358	1.58556	124	192
200	295 295	223 198	24 32	•00984	1.38751	72	193
200	295		11	•00492	1.51694	97	194
300	480	198 373	22	•00743 •02401	1•04963 1•34814	25 107	195 196
300	480	315	34	•01200	1.53624	165	198
300	480	255	46	•00800	1.67094	225	198
300	480	207	56	•00600	1.75492	273	199
300	373	315	15	•01866	1.19171	58	200
300	373	255	31	•00933	1.50017	118	201
300	373	207	44	•00622	1.64839	166	202
300	315	255	19	•01576	1.27984	60	203
300	315	207	34	•00788	1.53511	108	204
300.	25,5	207	18	•01276	1.27470	. 48	205
100	986	834	15	•01644	1.18796	152	206
100	986	810	17	.00822	1.25163	176	207
100	986	720	26	•00548	1.43100	266	208
100	986	753	23	•00411	1.37347	233	209
100	834	810	2	•01391	•45904	24	210
100	834	720	13	•00695	1.13573	114	211
100	834	753	9	•00463	•98731	81	212
100	810	720	11	•01351	1.04575	90	213
100	810	753 113	7 35	•00675	•84738	57	214
100 100	175 175	105	35 40	•01216	1.54935	62	1
100	175	64	40 63	•00608	1.60205	70 111	2
100	175	48	72	•00405 •00304	1.80228 1.86076	127	4
100	113	105	7	•00785	.85001	8	5
100	113	64	43	•00392	1.63711	49	6
100	113	48	57	•00261	1.75983	65	7
100	105	64	39	•00729	1.59159	41	8
100	105	48	54	•00364	1.73468	57	9
100	64	48	25	•00444	1.39793	16	10
200	198	145	26	•02752	1.42761	53	11
200	198	126	36	•01376	1.56066	72	12
200	198	111	43	•00917	1.64285	87	13
200	198	76	61	•00688	1.78969	122	14
200	145	126	13	•02015	1.11738	19	15
200	145	111 -	23	•01007	1.37011	34	16
200	145	76	47	•00671	1.67748	69	17
200	126	111	11	•01751	1.07572	15	18
200	126	76	39	•00875 01542	1.59859	50 .	19
200	111	76	31	•01542	1.49874	35	20
200 200	290 290	239	17	•04031 •02015	1.24517	51	21
200	290	210 185	27 36	•02015	1•44069 1•55879	. 80 105	22 23
200	290	157	45	•01007	1.66145	133	24
200	239	210	12	•03322	1.08400	29	25
200	239	185	22	•01661	1.35399	54	26
200	239	157	34	•01107	1.53541	82	27
200	200	• - 1				02	_ ·

TABLE III (Continued)

TABLE III (Continued)

