VAPORIZATION INTERFACE PROPAGATION

THROUGH A ONE-DIMENSIONAL

POROUS SLAB

By

LAWRENCE BARRY SAMARTIN
Bachelor of Arts
Newark State College
Union, New Jersey
1963

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

May, 1973

$$
\begin{aligned}
& \text { Theoin } \\
& 197{ }^{3} \\
& \text { s18. } \\
& \text { cop. }
\end{aligned}
$$

OKLAHOMA
 State university library

JUN 11973

VAPORIZATION INTERFACE PROPAGATION

THROUGH A ONE -DIMENSIONAL

POROUS SLAB

Thesis Approved:

ACKNOWLEDGMENTS

I would like to express my appreciation for the guidance and assistance given me by my adviser, Dr. William Brooks. I would also like to thank Dr. William Tiederman and Dr. Ronald Panton for their interest and encouragement; Mrs. Lynn Danvers for her patience, advice and excellent typing; and my wife Lucille for her understanding, encouragement and financial assistance. The research for this study was supported by the Air Force Armament Laboratory for which I am extremely grateful.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
The Complete Problem 2
Division Into Cases of Study 2
Pyrolysis and Ignition of a Porous Solid 3
The Change of Phase Phenomena 6
Scope of the Present Study 8
II. PROBLEM ANALYSIS 10
Physical Model 10
Energy Equation 13
Initial and Boundary Conditions 21
Non-Dimensionalization 24
III. MATHEMATICAL SOLUTION 27
Background 27
Application of the Integral Method 29
Initial Conditions 37
Computer Technique 38
Method of Numerical Integration 38
IV. COMPUTATIONAL RESULTS 42
Inert Solution 42
Constant and Parameter Values 42
Temperature Relations 44
Interface Velocity 47
Pyrolysis Retardation 50
V. SUMMARY AND CONGLUSIONS 54
Summary 54
Conclusions 55
BIBLIOGRAPHY 57
APPENDICES
A. EFFECTS OF VAPOR EFFLUX 60
APPENDICES Page
B. NON-DIMENSIONALIZATION OF EQUATIONS AND BOUNDARY CONDITIONS 64
C. INTEGRATION OF EQUATION (3.1) 70
D. INTEGRATION OF EQUATION (3.3) 72
E. DERIVATION OF EQUATIONS (3.10) AND (3.11) 74
F. DERIVATION OF EQUATION (3.13) 77
G. INTEGRATION OF ESQUTION (3.14) 79
H. EVALUATION OF PARAMETERS $\overline{\mathrm{A}}$ AND $\overline{\mathrm{K}}$ 81
I. COMPUTER PROGRAM LISTING 83

LIST OF TABLES

Table Page
I. Non-Dimensional Variables 25
II. Non-Dimensional Parameters 25
III. Computer Program Cycle 39
IV. .Dimensional Constants and Parameters 46
Figure Page

1. Pyrolysis Reactions in the Slab 5
2. Physical Model 11
3. Volume Element of the Saturated Slab 14
4. Vaporization Represented as a Chemical Reaction 18
5. Vaporization Represented as a Surface Phenomena 18
6. Comparison of Approximate Solution of Inert S1ab With Exact Solution 43
7. Selected Temperature Profiles With Respect to Time 45
8. Temperature Profile of Slab at Selected Time Intervals 48
9. Interface Velocity With Respect to Distance 49
10. Effect of Heat of Reaction: Temperature History of Front and Back Surfaces - Constant Heat Flux, One Exothermic Reaction 51
```
A
    area
A time dependent, Fourier cosine series coefficient i of the
    temperature approximation
ai rate constant for reaction i
C mean specific heat
C
c constant
E i activation energy for reaction i
G heat flux parameter considered unity in this study (see
    Appendix I)
gc gravitational dimension constant
h enthalpy
hfg enthalpy of vaporization
K thermal conductivity
L slab thickness, between heated and insulated surfaces
\ell vaporization interface distance from insulated surface
N one less than the number of coefficients used in the temperature
    approximation
    pressure
Q weighting function in x
q heat flux
```

R universal gas constant
T temperature
t time
u internal energy
V volume
v velocity
$\hat{v} \quad$ specific volume
x slab distance from insulated surface
$y_{i} \quad$ integrated value of derivative x_{i}
Greek Letters
$\alpha \quad$ thermal diffusivity
$\mu \quad$ integrating factor
ρ density
$T_{\mathrm{xx}} \quad$ viscous stress on the plane normal to the x axis in the x
direction

Subscripts

A actua1
b back (insulated) surface
D dry region
i \quad index $i=0,1,2, \ldots, N$
$\ell \quad$ 1iquid
$\mathrm{m} \quad$ index $\mathrm{m}=0,1,2, \ldots, \mathrm{~N}$
$\mathrm{n} \quad$ index $\mathrm{n}=0,1,2, \ldots, \mathrm{~N}$

- front (heated) surface

R reference
s solid
v
vapor
W wet region

+ wet side of the vaporization interface
Note: A superscript bar is used to denote non-dimensional representa-tion of the symbols as defined in Table I.

CHAPTER I

INTRODUCTION

For thousands of years man has known that wet logs do not burn as well as dry ones. He has also learned that liquids can be used effectively to douse certain unwanted fires. Man has thus studied the burning process for two opposing reasons. On one hand he has sought to improve this process as a tool for constructive uses and on the other hand he has sought to find ways to disrupt this process to protect himself from uncontrolled fires.

Since porous substances (such as wood, paper, fiber board, etc.) contain varying amounts of liquid when exposed to the natural environment, the burning of these materials is affected by the presence of this liquid. Yet, this extra-cellulosic liquid has been ignored in analytic studies of the thermal decomposition of porous materials. Considered as a fire retardant, the vaporization of a liquid possessing a high boiling point, a high latent heat of vaporization, and a relatively low thermal conductivity will reduce the overall temperature of the material in which it was saturated. Thereby the thermal decomposition will be retarded and the time to ignition of the substance will be increased.

It is advantageous, then, to study the effects caused by applying a heat flux to various substances initially saturated with some particular liquid. The calculation of the time required for the system to reach the temperature of vaporization of the liquid, the rate at which the
liquid-vapor interface propagates through the system, the temperature throughout the system, and time to ignition of the substance would aid considerably in the study of the burning process and fire retardation.

The Complete Problem

The time dependent temperature distribution within a saturated porous material (i.e. wood saturated with water) exposed to a heat flux may be calculated somewhat easily provided that the temperature distribution is not sufficiently high to cause vaporization of the liquid present or pyrolysis (thermal decomposition) of the material. If this condition on the temperature is not satisfied the problem of determining the temperature distribution becomes appreciably complicated and must include the endothermic process of vaporization and the endothermic or exothermic reactions of pyrolysis. A complete examination of the heating of a saturated porous material therefore would include determining the temperature distribution within the saturated material, the position and nature of the liquid-vapor interface as vaporization of the liquid progresses, the temperature distribution within the porous material after vaporization of the liquid initially present, and the pyrolysis and subsequent ignition of the material.

Division Into Cases of Study

Since wood is still one of the widest used porous materials and the thermal decomposition of wood closely follows that of cellulose, a reasonable choice of constitutents for this problem is cellulose and water. The thermal decomposition of cellulose has been shown to be minimal below $300^{\circ} \mathrm{C}(2,21)$. At standard pressure the vaporization of
water occurs at $100^{\circ} \mathrm{C}$. Therefore, with the proper choice of material and liquid, decomposition of the porous material c an be neglected below the temperature of vaporization of the liquid. The complete examination of the heating of a saturated porous material can then be divided into two cases, or areas, of investigation. The first case is the study of the temperature distribution within the porous material from the initial application of the heat flux up to and including the vaporization of the liquid and the propagation of the liquid-vapor interface through the material. The second case is comprised of the pyrolysis and ignition of the dried porous material remaining after vaporization of the liquid. The following sections briefly describe previous investigations of each case.

Pyrolysis and Ignition of a Porous Solid

The pyrolysis of wood has been studied both analytically and experimentally by Bamford, Crank and Malan (3). An infinite slab of wood was considered, symmetrically heated by a flame on each face. One exothermic reaction was included in the one-dimensional energy equation of the form

$$
-q \frac{\partial \omega(x, t)}{\partial t}
$$

where q is the heat liberated at constant pressure per gram of volatile products evolved, $\omega(x, t)$ is the weight of these products per cubic centimeter of wood. The rate of change of density (ω) with respect to time was represented by the Arrhenius expression

$$
\frac{\partial \omega(x, t)}{\partial t}=k \omega \exp (-E / R T)
$$

in which k is a frequency of molecular collision constant and E is the
activation energy of the reaction (assumed constant) (22). Although samples used in the experimental study contained moisture up to 11%, no additional endothermic reaction was included in the analytic study to represent the vaporization of extra-cellulosic moisture. The heat flux applied to the $s l a b$ was considered a function of the surface temperature given by Fourier's Heat Conduction Law.

The analysis of a dry porous solid undergoing pyrolysis was substantially extended by Rittmann (21). Three chemical reactions were considered, two occurring simultaneously (competitive in nature) and two occurring consecutively (Figure 1). In the case of cellulose the first reaction is endothermic causing the pure cellulose to lose water and form a dehydrocellulose. This reaction was assumed to occur after vaporization of any extra-cellolosic moisture. Rittmann examined separately a time dependent, radiative heat flux and a constant, convective heat flux. Also the effect of a density dependent thermal conductivity was investigated.

One criteria for ignition of porous material (cellulose), which has been experimentally substantiated, is a temperature of approximately $600^{\circ} \mathrm{C}$ on the exposed surface of the slab. Martin (14) observed spon-taneous-flaming ignition when the exposed surface of alpha-cellulose sheets reached a constant temperature in the range of $600^{\circ}-650^{\circ} \mathrm{C}$. Alvares (1) employed optical temperature measurement techniques and obtained consistent temperatures of approximately $600^{\circ} \mathrm{C}$ on the exposed surface of alpha-cellulose at the onset of ignition regardless of the magnitude of the radiant heat f1ux.

Weatherford and Sheppard (25) examined the overall effects of various ignition criteria and the surface temperature histories of

Figure 1, Pyrolysis Reactions in the Slab, Rittman (21)
finite-thickness slabs as opposed to the infinitely thick slab. The authors present a thermal feedback theory in which initial thermal energy received instantaneously at the surface of symmetry is visualized as moving back through the slab to the heated surface by a random selfdiffusion process. This criteria is correlated with sustained ignitions which are dependent on the thickness of the slab, Alvares and Martin (2), conducting pyrolysis experiments on cellulose in "artificial airs" composed of different combinations of nitrogen, helium and carbon dipxide, have ruled out the concept that spontaneous ignition is: triggered by the appearance of reactive species in the pyrolysis. Their hypothesis is one of thermal autoignition dependent on total pressure, oxidant concentration and inert diluent used.

The Change of Phase Phenomena

The change of phase phenomena is manifest in many physical processes involving heat transfer. The solidification of castings, freezing and thawing of soils and faod stuffs, burning of liquid fuels, fusing of various metals, and the ablation process are a few examples. Literature pertaining to the analytic study of vaporization with consideration given to the location of the liquid-vapor interface is not readily available. Much work, however, has been done on the freezing and melting problem involving the location of the solid-1iquid interface.

Muehlbauer and Sunderland (15) offer a comprehensive survey of publications dealing with the melting and freezing of infinite and semi-infinite slabs from Stephen's initial discussion of the problem
up to Moon and Keeler who use quantum mechanics to explain the electronics and phonon heat conduction between regions in contact.

Murray and Landis (16) review various methods of solution for the melting or freezing problem and propose two schemes for solution by finite difference approximations. One scheme is to divide the solid region into r equally sized space increments of

$$
\Delta x_{s}=\frac{\varepsilon}{r}
$$

(where ε is the position of the interface) which increases as the freezing front progresses and a liquid region divided into $N-r$ equally spaced intervals

$$
\Delta x_{L}=\frac{E-\epsilon}{N-r}
$$

(E being the length of the slab) which shrink with time. The second scheme is to have fixed "lump" sizes where the interface is in the q th lump at some intermediate time. Two temperatures are calculated by interpolation from temperatures in the solid and liquid regions, respectively, using the fusion temperature and the fusion front location. The authors state that the variable space network is preferable for evaluation of the fusion front travel while the fixed space network is more convenient for temperature representation.

Both of the above methods produce two singularities within the finite difference equations when $\varepsilon=0$ and $E=\varepsilon$. Therefore the problem must be started with an assumed initial value of ε and an assumed temperature distribution in the solid region. This procedure can lead to instability of the solution caused by very small numerical values or by a step input condition as a result of improper choice of initial temperatures. Lazaridis (12) presents a method to extend the finite

Abstract

difference technique to multidimensional configurations. Longwe11 (13) developed a unique extention to the Schmidt graphical method. In solving the freezing problem the time for the interface to move a distance Δx is calculated by moving the interface a distance Δx, and then performing Schmidt constructions in each phase. The Newmann problem is solved by this method and compared to the exact solution with good agreement.

Goodman and Shea (10) assumed the applied heat flux at one surface of a semi-infinite slab was not immediately felt throughout the slab. A time dependent region extending from the surface into the slab was defined as the thermal-layer thickness. The heat conduction equation was then reduced by integrating over this defined region. This method of integral solution will only satisfy the original heat conduction equation on the average and is dependent on the time required for the thermal-layer to develop.

Scope of the Present Study

The object of this study is to develop an analytic model of the vaporization interface propagation and the temperature distribution within a semi-infinite, porous slab prior to pyrolysis. A constant, radiative heat flux is applied to the slab which is initially saturated with a liquid.

The semi-infinite $s l a b$ is divided into two regions by the vaporization interface. Three energy balance equations are developed by application of the first law of thermodynamics to a differential volume in each region and at the interface then taking the limit as the thickness approaches zero. The integral method of reducing partial
differential equations is employed enabling the combination of the three energy equations into one.

By choosing $\cos n \pi \bar{x}$ for the weighting function and the Fourier cosine series to approximate the temperature, a system of ordinary first order differential equations is developed. This system of equations yields valid temperatures for any location within the slab. Hamming's modified predictor-corrector method of numerical integration is then used to solve this system of equations for the temperature coefficients and the interface distance.

As explained in Chapter II, the kinetic and potential energies of the system are assumed negligible. The densities and thermodynamic properties are assumed to be constant with the density and thermodynamic properties for the two component region calculated on a percent unit volume basis.

The analysis is developed for an idealized liquid and solid. The assumption is made that the thermodynamic properties of the liquid and solid are equal in each region as discussed in Chapter II. Complexities of solution and enhancements which might be incorporated in future investigations are mentioned. The resulting temperature profiles and the interface velocity are physically realistic. The coupling of this study with the analysis of chemical reactions can then be employed to solve the complete pyrolysis problem.

CHAPTER II

PROBLEM ANALYSIS

Physical Model

To model the heating of a saturated porous material without simplification is an extremely difficult task. The following factors might be considered in the analysis:

1. Environment of the model
2. Nature of the applied heat flux
3. Size and shape of the material
4. Variations in the thermodynamic properties
5. Representation of the pyrolysis reactions
6. Criteria to determine ignition
7. Representation of the vaporization process.

The madel presented here is assumed to be of a semi-infinite, homogeneous (with respect to density and thermodynamic properties), porous slab of thickness L, initially saturated with a homogeneous liquid in thermodynamic equilibrium at a reference temperature (T_{R}). The front surface ($\mathrm{x}=\mathrm{L}$) is exposed to a constant, radiative heat flux (q_{0}) with the back surface $(x=0)$ insulated against heat transfer (Figure 2). This is similar to one-half a slab of thickness 2 L symmetrically heated. Heat is transferred into the saturated $s l a b$ from the surface by conduction. None of the radiant energy striking the slab is assumed to penetrate below the surface.

Figure 2. Physical Model

No ignition or chemical reaction of the porous slab is considered. Vaporization of the liquid is considered when the front surface has reached the temperature of vaporization (T_{v}) of the liquid. At this point in time, vaporization of the liquid is assumed to commence. Heat transfer from and the thermal capacitance of the vapor thus produced is neglected as it flows out through the pores of the slab. ${ }^{1}$

As the heat flux is continually applied the time dependent liquidvapor interface proceeds into the slab in the -x direction, thereby dividing the slab into regions; a wetted region preceeding the interface and a dry region behind. The wetted region consequently shrinks with increasing time as the dry region expands. As stated previously the wetted region is considered non-reactant since its temperature will remain well below that which is necessary to cause significant chemical reaction provided the proper choice of solid and liquid is made.

