NON-RELATIVISTIC QUARK MODEL

FOR MESONS

By

ASOK KUMAR RAY

//
Bachelor of Science Calcutta University Calcutta, West Bengal, India 1967

Bachelor of Technology
Institute of Radio-Physics \& Electronics Calcutta University
Calcutta, West Bengal, India 1969

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
in partial fulfillment of the requirements
    for the Degree of
    MASTER OF SCIENCE
        July, 1973
```


NON-RELATIVISTIC QUARK MODEL

FOR MESONS

Thesis Approved:

PREFACE

In this thesis, the non-relativistic quark model has been applied to mesons. A mass formula is developed and fitted into the experimentally confirmed mesons. The mass formula is found to be accurate in predicting the masses with errors of the orders of a few per cent. A complete table of mesons has been prepared with the help of this mass formula.

I would like to thank Dr. M. A. Samuel for his suggestion of the problem and his patient guidance during the course of this work. I would like to thank the Department of Physics, Oklahoma State University, for the financial help in the form of a teaching assistantship and Miss Bernadette 0 'Farrell for typing the manuscript.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
A. Historical Background. 1
B. The Quark Model. 5
II. THE QUARK MODEL FOR MESONS 12
A. Higher Multiplets in the Quark Model 12
B. Pseudoscalar and Vector Meson States 14
III. PROPERTIES OF MESONS 20
A. Pseudoscalar Mesons. 20
B. Vector Mesons. 23
C. Excited Mesonic States 25
D. Remarks 30
IV. POTENTIAL FOR QUARK ANTI-QUARK COMBINATION 32
A. $\quad q-\bar{q}$ Potential. 32
B. Specific Forms of Potentials 34
V. MASS FORMUTA CALCULATIONS 52
VI. CONCLUSIONS 65
REFERENCES 67
APPENDIX 70

LIST OF TABLES

Table Page
I. Quantum Numbers of the Quarks. 7
II. Quantum Numbers of Quark-Antiquark Pairs 13
III. Pseudoscalar Mesons 20
IV. Vector Mesons. 23
V. Number of Strange Quarks for Mesons 54
VI. Meson Masses with $v, L, \vec{L} . \vec{S}, \vec{S}_{1} \cdot \vec{S}_{2}$ Values 55
VII. Complete Table of Quark-Antiquark Meson States 61
VIII. Comparison of Experimental and Predicted Mesonic Masses 63
IX. Comparison of Predicted Mesons with New Mesons 64

LIST OF FIGURES

Figure Page

1. The Triplets of Quarks and Antiquarks 7
2. Octet of $q \bar{q}$ States 13
3. Octet of Pseudosca1ar and Vector Mesons. 15
4. Mass Splittings among the 36 Mesonic States with $L=0$ due to Forces of Types (1), (2) and (3). 24
5. Possible Pattern for Mass Splittings among the Quark-Anti- quark States for General L 26
6. Octet Pattern for 2^{+}Mesonic Nonet 28
7. Schematic Diagram Showing Low-lying states and the Corresponding Wave Functions when $\epsilon_{0}=7 \pi / 2$ in (a) a Spherical Box and (b) a Spherical Well. 38
8. M^{2} Versus I-Values for Mesons 56
9. M^{2} Versus J^{P} Values for Mesons 57

CHAPTER I

INTRODUCTION

A. Historical Background

The type of model for the strongly interacting "elementary particles" or hadrons to be discussed has a long history, beginning with the model discussed by Fermi and Yang (I) in which the pion is considered as a bound state of the nucleon-antinucleon system. These bound state models have never been considered fully respectable, perhaps not even today. Indeed, it is not really possible to meet all the objections to such models. It was realized by Fermi and Yang that, given the nucleons, it was unnecessary to consider π meson to be an independent particle, since a state having all the quantum numbers of the pion could be built up from nucleons and antinucleons. For a theory of the observed "elementary particles" in terms of a more primary object, it is clear that this should be chosen to be a fermion, the simplest possibility being that of spin $\frac{1}{2}$ for reasons of economy. Bosons can then be constructed from bound states of the particle and its antiparticle; some primary fermion object is necessary in order to allow the construction of states corresponding to the observed fermionic hadrons. At least two primary objects are needed, with differing charge values, in order to allow the possibility of constructing states of different charge values Q, for given baryon no. B. If the interactions between the primary
objects are assumed charge-independent, then all the states formed from these objects can be classified into I-spin multiplets.

After the discovery of mesons and baryons with non-zero strangeness, it was pointed out by Sakata (2) that the model of Fermi and Yang could readily be extended to take into account the additional additive quantum no. of strangeness S (or of hypercharge Y defined by $Y=S+B$), simply by adding the Λ hyperon to the set of primary objects, giving rise to the primary triplet of Sakatans, (p, n, Λ)

Now, the charge independence long known for non-strange hadrons corresponds to the hypothesis that their interaction energy is invariant with respect to any unitary transformation between the states of the nucleon doublet (P, N) i.e. that the interactions are invariant with respect to the $\mathrm{SU}(2)$ group of isospin, whose properties are exactly parallel to those for the $\mathrm{SU}(2)$ group well known in connection with the Pauli spin theory. We shall represent these basis isospin states by the column matrix $\xi_{\text {, with }} \xi_{1}=p$ and $\xi_{2}=n$, which have the same isospin transformations as P and N but need not be identical to them. Like P and N, they form a two-dimensional covariant isospinor

$$
\begin{equation*}
\xi=\binom{\xi_{1}}{\xi_{2}} \tag{1}
\end{equation*}
$$

which, under the transformations U of the $S U(2)$ group, transforms as

$$
\begin{equation*}
\xi \rightarrow \xi^{\prime}=U \xi \tag{2}
\end{equation*}
$$

in which U is a 2×2 unitary matrix satisfying det $U=1$. Any isospin rotation can be completely characterized by its effect on $\bar{\xi}$ as described by (2). The doublet $\left(\xi_{1}, \xi_{2}\right)$ with isospin $I=\frac{1}{2}$ forms the basis for the fundamental representation of the isospin group SU(2)

We also now define contravariant spinors

$$
\begin{equation*}
\eta=\left(\eta, \eta^{2}\right) \tag{3}
\end{equation*}
$$

which under the U transformations, transform in such a way that $n \xi=\eta^{a} \xi_{a}$ is invariant; (summation of repeated indices is understood throughout). η describes the transformation properties of the doublet of antiparticles $\overline{\mathrm{p}}$ and $\overline{\mathrm{n}}$. Higher isospin multiplets can be constructed by forming direct products of the spinors ξ or η or both. If we consider a system composed of a particle and an antiparticle, we obtain four states that can be written

$$
\begin{equation*}
M_{k}^{i}=\eta^{i} \xi_{k} \tag{4}
\end{equation*}
$$

Then tensor M_{k}^{i} has mixed properties under isospin transformations; i.e. it does not correspond to an irreducible representation of $\mathrm{SU}(2)$. However, by judiciously taking linear combinations of the above states we can construct two sets of orthonormal states such that, under the action of $\mathrm{SU}(2)$, the states within each set transform among each other and as such, form the basis of an irreducible representation, i.e. a multiplet. Evidently one of these sets consists of the invariant or isoscalar $\eta \xi_{i}^{i}$ the remaining states form a triplet. The two sets in question are

$$
\left.\begin{array}{l}
\frac{1}{\sqrt{2}}\left(\eta^{\prime} \xi_{1}+\eta^{2} \xi_{2}\right)=\frac{1}{\sqrt{2}}(\bar{p} p+\bar{n} n), \text { singlet } I=0 \\
\eta^{\prime} \xi_{2}=\bar{p} n \tag{5-b}\\
\frac{1}{\sqrt{2}}\left(\eta^{2} \xi_{1}=p \bar{n}-\eta^{2} \xi_{2}\right)=\frac{1}{\sqrt{2}}(\bar{p} p-\bar{n} n)
\end{array}\right\} \begin{aligned}
& \text { triplet } \\
& I=1
\end{aligned}
$$

showing that the direct product of the two isospin doublets breaks down into an isospin singlet and an isospin triplet. We can write this symbolically as

$$
\begin{equation*}
2 \times \overline{2}=1+3 \tag{6}
\end{equation*}
$$

With n and p carrying zero strangeness we can represent the triplet of pions by the triplet (5-b). This fact can mean two things. Either the fundamental objects $p, n, \overline{\mathrm{~B}}, \overline{\mathrm{n}}$, are mathematical objects; thus identification of the pion triplet with (5 -b) means only that the pion has the same isospin transformation properties as the combinations given by Eq. (5-b), or the objects p, n, \bar{p}, n, are physical particles, hence the pion must be regarded as the bound state of these particles.