	<u></u>		-				·······		
FLOW GAL/	N RATE VDAY		D-IN G/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DEL TA-COD MG/L	CODE
	200	ź	210	185	11	•02919	1.07572	25	28
	200	2	210	157	25	•01459	1.40205	53	29
	200	1	.85	157	15	0257 1	1.17998	28	30
	400		29	394	8	•11926	•91161	35	31
	400		29	374	12	•05963	1.10790	55	32
	400	4	29	349	18	•03975	1.27063	80	33
	400	4	29	329	23	•02981	1.36754	100	34
	400	3	94	374	5	•10953	•70553	20	35
	400	3	94	349	11	•05476	1.05771	45	36
	400	. 3	94	329	16	•03651	1.21741	65	37
	40Ú	3	74	349	6	10397	82506	25	38
	400	3	74	329	12	•05198	1.08034	45	39
	400	. 3	49	329	5	•09702	•75820	20	40
	100		90	47	47	•.00278	1.67922	43	1
	100		90	· 29	67	•00139	1.83108	61	2
	100		90	19	78	•00092	1.89701	71	3
	100		90 1	16	82	•00069	1.91498	74	4
	100		47	29	38	•00145	1.58317	18	5
	100		47	19	59	•00072	1.77506	28	6
	100		47	16	65	•00048	1.81926	31	7
	100		29	19.	34	•00089	1.53760	10	8
	100		29	16	44	•00044	1.65154	13	9
	100		19	16	15	•00058	1.19836	3	10
	200.	1	17	76	35	•00722	1.54459	41	11
	200	1	.17	64	45	•00361	1.65608	53	12
	200	1	.17	51	56	• 00240	1.75135	66	13
	200	· 1	.17	44	62	•00180	1.79513	73	14
	200		76	64	15	•00469	1.19836	12	15
	200		76	51	32	•00234	1.51712	25	16
·	200		76	44	42	•00156	1.62433	32	17
	200		64	51	20	•00395	1.30776	13	18
	200		64	44	31	•00197	1•49484	20	19
	200		51	44	13	•00315	1.13752	7	20
	300	1	21	87	28	•01121	1.44869	34	21
	300	1	.21	70	42	•00560	1.62478	51	22
	300	1	21	57	52	•00373	1.72339	64	23
	300	. 1	21	50	58	•00280	1.76847	71	24
	300		87	70	19	•00806	1.29092	17	25
	300		87	57.	34	•00403	1.53760	30	26
	300		87	50	42	•00268	1.62868	37	27
	300		70	57	18	•00648	1.26884	13	28
	300		70	50	28	•00324	1.45593	20	29
	300		57	50	12	•00528	1.08922	7.	30
	200	2	13	141	33	•01315	1.52895	72	31
	200	2	13	131	38	•00657	1.58543	82	32
	200	2	13	116	45	•00438	1.65839	97	33
	200	2	13	95	55	•00328	1.74350	118	34
	200	1	.41	131	7	•00871	•85078	10	35
	200	1	.41	116	. 17	•00435	1.24872	25	36
	20Ù	1	.41	95	32	•00290	1.51353	46	37
	200	1	.31	116	11	•00809	1.05881	15	38
	200	- 1	.31	95	27	●00404	1.43903	36	39
	200	3	18	247	22	•01964	1.34883	71	41
	200	3	318	211	/ 33	•00982	1.52695	107	42
	200	3	18	169	46	•00654	1.67075	149	43
	200	3	318	133	58	•00491	1•76474	185	44
	200	2	247	211	14	•01525	1.16360	36	45
	200		247	169	31	•00762	1.49939	78	46
	200		247	133	46	•00508	1.66420	114	47
	200 -	2	211	169	19	•01303	1.29896	42	48

TABLE III (Continued)