The pyrolysis of the dry region (second case investigation) can be modeled after the extensive work of Rittmann (21). If the overall effects of pyrolysis leading to the ignition of the solid is of main interest a single endothermic or exothermic reaction will suffice in representing a lumped form of the pyrolysis as done by Bamford, Crank, and Malan (3).

Experimental and analytic research indicates that the ignition of the porous solid can be approximated as the point in time at which the front surface of the semi-infinite slab exceeds $600^{\circ} \mathrm{C}$. Thus the effects, caused by the initial presence of a liquid, on the ignition

[^0]time of a porous solid can be directly related to the surface temperature. This investigation is left to future studies.

Energy Equation

The energy equation for a semi-infinite saturated slab is developed by writing an energy balance over a volume element $\Delta x \Delta y \Delta z$ in the x direction then taking the limit as these dimensions approach zero. Considering only the fluid, the following equation evolves from Figure 3.

$$
\frac{\partial}{\partial t} \rho_{\ell}\left[u_{\ell}+\frac{\frac{z}{2}}{v_{l}^{a}}+\frac{g_{g}}{g_{c}} z\right]=-\frac{\partial}{\partial x}\left(\rho_{\ell} v_{l} u_{l}\right)-\frac{\partial}{\partial x}\left(v_{\ell} \rho_{l} \frac{v_{l}}{2}\right)
$$

I
II
III

$$
-\frac{\partial}{\partial x} q_{l}+\frac{\partial}{\partial x}\left(\rho_{l} \frac{g}{g_{c}} v_{l} z\right)
$$

IV V

$$
\begin{equation*}
-\frac{\partial}{\partial x}\left(\rho_{\ell} v_{\ell}\right)-\frac{\partial}{\partial x}\left(T_{x x} v_{\ell}\right) \tag{2.1}
\end{equation*}
$$

VI
VII
where
Term $I=$ Rate of change of energy per unit volume.
Term II = Net rate of internal energy input per unit volume by convection.

Term III $=$ Net rate of kinetic energy input per unit volume by convection.

Term IV = Net rate of energy input per unit volume by conduction.
Term $V=$ Rate of work done on the fluid per unit volume by gravitational forces.

Figure 3. Volume Element of the Saturated Slab

Term VI $=$ Rate of work done on the fluid per unit volume by pressure forces.

Term VII $=$ Rate of work done on the fluid per unit volume by viscous forces.

The fluid flows in the x direction only, thus the potential energy is constant with a rate of change consequently equal to zero. The viscous forces are assumed to be negligible with the fluid velocity considered small. By combining pressure work, or flow work, with the internal energy term the differential equation of energy for the fluid is

$$
\begin{align*}
\frac{\partial}{\partial t} \rho_{l}\left[u_{l}+\frac{\frac{1}{2} v_{l}^{a}}{}\right]= & -\frac{\partial}{\partial x} \rho_{\ell} v_{l}\left[u_{l}+\frac{1}{\rho_{l}} p_{l}\right]-\frac{\partial}{\partial x} \rho_{\ell} v_{l} \frac{v_{l}^{a}}{2} \\
& -\frac{\partial}{\partial x} q_{l} \tag{2.2}
\end{align*}
$$

The solid being fixed in space gives rise to the following energy equation.

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{s} u_{s}=-\frac{\partial}{\partial x} q_{s} \tag{2.3}
\end{equation*}
$$

Since again gravitational forces are constant and the solid is stationary.

Term $I=$ Rate of change of the internal energy of the solid per unit volume.

Term II = Net rate of energy input per unit volume by conduction. Combining the fluid and solid the composite energy equation is

$$
\frac{\partial}{\partial t} \rho_{T} u_{T}+\frac{\partial}{\partial t} \rho_{\ell} \frac{z}{2} v_{l}^{a}=-\frac{\partial}{\partial x} q_{T}-\frac{\partial}{\partial x} \rho_{\ell} v_{\ell}\left[u_{\ell}+\frac{1}{\rho_{\ell}} p_{\ell}\right]
$$

$$
\begin{equation*}
-\frac{\partial}{\partial \mathrm{x}} \rho_{\ell} \mathrm{v}_{\ell} \frac{\mathrm{v}_{\ell}^{2}}{2} \tag{2.4}
\end{equation*}
$$

Letting the internal energy be a function of temperature only

$$
u=u(T)
$$

Then

$$
d u=\left(\frac{\partial u}{\partial T}\right) d T=C d T
$$

Differentiation of term I yields

$$
\begin{align*}
& \rho_{T} c_{T} \frac{\partial T}{\partial t}+u_{T} \frac{\partial \rho_{T}}{\partial t}+\frac{\partial}{\partial t} \rho_{\ell} \frac{\frac{1}{\ell}}{} v_{l}^{2}=-\frac{\partial}{\partial x} q_{T}-\frac{\partial}{\partial x} \rho_{\ell} v_{l}\left[u_{l}+\frac{1}{\rho_{l}} P_{\ell}\right] \\
& \text { I } \\
& \text { II } \\
& \text { III } \\
& \text { IV } \\
& \text { V } \\
& -\frac{\partial}{\partial x} \rho_{\ell} v_{l} \frac{v_{l}^{2}}{2} \tag{2.5}
\end{align*}
$$

VI
Term II in equation (2.5) the absorption or generation of thermal energy, is frequently represented by one or several chemical reactions of the form;

$$
q_{i} \frac{\partial \rho_{i}}{\partial t}=q_{i} \rho_{i} a_{i} \exp \frac{-E i_{1}}{R T}
$$

where q_{i} is the latent heat liberated or absorbed, a_{i} is a maximum rate constant, E_{i} is the energy of activation required, and R is the universal gas constant. Many authors have shown this expression to closely approximate chemical reactions within the same order of magnitude as the energy change and conduction terms (I and III) of the energy equation (2.5).

If such a function is used to approximate the vaporization process the vaporization is then distributed throughout the slab. (i.e. for any given temperature, some vaporization is attained). A plot of

$$
q_{v} \frac{\partial_{\ell}}{\partial t}
$$

versus temperature $\left(T_{v}\right)$ shows that the vaporization is distributed mainly between $T_{v}-\Delta T$ and $T_{v}+\Delta T$ (Figure 4). ${ }^{3}$

When vaporization is considered a surface occurrence, the density of the liquid becomes zero at some infinitely small distance Δx from the surface. Vaporization of a liquid also occurs at a constant temperature thus the vaporization process appears as plotted in Figure 5. To accomplish this the reaction rate of the function must be very high.

$$
\lim _{\rho_{\ell} \rightarrow 0} \frac{\partial \rho_{\ell}}{\partial t} \rightarrow \infty
$$

This would require the time associated with the approximation of

$$
q_{v} \frac{\partial \rho_{l}}{\partial t}
$$

to be very fast as compared to the time associated with the other reactions and terms in the energy equation.

In lieu of the above, the semi-infinite $s l a b$ is modeled by dividing it into two regions separated by the liquid-vapor interface (Figure 2). The energy equation (2.5) is thus the summation of three energy balances, one applying to each region and one at the interface. The thexmodynamic properties of each region considered constant within the range of temperatures to be encountered yields the following energy equations: For the wetted region ($0 \leq x<\ell$) the fluid is considered stationary with no generation or absorption of thermal energy. Therefore, energy equation (2.5) reduces to

$$
P_{W} C_{W} \frac{\partial T}{\partial t}=-\frac{\partial}{\partial x} q_{W}
$$

[^1]

TEMPERATURE
Figure 4. Vaporization Represented as a Chemical Reaction

TEMPERATURE
Figure 5. Vaporization Represented as a Surface Phenomena

Applying Fourier's Heat Conduction Law with the temperature radient in the negative x direction yields

$$
\begin{equation*}
\rho_{W} C_{W} \frac{\partial T}{\partial t}=K_{W} \frac{\partial^{2} T}{\partial x^{2}} \tag{2.6}
\end{equation*}
$$

The internal energy, being an extensive thermodynamic property, is additive for a composite system.

$$
u_{w}=u_{s}+u_{\ell}
$$

differentiating

$$
C_{W} d T=C_{s} d T+C_{\ell} d T
$$

or

$$
\begin{aligned}
& \rho_{W} V_{W} C_{W}=\rho_{s} V_{s} C_{s}+\rho_{\ell} V_{l} C_{\ell} \\
& \rho_{W} C_{W}=\rho_{s} \frac{V_{C \cdot}}{V_{W}} C_{s}+\rho_{\ell} \frac{V_{\ell}}{V_{W}} c_{\ell}
\end{aligned}
$$

For the dry region $(\ell<x \leq L)$ including the generation or absorption of thermal energy from equation (2.5)

$$
\begin{align*}
& \rho_{D} C_{D} \frac{\partial T}{\partial t}+u_{D} \frac{\partial \rho_{D}}{\partial t}+\frac{\partial}{\partial t} \rho_{v} \frac{\frac{1}{2}}{} v_{v}^{2}= K_{D} \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial}{\partial x} \rho_{v} v \\
& I \quad \text { II }\left[u_{v}+\frac{1}{\rho_{v}} P_{v}\right] \\
&+\frac{\partial}{\partial x} \rho_{v} v_{v} \frac{v_{v}^{2}}{2}
\end{align*}
$$

VI
Terms III and VI are kinetic energy terms, If the velocity of the vapor escaping is assumed small in magnitude these kinetic energy terms can be neglected. Term V can be rearranged as follows; since

$$
\begin{aligned}
& \frac{1}{\rho_{v}}=v_{v} \quad \quad \text { (specific volume) } \\
& \frac{\partial}{\partial x} \rho_{v} v{ }_{v}\left[u_{v}+\frac{1}{\rho_{v}} P_{v}\right]=\frac{\partial}{\partial x} \rho_{v} v_{v}\left[u_{v}+P_{v} \hat{v}_{v}\right]
\end{aligned}
$$

from the definition of enthalpy

$$
h=u+P \hat{v}
$$

and

$$
\frac{\partial}{\partial x} \rho_{v} v_{v}\left[u_{v}+P_{v} \hat{v} v\right]=\frac{\partial}{\partial x} \rho_{v} v_{v}\left(h_{v}\right)
$$

This term is then the thermal energy convected by the vapor as it flows through the dry region. The magnitude of which is discussed in Appendix A. This convection term is assumed of minimum consequence in this study. The heat capacity of the vapor is also assumed to be negligible in the final energy equation of the dry region. Thus the heat capacity of the dry region is assumed equal to that of the solid alone. Therefore, equation (2.7) is reduced to

$$
\begin{equation*}
\rho_{D} C_{D} \frac{\partial T}{\partial t}+u_{D} \frac{\partial \rho_{D}}{\partial t}=K_{D} \frac{\partial^{2} T}{\partial x^{2}} \tag{2.8}
\end{equation*}
$$

At the liquid-vapor interface ($x=\ell$) the volume element (Figure 3) is considered to move in the negative x direction with a velocity $d \ell / d t$. The mass flow of fluid entering this moving volume equals the mass flow of vapor leaving, thus satisfying mass conservation. The time rate of change of kinetic energy is assumed zero. Within this elemental volume the temperature is constant and the densities of the liquid and vapor are also assumed constant. Thus equation (2.5) reduces to

$$
\frac{\partial}{\partial x} \rho_{l} \frac{d \ell}{d t}\left[u_{l}+\hat{v}_{l} p_{l}\right]=\frac{\partial}{\partial x} q
$$

Integrating with respect to x yields

$$
\left.\rho_{\ell^{\prime}} h_{f g} \frac{d \ell}{d t}\right|_{\ell^{+}} ^{\ell^{-}}=\left.q\right|_{\ell^{+}} ^{\ell^{-}}
$$

$$
\left.\rho_{\ell^{h}} \mathrm{fg} \frac{\mathrm{~d} \ell}{\mathrm{dt}}\right|_{\ell^{+}} ^{\ell^{-}}=\left.K_{D} \frac{\partial T}{\partial x}\right|_{\ell^{-}}-\left.K_{\mathrm{W}} \frac{\partial T}{\partial x}\right|_{\ell^{+}}
$$

with the limit as the length Δl approaches zero

$$
\begin{gathered}
\rho_{\ell} h_{f g} \frac{d \ell}{d t}=\left.K_{D} \frac{\partial T}{\partial x}\right|_{\ell^{-}}-\left.K_{W} \frac{\partial T}{\partial x}\right|_{\ell^{+}} \\
I
\end{gathered}
$$

Term $I \quad=$ Rate of change of the internal energy of the 1iquid per unit volume plus the rate of work done on the fluid per unit volume by pressure forces.

Term II = Energy leaving the interface by conduction per unit volume.

Term III $=$ Energy entering the Interface by conduction per unit volume.

Initial and Boundary Conditions

Initially the saturated slab is at a constant temperature (T_{R}) throughout with an insulated boundary (back surface) at $x=0$ and an exposed boundary (front surface) at $x=L$. The initial conditions at $t=0$ are

$$
\begin{align*}
& T(x, 0)=T_{R} \tag{2.10}\\
& \rho_{D} C_{D}=\rho_{B} C_{s} \tag{2.11}\\
& \rho_{W} C_{W}=\rho_{B} \frac{V_{g}}{V_{W}} c_{s}+\rho_{\ell} \frac{V_{\ell}}{V_{W}} c_{\ell} \tag{2.12}\\
& \rho_{f}(x, 0)=0 \tag{2.13}
\end{align*}
$$

where $\rho_{i}(x, t)$ is the density of the substance remaining or the products produced after some amount of chemical reaction (1) has taken place when pyrolysis is considered (second case of study).

With the introduction of a heat flux $\left(q_{0}\right)$ at the front surface the process is initiated. The entire slab is represented as the wetted region until the time $\left(t_{v}\right)$ at which the front surface reaches the temperature of vaporization of the liquid (T_{v}). The boundary conditions imposed until vaporization commences ($0<t<t_{v}$) are

$$
\begin{aligned}
& \text { at } x=0 \\
& q_{b}=K_{W} \frac{\partial T}{\partial x}=0^{3}
\end{aligned}
$$

Thus

$$
\begin{align*}
& \frac{\partial T}{\partial x}=0 \tag{2.14}\\
& \text { at } x=L
\end{align*}
$$

$$
q_{0}=K_{D}^{i} \frac{\partial T}{\partial x}=\text { constant }
$$

with the onset of vaporization $\left(t \geq t_{v}\right)$ the slab is divided into two regions with the following conditions:

Wetted region ($0 \leq x \leq \ell$) at $x=0$
$q_{b}=K_{W} \frac{\partial T}{\partial x}=0$
or as above

$$
\begin{align*}
& \frac{\partial T}{\partial x}=0 \\
& \text { at } x=\ell \\
& T(x, t)=T_{y}=\text { constant } \tag{2.16}
\end{align*}
$$

[^2]Dry region ($\ell \leq x \leq L$) at $x=\ell$
$T(x, t)=T_{v}=$ constant
at $x=L$
$q_{0}=k_{D} \frac{\partial T}{\partial x}=$ constant
The boundary conditions $(2,14)$ and (2.15) with respect to the front and back surfaces, therefore remain throughout the entire process with the addition of a third condition (2.16) when vaporization begins. The complete problem is thus defined by equations (2.6), (2.8) and (2.9) with initial conditions (2,10) through (2.13) and boundary conditions (2.14) through (2.16) for all time $t \geq 0$. The assumptions made thus far can be summarized as follows: A constant, radiative heat flux was applied to a semi-infinite slab. No ingition or chemical reaction of the slab was considered, The slab was divided into two regions by the vaporization interface. The changes in potential and kinetic energies were neglected in the application of the first law of thermodynamics to each region and at the vaporization interface, Work done on the fluid * by viscous forces was neglected. The internal energy was assumed to be a function of temporature only. The mase flow rate of the fluid entering the moving vaporization interface was assumed equal to the mass flow of the vapor leaving. Within the vaporization interface the temperature and the densities of the 1 iquid and vapor were considered constant. The dry region was considered as an infinite sink with respect to the vapor. Therefore the heat capacity of the vapor and the thermal energy convected away from the solid as a result of the flow of vapor through it were eliminated from the energy equation of the dry region.