Similarly the η meson can be represented in this model by the singlet. In this way we can construct all nonstrange hadrons from our building blocks p, n, and their antiparticles. The assumption of invariance of the mechanics of the system under isospin transformation ensures that these hadrons fall into isospin multiplets, each of which is characterized by the value of the isospin I. If the symmetry is perfect, each multiplet is degenerate in mass. Electromagnetic forces, which break isospin symmetry, cause small mass splittings within the multiplets. Once one member of a given multiplet is found, all the other members of the multiplet must also exist.

It is clear that with this procedure we will never be able to construct the strange particles. For that purpose we must have at least one more fundamental object with nonzero strangenes. This requirement leads to $\mathrm{SU}(3)$.

B. The Quark Model

The hypothesis that this unitary symmetry for the interactions should be extended to $\operatorname{SU}(3)$ symmetry for the three-dimensional space of the Sakaton $S=(p, n, \Lambda)$ was made by the Sakata school (3) by Yamaguchi (4) and Wess (5). Since the Λ state is observed to have mass about 176 MeV greater than that for the (n, p) states, this $\mathrm{SU}(3)$ symmetry cannot be satisfied to such accuracy as is observed for the SU(2) symmetry of isospin; there must exist interactions of nuclear strength which break this $\operatorname{SU}(3)$ symmetry. A particularly appealing model was the vecton model of Fujii, (6) discussed also by Kobzarev and Okun (7) and by Gell-Mann (8) in which the interaction arises from the coupling of a neutral vector field (the vector V_{μ}) with the baryon current

$$
\begin{equation*}
J_{\mu}^{\beta}=\left\{\bar{p} \Gamma_{\mu} p+\bar{n} \Gamma_{\mu} n+\bar{\Lambda} \Gamma_{\mu} \Lambda\right\} \tag{7}
\end{equation*}
$$

In this model, the vecton appears as a gauge field for baryon number and the invariance of the interaction $\lambda 丁{ }_{\mu} V_{\mu}$ with respect to the $\operatorname{SU}(3)$ transformation appear as a consequence of baryon conservation.

In the $\operatorname{SU}(3)$ scheme, the states are labelled by the suffix α, thus u_{α} with $\alpha=1,2,3$, the 3 - axis being associated with hypercharge. So, the only difference between $\mathrm{SU}(2)$ and $\mathrm{SU}(3)$ is that in $\mathrm{SU}(3)$ our basic state is a three-component spinor

$$
\xi=\left(\begin{array}{l}
\xi_{1} \tag{8}\\
\xi_{2} \\
\xi_{3}
\end{array}\right)=\left(\begin{array}{l}
p \\
n \\
\lambda
\end{array}\right)
$$

Under the transformations of $\mathrm{SU}(3)$ this spinor transforms as

$$
\begin{equation*}
\xi \rightarrow \xi^{\prime}=U \xi \tag{9a}
\end{equation*}
$$

where U is a 3×3 unitary matrix with det $U=1$. The contravariant spinor describing the antiparticles are given by

$$
\begin{equation*}
\eta=\left(\eta^{1} \eta^{2} \eta^{3}\right) \equiv(\bar{p} \bar{n} \bar{\lambda}) \tag{9b}
\end{equation*}
$$

It transforms such that $\eta \xi$ is invariant. The triplets (p, n, λ) and ($\overline{\mathrm{p}}, \overline{\mathrm{n}}, \bar{\lambda}$) form the bases for the two fundamental representation of $\mathrm{SU}(3)$ These are denoted by $\{3\}$ and $\{\overline{3}\}$ respectively. The particles p, n, λ are called quarks and the antiparticles $\bar{p}, \bar{n}, \bar{\lambda}$ antiquarks, the names used by Gell-Mann (9). The consequences of quark model has been vigorously investigated by Zweig (10). The p and n quarks form an isodoublet ($I=\frac{1}{2}$) of strangeness $S=0$. ; The λ quark is an isoscalar ($I=0$) to which we assign strangeness $\mathrm{S}=-1$. An octet state can be formed from triplet quarks only from baryon no. $B=3 n b$ where n is an integer and b is the quark baryon no. Hence it is necessary to assume a fractional value for b and the simplest possibility is $b=1 / 3$, so that the observed baryon states are then composite states consisting of three quarks. Hence the hypercharge Y, defined by

$$
\begin{equation*}
Y=S+B \tag{9c}
\end{equation*}
$$

is $+1 / 3$ for p and n, and $-2 / 3$ for λ. The Gell-Mann-Nishijima relation

$$
\begin{equation*}
Q=I_{z}+\frac{1}{2} Y \tag{9d}
\end{equation*}
$$

in which Q is the charge, then gives for the charges e_{q} of the quarks $\mathrm{p}, \mathrm{n}, \lambda$ the fractional values $2 / 3 \mathrm{e},-1 / 3 \mathrm{e},-1 / 3 \mathrm{e}$, respectively. Here e is the charge of the proton. We have collected the quantum numbers
of the quarks in Table I:

TABLE I
QUANTUM NUMBERS OF THE QUARKS

	B	I	I_{z}	Y	S	$\mathrm{e}_{\mathrm{q}} / \mathrm{e}$
p	$1 / 3$	$1 / 2$	$1 / 2$	$1 / 3$	0	$2 / 3$
n	$1 / 3$	$1 / 2$	$-1 / 2$	$-1 / 2$	0	$-1 / 3$
λ	$1 / 3$	0	0	$-2 / 3$	-1	$-1 / 3$

For the antiquarks the quantum numbers I_{z}, S, B, Y, and e_{q} are the opposites of those of the corresponding quarks. We can represent the basic triplets of $\operatorname{SU}(3)$ graphically as in Figure 1:

Figure 1. The Triplets of Quarks and Antiquarks

With these quantum nos. we conclude
(1) the quarks cannot decay completely into the observed particle states, since this would violate baryon conservation and charge conservation, both conservation laws being known to hold to an exceedingly
high accuracy. (11)
(2) The quark states can decay weakly into each other, following the rules known for weak interaction process. For example if q_{3} is the heaviest quark then the weak decay processes

$$
\begin{align*}
q_{3} & \rightarrow q_{1,2}+\pi \tag{10a}\\
& \rightarrow q_{2}+\gamma \tag{10b}\\
& \rightarrow q_{1}+e^{-}+\bar{v} \tag{10c}
\end{align*}
$$

are possible, at rates which depend on the mass differences. According as q_{2} is heavier (or lighter) than q_{1}, then the beta decay processes

$$
\begin{equation*}
q_{2} \rightarrow q_{1}+e^{-}+\bar{\nu} \tag{11}
\end{equation*}
$$

can occur, provided the mass difference is greater than m_{e}. In all cases, however the lightest quark state is necessarily stable; there are no decay processes consistent with the conservation laws.

