MEASUREMENT OF THE VISCOSITY OF METH-ANE SATURATED ABSORPTION OILS AT LOW TEMPERATURES AND ELEVATED PRESSURES USING A CAPIL-LARY VISCOMETER

By

HAROLD EUGENE RUDOLF Bachelor of Science Oklahoma State University

Stillwater, Oklahoma

1972

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1973

Thesis 1973 R 117m; Cap. 2

.

.

OKLAHOMA STATE UNIVERSITY LIBRARY

OCT 9 1973

MEASUREMENT OF THE VISCOSITY OF METH-ANE SATURATED ABSORPTION OILS AT LOW TEMPERATURES AND ELEVATED PRESSURES USING A CAPIL-LARY VISCOMETER

Thesis Approved:

iser Dean of the Graduate College

PREFACE

The physical behavior of lean oils as they are saturated with light hydrocarbon gases is only partially understood. Of special importance to the absorber industry is the viscosity of gas-saturated lean oils for the study of mass transfer rates. The mass transfer rate in turn influences the effectiveness of absorber columns. The purpose of this dissertation is to aid in the understanding of the effect of temperature, pressure and composition on the viscosity of absorber oils as they are saturated with methane. The range of conditions studied were pressures from atmospheric to 1006.7 psia and temperatures from $77^{\circ}F$ to $-26^{\circ}F$. The basic instrument used in this investigation was the Zeitfuchs style capillary viscometer.

I would like to take this opportunity to extend my sincere thanks to Professor R. N. Maddox, my research adviser, for the advice and encouragement that he gave me during this study. I also wish to thank Professor J. H. Erbar for his time and assistance with the computer work involved in this study and Mr. Gene McCroskey for his invaluable assistance with the construction and maintainence of laboratory equipment.

Special thanks go to my parents for their encouragement and to my sister, Barbara, for her kindness and consideration.

iii

TABLE OF CONTENTS

.....

Chapter				Page
I. INTRODUCTION	•	•	•	. 1
II. EXPERIMENTAL PROCEDURE		•		2 2 2 4 5 7 8
III. EXPERIMENTAL RESULTS	•	•	•	, 9
IV. DISCUSSION OF RESULTS	•	•	•	. 30
V. RECOMMENDATIONS	•	•	•	43.
BIBLIOGRAPHY	•	•	•	. 45
PPENDIX A - ERROR ANALYSIS	•	•	•	. 46
PPENDIX B - CHEMICAL ANALYSIS OF ABSORPTION OILS	•	•	•	. 50
PPENDIX C - CHARACTERIZATION OF ABSORPTION OILS	•	•	•	. 61
PPENDIX D - VISCOMETER CALIBRATION	• •	•	• •	74
PPENDIX E - CALIBRATION OF HEISE GAUGE NO. 51054	• •	•	•	. 79
PPENDIX F - EXPERIMENTAL DATA	• •	•	• •	. 83
PPENDIX G - CALCULATED KINEMATIC VISCOSITY	•	•	• •	. 102
PPENDIX H - CALCULATED DENSITY AND ABSOLUTE VISCOSITY	• •	•		. 107
PPENDIX I - CALCULATED EQUILIBRIUM DATA		e 1		. 113

LIST OF TABLES

Table		Page
I.	Mineral Spirits 135	52
II.	Heavy Solvent No. 1	53
III.	Highly Aromatic Lean Oil	54
IV.	Chemical Analysis of Highly Aromatic Lean Oil by Distillation Fraction	55
۷.	Characterization of Highly Aromatic Lean Oil by Distillation Fraction	56
VI.	Highly Naphthenic Lean Oil	57
VII.	Chemical Analysis of High Naphthenic Lean Oil by Distillation Fraction	58
VIII.	Characterization of Highly Naphthenic Lean Oil by Distillation Fractions	59
IX.	Virgin Lean 011	60
х.	0il Characterization	70
XI.	Highly Aromatic Lean Oil	71
XII.	Highly Naphthenic Lean Oil	72
XIII.	0il Sample Equivalent in Moles	73
XIV.	U-3502	75
XV.	U-3820	76
XVI.	U-2893	77
XVII.	Calculated Viscometer Constants	78
XVIII.	Calibration of Heise Gauge No. 51054	81
XIX.	Mineral Spirits 135	84

	Table	Page
a.	xx.	50/50 Mineral Spirits 135/ Heavy Solvent No. 1 88
	XXI.	Highly Aromatic Lean Oil
	XXII.	Highly Naphthenic Lean Oil
	XXIII.	Virgin 0i1
	XXIV.	Calculated Kinematic Viscosity
	xxv.	Calculated Density and Absolute Viscosity 108
	XXVI.	Mineral Spirits 135
:	XXVII.	50/50 Mineral Spirits 135 / Heavy Solvent No. 1 116
	XXIX.	Highly Naphthenic Lean Oil
	xxx.	Virgin Oil
	XXXI.	Predicted Equilibrium Liquid Molecular Weights 132

·--i

LIST OF FIGURES

.

•.

Figu	re	Page
1.	Schematic Diagram of the Experimental Apparatus	6
2.	Kinematic Viscosity of Mineral Spirits 135 as a Function of Pressure	10
3.	Absolute Viscosity of Mineral Spirits 135 as a Function of Pressure	11
4.	Kinematic Viscosity of Mineral Spirits 135 as a Function of Temperature	12
5.	Absolute Viscosity of Mineral Spirits 135 as a Function of Temperature	13
6.	Kinematic Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Pressure	14
7.	Absolute Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Pressure	15
8.	Kinematic Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Temperature	16
9.	Absolute Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Temperature	17
10.	Kinematic Viscosity of a Highly Aromatic Absorption 011 as a Function of Pressure	18
11.	Absolute Viscosity of a Highly Aromatic Absorption as a Function of Pressure	19
12.	Kinematic Viscosity of a Highly Aromatic Absorption Oil as a Function of Temperature	20
13.	Absolute Viscosity of a Highly Aromatic Absorption Oil as a Function of Temperature	21
14.	Kinematic Viscosity of a Highly Naphthenic Absorption Oil as a Function of Pressure	22

15.	Absolute Viscosity of a Highly Naphthenic Absorption Oil as a Function of Pressure	23
16.	Kinematic Viscosity of Highly Naphthenic Absorption Oil as a Function of Temperature	24
17.	Absolute Viscosity of a Highly Naphthenic Absorption Oil as a Function of Temperature	25
18.	Kinematic Viscosity of Virgin Oil as a Function of Pressure	26
19.	Absolute Viscosity of Virgin Oil as a Function of Pressure	27
20.	Kinematic Viscosity of Virgin Oil as a Function of Temperature	28
21.	Absolute Viscosity of Virgin Oil as a Function of Temperature	29
22.	Comparison of Lean Oils; K-Value as a Function of Pressure	31
23.	Comparison of Lean Oils; Absolute Viscosity as a Function of Pressure	33
24.	Comparison of Lean Oils; Absolute Viscosity as a Function of Pressure	34
25.	Comparison of Lean Oils; Absolute Viscosity as a Function of Temperature	35
26.	Comparison of Lean Oils; Absolute Viscosity as a Function of Temperature	36
27.	Comparison of Lean Oils; Molecular Weight as a Function of Pressure	37
28.	Absolute Viscosity of Methane-Highly Naphthenic Oil Equilibrium System as a Function of Methane Composition	39
29.	Density of Methane-Highly Naphthenic Oil Equilibrium System as a Function of Methane Composition	40
30.	Absolute Viscosity of Methane-Highly Naphthenic Oil System as a Function of Density	41
31.	True Boiling Point Profile for Highly Aromatic Lean Oil Divided into Fractions	63
32.	True Boiling Point Profile for Highly Naphthenic Lean Oil	64

Figure

33.	Molecular Weight as a Function of % Volume Overhead for Highly Aromatic Lean Oil	65
34.	Density as a Function of % Volume Overhead for Highly Aromatic Lean Oil	66
35.	Molecular Weight as a Function of Overhead for Highly Naphthenic Lean Oil	67
36.	Density as a Function of % Volume Overhead for Highly Naphthenic Lean Oil	68
37.	Calibration of Heise Gauge No. 51054	82

Page

LIST OF SYMBOLS

x

BP	- Average Boiling Point
сс	- Cubic centimeter
C-S	- Chao-Seader correlation
° _F	- Degree Fahrenheit
g	- Gram
HS No. 1	- Heavy Solvent No. 1
k	- Viscometer constant
MS 135	- Mineral Spirits 135
MW	- Average molecular weight
Рс	- Critical pressure
S-RK	- Soave RK correlation
t	- Time
Тс	- Critical temperature
v	- Kinematic viscosity

CHAPTER I

INTRODUCTION

The need for viscosity data on absorber oils saturated with the lighter hydrocarbon gases, namely methane, ethane and propane, exists mostly in the natural gas industry. To date, no English literature data appear to be available in this area of work. A survey by Weber (9) pointed out that lean oil viscosities are important in the study of mass transfer rates in absorber columns. These rates, in turn, have a large influence on tray efficiencies.

For refrigerated absorber operations the temperature range of interest is between $40^{\circ}F$ and $-60^{\circ}F$ with a pressure range between 500 psia and 1500 psia. The primary purpose of this study was to collect viscosity data on several selected absorber oils saturated with methane. The equipment used was a Zeitfuchs style viscometer mounted inside the high pressure cell built by Bennett (10). Because of the lack of experimental data, the equilibrium behavior and the density of each system was predicted using equations of state.

CHAPTER II

EXPERIMENTAL PROCEDURE

This chapter is divided into two sections: High Pressure Viscometer Cell and Viscometer Calibration. This was done in order to point out the physical differences between the apparatus used. The high pressure viscometer cell was used in all work in which above ambient pressures were applied. Calibration of the three original viscometers was performed using a Neslab Instrument Co., model LTEV-70, constant temperature bath. The high pressure viscometer cell used in this study was built by Bennett (2) and was used unmodified. For details of the equipment one may refer to the published thesis by Bennett (2). Minor dimensioning errors were noted in the previous work and are corrected in McCoy (3).

High Pressure Viscometer Cell

Temperature Control

A compression type refrigeration unit circulating methanol as the coolant was used as the primary means of maintaining constant temperature. A pressure sensing device attached to the compressor unit was used to control bath temperature with the desired temperature being set by adjusting the compressor cut-in cut-out pressure difference.

In order for the pressure sensing device to function properly a pressure difference of no less than 5 psi had to be maintained while too large a pressure difference would allow large temperature oscillation between compressor cut-in and cut-out. The magnitude of the temperature oscillation at any given pressure difference was also a function of the desired operating temperature.

All temperatures and temperature fluctuations were observed using a copper-constantan thermocouple and a Leeds and Northrup, model 7555, type K-5, potentiometer.

While operating at ambient temperature, temperature control was achieved by removing the methanol from the cell bath and utilizing a stagnant water blanket around the cell.

In an attempt to operate with close temperature control at lower temperatures, two electrical heating tapes were employed by wrapping them around the one-half inch copper tubing leading to the pressure cell bath. The purpose in using heaters was to transfer enough energy into the methanol coolant system to balance the energy removal by the refrigeration unit and maintain a constant bath temperature. One heater was attached to a 120 volt Powerstat to supply a constant current while the other was attached to a Baley Instrument Co. Precision Temperature Controller to supply the additional energy required to maintain the desired energy equilibrium.

With 20⁰F as the desired bath temperature, the efficiency of the refrigeration unit was high enough that maximum heat flux through the one-half inch copper line was not sufficient to maintain an energy equilibrium. The pressure sensing device on the original equipment

was then allowed to function and satisfactory temperature control was maintained. The temperature fluctuated very slowly within a few tenths of a degree Fahrenheit about the desired temperature.

With $-4^{\circ}F$ as the desired operating temperature, the pressure sensing device on the compressor unit provided very poor temperature control. The dual heater system was employed and the temperature showed very good stability.

Temperature control at the lower limit of the refrigeration unit, approximately $-26^{\circ}F$, was no problem since the energy gained from the atmosphere by the methanol coolant cycle was sufficient to equalize the affect of the refrigeration cycle.

Assembly and Sample Preparation

With the pressure cell exhausted to atmospheric pressure, the compressor and circulating pump were turned off and the bath coolant level lowered to allow removal of the pressure cell cap and viscometer. After the old sample was drained from the viscometer reservoir, technical grade acetone was used to clean the viscometer. To remove the acetone from the viscometer, dry filtered air was allowed to flow through the viscometer capillaries until completely dry. After two milliliters of new oil sample was transferred to the viscometer reservoir, the viscometer was lowered and secured in the pressure cell. If ambient pressure viscosity data were desired, the sample was forced out of the reservoir into the capillary tubing of the viscometer and kept there until temperature equilibrium was reached. More rapid temperature equilibrium was reached. More rapid temperature equilibrium was achieved in this manner along with a decrease in the

evaporative surface area of the oil sample in contact with the surrounding gas.

Purging and Pressurization

In order to rid the pressure cell of air after the installation of a new sample, the system was pruged by repreated pressurization and exhaustion. To initiate the purging operation all valves (Figure 1) were closed except valves A and B. A pressure of 200 psia was set on the Heise gauge by opening the methane supply via a pressure regulator. During the purging operation care was taken to maintain the oil sample in the viscometer reservoir without bubbling methane through it. As methane was allowed to flow through line N into the main cell, the pressure rise in the cell would force the sample out of the reservoir into the capillary tubing of the viscometer. To reestablish the sample in the viscometer reservoir, a compensating pressure was applied to the closed end of the viscometer, attached to line M, by allowing flow through valve E. When the pressure in the viscometer cell reached 200 psig the reverse process was performed. With valves D and A closed, valve C was opened to allow exhaustion of methane to a vent hood. Methane was allowed to flow very slowly through valve D with pressure equilibrium across the viscometer being maintained by allowing flow through valve E. Performing this procedure three times was sufficient to eliminate the majority of the air without wasting large amounts of methane. The oil samples were not subjected to pressures below that of atmospheric because of the possibility of boiling off significant quantities of the lighter components. In the manner of purging described, the samples were maintained as near the original

Figure 1. Schematic Diagram of the Experimental Apparatus

as possible and still allowed the removal of most of the air from the system.

While pressurizing to the final pressure, bubbling of methane through the sample was allowed when viscosity data were desired at ambient temperature. At bath temperatures below that of ambient, bubbling through the sample during pressurization was not allowed because of the temperature difference between the inflowing methane and the sample. Due to the high volatility of some of the experimental oils, flowing of a warm gas through a chilled sample may induce undesirable evaporation of some lighter components. After the pressurized system approached thermal equilibrium, bubbling methane through the oil sample was accomplished by using the inline pressure controller. Bubbling methane through the oil served to partially destroy concentration gradients in the sample. To further aid in achieving equilibrium, the sample was periodically forced through the capillary tubing of the viscometer and then back into the reservoir for further agitation.

