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SEPARATE FORMATION ENERGIES OF POSITIVE AND NEGATIVE 

ION VACANCIES IN LITHIUM FLUORIDE

CHAPTER I

INTRODUCTION AND DEFINITIONS 

In tro d u c tio n

In  th e  Born model of an a lk a l i  h a lid e  c r y s ta l  i t  i s  assumed th a t  

th e  s o l id  i s  composed o f p o s i t iv e ly  and n e g a tiv e ly  charged io n s . The 

ions adhere to  form a s ta b le  c r y s ta l  by v i r tu e  o f th e  a t t r a c t i v e  coulomb 

fo rce s  between th e  o p p o s ite ly  charged io n s , each ion being  surrounded by 

n e a r e s t  ne ighbors  of o p p o site  s ig n . The c r y s ta l  i s  p reven ted  from co l­

la p s in g  by th e  s h o r t- ra n g e  re p u ls iv e  fo rc e s  which a re  due c h ie f ly  to  the  

P a u li  ex c lu s io n  p r in c ip le .  This model o f th e  a lk a l i  h a lid e  c r y s ta l  has 

enjoyed c o n s id e ra b le  success in  e x p la in in g  experim en tal phenomena. De­

t a i l e d  v a lu es  o f th e  l a t t i c e  e n e rg ie s  and e l a s t i c  param eters have been 

c a lc u la te d  fo r  t h i s  model.

N ev erth e le ss  th e re  i s  a la rg e  body of phenomena which cannot be 

ex p la ined  through the  assum ption th a t  an a lk a l i  h a lid e  has a p e r f e c t  io n ic  

l a t t i c e ;  th e  b eh av io r o f th e  c r y s ta l  under ap p lied  s t r e s s e s  i s  one ex­

ample. These phenomena can be ex p la in ed  by assuming th a t  th e re  e x is t  

reg io n s  in  th e  l a t t i c e  which d e p a rt from the  r e g u la r i ty  e x h ib ite d  by an



id e a l  c r y s ta l ;  th a t  i s ,  th e re  a re  im p erfec tio n s  in  the  c ry s ta l  

( 2)s t r u c tu r e .  The understand ing  of th e  n a tu re  o f im perfec tion , lead s  to  

a b e t t e r  understand ing  o f the  n a tu re  of th e  p e r fe c t  l a t t i c e ,  and th is  a -  

lone would make th e i r  study  im p o rtan t. However, some of the  most impor­

ta n t  p r a c t ic a l  uses of th e se  c r y s ta l s ,  such as n u c lea r p a r t i c l e  d e te c to rs  

and cathode-ray  tube screens depend upon th e  n a tu re  of im p erfec tio n s  con­

ta in e d  w ith in  the c r y s ta l ,  which makes th e  study of im p erfec tio n s  even 

more im portan t.

In  th is  th e s i s ,  c o n s id e ra tio n  w i l l  be given to  two types of im­

p e rfe c tio n s  in  a lk a l i  h a lid e  c r y s ta l  l a t t i c e s .  The f i r s t  im perfec tion  

i s  the  s o -c a lle d  p o in t d e fe c t, a d e fe c t which i s  t o t a l l y  o f atomic d i­

mensions and may take  se v e ra l form s. There may be i n t e r s t i t i a l  atoms, 

im purity  atoms, o r the  absence of an atom norm ally in  the  l a t t i c e .  This 

l a s t  p o in t im p erfec tio n  i s  c a lle d  a vacancy, and w i l l  be of s p e c ia l  in ­

t e r e s t  in  th is  th e s is .  In  an a lk a l i  h a lid e  th e re  a re  two types of va­

can c ie s , corresponding to  the  absence of a p o s i t iv e ly  o r a n eg a tiv e ly  

charged ion  from i t s  p roper p lace  in  the  l a t t i c e .  These a re  c a lle d  ca­

t io n  and anion vacancies re s p e c tiv e ly .

The second type of d e fe c t i s  a one-dim ensional im p e rfec tio n , 

and i s  known as a d is lo c a tio n . The d is lo c a t io n  i s  a l in e  d e fe c t and 

has one dimension th a t i s  m acroscopic. I t  i s  therm odynam ically u n s tab le  

and may be removed by annea ling  the  c r y s ta l .  On the  o th er hand, a va­

cancy may be p re sen t in  thermodynamic e q u ilib riu m ; in  f a c t ,  a t  temper­

a tu re s  above a b so lu te  ze ro , vacancies must be p re se n t so th a t  th e re  can 

be thermodynamic eq u ilib riu m .



There a re  e l e c t r i c a l  e f f e c ts  a sso c ia te d  w ith  each type o f de­

f e c t ;  th e se  e l e c t r i c a l  e f f e c t s  w i l l  be in tro d u ced  and d iscu ssed  l a t e r  

in  th e  th e s i s .  The measurement of these  e f f e c ts  allow s th e  c a lc u la ­

t io n  of some b a s ic  q u a n t i t ie s  r e la t in g  to  d e fe c ts  in  a lk a l i  h a lid e  

c r y s ta l s ,  and to  li th iu m  f lu o r id e  in  p a r t ic u la r .

P o in t D efects 

Schottky D efects

C onsider an io n ic  c r y s ta l  a t  some tem peratu re  T above ab so lu te  

ze ro . We assume th a t  the  c r y s ta l  has the  ro c k s a lt  s t r u c tu r e ,  although 

th i s  i s  no t n ecessa ry  fo r  th e  fo llow ing  c a lc u la t io n . There w i l l  be an 

eq u a l number o f c a tio n  and anion  s i t e s ,  denoted by N. We now in tro d u ce  

a number of vacanc ies in to  th e  c r y s ta l  as fo llo w s; A c a tio n  and an an­

ion  a re  removed from t h e i r  p o s itio n s  in  th e  i n t e r io r  of the c r y s ta l  and 

p laced  f a r  a p a r t  on i t s  e x te r io r  su r fa c e , o r in  th e  co re  o f a d is lo c a ­

t io n  in s id e  th e  c r y s ta l .  I t  i s  g en e ra lly  accep ted  th a t  a d is lo c a tio n  

can a c t as a source  o r s in k  fo r  vacancies in  th i s  manner. In  o rder 

th a t  the  i n t e r io r  of th e  c r y s ta l  remain e l e c t r i c a l l y  n e u t r a l ,  we must 

have as many anion v acan c ies  as c a tio n  v a c a n c ie s . Thus we must c re a te  

anion and c a tio n  vacancy p a ir s  r a th e r  than  in d iv id u a l v acan c ies .

I f  n c a tio n  and anion vacancies a re  c rea ted  sim ultaneously  we 

want to  know th e  v a lu e  o f n th a t  w i l l  e x is t  when th e  c r y s ta l  is  in  

thermodynamic e q u ilib riu m  a t  T. The eq u ilib riu m  va lue  of n i s  d e te r ­

mined by m inim izing th e  p a r t  of th e  Gibb’s f re e  energy due to  the  in ­

tro d u c tio n  of th e  v a c a n c ie s . I f  E i s  th e  energy of form ation  of a



vacancy p a i r  and S i s  th e  c o n f ig u ra tio n a l en tropy charge which accom­

pan ies th e  fo rm ation  o f th e  n vacancy p a ir s  in  th e  c r y s ta l ,  then G ibb 's 

f r e e  energy due to  the  n vacancy p a ir s  can be w r i t te n  as

Ag = nE -  ST . (1)

We n e g le c t  any term s a s s o c ia te d  w ith  volume changes s in c e  th e se  a re  

sm all r e l a t i v e  to  the  energy and entropy term s.

The c o n f ig u ra tio n a l entropy term can be w r i t te n  as

^ (N -n)ln! " (N -n)ln l ^

where th e  f i r s t  f a c to r  i s  th e  number of ways of a rran g in g  th e  n ca­

t io n  v acan c ies  on the  N c a tio n  s i t e s  in  the  c r y s ta l ,  and th e  second 

f a c to r  i s  th e  number o f ways of a rran g in g  th e  an ion  vacancies on the 

anion s u b la t t i c e .  When Equation (2) i s  put in to  Equation (1) and the 

r e s u l t in g  ex p ress io n  minimized w ith re sp e c t to  n in  th e  s tan d a rd  man­

n e r , th e  fo llow ing  e x p re ss io n  fo r  th e  eq u ilib riu m  number o f vacancies 

a t  tem p era tu re  T r e s u l t s ;

(  f  ) C  I ) -  exp(- ^  ) (3)

Thus a t  any tem p era tu re  above ab so lu te  ze ro , th e re  w i l l  be a 

number o f v acancies p re se n t in  the  l a t t i c e ;  th e se  vacancies must be 

p re sen t so th a t  th e  c r y s ta l  w i l l  be in  thermodynamic eq u ilib riu m . I t
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should  be  no ted  th a t  th e  energy of form ation E i s  th e  sum of the  in ­

d iv id u a l en e rg ie s  o f fo rm ation  of anion and c a tio n  v acan c ies . Nothing 

concern ing  th e  in d iv id u a l  en erg ies  of form ation can be determ ined from 

th is  e x p re ss io n . The reaso n  f o r  leav in g  E quation  (3) in  the  above 

form is  to  s t r e s s  th e  f a c t  th a t  i t  i s  analogous to  a s o lu b i l i ty  pro­

duct r e l a t io n .  This form shows th a t  the  product of th e  f r a c t io n  of 

an ion  v acanc ies  and th e  f r a c t io n  of c a tio n  vacancies i s  equal to

exp(- ^  )

even when th e  two f r a c t io n s  a re  unequal, as may be th e  case when th e re  

a re  v acancies due to  o th e r  causes in  the  c r y s ta l .

F renkel D efects

The F renkel d e fe c t occurs when an ion  leaves i t s  proper l a t ­

t i c e  p o s i t io n  and goes in to  an i n t e r s t i t i a l  p o s i t io n . Two d e fe c t types 

a re  thus c re a te d : i n t e r s t i t i a l  ions and th e i r  accompanying v acan c ies .

The c a lc u la te d  fo rm ation  energy fo r  F renkel d e fe c ts  i s  much la rg e r  

th an  th a t  fo r  Schottky d e fe c ts  in  th e  a lk a l i  h a l id e s . Even a f t e r  d i­

v a le n t  atoms a re  added to  the  c r y s ta l ,  th e re  i s  a n e g l ig ib le  number of 

F renkel d e fe c ts  in  the  l a t t i c e .  For th is  reaso n , a d e ta i le d  co n sid era ­

t io n  o f F renkel d e fe c ts  w i l l  n o t be c a r r ie d  o u t, a lthough  th e  c a lc u la ­

t io n  o f th e i r  e q u ilib riu m  number in  the  l a t t i c e  a t tem perature  goes 

e x a c tly  as E q u a tio n  (3 ) ,  and y ie ld s  a s im ila r  r e s u l t .



D ivalen t Im p u ritie s

The atoms which make up th e  pure  a lk a l i  h a l id e  c r y s ta l  a re  

u n iv a le n t;  th a t  i s ,  the  ab so lu te  v a lue  of th e  charge on an ion  i s  

equal to  one e le c tro n ic  charge in  m agnitude. When a d iv a le n t  impur­

i t y  atom i s  in tro d u ced  in to  a o therw ise  p e r fe c t  a lk a l i  h a l id e  c ry s ta l*  

th e re  i s  ev idence to  in d ic a te  th a t  i t  e n te rs  th e  l a t t i c e  s u b s t i tu t io n -  

a l l y ,  d is p la c in g  one o f th e  atoms which c a r r ie s  th e  same s ig n  as i t ­

s e l f .  In  o rd er th a t  charge n e u t r a l i ty  be p reserv ed  in  th e  c r y s ta l ,  a 

vacancy i s  a lso  formed. Thus th e  in tro d u c tio n  of a d iv a le n t  im purity  

atom in to  th e  a l k a l i  h a l id e  l a t t i c e  lead s  to  the  fo rm ation  o f a va­

cancy having th e  o p p o s ite  s ig n  to  th a t  of the  im purity  atom. I t  f o l ­

lows th e n , th a t  i f  a c o n c e n tra tio n  c o f d iv a le n t im p u rity  atoms is  in ­

troduced  in to  th e  c r y s ta l ,  th e re  w i l l  a lso  be an equal c o n ce n tra tio n  c 

of v acanc ies accompanying them. Two kinds of p o in t d e fe c ts  a re  put 

in to  th e  c r y s ta l ;  th e  im purity  atom and i t s  accompanying vacancy.

These may be a s so c ia te d  w ith  each o th e r or may a c t indep en d en tly .

At a s u f f i c i e n t ly  h igh  tem peratu re  a vacancy can become sep a r­

a ted  from th e  accompanying im purity  atom and d if f u s e  th rough the 

c r y s ta l  a s  i f  i t  were an independent e n t i ty .  Below th i s  tem p era tu re , 

a c e r ta in  number of the  vacanc ies and th e  im purity  atoms a re  a sso c i­

a te d  w ith  each o th e r . S ince th e  im purity  atoms a re  r e l a t iv e ly  immobile 

a t  a l l  te m p e ra tu re s , t h i s  a s s o c ia t io n  ren d e rs  th e  vacancy immobile. 

There i s  then  a t  a given tem perature  a maximum of c v acan c ies  per u n it  

volume due to  th e  p resence  o f a c o n c e n tra tio n  c o f d iv a le n t  im p u r itie s .



Io n ic  C onductiv ity

The p resence  o f v acan c ies  in  an a lk a l i  h a l id e  c r y s ta l  can be

(4)connected d i r e c t ly  to  th e  io n ic  c o n d u c tiv ity  of th e  c r y s ta l .  I t  is  

found th a t  th e  graph of io n ic  c o n d u c tiv ity  versus in v e rse  tem peratu re  

d iv id e  in to  two e a s i ly  d is t in g u is h a b le  reg ions above, say , 300®C.

These reg ions have been found to  correspond to  conduction  dominated by 

vacanc ies  gen era ted  by d i f f e r e n t  mechanisms. In  th e  lower tem peratu re  

re g io n , th e  m a jo rity  o f th e  vacancies are those  which accompany the d i­

v a le n t im p u r itie s  in  th e  c r y s t a l .  At the  h ig h e r tem pera tu res  th e  va­

canc ies  a re  therm ally  g en era ted . We w i l l  n o t be concerned w ith  th a t  

tem peratu re  reg io n  below about 300®C, where a s s o c ia t io n  o f im p u ritie s  

w ith  v acanc ies  o c cu rs , excep t in c id e n ta l ly .  Even though im p u rity -v a - 

cancy a s s o c ia t io n  has been e x te n s iv e ly  in v e s t ig a te d ,  th e  tem peratures 

o f i n t e r e s t  to  t h i s  th e s is  a re  th o se  which l i e  between 300®C and the 

m e ltin g  p o in t o f th e  c r y s ta l .

The two d i f f e r e n t  reg io n s  o f  th e  io n ic  c o n d u c tiv ity  can be 

most c le a r ly  seen when the  n a tu ra l  lo garithm  of th e  p roduct o f io n ic  

c o n d u c tiv ity  and tem pera tu re  i s  p lo t te d  versus th e  in v e rs e  of the  

tem p era tu re . Such a graph w i l l  be c a l le d  a  c o n d u c tiv ity  p lo t .  In  th is  

p lo t  th e  two extrem e reg io n s  appear as s t r a ig h t  l in e s  w ith  d i f f e r e n t  

s lo p es  w ith  a t r a n s i t io n  re g io n  between them. The lower tem peratu re  

p a r t  of th e  p lo t  i s  known as th e  e x t r i n s i c ,  o r s t r u c tu r e  s e n s i t iv e  re -  

t io n ;  the  h ig h e r tem pera tu re  p a r t  i s  known as th e  i n t r i n s i c  reg io n .



Since th e  e x t r in s ic  co n d u c tiv ity  reg io n  i s  c o n tro lle d  by the  

p resen ce  o f im p u r i t ie s ,  i t  v a r ie s  from c r y s ta l  to  c r y s ta l ;  however, 

th e  io n ic  co n d u c tiv ity  in  the  i n t r i n s i c  reg ion  i s  c o n tro lle d  only by 

th e  Schottky d e fe c ts  and consequently  does n o t vary from sample to  

sample of th e  same m a te r ia l .  I t  i s  p o ss ib le  to  dope a c r y s ta l  so 

h e av ily  w ith  d iv a le n t  im p u r itie s  th a t  i t  w i l l  n o t e n te r  the  i n t r i n s i c  

reg io n  a t  any tem peratu re  below the  m elting  p o in t.

The tem pera tu re  a t  which th e  number of th erm ally  generated  

vacanc ies  equals th e  number of im purity  generated  v acanc ies  i s  known 

as th e  t r a n s i t i o n  o r knee tem peratu re  T^. Below th is  tem peratu re  the 

io n ic  c o n d u c tiv ity  i s  of th e  e x t r in s ic  type; above th i s  tem p era tu re , 

i t  i s  i n t r i n s i c .  i s  found by extending th e  s t r a ig h t  l in e s  o f th e  

c o n d u c tiv ity  p lo t  u n t i l  they in te r s e c t ;  the  tem pera tu re  of the  i n t e r ­

s e c tio n  p o in t i s  T^. Since a t  th i s  tem peratu re  n = c ,  we may w r ite

c = e x p ( -  2^  ) (4)

which g ives th e  number o f d iv a le n t im p u ritie s  in  th e  c r y s ta l  as a

fu n c tio n  o f T, k .



D islocations.

G eneral P ro p e r tie s

When a c r y s ta l  i s  su b jec ted  to  te n s io n  or com pression, th e re  

w i l l  f i r s t  be a reg ion  where the  s t r e s s  and s t r a in  a re  l in e a r ly  re ­

la te d .  I f  the  s t r e s s  i s  removed, th e  c r y s ta l  w i l l  re tu rn  to  i t s  o r i ­

g in a l shape, none the  w orse fo r  w ear. However, i f  more s t r e s s  i s  ap­

p l ie d  to  the  c r y s ta l ,  a reg io n  of s t r e s s  w i l l  be reached where th e  

s t r e s s  and s t r a i n  a re  n o t r e la te d  l in e a r ly ,  and the  s t r a i n  in  th e  

c r y s ta l  w i l l  be i r r e v e r s ib le .  This i s  th e  reg io n  of p l a s t i c  flow in  

th e  c r y s ta l .  The s t r e s s - s t r a i n  p lo t  of a p a r t ic u la r  specimen depends 

on a number of fa c to rs  such as the  tem p era tu re , the  h is to ry  of the  

specimen, . and the  im purity  co n ten t. Sharp t r a n s i t io n s  from e la s t i c  

to  the  p la s t i c  reg ions u su a lly  do n o t o ccu r, bu t i t  i s  p o s s ib le  to  de­

f in e  a c e r ta in  c r i t i c a l  sh ear s t r e s s  where p la s t i c  flow w i l l  s e t  in . 