Now, each hadron is supposed to be bound state of quarks or antiquarks or both due to some strongly attractive force whose nature is unknown. SU(3) invariance means that the three quarks making up the triplet representation of $\mathrm{SU}(3)$ have the same mass and that the forces between them do not change under $\mathrm{SU}(3)$ transformation. This fact ensures the existence of $S U(3)$ multiplets consisting of $n q m a n t a t e s$ ($n, m=0,1,2, \ldots$.). With perfect symmetry the states within each multiplet are degenerate in mass. If the symmetry is broken, the degeneracy is lifted. Hence from the quark picture we arrive in a natural way at the classification of mesons, baryons and their resonances into certain $S U(3)$ multiplets. In the simplest scheme, in which mesons are $q \bar{q}$ states and baryons $q q q$ states, only singlets, octets and
decuplets are allowed. Experimental verification of this ordering of hadrons into $\mathrm{SU}(3)$ multiplets has been one of the most striking discoveries in particle physics in recent years. The observed multiplets are only approximately degenerate, thus showing that $\mathrm{SU}(3)$ is only an approximate symmetry.

The major problem about the quark hypothesis is the fact that no quark particle has yet been observed in nature. It must certainly be possible to produce $q \bar{q}$ pairs in high-energy nuclear collisions, although it is not easy to give a reliable estimate of the production crosssection to be expected. It's necessary to conclude that they must be very massive particles, so that their production rate in cosmic rays would be correspondingly low and their accumulated intensity in terrestrial matter sufficiently low that they would be sufficiently difficult to detect.

A number of accelerator experiments have been carried out to search for quark production in 30 GeV proton-nucleus collisions. Blum (12) searched for particles of charge e/3 or $2 e / 3$ by examining particle tracks with subnormal bubble density in a hydrogen chamber exposes to a particle beam from the CERN accelerator. They concluded that if $\mathrm{M}_{\mathrm{q}} \leqslant 4 \mathrm{GeV}$ then the quark production cross-section is not greater than $10^{-32} \mathrm{~cm}^{2}$ in nucleon - nucleon collisons at $27.5 \mathrm{GeV} / \mathrm{c}$. Leipuner (13) made a counter search sensitive to particles of charge $e / 3$ and concluded that, if $M \leqslant 2 \mathrm{GeV}$, the production cross-section is not greater than $10^{-32} \mathrm{~cm}^{2}$ for 28 GeV protons. The most extensive accelerator search has been that recently reported by Lederman (14) which was sensitive to particles of charge $\geq 2 e / 3$ and which could be interpreted more quantitatively as a result of their prior investigations of the effective-
ness of the high momentum components of the nucleons within complex nuclei for the production of antiprotons. Estimating the quark pair production cross-section for the process

$$
\begin{equation*}
p+N \rightarrow p+N+q+\bar{q} \tag{12}
\end{equation*}
$$

from the known cross-section for the corresponding proton - antiproton pair production process, with corrections for the phase space and with a factor $\left(M_{p} / M_{q}\right)^{2}$ to represent the charge in the intermediate propagator in this process, the observed upper 1 imit cross section of 3×10^{-36} $\mathrm{cm}^{2} \mathrm{sr}^{-1}(\mathrm{GeV} / \mathrm{c})^{-1}$ corresponds to a lower 1 imit of 4.5 GeV for the quark mass.

Cosmic ray experiments allow the possibility of exploring higher mass values. A recent experiment by Bowen (15) was sensitive to the low charge values $\pm e / 3$. The interpretation of their observations depend both on the production cross section assumed and on the quark interaction cross-section; for example, if the production cross-section is assumed to be $10^{-30} \mathrm{~cm}^{2}$ for all energies above the threshold and $\sigma_{q N}$ to be 15 mb , then the observations are consistent only with $M_{q} \geq$ 3 GeV .

McCusker and Cairns (16) claimed to have observed fractionally charged quarks in cloud-chamber photographs of the cores of very energetic cosmic ray showers while Chu (17) claimed to have observed a fractionally changed quark in a bubble-chamber photograph of energetic cosmic ray tracks. However, both of these experiments have alternative explanation which do not require fractionally changed quarks so that many physicists are not ready to accept the experiments of Cairns and McCusker and Chu until additional experimental work is performed to
check these findings (18). Most physicists are now very sceptical about these claims.

More complicated triplet schemes have been put forward, with the purpose of allowing integral values of B and Q for the triplet states. We shall not discuss these more elaborate triplet models in detail, because there is a great deal of flexibility in their use and in their comparison with the properties of the observed particle states. The simple quark model of Gell-Mann and Zweig provides a very much less flexible framework for the interpretation of "elementary particle" properties and it is of particular interest to follow the development of this model until such time as it may prove inadequate to account for the observed phenomena.