Equilibrium and Data Collection

Measurement of the time required to fill the timing bulb on the viscometer was made during the saturation process in order to determine when equilibrium had been achieved. Until complete saturation was achieved, each succeeding run time was slightly shorter than the previous timing. Further agitation and more time was then allowed to permit the system to achieve equilibrium. When the time required to fill the timing bulb stabilized, final data runs were made and recorded.

Viscometer Calibration

Three model C-50 Zeitfuchs crossarm viscometers were initially used in this study which bore the identification numbers U-3502, U-3820, and U-2893. Distilled water was used in the calibration study to determine the viscometer constants. The calibration was done using a Neslab Instrument Co., model LTEV-70, constant temperature bath. After cleaning the viscometers with acetone, a two milliliter sample of distilled water was transferred to each of the three viscometers suspended in the bath. A piston type apparatus was attached to the capillary end of the viscometer for the purpose of initiating and reversing the flow of a sample. Passage of the fluid interface across the timing marks was observed using a 14 power cathetometer with the time required to fill the timing bulb being measured using two Standard clocks wired in series. After the bulb was filled, a slight pressure was applied to the sample forcing it back into the reservoir. When the interface of the back flowing sample reached about one-fourth of the way up the capillary tube, gravitational flow was reestablished and a new timed run started. The first run was in a dry bulb and was not recorded. The sample fluid was never allowed back into the reservoir during a set of runs because of the formation of a slug of fluid in the capillary ahead of the main stream. This would prematurely add fluid to the timing reservoir, thus inducing error among different oil systems because of surface tension differences among the oils.

Calibration data for the three crossarm viscometers are listed in Tables XIV, XV and XVI with the calculated viscometer constants in Table XVII.

CHAPTER III

EXPERIMENTAL RESULTS

This chapter is a graphical presentation of the behavior of kinematic and absolute viscosity as a function of temperature and pressure for each of the five lean oils under investigation. The absolute viscosity as presented were obtained from densities based on the equilibrium composition predicted by the Chao-Seader correlation.

Figure 2. Kinematic Viscosity of Mineral Spirits 135 as a Function of Pressure

Figure 3. Absolute Viscosity of Mineral Spirits 135 as a Function of Pressure

Figure 4. Kinematic Viscosity of Mineral Spirits 135 as a Function of Temperature

Figure 5. Absolute Viscosity of Mineral Spirits 135 as a Function of Temperature

Figure 6. Kinematic Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Pressure

Figure 7. Absolute Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Pressure

Figure 8. Kinematic Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Temperature

Figure 9. Absolute Viscosity of a 50/50 Mixture of Mineral Spirits 135 / Heavy Solvent No. 1 as a Function of Temperature

ţ

Figure 10. Kinematic Viscosity of a Highly Aromatic Absorption Oil as a Function of Pressure

Figure 11. Absolute Viscosity of a Highly Aromatic Absorption as a Function of Pressure

Figure 12. Kinematic Viscosity of a Highly Aromatic Absorption Oil as a Function of Temperature

Figure 14. Kinematic Viscosity of a Highly Naphthenic Absorption Oil as a Function of Pressure

Figure 15. Absolute Viscosity of a Highly Naphthenic Absorption Oil as a Function of Pressure

Kinematic Viscosity of Highly Naphthenic Absorption Oil as a Function of Temperature

Figure 17. Absolute Viscosity of a Highly Naphthenic Absorption Oil as a Function of Temperature

Figure 18. Kinematic Viscosity of Virgin Oil as a Function of Pressure

Figure 19. Absolute Viscosity of Virgin Oil as a Function of Pressure

Figure 20. Kinematic Viscosity of Virgin Oil as a Function of Temperature

Figure 21. Absolute Viscosity of Virgin Oil as a Function of Temperature

e.**

CHAPTER IV

DISCUSSION OF RESULTS

The plots in this chapter represent only a small portion of the data obtained either experimentally or from equations of state but they are representative of the general behavior found throughout this study.

The equilibrium behavior of the lean oil systems was predicted using the correlation of Chao and Seader and the Soave RK correlation. The differences between the equilibrium compositions predicted by these two correlations were found to be relatively small. All data plotted are based on the equilibrium behavior predicted by the Chao-Seader correlation.

Before a comparison of the viscous behavior of the five lean oil systems is made, the predicted methane K-values should be examined on a common scale. Figure 22 presents plots on a log-log scale of methane K-values vs. the absolute pressure. The five lean oil systems studied may be broken into three groups based on composition; paraffinic, naphthenic, and aromatic. As depicted in Figure 22, the equilibrium behavior of the five oil systems is divided into three separate categories. Line 1 represents that oil system which consists largely of aromatic compounds and exhibits the largest methane K-values. Lines 2 and 3 represent the second category oil systems which are composed of about 80% paraffins and naphthenic compounds, divided equally, with

the remainder composed of aromatic compounds. The third category represented by lines 4 and 5 is composed of largely paraffins and largely naphthenic and paraffinic compounds but very little if any aromatic compounds. The methane K-values predicted in this study appear to compare qualitatively to those found experimentally by Kobayashi et. al. (4).

Figures 23, 24, 25 and 26 show a comparison of the absolute viscosity among the absorption oil systems. Viscosity profiles are shown to be separated into three categories; one containing a 50/50 mixture of Mineral Spirits 135 / Heavy Solvent No. 1, the second containing Mineral Spirits 135 and Highly Aromatic systems and the third containing Highly Naphthenic and Virgin Oil systems. Comparison on a molecular weight basis, Figure 27, the oils show a similar breakdown into the three categories. A quantitative comparison among the average molecular weights for the unsaturated lean oils in each category is: 50/50 MS 135 / HS No. 1, 153; MS 135 and Highly Aromatic Oil, 135 and 122 respectively and highly Naphthenic and Virgin Oil, 113 and 118 respectively.

Isotherms and isobars of absolute viscosity show a variation with pressure and temperature similar to that of kinematic viscosity. For this reason only absolute viscosity is referred to in this analysis.

Referring to Figures 23 and 24, at $-26^{\circ}F$ as the pressure is increased from atmospheric pressure to 1006.7 psia the absolute viscosity decreased by about 50% while at $77^{\circ}F$ the absolute viscosity decreased by about 30%. Higher temperatures tend to decrease the dependence of viscosity on pressure. The viscosity dependence on

Figure 23. Comparison of Lean Oils; Absolute Viscosity as a Function of Pressure

Figure 24. Comparison of Lean Oils; Absolute Viscosity as a Function of Pressure

Temperature

Temperature

Figure 27. Comparison of Lean Oils; Molecular Weight as a Function of Pressure

temperature is shown in Figures 25 and 26 at constant pressures of 14.4 and 1006.7 psia respectively. Figure 25 shows the most dramatic change of viscosity with temperature with the 50/50 mixture of MS 135 / HS No. 1 showing a decrease in absolute viscosity by about 75% as the temperature was increased from $-26^{\circ}F$ to $77^{\circ}F$. In all other cases including those in Figure 26 a decrease in absolute viscosity by about 50% was noted. The large change in absolute viscosity with temperature in Figure 25 is due to the lack of methane in the system. In Figure 26, the direct effect of temperature on viscosity was depressed by the increase in methane solubility at low temperatures.

At a temperature of -26° F a solid phase was present in the 50/50, MS 135/HS No. 1 system. The concentration of the small crystal flakes was observed to decrease as the pressure increased at constant temperature. Total disappearance was noted at 1006.7 psia. The disappearance of the solid phase may be attributed to the decrease in molecular weight of the solution as the concentration of methane increased with increasing pressure.

Figures 28, 29 and 30 show the relation among the five variables, not necessarily independent; temperature, pressure, methane concentration, density and absolute viscosity, for an equilibrium system.

A. Figure 28: At constant temperature, an increase in liquid phase methane concentration is accompanied by a decrease in absolute viscosity. The increase in methane concentration is the result of an increase in pressure. A decrease in temperature along a low pressure isobar results in a relatively large increase in absolute viscosity and a small increase in methane concentration.

as a Function of Methane Composition.

Figure 30. Absolute Viscosity of Methane-Highly Naphthenic Oil System as a Function of Density

- B. Figure 29: As the methane concentration increases along an isotherm the density decreases at a rate independent of temperature. Along a low pressure isobar, a decrease in temperature effects a relatively large increase in density with a small increase in methane concentration. Along a high pressure isobar, a decrease in temperature results in an inversion in the density trend. The solubility of methane is large at these conditions with the increase in methane concentration overriding the temperature effect on density.
- C. Figure 30: An increase in density at constant temperature results in an increase in absolute viscosity.

CHAPTER V

RECOMMENDATIONS

The equipment as designed provided a reasonable means by which to obtain kinematic viscosity. There are several modifications that would facilitate operation of the equipment and more accurate kinematic data.

Suggested modifications are:

- During this work, materials were studied that were highly sensitive to temperature changes. Bath temperature control, depending on the technique used, ranged from excellent to inoperable. Modification or replacement of the present refrigeration system is recommended. Temperature fluctuations of the bath fluid made determining the actual temperature at which the oils were being studied very difficult.
- 2. In order to determine the damping effect of the gas in the cell upon temperature fluctuations of the bath fluid, a shielded thermocouple inserted into the cell would be valuable in determining the actual sample temperature.
- 3. Independent of the care that one exerted to clean the viscometer, foreign matter was observed suspended in the oil samples. A modification of the location of one of the inlet gas lines is suggested to eliminate the entrance of gas into the main cell through the brass tubing which extends down

ルス

into the viscometer reservoir. With this modification, foreign matter carried through the gas line would fall harmlessly to the bottom of the cell.

- 4. In this study specific oil samples were studied with several being highly volatile. For this reason, in order to maintain the oil samples as near the original as possible, purging of the cell was never performed using evacuation techniques. The installation of a bleed line in the bottom of the cell would make purging easier and more effective.
- 5. While working at high pressures, the application of a backpressure to reverse the direction of flow of the test fluid by means of the inline pressure controller was very difficult. Since a large volume displacement is not required to induce a small pressure difference across the sample, a high pressure Ruska pump should be installed in parallel with the inline pressure controller.
- 6. During operation at high pressure and low temperatures, leaking around the windows and around the cell cap presented some problems. Replacing the Viton O-rings with energized Teflon coated stainless steel O-rings would solve most problems of this nature.

BIBLIOGRAPHY

- (1) American Petroleum Institute, <u>Technical Data Book-Petroleum</u> Refining, 2nd Edition, 1970.
- (2) Hougen, O. A. and Watson, K. M., <u>Chemical Process Principles</u>, New York, John Wiley and Sons, Inc., Ninth Printing, 1950.
- (3) Kobayashi, Riki, Chappelear, Patsey S., Chang, Harry, L., "Comparison of the Experimental Phase Behavior of the Methane-N-Heptane, the Methane-Methylcyclohexane, and the Methane-Toluene Systems," Proceedings of Forty-Sixth Annual NGPA Convention, 19, p 20-25.
- (4) _____, NGPSA Engineering Data Book, 9th Ed., 1972, Natural Gas Processors Association, Tulsa, Oklahoma.
- (5) Chao, K. C. and Seader, J. D., "A General Correlation of Vapor-Liquid Equilibria in Hydrocarbon Mixtures," <u>A.I.Ch.E.</u> <u>Journal</u>, Dec. 1961, p 598-605.
- (6) ____, NGPA K&H Value Program, Natural Gas Processors Association, Tulsa, Oklahoma.
- (7) _____, Oklahoma State University Density Program distributed by Natural Gas Processors Association, Tulsa, Oklahoma.
- (8) Deam, J. R., Published Ph.D. dissertation, Oklahoma State University, Stillwater, Oklahoma, 1968.
- (9) Weber, J. H., "Absorption Literature Survey (NGPA)," Sept. 3, 1964, p 77.
- (10) Bennett, S. E., M.S. Thesis, Oklahoma State University, Stillwater, Oklahoma, May, 1969.
- (11) McCoy, David D., Unpublished Masters Thesis, Oklahoma State University.
- (12) Weast, Robert C., <u>Handbook of Chemistry and Physics</u>, 48th Edition, Cleveland, Ohio: The Chemical Rubber Co., 1967-1968.
- (13) Perry, J. H., ed. <u>Chemical Engineer's Handbook</u>, 4th Edition, New York: McGraw-Hill, 1963.

APPENDIX A

ERROR ANALYSIS

ERROR ANALYSIS

Deam (8) presented a method for evaluating the most probable value of error as a result of uncertainties in experimental measurements. The equations used to calculate the kinematic and absolute viscosity are respectively,

$$v = kt$$
(1)

and,

$$\mu = kt\rho \tag{2}$$

Referring to equation (2), the errors associated with k and t for a specific set of viscosity data are independent and the total error is equivalent to the square root of the sum of the squares of each associated error.

$$\Delta v = \sqrt{(\Delta v_k)^2 + (\Delta v_t)^2}$$
(3)

The errors associated with each term in equation (1) are defined as follows:

$$\Delta \mathbf{v}_{\mathbf{k}} = \frac{\gamma \mathbf{v}}{\gamma \mathbf{k}} \, \delta \mathbf{k} = \mathbf{t} \delta_{\mathbf{k}} \tag{4}$$

$$\Delta \mathbf{v}_{t} = \frac{\gamma \mathbf{v}}{\gamma t} \delta_{t} = k \delta_{t}$$
 (5)

where δ_k and δ_t are the uncertainties in the viscometer constant, k, and the time, t.

(6)

(7)

$$\Delta \mathbf{v}_{\mathbf{k}} = \mathbf{t} \delta_{\mathbf{k}}$$

$$t = v/k$$

$$\Delta v_{k} = v \frac{\delta_{k}}{k}$$
(8)

$$\Delta \mathbf{v}_{t} = \mathbf{v} \frac{\delta_{t}}{t}$$
(9)

Substituting equation (8) and (9) into equation (3) we have for the total error in the kinematic viscosity,

$$v = v \sqrt{\left(\frac{\delta_{k}}{k}\right)^{2} + \left(\frac{\delta_{t}}{t}\right)^{2}}$$
 (10)

A typical set of data for the methane-Highly Naphthenic equilibrium system are

k = .0109498
t = 119.99 sec.
ρ = .8205 g/cc
v = 1.3139 centistokes
μ = 1.0781 centipoise

The values of k and t were determined experimentally with the density being predicted from equations of state. The uncertainty associated with k was determined using the fastest and slowest run times of the calibration set. Viscometer constants were calculated for both times with one-half their difference being the uncertainty associated with k. The uncertainty in the time was calculated in a similar manner resulting in

with

 $\delta_{\mathbf{k}} = .000044$ $\delta_{\mathbf{t}} = .27$

The density of each equilibrium system was predicted using the OSU Density Program (7) with the equilibrium composition being predicted by the NGPA K&H program (6) via the Chao-Seader correlation. The K-values as predicted by the Chao-Seader correlation have an average deviation from experimental data of 10%. Projecting graphically a 10% uncertainty in K-values to an uncertainty in methane composition and finally to an uncertainty in the density resulted in ${}^{\delta}\rho$ = .006.