Non-Dimensionalization

All variables in the aforementioned equations and conditions may be non-dimensionalized by some chosen characteristic dimension of the problem. The analysis is thus freed of dimensional dependency and allows the problem to be specified by relatively few pertinent parameters. The independent variable x and the dependent variable. $\ell(t)$ are non-dimensionalized by the characteristic length L (slab thickness). The independent variable t (time) is non-dimensionalized by the characteristic conduction time L^{2} / α to yield the Fourier number. The temperature, measured from some reference temperature T_{R}, is made dimensionless by considering the boundary conditions at the front and back surfaces. The remaining variables are rendered dimensionless after division by their initial values. Table I presents a list of the resulting non-dimensional variables.

When the non-dimensional variables are substituted into the energy equations (2.6), (2.8) and (2.9) and the boundary conditions (2.14) through (2.16) it is possible to form dimensionless groups which simplify computation." The new parameters thus formed are used to characterize the solution of the problem in place of the non-dimensional variables separately. These incurred parameters are given in Table II.

The resulting non-dimensional energy equations are;

$$
\text { wetted region }\left(0 \leq \bar{x}<\bar{l}\left(\bar{t}_{W}\right)\right)
$$

$$
\begin{equation*}
\frac{\partial \bar{T}\left(\bar{x}^{\prime}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} \tag{2.17}
\end{equation*}
$$

[^3]TABLE I

NON-DIMENSIONAL VARIABLES

Dependent	Independent
$\bar{T}\left(\bar{x}, \bar{t}_{W}\right)=\frac{T_{A}-T_{R}}{q_{0} L_{W} / \bar{K}_{W}}$	$\bar{x}=\frac{x}{L^{\prime}}$
$\bar{l}\left(\bar{t}_{W}\right)=\frac{\ell(t)}{L}$	
$\bar{\rho}_{W}\left(\bar{x}, \bar{t}_{W}\right)=\frac{\rho_{W}(x, t)}{\rho_{W}(x, 0)}$	$\bar{t}_{W}=\frac{\alpha_{W} t}{L^{2}}$
$\bar{\rho}_{D}\left(\bar{x}, \bar{t}_{W}\right)=\frac{\rho_{D}(x, t)}{\rho_{W}(x, 0)}$	

TABLE II

NON-DIMENSIONAL PARAMETERS

$$
\begin{aligned}
\bar{H} & =\frac{h_{f g^{\rho} l^{\alpha} W}^{q_{o}}}{L} \\
\bar{K} & =\frac{K_{D}}{K_{W}} \\
\bar{A} & =\frac{\alpha_{D}}{\alpha_{W}}=\frac{K_{D}}{K_{W}} \frac{\rho_{W} C_{W}}{\rho_{D} C_{D}}=\bar{K} \frac{\rho_{W} C_{W}}{\rho_{D} C_{D}}
\end{aligned}
$$

dry region ($\left.\left(\bar{t}_{W}\right)<\bar{x} \leq 1\right)$
$\frac{\partial \bar{T}\left(\bar{x}_{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}+\frac{\bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\bar{\rho}_{D}\left(\bar{x}, \bar{t}_{W}\right)} \frac{\partial \rho_{D}\left(\bar{x}^{\prime}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\bar{A} \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}}$
liquid-vapor interface $\left(\bar{x}=\bar{\ell}\left(\bar{t}_{W}\right)\right.$)
$\bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=\left.\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\ell^{-}}-\left.\overline{\mathrm{K}} \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\ell^{+}}$
The non-dimensional initial conditions become

$$
\begin{align*}
& \bar{T}(\bar{x}, 0)=0 \tag{2.20}\\
& \bar{C}_{D} \bar{\rho}_{D}(\bar{x}, 0)=\frac{C_{D}{ }^{\rho} D}{}(x, 0) \tag{2.21}\\
& C_{W} \rho_{W}(x, 0) \tag{2,22}\\
& \bar{C}_{W} \bar{\rho}_{W}(\bar{x}, 0)=1 \tag{2.23}\\
& \bar{\rho}_{i}(\bar{x}, 0)=\frac{\rho_{i}(x, 0)}{\rho_{W}(x, 0)}=0
\end{align*}
$$

with the non-dimensional boundary conditions

$$
\begin{equation*}
\left.\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \ddot{x}}\right|_{\bar{x}=0}=0 \tag{2.24}
\end{equation*}
$$

$\left.\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=1}=1$

$$
\begin{equation*}
\left.\bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{x=\bar{l}\left(\bar{t}_{W}\right)}=\bar{T}_{V} \tag{2.26}
\end{equation*}
$$

CHAPTER III

MATHEMATICAL SOLUTION

Background

Except in limiting cases non-linéar partial differential equations are not readily amenable to solution by analytic means. Complicated geometries, boundary conditions or laborious calculations lead to the use of the digital computer to calculate approximate solutions by numerical methods. Most methods of solution either approximate the derivatives and solve the resulting system of algebraic equations or reduce the non-linear partial differential equations to linear ordinary differential equations and integrate this resulting set of equations by some method of numerical quadrature.

The finite-difference approach is u'sed quite extensively in the solution of boundary value problems. The derivatives are approximated at given nodal points by various difference schemes, many of which are described by $\ddot{\ddot{O} z i s i k}$ (18). The resulting system of algebraic equations must be solved at each step (increment of the independent variable), which becomes cumbersome when many equations are involved requiring considerable amounts of core storage and computational time. The repeated solution of these equations over a period of time may lead to an accumulative round-off error within the order of magnitude of the coefficients involved. The accuracy of the finite-difference method is controlled by the number of nodal points, or the grid spacing chosen.

Therefore, as accuracy is increased, computer storage, execution time, and possibly round-off error are increased.

With the development of highly sophisticated computer routines for the simultaneous integration of ordinary differential equations, the integral method, in which partial differential equations are reduced to ordinary differential equations, has become quite popular. The method of integral relations described by Belotserkovskii and Chushkin (4) and the procedure used by Goodman and Shea (10) to obtain their heat balance integral are two examples of the integral method. Basically, the partial differential equation is multiplied by a weighting function of the spacial coordinate and then integrated with respect to this variable. The remaining functions within the integrals are then approximated by some interpolation formula. The integrals are then evaluated and the resulting system of ordinary differential equations can be integrated by any number of numerical methods. Care must be taken in the selection of the formulas used to approximate these integrals (e.g. polynomials, spline functions, trigonometric series, geometric series). If a polynomial is chosen, the ordinary differential equation which results will be dependent on the selection of nodes with respect to the spacial coordinate much like the finite-difference method. Also at each step, simultaneous algebraic equations must be solved where in some cases, (i.e. coefficients with very small values) the accumulation of round-off error or the singularity of a matrix will lead to unpredictable integration results.

Some numerical methods for integrating ordinary differential equations incorporate a weighting function (chosen by the user) which is a factor in determining the accuracy of each integration: step.

Therefore, if the weighting function utilized in reducing the partial differential equation weights certain areas of the problem for higher accuracy, care must be taken in applying integration methods to avoid additive or canceling weights.

The dependence on nodal selective and possible additive round-off errors can be eliminated by electing the weighting function and the approximation function to be orthogonal. The calculations required to solve the problem are also reduced since the integral of the product of two orthogonal functions, i.e.

$$
\int_{a}^{b} f_{m}(x) g_{n}(x)
$$

is zero except when m and n are equal. With the proper choice of functions, the heat conduction equation is transformed into an equation satisfying the original only approximately. This technique or the weak solution is employed in this study.

The extension of the Schmidt graphical method of solution suggested by Longwe11 (13), while of interest, is tedious and its accuracy depends on the exactness of construction. This method can be used, however, to show trends and gross effects within the magnitude of more detailed solutions if so desired.

Application of the Integral Method

The primary concern of this study is the first of the limiting cases discussed in Chapter I. Accordingly the following equations are considered:
equation (2.17)

$$
\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}}
$$

equation (2.18) minus the energy generation or absorption term

$$
\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\bar{A} \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}}
$$

and equation (2.19)

$$
\bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=\left.\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{l}^{-}}-\left.\overline{\mathrm{K}} \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{l}^{+}}
$$

\bar{A} and \bar{K} are given in Table II.
Solving for $\bar{t}_{W}>\bar{t}_{V}$ (after vaporization commences) equation (2.17) is multiplied by the weighting function $Q(\bar{x})$ and integrated with respect to \bar{x} over the interval $[0, \bar{l}]$

$$
\begin{equation*}
\int_{0}^{\bar{\ell}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}=\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x} \tag{3.1}
\end{equation*}
$$

Applying Leibnitz's forumla for differentiating an integral and integration by parts yields ${ }^{5}$

[^4]\[

$$
\begin{align*}
& \frac{d}{d \bar{t}_{W}} \int_{0}^{\bar{\ell}\left(\bar{t}_{W}\right)} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}-\left.Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{\ell}\left(\bar{t}_{W}\right)}{\ell \bar{t}_{W}}\right|_{x=\ell}= \\
& \left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{0} ^{\bar{\ell}\left(\bar{t}_{W}\right)}-\left.Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{0} ^{\bar{\ell}\left(\bar{t}_{W}\right)} \\
& \quad \bar{l}^{\prime}\left(\bar{t}_{W}\right) \\
& \quad \int_{0}^{Q^{\prime \prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}} \tag{3.2}
\end{align*}
$$
\]

Similarly multiplying equation (2.18) by $Q(\bar{x})$ and integrating with respect to $\overline{\mathrm{x}}$ over the interval $[\bar{\ell}, 1]$.

$$
\begin{equation*}
\int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} \frac{\partial \overline{\mathrm{~T}}\left(\bar{x}_{,}, \bar{E}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}=\bar{A} \int_{\bar{\ell}\left(\bar{E}_{W}\right)}^{1} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{E}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x} \tag{3,3}
\end{equation*}
$$

Applying Leibnitz's formula for differentiating an integral and antegrating by parts yields ${ }^{6}$

$$
\begin{align*}
& \frac{d}{d \bar{t}_{W}} \int_{0}^{1} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}+\left.Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{l}\left(\bar{t}_{W}\right)}{\partial \bar{t}_{W}}\right|_{\bar{x}=\bar{l}\left(\bar{t}_{W}\right)}= \\
& \left.\bar{A} Q(\bar{x}) \frac{d \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\lambda \bar{x}}\right|_{\ell\left(t_{W}\right)} ^{1}-\left.\bar{A} Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{l}\left(\bar{t}_{W}\right)} ^{1} \\
& \quad+\bar{A} \prod_{\bar{l}\left(\bar{t}_{W}\right)}^{1} \quad \bar{Q}^{\prime \prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x} \tag{3.4}
\end{align*}
$$

To obtain the integral over the entire slab $[0,1]$ equations (3.2) and (3.4) are added to produce when further simplified,

$$
\begin{align*}
& \frac{d}{d \bar{t}_{W}} \int_{0}^{1} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}=\left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=\bar{l}^{-}} \\
& -\left.\bar{A} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=\bar{\ell}^{+}}-\left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=0} \\
& \text { II } \\
& +\left.\bar{A} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\lambda \bar{x}}\right|_{\bar{x}=1}-\left.Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{x}=\bar{l}} \\
& \text { IV } \\
& \text { V } \\
& +\left.Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{X}=0}-\left.\bar{A} Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{X}=1} \\
& \text { VI } \\
& \text { VII } \\
& +\left.\underset{\operatorname{VIII}}{\overline{\mathrm{A}} \mathrm{Q}^{\prime}(\overline{\mathrm{x}})} \overline{\mathrm{T}}\left(\overline{\mathrm{E}} \overline{\mathrm{~T}}_{\mathrm{W}}\right)\right|_{\overline{\mathrm{x}}=\bar{l}} \\
& +\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} \mathrm{Q}^{\prime \prime}(\overline{\mathrm{x}}) \overline{\mathrm{T}}\left(\overline{\mathrm{x}}, \overline{\mathrm{t}}_{\mathrm{W}}\right) \mathrm{d} \overline{\mathrm{x}}+\int_{\overline{\bar{l}}\left(\overline{\mathrm{t}}_{\mathrm{W}}\right)}^{1} \mathrm{Q}^{\prime \prime}(\overline{\mathrm{x}}) \overline{\mathrm{T}}\left(\overline{\mathrm{x}}, \overline{\mathrm{E}}_{\mathrm{W}}\right) \mathrm{d} \mathrm{\bar{x}} \tag{3.5}
\end{align*}
$$

Term I is the heat flux exiting the interface in the -x direction and Term II is the heat flux entering the interface in the -x direction. In this initial study for simplification \bar{A} and \bar{K} are chosen to be unity and equation (2.19) can be substituted for Terms I and II. Terms V and VIII will then add out and the resulting equation is

$$
\begin{aligned}
& \frac{d}{d \bar{t}_{W}} \int_{0}^{I} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}=Q(\bar{x}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \\
& \quad-\left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=0}+\left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{x}=1} \\
& \quad+\left.Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{x}=0}-\left.Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{x}=1} \\
& \quad I V \\
& \quad+\int_{0}^{1} Q^{\prime \prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}
\end{aligned}
$$

Substituting boundary conditions (2.24) and (2.25) into Terms II and III respectively, and rearranging

$$
\begin{align*}
& \frac{d}{d \bar{t}_{W}} \int_{Q}^{1} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}=Q(\bar{x}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \\
& \quad-Q(\bar{x})(0)+Q(\bar{x})(1)+Q^{\prime}(\bar{x}) \bar{T}\left(0, \bar{t}_{W}\right)-Q^{\prime}(\bar{x}) \bar{T}\left(1, \bar{t}_{W}\right) \\
& \quad+\int_{0}^{1} Q^{\prime \prime}(\tilde{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x} \tag{3,7}
\end{align*}
$$

The functions chosen for the weighting function $(Q(\bar{x})$) and the temperature approximation function ($\bar{T}\left(\bar{x}, \bar{t}_{W}\right)$) must be continuous, complete and have at least continuous second derivatives on the interval of interest ($0 \leq \overline{\mathrm{x}} \leq 1$). Equation (3.7) is void of all derivatives of temperature with respect to \bar{x}. The discontinuity of this derivative of temperature at the interface was removed by substitution of equation (2.19). Thus the weighting and approximation functions are not required to satisfy the derivative of temperature with respect to \bar{x}. The temperature
throughout the slab and at the boundaries is then the primary requirement which these functions must satisfy. The cosine function (i.e, $\cos n \pi \bar{x}$) is chosen for two reasons. First, $\cos n \pi \bar{x}$ exists within the region $0<\bar{x}<1$ and at the boundaries of the semi-infinite slab ($\overline{\mathrm{x}}=0,1$), therefore, the temperature requirement is satisfied. Secondly, the cosine function $(\cos n \pi \bar{x})$ is orthogonal with respect to itself which greatly reduces computations. The derivative of $\cos n \pi \bar{x}$ matches the boundary condition at the back wall (2.24) but does not match the boundary condition at the surface (2.25). Again this is of no consequence since the boundary conditions (2.24) and (2.25) along with equation (2.19) are substituted into the energy equation (3.6) thus eliminating all derivatives of temperature with respect to \bar{x}.