QUARK MODEL FOR MESONS

A. Higher Multiplets in the Quark Model

We can obtain higher representations of $\mathrm{SU}(3)$ by forming direct products of the basic spinors ξ and η. Consider the states for a $q \bar{q}$ pair:

$$
\begin{equation*}
M_{k}^{i}=\eta^{i} \xi_{k} \tag{1}
\end{equation*}
$$

There are nine of them that have mixed properties under $\mathrm{SU}(3)$ transformation. The combination

$$
\begin{equation*}
\frac{1}{\sqrt{3}} \eta^{i} \xi_{i}=\frac{1}{\sqrt{3}}(\bar{p} p+\bar{n} n+\bar{\lambda} \lambda) \tag{2}
\end{equation*}
$$

is invariant under any U transformation and as such, forms the basis for a one-dimensional representation. This is a unitary singlet. The remaining eight states transform among each other and span the bases for an eight-dimensional representation. We call it an octet and so,

$$
\begin{equation*}
\{3\} \times\{\overline{3}\}=\{1\}+\{8\} \tag{3}
\end{equation*}
$$

The two central states of the octet those with $I_{z}=0$ are linear combinations of $p \bar{p}, n \bar{n}, \lambda \bar{\lambda}$. One of them forms an isotriplet with $\bar{p} n$ and np and is

$$
\begin{equation*}
x=\frac{1}{\sqrt{2}}(\bar{p} p-\bar{n} n) \tag{4}
\end{equation*}
$$

The remaining state y is an isosinglet and is given by

$$
\begin{equation*}
y=\frac{1}{\sqrt{6}}(\bar{p} p+\bar{n} n-2 \bar{\lambda} \lambda) \tag{5}
\end{equation*}
$$

TABLE II
QUANTUM NOS. OF q${ }^{\text {q }}$ PAIR

Figure 2. Octet of $q \bar{q}$ States
The basic states for two quark triplets are (19)

$$
\begin{equation*}
\xi_{i} \xi_{k}(i, k=1,2,3) \tag{6}
\end{equation*}
$$

These nine states have mixed $S U(3)$ transformation properties. We have six symmetric states:

$$
\left.\begin{array}{cll}
p p & n n & \lambda \lambda \tag{7}\\
\frac{1}{\sqrt{2}}(p n+n p) & \frac{1}{\sqrt{2}}(p \lambda+\lambda p) & \frac{1}{\sqrt{2}}\left(n \lambda+\lambda_{n}\right)
\end{array}\right\}\{6\}
$$

and three anti symmetric states

$$
\left.\begin{array}{l}
\frac{1}{\sqrt{2}}(p n-n p) \tag{8}\\
\frac{1}{\sqrt{2}}(p \lambda-\lambda p) \\
\frac{1}{\sqrt{2}}(n \lambda-\lambda n)
\end{array}\right\}\{\overline{3}\}
$$

B. Pseudoscalar and Vector Meson States

In this model, the meson states are considered to be bound states of a $q \bar{q}$ pair, due to some strongly attractive interaction between them. This interaction could arise from the exchange of vector mesons between them, for example; A particular attractive possibility is provided by the vector model of Fujii (20).

This model allows only states which belong to $\{1\}$ or $\{8\}$ representations. The formation of meson states belonging to the $\{27\}$ representation requires the consideration of more complicated excitations, such as the structure $\bar{q} \bar{q} q q$ and we interpret the absence of evidence for the existence of $\{27\}$ states to the higher excitation energies needed for these more complicated structures. For mesons, a particle and it's antiparticle are always in the same $\operatorname{SU}(3)$ multiplet. Now since quark and antiquark have opposite intrinsic parity, the parity P of the $q \bar{q}$ state is given by

$$
\begin{equation*}
P=(-)^{L+1} \tag{9}
\end{equation*}
$$

and charge conjugation quantum numbers C for the neutral states is

$$
\begin{equation*}
C=(-)^{L+S} \tag{10}
\end{equation*}
$$

where S is the total intrinsic spin, which is 0 or 1 according to whether the quark spins are parallel or antiparallel. This implies that $J^{P C}=0^{--}$, (odd) ${ }^{-+}$, (even) ${ }^{+-}$are excluded in quark mod el. The lowest $q \bar{q}$ states are the $L=0$ states. Depending on S, there are two sets of nine S states
having the following quantum nos.

$$
\begin{array}{lll}
\text { (a) } S=0, & P=-1, & C=+1 \\
\text { (b) } S=1, & P=-1, & C=-1 \tag{11}
\end{array}
$$

each of which falls into an SU(3) singlet and an SU(3) octet. Sets (a) and (b) may be identified with the two nonets of observed pseudoscalar and vector mesons respectively.

Figure 3. Octet of Pseudoscalar and Vector Mesons
The wavefunctions of the substrates for these $L=0$ unitary multiples may be written

$$
\begin{equation*}
\psi\left(\{\alpha\}, S ; Y, I, I_{3}\right)=\phi(\{\alpha\}, S ; \underline{r}) X_{s} g\left(\{\alpha\} ; y, I, I_{3}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi \rightarrow \text { radial wavefunction } \\
& x \rightarrow \text { spin wavefunction } \\
& g \rightarrow \text { unitary - spin wavefunction } \tag{13}
\end{align*}
$$

Octet States:

$$
I=1\left\{\begin{array}{l}
g\left(p^{+}\right)=g\left(\pi^{+}\right)=\bar{q}_{2} q_{1} \tag{14}\\
g\left(p^{0}\right)=g\left(\pi^{0}\right)=\left(\bar{q}_{1} q_{2}-\bar{q}_{2} q_{1}\right) / \sqrt{2} \\
g\left(p^{-}\right)=g\left(\pi^{-}\right)=\bar{q}_{1} q_{2}
\end{array}\right.
$$

$$
\begin{align*}
& I=\frac{1}{2}\left\{\begin{array}{l}
g\left(k^{*+}\right)=g\left(k^{+}\right)=\bar{q}_{3} q_{1} ; g\left(\bar{k}^{*-}\right)=g\left(k^{-}\right)=\bar{q}_{1} q_{3} \\
g\left(k^{*} 0\right)=g\left(k^{0}\right)=\bar{q}_{3} q_{2} ; g\left(\bar{k}^{* 0}\right)=g\left(\bar{k}^{0}\right)=\bar{q}_{2} q_{3}
\end{array}\right. \\
& I=0: g\left(\phi_{8}\right)=g\left(\eta_{8}\right)=\left(\bar{q}_{1} q_{1}+\bar{q}_{2} q_{2}-2 \bar{q}_{3} q_{3}\right) / \sqrt{6}
\end{align*}
$$

Singlet State:

$$
\begin{equation*}
g(\omega)=g(x)=\left(\bar{q}_{1} q_{1}+\bar{q}_{2} q_{2}+\bar{q}_{3} q_{3}\right) / \sqrt{3} \tag{16}
\end{equation*}
$$

The interaction energy in these states must be very large. The masses of the observed particles are quite low, relative to $q \bar{q}$ total mass $2 M_{q}$, so that the $q \bar{q}$ binding energy must be very large.

We shall generally use non-relativistic concepts. Morpurgo
pointed out this is not unreasonable. The range of the $q \bar{q}$ force is likely to be of the order $R \approx \hbar / \mathrm{m}_{\mathrm{v}} \mathrm{C}$. So in the $\overline{\mathrm{q}} \mathrm{q}$ wavefunction typical quark momenta will be $\hbar / R \approx m_{v} c$ to be compared with the quark mass energy $M_{q} c^{2} \gtrsim 5 \mathrm{GeV}$. So the quark vels. in these states are therefore

$$
\begin{equation*}
\mathrm{V} / \mathrm{C} \sim \hbar /\left(\mathrm{RM}_{\mathrm{q}} \mathrm{c}\right) \sim \mathrm{m}_{\mathrm{v}} / \mathrm{M}_{\mathrm{q}} \lesssim 1 / 5 \tag{17}
\end{equation*}
$$

So non-relativistic concepts are quite appropriate

Vector Meson States:

With exact unitary symmetry, there will be two mass values for the vector mesons, m_{8} for the octet states and m_{1}, for the singlet state. In general, these mass values will differ, since the $\bar{q}-q$ potential U may be expected to depend on the unitary representation $\{a\}$ to which the state belongs.