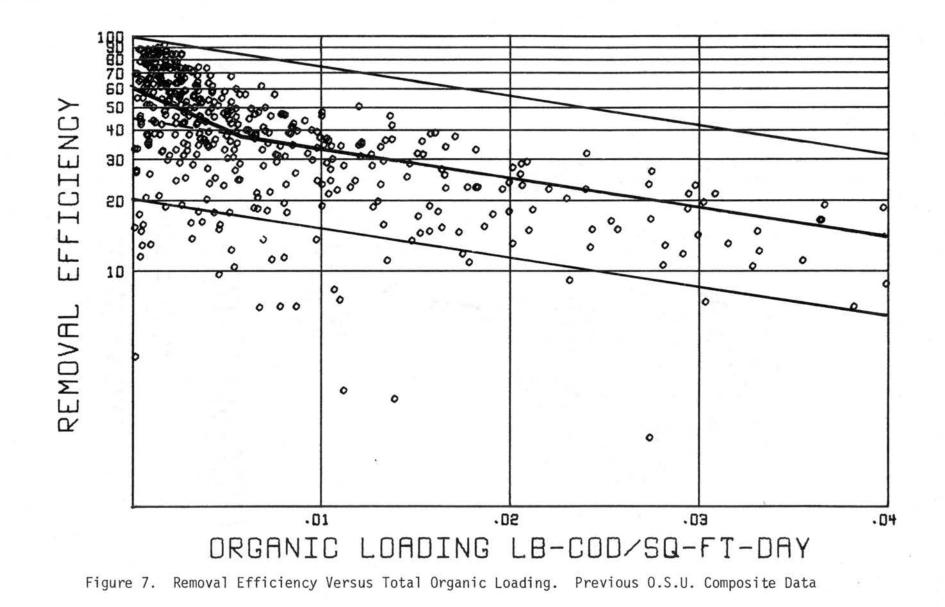

						·····	
FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	COD
200	211	133	36	•00651	1.56781	78	49
200	169	133	21	•01044	1.32841	36	50
300	318	250	21	•02946	1.33008	68	51
300	318	227	28	•01473	1.45661	.91	52
300	318	193	39	•00982	1.59448	125	53
300	318	172	45	•00736	1.66192	146	54
300 300	250	227	9	•02316	•96378	23	55
300	250 250	193	22	•01158	1.35793	57	56
300	227	172 193	31	•00772	1.49415	78	57
300	227		14	•02103	1.17545	34	58
300	193	172 172	24	•01051	1.38433	55	59
800	195	167	10	•01788	1.03666	21	60
800	195	133	14	•04818	1.15712	28	61
800	195	119	31 38	•02409	1.50235	62	62
800	195	97		•01606	1.59077	76	63
800	195		50	•01204	1.70119	9.8	64
800	167	133	20	•04126	1.30876	34	65
800	167	119	28	•02063	1•45852	48	66
		97	41	•01375	1.62238	70	67
800 800	133	119 97	10	•03286	1.02227	14	68
	133		27	•01643	1.43245	36	69
800 400	119	97	18	•02940	1.26687	22	70
	443	373	15	•05473	1.19869	70	71
400	443	339	23	•02736	1.37062	104	72
400	443	297	.32	•01824	1.51794	146	73
400	443	240	45	•01368	1.66109	203	74
400	373	339	. 9 .	•04608	•95977	34	75
400	373	297	20	•02304	1.30910	76	76
400	373	240	35	•01536	1.55214	133	77
400	339	297	12	•04188	1.09304	42	78
400	339	240	29	•02094	1.46543	99	79
400	297	240	19	•03669	1.28311	57	80
800	212	197	7	•03822	•84975	15	1
800	212	175	17	•01911	1.24186	37	2
800	212	152	28	•01274	1•45181	60	3
800	212	149	29	•00955	1.47300	63	4
800	197	175	11	•03552	1.04795	22	5
800	197	152	22	•01776	1.3.5874	45	. 6
800	197	149	24	•01184	1.38677	48	7
800	175	152	13	•03155	1.11868	23	8
800	175	149	14	•01577	1.17193	26	. 9
800	152	149	1	•02740	•29527	3	10
400	443	404	8	•03994	•94466	39	11
400	443	337	23	•019 97	1.37890	106	12
400	443	312	29	•01331	.1 . 47086	131	13
400	443	279	37	•00998	1•56844	164	14
400	404	337	16	•03642	1.21969	67	-15
400	404	312	22	•01821	1.35740	92	16
400	404	279	30	•01214	1.49052	125	17
400	337	312	7	•03038	•87031	25	18
400	337	279	17	•01519	1.23579	58	19
400	312	279	10	•02813	1.02435	33	20
400	685	609	11	•06176	1.04512	76	21
400	685	538	21	•03088	1.33162	147	22
400	685	507	25	•02058	1,41472	178	23
400	685	470	31	•01544	1.49674	215	24
400	609	538	11	•05490	1.06664	71	25
400	609	507	16	•02745	1.22398	102	26
400	609	470	22	•01830	1.35839	139	27
400	538	507	5	•04850	•76057	31	28

TABLE III (Continued)

FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	CODE
400	538	470	12	•02425	1.10172	68	29
400	507	470	7	·C4571	•86319	37	30
1400	210	190	9	•06626	•97881	20	31
1400	210	179	14	•03313	1.16914	31	32
1400	210	163	22	•02208	1.34987	47	33
1400	210	156	25	•01656			
1400	190	179			1.41017	54	34
			5	• 05995	•76263	11	35
1400	190	163	14	02997	1.15261	27	36
1400	190	156	17	•01998	1.25272	34	37
1400	179	163	8	•05648	•95126	16	38
1400	9	156	12	•02824	1.10887	23	39
1400	163	156	4	•05143	.63291	7	40
100	100	26	74	•00166	1.86923	74	1
100	100	23	77	•00083	1.88649	77	2
100	100	19	81	.00055	1.90848	81	3
100	100	22	78	•00041	1.89209	78	<u> </u>
100	26	23	11	•00043	1.06214	3	5
100	26	19	26	•00021	1.43012	7	6
100	26	22	15	•00014	1.18708	4	
100	23	19	17	•00038			7
100	23	22			1.24033	4	8
			4	•00019	•63827	1	9
200	102	70	31	•00340	1.49654	32	10
200	102	53	48	•00170	1.68159	49	11
200	102	43	57	•00113	1.76225	59	12
200	102	34	66	•00085	1.82390	68	13
200	70	53	24	•00233	1.38535	17	14
200	70	43	38	•00116	1.58626	27	15
200	70	34	51	• 000 7 7	1.71120	36	16
200	53	43	18	•00176	1.27572	10	17
200	53	34	35	•00088	1.55447	19	18
200	43	34	20	•00143	1.32077	9	19
300	123	74	39				
				•00615	1.60029	49	20
300	123	62	49	•00307	1.69542	61	21
300	123	52	57	•00205	1.76135	71	22
300	123	42	65	•00153	1.81857	81	23
300	74	62	16	•00370	1.20994	12	24
300	74	52	29	•00185	1.47319	2.2	25
300	74	42	43	•00123	1.63591	32	26
300	62	52	16	•00310	1.20760	10	27
300	62	42	32	•00155	1.50863	20	28
300	52	42	19	•00260	1.28399	10	29
200	207	139	32	•00690	1.51653	68	30
200	207	118	42	•00345	1.63341	89	31
200	207	76	63	•00230	1.80130	131	32
200	207	54	73	•00172	1.86872	153	33
200	139	118					
			15	•00463	1.17920	21	34
× 200	139	76	45	•00231	1.65632	63	35
200	139	54	61	•00154	1.78640	. 85	36
200	118	76	35	•00393	1.55136	42	37
200	118	54	54	•00196	1.73429	64	38
200	76	54	28	•00253	1.46160	22	39
200	316	230	27	•01054	1.43481	86	40
200	316	163	48	•00527	1.68500	153	41
200	316	146	53	•00351	1.73076	170	42
200	316	112	64	•00263	1.80994	204	43
200	230	163	29	•00767	1•46434	67	44
200	230	146	36	•00383	1.56255	84	45
	230	112	51	•00255	1.71015	118	46
200							
200 200	163	146	10	.00543	1.01826	17	47

FLOW RATE GAL/DAY	COD-IN MG/L	COD-OUT MG/L	PCT-EFF	LOADING LB/FT2D	LOG-EFF	DELTA-COD MG/L	CÓDE
200	146	112	23	•00487	1.36712	34	49
300	324	266	17	•01621	1.25288	58	50
300	324	224	30	•00810	1.48945	100	51
300	324	217	33	•00540	1.51883	107	52
300	324	169	47	•00405	1.67978	155	53
300	266	224	15	•01331	1.19836	42	54
300	266	217	18	•00665	1.26531	49	55
300	266	169	36	•00443	1.56189	97	56
300	224	217	3	•01120	•49484	ź	57
300	224	169	24	•00560	1.39011	55	58
300	217	169	22	•01085	1.34478	48	59
800	190	Ì59	16	•02535	1.21260	31	60
800	190	130	31	•01267	1.49939	60	61
800	190	111	41	•00845	1.61887	79	62
800	190	96	49	•00633	1.69437	94	63
800	159	130	18	•02121	1.26100	29	64
- 8 00	159	111	30	•01060	1.47984	48	65
800	159	9 6	39	•C0707	1.59794	63	66
800	130	111	14	•01734	1.16481	19	67
800	130	96	26	•00867	1.41753	34	68
800	111	96	13	•01481	1.13076	15	69
400	454	365	19	.03029	1.29233	89	70
4UŬ	454	310	31	•01514	1.50130	144	71
400	454	238	47	•01009	1.67739	216	72
400	454	196	56	•00757	1.75456	258	73
400	365	310	15	•02435°	1.17806	55	74
400	365	238	34	•01217	1.54151	127	75
400	365	196	46	•00811	1.66559	169	76
400	310	196	36	•01034	1.56554	114	77
400	310	238	23	•02068	1.36597	72	78
400	238	196	17	•01587	1.24667	42	79

TABLE III (Continued)

This dimension also facilitates a comparison of these experiments with others reported in the literature.