Using equation (10), the most probable value in kinematic viscosity is

 $\Delta v = .006$

Then,

 $v = 1.3139 \pm .006$ centistokes

Using an expanded form of equation (10), the most probable value of error in absolute viscosity is

$\Delta \mu = .009$

Then,

 $\mu = 1.0781 + .009$ centipoise

APPENDIX B

CHEMICAL ANALYSIS OF ABSORPTION OILS

CHEMICAL ANALYSIS OF ABSORPTION OILS

The oil samples used in this investigation were received from various locations around the United States. To establish the origin of each sample, a brief history is presented in the following paragraph.

Mineral Spirits 135 and Heavy Solvent No. 1, Tables I and II respectively, are two of Shell Oil Company's absorption oils. Mineral Spirits 135 is used by Roberts Ranch with a 50/50 blend of Mineral Spirits 135 and Heavy Solvent No. 1 being used by Bluitt. The Highly Aromatic lean oil, Table III, IV and V, was received from Bitter Creek, Wyoming. The Highly Naphthenic lean oil, Table VI, VII and VIII, was received from Alvin, Texas. The Virgin Oil, Table X, was received from Cities Service Oil Company's Chico plant.

TABLE I

MINERAL SPIRITS 135

.

Gravity API 49.5 Gravity Spec. @ 60°F. 0.7818 Saybolt Color Plus 28 Flash Tag CC 101 . Doctor Test Negative KB No. 36.7 Aniline Pt. 132 Paraffins ,% 39.0 Olefins ,% 0.2 Naphthenes,% 45.6 Aromatics ,% 15.6 Head Temp.^oF Distillation 306 IBP 50% 324 90% 348 End Pt. 401 Recovery 98.0 Sulfur 0.008 Corrosion CU. Strip Strip 1A (1)

(1) Not darker than

TABLE II	
----------	--

HEAVY SOLVENT NO. 1

Gravity API 42.0 Gravity Spec. @ 60°F. 0.8156 Saybolt Color 20 Flash Tag CC 135 Doctor Test Positive --KB No. Aniline Pt. Paraffins ,% 37.0 Olefins ,% 00.0 Naphthenes,% 43.0 20.0 Aromatics ,% Head Temp.^OF. Distillation IBP 340 50% 427 90% 497 530 End Pt. Recovery _ 0.06 Sulfur Corrosion CU Strip Strip 1 (1)

(1) Not darker than

TABLE III

HIGHLY AROMATIC LEAN OIL

Density $(q/cc.60^{\circ}F)$	0 7892
Molecular Weight	122
Pofractive Index 68 ⁰ F	1 4460
Applugice	1.4400
Paraifins ,6	34.6
Naphthenes ,%	26.3
Aromatics ,%	33.1
Dicyclo-	
Paraffins,%	05.9
Distillation:	Head Temp. F.
IBP	280
5%	284
10	286
20	288
30	290
40	292
50	294
60	207
70	300
80	204
80	304
90	312
95	320
End Pt.	352
Residue,%	1.4

TABLE IV

CHEMICAL ANALYSIS OF HIGHLY AROMATIC LEAN OIL BY DISTILLATION FRACTION

	Analysis				
Dist. Cut	Paraffins	Naphthenes	Aromatics	Dicyclo- Paraffins	
Original		.			
Sample	34.6	26.3	33.1	5.9	
1	29.2	60.0	10.5	0.4	
2	22.8	30.2	43.5	3.5	
3	25.8	17.4	54.0	2.9	
4	49.1	38.8	9.7	2.5	
5	32.9	31.3	29.5	6.3	
6	29.5	16.0	48.6	6.0	
Residue	31.1	26.6	37.7	4.6	

TABLE V.

CHARACTERIZATION OF HIGHLY AROMATIC LEAN OIL BY DISTILLATION FRACTION

Dist. Cut	Head Temp, F	Vol,% Dist.	Density g/cc,60 ⁰ F	Mol. Wt.	Refractive Index,60 ⁰ F
Original					
Sample	· · · · · · · · · · · · · · · · · · ·	·	0.7892	122	1.4460
1	230-262	6.5	0.759	110	1.4225
2	262-277	19.3	0.798	113	1.4505
3	277-292	46.7	0.810	115	1.4585
4	292-308	72.5	0.760	111	1.4255
5	308-322	87.0	0.796	129	1.4453
6	322-326	92.2	0.811	128	1.4602
Residue	-	100.0	0.812	141	1.3570

TABLE VI

HIGHLY NAPHTHENIC LEAN OIL

Density (g/cc,60⁰F) Molecular Weight Refractive Index,68⁰F 0.756 113 1.4228 Analysis: Paraffins ,% 33.0. Naphthenes ,% 55.0 Aromatics ,% 09.4 Dicyclo-Paraffins,% 02.6 Head Temp. F. Distillation: İBP 210 10% 237 20 241 30 245 40 249 50 252 60 256 70 260 80 266 90 278 95 297 End Pt. 330 Residue,% 1.4

TABLE VII

CHEMICAL ANALYSIS OF HIGH NAPHTHENIC LEAN OIL BY DISTILLATION FRACTION

		Anal	ysis	
Dist. Cut	Paraffins	Naphthenes	Aromatics	Dicyclo- Paraffins
Original	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		·····
Sample	33.0	55.0	9.4	2.6
1	32.5	62.8	3.2	1.5
2	21.2	67.8	8.1	2.9
3	38.9	57.0	3.0	1.1
4	32.9	65.0	1.3	0.9
5	31.1	66.9	1.1	1.0
6	35.2	61.5	3.3	0.0
7	30.7	51.8	13.3	4.3
8	30.9	39.0	24.4	5.7
9	37.3	31.4	26.3	5.1
10	44.5	42.2	7.6	5.7
Residue	27.6	55.1	10.3	7.0

.

.

TABLE VIII

CHARACTERIZATION OF HIGHLY NAPHTHENIC LEAN OIL BY DISTILLATION FRACTIONS

Dist. Cut	Head Temp, F	Vol,% Dist.	Density g/cc,60 ⁰ F	Mol. Wt.	Refractive Index,60 ⁰ F
Cample	_	_	0 756	113	1 4228
	136-212	10	0.733	99	1,4080
2	212-230	20	0.752	105	1,4185
3	230-243	30	0.740	113	1.4138
4	243-248	40	0.744	115	1.4148
5	248-250	50	0.748	116	1.4160
6	250-261	60	0.749	115	1,4170
7	261-270	70	0.761	119	1,4280
8	270-275	80	0.785	118	1,4370
9	275-289	90	0.781	118	1,4382
10	289-295	92	0.760	129	1,4255
11	Residue	100	0.787	139	1.4382

TABLE	IX
-------	----

VIRGIN LEAN OIL

		Cities
	Typical	Distillation
Gravity, API	61.5	58.
Molecular Wt.	119	118
Doctor Test	Negative	—
Corrosion	1A	
Paraffins,%	94.8	-
Aromatics,%	05.3	
Distillation:	o _F	° _F
IBP	238	222
10%	248	253
20	-	256
30	-	258
50	267	265
70	-	274
90	284	290
End Pt.	330	336
Recovery,%	99.0	96.5
Residue,%	· _	0.6
Loss X	_	2.9

APPENDIX C

CHARACTERIZATION OF ABSORPTION OILS
CHARACTERIZATION OF ABSORPTION OILS

Absolute viscosity is the product of kinematic viscosity and density. In order to predict the density of an equilibrium system one must be able to predict its equilibrium behavior. In this study, the NGPA K&H program (6) was used to predict the equilibrium behavior of each system. The data required to characterize a system for use in the NGPA K&H program (6) were: mean average boiling point, critical temperature, critical pressure, ^OAPI Gravity and the average molecular weight of each system component.

Figures 31 and 32 show the True Boiling Point curves for the Highly Aromatic and for the Highly Naphthenic lean oils respectively. The Highly Aromatic and the Highly Naphthenic absorption oils were divided into ten fractions as illustrated in these figures. Each fraction represented a hypothetical component in order that the oils may be more accurately defined for use in the equations of state. The other three oils: MS 135, 50/50, MS 135/HS No. 1 and Virgin Oil, were considered as a single hypothetical component due to the lack of detailed distillation analysis.

Figures 33 and 34 present the behavior of molecular weight and density as a function of % volume overhead for Highly Aromatic lean oil. Figures 35 and 36 show the behavior of molecular weight and density as a function of % volume overhead for Highly Naphthenic lean oil. The division of the oil into fractions as shown in the TBP

62

e 31. True Boiling Point Profile for Highly Aromatic Lean Oil Divided into Fractions

Figure 32. True Boiling Point Profile for Highly Naphthenic Lean Oil

 $\cdot t$

•

Figure 35. Molecular Weight as a Function of Overhead for Highly Naphthenic Lean Oil

1

curves, Figures 31 and 32, are used likewise in Figures 33 through 36 to determine the average density and molecular weight for each hypothetical component. ^OAPI data for each hypothetical component was obtained from Figure 63 of (2) using the average boiling point and molecular weight of each fraction. The critical properties of each fraction were taken from (1). The results of this analysis are presented in Tables X, XI and XII.

In order to determine the equilibrium behavior for each oil system, two milliliters of sample along with 1223 cc of methane was flashed at each desired temperature and pressure. The number of moles of methane occupied by the cell at each operating condition was calculated using the ideal gas relation with the appropriate compressibility factor as obtained from (3). The mole equivalent of each sample is presented in Table XIII.

69

TABLE X

Oil Name	BP (^o F)	Tc (^o F)	Pc (psia)	° _{API}	MW
MS 135	324.	655.	375.	49.5	135.
HS No. 1	427.			42.0	
50/50 MS 135/ HS No. 1	375.	705.	340.	45.8	153.
Virgin Oil	270.	588.	380.	58.0	118.

OIL CHARACTERIZATION

TABLE	XI
-------	----

HIGHLY AROMATIC LEAN OIL

Fraction	Poiling Dt	Mologular	Donaitu	Molo
Valumo	$O_{\rm E}$	Morecular		Fraction
			<u>(g/cc)</u>	$\frac{\text{FLACLIOII}}{0.107}$
0.1	204	112	0.704	0.107
0.2	207	11/	0.799	0.109
0.3	289		0.805	0.111
0.4	291	110	0.806	0.108
0.5	293	113	0.787	0.10/
0.6	296	112	0.768	0.106
0./	299	116	0.769	0.102
0.8	302	125	0.788	0.097
0.9	308	128	0.805	0.097
1.0	320	140	0.812	0.089
Fraction			Тс	Pc
Volume	Moles	° _{API}		(Psia)
0.1	.00138	33.	1110.	520.
0.2	.00141	37.	1110.	495.
0.3	.00142	37.	1110.	490.
0.4	.00139	39.	1110.	474.
0.5	.00138	35.	1120.	500.
0.6	.00137	37.	1120.	480.
0.7	.00131	37.	1120.	474.
0.8	.00125	49.	1095.	400
0.9	.00125	52.	1095.	378-
1.0	.00115	60.	1090.	326.

•

TABLE XII

HIGHLY NAPHTHENIC LEAN OIL

Fraction	Boiling Pt.	Molecular	Density	Mole
<u>Volume</u>	<u> (°F) </u>	Weight	<u>(g/cc)</u>	<u>Fraction</u>
0.1	230.	90.	0.733	0.111
0.2	240.	105.	0.752	0.107
0.3	244.	113.	0.740	0.105
0.4	247.	115.	0.744	0.097
0.5	250.	116.	0.748	0.097
0.6	254.	115.	0.749	0.097
0.7	258.	119.	0.761	0.096
0.8	263.	118.	0.785	0.099
0.9	271.	118.	0.781	0.099
1.0	297.	131.	0.773	0.088
			· ,	
Fraction		0	TC	Pc
Volume	Moles	API	<u>(F)</u>	<u>(Psia)</u>
0.1	.00149	45.	1035.	520.
0.2	.00143	49.	1038.	480.
0.3	.00140	63.	1015.	400.
0.4	.00129	65.	1015.	385.
0.5	.00129	64.	1020.	388.
0.6	.00129	63.	1025.	385.
0.7	.00129	65.	1025.	370.
0.8	.00132	60.	1040.	390.
0.9	.00132	53.	1060.	414.
1.0	.00117	61.	1065.	348.
				· · · · · · · · · · · · · · · · · · ·

TABLE XIII

OIL SAMPLE EQUIVALENT IN MOLES

Oil Name	Sample Volume (cc)	Average Molecular Weight (g/g mole)	Average Density (g/cc)	moles
Mineral Spirits 135	2.0	135	.7818	.0116
50/50 Mineral Spirits 135/ Heavy Solvent No. 1	2.0	153	.7987	.0104
Highly Aromatic Oil	2.0	122	.7892	.0129
Highly Naphthenic Oil	2.0	113	.7560	.0134
Virgin Oil	2.0	118	.7818	.0127

73

APPENDIX D

VISCOMETER CALIBRATION

TABLE XIV

V-3502

Visc., No.	Run No.,	Temp., F	Flow Time, sec.	Percent Deviation
U-3502	1	20.	302.61	+.314
	2	20.	301.88	+.069
	3	20.	301.79	+.040
	4	20.	303.10	+.474
	5	20.	302.17	+.166
	6	20.	301.90	+.076
	7	20.	301.39	093
	8	20.	301.55	043
	9	20.	301.59	027
	10	20.	301.89	+.073
	11	20.	301.34	109
	12	20.	301.31	119
	13	20.	301.54	043
	14	20.	301.14	175
	15	20.	300.91	248
	16	20.	301.22	149
	17	20.	301.35	100
	18	20.	301.94	+.089
	19	20.	301.37	099
	20	20.	301.42	086
	Avg.	20.	301.67	•

Distilled Water Pressure = 743.65 mm Hg.