The vector mesons observed show appreciable mass splittings between the various isospin multiplets. For example $m(p)=765 \mathrm{MeV}$ whereas $m\left(k^{*}\right)=892 \mathrm{MeV}$. The simplest hypothesis about these $\operatorname{SU}(3)$
breaking interactions is that the mass splittings are simply due to a mass difference between quark q_{3} and the quarks q_{1}, q_{2} with $m_{1}=m_{2}=m$ required by isospin conservation and

$$
\begin{equation*}
m_{3}=m+\Delta \tag{18}
\end{equation*}
$$

whereas the mass p is given by m_{8}, this additional quark mass leads to

$$
\begin{equation*}
k^{*}=m_{8}+\Delta \tag{19}
\end{equation*}
$$

So, to a first approximation

$$
\begin{equation*}
\Delta=K^{*}-P=127 \mathrm{MeV} \tag{20}
\end{equation*}
$$

The expectation values of the mass for the states \emptyset_{8} and ω_{1} are obtained using the unitary spin wavefunction, with the results

$$
\begin{equation*}
\emptyset_{8}=m_{8}+4 / 3, \quad \omega_{1}=m_{1}+2 / 3 \tag{21}
\end{equation*}
$$

With this symmetry - breaking term, the mass operator has a matrix element linking the \emptyset_{8} and ω_{1} states, given by

$$
\begin{equation*}
\left(\emptyset_{8} / \mathrm{m} / \omega_{1}\right)=(-2 \sqrt{2} / 3) I \Delta \tag{22}
\end{equation*}
$$

where I denotes the overlap integral between the radial wavefunctions appropriate to the octet and singlet potentials.

A case of special interest is that in which the $\bar{q}-q$ potential does not depend on the quark labels, thus

$$
\begin{equation*}
\left(\bar{q}_{\alpha} q_{\beta} / U / \bar{q}_{\gamma} q_{\delta}\right)=U \delta_{\alpha y} \delta_{\beta \delta} \tag{23}
\end{equation*}
$$

This property holds automatically for the potential resulting from the exchange of a vecton coupled with the baryon current. With this property, the potentials $U(\{8\})$ are $U(\{I\})$ are identical and we have

$$
\begin{equation*}
m_{8}=m_{1} \tag{24}
\end{equation*}
$$

The $I=Y=0$ eigenstates of the energy are not the ϕ_{8} and ω_{p} states, but are given by the states $\left(\bar{q}_{1} q_{1}+\bar{q}_{2} q_{2}\right) / \sqrt{2}$ and $\bar{q}_{3} q_{3}$, corresponding to mass values m_{8} and $m_{8}+2 \Delta$ respectively. These states are naturally
to be identified with the observed ω and \emptyset states, so that

$$
\begin{align*}
g(\omega)=\left(\bar{q}_{1} q_{1}+\bar{q}_{2} q_{2}\right) / \sqrt{2} & =\cos \theta_{v} g\left(\omega_{1}\right)+\sin \theta_{v} g\left(\emptyset_{8}\right) \tag{25}\\
g(\emptyset)=-\bar{q}_{3} q_{3} & =\sin \theta_{v} g\left(\omega_{1}\right)+\cos \theta_{v} g\left(\emptyset_{8}\right)
\end{align*}
$$

where the mixing angle θ_{v} is given by $\cos \theta_{v}=\sqrt{2 / 3}, \sin \theta_{v}=\sqrt{1 / 3}$. So we have the mass predictions

$$
\begin{align*}
\omega & =p \\
\omega+\emptyset & =2 k^{*} \tag{26}
\end{align*}
$$

and leads to the further estimate

$$
\Delta=(\phi-\omega) / 2=118 \mathrm{MeV}, \text { very close to the estimate }
$$

obtained above from ($\mathrm{K} *-\rho$).
More generally, we consider the $I=Y=0$ states for the case $m_{8} \neq m_{1}$
The mass operator has this form

$$
\left(\begin{array}{ll}
m_{8}+4 \Delta / 3 & -(2 \sqrt{2} / 3) I \Delta \tag{27}\\
-(2 \sqrt{2} / 3) I \Delta & m_{1}+2 \Delta / 3
\end{array}\right)
$$

and has the eigenvalues ω and \emptyset. Hence

$$
\begin{align*}
& \omega+\emptyset=m_{1}+m_{8}+2 \Delta \\
& \omega \emptyset=\left(m_{8}+4 \Delta / 3\right)\left(m_{1}+2 \Delta / 3\right)-8 I^{2} \Delta^{2} / 9 \tag{28}
\end{align*}
$$

With $\rho=m_{8}$ and $K^{*}=m_{8}+\Delta$, We can eliminate m_{1}, m_{8} and from these equations to give the inequality (22)

$$
\begin{align*}
& \left\{(\omega-\rho)(\emptyset-\rho)-\frac{4}{3}(K *-\rho)(\omega+\emptyset-2 K *)\right\}=\frac{8}{9} * \\
& \quad(K *-\rho)^{2}\left(1-I^{2}\right) \geqslant 0 \tag{29}
\end{align*}
$$

Assuming $\mathrm{I}=1$,

$$
\begin{equation*}
(\omega-p)(\phi-p)=\frac{4}{3}(K *-p)(\phi+\omega-2 K *) \tag{30}
\end{equation*}
$$

At this point, we shall go over to the conventional use of the (mass) ${ }^{2}$ operator for bosons. This appears rather appropriate since the boson mass appears only in the combination (mass) ${ }^{2}$ in the energy operator so that the mass splitting perturbations calculated are contributions
directly to (mass) ${ }^{2}$. Insofar as perturbation theory is valid for the mass splitting effects, it should be equally valid to use perturbation theory for (mass) or (mass) ${ }^{2}$ and in fact, for the vector mesons it generally makes little difference whether (mass) or (mass) ${ }^{2}$ is used. However, there are very good reasons to prefer the use of the (mass) ${ }^{2}$ operator in the case of the pseudoscalor mesons and so for consistency, we shall use the (mass) ${ }^{2}$ operator for the vector mesons. We have

$$
\left.\begin{array}{c}
\rho^{2}=\mathrm{m}_{8}{ }^{2} \\
\left(\mathrm{~K} *^{2}=\mathrm{m}_{8}{ }^{2}+\delta \text { and for the (mass) }{ }^{2}\right. \text { matrix } \\
\left(\begin{array}{c}
\mathrm{m}_{8}{ }^{2}+4 \delta / 3 \\
-(2 \sqrt{2} / 3) \delta
\end{array}\right. \tag{31}\\
-(2 \sqrt{2} / 3) \delta \\
\mathrm{m}_{1}{ }^{2}+2 \delta / 3
\end{array}\right)
$$

where the correction δ is proportional to the quark mass difference (Δ) . With the first approximation $m_{8}=m_{1}$

$$
\begin{align*}
& \delta=K *^{2}-P^{2}=2.025 \times 10^{5}(\mathrm{MeV})^{2} \\
& 2 \delta=\emptyset^{2}-\omega^{2}=4.27 \times 10^{5}(\mathrm{MeV})^{2} \tag{32}
\end{align*}
$$

in good agreement with each other, confirming that $m_{1} \approx m_{8}$. Writing $\delta=2 \mathrm{~m}_{8} \Delta$, we have $\Delta \sim 135 \mathrm{MeV}$. Allowing $\mathrm{m}_{8} \neq \mathrm{m}_{1}$, we have Schwinger's relation

$$
\begin{equation*}
\left(\omega^{2}-\rho^{2}\right)\left(\emptyset^{2}-\rho^{2}\right)=\frac{4}{3}\left(K *-\rho^{2}\right)\left(\omega^{2}+\emptyset^{2}-2 K *^{2}\right) \tag{33}
\end{equation*}
$$

This requires $(\omega-p)=25.0 \mathrm{MeV}$, Somewhat larger than the present value of 19 MeV .