Choosing then the weighting function $Q(\bar{x})$ to be

$$
\begin{equation*}
Q(\bar{x})=\cos m \pi \bar{x} \quad \mathfrak{m}=0,1,2, \ldots, N \tag{3.8}
\end{equation*}
$$

and approximating the temperature by

$$
\begin{equation*}
\bar{T}\left(\bar{x}, \bar{t}_{W}\right)=\sum_{n=\theta}^{N} A_{n}\left(\bar{t}_{W}\right) \cos n \pi \bar{x} \quad n=0,1,2, \ldots, N \tag{3.9}
\end{equation*}
$$

equation (3.7) produces N equations of the form ${ }^{7}$

$$
\begin{align*}
\frac{d A_{n}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}= & 2 \cos (n \pi \bar{l}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}+2 \cos (n \pi) \\
& -(n \pi)^{2} A_{n}\left(\bar{t}_{W}\right) \quad(n>0) \tag{3.10}
\end{align*}
$$

and for $\mathrm{n}=0$

$$
\begin{equation*}
\frac{d A_{0}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=\bar{H} \frac{d \bar{l}_{\left(\bar{t}_{W}\right)}}{d \bar{t}_{W}}+1 \tag{3.11}
\end{equation*}
$$

[^5]In deriving the ($N+1$) equations (3.10) and (3.11) above, equations (2.17) through (2.19) were used with boundary conditions (2.24) and (2.25). The remaining condition at the interface ($\bar{x}=\bar{l}\left(\bar{t}_{W}\right)$) is boundary condition (2,26).

$$
\bar{T}\left(\bar{l}, \bar{t}_{W}\right)=\bar{T}_{v}=\text { constant }
$$

The total derivative of $\overline{\mathrm{T}}_{\mathrm{v}}$ is zero. Then

$$
\left.\left.d \bar{T}_{v}=0=\frac{\partial \bar{T}_{v}}{\partial \bar{t}_{W}}\right)_{\bar{x}} d \bar{t}_{W}+\frac{\partial \bar{T}_{v}}{\partial \bar{x}^{\prime}}\right)_{\bar{t}_{W}} d \bar{x}^{x}
$$

By equation (3.9)

$$
\bar{T}_{v}=\sum_{n=0}^{N} A_{n}\left(\bar{t}_{W}\right) \cos (n \pi \bar{l})
$$

Therefore, the additional equation produced becomes

$$
\begin{align*}
0= & \sum_{j=0}^{N} \frac{d A_{j}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \cos (j \pi \bar{l}) \\
& -\frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \sum_{j=0}^{N}(j \pi) A_{j}\left(\bar{E}_{W}\right) \sin (j \pi \bar{l}) \quad j=0,1,2 \ldots, N \tag{3.12}
\end{align*}
$$

This yields ($\mathbb{N}+2$) equations with ($N+2$) unknowns. The problem is reduced then to the simultaneous solution of equations (3.10) through (3.12) to obtain values of

$$
\frac{d A_{j}}{d \bar{t}_{W}}
$$

$$
j=0,1,2, \ldots, N
$$

then integrating these values with respect to time by some numerical method resulting in the $N+1$ coefficients $A_{j}, j=0,1,2, \ldots, N$.

As a consequence of utilizing orthogonal functions the set of $\mathrm{N}+2$ simultaneous algebraic equations (3.10) through (3.12) may be solved
once for all time. Thereby the need to solve this set of equations simultaneously at each step in the problem solution is eliminated. Solving for the derivative of the interface location with respect to time yields ${ }^{8}$

$$
\begin{equation*}
\frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=-\frac{\left\{1+2 \sum_{j=1}^{N}[\cos (j \pi) \cos (j \pi \bar{l})]\right\}-\sum_{j=1}^{N}(j \pi)^{a} A_{j} \cos (j \pi \bar{l})}{H\left\{1+2 \sum_{j=1}^{N} \cos ^{2}(j \pi \bar{l})\right\}-\sum_{j=1}^{N}(j \pi) A_{j} \sin (j \pi \bar{l})} \tag{3.13}
\end{equation*}
$$

Substituting the solution of equation (3.13) into equations (3.10) and (3.11) at each step will yield the values of the coefficient derivatives

$$
\frac{d A_{j}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \quad j=0,1,2, \ldots, N
$$

to be integrated.
The solution of the problem before vaporization (i.e. $\bar{\ell}=1$) can be accomplished analytically.

$$
\begin{aligned}
& \text { For } 0<\bar{t}_{W}<\bar{t}_{v}, \bar{l}=1=\text { constant } \\
& \frac{d \bar{l}^{\prime}}{d \bar{t}_{W}}=0
\end{aligned}
$$

Equation (3.10) reduces to

$$
\begin{equation*}
\frac{d A_{n}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=2 \cos (n \pi)-(n \pi)^{2} A_{n}\left(\bar{t}_{W}\right) \tag{3.14}
\end{equation*}
$$

for $n>0$, with equation $(3,11)$ being

$$
\begin{equation*}
\frac{d A_{o}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=1 \tag{3.15}
\end{equation*}
$$

[^6]Integrating equations (3.14) and (3.15) results in ${ }^{9}$

$$
\begin{align*}
& A_{0}\left(\bar{t}_{W}\right)=\bar{t}_{W} \tag{3.16}\\
& A_{n}\left(\bar{t}_{W}\right)=\frac{2(-1)^{n}}{(n \pi)^{2}}\left[\exp \left\{-(n \pi)^{2} \bar{E}_{W}\right\}-1\right] \quad(n>0) \tag{3.17}
\end{align*}
$$

The problem is therefore solved algebraically for any increment of time between zero and the time vaporization commences at the front surface (i,e. $0<\bar{t}_{W}<\bar{t}_{V}$).

Initial Conditions

Of the non-dimensional initial conditions given in Chapter II, only condition (2.20) is pertinent to the vaporization study.

At $\bar{t}_{W}=0$, condition (2.20) states
$\bar{T}(\bar{x}, 0)=0$
Applying the temperature approximation (3.9) to condition (2.20) yields

$$
\bar{T}(\bar{x}, 0)=\sum_{n=0}^{N} A_{n}(0) \cos (n \pi \bar{x}) \quad n=0,1,2, \ldots, N
$$

$\cos (n \pi \bar{x})$ will be zero for $\bar{x}=\frac{1}{2}$ only. Therefore $A_{n}(0)$ must be zero. The initial temperature coefficients are then

$$
\begin{aligned}
& A_{0}=0 \\
& A_{1}=0 \\
& \cdot \\
& \dot{A_{N}}=0
\end{aligned}
$$

[^7]
Computer Technique

The computer program developed to solve the first case or vaporization problem described by equations (3.10) through (3.17) consists of four sections or subroutines. The main or executive section (MAIN) initiates all control parameters, non-dimensional parameters, and equation coefficients. This section solves the algebraic equations (3.16) and (3.17) for the heating of the saturated porous slab prior to vaporization (i.e. $0<\bar{t}_{W}<\bar{t}_{v}$) and Initiates the integration of equations (3.10), (3.11), and (3.13).

The output section (DEROUT) prints and/or punches any desired temperatures along with the vaporization position and velocity for various increments of time.

The derivative function subroutine (DERFUN) calculates the derivatives of the coefficients, using equations (3.10), (3.11), and (3.13) for each successive time step employing previous values of the coefficients obtained from the integration routine.

The integration routine (DHPCG) integrates the calculated values of the derivatives given by the derivative function and passes the new values of the coefficients to the output and derivative function routines. A complete listing of each program section is given in Appendix I. Table III presents the basic steps followed by the computer program.

Method of Numerical Integration

Numerical techniques for solving first order ordinary differential equations with given conditions $y_{i}\left(x_{0}\right)$ are usually based on the direct or indirect use of Taylor's expansion or on the emplayment of open or

COMPUTER PROGRAM CYCLE

I. Main Section

1. Read summation limit (N) , dimensional constants, output and integration routine control parameters.
2. Initialize numerical constants and non-dimensional parameters.
3. Calculate coefficients for the temperature approximation function by the analytic solution $\left(0<\bar{t}_{W}<\bar{t}_{v}\right)$. Call output routine.
4. Repeat step 3 until vaporization commences ($\bar{t}_{W}=\bar{t}_{v}$).
5. Initialize constants required for numerical integration.
6. Call integration routine (II).
II. Integration Routine
7. Apply one-step integration method.
8. Call derivative function and output routines.
9. Apply multistep integration method.
10. Call derivative function (III) and output (IV) routines.
11. Repeat steps 3 and 4 until the entire interval specified is integrated over or an unresolvable error is encountexed.
12. Return to main section (I).
III. Derivative Function Routine
13. Using coefficient values received from the integration routine (II) calculate the temperature coefficient derivatives for the next integration step.

TABLE III (Continued)

2. Return to the integration routine (II).
IV. ,Output Routine1. Determine if output is desired for this step.2. Calculate temperatures at specified locations throughoutslab.
3. Determine when vaporization begins.
4. Print or punch time, interface velocity, interface posi-tion and desired temperature profiles.
5. Return to calling routine.
closed integration formulas. Carnahan, Luther, and Wildes (7) group these techniques into two classes, one-step methods which calculate the value y_{i+1} given only y_{i} and the multistep methods requiring y_{i} plus several other values y_{i} 's outside the integral of integration.

One disadvantage of the multistep methods is that they are not self-starting and require a one-step method to calculate the initial values of the solution y_{i} (i.e., $y\left(x_{1}\right), y\left(x_{2}\right)$, etc.). Also with multistep methods it is cumbersome to change the integration step size once the calculation is initiated. The major advantage of multistep methods is the fact that less computation is required than comparable one-step methods while producing results of similar accuracy.

The predictor-corrector methods, where an open integration formula is utilized to predict the integration and a closed integration formula is employed to correct this estimate, inherit the disadvantages of the multistep methods. But a considerable advantage of this method is that solutions can be produced with comparable accuracy and stability of a fourth order one-step method using as few as two derivative evaluations at each step. Hamming's modified predictor-corrector method represents the best compromise between stability and accuracy and is the most popular multistep method (7).

The numerical integration method used in this study is an IBM application program (DHPCL) (24) which employs Hamming's modified predictor-corrector method with a fourth order Runge-Kutta method, suggested by Ralston (20), to start the process. This routine incorporates an error weighting function and allows the user the option of changing the integration step size during execution.

Inert Solution

By the nature of the problem presented in Chapters II and III, an algebraic solution is possible for the heating of the saturated porous slab from time zero till the time of vaporization at the front surface. To assess this analytic solution the condition of vaporization at the surface was relaxed and the problem became one of the heating of an inert slab. Carslaw and Jaeger (8) give the exact solution for an inert semi-infinite slab heated by a constant heat flux at the front surface with an adiabatic back surface.

Figure 6 presents a comparison of the computer generated approximate solution utilizing five coefficients with the exact solution. A good approximation at the front surface is obtained while the inert calculations match the exact solution precisely at the back surface. Increasingly the number of coefficients in the inert solution will cause the exact solution at the front surface to be more closely modeled.

Constant and Parameter Values

The dimensional constants $\frac{\text { in }}{}$ the series of computational runs discussed here, were chosen to match approximately those of wood and water. Since the examination of the entire problem will eventually encompass pyrolysis, the constants and parameters generally match those

Figure 6. Comparison of Approximate Solution of Inert Slab With Exact Solution
of Rittmann (21) for future study. Table 4 lists the pertinent constants and parameters used.

Temperature Relations

Abstract

Comparison of the temperatures obtained in this investigation with work previously done in the melting and freezing problem is difficult for two reasons. Firstly, the studies encountered consider the liquid or solid at a uniform temperature of solidification or melting before the process is initiated. Secondly, most previous studies use a step input of temperature to initiate the melting of solidification process. This study assumes the saturated $s l a b$ is at a reference temperature well below that of vaporization and consequently when the constant heat flux is applied the temperature is no longer uniform throughout the slab. When vaporization commences the temperature profiles and the velocity of the interface are quite different than presented in other studies. Also the term containing the temperature at the front surface was deleted from the energy equation (3.7) as a result of the choice of cosine weighting and approximation functions. Therefore the application of a step input temperature is not possible.

A time history of temperatures at selected points within the s lab is shown in Figure $7 .^{10}$ By comparison with Figure 6, the inert solution, it can be seen that when the front surface reaches vaporization $\left(\bar{t}_{W}=.05937\right)$ the temperature remains constant for some time. This is caused by the decrease in heat flux entering the remainder of the slab as a result of vaporization at and near the surface. The temperature

[^8]

Figure 7. Selected Temperature Profiles With Respect to Time

TABLE IV

DIMENSIONAL CONSTANTS AND

 PARAMETERS| L | 1.0 cm |
| :--- | :--- |
| $\mathrm{~T}_{\mathrm{R}}$ | $300^{\circ} \mathrm{K}$ |
| q_{O} | $0.081 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$ |
| h_{fg} | $539.05 \mathrm{cal} / \mathrm{gm}$ |
| T_{V} | $373.15^{\circ} \mathrm{K}$ |
| C_{W} | $.66 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{K}$ |
| K_{W} | $2.7 \times 10^{-4} \mathrm{cal-cm}^{2} / \mathrm{cm}^{2}-\mathrm{sec}^{2}-0 \mathrm{~K}$ |
| \bar{T}_{V} | .24383 |
| $\overline{\mathrm{H}}$ | .544495 |
| $\bar{\rho}_{\ell}$ | .20 |
| $\overline{\mathrm{~A}}$ | 1.0 |
| $\overline{\mathrm{~K}}$ | 1.0 |

gradient throughout the slab is decreased as a result of the onset of vaporization. As time increases the points in the dry region, far enough from the interface, are no longer affected by the vaporization and approach a conduction dominated linear increase in temperature. The temperature at the back wall increases constantly throughout the entire process and has virtually reached the temperature of vaporization when the interface is at a point approximately .4 from the back wall. The temperature profile through the slab at selected times is shown in Rigure 8. Here again it can be seen that the temperatures in the area preceding the vaporization interface (i.e. wetted region) increase very slowly, but the temperatures within the area aft of the interface (i.e. dry region) are unaffected. The temperature gradient on the wetted side of the interface decreases with time and eventually reaches zero at the back surface (boundary condition). This is physically realistic since the wetted region slowly reaches the temperature of vaporization as the interface moves into the slab. Therefore, the temperature gradient is significant with the onset of vaporization and then must decrease as the temperature increases in the region ahead of the interface.

Interface Velocity

Figure 9 contains discrete points plotted from computational runs of five and seven coefficients. The oscillations observed are attributed to the representation of an infinite series, i。e.

$$
\sum_{n=0}^{\infty} A_{n} \cos n \pi \bar{x}
$$

Figure 8. Temperature Profile of Slab at Selected Time Intervals

Figure 9. Interface Velocity With Respect to Distance
by a finite number of coefficients. Approximation of a mean value curve through these points shows the interface velocity starting at zero and rapidly increasing to a value in the neighborhood of .9. The velocity then increases slowly to a maximum somewhere in the vicinity of the center of the slab. From this point on the velocity drops off slowly through the remainder of the slab.

The interface velocity obtained appears to be physically realistic since at the onset of vaporization the surface and immediate area behind it are at the vaporization temperature. The rate of vaporization assumed starting at zero increases rapidy as the liquid in this area is vaporized. Once this initial area is vaporized a certain amount of flux must be used to heat the area immediately ahead of the interface to bring it to the temperature of vaporization. As the temperature in the wetted region increases the interface velocity increases slowly until a maximum is reached. At this point, the temperature gradient in the dry region is such that more and more energy is required in raising the temperature in this region. Thus the interface velocity decreases and continues decreasing throughout the remainder of the slab as the temperature gradient in the dry region increases.

The initial velocity as shown starts at definite rates of approximately . 32 and .45. This is a consequence of the size of the initial integration step and also of the number of coefficients used.

Pyrolysis Retardation

A1though the primary interest of this investigation is not pyrolysis, examination of Figure 10 reveals that, for a constant heat flux with one exothermic reaction considered, deviation from the inert

Figure 10. Effect of Heat of Reaction: Temperatere History of Front i: and Back Surfaces - Constant Heat Flux, One Exothermic Reaction, Case 0, Rittmann (21)
solution occurs at a time of approximately $\bar{t}_{W}=$.1. The temperatures at this point for the front and back surfaces are $\bar{T}=1.3$ and $\bar{T}=.9$, respectively. The seven coefficient computation utilized in Figures 7 and 8 obtained complete vaporization of the saturated liquid within a time $a \bar{t}_{W}=1.094$. The maximum temperature attained by the front surface being $\overline{\mathrm{T}}=.9312$, with the back surface restricted to $\overline{\mathrm{T}}=.2438$ (i.e. The temperature of vaporization \bar{T}_{V}). Within the same time frame, (i.e. $0 \leq \bar{t}_{W} \leq 1.0$), comparison of the aformentioned figures discloses the temperature of the front surface in the saturated problem to be just slightly greater than that of the back surface of the pyrolysis example. Also, the back surface of the saturated problem is seen to be at a temperature much lower than the corresponding temperature of the pyrolysis problem. Thus, as expected, the dissipation of heat energy by vaporization of the liquid causes the temperatures within the initially saturated porous solid to be much lower than the temperatures of the initially dry heated solid thereby delaying pyrolysis of the solid material.

The solution of the vaporization problem presented here assumes thermal properties which yield values of the Fourier number and nondimensional temperatures consistent with those used by Rittmann (21) in the calculation of various constant, radiative heat flux type pyrolysis problems. These values in no way attempt to model known substances. In Appendix H values of the non-dimensional parameters \bar{A} and \bar{K} are computed assuming water and fir are the substances used in a volumetric ratio of one to four. The values of \bar{A} and \bar{K} thus attained do not approach unity unless the ratio of liquid to solid is very small. Therefore, in future investigations the incorporation of these non-dimensional parameters
into the resultant energy equation must be resolved to extend this study to various combinations of known substances.