TABLE XV

U-3820

Visc., No.	Run No.	Temp., F	Flow Time, sec.	Percent Deviation
U-3820	· 1	20.	294.03	+.478
	2	20.	294.03	+.478
	3	20.	292.80	+.068
	4	20.	292.47	044
	5	20.	292.47	044
	6	20.	293.34	+.430
	7	20.	292.05	188
·	8	20.	292.08	178
•	9	20.	292.15	154
	10	20.	292.44	056
	11	20.	293.00	+.137
	12	20.	292.48	041
	13	20.	292.40	068
	14	20.	292.29	106
	15	20.	292.35	085
	16	20.	292.35	085
· · ·	17	20.	292.60	0.000
	18	20.	292.21	133
	19	20.	292.29	106
	20		292.26	116
	Avg.	20.	292.60	

Distilled Water

TABLE XVI

U-2893

Visc., No.	Run No.	Temp., F	Flow Time, sec.	Percent Deviation
U-2893	1	20.	92.13	+,502
	2	20.	91.93	+.393
	3	20.	91.92	+.273
	4	20.	91.84	+.185
	5	20.	91.76	+.098
	6	20.	91.69	+.022
	7	20.	91.62	054
	8	20.	91.58	098
	9	20.	91.70	+.033
	10	20.	91.79	+.131
	11	20.	91.78	+.120
	12	20.	91.62	054
	13	20.	91.66	011
	14	20.	91.72	+.055
	15	20.	91.69	+.022
	16	20.	91.66	011
	17	20.	91.51	174
	18	20.	91.50	185
	19	20.	91.63	044
	20	20.	91.59	087
	21	20.	91.50	185
	22	20.	91.60	076
	23	20.	91.49	196
	24	20	91.38	316
	25	20.	91.47	218
	Avg.	20.	91.67	

Distilled Water Pressure = 741.10 mm Hg.

TABLE XVII

			,
Viscometer	Calibration	Cons	stants
Number	Avg. Time(sec.)	Reported	Calculated
Ū−3502	301.67	0.003	0.0033274
U-3820	292.60	0.003	0.0034305
U-2893	91.67	0.010	0.0109498
	-		

CALCULATED VISCOMETER CONSTANTS

Water viscosity at $20.^{\circ}C = 0.01002$ Poise (12)

Water density at $20.^{\circ}C = 0.9982343 \text{ g/ml}$ (13)

APPENDIX E

CALIBRATION OF HEISE GAUGE NO. 51054

CALIBRATION OF HEISE GAUGE NO. 51054

Calibration of the 3000 psig Heise Gauge No. 51054 was performed using a Ruska Dual Range Dead Weight Gage, Model 2400.21, Serial Nos. 14203 (Gage) and 14462 (weights). Ambient conditions present during calibration were a pressure of 742.9 mm Hg and a temperature of 24^oC.

Calibration values are listed in Table XVIII and graphically illustrated in Figure 37.

TABLE XVIII

CALIBRATION OF HEISE GAUGE NO. 51054

Ambient Conditions:

Pressure = 742.9 mm Hg. Temperature = $24^{\circ}C$

Heise Gauge Reading (psig)	Dead Weight Test (psig)
100	93.4
200	193.3
300	291.9
400	395.8
500	493.8
600	592.1
700	692.1
800	794.3
900	893.2
1000	992.3
1100	1095.4
1200	1196.2

È.

APPENDIX F

EXPERIMENTAL DATA

÷

		TABLE	XIX
--	--	-------	-----

	·		
Saturation Gas			
Viscometer No.			
Temperature(^o F)	Run	Flow Time.	Percent
Pressure(psia)	No.	sec.	Deviation
	·····	· · · · · · · · · · · · · · · · · · ·	
Air	1	97.21	+.021
U-2893	2	97.21	+.021
77.18	3	97.15	041
14.4	Avg.	97.19	
Methane	1	94. 58	042
U-2893	2	94.67	+.053
77.45	3	94.65	+.032
107.8	_4	94.58	042
	Avg.	94.62	
Methane	1	83.66	+.012
U-2893	2	83.58	084
77.45	3	83.76	132
508.2	4	83.70	+.060
	5	83.63	095
	6	83.59	072
	7	83.68	036
	8	83.62	036
	Avg.	83.65	
Methane	1	73.67	054
U-2893	2	73.79	+.108
77.45	3	73.70	0.014
1006.7	4	73.69	027
	Avg.	73.71	

Saturation Gas			
Viscometer No.			
Temperature(^O F)	Run	Flow Time,	Percent
Pressure(psia)	No.	sec.	Deviation
Air	1	325.58	086
U-3820	2	325.66	061
68	3	325.63	071
14.4	4	325.94	+.025
	5	325.88	+.006
	6	325.95	+,028
	7	325,86	0.000
	8	325.72	043
• •	ğ	325 83	- 009
	10	325 78	- 025
	11	325.84	- 006
	12	326 04	000 ±.055
	13	326.04	+.055
	14	225.05	+ 029
	15	226.25	+.020 + 110
		325.86	T.119
	Avg.	525.80	
Air	1	436.60	082
U-3820	2	436.42	124
32	3	436.98	+.005
14.4	4	435.93	236
	5	435.57	014
· ·	6	436.90	014
	7	436.20	174
	8	436.52	101
	9	436.95	002
	10	437.32	+.082
· · ·	11	437.65	+.158
	12	436.97	+.002
	13	437.54	+.113
	14	437.27	+.071
	15	437.48	+.119
	16	437.20	+.055
	17	437.54	+.039
	18	437.41	+,103
	19	437.44	+ 100
	20	437.30	+ 078
		437.30	T.010

TABLE XIX (Continued)

.

Saturation Gas Viscometer No. Temperature(^O F) Pressure(psia)	Run No•	Flow Time, sec.	Percent Deviation
Air	1	158.78	076
U-2893	2	158.76	088
20	3	158.89	006
14.4	4	159.19	+.182
	Avg.	158.90	
Methane	1	150.42	+.073
U-2893	2	150.30	007
20	3	150.33	+.013
107.8	4	150.18	086
	Avg.	150.31	
Methane	1	124.58	+.040
U-2893	2	124.62	+.072
20	3	124.40	104
508.2	Avg.	124.53	
Methane	1	102.30	+.098
U-2893	2	102.41	+.205
20	3	102.01	186
1006.7	4	102.03	166
	5	102.23	+.029
· · · · · · · · · · · · · · · · · · ·	Avg.	102.20	
Air	1 1	646.64	015
U-3820	2	646.21	082
-4	3	646.11	098
14.4	4	645.68	164
	5	646.35	060
	6	646.64	015
	7	647.00	+.040
	8	645.50	192
	- 9	647.54	+.124
	10	646.59	023
	11	647.19	+.069
	12	647.64	+.139
	13	647.75	+.156
	14	647.22	+.074
	15	647.05	+.048
	<u></u>		1.040

TABLE XIX (Continued)

•

Saturation Gas	· · · · · · · · · · · · · · · · · · ·		
Viscometer No.			
Temperature(^O F)	Run	Flow Time,	Percent
Pressure(psia)	No.	sec.	Deviation
Methane	1	188.55	+.090
U-2893	2	188.49	+.058
-4	3	188.14	127
107.8	4	188.33	027
	Avg.	188.38	
Methane	1	149.57	047
U-2893	2	149.78	+.094
-4	3	149.75	+.074
508.2		149.47	114
	Avg.	149.64	
Methane	1	119.29	067
U-2893	2	119.29	067
-4	3	119.51	+.109
1006.7	_4	<u>119.42</u>	+.034
	Avg.	119.38	
Air	1	267.40	067
U-2893	2	267.73	+.056
-26	3	267.73	+.056
14.4	$\frac{4}{\text{Avg}}$.	$\frac{267.47}{267.58}$	041
Mothero	1	246 28	- 053
Methane 11_2803	1 2	240,20	055 + 056
-26	2	240.33	- 008
107.8	Avg.	246.41	005
Methane	1	180 93	+ 033
II-2893	2	181 07	+ 110
-26	3	180 62	- 138
508.2	Avg.	180.87	.130
Methane	1	135.73	+.077
U-2893	2	135.75	+.022
-26	3	135.69	022
1006.7	Avg.	135.72	
		· · · · · · · · · · · · · · · · · · ·	

TABLE XIX (Continued)

TABLE XX

50/50 MINERAL SPIRITS 135/ HEAVY SOLVENT NO. 1

	·		
Saturation Gas			
Viscometer No.			
Temperature(^O F)	Run	Flow Time,	Percent
Pressure(psia)	No.	sec.	Deviation
······		1/7 07	
	· L	147.07	+.020
0-2893	2	146.99	034
//.45		147.06	+.014
14.4	Avg.	147.04	
Methane	1	141.39	028
U-2893	2	141.45	+.014
77.45		141.44	+.017
107.8	Avg.	141.43	•
Methane	1	123.39	008
U-2893	2	123.40	0.000
77.45	3	123.42	+.016
508.2	Avg.	123.40	
Methane	1	106.53	+.009
U-2893	2	106.53	+.009
77.72	3	106.50	019
1006.7	Avg.	106.52	
Air	1	159.70	+.107
U-2893	2	159.61	+.050
68	3	159.64	+.069
14.4	4	159.61	+.050
	5	159.65	+.075
	6	159.52	006
	7	159.30	144
	8	159.35	112
	9 .	159.50	019
	10	159.58	+.031
	11	159.65	+.081
	12	159.58	+.031

Saturation Gas			
Viscometer No. Temperature (^O F)	Run	Flow Time	Percent
Pressure(psia)	No.	sec.	Deviation
	<u>. 4</u> .		
	13	159.42	068
	14	159.49	025
	15	159.59	025
	16	159.45	050
	17	159.51	013
	18	159.50	019
	19	159.50	019
	20	159.53	0.000
	Avg.	159.53	
Air	1	233.38	004
U -2893	2	232.94	193
32	3	233.85	197
14.4	4	233.59	+.086
	5	234.13	+.317
	6	233.69	+.129
	7	233.57	+.077
	8	233.44	+.021
	9	233.42	+.013
	10	232.89	214
	11	233.21	077
	12	233.69	+.129
	13	233.31	034
	14	233.28	004
	15	233.15	103
	16	233.16	099
	17	233.33	026
	18	233.28	047
	19	233.09	086
	20	233.43	+.017
	Avg.	233.39	
Air	1	271.44	037
U-2893	2	271.53	004
20	3	271.66	+.044
14 4	Avg.	271.54	

TABLE XX (Continued)

.

Viscomotor No		
Temperature (^O F) Bup	Flour Time	Porcont
Pressure(nsia) No	riow time,	Deviation
Methane 1	253.70	043
U-2893 2	254.00	+.074
20 3	253.80	004
107.8 _4_	253.76	019
Avg.	253.81	
Methane 1	203.08	044
U-2893 2	203.36	+.094
20 3	203.23	+.029
508.2 _4_	203.00	084
Avg.	203.00	· · · · · ·
Methane 1	163.34	018
U-2893 2	163.41	+.024
20 3	163.35	012
1006.7 Avg.	163.37	
Air 1	385.61	+.158
U-2893 2	386.06	+.275
-4 3	385.99	+.257
14.4 4	386.14	+.296
5	386.11	+.288
6	385.65	+.169
7	385.56	+.145
8	385.51	+.132
9	385.83	+.217
10	384.09	236
11	383.09	496
12	383.72	332
13	383.23	459
14	384.62	099
<u>15</u> Avg.	<u>383.82</u> 385.00	306
Methane 1	345 01	± 087
II-2893 2	345,30	- 080
-4 3	345.72	009 + ∩32 ·
107.8 4	345,34	- 078
	345,78	+ 049
Āvg.	345.61	

TABLE XX (Continued)

TABLE	XX ((Continued)
-------	------	-------------

Saturation Gas			
Viscometer No.	i -		
Temperature(^O F)	Run	Flow Time.	Percent
Pressure(psia)	No.	sec.	Deviation
Methane	1	256.60	004
U-2893	2	257.08	+.183
-4	3	256.76	+.058
508.2	4	256.45	062
	5	256.51	039
	6	256.24	144
	Avg.	256.61	
Methane	1	197.37	081
U-2893	2	197.76	+.116
-4	3	197.46	035
1006.7	4	197.62	+.046
	Avg.	197.53	
		• .	
Air*	1	612.92	+.178
U -2893	2	611.18	106
-26	_3	611.40	070
14.4	Avg.	611.83	
Methane*	1	503.67	460
U-2893	2	504.22	371
-26	3	510.01	+.818
107.8	Avg.	506.01	
Methane	1	259.82	+.054
U-2893	2	260.12	+.169
-26	3	259.09	227
1006.7	Avg.	259.68	
		,	

* Three phase system, solid, liquid, gas.

.

TABLE XXI

Saturation Gas Viscometer No. Temperature([°] F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
Air U-2893 77.36 14.4	$\frac{1}{2}$ $\frac{3}{\text{Avg}}$	81.64 81.66 <u>81.65</u> 81.65	012 0.000 +.012
Methane U-2893 77.71 107.8	1 2 <u>3</u> Avg.	78.79 78.79 <u>78.77</u> 78.78	+.013 +.013 013
Methane U-2893 77.90 508.2	1 2 <u>3</u> Avg.	70.33 70.34 <u>70.35</u> 70.34	014 0.000 +.014
Methane U-2893 78.08 1006.7	1 2 <u>3</u> Avg.	62.38 62.35 62.38 62.37	+.016 032 +.016
Air U-2893 20 14.4	$\frac{1}{2}$ $\frac{3}{Avg}$	$ \begin{array}{r} 126.39 \\ 126.22 \\ \underline{126.31} \\ 126.31 \end{array} $	+.063 071 0.000
Methane U-2893 20 107.8	$\frac{1}{2}$ <u>3</u> Avg.	120.57 120.58 <u>120.52</u> 120.56	+.008 +.017 033
Methane U-2893 20 508.2	1 2 <u>3</u> Avg.	101.47 101.46 <u>101.43</u> 101.45	+.019 +.010 019

HIGHLY AROMATIC LEAN OIL

Saturation Gas Viscometer No. Temperature([°] F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
M-th-c-		0/ 27	. 010
	· ⊥ ·	04.J/ 04.J/	+.012
0-2093	2	04.J4 94.JE	024
20	5	04.33 8/ 37	012
1000.7	Avg.	84.36	+.012
Air	1	159.79	+.301
U-2893	2	159.75	+.276
-4	3	159.29	013
14.4	4	158.72	370
	5 Avg	$\frac{159.00}{159.31}$	195
	8-	237.02	
Methane	1	147.94	061
U-2893	2	148.12	+.061
-4	3	148.04	+.007
107.8	Avg.	148.04	
Methane	1	120.32	+.167
U-2893	2	120.04	067
-4	3	119.89	191
508.2	4	120.34	+.183
	_5	120.00	099
	Avg.	120.00	
Methane	1	97.34	+.021
U-2893	2	97.48	+.164
-4	3	97.15	175
1006.7	_4	97.23	092
	Avg.	97.32	
Air	1	207.35	009
U-2893	2	207.42	+.024
-26	3	207.35	009
14.4	Avg.	207.37	
Methane	1	189.37	084
U-2893	2	189.66	+.069
-26	_3	189.57	021
107.8	Avg.	189.53	

TABLE XXI (Continued)

Saturation Gas Viscometer No. Temperature(^O F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
Methane U-2893 -26 508.2	$\frac{1}{2}$ $\frac{3}{Avg}$	144.71 144.69 <u>144.69</u> 144.70	+.007 007 007
Methane U-2893 -26 1006.7	$\frac{1}{2}$ $\frac{3}{\text{Avg}}$	$ \begin{array}{r} 115.74 \\ 115.36 \\ \underline{115.47} \\ 115.52 \end{array} $	+.190 138 043

TABLE XXI (Continued)

TABLE XXII

				· · · · · · · · · · · · · · · · · · ·
Saturation Gas				
Viscometer No.				
Temperature(^O F)	· · · ·	Run	Flow Time,	Percent
Pressure(psia)		No.	sec.	Deviation
۸ir		1	74 67	+ 121
11-2893		2	74.65	+,094
77.54		3	74.55	- 040
14.4		4	74.45	174
1 , , , ,		5	74.58	0.000
•		6	74.66	+.107
		7	74.50	107
		Avg.	74.58	
Methane	•	1	72.07	+.139
U-2893		2	71.88	125
77.72		3	72.02	+.069
107.8		_4	71.92	060
		Avg.	71.97	
Methane	· .	1	63.44	079
U-2893		2	63.48	016
77.72		3	63.56	+.110
508.2		4	63.42	110
		5	63.55	+.095
		.6	63.50	+.016
		<u>/</u>	63.45	063
		Avg.	63.49	
Methane		1	55.38	+.018
U-2893		2	55.46	+.163
77.90		3	55.28	163
1006.7		4	55.37	0.000
		Avg.	55.37	

HIGHLY NAPHTHENIC LEAN OIL

.