A. Pseudoscalar Mesons

We now return to our discussion of pseudoscalar mesons. Their main properties with their decay modes and quantum numbers are shown below.

TABLE III
PSEUDOSCALAR MESONS

Particle	Mass (MeV)	J^{P}	$I^{\text {G }}$	Main Decay Mode	C	Y	σ	L
$\pi^{ \pm}$	139.6	0^{-}	$1{ }^{-}$	μv	+	0	0	0
Π°	134.97	0^{-}	1^{-}	$y \gamma$	+	0	0	0
η	548.8 ± 0.6	0^{-}	O^{+}	y y	+	0	0	0
X°	957.7 ± 0.8	0^{-}	0^{+}	$\eta \pi \pi$	+	0	0	0
K^{+}	$493.8{ }^{-}$	0^{-}	0^{-}	$\mu \nu$	+	+-	0	0
$\mathrm{K}^{\mathrm{O}}, \overline{\mathrm{K}}^{\mathrm{O}}$	498.8	0^{-}	0^{-}	$\mu \nu$	+	+1, -1	0	0

Looking at the table we find that the mass values for pseudoscalar mesons appear wideiy separated. Of the $I=Y=0$ states, the η meson at 549 MeV lies relatively close to the π triplet and the K doublets and is usually identified as the eight member of the pseudoscalar octet. The use of linear mass expressions gives rather poor agreement for pseudoscalar mesons. With the use of (mass) ${ }^{2}$ expressions, the Gell-Mann

Okubo mass formula (23)

$$
\begin{equation*}
\eta_{8}^{2}=\left(4 k^{2}-\pi^{2}\right) / 3 \tag{1}
\end{equation*}
$$

gives good agreement to the experimental mass. We usually take X^{0} to be the ninth pseudoscalar meson. This is not strictly necessary. Another candidate is the E (1422). The η_{8} is pure unitary octet and η_{1}^{\prime} pure singlet. Since these states have the same quantum numbers $I=Y=0$, they can mix in broken $S U(3)$ when belonging to the same nonet and the observed particles η and X^{0} are coherent superpositions of them. Explicitly,

$$
\begin{align*}
& \eta=\psi_{8} \cos \theta-\psi_{1} \sin \theta \tag{2}\\
& x^{\circ}=\psi_{8} \sin \theta+\psi_{1} \cos \theta \tag{3}
\end{align*}
$$

in which Ψ_{8} and Ψ_{1} denote the pure octet and singlet states respectively. Kokkedee has given the following relations

$$
\begin{align*}
& m_{\eta}^{2}+m_{x^{0}}^{2}=m_{1}^{2}+m_{8}^{2}+2 \delta \tag{4}\\
& m_{\eta}^{2} m_{x^{0}}^{2}=m_{1}^{2} m_{8}^{2}+\frac{2}{3} \delta\left(2 m_{1}^{2}+m_{8}^{2}\right)+\frac{8}{9} \delta^{2}\left(1-F^{2}\right) \tag{5}\\
& \tan 2 \theta_{p}=\frac{(4 \sqrt{2} / 3) F \delta}{m_{8}^{2}-m_{1}^{2}+\left(\frac{2}{3}\right) \delta} \tag{6}\\
& m_{\pi}^{2}=m_{8}^{2} \tag{7}
\end{align*}
$$

This leads to

$$
\begin{array}{ll}
m_{1}=863 \mathrm{MeV} & m_{8}=135 \mathrm{MeV} \\
F=0.52 & \theta_{p} \simeq-11^{\circ} \tag{9}
\end{array}
$$

where F is the overlap integral $F(0)$ between the space wave functions of η_{8} and η_{1}^{\prime}.

Gursey (24) has given an interesting argument for the use of (mass) ${ }^{2}$ for pseudoscalar mesons. This argument depends on the hypothesis that the pseudoscalar octet masses are all zero in the limit of exact unitary symmetry, when the symmetry - breaking interactions are turned off. In this situation, to obtain the mass, generated in first order by the introduction of the symmetry-breaking interaction, once calculates the energy of the meson state for a given linear momentum. The energy for momentum p then changes fromp to $E(p)=\sqrt{ }\left(m^{2}+p^{2}\right)=p+m^{2} / 2 p+\ldots$ so that the first-order correction to the energy gives directly the value of m^{2}. This argument has been given support by explicit calculation based on a covariant model by Wick (25) and Cutkosky (26)

If we now consider $\mathrm{E}(1422)$ meson instead of X^{0} as the ninth member of the pseudoscalar nonet, then

$$
\begin{array}{ll}
m_{1}=1360 \mathrm{MeV} & m_{8}=135 \mathrm{MeV} \\
\mathrm{~F}=0.88 & \theta_{p}=-6^{\circ} \tag{11}
\end{array}
$$

The actual situation may be more complicated in the sense that, in principle, mixing can occur between the states η, X^{0} and E. Samuel (27) has examined the mixing of the pure octet member and two SU(3) singlets. His results are quoted below:

$$
\begin{align*}
& |E\rangle=0.08\left|\eta_{8}\right\rangle+0.43\left|\eta_{0}\right\rangle+0.90\left|\eta_{0}^{\prime}\right\rangle \tag{12}\\
& \left|x^{0}\right\rangle=0.08\left|\eta_{8}\right\rangle+0.90\left|\eta_{0}\right\rangle-0.43\left|\eta_{0}^{\prime}\right\rangle \tag{13}\\
& |\eta\rangle=0.99\left|\eta_{8}\right\rangle-0.11\left|\eta_{0}\right\rangle-0.04\left|\eta_{0}^{\prime}\right\rangle \tag{14}
\end{align*}
$$

B. Vector Mesons

The main properties of vector mesons with their decay modes and quantum numbers are shown below.