CHAPTER V

SUMMARY AND CONSLUSIONS

Summary

Abstract

An analytic study of the heating of a porous material initially saturated with a liquid was undertaken. Examination of the complexity of the problem led to a division into two areas of analysis, the vaporization of the liquid and the pyrolysis of the porous material. This study concentrated on the phenomena of vaporization.

The vaporization of the liquid from a saturated porous solid was modeled by a semi-infinite, homogeneous and isotropic slab initially saturated with a homogeneous and isotropic liquid. The slab was considered exposed to a constant, radiative heat flux at the front surface and insulated against heat conduction at the back surface. With the onset of vaporization the slab was divided into two regions by the vaporization interface. Applying the conservation of energy principle to each region and across the interface produced three energy equations.

Non-dimensionalization of each equation gave rise to the ratios of thermal diffusivity and thermal conductivity. Considering these parameters unity the integral technique of reducing a partial differential equation to a system of ordinary differential equations was employed. Multiplication of each energy equation by a weighting function in the space variable and then integrating with respect to this space variable

enabled the combination of the three energy equations into one equation representing the entire slab.

The weighting and temperature approximation functions used in applying the integral method (i.e. $\cos n \pi \bar{x}$ and the Fourier cosine series, respectively) were so chosen as to give valid temperatures throughout the slab. These functions are also orthogonal which reduced computations immensely. The fact that the chosen functions do not represent the slope of the temperature validly for all $\overline{\mathrm{x}}$ within the slab is not critical since the integrated equation contains no derivatives of temperature with respect to \bar{x} and leads to the so-called weak solution of the original energy equation. It should be noted here that the temperatures obtained by this method can not be differentiated to yield local heat flux values.

The resulting $N+1$ ordinary differential equations along with an additional equation obtained from the condition of constant temperature at the vaporization interface were integrated by a multistep numerical integration routine employing Hamming's modified predictor-corrector technique. Computer solutions employing three, five and seven coefficients in the temperature approximation were generated. While not modeling any particular substances, the temperature profiles and interface velocities obtained appear to be physically realistic. The vaporization process is shown to prevent the temperature of the solid from attaining values which would cause significant pyrolysis.

Conclusions

The following conclusions and observations evolved from this study:

1. The complex analysis of the heating of a saturated porous material
can be divided into two areas of investigation, the vaporization of the liquid initially present, which was the object of this study and the pyrolysis of the dry solid material remaining after vaporization.
2. The discontinuity of the derivative of temperature with respect to time and the spacial coordinate at the interface represents the main difficulty in solving this problem. A transformation of coordinates is possible but results in singularities at the front and back surfaces. Thus in order to initialize the vaporization process a finite distance into the slab must be approximated. The division of the slab into regions, with the application of the integral method to reduce and combine the resulting energy equations into one, thereby eliminating the discontinuity from the problem, results in a weak solution of the problem. This dpproach appears to be the most practical. 3. Two non-dimensional parameters, the ratios of thermal diffusivity and thermal conductivity, appear in the analysis of the problem. The incorporation of these parameters in the resultant energy equation must be resolved in future studies if known liquids and solids are to be considered in various degrees of combination.
3. The effects of the escaping vapor, neglected in this study, might be included in future studies depending on the magnitude and type of heat flux applied at the exposed surface.
4. The vaporization problem solved in this study, while pertaining to no known substances, appears physically valid. By resolving the thermal diffusivity and thermal conductivity parameters, this study can be combined with previous pyrolysis studies to yield solutions of the heating of a saturated slab from the initial application of a heat flux to the surface ignition of the solid substance.
5. Alvares, N. J. "Measurements of the Temperature of the Thermally Irradiated Surface of Alpha-Cellulose." USNRDL TR-735, March, 1964.
6. Alvares, N. J., and S. B. Martin. "Mechanism of Ignition of Thermally Irradiated Cellulose." Presented at the XIII International Symposium on Combustion, the Combustion Institute, August 23-29, 1970, Salt Lake City.
7. Bamford, C. H., J. Crank, and D. H. Malan. "The Combustion of Wood, Part I." Proc. of Camb. Phil. Soc., Vol. 42, 1946, p. 166.
8. Belotserkovskii, O. M. and P. I. Chushkin. "A Numerical Method of Integral Relations." (tr.) USSR Comp. Math. and Math. Phy., Vol. 5, 1963, p. 823.
9. Bird, Byron R., Warren E. Stewart, and Edwin N. Lightfoot. Transport Phenomena. John Wiley and Sons, 1960.
10. Bradley, H. H., Jr. "Theory of Ignition of a Reactive Solid by Constant Energy Flux." Combustion Science and Technology, Vo1. 2, 1970, pp. 11-20.
11. Carnahan, Brice, H. A. Luther, and James O. Wilkes. Applied Numerical Methods. John Wiley and Sons, 1969.
12. Carslaw, H. S. and J. C. Jenger. Conduction of Heat in Solids. Oxford Press, Second Edition, 1959.
13. Goodman, Theodore R. "Application of Integral Methods to Transient Nonlinear Heat Transfer." Advances in Heat Transfer, ed. Thomas F. Irvine, Jr. and James P. Hartnett, Vol. 1, p. 51, Academic Press, 1964.
14. Goodman, Theodore R., and John H. Shea. "The Melting of Finite Slabs." Trans. ASME, J. of Applied Mech., Vol. 27, 1960, . p. 16.
15. Heitz, W. L., and J. W. Westwater. "Extension of the Numerical Method for Melting and Freezing Problem." Int. J. Heat and Mass Transfer, Vol. 13, 1970, pp. 1371-1375.
16. Lazaridis, Anastas. "A Numerical Solution of the Multidimensional Solidification (or Me1ting) Problem." Int. J. Heat and Mass Transfer, Vol. 13, 1970, pp. 1459-1477.
17. Longwe11, P. A. "A Graphical Method for Solution of Freezing Problems." A. I. Ch. E. Jour., Vol. 4, No. 1, March 1958, p. 53.
18. Martin, Stanley. "Diffusion - Controlled Ignition of Cellulosic Materials by Intense Radiation Energy." Tenth Symposium (International) on Combustion, The Combustion Institute, 1966, p. 285.
19. Mueh1bauer, John C., and J. Edward Sunderland. "Hear Conduction With Freezing or Me1ting." Applied Mechanics Reviews, Vol. 18, No. 12, December 1965, p. 951.
20. Murray, William D., and Fred Landis. "Numerical and Machine Solutions of Transient Heat-Conduction Problems Involving Melting or Freezing, Part I - Method of Analysis and Sample Solutions." Trans. ASME, Vo1. 81, 1959, p. 106.
21. Myers, Glen E. Analytical Methods in Conduction Heat Transfer. McGraw-Hi11, 1971.
22. Özisik, Necati M. Boundary Value Problems of Heat Conduction. International Textbook Company, 1968.
23. Parker, Jerald D. James H. Boggs, and Edward F. Blick. Introduction to Fluid Mechanics and Heat Transfer. AddisonWes1ey, 1969.
24. Ralston, Anthony. "Numerical Integration Methods for the Solution of Ordinary Differential Equations." Mathematical Methods for Digital Computers, Volume I, ed. Anthony Ralston and Herbert S. Wilf, John Wiley and Sons, 1960.
25. Rittmann, Jerrold E. "A Computer Study of the Pyrolysis of Porous Solids." (Unpub. Ph. D. Thesis, Oklahoma State University, 1970).
26. Rose, J. Dynamic Physical Chemistry. John Wiley and Sons, 1961.
27. Stratta, J. John, and William L. Livingston, SFPE. "Ablative Fluids in the Fire Environment." Fire Technology, Vol. 5, No. 3, August 1969 , p. 181.
28. International Business Machines Corporation. System/360 Scientific Subroutine Package Version III Programmer's Manua1. Fifth Edition (August 1970) 。
29. Weatherfore, W. D., Jr. and D. M. Sheppard. "Basic Studies of the Mechanism of Ignition of Cellulosic Materials." Tenth Symposium (International) on Combustion, The Combustion Institute, 1967, p. 897.

APPENDIX A

EFFECTS OF VAPOR EFFLUX

The effects on the dry region caused by the escaping vapor involves consideration of flow through a porous media, free convection, and forced convection. Ignoring free convection the porosity of the solid and the velocity of the vapor must be known to correctly evaluate the hindrance or contribution of the vapor efflux to the heating of the slab. Since the porosity of the solid and the velocity of the vapor are not known, term V of equation (2.7) will be used. This term expresses the net rate of thermal energy convected per unit volume by the vapor as it escapes through the pores of the dry solid

$$
\begin{equation*}
\frac{\partial}{\partial x} \rho_{v} \dot{v}_{v}\left[u_{v}+\frac{1}{\rho_{v}} \rho_{v}\right]=\frac{\partial}{\partial x} \rho_{v} v_{v} h \tag{A.1}
\end{equation*}
$$

At the interface the mass-flow rate of vapor per unit area is equal to the mass flow rate of liquid per unit area. Thus assuming this mass flow rate is constant through the dry solid

$$
\begin{equation*}
\rho_{\mathbf{v}} v_{v}=\rho_{\ell} v_{\ell} \tag{A.2}
\end{equation*}
$$

Substituting (A.2) into (A.1) yields

$$
\begin{equation*}
\frac{\partial}{\partial x} \rho_{\ell} v_{\ell} h_{v} \tag{A,3}
\end{equation*}
$$

Considering the velocity of the liquid equal to the interface velocity
$(A, 3)$ is then

$$
\frac{\partial}{\partial x} \rho_{\ell} \frac{d \ell}{d t} h_{v}
$$

or, since the mass flow rate is assumed constant

$$
\begin{equation*}
\rho_{\ell} \frac{d \ell}{d t} \frac{\partial}{\partial x} h_{v} \tag{A.4}
\end{equation*}
$$

Enthalpy is a function of temperature alone, at constant pressure, thus

$$
\begin{equation*}
\rho_{\ell} \frac{d \ell}{d t} \frac{\partial}{\partial x} \int\left(C_{P_{v}} d t\right)=\rho_{\ell} \frac{d \ell}{d t} C_{P_{v}} \frac{d T}{d x} \tag{A.5}
\end{equation*}
$$

From the non-dimensionalization of variables

$$
\begin{aligned}
& \mathrm{x}=\overline{\mathrm{x}} \mathrm{~L} \\
& \ell=\bar{\ell} \mathrm{L} \\
& \frac{\mathrm{~d} \ell}{\mathrm{dt}}=\frac{\alpha_{\mathrm{W}}}{\mathrm{~L}} \frac{\mathrm{~d} \bar{\ell}}{\mathrm{~d}_{\mathrm{t}}} \\
& \frac{\mathrm{dT}}{\mathrm{dx}}=\frac{1}{\mathrm{~L}} \frac{\mathrm{q}_{\mathrm{o}}^{\mathrm{L}}}{\mathrm{~K}_{\mathrm{W}}}\left[\overline{\mathrm{~T}}_{\mathrm{o}}-\overline{\mathrm{T}}_{\mathrm{V}}\right]
\end{aligned}
$$

where \bar{T}_{o} is the non-dimensional temperature at the front surface. Substituting these values into (A.5) yields

$$
\begin{equation*}
\rho_{\ell} \frac{d \ell}{d t} C_{P_{v}} \frac{d T}{d x}=\rho_{\ell} C_{P_{V}} \frac{K_{W}}{C_{W}{ }^{\rho} W^{L}} \frac{d \bar{d}}{d \bar{t}_{W}} \frac{1}{L}\left[\bar{T}_{o}-\bar{T}_{v}\right] \frac{q_{o}^{L}}{K_{W}} . \tag{A.6}
\end{equation*}
$$

Picking

$$
\frac{q_{o}^{L}}{K_{W}}=300^{\circ} \mathrm{K}
$$

and considering saturated water, saturated steam, and whiteifir as the porous solid yields

$$
\begin{aligned}
& \rho_{\ell}=60.0531 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& \mathrm{C}_{\mathrm{P}_{\mathrm{V}}}=.4764 \mathrm{Btu} / 1 \mathrm{~b}_{\mathrm{m}} \circ_{\mathrm{F}} \\
& \mathrm{~K}_{\mathrm{W}}=.1286 \mathrm{Btu} \mathrm{ft} / \mathrm{hr}_{\mathrm{ft}^{2} \mathrm{o}_{\mathrm{F}}} \\
& \rho_{\mathrm{W}} \mathrm{C}_{\mathrm{W}}=26.406 \mathrm{Btu} / \mathrm{ft}^{3} \mathrm{o}_{\mathrm{F}} \\
& \mathrm{~L}=1 \mathrm{~cm}=.3937 \mathrm{ft}
\end{aligned}
$$

Choosing the interface at a point midway into the slab for the seven coefficient computational run

$$
\begin{aligned}
& \frac{d \bar{l}}{d \bar{t}_{W}}=.96949 \\
& \bar{T}_{o}-\bar{T}_{v}=.37407
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
{\left[\overline{\mathrm{T}}_{\mathrm{o}}-\overline{\mathrm{T}}_{\mathrm{v}}\right] \frac{\mathrm{q}_{0}^{\mathrm{L}}}{\overline{\mathrm{~K}}_{\mathrm{W}}} } & =[.37407] 300^{\circ} \mathrm{K} \\
& =112.212 \mathrm{~K}^{\mathrm{o}} \\
& =1.8[112.212] \mathrm{R}^{\mathrm{o}} \\
& =201.98 \mathrm{~F}^{\mathrm{o}}
\end{aligned}
$$

$$
\frac{\rho_{\ell} C_{P_{V}}{ }_{W}}{\rho_{W} C_{W} L^{2}}=\frac{(60.053)(.4764)(.1286)}{(26.406)(.3937)^{8}} \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}^{3} \mathrm{O}_{\mathrm{F}}}=.899 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}{ }^{3} \mathrm{O}_{\mathrm{F}}}
$$

Thus

$$
\rho_{\ell} \frac{\mathrm{d} \ell}{\mathrm{dt}} \mathrm{C}_{\mathrm{P}_{\mathrm{v}}} \frac{\mathrm{dT}}{\mathrm{dx}}=(.899)(.96949)(201.98) \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}=176.04 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}
$$

On a unit volume basis the vapor is considered to occupy 20% of the volume, the convective term then yields

$$
\begin{equation*}
.2 \mathrm{ft}^{3}(176.04) \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}=35.21 \frac{\mathrm{Btu}}{\mathrm{hr}} \tag{A.7}
\end{equation*}
$$

The vapor negotiates a positive temperature gradient, therefore this thermal energy c an be considered convected away from the solid. The heat flux at the front surface for this example is

$$
q_{0}=\frac{(.1286)(1.8)(300)}{.3937} \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}^{2}}=176.39 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}
$$

On a unit volume basis multiplying by the area and dividing by the volume

$$
\frac{A^{\prime}}{V} q_{0}=\frac{176.39}{\mathrm{~L}} \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}{ }^{3}=448.032 \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}{ }^{3}
$$

Multiplying by the percent of volume occupied by the solid yields

$$
\begin{equation*}
A q_{o}=.8 \mathrm{ft}^{3}(488.032) \frac{\mathrm{Btu}}{\mathrm{hr} \mathrm{ft}}=358.43 \frac{\mathrm{Btu}}{\mathrm{hr}} \tag{A.8}
\end{equation*}
$$

The ratio of the thermal energy convected by the vapor to the heat flux available to the solid is on the order of

$$
\frac{35.21}{358.43}=.0982
$$

APPENDIX B

NON-DIMENSIONALIZATION OF EQUATIONS

AND BOUNDARY CONDITIONS

Division of x and $\ell(t)$ by the characteristic length L yields

$$
\bar{x}=\frac{x}{L}
$$

$$
\bar{l}(t)=\frac{\ell(t)}{L}
$$

The non-dimensional temperature \bar{T} and time $\overline{\mathrm{E}}$ are chosen as

$$
\begin{aligned}
\bar{T} & =\frac{T}{T_{z}} \\
\bar{t} & =\frac{t}{t_{z}}
\end{aligned}
$$

where

$$
T=T_{A}-T_{R}
$$

Substituting these terms into equation (2.6)

$$
\rho_{W} C_{W} \frac{T_{z}}{t_{z}} \frac{\partial \bar{T}\left(\bar{x}_{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=K_{W} \frac{T^{a}}{L^{2}} \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{z}}
$$

rearranging

$$
\frac{\lambda \vec{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\left(\frac{K_{W}}{\rho_{W} C_{W}}\right)\left(\frac{t^{2}}{L^{2}}\right) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}}
$$