Saturation Gas				
Viscometer No.				
Temperature (°F)	Run	Flow Time.	Percent	
Pressure(psia)	No.	sec.	Deviation	
diginad ,				
Air	1	256.14	098	
U-3502	2	256.20	074	
68	3	256.22	066	
14.4	4	256.51	+.047	
	5	256.30	035	
	6	256.35	016	
	7	256.28	043	
	8	256.37	008	
	9	256.35	016	
	10	256.64	+.097	
	11	256.41	+.008	
	12	256.32	027	
	13	256.38	004	
	14	256.62	+.090	
	<u>15</u>	256.70	+.121	
	Avg.	256.39		
				
Alr	I 2	328.44	015	
0-3502	2	328.38	033	
32	3	328.46	009	
14.4	4	328.70	064	
	<u> </u>	328.47	006	
	Avg.	328.49		
Air	1	112.87	+.062	
U-2893	2	112.92	+.106	
20	3	112.69	098	
14.4	4	112.81	+.009	
	5	112.73	062	
	Avg.	112.80		
NC 1.1	-	105 70		
Metnane	L D	105.78	+.04/	
2093	2	105.79	+.057	
20	5	105.97	+.218	
107.8	· 4		101	
	<u> </u>	105.56	101	
	Avg.	T02./3		
Methane	1	87.99	+.034	
U-2893	2	87.93	034	
20	3	87.96	0.000	
508.2	Avg.	87.96		
	-			

Saturation Gas Viscometer No.	<u> </u>			
Temperature(^o F) Procesure(peia)	Run	Flow Time,	Percent	
riessure(psia)	NO.	sec.	Deviation	
Methane	1	72.59	0.000	
U-2893	2	72.56	014	
20	3	72.62	+.041	
1006.7	Avg.	72.59		
Air	1	453.14	+.232	
U -2893	2	452.61	+.115	
	3	453.31	+.269	
14.4	4	452.60	+.113	
	5	452.04	011	
	6	452.01	018	
	/	452.02	015	
	8	451.97	02/	
	9 10	451.40	153	
	10	451.05	097	
•	12	452 30	120 + 046	
	13	451 81	062	
	14	451.45	142	
	15	451.54	122	
	Avg.	452.09		
Methane	1	129.49	139	
U-2893	2	129.92	+.193	
-4	3	129.59	062	
107.8	Avg.	129.67		
Methane	1	103.80	+.183	
U-2893	2	103.55	058	
-4	_3	103.49	116	
508.2	Avg.	103.61		
Methane	1	81.38	+.037	
U-2893	2	81.32	037	
-4	3	81.36	+.012	
1006.7	Avg.	81.35		
Air	1	177.04	+.028	
U-2893	2	176.92	039	
-26	3	176.88	062	
14.4	_4	$\frac{177.13}{176.22}$	+.079	
	Avg.	176.99		

TABLE XXII (Continued)
Saturation Gas Viscometer No. Temperature(^O F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
Methane	1	161.23	031
U-2893	2	161.39	+.068
-26	3	161.21	043
107.8	Avg.	161.28	
Methane	1	120.11	+.100
U2893	. 2	119.80	158
-26	3	119.90	075
508.2	4	120.15	+.133
	5	120.00	+,008
	Avg.	119.99	
Methane	1	90.42	0.000
U-2893	2	90.40	022
-26	3	90.43	+.011
1006.7	Avg.	90.42	

TABLE XXII (Continued)

TABLE XXIII

VIRGIN OIL

			·
Saturation Gas			
Viscometer No.			
Temperature(^O F)	Run	Flow Time.	Percent
Pressure(psia)	No.	sec.	Deviation
			· · · · · · · · · · · · · · · · · · ·
Air	1	68.85	+.044
U-2893	. 2	68.87	+.073
77.45	3	68.75	102
14.4	4	68.77	073
	5	68.85	+.044
	Avg.	68.82	
Methane	1	66.81	+.015
U-2893	2	66.75	075
77.45	3	66.83	+.045
107.8	Avg.	66.80	
Methane	1	59.47	084
U -2893	2	59.57	+.084
77.54	3	_59.52	0.000
508.2	Avg.	59.52	
Methane	1	52.67	019
U-2893	2	52.70	+.038
77.54	3	52.67	019
1006.7	Avg.	52.68	
Air	1	102.50	039
U-2893	2	102.61	+.068
20	3	102.50	039
14.4	Avg.	102.54	
Methane	1	97.46	021
U-2893	2	97.46	021
20	3	97.51	+.031
107.8	Avg.	97.48	
· · ·	-		

•.

Saturation Gas Viscometer No. Temperature (^O F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
Methane	. 1	81 . 89	024
U-2893	2	81.93	+.024
20	3	81.90	012
508.2	Avg.	81.91	
Methane	1	68.93	+.029
U-2893	2	68.90	015
20	3	68.90	015
1006.7	Avg.	68.91	
Air	1	126.20	002
U-2893	2	126.48	+.000
-4	3	126.63	+.012
14.4	_4 	126.39	000
	Avg.	126.44	+. 001
Methane	1	119.45	+.001
U-2893	2	119.41	+.001
-4	3	119.27	000
107.8	_4	118.98	003
	Avg.	119.28	
Methane	1	96.16	000
U-2893	2	96.21	, +. 000
-4	3	96.15	000
508.2	$\frac{4}{\text{Avg}}$.	<u>96.28</u> 96.20	+.001
Methane	1	77,92	+,004
U-2893	2	77.45	002
-4	3	77.75	+.002
1006.7	4	77.38	
	Avg.	77.63	
Air	1	159.12	+.031
U-2893	2	159.04	019
-26	3	159.04	019
14.4	Avg.	159.07	
Methane	1	145.54	+.009
U-2893	2	145.51	014
-26	3	145.55	+.013
T01.9	AVg.	142.53	

TABLE XXIII (Continued)

Saturation Gas Viscometer No. Temperature(^O F) Pressure(psia)	Run No.	Flow Time, sec.	Percent Deviation
· · ·			
Methane	1	111.71	+.009
U-2893	2 .	111.73	+.027
-26	3	111.62	072
508.2	4	111.75	+.045
	Avg.	111.70	
Methane	. 1	86.36	012
U-2893	2	86.41	· +.046
-26	3	86.34	035
1006.7	Avg.	86.37	
T000.1	Avg.	80.37	· · · · · · · · · · · · · · · · · · ·

TABLE XXIII (Continued)

APPENDIX G

CALCULATED KINEMATIC VISCOSITY

ļ

TABLE XXIV

CALCULATED KINEMATIC VISCOSITY

	Mineral Spirits 135	
Temperature ([°] F)	Pressure (psia)	Kinematic Viscosity (centistokes)
77	14.4	1.0642
	107.8 508.2 1006.7	0.9160
68	14.4	1.1179
32	14.4	1.4989
20	14.4	1.7399
	508.2 1006.7	1.3636 1.1191
-4	14.4	2.2186
	508.2 1006.7	1.6385 1.3072
-26	14.4 107.8 508.2	2.9299 2.6981 1.9805
	1006.7	1.4861
	50/50 : Mineral Spirits 135/ Heavy Solvent No. 1	
Temperature ([°] F)	Pressure (psia)	Kinematic Viscosity (centistokes)
77	14.4 107.8 508.2	1.6101 1.5486 1.3512
	1006.7	1.1664

TABLE XXIV (Continued)

	neavy solvent No. 1	
Temperature (°F)	Pressure (psia)	Kinematic Viscosity (centistokes)
68	14.4	1.7468
32	14.4	2.5556
20	14.4 107.8 508.2 1006.7	2.9733 2.7792 2.2247 1.7889
-4	14.4 107.8 508.2 1006.7	4.2157 3.7844 2.8098 2.1629
-26	14.4 107.8 508.2 1006.7	6.6994* 5.5407* 2.8434
	Highly Aromatic Lean Oil	
Temperature ([°] F)	Pressure (psia)	Kinematic Viscosity (centistokes)
77	14.4 107.8 508.2 1006.7	0.8941 0.8626 0.7702 0.6839
20	14.4 107.8 508.2 1006.7	1.3831 1.3201 1.1109 0.9237

.

	Highly Aromatic Lean Oil	
Temperature (^O F)	Pressure (psia)	Kinematic Viscosity (centistokes)
-4	14.4	1.7444
	107.8	1.6209
	508.2	1.3153
	1006.7	1.0656
-26	14.4	2.2707
	107.8	2.0753
	508.2	1.5844
	1006.7	1.2649
Temperature ([°] F)	Pressure (psia)	Kinematic Viscosity (centistokes)
77	14.4	0.8166
•••	107.8	0,7881
	508,2	0.6952
	1006.7	0.6063
68	14.4	0.8531
32	14.4	1.0930
20	14.4	1.2351
	107.8	1.1577
	508.2	0.9628
· .	1006.7	0.7948
-4	14.4	1.5043
	107.8	1.4198
	508.2	1.1345

TABLE XXIV (Continued)

.

	Highly Naphthenic Lean Oil	
Temperature (^O F)	Pressure (psia)	Kinematic Viscosity (centistokes)
-26	14.4	1.9380
	508.2 1006.7	1.3139 0.9901
	Virgin Oil	
Temperature (^O F)	Pressure (psia)	Kinematic Viscosity (centistokes)
77	14.4 107.8 508.2 1006.7	0.7536 0.7315 0.6517 0.5768
20	14.4 107.8 508.2 1006.7	1.1228 1.0674 0.8969 0.7546
-4	14.4 107.8 508.2 1006.7	1.3845 1.3061 1.0534 0.8500
-26	14.4 107.8 508.2 1006.7	1.7418 1.5935 1.2231 0.9457

.

TABLE XXIV (Continued)

* Solid phase in sample

APPENDIX H

CALCULATED DENSITY AND ABSOLUTE VISCOSITY

TABLE XXV

Mineral Spirits 135						
Tomp	Proce	Density (g/pg)	Density	Absolute Viscosity	Absolute Viscosity	
(°F)	(Psia)	(C-S)*	(S-RK)*	(C-S)*	(S-RK)*	
77	14 4	8753**		0315**		
	107.8	.8664	.8666	. 8977	.8979	
	508.2	.8356	.8363	7654	.7661	
	1006.7	.8010	.7994	.6465	.6452	
68	14.4	8798**		9835**		
00	107.8	.8706	.8708			
	508.2	.8389	.8394			
	106.7	.8036	.8038	-	_	
32	14 4	8975**		1 3453**		
52	107.8	8870	8869	1.5455		
	508 2	8509	8505		_	
	1006.7	.8119	.8099	-		
20	14 4	0033		1 5716**		
20	107.8	8922	.8920	1 4685	1 4681	
	508 2	8543	8534	1 1649	1 1637	
	1006.7	.8136	.8107	.9105	.9073	
- 4	14 4	9148★★		2 0296**		
	107.8	9023	9019	1 8612	1 8603	
•	508 2	.8598	.8578	1 4087	1 4055	
	1006.7	.8151	.8099	1.0655	1.0587	
-26	14.4	.9253**		2.7110**		
	107.8	.9110	.9103	2.4579	2,4561	
	508.2	.8629	.8594	1,7089	1,7020	
	1006.7	.81.34	.8053	1.2087	1,1968	

CALCULATED DENSITY AND ABSOLUTE VISCOSITY

TABLE XXV (Continued)

50/50 Mineral Spirits 135 / Heavy Solvent No. 1

.