However, i t  i s  more s a t i s f a c to r y  to  d e fin e  a q u a n tity  known as the  

c r i t i c a l  re so lv ed  sh ea r s t r e s s . T h i s  q u an tity  i s  the  s t r e s s  above 

which p l a s t i c i t y  begins in  the  form of s l ip  on a given s l i p  system ; 

th a t  i s ,  when th e  c r y s ta l  begins to  s l i p  along a p a r t i c u la r  d ire c t io n  

in  a c e r ta in  p la n e . The s l i p  system  is  s p e c if ie d  by g iv ing  both  the

s l i p  p lane  and the  s l i p  d i r e c t io n .  The Schmid law of th e  c r i t i c a l

( 2)reso lv ed  shear s t r e s s  s ta te s  th a t  s l ip  takes p lace  along a given 

s l i p  system  when the sh ea r s t r e s s  on th a t  system  reaches a c r i t i c a l  

v a lu e ; in  many s o l id s ,  th i s  s l ip  system  c o n s is ts  of the  p lanes having 

the w id est sp ac in g , b u t in  th e  a lk a l i  h a l id e s ,  the  s l i p  p lane  i s  the
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(110) p la n e , and th e  s l i p  d ir e c t io n  i s  [110]. A ll of the  p lanes and 

d ire c t io n s  which can be transform ed in to  th is  s l ip  system  by th e  symme­

try  o p e ra tio n s  o f th e  c r y s ta l  a re  a lso  cand ida tes  fo r  s l i p  system s.

In  th e  th e o r e t ic a l  approach to  th e  ex p lan a tio n  of p la s t i c  de­

fo rm ation  i t  was o r ig in a l ly  assumed th a t  p lanes of atoms s lip p e d  over
( 2)one an o th er as r ig id  p lan es . S lip  was considered  to  occur sim ul­

tan eo u sly  over a l l  p a r ts  of the  p lan e . The value  ob ta ined  fo r  the  

sh ea r s t r e s s  using  th i s  assum ption w as, however, as much as f iv e  

o rd e rs  o f m agnitude g re a te r  than  ex p erim en ta lly  determ ined v a lu e s .

S ince s l i p  always accompanies p la s t i c  deform ation , th is  d iscrepancy  

has le a d  to  th e  hy p o th esis  th a t  s l i p  does not occur s im ultaneously  

over th e  e n t i r e  s l i p  p lan e , b u t beg ins a t  a p a r t ic u la r  p lace  and 

p ropagates  through th e  c r y s ta l  on th e  s l i p  p lan es . The concept of the  

d is lo c a t io n  as th e  mechanism which tra n sm its  s l ip  through th e  c r y s ta l  

was in tro d u ced  in  1 9 3 4 ; s i nce  then  the  d is lo c a tio n  has been w idely 

used to  e x p la in  p l a s t i c  flow and o th e r p ro p e r tie s  o f s o l id s .

The d is lo c a tio n  is  a l in e  im p erfec tio n ; in  th e  a lk a l i  h a lid e s  

i t  has two extreme form s, th e  edge d is lo c a tio n  and the screw d is lo c a ­

t io n .  A d is lo c a t io n  may a lso  be in te rm ed ia te  between th ese  two ex­

trem es ; i t  may have some edge and some screw c h a ra c te r . E x ce llen t 

p re s e n ta tio n s  of d is lo c a tio n  theo ry  have been given by Read^^^ and
(  Q \

C o t t r e l l ,  so we w i l l  only g ive a summary of th e i r  p ro p e r tie s  h e re .

The edge d is lo c a tio n  i s  shown in  F igu re  1. Above th e  s l ip  

p lane th e re  a re  n v e r t i c a l  atom ic p la n es ; below, th e re  a re  n -  1
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FIGURE 1. AN EDGE DISLOCATION
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p la n e s . The edge d is lo c a t io n ,  denoted by - L ,  i s  the te rm in a tin g  edge

o f an e x tra  h a lf -p la n e  of atoms in  the  c r y s ta l .  The re g io n  of th e

edge i s  c a l le d  the co re  o f th e  d is lo c a t io n ,  and the te rm in a tio n  p lane  

i s  c a l le d  th e  s l i p  p lan e . I t  i s  th e  p lane  on which th e  d is lo c a t io n  

can move f r e e ly .  The Burgers v e c to r  o f a  d is lo c a t io n  has a m agnitude 

which g ives the  amount by which the  m a te r ia l  above th e  s l i p  p lan e  i s

d isp la ce d  w ith  re sp e c t to  th a t  below; i t s  d ir e c t io n  i s  th e  d i r e c t io n

of th is  d isp lacem ent. The Burgers v e c to r  of an edge d is lo c a tio n  i s  

p e rp e n d icu la r  to  th e  core  of th e  d is lo c a tio n .

The s im p le s t way of determ in ing  th e  B urgers v e c to r  o f a g iven 

d is lo c a t io n  i s  by u s in g  the  s o -c a l le d  Burgers c i r c u i t ,  which is  formed 

as fo llo w s. A c i r c u i t  is  tra v e rse d  in  reg io n s  f a r  from any d is lo c a ­

tio n s  by connecting  l a t t i c e  p o in ts  o f th e  r e a l  c r y s ta l .  The c i r c u i t  

must be such th a t  i t  would be c losed  i f  th e  c r y s ta l  were p e r f e c t .  

C onsider, however, th e  case  th a t  one d is lo c a t io n  i s  con tained  w ith in  

th e  c i r c u i t ;  th en , th e  c i r c u i t  would n o t c lo s e ,  and th e  v ec to r drawn 

from the  s t a r t in g  p o in t to  th e  f in is h  of the  unclosed  c i r c u i t  w i l l  be 

the  Burgers v e c to r of th e  d is lo c a t io n .  The d i r e c t io n  o f th e  Burgers 

v e c to r  thus depends on the  d ir e c t io n  in  which we decide to  tra v e rs e  

the  c i r c u i t ,  which corresponds to  the  u n c e r ta in ty  in  our knowledge of 

which s id e  of the  s l i p  p lane i s  to  be considered  u n s lip p ed . The 

Burgers v e c to r  of an edge d is lo c a tio n  i s  p e rp e n d icu la r  to  the  e x tra  

h a lf -p la n e  of atoms. The magnitude o f th e  B urgers v e c to r  i s  known as 

th e  s tre n g th  o f the  d is lo c a t io n .
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To v is u a l iz e  a screw d is lo c a t io n ,  co n sid er an im aginary s e t  of 

d iscs  s tacked  in  th e  c r y s ta l ,  as in  F igure  2a. Then c u t th e  d iscs  a- 

long th e  d ire c t io n  s p e c if ie d  by the  Burgers v e c to r  as in  F ig u re  2b.

I t  can be seen th a t  th i s  o p e ra tio n  transform s the  o r ig in a l ly  p lane su r­

faces of th e  d isc s  in to  a s in g le  h é l ic o ïd a l  su r fa c e ; th u s , no p lane 

can be s in g le d  ou t as th e  e x tra  h a lf  p lan e . For a  screw d is lo c a tio n , 

the  Burgers v e c to r  is  p a r a l l e l  to  the  core of th e  d is lo c a tio n .

Even though th e re  a re  o th e r types o f d i s lo c a t io n s , in  p a r t i ­

c u la r  the  s o -c a lle d  p a r t i a l  d is lo c a t io n s ,  th e se  w i l l  n o t occur in  th e  

a lk a l i  h a lid e s  because of the  requirem ent th a t  a d ja c e n t atoms have op­

p o s i te  charge; thus we w i l l  ignore  them h e re .

D is lo ca tio n s  in  A lk a li H alides

The p h y s ica l p ro p e r t ie s  of a lk a l i  h a lid e s  a re  no t as a ffe c te d  

by th e  presence of d is lo c a tio n s  as in  the  case of m e ta ls , bu t the e f ­

fe c ts  have th e  enormous advantage th a t  they can be s tu d ie d  d i r e c t ly .

The e le c tro n  cloud th a t  g ives m etals th e i r  most in te r e s t in g  p ro p e r tie s  

a lso  renders d i r e c t  o b se rv a tio n  of i n t e r io r  d is lo c a tio n s  im possib le .

On th e  o th e r hand, the  a lk a l i  h a lid e s  a re  q u ite  tra n s p a re n t  over a wide 

s p e c t r a l  range, allow ing  one to  s tu d y , among o th e r  th in g s , the  e f f e c t

of d is lo c a tio n s  on the  o p t ic a l  p ro p e r tie s  of th e  c r y s t a l s .

(9)Gilman and Johnston  have s tu d ie d  th e  p ro p e r t ie s  of the d is ­

lo c a tio n s  in  li th iu m  f lu o r id e  and have determ ined the  in f lu e n c e  of 

d is lo c a tio n s  upon many of the  p h y sica l p ro p e r tie s  of th is  m a te r ia l .  In
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a . D iscs c u t from atomic p lanes in  a d is lo c a tio n -  

f r e e  c r y s ta l .

GIH
FIG'

h. Tlio m o d i f i c a t i o n  that  occurs  when a screw dii  

l o c a t i o n  p a s s e s  through the d i s c s .

F igure  2. A screw d is lo c a tio n
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p a r t i c u l a r ,  they found th a t  th e  p l a s t i c  deform ation  of th e  c r y s ta l  was 

accompanied by d is lo c a t io n  m otion. The c re a tio n  of new d is lo c a tio n s  

took p la c e  by th e  s o -c a l le d  " m u ltip le  c ro s s -g lid e "  mechanism, and the 

f r e s h ly  c re a te d  d is lo c a tio n s  were th e  ones re sp o n s ib le  fo r  the  p la s t i c  

p ro p e r t ie s  o f th e  c r y s ta l .  The o ld e r  d is lo c a tio n s  were shown to  be 

in e f f e c t iv e  in  p l a s t i c  defo rm ation ; they were ap p aren tly  pinned by 

im purity  atoms. Gilman and Johnston  d id  no t study th e  mechanism of 

d is lo c a t io n  p in n in g  in  l i th iu m  f lu o r id e  c lo s e ly , b u t d id  no te  th a t  

th e re  seemed to  be a m ig ra tio n  of im p u r itie s  in to  the  reg io n  of th e  

d is lo c a t io n .

D is lo c a tio n s  in  a l k a l i  h a lid e s  a re  somewhat d i f f e r e n t  from 

d is lo c a tio n s  in  m e ta ls . Due to  th e  s t r in g e n t  requ irem ent of charge 

co n se rv a tio n  in  th ese  c r y s t a l s ,  i t  i s  more c o rre c t to  co n sid e r two h a lf  

p lan es  o f o p p o s ite  charge as com prising a d is lo c a t io n  than  to  consider 

only a s in g le  h a l f  p lane  as i n  m e t a l s . T h i s  f e a tu re  o f th e  d is lo ­

c a tio n s  in  a l k a l i  h a lid e s  lead s  to  th e  p o s s ib i l i ty  o f charged d is lo c a ­

t io n s .  An edge d is lo c a t io n  in  an a lk a l i  h a lid e  having  th e  ro c k s a lt  

s t r u c tu r e  i s  shown in  F igure  3.

As in  m e ta ls , th e  screw  d is lo c a t io n  has no unique s l i p  p lane

a s s o c ia te d  w ith  i t .  Whereas th e  edge d is lo c a tio n  has a h a l f  p lane

th a t  i s  c o n s tra in e d  u su a lly  to  move p a r a l l e l  to  a g iven s e t  o f p lan es ,

the  screw  d is lo c a t io n  i s  no t c o n s tra in e d  in  th is  manner. One fe a tu re

of th e  screw d is lo c a t io n  i s  th a t  i t  c a r r ie s  no charge in  the  d is lo c a -

(9)t io n  c o re . In  a d d i t io n ,  Gilman and Johnston  found the  v e lo c ity  of 

screw  d is lo c a t io n s  in  li th iu m  f lu o r id e  to  be some f i f t y  tim es sm alle r 

than  the  v e lo c i ty  of edge d is lo c a t io n s .
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E xtra  h a l f  p lanes
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[011]

A
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F ig u re  3. Edge d is lo c a tio n  in  ro c k s a l t  s t ru c tu re .
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D is lo ca tio n s  and Bending 

D is lo c a tio n  M otion in  P la s t i c  Deformation

D is lo ca tio n s  w e re -o r ig in a lly  in troduced  to  ex p la in  th e  low 

y ie ld  s t r e s s  o f c r y s ta l s .  The passage of a d is lo c a t io n  through a 

c r y s ta l  w i l l  cause s l i p  to  o ccu r, making th e  y ie ld  s t r e s s  much lower 

than i f  e n t i r e  p lanes o f atoms s l i d  unchanged over each o th e r .  D is­

lo c a tio n s  a re  now the b a s is  fo r  understand ing  many m echanical p roper­

t i e s  of s o l id s .  A c r y s t a l 's  r e s is ta n c e  to  d is lo c a t io n  m otion d e te r ­

mines la rg e ly  i t s  hardness and d u c t i l i t y ;  g ra in  boundary fo rm ation  i s  

exp lained  on th e  b a s is  o f d is lo c a tio n s  s tacked  one above th e  o th e r . 

That the  d is lo c a tio n  concept i s  probably c o rre c t  i s  in d ic a te d  by the  

o b serv a tio n  th a t  any tre a tm en t th a t  a l t e r s  th e  a b i l i t y  o f th e  d is lo c a ­

t io n  to  move a lso  a f f e c t s  th e  y ie ld  s tre n g th  of th e  c r y s ta l .  D isloca­

t io n  motion accompanies a l l  types of p l a s t i c  flow . A norm ally  s o f t  

m a te r ia l can become b r i t t l e  i f  so many d is lo c a tio n s  a re  in tro d u ced  

in to  i t  th a t  they impede one a n o th e r 's  m otion. Copper, fo r  example, 

i s  a s o f t  m a te r ia l ;  in tro d u c in g  d is lo c a tio n s  by cold working causes 

i t  to  become b r i t t l e  and b reak  r a th e r  than  to  con tinue  to  y ie ld  to  

in c re a s in g  s t r e s s .

Tension and Compression

The s l i p  system  in  th e  a l k a l i  h a lid e s  having th e  ro c k s a l t  

s t r u c tu r e  i s  along th e  [101] d i r e c t io n  in  th e  (101) type p la n e s . I t  

must be recognized  th a t  th e re  a re  some 6 eq u iv a len t (110) type p lanes.
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any of which may be a s l i p  p la n e ; th a t  p a r t i c u la r  (110) p lan e  on which 

th e  re so lv ed  sh ea r s t r e s s  f i r s t  reaches th e  c r i t i c a l  v a lu e  w i l l  be th e  

s l i p  p lan e  f o r  any a p p lie d  s t r e s s .  I f  we apply a  t e n s i l e  o r compress­

iv e  s t r e s s  norm al to  th e  (001) p la n e s , u s in g  the geometry of F igure  4, 

th e re  w i l l  be four o p e ra tiv e  s l i p  system s. Take th e  com pression case 

as an example. The o p e ra tiv e  s l i p  system s w i l l  th en  be [O il] (O il) ,

[O i l ] ( O i l ) ,  [1 0 1 ](1 0 1 ), and [101](101). The numbers in  b ra c k e ts  in d i­

c a te  th e  d i r e c t io n  o f s l i p ;  the  numbers in  p a ren th ese s  in d ic a te  th e  

p lanes along which s l i p  o ccu rs. In  th is  case  th e  c r i t i c a l  re so lv ed  

sh ea r s t r e s s  w i l l  be reached sim u ltan eo u sly  on fo u r s l i p  system s due to  

the  symmetry o f th e  s i tu a t io n .  D is lo c a tio n  m otion on any of th e  fou r 

s l i p  system s i s  eq u a lly  l ik e ly  in  th e  case o f p l a s t i c  deform ation . We 

may then  say th a t  a s u f f ic ie n t ly  la rg e  s t r e s s  in  th e  [001] type d ire c ­

t io n  w i l l  r e s u l t  in  d is lo c a t io n  m otion along  th e  (100) type p lanes in  

c ry s ta ls  hav ing  th e  ro c k s a l t  s t r u c tu r e .

I t  should  be no ted  th a t a g iven amount o f s l i p  may be a rr iv e d  

a t  in  two d i f f e r e n t  ways. For example, i f  a d is lo c a t io n  o f Burgers 

v e c to r  b moves through th e  c r y s ta l  in  the  d i r e c t io n  as shown in  F igure  

5a, th e  same r e s u l t  can be  achieved by m otion of a d is lo c a t io n  o f Burgers 

v e c to r  -b in  th e  o p p o s ite  d ire c t io n . Even though th e  s l i p  p lane  i s  the  

same in  b o th  c a se s , and th e  amount of s l i p  a lso  th e  same, the  f i n a l  s i t ­

u a tio n  i s  reached by having d is lo c a tio n s  moving in  o p p o site  d ire c t io n s .

We say th a t  th e se  d is lo c a tio n s  have o p p o s ite  m echanical s ig n s . Thus, 

fo r  a g iven s l i p  p la n e , d is lo c a tio n s  having  o p p o s ite  m echanical s igns 

w i l l  move in  o p p o site  d ire c tio n s  in  response  to  th e  same ap p lied  s t r e s s .
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[001]

[101]
pool

[101]
(101)

[oil]

[oil]

( O i l )

R G U R E  4 . SLIP P L A N E S  IN C O M P R E S S IO N  FOR 

THE ROCKSALT ST R U C TU R E
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_ _

a . S lip  produced by a p o s it iv e  edge d is lo c a tio n  

moving to  the  r i g h t .

b. S lip  produced by a negative  edge d is lo c a tio n  

moving to  the l e f t .