[^9]The thermal diffusivity is defined as

$$
\frac{K_{W}}{C_{W} \rho}=\alpha_{W}
$$

Now t_{z} can be defined as

$$
t_{z}=\frac{L^{2}}{\alpha_{W}}
$$

Here t_{z} is not a time constant as such but is a "significant time" or time scale of the problem, By rearranging, t_{z} can be shown to represent the product of the thermal capacitance and the internal thermal resistance (17).

$$
t_{z}=\frac{L^{3}}{\alpha_{W}}=\frac{\rho_{W} C_{W} L^{3}}{K_{W}}=\rho_{W} C_{W} I A \frac{L}{A K_{W}}=\rho_{W} V C_{W}\left(\frac{L}{K_{W} A}\right)
$$

Therefore \bar{t}_{W} becomes the Fourier number

$$
\bar{t}_{W}=\frac{t \alpha_{W}}{L^{2}}
$$

Equation (2.6) is then

$$
\begin{equation*}
\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\frac{\partial^{a} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{a}} \tag{By}
\end{equation*}
$$

In a similar manner, equation (2.8) can be non-dimensionalized,
letting

$$
\begin{aligned}
& \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{D}\right)=\frac{\rho_{D}(x, t)}{\rho_{D}(x, 0)} \\
&\left(\rho_{D}(x, 0) \frac{T_{z}}{t_{z}}\right) \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{D}\right) C_{D} \frac{\partial \bar{T}\left(\bar{x}_{D} \bar{t}_{D}\right)}{\partial \bar{t}_{D}}+\left(\rho_{D}(x, 0) \frac{T_{z}}{t_{z}}\right) C_{D} \bar{T}\left(\bar{x}, \bar{t}_{D}\right) \frac{\partial \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{t}_{D}} \\
& \therefore \quad=\left(\frac{T_{z}}{L^{2}}\right) K_{D} \frac{\partial^{3} \bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{x}^{3}}
\end{aligned}
$$

rearranging

$$
\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{t}_{D}}+\frac{\bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\bar{\rho}_{D}\left(\bar{x}^{\prime}, \bar{t}_{D}\right)} \frac{\partial \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{t}_{D}}=\left(\frac{K_{D}}{C_{D}{ }_{D}} \frac{t_{z}}{\bar{L}^{z}}\right) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{x}^{a}}
$$

Again defining thermal diffusivity

$$
\frac{K_{D}}{C_{D}{ }^{\rho} D}=\alpha_{D}
$$

Choosing

$$
\mathrm{t}_{\mathrm{z}}=\frac{\mathrm{L}^{2}}{\alpha_{\mathrm{D}}}
$$

yields the Fourier number

$$
\bar{t}_{D}=\frac{t \alpha_{D}}{L^{a}}
$$

Equation (2.8) thus becomes

$$
\begin{equation*}
\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{t}_{D}}+\frac{\bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\bar{\rho}_{D}\left(\bar{x}_{\mathrm{x}}, \bar{t}_{D}\right)} \frac{\partial \rho_{D}\left(\bar{x}_{x}, \bar{t}_{D}\right)}{\partial \bar{t}_{D}}=\frac{\partial^{a} \bar{T}\left(\bar{x}, \bar{t}_{D}\right)}{\partial \bar{x}^{a}} \tag{B.2}
\end{equation*}
$$

The energy equation at the liquid-vapor interface (2.9) can be written

$$
\dot{\rho}_{\ell^{h}} f_{g}\left(\frac{L}{t_{z}}\right) \frac{d \bar{\ell}(\bar{t})}{d \bar{t}}=\left.K_{W}\left(\frac{T}{L}\right) \frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\ell^{-}}-\left.K_{D}\left(\frac{T}{L}\right) \frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\ell^{+}}
$$

dividing by K_{W} and rearranging

$$
\begin{equation*}
\left(\frac{h_{f g}{ }^{2} \rho_{\ell}}{t_{z} T_{z} K_{W}}\right) \frac{d \bar{l}(\bar{t})}{d \bar{t}}=\left.\frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\ell^{-}}-\left.\left(\frac{K_{D}}{K_{W}}\right) \frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\ell^{+}} \tag{B.3}
\end{equation*}
$$

Considering the boundary condition at the front surface ($x=L$)

$$
q_{0}=\left.K_{W} \frac{\partial T(x, t)}{\partial x}\right|_{x=L}=\left.K_{W}\left(\frac{T}{L}\right) \frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\bar{x}=1}=\text { constant }
$$

or

$$
\left.\frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\bar{x}=1}=\left(\frac{q_{o}{ }_{0}}{\mathrm{~K}_{W}}\right) \frac{1}{T_{z}}
$$

Choosing

$$
\mathrm{T}_{\mathrm{z}}=\frac{\mathrm{q}_{\mathrm{o}} \mathrm{~L}}{\mathrm{~K}_{\mathrm{W}}}
$$

$$
\left.\frac{\partial \bar{T}(\bar{x}, \bar{t})}{\partial \bar{x}}\right|_{\bar{x}=1}=1
$$

and

$$
\begin{equation*}
\bar{T}(\bar{x}, \bar{t})=\frac{T}{q_{0} L / K_{W}}=\frac{T_{A}-T_{R}}{q_{0}^{L / K} K_{W}} \tag{B.4}
\end{equation*}
$$

with

$$
\overline{\mathrm{t}}_{\mathrm{W}}=\frac{\mathrm{L}^{2}}{\alpha_{\mathrm{W}}}
$$

then equation (B.3) becomes

$$
\left\lceil\frac{h_{\mathrm{fg}^{\rho} \ell^{\alpha}}^{W}}{\mathrm{q}_{\mathrm{o}}^{\mathrm{L}}}\right\rangle \frac{\mathrm{d} \bar{\ell}\left(\overline{\mathrm{t}}_{W}\right)}{d \bar{t}_{W}}=\left.\frac{\partial \overline{\mathrm{T}}\left(\overline{\mathrm{x}}, \overline{\mathrm{t}}_{W}\right)}{\partial \overline{\mathrm{x}}^{\prime}}\right|_{\ell^{-}}-\left.\left(\frac{\mathrm{K}_{\mathrm{D}}}{\mathrm{~K}_{W}}\right) \frac{\partial \overline{\mathrm{T}}\left(\overline{\mathrm{x}}, \overline{\mathrm{t}}_{W}\right)}{\partial \overline{\mathrm{x}}}\right|_{\ell^{+}}
$$

defining \bar{H} as a non-dimensional parameter,

$$
\bar{H}=\frac{h_{f g} \rho^{\alpha}{ }^{\alpha} W}{q_{0} L}
$$

yields

$$
\begin{equation*}
\bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=\left.\frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\ell^{-}}-\left.\left(\frac{K_{D}}{K_{W}}\right) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\ell^{+}} \tag{B.5}
\end{equation*}
$$

From the boundary condition at the interface (2.26) and the nondimensional temperature (B.4)

$$
\begin{aligned}
& \bar{T}(\bar{\ell}, \bar{t})=\bar{T}_{v}=\text { constant } \\
& \bar{T}\left(\bar{\ell}, \bar{t}_{W}\right)=\frac{T_{A}-T_{R}}{T_{z}}=\frac{T_{v}-T_{R}}{q_{o}^{L / K} K_{W}}
\end{aligned}
$$

or

$$
\bar{T}\left(\bar{l}, \bar{t}_{D}\right)=\frac{T_{A}-T_{R}}{T_{z}}=\frac{T_{V}-T_{R}}{q_{o} L_{L} / K_{D}} .
$$

where

$$
\begin{aligned}
& \frac{\mathrm{q}_{\mathrm{o}}^{\mathrm{L}}}{\bar{K}_{\mathrm{D}}} \overline{\mathrm{~T}}\left(\bar{l}, \bar{t}_{\mathrm{D}}\right)=\frac{\mathrm{q}_{o}^{\mathrm{L}}}{\mathrm{~K}_{\mathrm{W}}}\left(\bar{\ell}, \overline{\mathrm{t}}_{\mathrm{W}}\right) \\
& \overline{\mathrm{T}}\left(\bar{\ell}, \overline{\mathrm{t}}_{\mathrm{D}}\right)=\frac{\mathrm{K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{W}}} \overline{\mathrm{~T}}\left(\bar{l}, \overline{\mathrm{t}}_{\mathrm{W}}\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\bar{T}\left(\bar{x}, \bar{t}_{D}\right)=\frac{K_{D}}{K_{W}} \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \tag{B.6}
\end{equation*}
$$

Two Fourier numbers are created by the non-dimensionalization of the energy equations. In order to combine the energy equations properly only one dimensional time can exist. The following relationship is therefore apparent:

$$
t=t
$$

from

$$
\begin{align*}
& \overline{\mathrm{t}}=\frac{\mathrm{t} \alpha}{\mathrm{~L}^{2}} \\
& \overline{\mathrm{t}}_{\mathrm{D}} \frac{\mathrm{~L}^{2}}{\alpha_{D}}=\overline{\mathrm{t}}_{\mathrm{W}} \frac{\mathrm{~L}^{a}}{\alpha_{W}} \\
& \overline{\mathrm{t}}_{\mathrm{D}}=\frac{\alpha_{D}}{\alpha_{W}} \overline{\mathrm{t}}_{W} \tag{B.7}
\end{align*}
$$

Adopting $\bar{T}\left(\bar{x}, \bar{t}_{W}\right)$ and $\overline{\mathrm{t}}_{\mathrm{W}}$ as standards, equations (B.1) and (B.5) remain unchanged but equation (B.2) is transformed to

$$
\begin{align*}
& \frac{K_{D}}{{\frac{K_{W}}{W}}_{\bar{\alpha}_{W}}^{\alpha_{D}}} \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}+\frac{\bar{K}_{D}}{K_{W}} \frac{\bar{T}\left(\bar{x}_{W}, \bar{t}_{W}\right)}{\alpha_{W}} \bar{\rho}_{D}\left(\bar{x}_{\mathrm{x}} \bar{t}_{W}\right) \\
& \frac{\partial \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\frac{K_{D}}{K_{W}} \frac{\partial^{a} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{3}} \tag{B,8}\\
& \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}+\frac{\bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\bar{\rho}_{D}\left(\bar{x}, \bar{t}_{W}\right)} \frac{\partial \bar{\rho}_{D}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}}=\frac{\alpha_{D}}{\alpha_{W}} \frac{\partial^{a} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}}
\end{align*}
$$

Defining parameters \bar{A} and \bar{K} as

$$
\begin{aligned}
& \bar{A}=\frac{\alpha_{D}}{\alpha_{W}} \\
& \bar{K}=\frac{K_{D}}{K_{W}}
\end{aligned}
$$

equations (2.17) through (2.19) are obtained.

APPENDIX C

INTEGRATION OF EQUATION (3.1)

Each term of equation (3.1) can be integrated as shown

$$
\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}=\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial^{a} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} \mathrm{~d} \overline{\mathrm{x}}
$$

Applying Leibnitz's formula to term I

$$
\begin{aligned}
& \frac{d}{d \bar{t}_{W}} \int_{0}^{\bar{\ell}\left(\bar{t}_{W}\right)} Q(\bar{x}) \cdot \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}=\int_{0}^{\bar{\ell}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x} \\
& \text { (Term I) } \\
& +Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{l}\left(\bar{t}_{W}\right)}{\partial \bar{t}_{W}} \\
& -Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial(Q)}{\partial t_{W}}
\end{aligned}
$$

rearranging

$$
\begin{align*}
\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}= & \frac{d}{d \bar{t}_{W}} \int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x} \\
& -Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{l}\left(\bar{t}_{W}\right)}{\partial \bar{t}_{W}} \tag{C.1}
\end{align*}
$$

Integrating term II by parts

$$
\begin{aligned}
\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{a}} d \bar{x}= & \left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}_{x}, \bar{t}_{W}\right)}{\partial \bar{l}\left(\bar{t}_{W}\right)}\right|_{0} ^{\bar{x}} \\
& -\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q^{\prime}(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}} d \bar{x}
\end{aligned}
$$

Integrating once again by parts yields

$$
\begin{align*}
\int_{0}^{\bar{l}\left(\bar{t}_{W}\right)} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x}= & \left.Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{0} ^{\bar{l}\left(\bar{t}_{W}\right)} \\
& -Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \\
& \left.\right|_{0} ^{\bar{l}\left(\bar{t}_{W}\right)} \\
& +\int_{0} Q_{W}^{\prime \prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x} \tag{C.2}
\end{align*}
$$

Substituting (C.1) and (C.2) into equation (3.1) yields equation (3.2).

APPENDIX D

INTEGRATION OF EQUATION (3.3)

Each term of equation (3.3) can be integrated as shown

$$
\int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}=\bar{A} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x}
$$

I
II
Applying Leibnitz's formula to term I

$$
\begin{aligned}
& \frac{d}{d \bar{t}_{W}} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}=\int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\lambda \bar{T}\left(\bar{x}^{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x} \\
& +Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial 1}{\overline{E_{W}}} \\
& \text { - } Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{l}\left(\bar{t}_{W}\right)}{\partial \bar{\epsilon}_{W}}
\end{aligned}
$$

rearranging

$$
\begin{align*}
\int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{t}_{W}} d \bar{x}= & \frac{d}{d \bar{t}_{W}} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x} \\
& +Q(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) \frac{\partial \bar{l}\left(\bar{t}_{W}\right)}{\partial \bar{t}_{W}} \tag{D.1}
\end{align*}
$$

Integrating term II by parts

$$
\begin{aligned}
\bar{A} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\lambda^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x}= & \left.\bar{A} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{l}\left(\bar{t}_{W}\right)} ^{1} \\
& -\bar{A} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q^{\prime}(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}} d \bar{x}
\end{aligned}
$$

Integrating once again by parts yields

$$
\begin{aligned}
\bar{A} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q(\bar{x}) \frac{\partial^{2} \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}^{2}} d \bar{x}= & \left.\bar{A} Q(\bar{x}) \frac{\partial \bar{T}\left(\bar{x}, \bar{t}_{W}\right)}{\partial \bar{x}}\right|_{\bar{\ell}\left(\bar{t}_{W}\right)} ^{1} \\
& -\left.\bar{A} Q^{\prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right)\right|_{\bar{l}\left(\bar{t}_{W}\right)} ^{1} \\
& +\bar{A} \int_{\bar{l}\left(\bar{t}_{W}\right)}^{1} Q^{\prime \prime}(\bar{x}) \bar{T}\left(\bar{x}, \bar{t}_{W}\right) d \bar{x}
\end{aligned}
$$

Substituting (D.1) and (D.2) into equation (3.3) yields equation (3.4).