Examination of other sources of data was now begun. Figure 8 compares data supplied for B. F. Goodrich and Ethyl Corporation plastic media, with the incline rotating tube data. An approximation of the average line from the NRC summary data (Figure 1) is also included. The relationship of each of these intermittent wetted, partially exposed biological systems is now more visible. Note the similarity of slopes between the Ethyl Corporation (Flocor), B. F. Goodrich, and the NRC with the rotating tube lines. Also note the Cook data only line and the similarity of slope with the rotating tube model line at extremely low organic loadings.

CHAPTER V

DISCUSSION

Model Correlation

A primary objective of the study was to determine whether the inclined rotating tube model would actually simulate the removal characteristics of other known accurate models of trickling filters. The covariance analysis established that a significant correlation does exist between the removal characteristics of this model and the previous Oklahoma State University scale model pilot removal characteristics. The actual reaction rate constants and intercepts were found to be "statistically equal" at the five percent level.

Amount of Waste Required

The nominal amounts of waste used in the study (7.2 - 12 liters/day) for the inclined rotating tube model represent a considerable savings in bulk handling. Furthermore, the small amounts involved make a detailed laboratory study far more feasible. The size and flow rate of the model were chosen to match available laboratory equipment. The ultimate size of the tube and the flow rates of waste material may be scaled down even further, given reliable pumping apparatus.

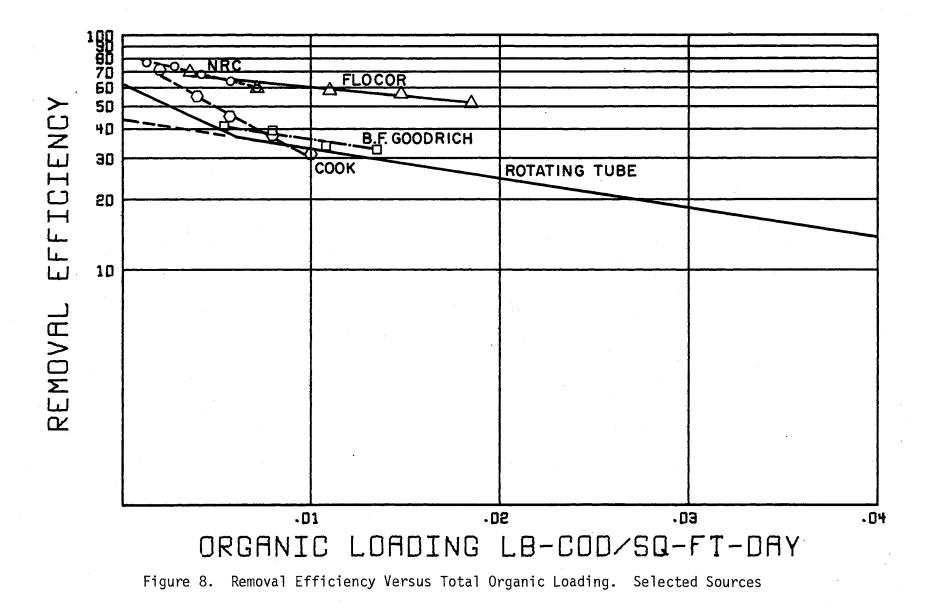
Mathematical Model

The linear relationships shown in Figures 5, 7, and 8 indicate that a first order reaction is occurring. Figure 8 also shows a slope (reaction rate constant) relationship between data reported for various media. Further investigation revealed that when each body of data was converted using the normalized unit of organic loading, Z, the slope of each was indicative of the waste being metabolized. Thus the reaction rate constant obtained from the inclined rotating tube model combined with the psuedo-intercept give a reliable removal efficiency when applied in the formulation

$$\frac{S_{e}}{S_{o}} = 10^{-kZ + I}$$
 (13)

where

Se = influent COD in mg/l
So = effluent COD in mg/l
k = reaction rate constant
I = psuedo-intercept
} determined from model study.


Dimensional analysis of this relationship gives

$$\frac{S_e}{S_o} = \exp[-\text{proportionality constant}, x f$$
(14)
(mass, area, time)].