<u></u>			······································	· · · · · · · · · · · · · · · · · · ·	
			. .	Absolute	Absolute
	D	Density	Density	Viscosity	Viscosity
lemp.	Press.	(g/cc)	(g/cc)	(cp)	(cp)
(F)	(Psia)	(C-S)*	(S-RK)*	(C-S)*	(S-RK)*
77	14.4	.8785**		1.4145**	
	107.8	.8701	.8701	1.3474	1.3474
	508.2	.8411	.8411	1.1365	1.1365
	1006.7	.8093	.8086	.9439	.9432
68	14.4	.8827**		1.5419**	
. '	107.8	.8740	.8740	-	
	508.2	.8443	.8440	-	-
	1006.7	.8118	.8106		-
32	14.4	.8993**	·	2.2983**	
	107.8	.8893	.8891	-	. – 1
	508.2	.8556	.8541	-	
• '	1006.7	.8197	.8160	-	·
20	14.4	.9048**		2.6902**	
	107.8	.8942	.8939	2.4852	2.4843
	508.2	.8587	.8568	1.9103	1.9061
	1006.7	.8214	.8168	1.4694	1.4612
- 4	14.4	.9156**		3.8603**	
	107.8	.9037	.9030	3.4199	3.4173
	508.2	.8640	.8607	2.4277	2.4184
	1006.7	.8232	.8159	1.7805	1.7647
-26	14.4	.9254**		6.1996**	
	107.8	.9119	.9108	5.0526	5.0465
	508.2	.8670	.8620	-	. 🕳 .
	1006.7	.8221	.8115	2.3376	2.3074

Highly Aromatic Lean Oil					
Temp. (°F)	Press. (Psia)	Density (g/cc) (C-S)*	Density (g/cc) (S-RK)*	Absolute Viscosity (cp) (C-S)*	Absolute Viscosity (cp) (S-RK)*
77	14.4 107.8 508.2 1006.7	1.0174** 1.0049 .9632 .9154	1.0356 .9630 .9157	.9097** .8668 .7419 .6260	.8933 .7417 .6262
68	14.4 107.8 508.2 1006.7	1.0233** 1.0108 .9676 .9193	1.0409 .9664 .9186	- - - -	- - -
32	14.4 107.8 508.2 1006.7	1.0450** 1.0308 .9832 .9311	1.0302 .9804 .9256		- - -
20	14.4 107.8 508.2 1006.7	1.0522** 1.0373 .9875 .9338	1.0364 .9837 .9269	1.4553** 1.3693 1.0970 .8626	1.3682 1.0928 .8562
- 4	14.4 107.8 508.2 1006.7	1.0663** 1.0498 .9945 .9364	1.0483 .9884 .9253	1.8571** 1.7016 1.3081 .9978	1.6992 1.3000 .9859
-26	14.4 107.8 508.2 1006.7	1.0790** 1.0605 .9985 .9351	1.0582 .9895 .9190	2.4501** 2.2008 1.5820 1.1828	2.1961 1.5677 1.1624

•

TABLE XXV (Continued)

TABLE XXV (Continued)

		•		Absolute	Absolute
		Density	Density	Viscosity	Viscosity
Temp.	Press.	(g/cc)	(g/cc)	(cp)	(cp)
(°F)	(Psia)	(C-S)*	(S-RK)*	(C-S)*	(S-RK)*
77	14.4	.8357**		.6824**	
-	107.8	.8241	.8248	.6495	.6500
	508.2	.7893	.7903	.5487	.5494
	1006.7	.7488	.7510	.4540	.4553
68	14.4	.8406**		.7171**	
	107.8	.8290	.8296	- -	
	508.2	.7934	.7951	-	
	1006.7	.7521	.7541	· – .	
32	14.4	.8597**		.9396**	
,	107.8	.8476	.8481	· -	
	508.2	.8075	.8086	-	. -
	1006.7	.7623	.7628		
20	14.4	.8660**		1.0696**	· .
· · · · · · ·	107.8	.8534	.8538	.9880	.9884
	508.2	.8113	.8122	.7811	.7820
	1006.7	.7643	.7643	.6075	.6075
- 4	14.4	.8784**		1.3214**	
*	107.8	.8645	.8647	1.2274	1.2277
	508.2	.8174	.8176	.9273	.9276
	1006.7	.7657	.7641	.6821	.6807
-26	14.4	.8896**		1.7240**	
	107.8	.8739	.8736	1.5433	1.5428
	508.2	.8205	.8198	1.0781	1.0771
	1006.7	.7630	.7594	.7554	.7519

	Virgin Oil									
				Absolute	Absolute					
		Density	Density	Viscosity	Viscosity					
Temp.	Press.	(g/cc)	(g/cc)	(cp)	(cp)					
(⁰ F)	(Psia)	(C-S)*	(S-RK)*	(C-s)*	(S-RK)*					
				<u> </u>						
77	14.4	.8367**		.6305**						
	107.8	.8269	.8267	.6049	.6047					
*	508.2	.7927	.7915	.5166	.5158					
	1006.7	.7545	.7510	.4352	.4332					
68	14.4	.8415**		-	-					
	107.8	.8314	.8312		-					
	508.2	.7963	.7945	-	_ ^					
	1006.7	.7573	.7532		_					
32	14.4	.8606**		-						
	107.8	.8489	.8484	-	-					
	508.2	.8088	.8063		· —					
	1006.7	.7655	.7590	- .						
20	14.4	.8668**		.9732**						
— —	107.8	.8545	.8539	.9121	.9115					
	508.2	.8123	.8093	.7286	.7259					
	1006.7	.7671	.7596	.5789	.5732					
- 4	14.4	.8792**		1.2173**						
•	107.8	.8652	.8643	1.1300	1.1288					
	508.2	.8178	.8135	.8615	.8569					
•	1006.7	.7680	.7577	.6528	.6440					
-26	14.4	.8903**		1.5507**						
	107.8	.8743	.8731	1,3932	1,3013					
	508.2	.8206	.8147	1.0037	.9965					
	1006.7	.7652	.7514	.7236	.7106					

TABLE XXV (Continued)

Correlation as applied to determine equilibrium composition.
Correlation does not apply; not methane saturated.

.

APPENDIX I

CALCULATED EQUILIBRIUM DATA

ΤA	BLE	XX	VI

MINERAL SPIRITS 135

			Chao-S	eader	Soave RK	
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
107.8	77	(1)	0.0362	27.6163	0.0354	28.2345
	•	(2)	0.9638	0.0009	0.9646	0.0006
	68	(1)	0.0372	26.8595	0.0366	27.3337
		(2)	0.9576	0.0007	0.9634	0.0004
	32	(1)	0.0424	23,5988	0.0425	23,5035
•	1	(2)	0.9576	0.0002	0.9575	0.0001
	20	(1)	0.0446	22,4386	0.0451	22,1624
		(2)	0.9554	0.0001	0.9549	0.0001
	- 4	(1)	0.0499	20.0317	0.0515	19,4160
		(2)	0.9501	0.0001	0.9485	0.0000
	-26	(1)	0.0563	17.7517	0.0593	16.8659
·		(2)	0.9437	0.0000	0.9407	0.0000
508.2	77	(1)	0.1572	6.3591	0.1547	6,4631
		(2)	0.8428	0.0005	0.8453	0.0004
	[.] 68	(1)	0.1611	6.2035	0.1593	6.2748
		(2)	0.8389	0.0004	0.8407	0.0003
۰. ۲۰	32	(1)	0.1811	5.5213	0.1829	5,4682
		(2)	0.8189	0.0002	0.8171	0.0001
	20	(1)	0.1896	5.2742	0.1929	5.1833
		(2)	0.8104	0.0001	0.8071	0.0001

114

			Chao-Se	ader	Soave RK	
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
508.2	- 4	(1)	0.2103	4.7543	0.2176	4.5959
· ·		(2)	0.7897	0.0001	0.7824	0.0000
	-26	(1)	0.2352	4.2523	0.2473	4.0439
	· .	(2)	0.7648	0.0000	0.7527	0.0000
1006.7	77	(1)	0.2815	3.5509	0.2796	3.5750
		(2)	0.7186	0.0008	0.7204	0.0006
	68	(1)	0.2874	3.4783	0.2870	3.4834
		(2)	0.7126	0.0007	0.7130	0.0005
	32	(1)	0.3171	3.1526	0.3237	3.0885
		(2)	0.6829	0.0003	0.6763	0.0002
· · ·	20	(1)	0.3297	3.0323	0.3392	2.9480
		(2)	0.6703	0.0003	0.6608	0.0002
	- 4	(1)	0.3602	2.7757	0.3763	2.6570
		(2)	0.6398	0.0002	0.6237	0.0001
	-26	(1)	0.3961	2.5244	0.4198	2.3809
		(2)	0.6039	0.0001	0.5802	0.0001

TABLE XXVI (Continued)

* (1) Methane(2) Fraction No.

115

TABLE XXVII

50/50 MINERAL SPIRITS 135 / HEAVY SOLVENT NO. 1

•			Chao-S	Chao-Seader		Soave RK	
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value	
107.8	77	(1) (2)	0.0360 0.9640	27.7430 0.0003	0.0359 0.9641	27.8335 0.0001	
	68	(1) (2)	0.0370 0.9630	26.9856 0.0002	0.0371 0.9629	26.9286 0.0001	
	32	(1) (2)	0.0422	23.7208 0.0001	0.0433 0.9567	23.1001 0.0000	
20 - 4	(1) (2)	0.0443 0.9557	22.5588 0.0001	0.0459 0.9541	21.7652 0.0000		
	- 4	(1) (2)	0.0496 0.9504	20.1477 0.0000	0.0525 0.9475	19.0414 0.0000	
	-26	(1) (2)	0.0560 0.9440	17.8631 0.0000	0.0605 0.9395	16.5306 0.0000	
508.2	77	(1) (2)	0.1561 0.8439	6.4064 0.0002	0.1563 0.8437	6.3978 0.0001	
68	68	(1) (2)	0.1600 0.8400	6.2511 0.0001	0.1611 0.8389	6.2079 0.0001	
	32	(1) (2)	0.1795	5.5700 0.0001	0.1852 0.8148	5.3996 0.0000	
	20	(1) (2)	0.1879 0.8122	5.3232	0.1955 0.8045	5.1157 0.0000	
	- 4	(1) (2)	0.2082 0.7918	4.8040 0.00 0 0	0.2207 0.7793	4.5319 0.0000	

			Chao-Se	Chao-Seader		Soave RK	
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value	
508.2	-26	(1) (2)	0.2324 0.7676	4.3028 0.0000	0.2509 0.7491	3.9856 0.0000	
1006.7	77	(1) (2)	0.2786 0.7214	3.5881 0.0003	0.2811 0.7189	3.5574 0.0002	
	68	(1) (2)	0.2843 0.7157	3.5165 0.0002	0.2886 0.7114	3.4647 0.0002	
	32	(1) (2)	0.3132 0.6868	3.1930 0.0001	0.3260 0.6740	3.0678 0.0001	
	20	(1) (2)	0.3253 0.6747	3.0735 0.0000	0.3416 0.6584	2.9275 0.0000	
	- 4	(1) (2)	0.3548 0.6453	2.8188 0.0000	0.3791 0.6209	2.6379 0.0000	
	-26	(1) (2)	0.3892 0.6108	2.5695 0.0000	0.4227 0.5773	2.3657 0.0000	

TABLE XXVII (Continued)

* (1) Methane(2) Fraction No.

TABLE XXVIII

-			Chao-S	eader	Soave RK	
Press.	Temp.		Liquid	K	Liquid	K
(Psia)	([°] F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
107.8	77	(1)	0.0306	32.6460	0.0309	32.2732
		(2)	0.0992	0.0023	0.0994	0.0017
		(3)	0.1017	0.0022	0.1018	0.0016
		(4)	0.1027	0.0021	0.1028	0.0015
		(5)	0.1007	0.0020	0.1007	0.0015
•		(6)	0.1009	0.0020	0.1009	0.0014
-		(7)	0.0996	0.0019	0.0997	0.0013
		(8)	0.0957	0.0017	0.0956	0.0012
·		(9)	0.0917	0.0015	0.0916	0.0011
		(10)	0.0921	0.0014	0.0919	0.0009
	•	(11)	0.0851	0.0012	0.0848	0.0008
107.8	68	(1)	0.0314	31.8450	0.0320	31.2668
		. (2)	0.0994	0.0018	0.0996	0.0013
		(3)	0.1018	0.0017	0.1019	0.0012
*		(4)	0.1028	0.0016	0.1029	0.0011
		(5)	0.1008	0.0016	0.1008	0.0013
		(6)	0.1002	0.0015	0.1002	0.0010
		(7)	0.0996	0.0015	0.0995	0.0010
		(8)	0.0956	0.0013	0.0955	0.0009
		(9)	0.0916	0.0012	0.0914	0.0008
		(10)	0.0919	0.0011	0.0916	0.0007
		(11)	0.0849	0.0009	0.0846	0.0006
107.8	32	(1)	0.0353	28.3401	0.0371	26.9713
		(2)	0.0997	0.0006	0.0996	0.0004
		(3)	0.1019	0.0006	0.1018	0.0003
		(4)	0.1027	0.0005	0.1026	0.0003
		(5)	0.1006	0.0005	0.1005	0.0003
		(6)	0.0999	0.0005	0.0998	0.0003
	· .	(7)	0.0993	0.0005	0.0991	0.0003
	•	(8)	0.0951	0.0004	0.0949	0.0002
		(9)	0.0908	0.0004	0.0906	0.0002
	·	(10)	0.0910	0.0003	0.0907	0.0002
		(11)	0.0838	0.0003	0.0835	0.0001

HIGHLY AROMATIC LEAN OIL

· · · · · · · · · · · · · · · · · · ·			Chao-S	eader	Soave	RK
Press.	Temp.		Liquid	ĸ	Liquid	K
(Psia)	(^o F) Comp.*	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
107.8	20	(1)	0.0369	27.0697	0.0393	25.4576
		(2)	0.0996	0.0004	0.0994	0.0002
		(3)	0.1018	0.0004	0.1016	0.0002
		(4)	0.1026	0.0003	0.1024	0.0002
		(5)	0.1005	0.0003	0.1003	0.0002
		(6)	0.0998	0.0003	0.0996	0.0002
		(7)	0.0991	0.0003	0.0989	0.0002
		(8)	0.0949	0.0003	0.0946	0.0001
		(9)	0.0906	0.0002	0.0903	0.0001
		(10)	0.0907	0.0002	0.0904	0.0001
		(11)	0.0835	0.0002	0.0832	0.0001
107.8	- 4	(1)	0.0410	24.3999	0.0447	22.3509
		(2)	0.0993	0.0002	0.0990	0.0001
		(3)	0.1015	0.0002	0.1011	0.0001
		(4)	0.1023	0.0001	0.1019	0.0001
		(5)	0.1001	0.0001	0.0997	0.0001
		(6)	0.0994	0.0001	0.0990	0.0001
		(7)	0.0987	0.0001	0.0983	0.0001
		(8)	0.0944	0.0001	0.0940	0.0001
		(9)	0.0901	0.0001	0.0898	0.0000
		(10)	0.0902	0.0001	0.0898	0.0000
		(11)	0.0830	0.0001	0.0826	0.0000
107.8	-26	(1)	0.0458	21.8302	0.0514	19.4542
		(2)	0.0898	0.0000	0.0983	0.0000
		(3)	0.1010	0.0000	0.1005	0.0000
		(4)	0.1018	0.0000	0.1012	0.0000
		(5)	0.0996	0.0000	0.0991	0.0000
		(6)	0.0989	0.0000	0.0983	0.0000
		(7)	0.0982	0.0000	0.0976	0.0000
		(8)	0.0939	0.0000	0.0934	0.0000
		(9)	0.0896	0.0000	0.0891	0.0000
		(10)	0.0897	0.0000	0.0891	0.0000
		(11)	0.00825	0.0000	0.0820	0.000

TABLE XXVIII (Continued)