F igure 5. D is lo ca tio n s  of d i f f e r e n t  m echanical s ign
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In  th e  com pressive s t r e s s  s i tu a t io n  d iscu ssed  above, the  same s t r a in  

would have been c re a te d  by d is lo c a tio n s  moving in  opp o site  d ire c tio n s  

from th o se  m entioned, b u t having th e i r  e x tra  h a l f  p lane on th e  o th e r 

s id e  of th e  s l i p  p la n e .

Bending

In  th e  case o f bending^^^^ th e  s i tu a t io n  becomes more complex. 

Consider th e  geometry o f F igure 6. The bending ax is  i s  in  th e  [010] 

d i r e c t io n ,  and the long a x is  of th e  c r y s ta l  i s  in  th e  [001] d i r e c t io n .  

The te n s io n  face i s  then  th e  (100) fa c e , w hile  the  com pression face  i s  

th e  (100) fa c e . As in  a l l  cases o f pure  bending , th e re  i s  a p lane  

roughly halfw ay between th e  te n s io n  and compression faces which has no 

s t r e s s .  This p lane  i s  known as th e  n e u tra l  p lan e . The s t r e s s  v a r ie s  

from a maximum te n s i le  s t r e s s  on th e  (100) fa c e , to  zero s t r e s s  on th e  

n e u tra l  p la n e , to  maximum com pressive s t r e s s  on the (100) fa c e .

Using th e  geometry so o u tl in e d , two dim ensional bending i s  de­

f in e d  as th a t  mode o f bending which r e s u l t s  in  th e  m otion of d is lo c a ­

tio n s  along th e  (101) and (101) p la n e s . The bending i s  term ed two d i­

m ensional s in c e  th e  bending tak es  p lace  in  one p lan e . The s t r a i n  in  

th e  c r y s ta l  i s  such th a t  the  c r y s ta l  i s  ben t about an ax is  p a r a l l e l  to  

th e  bending ax is  of th e  a p p lied  s t r e s s .

S ince the  d is lo c a tio n s  a re  n u c lea ted  in  th e  reg ions o f h igh­

e s t  a p p lied  s t r e s s ,  they w i l l  be formed near the  ten sio n  and compress- 

io n io n  fa c es  o f th e  c r y s ta l .  The d is lo c a tio n s  having one m echanical 

s ig n  w i l l  move in  one d i r e c t io n ,  and those  o f the  o p p o site  m echanical



22

o BENDING COUPLE

(100)
FACE

BENDING AXIS

[001]

[100]

[010]

G
FIGURE 6. BENDING GEOMETRY
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s ig n  w i l l  move in  th e  o p p o site  d ire c t io n . The d is lo c a tio n s  moving to ­

ward th e  n e u tr a l  ax is  w i l l  proceed inward u n t i l  they reach a p o in t 

where th e  s t r e s s  i s  no t la rg e  enough to  s u s ta in  f u r th e r  m otion. D is­

lo c a tio n s  o f th e  o p p o site  m echanical s ig n  w i l l  move ou t o f the  c r y s ta l .

The d is lo c a t io n  motion to  be expected in  the two d im ensional 

mode of bending i s  shown in  F igure  7, w h ere-L  denotes an edge type d is ­

lo c a tio n  (w ith  th e  p e rp en d icu la r b a r showing th e  ex ten s io n  of th e  e x tra  

h a l f  p la n e ) ,  and denotes a screw d is lo c a t io n .  I t  may be seen in  

th is  f ig u re  th a t  th e  d is lo c a tio n s  approaching th e  n e u tr a l  ax is  from op­

p o s i te  s id e s  have th e  same m echanical s ig n . Thus, i f  pu re  bending of 

the  c r y s ta l  takes p lace  in  th e  two d im ensional mode, th e  r e s u l t in g  d is ­

lo c a tio n  d e n s ity  w i l l  have an excess of d is lo c a tio n s  o f th e  same mechan­

i c a l  s ig n  lo c a te d  in  th e  neighborhood o f th e  n e u tr a l  a x is .

There i s  an o th er mode of bending th a t  can occur in  th e  same geo­

m etry. Three dim ensional bending i s  d e fin ed  to  be bending th a t  involves 

d is lo c a t io n  m otion on th e  (O il) and (O il) p la n e s . In  th i s  bending mode, 

th e  c r y s ta l  s t r a i n  causes th e  c r y s ta l  to  be  b en t about an ax is  th a t  has 

a component p e rp e n d icu la r  to  th e  bending a x is  o f th e  a p p lie d  s t r e s s .

The d is lo c a t io n  motion th a t  accompanies thyee dim ensional bending i s
(12)shown in  F igure  8. H ikata  e t a l .  have show n.that i f  th e  dim ension 

o f th e  c r y s ta l  is  sm all in  the [100] d i r e c t io n ,  then  th e  amount o f 

bending in  th e  th re e  dim ensional mode w i l l  be sm a ll; th is  w i l l  be the 

case in  th e  work d iscu ssed  in  th is  th e s i s .
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CHAPTER I I  

THEORY OF IONIC CONDUCTIVITY

G eneral C onsidera tions

Pure io n ic  c o n d u c tiv ity  r e s u l t s  in  th e  l ib e r a t io n  o f th e  com­

ponents o f th e  io n ic  m a te r ia l  a t  the  r a t e  o f one gram eq u iv a len t

(13)w eight fo r  each Faraday of charge passed  through i t .  Tubandt used 

th is  f a c t  to  dem onstrate  th a t  the  a lk a l i  h a lid e s  a re  io n ic  conductors. 

He a lso  determ ined th e  t r a n s p o r t  numbers of s e v e ra l  a lk a l i  h a lid e s .

The t r a n s p o r t  number o f a component i s  th e  f r a c t io n  of the  cu rren t 

c a r r ie d  by th a t  component. To an e x c e lle n t  approxim ation fo r  th e  a l ­

k a l i  h a l id e s ,  th e  t r a n s p o r t  numbers a re  u n ity  fo r  c a tio n s  and zero 

fo r  a n io n s .

A number of experim ents have been c a r r ie d  out to  determ ine 

th e  tem p era tu re  dependence o f  the  io n ic  c o n d u c tiv ity  of th e  g lk a l i  

h a l id e s .  In  a l l  o f th e  experim en ts, th e  c o n d u c tiv ity  p lo t  i s  b e s t  

f i t t e d  by a s u p e rp o s itio n  o f two s t r a ig h t  l in e s .  In  what fo llow s we 

w i l l  r e s t r i c t  o u rse lv es  to  tem pera tu res above 300°C, s in ce  a t  lower 

tem peratu res th e  v acancies and d iv a le n t im p u r itie s  form complexes.

At th e  low er end of th e  c o n d u c tiv ity  p l o t ,  th e  co n d u c tiv ity  

v a r ie s  w ith  tem pera tu re  as
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a(low  tem peratu re) = A^exp(- E^/kT) (5)

w h ile  a t  th e  upper end of th e  cu rve , the c o n d u c tiv ity  v a r ie s  w ith  

tem peratu re  as

a (h ig h  tem peratu re) = Agexp(- Eg/kT) (6)

where Ê  ̂ i s  le s s  than  E^, and Â  ̂ i s  much le s s  th an  A^. I t  i s  an ex­

p e rim e n ta l f a c t  th a t  th e  v a lu e  o f A  ̂ i s  s e n s i t iv e  to  th e  amount o f

d iv a le n t im purity  in  th e  specim en, w h ile  A^ i s  n o t a f fe c te d . From i t s

form, th en , th e  io n ic  c o n d u c tiv ity  appears to  be a th erm ally  a c tiv a te d  

p rocess w ith  two a c t iv e  e lem en ts . The lower tem pera tu re  reg ion  of the  

co n d u c tiv ity  p lo t  i s  c a l le d  th e  e x t r in s ic  re g io n , w h ile  th e  high 

tem peratu re  reg io n  i s  c a l le d  th e  i n t r i n s i c .

Vacancies

As m entioned' e a r l i e r ,  th e  io n ic  co n d u c tiv ity  o f an a lk a l i  

h a l id e  i s  s tro n g ly  dependent on th e  number o f p o s i t iv e  ion  vacancies 

p re se n t a t  a g iven tem p e ra tu re . The p a r t i c ip a t io n  o f a g iven ca tio n  

in  th e  c o n d u c tiv ity  i s  governed by i t s  a b i l i t y  to  move in to  a proper 

l a t t i c e  s i t e ;  th e  p r o b a b i l i ty  o f th is  s i t e  be ing  unoccupied depends 

on th e  number o f v acan c ies  in  th e  l a t t i c e ,  w hether of therm al o r im­

p u r i ty  o r ig in .  Thus an in c re a se  in  th e  number o f  vacancies in c re a se s  

th e  number of c a tio n s  ab le  to  move in  any given p erio d  o f tim e , and 

thereby  in c re a se s  th e  c o n d u c tiv ity .
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M obility

The ex p ression  f o r  the  co n d u c tiv ity  i s ,  in  g e n e ra l,

o = xqy (7)

where x i s  the  number o f charge c a r r ie r s  p e r u n it  volume, q i s  th e

(14)charge and y i s  the  m o b ility  o f th e  c a r r i e r s .  I t  has been shown 

by s t a t i s t i c a l  thermodynamics th a t  the  m o b ility  o f a  c a tio n  as a 

fu n c tio n  of tem perature  i s

y = Y exp(- U/kT) . (8)

I t  i s  seen th a t  the  m o b ility  i s  a lso  a th erm ally  a c t iv a te d  p ro cess .

G eneral E xpression  fo r  th e  Io n ic  C onductiv ity

Equation (7) of ch ap te r I  g ives th e  number o f p o s i t iv e  and 

n e g a tiv e  ion vacancy p a ir s  a t  tem peratu re  I .  This eq u a tio n  was l e f t  

in  the  s o lu b i l i ty  product form to  emphasize th a t  i t  i s  obeyed regard ­

le s s  of the-number of v acanc ies  a lready  in  th e  c r y s ta l .  For conven­

ie n c e , th is  expression  can be re w rit te n  in  th e  form

x^Xg = = exp(- E /k t) , (9)

where x^ is  the  c o n ce n tra tio n  o f p o s i t iv e  ion  vacanc ies and x^ i s  th e  

n e g a tiv e  ion  vacancy c o n c e n tra tio n . As b e fo re , E i s  the  form ation 

energy of an is o la te d  io n  p a i r .
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For a pure c r y s ta l ,  = x^. This r e f l e c t s  th e  e le c tro -n e u ­

t r a l i t y  co n d itio n  of th e  a lk a l i  h a l id e s . In  th e  p resence  o f a con­

c e n tra t io n  c o f p o s i t iv e  io n  vacancies caused by im p u r it ie s ,  the  con­

d i t io n  of charge n e u t r a l i ty  i s

x^ = Xg + c . (10)

Upon combining th i s  w ith  ex p ress io n  (9) we get

XiCxi -  c) = x% , (11)

Solving fo r  x^ ,̂ we ge t

x  ̂ = I  [1 + (1 + ^  )^] . (12)

Thus the  exp ression  fo r  the  co n d u c tiv ity  i s ,  u sing  (7 ) , (8) and (12)

" 2T {c + + 4exp(- E/kT)]^} exp (- ~  ) (13)

At low tem pera tu res  4exp(- ^  )<<c^, so

o(low tem perature) = q ~ e x p ( -  U /k t) , (14)

w h ile  a t  h igh tem peratu res 4exp(- ^  )<<c^, so

B U+E/2
a (high tem peratu re) “ q ^  exp(---- ^ —  ) (15)
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From E quation (14) we see  th a t  a p lo t  of InoT v s . 1/kT w i l l  

have a s lo p e  of -U; the  same p lo t  fo r  Equation (15) w i l l  have a slope  

of -(2U + E )/2 . Thus E quation  (13) does show th e  two co n d u c tiv ity  re ­

gions demanded by experim ent.

D eterm ination  o f Q u a n titie s  in  th e  E xpression  fo r

U i s  e a s i ly  determ ined by m easuring th e  s lo p e  of th e  In  T vs. 

1/kT p lo t  in  th e  low tem pera tu re  reg io n . Now E i s  th e  sum of the  in ­

d iv id u a l en e rg ie s  o f fo rm ation  o f p o s i t iv e  and n e g a tiv e  io n  v acan c ies ;

E -  g+ + g_ (16)

and as i s  u s u a l, i t  i s  assumed th a t  the f r e e  en e rg ie s  o f form ation

can be w r i t te n  in  the  fo llow ing  manner:

g+ = g% -  kTAnA^ (17)

g_ = g® -  kTAnA_ (18)

whereupon we may re w rite  (13) as

2T (c  + [c^ + 4A+A exp(- — ) ] *} exp (- ~  ) , (19)

and E quation  (15) becomes o „

1
a (high tem peratu re) -  qB(A^A) exp(----------------------------- ) (20)
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To f in d  th e  va lue  o f c , we use th e  procedure o u tlin e d  in  chap ter 

I ;  we determ ine and then  use the  equation

c = (A+A_)^exp(- (21)

where E i s  found from the  co n d u c tiv ity  p lo t .

In  o rd e r to  determ ine the value o f A^A , however, more inform a­

t io n  i s  needed; a p lo t  of a v s . c , the  im purity  co n cen tra tio n  w i l l  en­

ab le  us to  determ ine th i s  v a lu e . Haven^^^^ determ ined A^A_ fo r  lith iu m  

f lu o r id e ;  Dreyfus and Nowick^^^^ found i t  fo r  sodium c h lo rid e .



CHAPTER I I I

THEORY OF CHARGED DISLOCATIONS

S urface P o te n tia ls  of C ry s ta ls

The mechanism fo r  th e  form ation  of a Schottky vacancy in  a 

c r y s ta l  re q u ire s  th a t  th e  vacancy be formed a t  th e  su rfa c e  and d i f ­

fuse i n t o  the i n t e r i o r .  I f  th e  energy of fo rm ation  o f one of the  va­

cancy types exceeds th a t  o f th e  o th e r , an excess of th i s  type of va­

cancy w i l l  be formed a t  th e  su rfa c e . Let us say , as i s  u su a lly  the  

case in  the  a lk a l i  h a l id e s , th a t  the  c a tio n  fo rm ation  energy i s  le s s  

than th e  anion vacancy form ation energy. There then w i l l  be more po­

s i t i v e  ion  v acanc ies  em itted  in to  th e  c r y s ta l  from th e  su rfa c e  than 

n e g a tiv e  ion  v a c a n c ie s , and th e  su rfa c e  o f th e  c r y s ta l  w i l l  be p o s i­

t iv e ly  charged.

The p o s i t iv e  charge on the  su rfa c e  produces an e l e c t r i c a l  po­

t e n t i a l  which in h ib i t s  the  fu r th e r  form ation of c a tio n  vacancies and 

encourages the fo rm ation  of anion v acan c ies . As we go in to  the  c ry s ta l  

from o u ts id e , we f in d  f i r s t  th e  p o s i t iv e ly  charged s u r fa c e , and then a 

n e g a tiv e  charge cloud  ex tend ing  in to  the  c r y s ta l .  This cloud i s  caused 

by th e  excess o f p o s i t iv e  io n  vacancies em itted  by th e  su r fa c e . Beyond 

the c lo u d , th e  c r y s ta l  i s  e l e c t r i c a l l y  n e u tr a l ;  th e re  a re  as many
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c a tio n  as an ion  v a ca n c ie s . Thus, due to  th e  d if fe re n c e  in  th e  forma­

t io n  e n e rg ie s  o f the  p o s i t iv e  and n e g a tiv e  io n  v acanc ies and the a b i l ­

i t y  o f th e  s u rfa c e  to  a c t  as a source  o f  v a c a n c ie s , th e  su rfa c e  of the  

c r y s ta l  i s  charged , w ith  a com pensating charge cloud ex tend ing  in to  

the  c r y s ta l .

D is lo c a tio n  Core P o te n t ia l

A d is lo c a t io n  can a c t  as a  source o r s in k  o f v acan c ies , in  

much th e  same manner as a s u r fa c e . By analogy w ith  the  su rfa c e  charge 

on a c r y s ta l  s u r f a c e ,  i t  i s  p o s s ib le  fo r  th e  core o f a d is lo c a t io n  to  

be charged; f u r th e r ,  th e re  w i l l  be a com pensating charge cloud su r­

rounding th e  d is lo c a t io n .  A p o te n t ia l  d if fe re n c e  w i l l  e x i s t  between
(18)th e  co re  and th e  p a r t  o f  th e  c r y s ta l  th a t  i s  f a r  from th e  d is lo c a tio n .