TABLE IV
VECTOR MESONS

Particle	Mass (MeV)	J^{P}	$I^{\text {G }}$	Main Decay Mode	C	Y
$p^{ \pm}$	769 ± 3	$1-$	1^{+}	2π	-	0
po	769 ± 3	$1-$	1^{+}	2π	-	0
ω	783.7 ± 0.4	$1{ }^{-}$	0^{-}	$\Pi^{+} \pi^{-} \pi^{0}$	-	0
\emptyset	1018.8 ± 0.5	$1-$	0^{-}	$\mathrm{K}^{+} \mathrm{K}^{-}$	-	0
$\mathrm{K} * \pm$		1^{-}	$\frac{1}{2}$	$K \pi$	-	± 1
$\mathrm{K} *^{\mathrm{O}}, \overline{\mathrm{K}} *^{\circ}$	891 ± 1	1^{-}	$\frac{1}{2}$		-	+1,-1

Kokkedee has given the following relations for the vector mesons

$$
\begin{array}{r}
m_{1}=799 \mathrm{MeV} \quad m_{8}=777 \quad \mathrm{MeV} \\
\tan 2 \theta_{V}=\frac{(4 \sqrt{2} / 3) \mathrm{F} \mathrm{\Delta}}{m_{8}-m_{1}+\frac{2}{3} \Delta} \tag{16}
\end{array}
$$

where he has given the mass m_{A} of particle A within $\operatorname{SU}(3)$ multiplet $\{d\}$ as

$$
\begin{equation*}
m_{A}=\langle\psi(A)| \sum_{i} m_{q_{i}}-U(\{\alpha\})|\psi(A)\rangle \tag{17}
\end{equation*}
$$

in which the sum runs over the quarks composing hadrons A and U denotes
the $q \bar{q}$ potential. U does not depend on the quark labels and $U(\{\alpha\})$ may include all possible $\operatorname{SU}(3)$ - invariant contributions. The near equality of m_{1} and m_{8} is what we expect if within the 35 - plet, the dominant $\mathrm{SU}(6)$ - breaking forces are the spin-spin forces. In that case, for vector mesons $U(\{1\})=U(\{8\})$ and

$$
\begin{equation*}
m_{1} \simeq m_{8} \tag{18}
\end{equation*}
$$

So within the experimental uncertainty in the value of m_{p}, the vector meson nonet is consistent with $\mathrm{F} \simeq 1$ and this leads to $\theta_{\mathrm{v}}=\operatorname{arc}$ tan $[-(1 / 2) \sqrt{2}]=35^{\circ}$.

If we compare these results with those for the pseudoscalar mesons, the large difference between the values of m_{8} for the two nonets points to the presence of strong $\operatorname{SU}(6)$ breaking, spin-dependent forces, at 1east within the $35-$ plet. We may have roughly the picture shown below:

(1)

$$
(1)+(2)
$$

$$
(1)+(2)+(3)
$$

Figure 4. Mass Splittings among the 36 Mesonic States with $\mathrm{L}=0$ due to forces of Types (1), (2) and (3). The figure is not according to scale

C. Excited Mesonic States

In the last few years, an amazing number of mesonic and baryonic resonances has been established in the mass region from 1 to about 3 GeV . This number is steadily rising and, witness the skill of the experimentalists, will undoubtedly continue to do so for quite a while. It is logical within the framework of the quark model to try to interpret these higher resonance states as excitations of the $q \bar{q}$ systems. This spectroscopic aspect of the quark model has been vigorously investigated by Dalitz (28). Now in the quark model, excited meson states may be generated in two distinct ways (which can occur combined): (i) more complicated quark - antiquark excitations, for example the configurations $\bar{q} \bar{q} q q$. The $S U(6)$ and relativistic \tilde{U} (12) schemes which have been discussed in the literature usually attribute higher resonances to these excitations.
(ii) non-zero orbital angular momentum for the quarks. These are the most natural to consider, within the framework of our model.

A $q \bar{q}$ system with orbital angular momentum $L \neq 0$ generates four sets of nonets of parity $(-1)^{\mathrm{I}+1}$, namely three for $\mathrm{S}=1$ and $\mathrm{C}=(-)^{\mathrm{I}+1}$ and $J=L+1, L, L-1$ and one for $S=0$ having $C=(-)^{L}$ and $J=L$ in which J is the total angular momentum. For $\mathrm{L}=0$, there are, of course, only two nonets. We denote these nonets by ${ }^{3} L_{L+1},{ }^{3} L_{L},{ }^{3} L_{L-1}$ and ${ }^{1}{ }_{L_{L}}$ respectively. Each of them consists of an SU(3) sing1et and octet. The possible pattern for mass splittings among the $q \bar{q}$ states for general L is shown below:

Figure 5. Possible Pattern for Mass Splittings Among the Quark-Antiquark States for General L

For $L=0$ mesons, the observed pattern is consistent with the above scheme. Here ${ }^{1}[1],{ }^{3}\{1\}$ and ${ }^{3}\{8\}$ are close together in mass, whereas ${ }^{1}\{8\}$ is pushed down considerably. Now, the first excited configurations will be those corresponding to $\mathrm{L}=1$. These four nonets will have the spin-parity values ($2+$), ($1+$), ($0+$) with $\mathrm{C}=1$ and ($1+$) with $\mathrm{C}=-1$. The four nonets will be separated in mass by the spin-orbit coupling; in each nonet, there may be some difference between the m_{1} and m_{8} masses and there will be mixing between the $I=Y=0$ states and mass splitting for the other states, introduced by the quark mass difference Δ. There will be no mixing between the $Y=0$ states of the two (1+) nonets with $C= \pm 1$, since charge-conjugation invariance holds for the strong-interactions. Mixing between these two nonets can occur for the $Y= \pm 1$ states, in general, through the symmetry-breaking interactions; this mixing could arise only from symmetry-breaking potentials which couple $S=0$ and $S=1$ states.

Now, of the $L=1$ states, the nonet ${ }^{3} P_{2}$ with $J P C=2+$ is well established. The $I=Y=0$ members are the well known f meson of mass $1260 \pm 20 \mathrm{MeV}$ and width 100 MeV and the f^{\prime} meson of mass $1514 \pm 20 \mathrm{MeV}$ and width 85 MeV ., recently discovered by Barnes (29). For the f meson, the decay mode $f \rightarrow \pi \pi$ is dominant; for the f^{\prime} meson, the decay mode $f^{\prime} \rightarrow K \bar{K}$ is dominant. Both states therefore have $\mathrm{C}=+1$. The $\mathrm{I}=1, \mathrm{Y}=0$ state is the A 2 meson, of mass $1300 \pm 10 \mathrm{MeV}$ and width $85 \pm 10 \mathrm{MeV}$, known from its decay modes $A 2 \rightarrow \rho \pi$ and $K k$; the $\rho \pi$ mode requires $G=-1$ for the $A 2$ meson, which corresponds again to $C=+1$. The $Y=+1(-1)$ state is the $\mathrm{K} * *$ meson of mass $1420 \pm 10 \mathrm{MeV}$ and width $100 \pm 20 \mathrm{MeV}$, established from the work of Haque et al.(30) and Hardy et al., (31) whose dominant decay mode is $K * * K$.

Kokkedee has given the following relations for the ${ }^{3} P_{2}$ nonet:

$$
\begin{array}{ll}
\delta=3 \times 10^{5}(\mathrm{MeV})^{2} ; \quad \theta \simeq 28^{\circ} \quad F \simeq 1 \\
m_{8}=1315 \mathrm{MeV} & m_{1}=1230 \mathrm{MeV} \tag{20}
\end{array}
$$

Where θ is the mixing angle for the $I=Y=0$ states and F the overlap integral of their space wave-functions. The value of δ is in resonable agreement with those found for the $L=0$ states. The qualitative features of the partial widths observed for the decay processes of these mesons is also in accord with the nonet structure. We show below the octet pattern of 2^{\dagger} meson.