Dimensional analysis of the other first order relationships previously reported are:

From Equation (2):

Phelps:
$$\frac{S_e}{S_o} = \exp[-\text{ proportionality constant}_2 x f(time)]$$
 (15)

From Equation (5):

Velz:
$$\frac{S_e}{S_o} = \exp[-\text{proportionality constant}_3 x f(vol)]$$
 (16)

And from Equation (9):

Eckenfelder:
$$\frac{S_e}{S_o} = \exp[-\text{proportionality constant}_4 f (area, time)].$$
 (17)

Lower Boundary

Plots of the experimental data (Figures 5 and 7) reveal a "break" in the first order relationship toward lower organic loadings. Simple extrapolation of the regression lines as Z+O gives a predicted removal efficiency somewhat less than those obtained in the experiments described. Indeed, the molecular point of view would support the hypothesis that

$$\lim_{Z \to 0} \frac{s_{e}}{s_{o}} = 1.0$$
 (18)

All of the 576 calculated values (Tables II and III) were then reexamined to ascertain whether a left boundary condition would apply to the newly developed design formulation. The apparent "break" appeared at approximately Z = 0.05. This point was chosen and all data to the left rerun through regression analysis. A new regression line k = -35.5 with Z = 0 intercept 1.78 was obtained. This new line, when plotted, intercepts the original line at:

$$Z = 0.0085 \frac{1b \text{ COD}}{\text{sq ft} - \text{day}}$$

The extrapolation of the original reaction rate constant to the intercept point at Z = 0, although not depicting actual removal rate and

accordingly referred to as a "psuedo" intercept, is a useful tool in data handling.

The lower boundary condition would seem to apply to the mathematical model (Equation (13)). The region beyond this boundary represents extremely small organic loadings. This region corresponds to the organic concentration levels that have been associated with favorable conditions for the nitrifying microorganisms. Further study in this area is particularly needed. Also note the break in Figure 8 also occurs close to other experimental plots emphasizing the rotating tube model correlation.

Statistical Variation

Variation in removal efficiency was demonstrated throughout this experiment. Similarly, the Cook and Fleming data was also extremely variable. The regression analyses provided the normal statistical parameters to describe the variability precisely. The removal efficiencies predicted by the use of Equation (13) are conservative at the outset because of the analysis itself. The regression line seeks an "average" or lower value rather than the optimum as indicated by Figures 5, 7, and 8. The engineer may enhance his treatment design analysis by allowing for this statistical variation.

CHAPTER VI

CONCLUSIONS

Based on this investigation, the following conclusions are presented: 1. The rotating tube micro-model of a trickling filter does simulate the pilot plant plastic media trickling filter.

2. Treatability studies and design studies may be run simultaneously using far smaller amounts of waste material than previously thought possible.

3. The first order relationship of removal efficiency as an exponential function of loading (time, area, and mass) may be used to design trickling filters.

4. Statistical chance variation (mean expected efficiency and confidence interval data) must be included in any design formulation whenever heterogeneous microbial populations are used.

CHAPTER VII

SUGGESTIONS FOR FUTURE STUDY

As a result of this investigation, the following suggestions are made for future study with the rotating tube trickling filter:

1. Pure culture studies to reinforce the concept of statistical description of the variability of heterogeneous microbial population metabolism.

2. Investigation of lower boundary removal kinetics and nitrification studies.

3. Studies on effect of residence or contact time by varying tube length, apparent path length (varying rotation rate), and angle of inclination.