			Chao-Se	ader	Soave RK	
Press. (Psia)	Temp. (F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
508.2	77	(1)	0.1349	7,4070	0.1364	7.327
30012		(2)	0.0876	0.0011	0.0879	0.0008
	•	(3)	0.0900	0.0011	0.0901	0.0008
		(4)	0.0913	0.0010	0.0912	0.0008
		(5)	0.0894	0.0010	0.0895	0.000
		(6)	0.0892	0.0010	0.0892	0,000
		(7)	0.0888	0.0010	0.0889	0.000
	•	(8)	0.0859	0.0009	0.0856	0.000
		(9)	0.0825	0.0008	0.0821	0.000
	•	(10)	0.0832	0.0007	0.0826	0.000
		(11)	0.0771	0.0007	0.0765	0.000
508.2	68	(1)	0.1379	7.2455	0.1404	7.118
		(2)	0.0877	0.0009	0.0878	0.000
		(3)	0.0900	0.0009	0.0900	0.000
		(4)	0.0911	0.0008	0.0910	0.000
		(5)	0.0893	0.0008	0.0892	0.000
	•	(6)	0.0890	0.0008	0.0889	0.000
		(7)	0.0885	0.0008	0.0885	0.000
		(8)	0.0854	0.0007	0.0851	0.000
•		(9)	0.0820	0.0006	0.0815	0.000
		(10)	0.0826	0.0006	0.0819	0.0004
•		(11)	0.0764	0.0005	0.0758	0.000
508.2	32	(1)	0.1533	6.5197	0.1608	6.2198
	•	(2)	0.0871	0.0004	0.0865	0.000
		(3)	0.0891	0.0003	0.0885	0.000
•		(4)	0.0900	0.0003	0.0893	0.000
		(5)	0.0881	0.0003	0.0874	0.000
		(6)	0.0876	0.0003	0.0869	0.000
		(7)	0.0870	0.0003	0.0864	0,000
		(8)	0.0836	0.0003	0.0826	0.000
		(9)	0.0800	0.0002	0.0791	0.000
·		(10)	0.0802	0.0002	0.0793	0.000
		(11)	0.0740	0.0002	0.0731	0.000

TABLE XXVIII (Continued)

			Chao-Se	ader	Soave R	K.
Press.	Temp.	Liquid Mol Er	K	Liquid Mol Er	K	
(Psia)	(Сощр. ~	MOI. Fr.	varue	MOL. Fr.	varue
508.2	20	(1)	0.1599	6.2510	0.1695	5.899
		(2)	0.0866	0.0003	0.0858	0.000
		(3)	0.0886	0.0002	0.0877	0.000
		(4)	0.0894	0.0002	0.0884	0.000
		(5)	0.0875	0.0002	0.0866	0.000
		(6)	0.0870	0.0002	0.0860	0.000
		(7)	0.9864	0.0002	0.0855	0.000
		(8)	0.0829	0.0002	0.0819	0.000
		(9)	0.0792	0.0002	0.0782	0.000
		(10)	0.0794	0.0002	0.0783	0.000
		(11)	0.0732	0.0001	0.0721	0.000
508.2	- 4	(1)	0.1761	5.6771	0.1909	5.237
		(2)	0.0852	0.0001	0.0837	0.000
		(3)	0.0871	0.0001	0.0856	0.000
		(4)	0.0878	0.0001	0.0862	0.000
		(5)	0.0859	0.0001	0.0844	0.000
		(6)	0.0854	0.0001	0.0839	0.000
		(7)	0.0848	0.0001	0.0833	0.000
		(8)	0.0812	0.0001	0.0797	0.000
		(9)	0.0776	0.0001	0.0761	0.000
		(10)	0.0776	0.0001	0.0761	0.000
	·	(11)	0.0715	0.0001	0.0701	0.000
508.2	-26	(1)	0.1976	5.1129	0.2168	4.612
		(2)	0.0833	0.0001	0.0811	0.000
•		(3)	0.0851	0.0001	0.0829	0.000
		(4)	0.0858	0.0001	0.0835	0.000
	•	(5)	0.0839	0.0001	0.0818	0.000
		(6)	0.0834	0.0001	0.0812	0.000
•		(7)	0.0828	0.0000	0.0806	0.000
		(8)	0.0792	0.0000	0.0771	0.000
· · ·	· · ·	(9)	0.0756	0.0000	0.0736	0.000
		(10)	0.0757	0.0000	0.0736	0.000
		(11)	0.0697	0.0000	0.0677	0.000

TABLE XXVIII (Continued)

			Chao-Se	ader	Soave R	ĽK
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
1006.7	77	(1)	0.2460	4.0610	0.2491	4.0119
		(2)	0.0744	0.0016	0.0750	0.001
		(3)	0.0766	0.0015	0.0770	0.0012
		(4)	0.0784	0.0015	0.0785	0.0011
		(5)	0.0767	0.0015	0.0770	0.001
-		(6)	0.0772	0.0014	0.0776	0.001
		(7)	0.0766	0.0014	0.0775	0.0010
		(8)	0.0756	0.0013	0.0754	0.0010
		(9)	0.0734	0.0012	0.0721	0.0009
		(10)	0.0749	0.0011	0.0731	0.0009
		(11)	0.0701	0.0010	0.0677	0.0009
1006.7	68	(1)	0.2505	3.9882	0.2554	3.9120
		(2)	0.0745	0.0013	0.0748	0.001
		(3)	0.0766	0.0013	0.0768	0.001
		(4)	0.0783	0.0012	0.0781	0.000
		(5)	0.0766	0.0012	0.0766	0.000
		(6)	0.0769	0.0012	0.0770	0.000
		(7)	0.0763	0.0012	0.0768	0.000
		(8)	0.0749	0.0011	0.0746	0.000
		(9)	0.0726	0.0010	0.0712	0.000
. •		(10)	0.0738	0.0009	0.0721	0.000
		(11)	0.0689	0.0008	0.0667	0.000
1006.7	32	(1)	0.2739	3.6499	0.2875	3.477
		(2)	0.0736	0.0006	0.0728	0.0004
1		(3)	0.0754	0.0006	0.0745	0.0004
	• • • •	(4)	0.0766	0.0006	0.0754	0.0004
		(5)	0.0749	0.0006	0.0738	0.000
		(6)	0.0749	0.0006	0.0738	0.0004
		(7)	0.0742	0.0006	0.0734	0.0004
		(8)	0.0721	0.0005	0.0708	0.000
		(9)	0.0694	0.0005	0.0676	0.000
		(10)	0.0700	0.0004	0.0679	0.0003
and the second		(11)	0.0649	0.0004	0.0626	0.0003

TABLE XXVIII (Continued)

٠,

•

			Chao-Seader		Soave RK	
Press. (Psia)	Temp. (°F)	Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
1006.7	20	(1)	0.2839	3.5214	0.3011	3.320
		(2)	0.0729	0.0005	0.0717	0.000
		(3)	0.0747	0.0005	0.0733	0.000
		(4)	0.0757	0.0005	0.0741	0.000
		(5)	0.0740	0.0005	0.0725	0.000
		(6)	0.0739	0.0005	0.0724	0.000
		(7)	0.0733	0.0005	0.0720	0.000
		(8)	0.0710	0.0004	0.0693	0.000
		(9)	0.0682	0.0004	0.0661	0.000
		(10)	0.0687	0.0003	0.0664	0.000
		(11)	0.0636	0.0003	0.0611	0.000
1006.7	- 4	(1)	0.3084	3.2420	0.3339	2.994
	· · ·	(2)	0.0709	0.0003	0.0686	0.000
		(3)	0.0725	0.0003	0.0701	0.000
		(4)	0.0733	0.0003	0.0708	0.000
		(5)	0.0717	0.0003	0.0693	0.000
		(6)	0.0715	0.0003	0.0691	0.000
		(7)	0.0709	0.0003	0.0686	0.000
		(8)	0.0684	0.0003	0.0659	0.000
		(9)	0.0656	0.0002	0.0629	0.000
		(10)	0.0659	0.0002	0.0630	0.000
		(11)	0.0609	0.0002	0.0580	0.000
1006.7	-26	(1)	0.3374	2.9631	0.3724	2.684
		(2)	0.0681	0.0002	0.0648	0.000
		(3)	0.0696	0.0002	0.0662	0.000
		(4)	0.0703	0.0002	0.0668	0.000
		(5)	0.0688	0.0002	0.0654	0.000
		(6)	0.0690	0.0002	0.0651	0.000
	·	(7)	0.0679	0.0002	0.0646	0.000
· · · .		(8)	0.0654	0.0002	0.0620	0.000
		(9)	0.0627	0.0002	0.0591	0.000
		(10)	0.0629	0.0002	0.0592	0.000
	,	(11)	0.0580	0.0001	0,0544	0.000

TABLE XXVIII (Continued)

÷

(1) Methane
 (2)-----(11) Fraction No.

TABLE XXIX

			Chao-S	eader	Soave	RK
Press.	Temp.		Liquid	K	Liquid	K
(Psia)	(°F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
107.8	77	(1)	0.0382	26.0896	0.0367	27.1793
		(2)	0.0994	0.0077	0.1006	0.0064
		(3)	0.0995	0.0060	0.1002	0.0049
		(4)	0.0993	0.0050	0.0997	0.0043
		(5)	0.0923	0.0050	0.0926	0.0040
		(6)	0.0932	0.0050	0.0934	0.0037
		(7)	0.0940	0.0040	0.0941	0.0034
		(8)	0.0948	0.0040	0.0948	0.0031
		(9)	0.0980	0.0030	0.0979	0.0028
		(10)	0.0995	0.0030	0.0993	0.0023
		(11)	0.0918	0.0016	0.0909	0.0011
107.8	68	(1)	0.0393	25.3587	0.0378	26.3573
		(2)	0.1007	0.0061	0.1018	0.0049
		(3)	0.1001	0.0047	0.1007	0.0038
		(4)	0.0996	0.0041	0.1000	0.0033
		(5)	0.0924	0.0039	0.0927	0.0030
		(6)	0.0932	0.0036	0.0934	0.0028
		(7)	0.0938	0.0033	0.0939	0.0026
		(8)	0.0944	0.0031	0.0945	0.0024
		(9)	0.0975	0.0028	0.0974	0.0021
		(10)	0.0987	0.0023	0.0984	0.0017
		(11)	0.0903	0.0012	0.0895	0.0008
107.8	32	(1)	0.0450	22.2092	0.0438	22.8043
•		(2)	0.1041	0.0022	0.1049	0.0016
		(3)	0.1015	0.0017	0.1019	0.0012
· · · - ·		(4)	0.1000	0.0014	0.1003	0.0010
		(5)	0.0924	0.0014	0.0926	0.0009
		(6)	0.0927	0.0012	0.0929	0.0008
		(7)	0.0930	0.0011	0.0930	0.0008
·		(8)	0.0932	0.0011	0.0932	0.0007
		(9)	0.0957	0.0009	0.0956	0.0006
		(10)	0.0962	0.0008	0.0960	0.0005
		(11)	0.0862	0.0004	0.0857	0.0002

HIGHLY NAPHTHENIC LEAN OIL

			Chao-S	eader	Soave	RK
Press.	Temp.		Liquid	ĸ	Liquid	K
(Psia)	(°F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
107.8	20	(1)	0.0474	21.0893	0.0464	21.5401
		(2)	0.1047	0.0015	0.1054	0.0010
		(3)	0.1016	0.0012	0.1019	0.0008
		(4)	0.0999	0.0010	0.1002	0.0006
		(5)	0.0923	0.0009	0.0924	0.0006
		(6)	0.0925	0.0008	0.0926	0.0005
		(7)	0.0927	0.0008	0.0927	0.0005
		(8)	0.0928	0.0007	0.0928	0.0004
		(9)	0.0952	0.0006	0.0952	0.0004
		(10)	0.0955	0.0005	0.0954	0.0003
		(11)	0.0854	0.0003	0.0850	0.0001
107.8	- 4	(1)	0.0533	18.7699	0.0528	18.9327
		(2)	0.1051	0.0007	0.1055	0.0004
		(3)	0.1014	0.0005	0.1016	0.0003
		(4)	0.0995	0.0004	0.0997	0.0002
		(5)	0.0918	0.0004	0.0919	0.0002
		(6)	0.0919	0.0004	0.0920	0.0002
•		(7)	0.0920	0.0003	0.0920	0.0002
		(8)	0.0921	0.0003	0.0921	0.0002
		(9)	0.0943	0.0003	0.0943	0.0001
		(10)	0.0945	0.0002	0.0944	0.0001
		(11)	0.0841	0.0001	0.0838	0.0000
107.8	-26	(1)	0.0603	16.5795	0.0606	16.4881
		(2)	0.1049	0.0003	0.1050	0.0002
		(3)	0.1009	0.0002	0.1010	0.0001
		(4)	0.0989	0.0002	0.0989	0.0001
		(5)	0.0912	0.0002	0.0912	0.0001
		(6)	0.0912	0.0002	0.0912	0.0001
		(7)	0.0913	0.0001	0.0912	0.0001
		(8)	0.0913	0.0001	0.0912	0.0001
		(9)	0.0935	0.0001	0.0934	0.0001
		(10)	0.0935	0.0001	0.0934	0.0000
		(11)	0.0831	0.0000	0.0829	0.0000

TABLE XXIX (Continued)

			Chao-Se	ader	Soave H	RK.
Press.	Temp.		Liquid	K	Liquid	K
(Psia)	(^o F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
508.2	77	(1)	0.1664	5,9988	0.1615	6.1839
	•••	(2)	0.0808	0.0036	0.0830	0.0029
		(3)	0.0834	0.0029	0.0848	0.0024
		(4)	0.0840	0.0026	0.0848	0.0022
ч. – н		(5)	0.0785	0.0025	0.0792	0.0020
		(6)	0.0801	0.0023	0.0807	0.0019
		(7)	0.0813	0.0022	0.0818	0.0018
		(8)	0.0826	0.0020	0.0829	0.0016
		(9)	0.0866	0.0018	0.0868	0.0014
		(10)	0.0897	0.0015	0.0895	0.0012
		(11)	0.0866	0.0009	0.0851	0.0007
508.2	68	(1)	0.1707	5.8486	0.1661	6.0147
		(2)	0.0822	0.0029	0.0843	0.0024
		(3)	0.0840	0.0023	0.0853	0.0019
		(4)	0.0842	0.0021	0.0850	0.0017
		(5)	0.0785	0.0020	0.0792	0.0016
		(6)	0.0799	0.0019	0.0804	0.0015
		(7)	0.0809	0.0018	0.0814	0.0014
•		(8)	0.0820	0.0017	0.0823	0.0013
		(9)	0.0856	0.0015	0.0857	0.0011
	•	(10)	0.0882	0.0012	0.0879	0.0009
		(11)	0.0837	0.0007	0.0824	0.0005
508.2	32	(1)	0.1926	5.1890	0.1895	5.2737
		(2)	0.0854	0.0012	0.0869	0.0009
		(3)	0.0845	0.0010	0.0854	0.0007
		(4)	0.0838	0.0009	0.0843	0.0006
		(5)	0.0776	0.0008	0.0781	0.0006
		(6)	0.0782	0.0008	0.0786	0.0005
		(7)	0.0787	0.0007	0.0789	0.0005
		(8)	0.0792	0.0007	0.0793	0.0005
		(9)	0.0817	0.0006	0.0817	0.0004
		(10)	0.0828	0.0005	0.0826	0.0003
		(11)	0.0756	0.0003	0.0747	0.0002

TABLE XXIX (Continued)