I f  th e  average p o te n t ia l  a t  any p o in t o f th e  c r y s ta l  is  denoted 

by v ( r ) , then  th e  c o n c e n tra tio n  o f c a tio n  vacanc ies w i l l  be given by a 

Boltzmann f a c to r ,

(22,

Likew ise, th e  c o n ce n tra tio n  of n e g a tiv e  io n  vacanc ies i s  given by

-  exp {- } (23)

where - e v ( f )  and e v (r)  i s  th e  energy in  th e  c r y s ta l  p o te n t ia l  o f a 

c a tio n  and an an ion  vacancy re s p e c tiv e ly .
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At d is ta n ce s  f a r  from the s u rfa c e  and d is lo c a t io n s ,  the  con­

c e n tra tio n s  a re

n g . “ ev
“^  = ex p -{  -----} 5 a, (24)

n g + ev
“i f  = exp- { -----} = B, (25)

where i s  the  p o te n t ia l  o f the  c r y s ta l  f a r  from su rfa ce s  and d is ­

lo c a t io n s .  In  th ese  reg ions th e  c r y s ta l  i s  e l e c t r i c a l l y  n e u t r a l .  I f  

a i s  th e  c o n ce n tra tio n  of c a tio n  v a c a n c ie s , g i s  the  c o n c e n tra tio n  of 

anion v a ca n c ie s , and c i s  the  c o n c e n tra tio n  of d iv a le n t c a t io n s , then 

we have as th e  e le c t r o n e u t r a l i ty  co n d itio n

a = 8 + c . (26)

S u b s ti tu tin g  fo r  exp(- ■ ^ ) in  Equation (22) g ives

n n* e (v  -  V )
"F ■ T —kT^ t - (27)

as th e  ex p re ss io n  fo r  th e  c o n c e n tra tio n  of p o s i t iv e  io n  vacan c ies  a t  

p o s i t io n  r  in  the  c r y s ta l .  On tak in g  the lo g arith m  o f  E quation (24 ), 

we g e t

g+ ev^
T  iS F  T T  • ( 28)
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S+
Now exp(- ) would be the co n cen tra tio n  of c a tio n  vacancies th a t  

would be expected i f  we had n o t taken  the  e le c t r o n e u tr a l i ty  co n d itio n  

in to  account. W riting  &na' fo r  -g^/kT , we have

Zna -  in a ' = , (29)

To g e t an ex p ressio n  fo r  a , combine Equation (24) and (25) to  get

g + g
a (a -  c) = exp {- —̂ — -) = (30)

This w i l l  be recognized as Equation (11) o f ch ap te r I I .  The so lu ­

tio n  is
g ^ g

o = I- {l + [1 + - y  exp{ -  —̂ ----- }] } (31)

As b e fo re , we no te  th a t  a t  low tem peratu res Ina = in  c ; a t  

h igh  tem peratu res Zna => -(g ^  + g )/kT . Thus the  exp ression  fo r  ino 

shows two d i s t i n c t  reg ions as a fu n c tio n  o f tem peratu re; however, 

in o ’ always has the  value  -(g ^ /k T ) . The fu n c tio n  (&na -  Ana') w i l l  

then show maxima and minima as a fu n c tio n  of tem peratu re. In  p a r t i ­

c u la r ,  i f  a = a ' ,  the  exp ress io n  would v an ish . I f  we know th e  temper­

a tu re  a t  which th is  o ccu rs , i t  would be p o s s ib le  to  c a lc u la te  th e  fo r ­

m ation energy fo r  c a tio n  vacancies a t  th a t  tem peratu re . The tem pera­

tu re  fo r  which the  fu n c tio n  (Ana -  Ana') van ishes i s  known as the  i s o ­

e l e c t r i c  tem p era tu re , T^, from the analogy to  the  Deby-Huckel theory 

of s tro n g  e le c t r o ly te s .  At th is  tem perature  v^ ■ 0, the  d is lo c a tio n  

core i s  uncharged, and the charge cloud v an ish es .
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I f  we know we may w r ite

£na = &na' = -  g^/kT^ , (32)

so th a t

g+ = kT^&n( i  ) . (33)

The va lue  of a may be found from io n ic  co n d u c tiv ity  measurements i f  

we a re  d ea lin g  w ith  a lk a l i  h a l id e s .  Thus the p ro p e r tie s  o f charged 

d is lo c a tio n s  may be used in  co n ju n c tio n  w ith  io n ic  c o n d u c tiv ity  d a ta  

to  determ ine the  in d iv id u a l form ation  en erg ies  o f anion and c a tio n  

en erg ies  in  a lk a l i  h a l id e s .



chapter IV

STATEMENT OF THE PROBLEM AND PREVIOUS WORK

Statem ent o f th e  Problem

I t  has been seen th a t i f  th e  knee tem peratu re  of the  conduc­

t i v i t y  p lo t  o f an a lk a l i  h a lid e  i s  known, the  e f f e c t iv e  concen tra ­

t io n  o f d iv a le n t c a tio n s  p re se n t in  th e  sample may be estim ated . 

F u r th e r , by d e te rm in a tio n  o f th e  i s o e l e c t r i c  tem perature  o f the 

sam ple as w e ll ,  th e  form ation energy o f in d iv id u a l ion  vacancies can 

be e s tim a te d .

In  t h i s  work, th e  problem was to  c o n s tru c t equipment and 

c o l le c t  d a ta  fo r  th e  d e te rm in a tio n  o f th e se  q u a n t i t ie s  fo r  lith iu m  

f lu o r id e .  This cho ice  was made because o f th e  la rg e  amount of pub­

l is h e d  m a te r ia l  on the p ro p e r tie s  of d is lo c a tio n s  in  th is  su bstance; 

a ls o ,  c o n d u c tiv ity  param eters were a v a ila b le  w ith  which c e r ta in  p o r­

t io n s  o f th e  work could be checked.

Review o f P rev ious Work 

A lk a li H alides in  G eneral

The io n ic  co n d u c tiv ity  of a lk a l i  h a lid e s  has been w idely s tu d -
(4)

le d . K e ltin g  and W itt showed th a t  th e  presence  o f d iv a le n t impur­

i t i e s  in  po tassium  c h lo rid e  enhances th e  c o n d u c tiv ity  in  th e  e x t r in s ic
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re g io n , th e  amount o f c o n d u c tiv ity  in c re a se  being  p ro p o r tio n a l to  the

amount of added im p u rity . E tz e l and Maurer dem onstrated th e  same fo r

(19)sodium c h lo r id e  doped w ith  calcium . Much of the  re c en t work in

io n ic  co n d u c tiv ity  i s  concerned w ith  the  study of th e  a s s o c ia tio n  of

d iv a le n t c a tio n s  and c a tio n  vacan c ies  a t  lower tem pera tu res; th is  i s

a su b je c t th a t  i s  beyond the scope of th is  th e s i s .

There a re  two e f f e c ts  th a t  can c o n tr ib u te  to  th e  u n c e r ta in ty

in  the  ex p erim en ta lly  determ ined va lue  fo r  th e  energy of vacancy p a i r

(3)form ation  in  an a lk a l i  h a l id e .  One u n c e r ta in ty  a r is e s  in  the  d e te r ­

m in a tio n  o f the  s lo p e  of the  c o n d u c tiv ity  p lo t  a t  lower tem p era tu res , 

due to  th e  a s s o c ia tio n  phenomena m entioned above. When s u f f i c i e n t ly  

low tem peratu res a re  reached , th e  a s s o c ia tio n  removes some of th e  ca­

t io n  vacanc ies  from p a r t ic ip a t io n  in  th e  conduction p ro cess . Hie con­

d u c t iv i ty  p lo t  i s  then  concave toward th e  1/kT a x is ,  making i t  d i f f i ­

c u l t  to  e s ta b l i s h  a t ru e  s lo p e  fo r  th e  m o b ility  a c t iv a t io n  energy.

This in tro d u ces  an u n c e r ta in ty  in  the  m o b ility  v a lu e , and subsequen tly  

in  the va lue  of th e  vacancy p a i r  form ation  energy.

The second u n c e r ta in ty  a r is e s  a t  high tem pera tu res , where th e  

anions c o n tr ib u te  in c re a s in g ly  to  the  conduction . Since th e  a c t iv a ­

t io n  energy fo r  an ion  conduction  i s  much h ig h er than th a t  fo r  c a tio n  

conduction , we need only co n sid e r i t  a t  h igh tem pera tu res . On the  con­

d u c t iv i ty  p lo t ,  anion conduction  causes the  co n d u c tiv ity  to  be la rg e r  

than  i t  would o therw ise  be . Thus th e  p lo t  i s  made convex towards the  

1/kT a x is ,  making an ex ac t d e te rm in a tio n  of th e  s lo p e  d i f f i c u l t .
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Haven^^^^ showed th a t  th e  form o f th e  c o n d u c tiv ity  p lo t  fo r  

l i th iu m  h a lid e s  was c o n s is te n t w ith th e  r e s u l t s  of th e  th e o r e t ic a l  

development in  C hapter I I .  By co n sid e rin g  s e v e ra l  a l te r n a t iv e  p ro ­

cesses  fo r  th e  co n d u c tiv ity  mechanism, and comparing th e  r e s u l t s  ob­

ta in e d  w ith  the  form o f th e  co n d u c tiv ity  p lo t  in  th e  reg io n  o f th e  knee 

tem p era tu re , he showed th a t  only Equation (30) of ch ap te r I I I  would 

adequately  d e sc rib e  th e  curve in  th is  re g io n .

Lithium  F lu o rid e

Haven^^^^ s tu d ie d  the  io n ic  c o n d u c tiv ity  o f c ry s ta ls  of l ith iu m  

f lu o r id e  doped w ith  magnesium. The c o n d u c tiv ity  param eters th a t  he ob­

ta in e d  have been w idely  used in  LiF s tu d ie s  and w i l l  be used in  th is  

work. More re c e n t d a ta  in  th is  a rea  would be d e s i r a b le ,  bu t none a re  

a v a ila b le . Haven found th e  values of th e  co n d u c tiv ity  param eters fo r  

LiF to  be

g“ + g° -  2 .68 eV. A_̂ A_ = 2 .5  x 10^

In  the  work rep o rted  in  th i s  th e s is  i t  was p o s s ib le  to  e s ta b l is h  th e  

va lu e  of g° + g ° , b u t H aven's va lue  fo r  A^A w i l l  be used. In  o rder 

to  check the  va lue  o f A^A i t  would be n ecessa ry  to  study  th e  conduc­

t i v i t y  o f LiF as a fu n c tio n  o f th e  d iv a le n t c a tio n  c o n ce n tra tio n .
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Charged D is lo ca tio n s  

f 18)A fte r  th e  work o f Eshelby e t  a l . ,  in  which i t  was p re ­

d ic te d  th a t  d is lo c a tio n s  in  io n ic  c ry s ta ls  should be charged , a number 

of experim ents were c a r r ie d  out to  v e r ify  h is  p re d ic t io n s .  The e a r ly

s tu d ie s  o f charge e f f e c ts  accompanying d is lo c a t io n  m otion were cen-
( 21)te re d  around an in d e n ta tio n  tech n iq u e , where charge was induced on

e le c tro d e s  by in d e n tin g  the  c r y s ta l  su rfa c e  w ith  a  diamond p o in t. I t  

was d i f f i c u l t  to  in te r p r e t  th e se  experim en ts, however, fo r  i t  was n o t 

known w hether the  d is lo c a tio n s  moving toward o r away from the  in d e n ta ­

t io n  p o in t were th e  im portan t ones.

( 22)Amelinckx, Vennik, and Remaut a rranged  a c r y s ta l  of NaC& 

so th a t  i t  could be b en t and s tra ig h te n e d  re p e a te d ly  in  a s in u so id a l 

manner. By p a in t in g  e le c tro d e s  on v a rio u s  faces  of th e  c r y s ta l ,  they 

observed e l e c t r i c a l  e f f e c t s  accompanying the  a p p lic a t io n  of the  repe­

t i t i v e  s t r e s s .  I t  was found th a t a p o te n t ia l  d if f e r e n c e  was developed 

between the  te n s io n  and com pression faces and th e  ends o f the  c r y s ta l .  

This p o te n t ia l  d if f e re n c e  had the same frequency as th e  ap p lied  s t r e s s .  

A phase la g  was p re s e n t ,  however; i t  was a sc r ib e d  to  th e  tim e la g  be­

tween the  i n i t i a l  a p p lic a t io n  of th e  s t r e s s  and the  achievem ent of the  

c r i t i c a l  s t r e s s  n ecessa ry  to  i n i t i a t e  p l a s t i c  flow . I t  was no ted  th a t :

1) S ig n a ls  on bo th  the  compression and th e  te n s io n  s id e  were in  

phase.

2) The wave shape was ty p ic a l ly  f la t- to p p e d  in  the  frequency range 

10-10,000 hz.
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3) The s ig n a l  in c re a se s  in  am plitude w ith  in c re a s in g  p la s t i c  

bending .

4) The s ig n a l  from th e  c r y s ta l  i s  observed only i f  the  s t r e s s  

exceeds a  c e r ta in  c r i t i c a l  v a lu e . The e l e c t r i c a l  s ig n a l 

then grows very  ra p id ly  in  am plitude and i s  a n o n lin e a r 

fu n c tio n  of s t r e s s .

5) The s ig n a l  decays in  am plitude w ith  continued  s t r e s s in g .

These au tho rs  a lso  p resen ted  a s tro n g  argument a g a in s t the 

e l e c t r i c a l  s ig n a l  be ing  due to  a p ie z o e le c t r ic  type e f f e c t .  In  add i­

t io n ,  they found th a t  the  charge on th e  d is lo c a tio n  core  was p o s it iv e  

a t  room tem p eratu re .

(23)In  a l a t e r  p ap er, Remaut and Vennik re p o rte d  on a d i f ­

f e re n t  method of observ ing  th e  e l e c t r i c a l  s ig n a l .  The specimen to  be 

te s te d  was f i r s t  b e n t in  a fou r p o in t bending j i g  so as to  induce pure 

bending in  th e  c e n te r  s e c t io n  of the  c r y s ta l .  This induced an excess 

of d is lo c a tio n s  o f one m echanical s ig n  in to  th e  c r y s ta l .  The specimen 

was then  mounted in  a dev ice  th a t  su b jec ted  i t  to  a p u sh -p u ll s t r e s s  

( a l t e r n a te  com pression and e x te n s io n ) . I t  was found th a t  the  s ig n a ls  

were out o f phase on the  te n s io n  and com pression fa c e s , ex ac tly  as ex­

p e c te d . Some in te r e s t in g  photographs o f o sc il lo sc o p e  tra c e s  of th ese

s ig n a ls  a re  co n ta in ed  in  R eferences (22 -23).

(24)Caffyn and Goodfellow cleaved  a s la b  of NaC& c r y s ta l  in to  

two h a lv es  along th e  long ax is  and p a r a l l e l  to  the  te n s io n  and com­

p re s s io n  fa c e s . They then  re jo in e d  the  ha lv es  w ith  a conducting cement.
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U sing th e  cement as one e le c tro d e , they s tu d ie d  the p o te n tia ls  developed 

du rin g  the  four p o in t bending o f a NaC& sample having e lec tro d e s  p a in ted  

a t  v a rio u s  p laces  on i t s  su rfa c e  w ith  s i l v e r  p a in t .  They were very 

c a re fu l  to  take in to  account th e  va rio u s  modes of bending of the  rock- 

s a l t  s t r u c tu r e .  I t  was found th a t  th e  c e n te r  of th e  sample was always 

n e g a tiv e  w ith  re sp ec t to  the te n s io n  and com pression fa c e s , as long as 

th e  e le c tro d e  was f a r  away from the p o s it io n  where the k n ife  edge con­

ta c te d  the  su rfa c e . In  a d d itio n , they observed th e  in te n se  b i r e f r in g ­

ence due to  th e  excess of d is lo c a tio n s  of one m echanical s ig n  lo ca ted  

n e a r the  n e u tra l  a x is . This gave fu r th e r  assu rance  th a t  such a con­

c e n tr a t io n  of d is lo c a tio n s  a c tu a lly  o ccu rs. Caffyn and Goodfellow con­

cluded th a t  th e  d is lo c a tio n s  ca rry  a p o s i t iv e  charge a t  room tempera­

tu r e .
( 12)H ikata e t  a l .  s tu d ie d  in  d e t a i l  the  p o te n t ia ls  a sso c ia te d  

w ith  p l a s t i c  deform ation of NaCJl and found agreement w ith  most p r io r  

work. They concluded th a t the  screw segment of a d is lo c a tio n  was no t 

charged , and th a t  the  e^ge component c a r r ie d  a p o s i t iv e  charge a t  room 

tem p era tu re . They su b jec ted  samples to  bending deform ation and to  

t e n s i l e  and com pressive s t r e s s e s .  The modes of bending of the  ro c k s a lt  

s t r u c tu r e  were taken in to  accoun t, and e f f e c t s  a sso c ia te d  w ith  the  

v a rio u s  bending modes were d iscu ssed . In  a d d it io n , e x tra  d is lo c a tio n s  

were in tro d u ced  a t  the  su rfa c e  of th e  c r y s ta l  and th e i r  e f fe c ts  on the  

e l e c t r i c a l  s ig n a l were examined.
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(25)Davidge d iscu ssed  a t  some len g th  th e  a p p lic a t io n  o f the  

theory  o f Bruneau and P ra tt^ ^ ^ ^  concerning the bending of c ry s ta ls  

having the ro c k s a lt  s t r u c tu r e .  He a lso  concluded th a t  th e  screw seg-

(12)ments o f d is lo c a tio n s  a re  n o t charged , in  agreement w ith  H ikata  e t  a l .

He dem onstrated th a t  i f  one wants to  o b ta in  unambiguous r e s u l t s  from 

p re -b e n t c r y s ta l s ,  i t  i s  necessa ry  to  have th e  c r y s ta l  b en t predomin­

a n tly  in  th e  two d im ensional mode. I f  th e  c r y s ta l  i s  deformed in  

th re e  d im ensional bend ing , th e  s ig n  of the  e l e c t r i c a l  e f f e c t  can 

a c tu a lly  change betw een two a d jac e n t e le c tro d e s  on th e  same face  of a 

c r y s ta l .  Davidge determ ined th a t  d is lo c a tio n s  in  a nom inally  pure 

sample o f NaC& c a rry  a n e g a tiv e  charge , w hile  d is lo c a tio n s  in  a sample 

of NaCjt doped w ith  NSgOg c a rry  a p o s i t iv e  charge. Davidge hypothesized  

th a t  in  th e  l a t t e r  case  a " p se u d o - in tr in s ic "  reg io n  e x is te d  because of 

a s s o c ia t io n  between th e  c a tio n  and anion  im purity  io n s .

In a l a t e r  p a p e r , Davidge “ c a r r ie d  out an experim ent where 

th e  v a r ia t io n  o f the  e l e c t r i c a l  e f f e c t  was s tu d ie d  as a fu n c tio n  of 

tem p era tu re . Three samples o f vary ing  im purity  co n ten t were used; 

a f t e r  p re -b en d in g , they  were in s e r te d  in to  a p u sh -p u ll deform ation  ap­

p a ra tu s . By u s in g  th e  r e s u l t s  o f Dreyfus and N o w i c k f o r  th e  r e le ­

van t c o n d u c tiv ity  p a ram e te rs , he determ ined th e  e f f e c t iv e  co n cen tra tio n  

of d iv a le n t  c a tio n s  in  h is  samples and the  c o n ce n tra tio n  o f p o s i t iv e  

ion 'V acancies as a fu n c tio n  o f tem p era tu re . He found th a t  the  d is lo c a ­

tio n s  in  NaC& a re  n e g a tiv e ly  charged below the  i s o e l e c t r i c  tem peratu re; 

above th is  tem p era tu re , they a re  p o s i t iv e ly  charged . The i s o e l e c t r i c
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tem peratu re  found fo r  th e  samples ranged from 400°C to  500®C. He 

c a lc u la te d  the  energy o f  p o s i t iv e  ion  vacancy fo rm ation  to  be 

(0.95 ± 0.10) eV a t  0°K.