APPENDIX E

DERIVATION OF EQUATIONS (3.10) AND (3.11)

Substituting equations (3.8) and (3.9) into equation (3.7) yields $\frac{d}{d \bar{t}_{W}} \int_{0}^{1} \cos (m \pi \bar{x}) \sum_{n=0}^{N} A_{n}\left(\bar{t}_{W}\right) \cos (n \pi \bar{x}) d \bar{x}=$ I

$$
\begin{gathered}
\left.\cos (m \pi \bar{x})\right|_{\bar{x}=\bar{l}} \frac{\bar{H}}{} \frac{\mathrm{~d} \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}+\cos (m \pi) \\
\text { II } \\
-(m \pi) \sin \left(\left.m \not \sum_{\bar{x})}^{0} \sum_{n=0}^{N} A_{n}\left(\bar{t}_{W}\right) \cos (n \pi \bar{x})\right|_{\bar{x}=0}\right.
\end{gathered}
$$

$$
+\left.(m \pi) \sin (m / \bar{x}) \sum_{n=0}^{0} A_{n}^{N}\left(\bar{t}_{W}\right) \cos (n \pi \bar{x})\right|_{\bar{x}=1}
$$

$$
\begin{equation*}
-\int_{0}^{1}(m \pi)^{a} \cos (m \pi \bar{x}) \sum_{n=0}^{N} A_{n}\left(\bar{t}_{W}\right) \cos (n \pi \bar{x}) d \bar{x} \tag{E.1}
\end{equation*}
$$

For $\bar{x}=0$
$\sin (m \pi \bar{x})=\sin (0)=0$.
For $\bar{x}=1, \sin (m \pi \bar{x})$ reduces to $\sin (m \pi)$ which is zero for $m=0,1,2, \ldots, M$, therefore terms IV and V are zero. Since the cosine is
an orthogonal function to itself on the interval [0,1], terms I and VI exist for $\mathrm{m}=\mathrm{n}$ only and are zero for $a 11 \mathrm{~m} \neq \mathrm{n}$. Equation (E.1)
reduces to

$$
\int_{0}^{1} \cos ^{2}(n \pi \bar{x}) \frac{d A_{n}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} d \bar{x}=\cos (n \pi \bar{l}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}}+\cos (n \pi)
$$

$$
-\int_{0}^{1}(n \pi)^{2} \cdot \cos ^{2}(n \pi \bar{x}) A_{n}\left(\bar{t}_{W}\right) d \bar{x}
$$

rearranging

$$
\begin{align*}
\frac{d A_{n}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}} \int_{0}^{1} \cos ^{2}(n \pi \bar{x}) d \bar{x}= & \cos (n \pi \bar{l}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}+\cos (n \pi) \\
& -(n \pi)^{2} A_{n}\left(\bar{t}_{W}\right) \int_{0}^{1} \cos ^{2}(n \pi \bar{x}) d \bar{x} \tag{EM}
\end{align*}
$$

for $n \neq 0$

$$
\begin{aligned}
\int_{0}^{1} \cos ^{2}(n \pi \bar{x}) & =\left[\frac{1}{2} \bar{x}+\frac{1}{4 \pi n} \sin (2 n \pi \bar{x})\right]_{0}^{1} \\
& =\left.\frac{1}{2} \bar{x}\right|_{0} ^{1}=\frac{1}{2}
\end{aligned}
$$

Equation (E.2) consequently becomes

$$
\frac{d A_{n}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=2 \cos (n \pi \bar{l}) \bar{H} \frac{d \bar{l}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}+2 \cos (n \pi)-(n \pi)^{2} A_{n}\left(\bar{t}_{W}\right)
$$

for $\mathrm{n}=0$

$$
\int_{0}^{1} \cos ^{3}(0) \pi \bar{x} d \bar{x}=\int_{0}^{1} d \bar{x}=1
$$

Therefore

$$
\frac{d A_{o}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}=\bar{H} \frac{d \overline{(}\left(\bar{t}_{W}\right)}{d \bar{t}_{W}}+1
$$

APPENDIX F

DERIVATION OF EQUATION (3.13)

Expanding the ($N+1$) equations represented by equations (3.10) and (3.11)
(0) $\quad \dot{A}_{0}+0+\ldots-\bar{H} \dot{\boldsymbol{L}}=1^{13}$
(1) $0+\dot{A}_{1}+\ldots-2 \bar{H} \dot{L} \cos (\pi i)=2 \cos \pi-\pi^{3} A_{1}$.
(2) $\quad 0+0+A_{2}+\ldots-2 \bar{H} \cos (2 \pi X)=2 \cos (2 \pi)-(2 \pi)^{2} A_{2}$
(N) $0+0+\ldots+\dot{A}_{N}-2 \bar{H} Z \cos (N \pi l)=2 \cos (N \pi)-(N \pi)^{2} A_{N}$

Expanding equation (3.12) also
$\dot{A}_{0}+\dot{A}_{I} \cos (\pi I)+\dot{A}_{0} \cos (2 \pi L)+\ldots+\dot{A}_{N} \cos (N \pi I)$

$$
-\dot{\bar{l}} \cdot \sum^{N}(j \pi) A_{j} \sin (j \pi I)=0
$$

$$
j=1
$$

Multiplying each. (n) equation by $\cos (n \pi \bar{l}$) and subtracting in turn each (n) equation from equation (3.12) produces
${ }^{13}$;The dot used here indicates differentiation with respect to time (egg. $\left.\dot{A}_{0}=d A_{0}\left(\bar{t}_{W}\right) / d \bar{t}_{W}\right)$.

$$
\begin{aligned}
\dot{\bar{l}}\{\bar{H}[1+ & \left.\left.2 \sum_{j=1}^{N} \cos ^{3}(j \pi \bar{l})\right]-\sum_{j=1}^{N}(j \pi) A_{j} \sin (j \pi \bar{l})\right\}= \\
& -\left\{1+2 \sum_{j=1}^{N}[\cos (j \pi) \cos (j \pi \bar{l})]\right\}+\sum_{j=1}^{N}(j \pi)^{3} A_{j} \cos (j \pi \bar{l})
\end{aligned}
$$

Solving for $\frac{\dot{\ell}}{\mathrm{l}} \mathrm{yields}$ equation (3.13)

$$
\dot{\bar{l}}=-\frac{\left\{1+2 \sum_{j=1}^{N}[\cos (j \pi) \cos (j \pi \bar{l})]\right\}-\sum_{j=1}^{N}(j \pi)^{a} A_{j} \cos (j \pi \bar{l})}{\bar{H}\left\{1+2 \sum_{j=1}^{N} \cos ^{2}(j \pi \bar{l})\right\}-\sum_{j=1}^{N}(j \pi) A_{j} \sin (j \pi \bar{l})}
$$

APPENDIX G

INTEGRATION OF EQUATION (3.14)

Rearranging equation (3.14)

$$
\frac{d}{d \bar{t}_{W}} A_{n}\left(\bar{t}_{W}\right)+(n \pi)^{3} A_{n}\left(\bar{t}_{W}\right)=2 \cos (n \pi)
$$

This is a first order ordinary differential equation of which the integration factor is

$$
\mu=\exp (n \pi)^{2} \bar{t}_{W}
$$

Thus

$$
\frac{d}{d \bar{t}_{W}}\left(A_{n} \exp (n \pi)^{2} \bar{t}_{W}\right)=(2 \cos (n \pi)) \exp (n \pi)^{a} \bar{t}_{W}
$$

or integrating

$$
A_{n}\left(\bar{t}_{W}\right) \exp (n \pi)^{2} \bar{t}_{W}=\frac{2 \cos (n \pi)}{(n \pi)^{3}} \exp (n \pi)^{2} \bar{t}_{W}+c
$$

Multiplying by

$$
\exp \left[-(n \pi)^{2} \bar{t}_{W}\right]
$$

$$
\begin{equation*}
A_{n}\left(\bar{t}_{W}\right)=\frac{2(-1)^{n}}{(n \pi)^{2}}+c \exp \left[-(n \pi)^{2} E_{W}\right] \tag{G.1}
\end{equation*}
$$

for $\bar{t}_{W}=0$

$$
A_{n}\left(\bar{t}_{W}\right)=0 \quad(n>0)
$$

Therefore from (G.1)

$$
0=\frac{2(-1)^{n}}{(n \pi)^{3}}+c \exp \left[-(n \pi)^{3}(0)\right]
$$

or

$$
c=-\frac{2(-1)^{n}}{(n \pi)^{2}}
$$

and finally

$$
A_{n}\left(\bar{t}_{W}\right)=\frac{2(-1)^{n}}{(n \pi)^{2}}\left\{\exp \left[-(n \pi)^{2} t_{W}\right]-1\right\}
$$

APPENDIX H

EVALUATION OF PARAMETERS $\overline{\mathrm{A}}$ AND $\overline{\mathrm{K}}$

To obtain some idea of the relevance of these non-dimensional parameters, water and white fir are considered in a volumetric ratio of one to four.

The mean specific heats of water and white fir in the temperature range of $32-212^{\circ} \mathrm{F}$ are approximately

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{H}_{2} \mathrm{O}}=1.004 \mathrm{Btu} / 1 \mathrm{~b}_{\mathrm{m}} \mathrm{o}_{\mathrm{F}} \\
& \mathrm{C}_{\mathrm{fir}}=.65 \mathrm{Btu} / 1 b_{\mathrm{m}} \mathrm{o}_{\mathrm{F}}
\end{aligned}
$$

The average densities of these substances within the same temperature range are approximately

$$
\begin{aligned}
& \rho_{\mathrm{H}_{2} \mathrm{O}}=61.582 \mathrm{Ib} \mathrm{~m}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& \rho_{\mathrm{fir}}=27.01 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{3}
\end{aligned}
$$

Assuming constant thermal conductivities of

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{H}_{2} \mathrm{O}}=.367 \mathrm{Btuft} / \mathrm{hr} \mathrm{ft} \\
& \mathrm{~K}_{\mathrm{fir}}=\mathrm{o} \\
& \mathrm{o}_{\mathrm{F}}
\end{aligned}
$$

On a unit volumetric basis

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{W}}=.8\left(\mathrm{~K}_{\mathrm{fir}}\right)+.2\left(\mathrm{~K}_{\mathrm{H}_{2} \mathrm{O}}\right) \\
& \mathrm{K}_{\mathrm{W}}=.1286 \mathrm{Btu} \mathrm{ft} / \mathrm{hr} \mathrm{ft}^{3} \mathrm{o}_{\mathrm{F}}
\end{aligned}
$$

Therefore,

$$
\overline{\mathrm{K}}=\frac{\mathrm{K}_{\mathrm{D}}}{\mathrm{~K}_{\mathrm{W}}}=\frac{\mathrm{K}_{\text {fir }}}{\mathrm{K}_{\mathrm{W}}}=.537
$$

From Table II

$$
\bar{A}=\frac{\alpha_{D}}{\alpha_{W}}=\frac{K_{D}}{K_{W}} \cdot \frac{\rho_{W} C_{W}}{\rho_{D} C_{D}}=\bar{K} \cdot \frac{\rho_{W} C_{W}}{\rho_{D} C_{D}}
$$

where

$$
\begin{aligned}
\rho_{W} C_{W} & =.8\left(\rho_{\mathrm{FIR}} \mathrm{C}_{\mathrm{fir}}\right)+.2\left(\rho_{\left.\mathrm{H}_{2} \mathrm{O}_{\mathrm{H}_{2} \mathrm{O}}\right)}\right. \\
& =(14.04+12.366) \mathrm{Btu} / \mathrm{ft}^{3} \mathrm{o}_{\mathrm{F}} \\
& =26.406 \mathrm{Btu} / \mathrm{ft}^{3} \mathrm{o}_{\mathrm{F}}
\end{aligned}
$$

and

$$
\rho_{D} C_{D}=\rho_{f i r} C_{f i r}=17.55 \mathrm{Btu} / \mathrm{ft}^{3} o_{F}
$$

Therefore,

$$
\bar{A}=(.537) \frac{26.406}{17.55}=.808
$$

APPENDIX I

COMPUTER LISTING OF ALL PROGRAMS

80/80 LIST

80/80 LIST
0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

0055	9702	FORMAT('0 MAIN $\left.1 / 61^{\prime}(1,12,1)=1,012.61\right)$	MAINO550
0056	9703	FDRMAT ${ }^{\prime} 0^{\prime}, 6(1 / A P 4,12,1=1,014.6,1 \times 1)$	MAINO560
0057	9704	FORMAT('0',6('T'.12, $=$ ', D14.6,2X1)	MAIN0570
0058	9705		MAINO580
0050	9706	FORMAT ('0 DLDT $=$ ', D16.6)	MAINO590
0060	9708	FDRMAT('1 MAIN LEVEL 100')	MA INO600
0061		DATA NDFUN, MDFUN 10,01	MA IN0610
0062		IF(NDFUN.EQ.0) WRITE(6,9708)	MAINO620
0063		NDFUN $=1$	MAIN0630
0064		READ (5,1000) N,MCOUNT, NPRNT, NSTEP, ISTART	MAIN0640
0065		READ 5,1001$)$ HFG,ROW, CP, QO, EL, ELL, THERMK, TO, TB, TEND, DEL, DELI,	MAINO650
0066		* ERMX, DLMN, TMIN	MA IN0660
0067		READ (5,1001) (ETA1 (1), I= 1, 4), (ETA2(I), I= 1, 4)	MAINO670
0068		NE $* N+2$	MA INO680
0069		NP $1=\mathrm{N}+1$	MA IN0690
0070		$\mathrm{NP2}=\mathrm{N}+2$	MAINO700
0071		NM1 $=N-1$	MAINO710
0072		ZERD $=0.000+00$	MA INO 720
0073		ONE $=1.000+00$	MAINO730
0074		TX = (Q0\%ELL)/THERMK	MAIN0740
0075	c	the heat flux parameter 'G' is included	MAINO 750
0076	c	FOR FUTURE REFERENCE. THIS STUDY	MAINO760
0077	c	REQUIRES A 'g' of Unity.	MAINO770
0078		$G=T X / T R$	MAINO 780
0079		$H=(H F G * R O W) /(T X * C P)$	MAINO 790
0080		$T V=((T B / T O)-$ ONE $/ G$	MA INO800
0081		$\mathrm{PI}=3.141592653600$	MAINO810
0082		DLDT $=2$ ERO	MAINO820
0083		PRMT (5) $=$ ZERO	MAINO830
0084		NCOUNT $=0$	MAIN0840
0085		ISTEP $=0$	MA INO850
0086	2	WRITE(6,2006)	MAINOB60
0087		WRITE(6,2010)	MA IN0870
0088		WRITE 6.2006$)$	MAINO880
0089		WRITE(6,2020) HFG,ROW,CP, QO, EL, THERMK, TR, TB,G,H,TV	MAIN0890
0090		WRITE(6,2070) N,NE, MC OUNT, NPRNT, NSTEP, ISTART	MAINO900
0091		WRITE(6,2040) TENO,DEL, DELI, ERMX,DLMN, TMIN	MAINO910
0092		WRITE(S,2050) (I, ETAI(I), I=1,4)	MAINO920
0093		WRITE(6,2051) (I,ETA2(I), $1=1,41$	MA INO930
0094		WRITE(6,2006)	MAINO940
0095		IFIMCOUNT.EQ.O)GO TO 8	MAIN0950
0096		WRITE(7,2222) N,NE, MC OUNT, NPRNT, NSTEP, ISTART, IPT	MAIN0960
0097		WRITE(7,4444) HFG,ROW,CP, DO, EL, THERMK, TR, TB, ELS,G,H,TV, TEND,	MAIN0970
0098		DEL,ERMX,DLMN,TMIN,DELI	MAIN0980
0099	C $\boldsymbol{* * * * ~}$		**MA INO990
0100	C***	CALCULATION OF INITIAL	**MAIN1000
0101	C ㅎ* ${ }^{\text {\% }}$	TEMPERATURE COEFFICIENTS	**MAIN1010
0102	C***	***	*\#MAIN1020
0103	8	IF (MDFUN.NE.O) GO TO 268	MAIN1030
0104		MDFUN $=1$	MAIN1040
0105		$T=$ ZERD	MAIN1050
0106		DO 9 I=1,NP1	MAIN1060
0107		A(I) $=$ ZERO	MAIN1070
0108	9	continue	MAIN1080

80/80 LIST

80/80 LIST

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

CARD			
0163	27	IF(IHLF.NE.12) GO TO 271	MAIN1 630
0164		WRITE(6.9001) DEL	MAIN1640
0165		STOP	MAIN1650
0166	271	IF(IHLF.NE.13) G0 TO 28	MAIN1660
0167		WRITE(6,9002) DEL, OLMX, DLM	MAIN1670
0168		STOP	MAIN1680
0169	28	WRITE(6,9010) TEND,IHLF,PRMT(5)	MAIN1690
0170		STOP	MAIN1700
0171		END	MAINL 710

80/80 LIST

BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS

 greater than 10, subroutine ohpcg returns with ERROR MESSAGE IHLF=11 INTO MAIN PROGRAM. ERROR MESSAGE IHLF=12 OR IHLF=13 APPEARS IN CASE PRMT(3):0 OR IN CASE SIGN(PRMT(3)).NE.SIGN(PRMT(2)-DHCG 590 PRMT(1)) RESPECTIVELY.- THE NAME LF AN EXTERNAL SUBROUTINE USED. IT COMPUTES THE RIGHT HAND SIOES DERY OF THE SYSTEM TO GIVEN VALUES OF X AND Y. ITS PARAMETER LIST MUST BE $X, Y, D E R Y$. THE SUBROUTINE SHOULD NOT DESTROY X AND Y.
- the name of an external output subroutine used. NONE OF THESE PARAMETERS IEXCEPT, IF NECESSARY, DHCG 680 PRMT (4), PRMT (5),...) SHOULD BE CHANGED BY DHCG 690 SUBROUTINE OUTP. IF PRMT (5) IS CHANGED TO NON-ZERO, DHCG 700 SUBRDUTINE DHPCG IS TERMINATED.