4. Further refinements to improve sloughing. An increased inclination angle may improve this important feature.

A SELECTED BIBLIOGRAPHY

- (1) Waring, George E. <u>Modern Methods of Sewage Disposal for Towns</u>, <u>Public Institutions and Isolated Houses</u>. 2nd ed. D. Van Nostrand Co. (New York, 1896).
- (2) Personal communication with D. F. Kincannon, July, 1972.
- (3) Conway, R. A., and G. T. Waggy. "Biodegradation Testing of Typical Surfactants in Industrial Usages." American Dyestuff Report (August, 1966).
- (4) Wing, B. A., and W. M. Steinfeldt. "A Comparison of Stone-Packed and Plastic-Packed Trickling Filters." <u>Journal Water Pollution</u> <u>Control Federation</u>, <u>42</u> (1970).
- (5) Streeter, H. W., and E. B. Phelps. "A Study of the Pollution and Natural Purification of the Ohio River." <u>Public Health Bulle-</u> <u>tin, No. 146</u>. Government Printing Office, Washington, D.C. (1925).
- (6) Velz, C. J. "A Basic Law for the Performance of Biological Filters." <u>Sewage and Industrial Wastes</u>, <u>20</u>, 615 pp. (1948).
- (7) Swilley, E. L., and B. Atkinson. "A Mathematical Model for the Trickling Filter." <u>Proceedings</u>, 18th Annual Industrial Waste Conference, Purdue University (1963).
- (8) NRC Committee on Sewage Treatment. "Sewage Treatment at Military Installations." <u>Sewage Works Journal</u>, <u>18</u> (1946).
- (9) NRC Committee on Sewage Treatment. "Sewage Treatment at Military Installations--Summary and Conclusions." <u>Sewage Works Jour-</u><u>nal, 20</u> (1948).
- (10) Eckenfelder, W. W. <u>Industrial Water Pollution Control</u>. McGraw-Hill Book Co. (New York, 1966).
- (11) Galler, W. S., and H. B. Gotaas. "Analysis of Biological Filter Variables." <u>Proceedings</u>, American Society of Civil Engineers, <u>Journal Sanitary Engineering Division</u>, <u>90</u>, <u>SA 6</u> (1964).
- (12) Galler, W. S., and H. B. Gotaas. "Discussion of Analysis of Biological Filter Variables." <u>Proceedings</u>, American Society of Civil Engineers, <u>Journal Sanitary Engineering Division</u>, <u>92</u>, <u>SA 1</u> (1966).

- (13) Cook, Echol E. "Kinetics and Mechanisms of Fixed Bed Reactors." Unpublished Ph. D. dissertation, Oklahoma State University, Stillwater, Oklahoma (1970).
- (14) Fleming, M. L. "The Effect of Surface Area on the Performance of a Fixed Bed Reactor." Unpublished M. S. thesis, Oklahoma State University, Stillwater, Oklahoma (1971).
- (15) Standard Methods for the Examination of Water and Wastewater. Ilth ed. American Public Health Association (New York, 1960).
- (16) Gaudy, A. F., Jr., and M. Ramanthan. "Variability in Cell Yield for Heterogeneous Microbial Populations of Sewage Origin Grown on Glucose." <u>Biotechnology and Bioengineering</u>, <u>13</u> (1971).
- (17) Gaudy, A. F., Jr., and E. T. Gaudy. "Microbiology of Wastewater Purification." <u>Annual Review Microbiology</u>, <u>20</u> (1966).
- (18) Peil, K. M., and A. F. Gaudy, Jr. "Kinetic Constants for Aerobic Growth of Microbial Populations Selected With Various Single Compounds and With Municipal Waste as Substrates." <u>Applied</u> <u>Microbiology</u>, <u>21</u> (1971).
- (19) Sawyer, C. N., and P. L. McCarty. <u>Chemistry for Sanitary Engineers</u>. 2nd ed. McGraw-Hill Book Co. (New York, 1967).
- (20) Grant, E. L. <u>Statistical Quality Control</u>. 3rd ed. McGraw-Hill Book Co. (New York, 1964).
- (21) Draper, N. R. <u>Applied Regression Analysis</u>. John Wiley and Sons, Inc. (New York, 1967).

VITA

Donald Lee Spurrier

Candidate for the Degree of

Master of Science

Thesis: A MICRO-MODEL FOR DESIGN AND STUDY OF TRICKLING FILTERS

Major Field: Bioenvironmental Engineering

Biographical:

- Personal Data: Born in Ava, Missouri, January 10, 1932, the son of Walter E. and India E. Spurrier.
- Education: Graduated from Bakersfield High School, Bakersfield, California, in May, 1950; received Bachelor of Science degree in Industrial Engineering and Management in 1968; completed requirements for the Master of Science degree at Oklahoma State University in May, 1973.

Professional Experience: United States Air Force Civil Engineer, 1966-73.