(27)Strumane and De B a t is t  a lso  s tu d ie d  th e  v a r ia t io n  o f the

e l e c t r i c a l  s ig n a l  from NaC& w ith  tem p era tu re . They found th a t  the 

e l e c t r i c a l  s ig n a l  changed s ig n  tw ice between room tem peratu re  and 

800°C. By u s in g  an ex p ress io n  fo r  the  d is lo c a t io n  l in e  charge derived 

e a r l i e r ,  they determ ined  th e  v a lu e  o f g° to  be (0 .93  ± 0.09)eV . This

i s  in  e x c e lle n t  agreem ent w ith  th e  va lue  ob ta ined  by Davidge.

( 28)Schw ensfeir and Elbaum have e s ta b lis h e d  th e  e x is te n c e  of

an i s o e l e c t r i c  tem peratu re  in  NaCJl by d i r e c t  o b se rv a tio n  of the  motion 

o f g ra in  boundaries under a p p lie d  e l e c t r i c  f ie ld s  a t  e lev a te d  tempera­

tu r e s .  They used b ic r y s ta l s  w ith  a g ra in  boundary o f "\;1° m iso rie n ta -  

t io n .  For one of t h e i r  specim ens, the  boundary m otion in d ic a te d  th a t  

i t  had a n e g a tiv e  charge a t  560°C ; a t  640“C , however, the  motion

in d ic a te d  th a t  i t  was p o s i t iv e ly  charged .
(29)K liew er and K oehler s tu d ie d  th e  therm al p ro p e r t ie s  of

charged d is lo c a tio n s  u sin g  an in te r n a l  f r i c t i o n  te ch n iq u e . The proce­

dure was to  determ ine th e  v a lu e  o f  Young's modulus and th e  damping 

f a c to r  fo r  u l t r a s o n ic  waves s e n t through NaC& sam ples a t  h igh tempera­

tu r e s .  By e x tra p o la t in g  t h e i r  r e s u l t s  fo r  g^ to  a b so lu te  ze ro , they 

found a valve  fo r  g° th a t  overlapped  th a t  of Davidge. They fu r th e r  

found th a t  th e  co n d itio n  g^< g fo r  NaC& i s  e s s e n t ia l ly  due to  the 

tem p era tu re  dependent terms in  the  form ation  f r e e  e n e rg ie s .
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Most of th e  work on charged d is lo c a tio n s  has been c a r r ie d  out 

w ith  NaC£. Some au thors have examined KC&, b u t t h e i r  r e s u l t s  a re  o f an 

in d i r e c t  n a t u r e . S p r o u l l ^ ^ ^ ^  c a r r ie d  o u t a s e t  o f measurements in  

which he attem pted  to  determ ine th e  value  of g° fo r  l i th iu m  f lu o r id e .

He b en t a c r y s ta l  by h e a tin g  i t  and then  fo rc in g  i t  in to  a notch  cu t 

in  a p l a t e ,  thus causing a v-shaped bend of 55® in  the  c r y s ta l .  One 

end of th e  c r y s ta l  was then f ix e d  and th e  reg io n  o f th e  bend was sub­

je c te d  to  a s tro n g  e l e c t r i c  f i e l d .  The r e s u l t in g  m otion of the  f re e  

end was m easured. Although th e re  seems to  be no doubt th a t  a m otion 

of th e  f r e e  end was d e te c te d , th e  u n c e r ta in ty  in  m easuring d is p la c e ­

ments o f th e  o rd er of angstrom  u n i ts  probably  le ad s  to  in c o r re c t  r e ­

s u l t s .  In  a d d itio n , the  mode of bending of the  c r y s ta l  was probably a 

m ixture  o f the  tw o-dim ensional and the th re e -d im e n sio n a l ty p es . S ince 

th e  tw o-dim ensional type of bending i s  th e  type th a t  g ives unambiguous 

r e s u l t s ,  th e  presence of th ree -d im en sio n a l bending probably  caused in ­

c o n s is te n c ie s .  S p ro u ll gave g^ = 0 .3  eV, b u t m entioned th a t  h is  va lue  

seemed unreasonably  low.



CHAPTER V

EXPERIMENTAL METHODS

Io n ic  C onductiv ity  Measurements on L ithium  F lu o rid e

In tro d u c tio n

The io n ic  co n d u c tiv ity  measurement was made to  f in d  th e  con­

c e n tr a t io n  o f c a tio n  vacancies as a fu n c tio n  o f tem p era tu re . The re ­

la t io n s h ip  between th e  io n ic  co n d u c tiv ity  and th e  g eo m etrica l pa ra ­

m eters of th e  m easuring systems i s  given by

where o = co n d u c tiv ity

L = len g th  of th e  c u rre n t path

A = a rea  of th e  e le c tro d e s

R = re s is ta n c e  between th e  e le c tro d e s .

Equipment and Sample P rep a ra tio n

The co n d u c tiv ity  of li th iu m  f lu o r id e  was determ ined from the 

re s is ta n c e  and dim ensions o f a c i r c u la r  sample w ith  i t s  faces p a r a l le l  

to  (100) p la n es . The samples were cu t from c y l in d r ic a l  specimens by

46
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means of a  w ire  saw, using  a g ly cerin e -w ate r-6 0 0  mesh carborundum 

s lu r r y .  The r e s u l t in g  d iscs  were then  c a re fu l ly  ground w ith  250 mesh 

carborundum to  g ive  p a r a l l e l  fa c e s . The sample w idth was measured 

w ith  a m icrom eter j u s t  p r io r  to  app ly ing  the  e le c tro d e s , which were 

formed by p a in tin g  Dag d isp e rs io n  154, a suspension  of c o l lo id a l
(19)

g ra p h ite  in  ace to n e , onto the  c r y s ta l  s u r fa c e . E tz e l and M aurer, 

in  t h e i r  experim ents on NaCA found no c o n d u c tiv ity  d if fe re n c e  between 

e le c tro d e s  of g ra p h ite  and e le c tro d e s  of evaporated  p la tinum ; how­

e v e r , they no ted  a tendency fo r  th e  p la tinum  to  evaporate  a t  h igh  

tem p era tu res . S ince th e  m eltin g  p o in t of LiF i s  41°C h ig h e r than 

th a t  of NaCA, and the  measurements were expected  to  take 7-15 days, 

th e  c o l lo id a l  g ra p h ite  was chosen in  o rd e r to  p reven t d e te r io ra t io n  of 

th e  e le c t r o d e s .

A c i r c u la r  e le c tro d e  of d iam eter i  inch  was p a in ted  onto one 

fa c e  of th e  c r y s ta l  such th a t  i t  co incided  w ith  th e  c en te r  o f the  

c r y s ta l .  An an n u lar guard r in g  was p a in ted  on the  same s id e  o f the  

c r y s ta l ,  w h ile  th e  o th e r s id e  was covered to t a l l y  so as to  form a s in g le  

e le c tro d e .  The guard r in g  was inc luded  because o f the  p o s s ib i l i ty  th a t  

su rfa ce  c u rre n ts  might cause an in c o r re c t  va lue  of re s is ta n c e  to  be re ­

g is te r e d ;  by m ain ta in in g  th is  e le c tro d e  a t  the  same p o te n t ia l  as th a t  

o f th e  c e n te r  e le c tro d e , no c u rre n t could occur along the s u rfa c e  to  the  

c e n te r  e le c tro d e .

The la r g e s t  source of e r r o r  in  E quation  (34) i s  in  th e  a rea  of 

th e  e le c tro d e s . The g eo m etrica l e r r o r  can be made very sm a ll, b u t the
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p ercen tag e  of th e  a re a  which a c tu a l ly  c o n tr ib u te s  to  th e  co n d u ctiv ity  

has been tak en  as much as 5 p e r cen t u n c e r ta in  in  e a r l i e r  work^^^^ There 

i s  reaso n  to  b e l ie v e  th a t  th is  u n c e r ta in ty  in  our case  i s  much sm alle r 

than  t h i s ,  which w i l l  be d iscu ssed  l a t e r .

The co n tac ts  by which th e  c r y s ta l  e le c tro d e s  were connected to  

le a d s ,  were machined from p y ro ly t ic  carbon. P y ro ly tic  carbon has a 

low oxygen c o n te n t , which allow s i t  to  be used a t  h igh tem peratures 

w ith o u t b u lk  decom position . The co n tac ts  were made r e la t iv e ly  m assive 

so th a t  t h e i r  tem peratu re  would n o t be g re a t ly  in flu en ced  by tempera­

tu re  f lu c tu a t io n s  in  th e  su rro u n d in g s. The guard r in g  was a lso  made 

o f p y ro ly t ic  carbon, and was in s u la te d  from th e  c en te r  e le c tro d e  by a 

boron n i t r i d e  r in g .  The lower co n tac t had an in s u la te d  chrom el-alum el 

therm ocouple embeded in  i t ,  only a few m illim e te rs  from th e  lower s u r ­

face  o f th e  c r y s ta l .  The s iz e  o f the  c o n ta c ts  and the  placem ent o f the  

therm ocouple allow ed a p re c is e  knowledge o f th e  c r y s ta l  tem perature.

The c e n te r  co n tac t-g u a rd  r in g  assembly was sp rin g  loaded so as 

to  m a in ta in  a  c o n s ta n t p re s su re  on th e  c r y s ta l .  A p la tinum  d isc  was 

p laced  between th e  low er e le c tro d e  and i t s  c o n ta c t to  ensure  a good con­

n e c tio n ; th u s  th e  only m a te r ia ls  in  c o n ta c t w ith  the  c r y s ta l  were carbon 

and p la tin u m . The c r y s ta l  c o n ta c t assembly i s  shown in  F igure  9.

The sam ple tube was surrounded by a q u a rtz  tube w ith  aluminum 

end p ie c e s . The e l e c t r i c a l  connections were made through these  end 

p ie c e s ,  which were w e ll away from th e  h igh  tem peratu re  reg io n . A fu r ­

nace hav ing  chromel h e a te r  w ire  and a sb es to s  in s u la t io n  was p laced  

around th e  q u a rtz  tu b e ; no tem pera tu re  c o n t r o l le r  was used , b u t a
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v o lta g e  re g u la to r  provided co n stan t v o lta g e  fo r  th e  au to tran sfo rm er 

th a t  was used to  c o n tro l th e  fu rnace  c u r r e n t . This p reven ted  l in e  

v o lta g e  f lu c tu a t io n s  from changing th e  fu rnace  tem p era tu re .

To f u r th e r  p ro te c t  th e  c r y s ta l  e le c tro d e s , as w e ll as the  

carbon c o n ta c ts , a  flow of dry n itro g e n  which had been f i l t e r e d  through 

a m olecu lar s ie v e  tra p  was passed  through th e  tu b e . The p re ssu re  of 

th e  n itro g e n  was kep t s l ig h t ly  above atm ospheric .

When the  i n i t i a l  c o n d u c tiv ity  d a ta  was analyzed , the  conduc­

t i v i t y  of d i f f e r e n t  c ry s ta ls  d if f e r e d  by as much as a  f a c to r  o f 5 even 

in  the  i n t r i n s i c  reg io n . The reason  fo r  the  v a r ia t io n  was found to  be 

a m isc a lc u la tio n  o f th e  c e n te r  e le c tro d e  a re a . The e le c tro d e  was a l ­

ways p a in te d  la rg e r  than th e  c o n ta c t, which was a i  inch  d iam eter 

c i r c l e .  At h igh  tem p era tu res , the  p a r t  o f th e  e le c tro d e  no t d i r e c t ly  

under the  co n tac t would s e p a ra te  from the  c r y s ta l  su r fa c e . When the 

d a ta  was re c a lc u la te d  on th e  prem ise o f a i  inch  d iam eter e le c tro d e , 

th e  i n t r i n s i c  co n d u c tiv ity  fo r  the th re e  c ry s ta ls  agreed  w ith in  e x p e r i­

m ental e r ro r .  A s p e c ia l  s te p  in  p rep a rin g  a sample fo r  co n d u ctiv ity  

m easurem ents, c a l le d  th e  " s e t t in g - in "  p ro c e ss , was i n s t i t u t e d  in  o rder 

to  o b ta in  rep ro d u c ib le  r e s u l t s .  I t  i s  d esc rib ed  in  th e  nex t s e c tio n .

Measurement Procedure 

A fte r  c lo sin g  the  system  and f lu sh in g  i t  w ith  n i tro g e n , power 

was a p p lied  to  th e  fu rn ace . The n itro g e n  flow was then  reduced to  a 

low v a lu e  and th e  tem peratu re  was allow ed to  r i s e  to  800®C in  o rder 

to  s e t  th e  s iz e  o f the  e le c tro d e s  w ith  re sp e c t to  th e  c r y s ta l ,  as men­

tio n ed  in  the  l a s t  s e c t io n . The h igh  tem peratu re  allow ed the  lith iu m
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f lu o r id e  to  undergo any p l a s t i c  deform ation or re la x a t io n  th a t  might 

occur b e fo re  measurements were s t a r t e d .  The tem pera tu re  was allow ed 

to  remain a t  800°C o v e rn ig h t.

An o rd in ary  W heatstone b rid g e  was used to  m easure th e  r e s i s ­

tan ce  of the  c r y s ta l ;  a l te r n a t in g  c u rre n t of frequency 500 hz was 

used as th e  power so u rce . A v a r ia b le  c a p a c ito r  was shunted  ac ro ss  the 

W heatstone b rid g e  so th a t  a s a t i s f a c to r y  n u l l  could be achieved  w ith  

th e  D.C. b r id g e . The n u l l  p o in t was d e tec ted  by u s in g  a G eneral Radio 

n u l l  d e te c to r  type 1232A. This arrangem ent could be used from 350°C 

to  th e  m elting  p o in t of l i th iu m  f lu o r id e ,  corresponding  to  a r e s is ta n c e  

range of 10^-10^ ohms. At low tem peratu res th e  n u l l  was shallow  and 

tended to  be d is tu rb e d  e a s i ly  by o u ts id e  in f lu e n c e s , w h ile  a t  h igh 

tem peratu res the  low re s is ta n c e s  caused sev ere  lo ad in g  of the  v o lta g e  

so u rce .

I t  was necessa ry  to  use th e  a l te r n a t in g  v o lta g e  source  to  avoid 

am biguity  in  th e  va lue  o f th e  c o n d u c tiv ity . In  a d i r e c t  c u rre n t conduc­

t i v i t y  measurement, the  r e s is ta n c e  v a r ie s  w ith  the amount o f charge th a t  

p asses through th e  sam ple. A number o f ex p lan a tio n s  have been o ffe re d  

fo r  th i s  phenomenon, b u t u su a lly  i t  i s  sim ply avoided by using  an

a l te r n a t in g  c u rre n t so u rce .

The guard r in g  was connected through a s e p a ra te  decade r e s i s ­

tance  box to  the  v o lta g e  so u rce . I t s  re s is ta n c e  was kep t a t  the  same 

v a lu e  as th e  main d ia l  o f th e  W heatstone b r id g e . The n u l l  was tak en , 

th e n , w ith  the guard r in g  a t  th e  same p o te n t ia l  as th e  c e n te r  e le c tro d e ,
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w hile  only the  c en te r  e le c tro d e  was e f f e c t iv e  in  th e  co n d u c tiv ity  

measurement. At low tem peratures th e  guard r in g  p o te n t ia l  d id  no t 

a f f e c t  th e  n u l l  p o in t ,  w h ile  th e re  was a marked e f f e c t  a t  h igh  temper­

a tu re s .  I t  was n o t determ ined w hether th e  e f f e c t  was due to  su rface  

conduction  or to  the  geometry of th e  e le c t r o d e s . No s ig n i f ic a n t  

phase d if fe re n c e  between th e  guard r in g  and th e  c en te r  e le c tro d e  was 

ap p a ren t, fo r  even a t  h igh tem peratures th e  n u l l  could be reduced to  

th e  le v e l  o f th e  n o ise  in  th e  c i r c u i t .

The system  was allow ed two hours to  s t a b i l i z e  a f t e r  changing 

th e  c u rre n t in  th e  fu rnace  c o i l s .  At the  end o f th is  p e rio d  o f tim e, 

a 15 m inute check was run on the  tem p era tu re ; i f  le s s  than  1 °C 

v a r ia t io n  was d e tec te d  in  th is  tim e , th e  co n d u c tiv ity  was measured.

I f  th e  tem pera tu re  v a r ie d  by more than  1 “C. in  th i s  p e r io d , an addi­

t io n a l  w a it o f 30 m inutes was made and th e  procedure re p ea ted . Temper­

a tu re  d r i f t s  were e s p e c ia l ly  bad in  the  high tem peratu re  reg io n  p r io r  

to  th e  i n s t a l l a t i o n  o f th e  co n stan t v o ltag e  tran sfo rm er.

P u sh -p u ll Deform ation Experiment 

Equipment

The f i n a l  design  fo r  th e  p u sh -p u ll deform ation apparatus is  

shown in  F igure  10; w ith  th i s  d esig n , a c y c lic  c o m p ress iv e -ten sile  

s t r e s s  could be ap p lied  to  the  sam ple. The c r y s ta l  i s  mounted between 

two a n v i ls ,  one r ig id ly  fix ed  and th e  o th e r movable. The a n v ils  were 

made o f s t a in le s s  s t e e l  rod ; fo r  r i g i d i ty  the  fix e d  a n v il was firm ly  

b o lte d  to  a 70 pound s la b  o f i  inch  Inconel m eta l p la te .  The c ry s ta l
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under t e s t  was cemented to  the  two a n v ils  u s in g  Sauereisen  h igh  temper­

a tu re  cement. The movable a n v il passed  through the  s ta in le s s  s t e e l  end 

cap o f th e  sample chamber; o u ts id e , i t  was connected to  a c o i l  wound 

on a ny lon  form. The c o i l  was in s e r te d  in  the  f i e ld  of a loudspeaker 

magnet. By p ass in g  an a .c .  c u rre n t through th e  c o i l ,  a p u sh -p u ll type 

s t r e s s  could be ap p lied  to  the  c r y s ta l .