DHCG 710
AUX

- DOUBLE PRECISIDN AUXILIARY STORAGE ARRAY WITH 16 ROWS AND NDIM COLUMNS.

REMARKS
DHCG 730
DHCG 740
THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF OHCG 760
(1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE DHCG 770 NECESSARY TO GET SATISFACTORY ACCURACY IERROR MESSAGE DHCG 780 IHLF=11),
(2) INITIAL INCREMENT IS EQUAL TO O OR HAS WRONG SIGN DHCG 800 IERROR MESSAGES IHLF=12 OR IHLF=131,
(3) THF WHOLE INTEGRATION INTERVAL IS WORKED THROUGH,
(4) SUBROUTINE OUTP HAS CHANGED PRMT(5) TO NON-ZERO. OHCG 830

SUBROUT INES AND FUNCTION SUBPROGRAMS REQUIRED OHCG 840
DHCG 850
THE EXTERNAL SUBROUTINES FCT (X,Y, DERY) AND DHCG 860
OUTP(X,Y,DERY,IHLF,NDIM,PRMI) MUST RE FURNISHED BY THE USER.DHCG 870
DHCG 880
METHOD
DHCG 880
DHGG 890
EVALUATION IS DONE BY MEANS OF HAMMING.S MODIFIED PREDICTOR-DHCG 900
GORRECTOR METHOD.

CORRECTOR METHOD. IT IS A FOURTH ORDER METHOD, USING 4
PRECEEDING POINTS FOR COMPUTATION OF A NEW VECTOR Y OF THE DHCG 910
20

DEPENDENT VARIABLES.
FOURTH ORDER RUNGE-KUTTA METHOD SUGGESTED BY RALSTON IS DHCG 940
USED FOR AD JUSTMENT OF THE INITIAL INCREMENT AND FOR
USED FOR ADJUSTMENT OF THE INITIAL INCREMENT AND FOR
COMPUTATION OF STARTING VALUES. DHCG 950
SUBROUTINE DHPCG AUTOMATICALLY AOJUSTS THE INCREMENT DURING DHCG 970
THE WHOLE COMPUTATION BY HALVING OR DOUBLING. DHCG 980
TO GET FULL FLEXIBILITY IN DUTPUT, AN OUTPUT SUBRDUTINE DHCG 990
MUST BE CODFD BY THE USER. DHCGIOOO
FOR REFERENCE, SEE
(1) RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL DHCG1010

COMPUTERS, WILEY, NEW YORK/LONOON, 1960, PP.95-109. OHCG1020
OHCG1030
(2) RALSTON, RUNGE-KUTTA METHODS WITH MINIMUM ERROR BOUNDS, DHCG1040 $\begin{array}{ll}\text { MTAC. VOL.16, ISS.80 (1962), PP.431-437. } & \text { DHCG1050 } \\ & \text { OHCG1060 }\end{array}$

OHC G1060
$.0 H C G 1070$
OHCGI 080

80/80 LIST

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
C
C
C ERROR RETURNS
    2 IHLF=12
        GOTO 4
3IHLF=13
C
C COMPUTATION OF DERY FOR STARTING VALUES
C
C RECORDING OF STARTING VALUES
C RECORDING OF STARTING VALUES ORMTI DHCG1330
CALL DUTP{X,Y,DERY,IHLF,NDIM,PRMT\
        IF(PRMT (5))6,5,6
        5 IF(IHLF)7,7,6
        6 RETURN
        DO 8 I=1,NDIM
        B AUX(8,I)=DERY(I)
C
C COMPUTATION OF AUX(2,1)
        I SW=I
        GOTO }10
C
C 9 X=X+H 年 DHCG1440
            DO 10 I= 1,NDIM
    10 AUX(2,11=Y(I)
C
C INCREMENT H IS TESTED bY MEANS OF BISECTION
    11 1HLF=IHLF+1
        X=X-H
        l=X-H
```



```
        H=.500*H
        N=.5
        N=1
        ISW=2
C GOTO 100
CIMENSION PRMT(1),Y(1),DERY(1),AUX(16,1)
        DOUBLE PRECISION Y,DERY,AUX,PPMT,X,H,Z,DELT,DABS
    N=1
        N=1
        X=PRMT(1)
        H=PRMT (3)
        PRMT(5)=0.DO
        DO I I=1,NDIM
        AUX(16,II=0.DO
        AUX(15,I)=DERY(I)
    1 AUX(1,I)=Y(I)
        IFIH*(PRMT(2)-X))3,2,4
        DHCG1090
SUBROUTINE DHPCGIPRMT,Y,DERY,NDIM,IHLF,FCT,OUTP,AUXI
DHCG1100
C O
OHCG1110
DOUBLE PRECISION Y,DERY,AUX,PPMT,X,H,Z,DELT,DABS
OHCG11120
DHCG1130
DHCG1140
DHCG1150
OHCG1150
DHCG1170
DHCG118O
DHCG1190
DHCG1190
DHCG1200
OHCG1210
OHCG1220
DHCG1230
HLF= RETURNS
DHCG1240
OHCG1250
OHCG1260
OHCG1270
DHCG1280
DHCG1290
DHCG1300
OHCG1300
OHCG1320
DHCG1320
DHCG1330
DHCG1350
DHCG1360
DHCG1360
DHCG1370
DHCG1380
DHCGl }39
OHCG1400
OHCG1420
DHCG1410
DHCG1420
DHCG1430
DHCG1430
DHCG1440
DHCG1450
DHCG1460
OHCG1470
```



```
DHCG1500
OHCG1510
OHCG1520
DHCG1540
DHCG1550
    13 X=X+H
    OHCG1560
        GOTO 100 
        CALL FCT(X,Y,DERY)
    N=2
    DO 14 I=1,NDIM
DHCG1570
DHC G1590
DHCG1600
DHCG1610
DHCG16?O
```

CARD
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0118
0119
0120
0121
0122
0123
0124 C
0125
0126
0127
0128
0129
0130
0131
0132
0134
0134
0135
0135
0136
0136
0137
0137
0138
0138
0139
0140
0141
0141
0142
0142
0143
0143
0144
0145
0146
0146
0147
0147
0148
0149
0150
0150
0151
0152
0153
0154
0154
0155
0155
0156
0156
0157
0157
0158
0158
0159
0160
0161
0162

80/80 LIST

000000000111111111122222222233333333334444444444555555555566666666667777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890		
14	$\operatorname{AUX}(2,1)=Y(1)$	DHCG1630
	AUX(9, I) $=$ DERY(I)	DHCG1640
	$\mathrm{I} S W=3$	DHCG1650
	GOTO 100	DHC G1660
C		DHCG1670
C	COMPUTATION OF TESt value delt	DHCG1680
15	DELT $=0$. DO	DHCG1690
	DO $16 \mathrm{I}=1$, NDIM	DHCG1700
16	DELT=DELT+AUX(15,I) *DABS(Y(I)-AUX(4,1)	DHCG1710
	DEL $T=.06666666666666666700 * D E L Y$	DHCG1720
	IF(DELT-PRMT (4)/19,19,17	DHCG1 730
c 17	IF(IHLF-10111,18.18	DHCG1740
		DHCG1750
c	NO SATISFACTORY ACCURACY AFTER 10 EISECTIONS. ERROR MESSAGE.	DHCG 1760
18	IHLF=11	DHCG1770
	$\mathrm{X}=\mathrm{X}+\mathrm{H}$	DHCG1780
	GOTO 4	DHCG1790
C		DHC G1 800
	THERE IS SATISFACTORY ACCURACY AFTER LESS THAN 11 bisections.	DHCG1810
19	$X=X+H$	DHCG1820
	CALL FCT $(X, Y, D E R Y)$	OHCG1830
	OD $20 \mathrm{I}=1$, NDIM	DHC G1840
	$\operatorname{AUX}(3, I)=Y(1)$	DHCG1850
20	AUX (10 , I $)=$ DERYI I$)$	DHCG1860
	$\mathrm{N}=3$	OHCG1870
	ISW=4	DHCG1880
	GOTO 100	DHCG1890
c		OHC G1900
21	$\mathrm{N}=1$	OHCG1910
	$X=X+H$	DHCG1920
	CALL FCT(X,Y,DERY)	DHCG1930
	$X=P R M T(1)$	DHC G1940
	DO $22 \mathrm{I}=1$, NDIM	DHCG1950
	AUX (11, I) = DERY(I)	OHCG1960
	YY(I) $=\operatorname{AUX}(1, I)+H * 1.37500 * \operatorname{AUX}(8,1)+.791666666666666700 * \operatorname{AUX}(9, \mathrm{I})$	DHCG1970
	-. $2083333333333333300 * A U X(10, I)+.041666666666666667 D 0 * D E R Y(I))$	DHCG1980
23	$\mathrm{X}=\mathrm{X}+\mathrm{H}$	DHCG1990
	$\mathrm{N}=\mathrm{N}+1$	OHCG2000
	CALL FCT(X,Y,DERY)	DHCG2010
	CALL DUTP\{X,Y,DERY, IHLF,NDIM, PRMT	DHCG2020
	IFIPRMT (5) 16,24,6	DHCG2030
24	IF(N-4)25,200,200	DHCG2040
25	DO $26 \mathrm{I}=1$, NDIM	DHCG2 050
	$\operatorname{AUX}(N, I)=Y(I)$	DHC G2060
26	AUX (N+7, I) = DERY(I)	DHCG2070
	IF(N-3127,29,200	DHCG2 080
c		OHC G2090
27	DO $2 \mathrm{~B} \mathrm{I}=1$, NDIM	DHCG2 100
	DELT $=\operatorname{AUX}(9,1)+\operatorname{AUX}(9,1)$	DHCG2110
	DELT $=$ DEL $T+$ DEL T	DHCG2 120
28	Y(I) $=$ AUX (1, I) + $\mathbf{3} 333333333333333300 * H *(A U X(8,1)+D E L T+A U X(10,1))$	DHCG2 130
	GOTO 23	DHCG2 140
c		OHCG2150
29	DO $30 \mathrm{I}=1$, NDIM	OHCG2 160

80/80 LIST


```
0000000001111111111122222222223333333333444444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
C COMPUTATION OF NEXT VECTOR Y DHCG2710
C OOMOSTON,NDIM
            MO 205I=1,NDIM 
    205 AUXIN+6, Li=DERY(I) DHCG2740
        X=X+H
    206 ISTEP=1STEP+1
        DO 207 I=1,NDIM
        DO 207I=1,NDIM DHCG2760
        ODELT=AUX (N-4,I)+1.333333333333333300*H*(AUX(N+6,I)+AUX(N+6,I)- DHCG2780
        IAUX(N+5,I)+AUX(N+4,I)+AUX(N+4,I))
        Y(I)=DELT-.925619834710743800*AUX(16,I)
    207 AUX(16,I) =DELT
C PREDICTOR IS NOW GENERATED IN ROW 16 DF AUX, MODIFIED PREOICTOR OHCG282O
C IS GENERATED IN Y. DELT MEANS AN AUXILIARY STORAGE. DHCG2830
DHCG2840
CALL FCT(X,Y,DERY) DHCG2850
C DERIVATIVE OF MODIFIED PREDICTOR IS GENERATEO IN DERY DHCG2860
C. DERIVATIVE OF MODIFIED PREOIGIOR IS GENERATEO IN DERY DHCG2870
        DO 208 I=1,NDIM DHCG2880
        ODELT=.12500*(9.00*AUX(N-1,I)-AUX(N-3,I)+3.DO*H*IOERY(I)+AUX(N+6,I)DHCG2890
        I+AUX(N+S,I)-AUX(N+5,III)}\mathrm{ DHCG2900
        AUX(16,I)=AUX(16,I)-DELT DHCG2910
    208 Y(I)=DELT+.07438016528925620D0*AUX(16,1) DHCG2920
C DHCG2930
C. TEST WHETHER H MUST BE HALVED OR DOUBLED OHCG2940
        OELT=0.00
    DO 209 I= 1,NDIM
    209 DELT=DELTT+AUX(15,I)*DABS(AUX(16,I))
        IF(DELT-PRMT (4)\210,222,222 OHCG29RO
C H MUST NOT BE HALVED. THAT MEANS Y(II ARE GOOD. OHCG2990
C H MUST NOT BE HALVED. THAT MEANS YIII ARE GOOD. OHCG2990
DHCG2990
    210 CALL FCT(X,Y,DERY) DHCG3010
        CALL OUTP(X,Y,OERY,IHLF,NOIM,PRMT) DHCG3020
        IFIPRMT(5)1212.211.212 DHCG3030
    211 IFIIHLF-111213,212,212 DHCG3040
    212 RETURN 11,213,212,212
    213 IF(H*(X-PRMT(2)))214,212,212
    214 IFIOABS(X-PRMT(2))-.100*DABS(H)I212,215,215 DHCG3070
    215 IFIDELT-.0200*PRMT(4)1216,216,201 OHCG3080
C
C
C H COULD be doubled IF ALL NECESSARY PRECEEDING VALUES ARE
    AVAILABLE
    216 IF(IHLF)201,201,217
    217 IF(N-7)201,218,218
    218 [F(ISTEP-4)201.219,219
    219 IMOD=ISTEP/2
    IFIISTEP-IMOD-IMODI 201,220,201
    220 H=H+H
        IHLF=IHLF-1
        ISTEP=0
        DO 221 I=1,NDIM
        AUX(N-1,I)=AUX(N-2,1)
        AUX(N-2,I)=AUX(N-4.I)
        AUX(N-3,I)=AUX(N-6,I)
    DHCG3090
    DHCG3090
DHCG3110
DHCG3120
OHCG31.30
```


CARD
0271
0272
0312
0313
0314
0315
0316
0317
0318
0319
0320
0320
0321
0322
0323
0324

80/80 LIST

```
0000000001111111111122222222223333333333.44444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```


80/80 LIST

80/80 LIST

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
0055
0056
0057
0058
0059
0060
0061
0062
0063 0064 0065

DO $22 \mathrm{~J}=1, \mathrm{~N}$
ASUM $=$ DCOS(J*PI*EL)*H*DLDT DFUNO540
OFUNO550
DA(J+1) $=(2.000 *(A S U M+B S U M))-(((P I * J) * * 2) * A(J+1))$ DFUNO560
22 CONTINUE
DFUNOSBO
30 DO $31 \mathrm{~J}=1$,NPI
DERY(J) $=$ DA(J) DFUNO590

31 CONTINUE DFUNO 600

DERY(NP2) = DLDT OFUNOG10 RETURNZI $=$ DLOT
RETURN DFUNO630
END

80180 LIST

80/80 LIST

VITA
Lawrence Barry Samartin
Candidate for the Degree of
Master of Science

Thesis: VAPORIZATION INTERFACE PROPAGATION THROUGH A ONE-DIMENSIONAL POROUS SLAB
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Newark, New Jersey, Ju1y 28, 1941, the sonof Mr. and Mrs. Louis J. Samartin.
Education: Graduated from Union High, Union, New Jersey, in June,1959; received Bachelor of Arts in Secondary MathematicsEducation degree from Newark State College in 1963; attendedStevens Institute of Technology, 1965-66; completed therequirements for the Master of Science degree at OklahomaState University in May, 1973.
Professional Experience: Secondary Mathematics Teacher, Union County Regional High School District No. 1, Berkley Heights, New Jersey, 1963-64; Computer Programmer, Western Electric Company, 1965-66; Communication Computer Systems Analyst, United States Air Force, 1967-69; Research Assistant, School of Mechanical and Aerospace Engineering, Oklahoma State University, 1970-72.

[^0]: ${ }^{1}$ For a discussion of this assumption see Appendix A.

[^1]: ${ }^{2}$ In this instance q_{y} represents the latent heat of vaporization, ρ_{ℓ} the density of the 1 iquid, and T_{v} the temperature of vaporization.

[^2]: ${ }^{3}$ The signs of q_{b} and q_{0} are negative as a result of the problem being oriented in the negative x direction.

[^3]: ${ }^{4}$ See Appendix B.

[^4]: ${ }^{5}$ See Appendix C.

[^5]: ${ }^{7}$ See Appendix E.

[^6]: ${ }^{8}$ See Appendix F.

[^7]: ${ }^{9}$ See Appendix G:

[^8]: ${ }^{10}$ The graphs presented have been smoothed over discrete points to eliminate cosine fluctuations.

[^9]: ${ }^{11}$ The subscripts: W and D refer to the wetted and dry regions, respectively.