			Chao-Se	eader	Soave H	ĸĸ
Press. (Psia)	Temp. ([°] F) Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value	
	20	(1)	0.2010	4 0501	0 1007	F 0070
508.2	20	(1)	0.2019	4.9501	0.1997	5.0072
		(2)	0.0000	0.0009	0.0000	0.0005
		(3)	0.0831	0.0007	0.0836	0.0003
		(4)	0.0031	0.0006	0.0030	0.0004
		(5)	0.0709	0.0006	0.0776	0.0004
		(0)	0.0774	0.0005	0.0770	0.0004
		(7)	0.0777	0.0005	0.0779	0.0003
		(0)	0.0781	0.0005	0.0762	0.0003
		(9)	0.0812	0.0004	0.0804	0.0003
		(10)	0.0735	0.0004	0.0728	0.0002
		(==)	010735	010002	010720	0.0001
508.2	- 4	(1)	0.2248	4.4477	0,2246	4,4520
		(2)	0.0848	0.0005	0.0855	0.0003
		(3)	0.0825	0.0004	0.0828	0.0002
•		(4)	0.0812	0.0003	0.0813	0.0002
		(5)	0.0750	0.0003	0.0751	0.0002
		(6)	0.0752	0.0003	0.0753	0.0002
		(7)	0.0754	0.0003	0.0754	0.0002
		(8)	0.0756	0.0002	0.0755	0.0001
		(9)	0.0776	0.0002	0.0775	0.0001
		(10)	0.0780	0.0002	0.0777	0.0001
		(11)	0.0699	0.0001	0.0694	0.0000
508.2	-26	(1)	0.2523	3.9637	0.2848	3.9248
		(2)	0.0827	0.0002	0.0828	0.0001
		(3)	0.0799	0.0002	0.0799	0.0001
		(4)	0.0785	0.0002	0.0783	0.0001
		(5)	0.0724	0.0002	0.0723	0.0001
		(6)	0.0726	0.0001	0.0723	0.0001
		(7)	0.0727	0.0001	0.0724	0.0001
		(8)	0.0728	0.0001	0.0725	0.0001
		(9)	0.0746	0.0001	0.0742	0.0001
		(10)	0.0748	0.0001	0.0744	0.0000
		(11)	0.0667	0.0000	0.0661	0.0000

TABLE XXIX (Continued)

			Chao-Se	ader	Soave F	ĸ
Press.	Temp.	•	Liquid	ĸ	Liquid	K
(Psia)	(⁰ F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
1006.7	77	(1)	0.2985	3.3431	0.2943	3.3912
		(2)	0.0584	0.0047	0.0619	0.0040
		(3)	0.0640	0.0039	0.0664	0.0033
		(4)	0.0658	0.0036	0.0664	0.0032
		(5)	0.0623	0.0034	0.0626	0.0031
		(6)	0.0652	0.0031	0.0653	0.0028
. •		(7)	0.0670	0.0031	0.0674	0.0027
		(8)	0.0693	0.0029	0.0692	0.0026
		(9)	0.0752	0.0026	0.0755	0.0023
•		(10)	0.0823	0.0022	0.0825	0.0019
		(11)	0.0921	0.0013	0.0684	0.0012
1006.7	68	(1)	0.3050	3.2730	0.3016	3.3105
		(2)	0.0601	0.0040	0.0634	0.0033
		(3)	0.0650	0.0033	0.0672	0.0028
		(4)	0.0665	0.0030	0.0670	0.0027
		(5)	0.0627	0.0029	0.0629	0.0026
		(6)	0.0652	0.0027	0.0653	0.0024
		(7)	0.0668	0.0026	0.0671	0.0023
		(8)	0.0688	0.0024	0.0686	0.0021
		(9)	0.0740	0.0024	0.0741	0.0019
		(10)	0.0799	0.0019	0.0800	0.0016
		(11)	0.0860	0.0011	0.0827	0.0009
1006.7	32	(1)	0.3378	2.9574	0.3384	2.9527
		(2)	0.0637	0.0021	0.0661	0.0016
		(3)	0.0659	0.0017	0.0673	0.0013
		(4)	0.0664	0.0016	0.0665	0.0013
		(5)	0.0620	0.0015	0.0619	0.0012
		(6)	0.0635	0.0014	0.0632	0.0011
		(7)	0.0643	0.0013	0.0641	0.0011
		(8)	0.0655	0.0012	0.0649	0.0010
- -		(9)	0.0688	0.0011	0.0684	0.0009
	·	(10)	0.0718	0.0009	0.0712	0.0007
		(11)	0.0702	0.0005	0.0679	0.0004

TABLE XXIX (Continued)

			Chao-Se	ader	Soave I	RK
Press.	Temp.		Liquid	K	Liquid	K
(Psia)	(⁰ F)	Comp.*	Mol. Fr.	Value	Mol. Fr.	Value
1006.7	20	(1)	0.3518	2.8407	0.3541	2.8226
		(2)	0.0640	0.0017	0.0660	0.0013
		(3)	0.0655	0.0014	0.0665	0.0010
	· .	(4)	0.0657	0.0012	0.0655	0.0010
		(5)	0.0612	0.0012	0.0609	0.0010
		(6)	0.0624	0.0011	0.0620	0.0009
		(7)	0.0630	0.0011	0.0627	0.0008
		(8)	0.0639	0.0010	0.0633	0.0008
		(9)	0.0669	0.0009	0.0633	0.0007
		(10)	0.0692	0.0007	0.0685	0.0006
		(11)	0.0664	0.0004	0.0642	0.0003
1006.7	- 4	(1)	0.3857	2.5918	0.3922	2.5492
		(2)	0.0629	0.0011	0.0641	0.0008
		(3)	0.0633	0.0009	0.0636	0.0006
		(4)	0.0631	0.0008	0.0625	0.0006
		(5)	0.0585	0.0008	0.0579	0.0006
		(6)	0.0594	0.0007	0.0586	0.0006
		(7)	0.0598	0.0007	0.0590	0.0005
		(8)	0.0604	0.0006	0.0594	0.0005
		(9)	0.0627	0.0006	0.0618	0.0004
		(10)	0. 0643	0.0005	0.0631	0.0003
		(11)	0.0601	0.0003	0.0579	0.0002
1006.7	-26	(1)	0.4258	2.3481	0.4372	2.2869
		(2)	0.0601	0.0008	0.0605	0.0005
		(3)	0.0598	0.0006	0.0594	0.0004
		(4)	0.0594	0.0006	0.0583	0.0004
		(5)	0.0550	0.0006	0.0539	0.0004
		(6)	0.0556	0.0005	0.0544	0.0004
		(7)	0.0558	0.0005	0.0546	0.0004
•		(8)	0.0563	0.0005	0.0549	0.0003
		(9)	0.0583	0.0004	0.0568	0.0003
		(10)	0.0593 0.0547	0.0003	0.0577 0.0524	0.0002
		\/				0.0001

TABLE XXIX (Continued)

* (1) Methane (2)----(11) Fraction No.

TABLE XXX

VIRGIN OIL

			Chao-S	eader	Soave RK	
Press. (Psia)	Temp. (°F)	Temp. ([°] F) Comp.*	Liquid Mol. Fr.	K Value	Liquid Mol. Fr.	K Value
107.8	77	(1) (2)	0.0375 0.9625	26.5643 0.0031	0.0383 0.9617	26.0398 0.0024
	68	(1) (2)	0.0386 0.9614	25.8190 0.0024	0.0396 0.9604	25.2297 0.0018
	32	(1) (2)	0.0442 0.9558	22.6172 0.0008	0.0459 0.9541	21.7553 0.0005
	20	(1) (2)	0.0465 0.9535	21.4818 0.0006	0.0487 0.9513	20.5297 0.0003
	- 4	(1) (2)	0.0523 0.9477	19.1322 0.0002	0.0555 0.9445	18.0123 0.0001
	-26	(1) (2)	0.0591 0.9409	16.9134 0.0001	0.0638 0.9362	15.6640 0.0000
508.2	77	(1) (2)	0.1634 0.8367	6.1131 0.0017	0.1678 0.8322	5.9527 0.0013
	68	(1) (2)	0.1676 0.8324	5.9592 0.0013	0.1728 0. 8 273	5.7838 0.0010
	32	(1) (2)	0.1891 0.8109	5.2867 0.0005	0.1978 0.8022	5.0540 0.0004
بر مربع بر	20	(1) (2)	0.1982 0.8018	5.0439 0.0004	0.2085 0.7915	4.7942 0.0002
	- 4	(1) (2)	0.2205 0.7795	4.5344	0.2349 0.7651	4.2563 0.0001

Press. (Psia)	Temp. (^o F)	Comp.*	Liquid Mol. Fr.	Value	Liquid Mol. Fr.	Value
508.2	-26	(1) (2)	0.2473 0.7527	4.0440 0.0001	0.2668 0.7333	3.7487 0.0001
1006.7	77	(1) (2)	0.2926 0.7074	3.4121 0.0024	0.3040 0.6960	3.2848 0.0021
	68	(1) (2)	0.2990 0.7010	3.3397 0.0020	0.3118 0.6882	3.2029 0.0017
	32	(1) (2)	0.3313 0.6687	3.0164 0.0010	0.3511 0.6489	2.8464 0.0008
	20	(1) (2)	0.3450 0.6550	2.8973 0.0008	0.3677 0.6323	2.7186 0.0006
•	- 4	(1) (2)	0.3780 0.6220	2.6443 0.0005	0.4077 0.5923	2.4519 0.0004
	-26	(1) (2)	0.4171 0.5829	2.3970 0.0004	0.4549 0.5452	2.1982 0.0003

TABLE XXX (Continued)

* (1) Methane

(2) Fraction No.

TABLE XXXI

PREDICTED EQUILIBRIUM LIQUID MOLECULAR WEIGHTS

Mineral Spirits 135						
Press.	Temp.	Molecular Weight	(Liquid)			
(Psia)	(°F)	Chao-Seader	Soave-RK			
107.8	77	130.70	130.80			
	68	130.57	130.66			
	32	129.96	129.95			
	20	129.70	129.64			
	- 4	129.06	128.88			
	-26	128.30	127.96			
508.2	77	116.30	116.61			
	68	115.83	116.05			
	32	113.46	113.26			
	20	112.45	112.06			
• • • • • • • •	- 4	109.98	109.13			
	-26	107.03	105.59			
1006.7	77	101.52	101.75			
	68	100.82	100.87			
	32	97.28	96.50			
· ·	20	95.78	94.66			
	- 4	92.15	90.24			
	-26	87.88	85.07			
	50/50 Minera Heavy Sc	al Spirits 135 / Divent No. 1				
Press	Temp	Molecular Weight	(Liquid)			
(Psia)	(°F)	Chao-Seader	Soave-RK			
107.0		140.07	1/0.05			
10/.0	20	148.0/	148.09			
	00 20	147.93	147.93			
•	34	147.23	14/.08			
· · ·	20	140.93	146.71			

146.20

145.33

- 4

-26

145.82

144.72

Press.	Temp.	Molecular Weight (Liquid)			
(Psia)		Chao-Seader	Soave-RK		
508.2	77	131.63	131.60		
	68	131.09	130.95		
	32	128.41	127.65		
	20	127.27	126.24		
	- 4	124.49	122.79		
	-26	121.17	118.64		
1006.7	77	114.85	114.52		
	68	114.06	113.48		
	32	110.11	108.37		
	20	108.44	106.23		
	- 4	104.42	101.09		
	-26	99.70	95.11		

TABLE XXXI (Continued)

Highly Aromatic Lean 0il

Press.	Temp.	Molecular Weight	t (Liquid)
(Psia)	(°F)	Chao-Seader	Soave-RK
107.8	77	115.01	114.96
	68	114.92	114.85
	32	114.49	114.30
	20	114.31	114.07
	- 4	113.89	113.51
	-26	113.39	112.83
508.2	77	104.42	104.24
	68	104.09	103.81
	32	102.46	101.69
	20	101.78	100.79
	- 4	100.11	98.60
	-26	98.12	95.95
1006.7	77	93.21	92.79
, ·	68	92.71	92.12
	32	90.23	88.78
	20	89.19	87.38
	- 4	86.66	84.02
	-26	83.68	80.08
TABLE	XXXI	(Continued)	
-------	------	-------------	
-------	------	-------------	

Press.	Temp. (°F)	Molecular Weight (Liquid)	
(Psia)		Chao-Seader	Soave-RK
107.8	77	110.97	111.08
	68	110.80	110.91
	32	110.09	110.18
	20	109.82	109.90
· .	- 4	109.21	109.24
	-26	108.50	108.46
508.2	77	98.57	98.98
	68	98.05	98.45
	32	95.66	95.92
	20	94.69	94.89
•	- 4	92.38	92.37
	-26	89.64	89.38
1006.7	77	86.04	86.32
	68	85.25	85.47
	.32	81.63	81.48
	20	80.17	79.86
	- 4	76.71	76.01
	-26	72.70	71.52

Virgin	011
--------	-----

.

Press. (Psia)	Temp. (^o F)	Molecular Weight (liquid)	
		Chao-Seader	Soave-RK
107.8	77	114.17	114.10
	68	114.06	113.97
	32	113.50	113.32
	20	113.26	113.04
	- 4.	112.67	112.35
	-26	111.97	111.50
508.2	77	101.35	100.90
	68	100.91	100.39
	32	98.72	97.84
	20	97.79	96.75
	- 4	95.52	94.05
	-26	92.79	90.81

Press.	Temp. (°F)	Molecular Weight (Liquid)	
(Psia)		Chao-Seader	Soave-RK
1006.7	77	88.17	87.01
й. С	68	87.52	86.21
	32	84.22	82.21
	20	82.83	80.52
• •	- 4	79.46	76.43
	-26	75.48	71.63

TABLE XXXI (Continued)

VITA

Harold Eugene Rudolf

Candidate for the Degree of

Master of Science

Thesis: MEASUREMENT OF THE VISCOSITY OF METHANE SATURATED ABSORPTION OILS AT LOW TEMPERATURES AND ELEVATED PRESSURES USING A CAPILLARY VISCOMETER

Major Field: Chemical Engineering

Biographical:

- Personal Data: Born in Duncan, Oklahoma, 21 October 1949, to Adolf and Edna Rudolf.
- Education: Attended elementary school in Comanche, Oklahoma; graduated from Comanche High School, Comanche, Oklahoma; received Degree of Bachelor of Science in Chemical Engineering from Oklahoma State University, Stillwater, Oklahoma, January 5, 1972; completed requirements for Degree of Master of Science in May, 1973.
- Membership in Scholarly or Professional Societies: Omega Chip Epsilon, Affiliate Member of the American Institute of Chemical Engineers, Sigma Chapter of Sigma Tau.

Professional Experience: Employed by Halliburton Services Co. as an Enginer's Aid during the summers of 1969 and 1970.