The sample chamber was a tube o f In co n e l in  which a window was 

cu t to  make th e  c ry s ta l  a c c e s s ib le . S ta in le s s  s t e e l  end p ieces  capped 

th e  In co n e l tube and added to  i t s  r i g i d i t y . Q uartz in s u la te d  chromel 

w ire , cemented in to  a s ta in le s s  s t e e l  tube served  as a high tem peratu re  

le a d - in .  The upper end of th e  le a d - in  was te rm ina ted  in  a te f lo n  in su ­

la te d  BNC co n n ec to r, thus e n t i r e ly  s h ie ld in g  the  c en te r  w ire . The 

sample chamber and the  le a d - in  tu b u la tio n  were fix ed  to  the  Inconel s lab  

se p a ra te ly  to  m inim ize th e  m echanical v ib r a t io n  of the  system . The 

s l i g h t e s t  r e l a t iv e  m otion of p a r ts  th a t  were in  proxim ity  to  e i th e r  the  

c r y s ta l  or to  th e  c e n te r  le a d - in  w ire  r e s u l te d  in  spurious e l e c t r i c  

s ig n a ls  b e in g  g en era ted . The c r y s ta l  s ig n a l, source  impedance was so 

high th a t  such e x tra  s ig n a ls  were in to le r a b le .

The e n t i r e  assembly was mounted on a framework made of l i  inch  

angle  i ro n .  A s h e l f ,  made of  ̂ inch  aluminum sh e e t, was in s ta l l e d  in  

th e  framework; the magnet was p o s itio n e d  on i t .

The magnet c o i l  was d riv en  by a 40 w a tt A ltec-L ansing  high 

f i d e l i t y  a m p lif ie r .  The a m p lif ie r  was fed  from a Hewlett Packard 

audio o s c i l l a t o r ,  model 200CD, w ith  a 600 ohm ou tpu t impedance; th e re



55

was l i t t l e  d i f f i c u l ty  in  feed ing  d i r e c t ly  in to  th e  h igh  impedance of 

th e  power a m p lif ie r . With t h i s  arrangem ent th e  c r y s ta l  was d riv en  a t  

f req u e n c ie s  o f 10-100 h z , although  u su a lly  a t  200 hz . Above 1000 hz. 

th e  c o i l  and lin k a g e  arrangem ent was too  heavy to  respond to  the  

d riv in g  s ig n a l .

From th e  le a d - in ,  th e  c r y s ta l  s ig n a l  was in tro d u ced  in to  a 

type 5800 e lec tro m e te r  te tro d e  vacuum tu b e . This tube has a nom inal 

g r id  leakage  of 10 ^^ am peres, thus a llow ing  very  h igh  in p u t impedances. 

The power fo r  th i s  tube  was ob ta ined  w holly from mercury b a t t e r i e s ,  so 

th a t  no a . c .  hum would be in tro d u ced  through th e  power so u rce . The 

e le c tro m e te r  c i r c u i t  as shown in  F igu re  11 has a ga in  of approxim ately 

u n i ty ,  b u t th e  o u tp u t impedance i s  about a megohm. Since th e  g r id  re ­

s i s t o r  o f th e  te tro d e  e le c tro m e te r  i s  2 x 10^^ ohms, th i s  arrangem ent 

p rov ided  a  good impedance m atch. The e le c tro m e te r  ou tp u t was fed  in to  

an o rd in a ry  audio a m p lif ie r  w ith  p ro v is io n s  fo r  low le v e l  s ig n a ls .

The f ilam e n ts  o f th e  a m p lif ie r  tubes were su p p lie d  w ith  d i r e c t  c u rre n t 

to  e lim in a te  hum. High v o lta g e  was taken  from an e le c t r o n ic a l ly  re ­

g u la te d  power supp ly ; a t  250 v o l t s ,  th e  v o lta g e  g a in  of the  e le c t r o ­

m ete r-au d io  a m p lif ie r  complex was 1500.

A T ek tron ix  double beam o s c il lo s c o p e , type 502, was used to  

d isp la y  th e  s ig n a l  from th e  a m p lif ie r . One channel was used to  d is ­

p lay  th e  e l e c t r i c a l  s ig n a l  from th e  c r y s t a l ,  and th e  o th e r  showed the  

s ig n a l  from th e  audio o s c i l l a to r .  In  t h i s  manner th e  phases of the  

e l e c t r i c a l  s ig n a l  from the c r y s ta l  and th e  in p u t s ig n a l  could be com­

p ared . The o s c il lo sc o p e  was equipped to  tak e  photographs of the  t r a c e s ,
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thus allow ing a p i c to r i a l  record  o f the  n u l l  p o in t corresponding to 

th e  i s o e l e c t r i c  tem perature.

A g re a t deal o f care  was taken  in  p rep arin g  the  samples fo r 

th e  p u sh -p u ll deform ation experim ent. The lith iu m  f lu o r id e  was ob­

ta in e d  from the Harshaw Chemical Company in  the  form of th re e  c y lin d e rs , 

each l i  inches long and 1 inch in  d iam eter. One end of the  cy lin d e rs  

was cu t o f f  and used as the  io n ic  c o n d u c tiv ity  sam ple; the  rem aining 

p a r t  was cu t in to  s lab s  to  be used in  the  deform ation app ara tu s . The 

h igh  p u r i ty  of th e  specimens made i t  im possib le to  c leav e  them; in ­

s te a d ,  i t  was necessary  to  cut the  samples using  a w ire  saw and a 

carborundum s lu r r y .  R ather than  c leav e  along th e  (100) p lan es , the 

samples would e i th e r  deform p l a s t i c a l l y  o r fa c tu re  a t  the  p o in t where 

th e  c leav in g  was a ttem pted . U sually  a f r a c tu re  of the  c r y s ta l  along 

a (110) p lane  would occur. This d i f f i c u l ty  in  hand ling  h ig h ly  pure 

LiF i s  a lso  mentioned in  the  l i t e r a t u r e . T h e  f in a l  procedure 

adopted in  handling  th e  samples i s  as fo llo w s; 1) Locate th e  cleavage 

p lanes by observing su rfa c e  sc ra tc h e s  w ith  a m icroscope, 2) Mark the  

edge of th e  cleavage p lane  as i t  i n te r s e c t s  the  end of th e  c y lin d e r .

3) P lace  the  edge of the  c leav ing  k n ife  p a r a l l e l  to  the  ax is  of the  

c y lin d e r ,  p o in tin g  inward along a d iam eter b is e c t in g  the  angle between 

(100)p la n es . 4) Tap th e  c leav ing  k n ife  gen tly  w ith  a sm all hammer, 

n ea r one end o f the  c y lin d e r . This l a s t  s te p  u su a lly  s t a r t s  two p e r­

p e n d icu la r  cleavage p lanes a sm all d is ta n c e  in to  the  c r y s ta l .  Using 

th e se  p lanes as g u id es, the  c r y s ta l  was s e t  up in  th e  c r y s ta l  saw w ith
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th e  w ire  b lad e  approxim ately  p a r a l l e l  to  th e  (100) p lan es . The 

s lab  was then cu t from th e  main c r y s ta l  and checked fo r  p a ra lle l ism .

I f  the  su rfa c e s  were n o t p a r a l l e l ,  they were ground w ith  250 mesh c a r-  

borlindum powder u n t i l  they were w ith in  .001" o f being  p a r a l l e l .  A ll 

marks of the  f i r s t  g rin d in g  were then  removed by g rin d in g  w ith  600 

mesh carborundum. A th i r d  g rin d in g  w ith  1000 mesh carborundum was then 

c a r r ie d  o u t, c o n tin u a lly  r o ta t in g  th e  c r y s ta l  so as to  g rind  the  su r­

face  even ly . A fte r  about 30 m inutes of th is  f in a l  g rin d in g , the  c ry s ta l  

su rfa ce s  were u su a lly  le s s  than  .0005" from being p a r a l l e l .  This l a s t  

s tep  probably  b rin g s  the  su rfa c e  very near to  a (100) p lan e . The f in a l  

th ic k n e ss  of th e  c r y s ta l  was approxim ately .07". The c r y s ta l  was an­

n ea led  f o r  40 hours fo llow ing  th e  f in a l  g rin d in g  to  remove as many 

g rin d in g  f a u l t s  as p o s s ib le .

Two bending j i g s  w ere made, each c o n s is tin g  o f equally  spaced 

d u lle d  k n ife  edges. The geometry and dimensions of th e se  j i g s  a re  

shown in  F igure  12. They were used to  in tro d u ce  an excess o f d is lo c a ­

tio n s  of one m echanical s ig n  in to  th e  c r y s ta ls .  The procedure  used in  

bending a  c r y s ta l  i s  as fo llo w s: th e  c r y s ta l  su rfa c e  was lu b r ic a te d

w ith  a s i l ic o n e  g rease  to  m inim ize any f r i c t i o n  between the k n ife  

edges and th e  c r y s ta l .  The c r y s ta l  was then p o s itio n e d  in  th e  j i g ;  

s t r e s s  was ap p lied  by pouring  sand in to  a p l a s t i c  co n ta in e r p laced  on 

the top d ie . A d ia l  in d ic a to r  was used to  show th e  d e f le c t io n  o f the 

top d ie  w ith  re s p e c t to  th e  bottom  d ie . S evera l c a ta s tro p h ic  f a i lu r e s  

were caused by adding sand too q u ick ly  to  the  c o n ta in e r ; the  success­

f u l  bends u su a lly  took 4-9 hours to  com plete. In  th e  l a t e r  s tag e s  of
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th e  experim ent, th e  c r y s ta l  was allow ed to  reach i t s  f in a l  co n fig u ra ­

tio n  by stead y  c reep . This r e s u l te d  in  co n sid e rab ly  few er broken 

c r y s ta l s ,  b u t th e  p re p a ra tio n  tim e was approxim ately  doubled. Sm aller 

s ig n a l  s tre n g th  was encountered in  the  samples deformed by creep  than  

in  those  deformed dynam ically , probably  due to  fewer d is lo c a t io n s .

A fte r  bending th e  c r y s ta l ,  i t  was in s ta l l e d  in  th e  apparatus 

as a lread y  m entioned. S ilv e r  e le c tro d e s  were p a in ted  on the  c r y s ta l ,  

and th e  connection  from the le a d - in  to  the  e le c tro d e  was made by a 

len g th  of .004" d iam eter p la tinum  w ire . Two s i l v e r  p a in ts  were used; 

a w ater base  type SCP-14 fo r  th e  c r y s ta ls  p ro p e r, and an o rgan ic  base 

type SC-14 fo r  fa s te n in g  the  p la tinum  w ire  to  the  e le c tro d e  thus 

formed. Both ty p es  w ere made by th e  M ic ro -c irc u its  C orpora tion .

A fte r  i n s t a l l i n g  the  c r y s ta l  in  the  Inconel tu b e , the  s ig n a l

from i t  was examined. The phase and am plitude o f th e  room tem peratu re  

s ig n a l  was reco rd ed . Power was then  ap p lied  to  th e  fu rnace  c o i l s ,  and 

a sm all am plitude s t r e s s  i s  a p p lied  to  th e  c r y s ta l .  Continuous obser­

v a tio n  of the  s ig n a l  was thought unnecessary , s in ce  any changes occur-

ing w ith  tem pera tu re  were very slow . The i s o e l e c t r i c  tem perature  was 

d e tec te d  as a 180® phase change in  the  c r y s ta l  s ig n a l ,  s in c e  th e  minute 

n a tu re  of the  s ig n a ls  made o b se rv a tio n  of a n u ll  p o in t d i f f i c u l t .

Sharp values fo r  th e  i s o e l e c t r i c  tem peratu re  were v i r t u a l ly  im possib le , 

s in c e  i t  appeared th a t th e  tem peratu re  m ight be a  fu n c tio n  of the  

s t r e s s  am plitude . The b e s t  r e s u l t s  were o b ta in ed  when the  s ig n a l  was 

run a t  a b a re ly  d e te c ta b le  l e v e l ,  fo r  th e  s t r e s s  was very  sm all in  th a t
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case . This d i f f i c u l ty  in  observ ing  th e  i s o e l e c t r i c  tem peratu re  was
(27)a ls o  noted by Strumane and De B a t i s t  in  t h e i r  work on NaC£. Con­

c lu sio n s  about the  shape , m agnitude, and phase o f the  s ig n a l from 

lith iu m  f lu o r id e  p a r a l l e l  very c lo se ly  th e i r  o b se rv a tio n s .

The tem peratu re  was allow ed to  in c re a se  some 50“C above the  

i s o e l e c t r i c  tem perature  to  determ ine i f  th e  c r y s ta l  s ig n a l  would con­

tin u e  to  grow in  am plitude. The tem peratu re  was then swept through 

the  i s o e l e c t r i c  tem peratu re  phase change s e v e ra l  tim es, each tim e 

more slow ly . In  th i s  way the  tru e  i s o e l e c t r i c  tem perature  was b rac ­

k e ted ; th e  e f f e c t iv e  i s o e l e c t r i c  tem perature  was taken as th e  cen te r 

tem peratu re  of the  b ra c k e t.

A fte r  low ering to  room tem p era tu re , th e  s ig n a l  s t r e n g th  was 

found to  be weaker than  b e fo re , b u t s t i l l  e a s i ly  d e te c ta b le . In  one 

c ase , the  s ig n a l  s tre n g th  was a c tu a lly  g re a te r  than b e fo re . Uporf ex­

am ination , i t  was found th a t  cleavage cracks had occurred  in  th e  nei^  

ghborhood of th e  e le c tro d e s . In  th is  c r y s ta l ,  the  i s o e l e c t r i c  temper­

a tu re  had been very hard  to  lo c a te .



CHAPTER VI

RESULTS AND DISCUSSION

Io n ic  C onductiv ity

The io n ic  c o n d u c tiv ity  equipment worked w e ll from th e  beg in ­

n in g , a lthough  rep ro d u c ib le  r e s u l t s  were hard  to  o b ta in  u n t i l  th e  s e t ­

t in g - in  p rocedure was adopted . Low s ig n a l  s tre n g th s  a t  low tem pera­

tu r e s ,  due to  th e  h igh  c r y s ta l  r e s is ta n c e ,  was the  only d i f f i c u l ty  en­

countered  in  ta k in g  d a ta . The co n d u c tiv ity  p lo ts  o f th e  th re e  LiF 

samples a re  shown in  F ig . 13. A l e a s t  squares method was used to  f in d  

th e  t r a n s i t io n  tem p era tu re , T^; th e  d a ta  from each c r y s ta l  was se p a ra te d  

in to  two tem pera tu re  re g io n s , w ith  d a ta  from the  tem peratu re  range 

around T^ d isc a rd e d . Thus, fo r  a g iven c r y s ta l ,  one d a ta  s e t  co rrespond  

to  the  i n t r i n s i c  reg io n  and th e  o th e r  to  the  e x t r in s ic  reg io n . By a s­

suming th a t  in  bo th  reg io n s  the  d a ta  f i t t e d  an equation  of the  type

1 q3
£na = A + B “y "  , (35)

A and B fo r  each reg io n  was determ ined by l e a s t  squares a n a ly s is ,  and 

a re  g iven in  Table 1. The two expressions fo r  a given c r y s ta l  were 

equated to  each o th e r  and so lved  to  determ ine T^.
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- 410
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- 6

- 7 1.4 1.3 1 . 2 1.110 1.5

1000/T '

F ig u re  13. C onductiv ity  p lo ts
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Even though th e  c o n d u c tiv ity  p lo t  fo r  a c r y s ta l  i s  d efined  to

be&noT v s . 1 /T , we have p lo t te d  Zno v s . 1/T in  F ig .13 and have assumed 
10%th a t  £na = A + B —̂  fo r  th e  l e a s t  squares f i t .  This is  v a lid  s in ce  T 

o n ly "v a rie s  from 250 “C to  800 “C in  th e  tem perature  range of i n t e r e s t ,  

w hile  a v a r ie s  over s e v e ra l o rd e rs  of m agnitude. Thus JLxi T i s  e f f e c t ­

iv e ly  a c o n s ta n t w ith  re sp e c t to  Zna, and i s  inc luded  in  th e  co n stan t 

A fo r  convenience.

The v a lu e  of T^, along w ith  th e  corresponding value  fo r  E, was 

used to  determ ine the  im purity  co n cen tra tio n  through th e  ex p ress io n

c = (A^A_)^ exp(-E/2kT^) . (36)

The va lu es  o f E, T^, and c fo r  our samples a re  shown in  Table 1.

P ush -P u ll Deform ation Experiment

The measurement o f the  i s o e l e c t r i c  tem perature  was made d i f ­

f i c u l t  by the  dependence of th e  phase change on the  s t r e s s  am plitude; 

n ear th e  i s o e l e c t r i c  tem peratu re  T^, th e  phase change could be en­

couraged by app ly ing  a la rg e  s t r e s s  am plitude to  the  c r y s ta l .  I f  th e  

s t r e s s  was la rg e  enough to  cause p l a s t i c  flow , the  d is lo c a tio n s  could 

sample th e i r  environm ent as m entioned by Strumane and De B a t i s t , (27) thus 

le ad in g  to  eq u ilib riu m  f a s te r  than  would occur w ith  only d if fu s io n  

p ro cesses  o ccu rin g . Thus, i f  th e  i s o e l e c t r i c  tem perature  had been 

passed b u t th e  c r y s ta l  had no t a t ta in e d  therm al eq u ilib riu m , th e  a p p li­

c a tio n  o f s u f f i c i e n t  s t r e s s  would cause an ab rup t change of phase of th e  

s ig n a l  w ith o u t p assing  through a n u l l  p o in t .



65

Table 1. L east Squares A nalysis

SAMPLE EXTRINSIC REGION INTRINSIC REGION \
A B A B

I  -2 .9 8 8  -8 .3 0 8  15.557 -23.041 794 “K

I I  -3 .6 8 4  -7 .748  15.064 -22.711 798 °K

I I I  -3 .2 5 2  -7 .7 6 5  14.019 -21.619 802 =K

U
Sample (M obility  A c tiv a tio n  E c

Energy)

I  0.72 eV 2.54 eV 4 x lO"^

I I  0.67 eV 2.58 eV 3 x 10~®

I I I  0.67 eV 2.38 eV 1 .6  x lO"^
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The p u sh -p u ll deform ation  equipment gave very  l i t t l e  tro u b le  

a f t e r  th e  i n i t i a l  d esig n  e r r o r s  were c o r re c te d . The re p ro d u c ib i l i ty  o f 

th e  i s o e l e c t r i c  tem p era tu re  of a g iven sample i s  q u ite  good; some samples 

were te s te d  again  a week l a t e r  w ith  no a p p re c ia b le  change in  th e  r e s u l t s .  

There i s  no doubt concern ing  th e  e x is te n c e  of a phase r e v e r s a l  bu t the  

d e te rm in a tio n  o f th e  ex ac t n u l l  p o in t i s  q u ite  d i f f i c u l t .

The la c k  o f sharpness could have been due to  a number o f f a c to r s ;  

th e  r a t e  of tem p era tu re  change may have been a f a c to r  in  th e  observed 

v a r ia t io n .  S ince th e  therm ocouple i s  embedded in  a s ta in le s s  s t e e l  ro d , 

th e re  may have been a therm al la g  between i t  and th e  c r y s ta l .  I t  i s  

a lso  posfeible th a t  th e  im p u r itie s  were d i s t r ib u te d  inhomogeneously 

th roughou t th e  samples ; d i f f e r e n t  reg ions of th e  c r y s ta l  would then  have 

had d i f f e r e n t  i s o e l e c t r i c  tem p e ra tu res . This would cause th e  " c o l le c t iv e "  

i s o e l e c t r i c  tem p era tu re  to  occur over a  ra n g e , making a sharp  determ ina­

t io n  of T^ im p o ssib le .

One way o f p o ss ib ly  lo c a t in g  T^, even w ith o u t a sharp  n u l l  v a lu e , 

would be to  p lo t  s ig n a l  s t r e n g th  v s . tem p e ra tu re ; i t  then would be pos­

s ib le  to  e x tra p o la te  to  zero  s ig n a l .  A number of reasons make such a 

p lo t  m ean ing less . When th e  c r y s ta l  i s  p re -b e n t ,  as i t  must be in  o rd e r 

to  observe  a s ig n a l ,  a  com pressive s t r e s s  a p p lie d  to  i t s  ends w i l l  f u r th e r  

bend th e  c r y s ta l .  Thus i t  i s  p o s s ib le  to  c r e a te  more d is lo c a t io n s  of th e  

c o r r e c t  m echanical s ig n  by a com pressive s t r e s s ,  lead in g  to  a s ig n a l  en­

hancem ent. This has probably  occured during  th e se  experim en ts. In  

a d d it io n , th e  number o f d is lo c a tio n s  a c tu a l ly  c o n tr ib u tin g  to  th e  e l e c t r i c a l
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s ig n a l  i s  undoubtedly a fu n c tio n  of tem pera tu re . Above th e  i s o e l e c t r i c  

te m p e ra tu re , th e  s ig n a l  i s  q u ite  s tro n g ; below, ip  i s  weaker in  g e n e ra l. 

The c r y s ta l  was q u ite  s o f t  a f t e r  an experim ent and would bend q u ite  

e a s i ly ,  in d ic a t in g  th a t  d is lo c a tio n s  may have been worked out o f th e  

c r y s ta l  a t  h igh  tem p era tu res . A p lo t  of s ig n a l  s tre n g th  v s . tem peratu re  

was t r i e d  f o r  s e v e ra l  sam ples, bu t the  s ig n a l s tre n g th  v a r ia t io n  was o f 

th e  same o rd er as th e  s ig n a l  i t s e l f .

The use o f a phase s e n s i t iv e  a m p lif ie r  i s  a  p o s s ib i l i ty  fo r  de- 

te c t ir ig  th e  phase change. Very slow tem peratu re  changes would have to  

be used w ith  t h i s  approach because of th e  high le v e l  of f i l t e r i n g  neces­

sa ry  when d ea lin g  w ith  low s ig n a l  s tre n g th s .

The v a lu es  o f T^ a re  g iven in  Table 2. As mentioned e a r l i e r ,  

th e  e f f e c t iv e  v a lu e  i s  taken  as th e  cen te r  tem pera tu re  of th e  b racket 

formed by T^ found w ith  in c re a s in g  tem peratu re  and T^ found w ith  de­

c re a s in g  tem p era tu re .

I f  now th e  va lues o f T^ from Table 2 a re  p u t in to  th e  eq u ation

= kT^ &n 1 /c  , (37)

(where we use a = c s in ce  a t  410 “C we a re  w e ll w ith in  the  e x tr in s ic  

ra n g e ) , th e  v a lu es  of g^ f o r  th e  samples a re

g l  = 0 .73  eV, g j^  = 0.74 eV, and gj^^ = 0 .73  eV.

These v a lu es  re p re se n t the  c a tio n  vacancy form ation  energy a t  tempera­

tu re  T . c
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Table 2. Values of g^(T )

SAMPLE T T ( e f f . )  g (T )c c + c

I  408°C -  413°C 407°C
402°C -  407°C 680°K 0.73 eV

395°C -  408°C

I I  404°C -  412°C 408°C

681°K 0 .74  eV

I I I  382°C -  392°C 390°C

388°C -  400°C 663°K 0.74 eV
386°C -  397°C
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Conclusions and D iscu ss ion

LiF Experiments

These experim ents have found a va lue  o f  T^, from which a value 

o f a t  T^ can be c a lc u la te d , using a sim ple th eo ry . I t  is  p o ss ib le  

th a t  th e  v a lu e  o f fo r  a d is lo c a tio n  i s  d i f f e r e n t  from g^ fo r  a su r­

fa c e ; however, i f  we assume th a t  g ^ (d is lo c a tio n )  = g ^ (s u rfa c e ) , we 

can a ttem p t to  c a lc u la te  g_ ( T ^ ) F o r  la ck  of a more re c e n t determ ina­

t io n ,  we w i l l  u se  H aven's va lue  of (A^A_)^= 5 0 0 ;^ ^ 'the va lue  of (g^+g ).p_Q 

w i l l  be th e  one determ ined from our measurements of th e  i n t r i n s i c  s lo p e , 

(g°+g°) = 2.56 eV. Thus we may w r i te ,  u sing  Equations (13) and (14) of 

C hapter I I :

( g + + g _ ) T  =  ( 8 + + 8 _ ) T = 0  "  k T ^ & n A ^ A _  ,
c

from which we f in d  (g +g )_ = 1.84 eV. Then, using  th e  assum ption

m entioned above, s in ce  g^.(T^) = 0.73 eV .,

g (T^) = 1.10 eV.

This r e s u l t  should  be examined c lo se ly . Haven found th e  va lue  of Â A 

by p lo t t in g  th e  experim ental exp o n en tia l f a c to r  of th e  co n d u c tiv ity  

p lo t  in  th e  e x t r in s i c  reg io n  (qBc of Equation (10 ), Chapter I I I )  v s . c , 

so th a t  th e  s lo p e  o f th e  curve gave qB. He then  d iv ided  the preexpon­

e n t i a l  f a c to r  o f th e  i n t r i n s i c  reg ion  by qB, o b ta in in g  (A^A )^ = 500 fo r  

L iF . He found th e  va lues of c fo r  h is  samples by using  a vo lum etric
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a n a ly s is  tech n iq u e  on th e  very  c r y s ta ls  th a t  he te s te d .  Thus th e  value  

o f A^A_ found by Haven i s  s u b je c t  to  e r ro r  from b o th  th e  i n t r i n s i c  and 

e x t r in s ic  p re -e x p o n e n tia l f a c to r s ,  as w e ll as from any in a ccu rac ie s  

t h a t  m ight have occured in  th e  im p u rity  d e te rm in a tio n . The a c tu a l e r ro r  

in  H aven 's A^A i s  n o t s ta t e d ,  and new work needs to  be done to  re f in e  

th e  v a lu e  o f  t h i s  param eter.

The th eo ry  used in  an a ly z in g  th e  d a ta  p re sen ted  here  n eg lec ts  

s e v e ra l  e f f e c t s ,  among which a re  vacancy and im purity  a s s o c ia t io n , and 

a n io n ic  conduction  a t  h igh  tem p era tu re . Even th e  s im p le s t ex tension  of 

th e  th eo ry  re q u ire s  a d d i t io n a l  param eters  n o t n ecessa ry  in  th e  elem entary  

tre a tm e n t; fo r  example, th e  Debye s h ie ld in g  ra d iu s  of a d is lo c a t io n ,  i t ­

s e l f  a fu n c tio n  o f g^, i s  needed i f  th e  lo n g -range  coulomb e f f e c t  between 

v acan c ies  and im purity  atoms i s  co n sid e red . We a re  d ea lin g  w ith  a 

smoothed o u t th e o ry , in  which th e  d e ta i l s  of d is lo c a t io n  charg ing , e t c . ,  

i s  ig n o red . In  f a c t ,  th e  c a t io n  vacancy c o n c e n tra tio n  in  th e  h ig h ly  

s t r a in e d  c r y s ta l s  used fo r  th e  p u sh -p u ll experim ents might be d i f f e r e n t  

from th a t  o f th e  c ry s ta ls  used fo r  io n ic  co n d u c tiv ity  s tu d ie s ;  Kanzaki 

e t  a l .  have shown th a t  a h igh  d is lo c a t io n  d e n s ity  lead s  to  an enhanced 

c o n d u c tiv ity  fo r  high p u r i ty  KCJl and to  a decreased  co n d u c tiv ity  fo r  

doped KC&, thus in d ic a t in g  th a t  th e  s t a t e  o f s t r a i n  of a sample might 

indeed  be an im portan t f a c to r .

There is  only one o th e r  ex p erim en ta l v a lu e  of g^ a v a ila b le ;

S p ro u ll found g^ = 0 . 3  eV. This r e s u l t  i s  unreasonably  low, and 

S p ro u ll concluded th a t  a s s o c ia t io n  of vacan c ies  and p r e c ip i ta t io n  of 

im p u r it ie s  had a f fe c te d  h is  a n a ly s is ,  a lthough  as mentioned e a r l i e r .
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h is  samples may have con tained  a la rg e  amount o f tw o-dim ensional 

bend ings. In  our experim ent we have v a r ia t io n s  o f *7 °C in  th e  value 

fo r  T^. From E quation  (3) we have

A g  A T  
-  = ^

so th a t  we may have an e r ro r  of 1 per c e n t in  th e  s ta te d  v a lu e  of g^

due to  th e  v a r ia t io n  in  th e  v a lu es  fo r  T . A f u r th e r  e r ro r  can a r i s ec
from an in c o r r e c t  d e te rm in a tio n  of in  th e  c o n d u c tiv ity  p lo t .  The 

e r r o r  in  c caused by e r ro r  in  T^ i s ,  from Equation (2 ),

T. AT,
—  = — -------— (39)c 2kT, T, ^k k

I f  th e  s t r a i g h t  reg ions of the  c o n d u c tiv ity  p lo t  o f a sample i s  ex­

tended to  determ ine T^, one can e a s ily  make an e r ro r  o f 2 per c e n t. 

Using E quation (5 ) ,  one f in d s  Ac/c = 0 . 5 ;  by f u r th e r  assuming th a t
AT,

- 0 , we may w rite  from Equation (3 ) ,

%  = ^

Using c = 10 ^ , Ac = 0 .5 c , we have

Ag+/g+= *05

An erroneous v a lu e  of T^ then  does no t in f lu e n c e  g re a t ly  th e  c a lc u la te d  

v a lu e  of g^ u s in g  our sim ple th eo ry .
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NaCÜ. Experiments

In  o rd er to  check the  v a l id i ty  o f th e  r e s u l t s  p re sen ted  h ere

fo r  L iF , we te s te d  two samples of NaC& in  th e  same manner. One sample

was from th e  Harshaw Chemical Company, w h ile  th e  o th e r was home-grown

from AR grade m a te r ia l .  NaC& has been s tu d ie d  by s e v e ra l in v e s t ig a -  
(26 27 29)to rs  ’ ’ , and th e i r  experim ental p rocedures were d iscu ssed  e a r l i e r .

(29)K liewer and K oehler (KK) used an in te r n a l  f r i c t i o n  method, w h ile
f27^ (2.6iStrumane and De B a t is t  (SD) and Davidge (DA) used e s s e n t ia l ly  the

th e  method employed in  th is  work.

The c o n d u c tiv ity  d a ta  fo r  the  two sam ples a re  shown in  Table 3.

We have a lso  en te red  T^ and th e  c a lc u la te d  v a lu e  of g^(T^) in  th is  ta b le .

The fo rm ation  e n erg ies  c a lc u la te d  from the s lo p es  of th e  s t r a ig h t  l in e

p o rtio n s  of the  c o n d u c tiv ity  p lo ts  ag ree  w ith in  experim ental e r ro r  w ith

th e  l i t e r a t u r e  v a lu e s . These r e s u l t s  were o b ta ined  using  th e  same c a l-

c u la t io n a l  procedure as fo r L iF . Even though our experim en ta l procedure

was e s s e n t ia l ly  th a t  of Strumane and De B a t is t  and Davidge, th e  d a ta

th a t  we ob ta ined  seemed to  f i t  th a t  of K liew er and K oehler more c lo se ly .

To i l l u s t r a t e  we have p lo t te d  & n(l/c) v s . 1/T^ tak in g  care  th a t  T^ < T^

fo r  a l l  samples so th a t  the  approxim ation a  = c can be used. Since

g+(Tg) = kT^&n( i  ) = g° -  kT̂ &nÂ  (41)-

th is  p lo t  w i l l  have g ° /k  as i t s  s lo p e .

Even though th e  p o in t re p re se n tin g  the  Harshaw c r y s ta l  i s  

d i r e c t ly  on the  ex ten sio n  of l in e  KK, th e  second p o in t l i e s  between
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Table 3. Data fo r  NaC£ C ry s ta ls

C ry s ta l U E \  C

A. Harshaw 0 .7  eV 2.01 eV 729 °K 1 .3 x l0 “  ̂ 627°K

B. Home-grown 0.94 eV 2.10 eV 879 °K 1.7x10  ̂ 761°K

C. Dreyfus and 0 .80  eV „
Nowicklô ± .03 eV ' ^
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the  l in e s  KK and DA. The s lo p e s  of bo th  l in e s  a re  alm ost eq u a l, thus 

y ie ld in g  n e a r ly  th e  same va lue  of g°. Using the  sim ple theory  in  which 

a s s o c ia t io n  and p r e c ip i ta t io n  i s  ign o red , K liewer and K oehler found 

g° = 1 .4  eV, w h ile  th e  Davidge d a ta  DA as p lo t te d  in  F ig . 14 y ie ld s  

g° = 0.85 eV. D av idge 's  a c tu a l  r e s u l t  was g° = 0.95 ± 0 .1  eV; h is  

v a lu es  of were so c lo se  to  th a t  th e  sim ple approxim ation  a = c 

could n o t be used . I t  i s  in te r e s t in g  to  no te  th a t h is  s ta te d  ex p e ri­

m ental r e s u l t  does o v e rlap  th e  va lue  ob ta ined  using  th i s  approxim ation , 

how ever.

Using our d a ta  p o in ts  and th a t  of Strumane and De B g t is t ,  we 

f in d  th a t  g® = 0 .8  eV. Although no e r ro r  a n a ly s is  was c a r r ie d  out fo r 

th e  NaC& d a ta ,  t h i s  v a lu e  i s  c lo se  enough to  th a t  of p rev ious in v e s t i ­

g a to rs  to  allow  us to  conclude th a t  our procedure y ie ld s  p h y s ic a lly  

s ig n i f ic a n t  d a ta . The v a lu e  o f g^ ob ta ined  fo r  LiF i s  then  probably 

r e l i a b l e .

The d a ta  can a lso  be p lo t te d  in  the  form of T^&n(-^ ) v s . T^ 

to  g iv e  a s t r a ig h t  l in e  of s lo p e  £nA^. In th is  way Davidge f in d s  

A  ̂ = 7 .6 , w hile  in  th e  same approxim ation K liew er and K oehler o b ta in  

&nÂ  = 12, an extrem ely  high v a lu e  fo r  A^. The v a lu e  of A  ̂ fo r  NaC£ 

p re s e n ts  an in te r e s t in g  problem . I f  Kliewer and K o eh le r 's  v a lu e  of 

A  ̂ = 10^ i s  accep ted , th en  A must be very sm all, co n tra ry  to  th e  u sual 

b e l i e f  th a t  they a re  th e  same o rder o f m agnitude. K liew er and Koehler 

rean a ly zed  th e i r  d a ta  on th e  b a s is  of a s s o c ia t iv e  in te r a c t io n s  between 

v a ca n c ie s , thereby  o b ta in in g  a co n sid e rab le  improvement in  th e  va lue  of
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Using th e  improved th e o ry , they found = 6 . 2 7 ,  or = 5.2x10^.

This va lue  s t i l l  seems unreasonab ly  h ig h , s in ce  th e  accep ted  v a lu e  of

A^A_ is  493.^^^ F u rth e r work, both  experim ental and th e o r e t i c a l ,  i s

needed in  t h i s  a re a .

I t  may be no ted  th a t  our co n d u c tiv ity  d a ta  fo r  LiF re s u l te d  in

a v a lu e  of E ( th e  Schottky p a i r  fo rm ation  energy) th a t  was somewhat lower

than th e  v a lu e  of E = 2.68 eV given by Haven. A re c e n t paper by Boswarva 

(37)and L id ia rd  concerning th e  a cc u ra te  c a lc u la t io n  of E seems to  in d ic a te  

th a t  Haven’ s va lue  may be too la rg e .  Once again  i t  i s  seen th a t  more 

re c e n t work on th e  c o n d u c tiv ity  param eters of LiF i s  needed.

I t  is  obvious th a t  many d i f f i c u l t i e s  rem ain un reso lved  in  the 

study  of in te ra c t io n s  of d e fe c ts  in  a lk a l i  h a lid e  c r y s ta l s .  However, 

charged d is lo c a t io n  s tu d ie s  o f f e r  a prom ising approach to  th e  study of 

th e se  i n t e r a c t io n s . The most s ig n i f ic a n t  r e s u l t  o f th e  work rep o rted  

heee then  i s  to  in d ic a te  th e  need fo r continued e f f o r t  in  th is  f i e ld .

In  p a r t i c u la r ,  fo r  LiF th e re  i s  a need fo r  r e p e t i t io n  of Haven’s work 

and s tu d ie s  of charged d is lo c a tio n s  in  c ry s ta ls  co n ta in in g  a wide 

range o f d iv a le n t m e ta l l ic  im p u r i t ie s .  This would be no sm all ta sk .



Appendix

MATERIAL PREPARATION AND CRYSTAL GROWTH 

In tro d u c tio n

In  co n ju n c tio n  w ith  th e  work re p o rte d  h e re in , a s e r ie s  o f po­

tass iu m  c h lo r id e  c ry s ta ls  were grown to  a id  a s im ila r  program. The 

c r y s ta l  growth ap p ara tus had been b u i l t  b u t never used ; a p o r tio n  of 

th i s  work was concerned w ith  th e  m o d ifica tio n  and p e r fe c t io n  of th is  

a p p a ra tu s , in  o rd e r to  use  i t  to  grow th e  doped potassium  c h lo rid e  

(KC&) c r y s ta ls  n ecessa ry  fo r  th e  above-m entioned work. In  a d d itio n , 

the  a n a ly t ic a l  reag en t grade KC5, as re c e iv e d  from M allin k ro d t Chemical 

Company con ta in ed  im p u ritie s  which could be removed in  th is  la b o ra to ry . 

Thus, s t a r t i n g  w ith  reag en t grade KC&, i t  was d e s ira b le  to  chem ically  

p u r ify  and d i s t i l l  i t  in  o rd e r to  o b ta in  c lean  s t a r t i n g  m a te r ia l  fo r  

growing c r y s ta l s .

Equipment

The c r y s ta l  growth ap p ara tu s  was of the  Kyropoulos ty p e , in  

which th e  c r y s ta l  i s  drawn from the  m e lt. Our techn ique was to  r o ta te  

th e  q u a rtz  c ru c ib le  which con tained  th e  m elt a t  13 re v o lu tio n s  p e r 

m inute w h ile  th e  c r y s ta l  p u l le r  rod was withdrawn a t  th e  r a t e  o f 0.125 

m ill im e te rs  p e r m inu te . A diagram  of th e  c r y s ta l  growth ap p ara tu s  i s  

g iven  in  F igure  15.
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COOLING WATER

DRAWING ROD

QUARTZ TUBE

CRYSTAL CHUCK 

SEED CRYSTAL

■QUARTZ CRUCIBLE 

FURNACE

ROTATOR MOTOR

FIGURE 15. CRYSTAL GROWING APPARATUS
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The fu rnace  was made of chromel h e a te r  w ire  in s u la te d  w ith  

ceram ic beads and wound on a q u a rtz  form; lo ose  a sb e s to s  in s u la te d  

th e  c o l ls  from th e  o u te r  co n ta in e r of the  fu rn ace , which had been 

formed from s ta in le s s  s te e l  sh e e t. Three independen t, equal len g th  

c o i ls  wound a d jac e n t to  each o th e r formed th e  h e a tin g  elem ents; sep­

a r a te  c u rre n t ad justm ents allowed red u c tio n  of tem perature  g ra d ie n ts  

in  the  h o t zone of the  fu rnace. S ince h e a t lo s s  from the  ends i s  

g r e a te r  than  th a t  from the  c e n te r  o f th e  fu rn ace , the  end c o ils  were 

su p p lie d  w ith  more power. Set a t  one inch  in te r v a ls  in s id e  the  fu r ­

nace were 7 chrom el-alum el therm ocouples, a llow ing the  tem peratu re  

d i s t r ib u t io n  to  be determ ined over a 6 inch  len g th . The tem perature 

could  be h e ld  co n stan t to  w ith in  ±5“C a t  800°C over a 4 inch len g th  

by c a re fu l ly  a d ju s t in g  the  c u rre n ts  in  th e  c o i l s .

For a tem peratu re  c o n tro l, a r e s is ta n c e  thermometer made of 

p la tinum  w ire  wound on a ceramic tube formed one le g  of a b rid g e  which 

su p p lie d  an e r r o r  v o lta g e . The p la tinum  thermometer was p laced  in  a 

q u a rtz  tube th a t  was f i t t e d  snugly a g a in s t  th e  fu rnace  w indings; the 

ceram ic bead in s u la t io n  was p a r t i a l l y  removed to  perm it in tim a te  con­

t a c t  between the  w indings and the  therm om eter.

The e r r o r  s ig n a l fed a t r a n s i s t o r  a m p lif ie r  which drove a s e t  

of r e la y s  capab le  o f c o n tro ll in g  15 amperes in  each c o i l . R a t h e r  

than  in te r r u p t  the  t o t a l  c u r re n t, a one ohm re s is ta n c e  was connected 

in  p a r a l l e l  w ith  th e  re la y  c o n ta c ts , a llow ing the  fu rnace c u rre n t to 

be v a r ie d  from , say , 11 amperes in  the  on co n d itio n  to  10 amperes in
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th e  o f f  c o n d itio n . This allow ed smoother tem perature  c o n tro l than 

com plete in te r r u p t io n ,  b u t i t  was n ecessary  to  s e t  th e  fu rnace  cu rren t 

beforehand  to  correspond  approxim ately to  th e  p ro p e r tem pera tu re ; i . e . ,

6 amperes through th e  fu rnace  c o ils  corresponds to  a  c e r ta in  tempera­

tu r e ,  w h ile  7 amperes corresponds to  a h ig h e r tem p era tu re , and the  

c u rre n t had to  be s e t  so th a t  the  tem peratu re  reached w ith  the  re la y  

c o n tac ts  open would n o t exceed the c u t-o f f  tem peratu re  of the  con­

t r o l l e r .

The q u a rtz  tube  was c losed  by end p ieces  machined from s ta in ­

le s s  s t e e l ;  vacuum t ig h t  s e a ls  were made on the  o u ts id e  by compressing 

0 - r in g s  between th e  end caps and a th readed  aluminum r in g . A double 

0 -r in g  s e a l packed w ith  Dow-Corning s i l ic o n e  stopcock g rease  allow ed 

the  easy movement o f  th e  p u l le r  rod in  and out o f the  tu b e . The p u l le r  

rod was c o n tro lle d  by a la rg e  screw running the len g th  of the assem bly; 

the  screw  was tu rn ed  a t  one re v o lu tio n  every 16:50 m inutes when in  opera­

t io n  by a sm all m o to r-gear com bination. A flow of w ater was m ain tained  

in  th e  p u l l  rod to  c a rry  o f f  excess h e a t; in  th is  manner the h e a t of 

c r y s t a l l i z a t i o n  was removed from th e  system . The w ater was in troduced  

in to  and removed from the  p u l l  rod by f le x ib le  p la s t i c  tu b es.

The lower end p ie c e  had an 0 -r in g  s e a l  so th e  c ru c ib le  support 

s h a f t  could r o ta te  through i t .  This s e a l  was w e ll lu b r ic a te d  w ith  Dow- 

Corning s i l ic o n e  stopcock  g rea se . Both end p ieces  were b u i l t  in  sep a r­

a te  s e c tio n s  so th a t  th e  a c tu a l  ends could be removed w ithou t d is tu rb in g  

th e  q u a r tz - s ta in le s s  s t e e l  0 -r in g  s e a l ;  they were cooled by a w ater
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flow  m ain ta ined  in  copper c o i ls  which were s i l v e r  so ld e re d  to  th e  s ta in ­

le s s  s t e e l  s id e s  to  p re v e n t th e  decom position of 0 - r in g s  and lu b r ic a n t .  

A ll 0 -r in g s  were made o f V iton-A, and were lu b r ic a te d  w ith  s i l ic o n e  

g rea se .

The c ru c ib le  was fused  onto  a long q u a rtz  tu b e , which was 

h e ld  by th e  s lo t t e d  s t a i n l e s s  s t e e l  tube o f th e  c ru c ib le  support s h a f t .  

This arrangem ent allow ed r o ta t io n  o f the c ru c ib le ,  b u t i f  b ind ing  oc­

c u rre d , th e  connection  would s l i p  ra th e r  than b reak  th e  q u a r tz .

A number o f arrangem ents f o r  h o ld in g  th e  seed  c r y s ta l  to  the  

p u l le r  rod were t r i e d ;  i n i t i a l l y ,  a m assive p iece  o f p y ro ly t ic  carbon 

was used to  clamp th e  c r y s ta l .  No e x te rn a l coo ling  was used in  th is  

c ase ; r a d ia t io n  from th e  carbon was depended upon to  c a rry  awqy 

th e  h e a t o f c r y s t a l l i z a t i o n .  This method proved s in g u la r ly  unsuccess­

f u l ,  and w a te r co o lin g  w ith  a sm a lle r  carbon chuck was found to  be a 

b e t t e r  d esig n . The f i n a l  arrangem ent had a sm all p y ro ly t ic  carbon cy­

l in d e r  th read ed  t i g h t ly  onto the  p u l le r  ro d ; a h o le  was d r i l l e d  along 

th e  ax is  o f th e  c y l in d e r ,  w ith  two much sm a lle r  h o le s  d r i l l e d  along a 

d iam eter. A p ie c e  of p la tinum  w ire  is . s im u ltan eo u sly  passed  through 

th e se  l a t t e r  two h o le s  and a sm all ho le d r i l l e d  in  th e  seed c r y s ta l .  

This proved to  be a most s u c c e s s fu l  way to  hold  the  seed  in  p la c e , bu t 

h e a t d is s ip a t io n  con tinued  to  be a problem. A s u c c e s s fu l  approach has 

been to  d ip  th e  seed c r y s ta l  and chuck in to  the  m olten s a l t  p r io r  to  

growth; th e  s a l t  th a t  f re e z e s  on to  i t  makes therm al co n tac t between 

th e  two. E x c e lle n t c r y s ta l s  have been grown using  th i s  tech n iq u e , bu t
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the  p ra c t ic e  o f d ipp ing  carbon in to  th e  m elt remains dub ious, as i t  

could in tro d u ce  im p u r i t ie s .

M a te ria l P r e p a ra t io n (39)

S ince th e  prime o b je c t was to  remove im p u r it ie s  a f f e c t in g  the  

e l e c t r i c a l  c h a r a c te r i s t i c s  o f i n t e r e s t ,  th e  use o f c h e la tin g  agents 

was co n sid e red . C h ela tin g  agen ts form s ta b le  and h ig h ly  so lu b le  com­

pounds w ith  p o ly v a le n t m eta l ions in  w a te r s o lu t io n ;  fo r  example, 

e th y len e  diamine t e t r a  a c e t ic  a c id  (EDTA) in  a s o lu tio n  of KC& made 

s l i g h t ly  a c id ic  by HC& a d d itio n  w i l l  a t ta c h  th e  Fe^*+ io n . I f  then 

th e  KC& i s  p r e c ip i ta te d  by low ering th e  tem p era tu re , the  EDTA + Fe+++ 

com bination w i l l  remain in  s o lu tio n .

The com plete procedure fo r  h and ling  th e  KCJl p u r i f ic a t io n  is  

as fo llo w s:

1. In  one g a llo n  of d i s t i l l e d  w a te r one gram o f te tra so d iu m  

EDTA i s  d is so lv e d . This w i l l  be  r e fe r re d  to  as the  s tan d ­

ard  s o lu t io n ,  and w i l l  c h e la te  2.63 x 10  ̂ mole of im p u rity .

2. KCJl i s  added to  th e  s tan d a rd  s o lu tio n  a t  room tem peratu re  

u n t i l  s a tu r a t io n  i s  reached.

3. KOH i s  added a t  room tem peratu re  u n t i l  a pH of 8 i s  ob ta ined  

to  remove Ca, Mg, e tc .

4. The s o lu t io n  i s  cooled to  i t s  f re e z in g  tem p era tu re , which 

p r e c ip i ta te s  KCJl. The l iq u id  i s  decanted .
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5. The f i r s t  fo u r s te p s  a re  re p e a te d , b u t m odifying s te p  th re e  by 

adding HC2 to  make the  pH equal to  5 ra th e r  than re p e a t th e  

KOH s te p .  This w i l l  remove those  m etals which a re  removable 

only in  a c id  s o lu tio n .

A fte r  com pletion o f the  EDTA s te p ,  the  KCJl was d rie d  a t  80°C 

in  a po ly e th y len e  co n ta in e r and then  s to re d  p r io r  to  d i s t i l l a t i o n .

The d i s t i l l a t i o n  was the  f in a l  s te p  b e fo re  growing c r y s ta l s ;  i t  was 

c a r r ie d  out in  the  c ry s ta l  growth a p p a ra tu s , which was m odified  fo r  

the  d i s t i l l a t i o n .  For d i s t i l l a t i o n ,  th e  system  was evacuated; in  

p lace  o f th e  c r y s ta l  chuck, a w a ter-co o led  s ta in le s s  s t e e l  tube w ith  

p la tinum  f o i l  covering  i t s  lower 6 inches was used. A charge o f p u r i­

f ie d  KCJl was p laced  in  the  q u artz  c ru c ib le  and heated  to  500“C in  a 

flow of dry n itro g e n  to  remove m oistu re  and excess EDTA. A fte r about 

f iv e  hours a t  th i s  tem pera tu re , the  fu rnace  was heated  to  900°C, thus 

s t a r t i n g  th e  d i s t i l l a t i o n .  The m elt could be observed through an a re a  

in  the  s id e  of the  q u a rtz  tube en c lo sin g  th e  system . This view ing 

p o r t  was kep t c lean  o f KCJl by d ire c t in g  a bunsen burner flame a g a in s t 

i t  du ring  o p e ra tio n .

The d i s t i l l e d  KCJl was c o lle c te d  on the  p latinum  f o i l ;  a f t e r  

com pleting the  d i s t i l l a t i o n ,  i t  was removed from the apparatus and 

s to re d  in  p la s t i c  bags which were kep t in  a d e s s ic a to r .
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C ry s ta l Growth

The c r y s ta l  growth apparatus was f i r s t  c a re fu l ly  cleaned and 

d r ie d . Then th e  p u r i f ie d  and d i s t i l l e d  KC£ was p laced  in  th e  c ru c i­

b le  and th e  tem peratu re  of the  furnace ra is e d  to  100®C fo r  one hour.

A p re s su re  o f n itro g e n  of about 5 cen tim ete rs  o f mercury was main­

ta in e d  in  th e  systêm  w hile  r a is in g  the  tem p era tu re . Upon reach ing  

100°C, the  n itro g e n  was evacuated from th e  system  and re p laced . This 

i s  recommended as an e x c e lle n t  p r o c e d u r e f o r  th e  removal o f mois­

tu re  from th e  c r y s ta l s .  The n itro g en  replacem ent procedure was re ­

p ea ted  a t  100°C in te r v a ls  u n t i l  the  m elting  p o in t o f KC2, was reached . 

The tem pera tu re  was then s e t  to  about 810“C, and the  s a l t  allow ed to  

m elt w h ile  a c o n sta n t tem peratu re  was e s ta b lis h e d  by th e  tem peratu re  

c o n tro l .  A fte r  th e  s a l t  was com pletely m elted , th e  tem perature  was 

low ered c a u tio u s ly  toward the  m elting  p o in t;  when sm all c r y s t a l l i t e s  

began to  form on th e  su rfa c e  of the  m elt (u su a lly  a f t e r  two hours) 

th e  tem p era tu re  was no ted  and the  c r y s t a l l i t e s  rem elted  by ra is in g  the 

tem pera tu re  s l i g h t ly .  The seed c r y s ta l  was then  lowered in to  the  m elt 

and c lo se ly  watched u n t i l  i t  could be seen th a t  i t  was m e ltin g ; con­

s id e ra b le  ca re  was needed h e re , fo r  many seed c ry s ta ls  were lo s t  by 

n o t b e in g  p a t ie n t  a t  th is  p o in t. The tem peratu re  was then  qu ick ly  r e ­

duced to  s l ig h t ly  above th e  tem perature o f c r y s t a l l i t e  form ation . 

U sually  th e  c r y s ta l  would begin  to  form on the  seed w ith in  30 m inutes; 

i f  n o t ,  th e  tem peratu re  was lowered u n t i l  growth o ccu rred . The p u llin g  

rod motor was then s t a r t e d ;  i t  u su a lly  re q u ire d  4-7 hours to  grow a 

c r y s t a l  a f t e r  growth was begun.
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A fte r  p u r ify in g  a given b a tch  of m a te r ia l  i t  was d e s ira b le  to  

use a seed  c r y s ta l  of th i s  same m a te r ia l  w ith  which to  grow c r y s ta ls .  

This p rev en ted  im p u r it ie s  from e a r l i e r  runs from being  in tro d u ced  in to  

th e  c r y s t a l  by impure seed s . Seed c r y s ta l  growth was accom plished by 

d ipp ing  a p la tin u m  ro d , which rep laced  th e  c r y s ta l  chuck, in to  the  

m e lt, th e reb y  form ing a p o ly c r y s ta l l in e  bou le  of s a l t  on th e  rod t i p .  

The extrem e end of th e  bou le  -was then  touched to  th e  m elt and a th in  

c r y s ta l  about 5 m illim e te rs  long was grown; i t  was hoped th a t  in  th is  

manner a s in g le  c r y s ta l  would be o b ta in e d . The th in  s e c t io n  was then 

widened in to  a f u l l  s iz e d  c r y s ta l  by g ra d u a lly  low ering th e  tem peratu re  

w h ile  c o n tin u in g  to  p u l l .  S in g le  c r y s ta l s  have been grown using  th i s  

method, a lth o u g h  i t  was more u su a l to  fin d  s e v e ra l  o r ie n ta t io n s .  The 

r e s u l t in g  c r y s ta l s  were used as seeds in  growing the c r y s ta ls  of th a t  

p a r t i c u l a r  b a tc h .

A fte r  th e  c r y s ta l  had been grown th e  p u l le r  rod motor and cru­

c ib le  r o ta t io n  motors were s topped . The tem peratu re  c o n tr o l le r  was 

connected to  a c lo ck d r iv e  m otor, which caused the  tem peratu re  to  be 

low ered by 20°C /hour. This o p e ra tio n  preven ted  s t r a in s  th a t  might oc­

cur in  a more v io le n t  coo lin g  p rocedu re . A fte r  removing th e  c r y s ta l  

from th e  grow er, i t  was p laced  in  a d e s s ic a to r  u n t i l  needed fo r an ex­

p e rim en t.
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