Figure 6. Octet Pattern for 2^{+}Mesonic Nonet

The evidence concerning (1+) states is on a less secure fitting. The D meson at 1285 MeV with width 40 MeV , established recently by Miller et a1. (32) and by d'Andlau et a1. (33), from the decay modes $D \rightarrow K \bar{K} \pi$, has $I=Y=0$ and is consistent with spin parity (1+) or (2-). On the basis of our model, the (1+) assignment would be favoured since the (2-) states require $L=2$ and would be expected to lie in a much higher mass region. The properties of this decay mode also indicate $G=+1$; with $I=0$ we then have $C=+1$ for the D meson. The A1 meson at 1070 ± 13 MeV and width $125 \pm 25 \mathrm{MeV}$, has been established for the decay mode $A 1 \rightarrow p \pi$ whose characteristics strongly favour the spin-parity assignment (34) (1+) and which has $I=1, Y=0$. The $\pi \rho$ decay mode requires $G=-1$ for the $A 1$ meson and hence $C=+1$. The $K *$ - meson, of mass $1230 \pm 10 \mathrm{MeV}$ and width $60 \pm 10 \mathrm{MeV}$, and with the decay mode $\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi \pi$ has been reported by Armenteros et a1. (35) to have $I=\frac{1}{2}$ and decay characteristics strongly suggestive of spin-parity (1+). It is rather difficult to fit the above mass values into a nonet picture. The identification of the E meson already discussed as the D^{\prime} meson is barely compatible with the Schwinger inequality and would require the overlap integral between the $A_{1}{ }^{(+)}$and $A_{8}{ }^{(+)}$states to be essentially zero i.e. that these states should not mix. For the $C=-1$ (1+) nonet, we have to date, two condidates. The B meson, with mass 1235 MeV and width $125 \pm$ 30 MeV has been identified from its decay to $\pi+\omega$ and therefore has $\mathrm{I}=1, \mathrm{G}=+1$ whence $\mathrm{C}=-1$. The $\mathrm{K} *$ meson, with mass 1320 MeV also has the J^{P} assignment $1+$ and $C=-1$. The H meson at $990 \pm 10 \mathrm{MeV}$ has been reported by Barsch et al. (36) but the spin-parity assignment is still unclear. Finally we consider the $C=+1$ ($0+$) states. The δ meson at 966 MeV has been identified as $\mathrm{I}=1$ state, consistent with our model. The
K_{N} meson with mean mass 1170 MeV is consistent with the spin-parity assignment $(0+)$. For the $I=Y \approx 0$ state, the situation is not very clear, but we can identify the S^{*} meson, with mass 1070 MeV as having the spin-parity assignment ($0+$). There are several other candidates for these states but the experimental situation is still very unclear.

D. Remarks

Since our knowledge of the $L=1$ nonets is rather incomplete, there are relatively few tests possible for the viewpoint of the quark model discussed here.

Apart from spin-orbit forces, the (1-) and (2t) nonets would be expected to have rather similar features, both having $S=1$ configurations. For the (1-) nonet, we have $\mathrm{m}_{1}=799 \mathrm{MeV}, \mathrm{m}_{8}=777 \mathrm{MeV}$; for the (2+) nonet, the difference between the octet and singlet masses is larger, and opposite in sign, with $\mathrm{m}_{1}=1230 \mathrm{MeV}, \mathrm{m}_{8}=1315 \mathrm{MeV}$. Since the central forces in these two sets of states are the same, this difference between $\left(m_{1}-m_{8}\right)$ should be attributed to an F-dependence in the spinorbit force, which is effective in the $L=1$ state but absent in the $\mathrm{L}=0$ state. What is known about the symmetry-breaking interaction in the $L=1$ nonets appears reasonably consistent with the effects seen in the $L=0$ nonets. The situation is only clear for the ($2+$) nonet, as discussed by Glashow and Socolow (37).

For $L=2$, the quark-antiquark model implies nonets for spin-parity values (3-), (2-) with $C= \pm 1$ and (1-). A plausible candidate is the π_{A} meson of mass 1640 MeV , with the spin-parity assignment (2-). The situation in these higher mass regions is unclear and we will have to wait until complete experimental verification of these higher states
becomes possible.

CHAPTER IV

POTENTIAL FOR QUARK - ANTIQUARK COMBINATION

A. $q-\bar{q}$ Potential

The properties of the pseudoscalr and vector mesons have been part of the case made for the physical appropriateness of the larger symmetry of the $S U(6)$ group for the elementary particle interactions, as first proposed by Gursey and Radicati (38) and by Sakata (39). Basically, the statement of $S U(6)$ symmetry is that the $q-\bar{q}$ potential is invariant for simultaneous spin and unitary - spin transformations.

With $\operatorname{SU}(6)$ symmetry, the $\bar{q}-q$ states are of the type $q^{A} q_{B}$. This tensor is reducible into a singlet tensor $q^{A} q_{A}$ and a (1,1) tensor $\left(q^{A} q_{B}-\delta_{B}^{A}{ }^{C}{ }^{C} q_{C} / 6\right)$ consisting of the remaining 35 components. The only singlet state available is the $S=0,\{1\}$ state, so that the $S=0$, $\{8\}$ and the $S=1,\{1\}$ and $\{8\}$ states constitute the $35 \mathrm{SU}(6)$ supermultiplet:

$$
\begin{equation*}
\underline{35}=1 \times 8+3 \times 1+3 \times 8 \tag{1}
\end{equation*}
$$

It is convenient to introduce the infinitesimal operators F_{i} ($i=1, \ldots 8$) of the $S U(3)$ group, which we may call the unitary spin operators. Their commutation relations are given by Gell-Mann (40) and by deSwart (41).

They are completely analogous to the infinitesimal operators σ_{i} for the $\operatorname{SU}(2)$ group and they include the isospin operators T_{i} appropriate to the isospin $\mathrm{SU}(2)$ subgroup of the $\mathrm{SU}(3)$ group. For an $\mathrm{SU}(3)$ rep-
resentation, the eigenvalue of the total unitary spin $\mathrm{F}^{\mathbf{2}}$ is given by

$$
\begin{equation*}
F^{2}=\sum_{i=1}^{8} F_{i}^{2}=2\left(p^{2}+p q+q^{2}+3(p+q)\right) \tag{2}
\end{equation*}
$$

For the $\overline{\mathrm{q}} \mathrm{q}$ system, $\mathrm{F}_{1}^{2}=\mathrm{F}_{2}^{2}=8$ and we deduce that the scalar product

$$
\begin{equation*}
F_{1} F_{2}=\left(F^{2}-F_{1}^{2}-F_{2}^{2}\right) / 2 \tag{3}
\end{equation*}
$$

has the values +1 for the $\{8\}$ state, -8 for the $\{1\}$ state.
Projection operators for the eigenstates of total spin and total unitary spin are then readily constructed and the general form of the S - wave $q-\bar{q}$ potential may be written

$$
\begin{align*}
& U(\bar{q} q)=\left\{U_{p_{1}}\left(1-\sigma_{1} \cdot \sigma_{2}\right)\left(1-F_{1} \cdot F_{2}\right)+U_{p 8}\left(1-\sigma_{1} \cdot \sigma_{2}\right)\left(8+F_{1} \cdot F_{2}\right)\right. \tag{4}\\
& \left.+U_{v_{1}}\left(3+\sigma_{1} \cdot \sigma_{2}\right)\left(1-F_{1} \cdot F_{2}\right)+U_{v 8}\left(3+\sigma_{1} \cdot \sigma_{2}\right)\left(8+F_{1} \cdot F_{2}\right)\right\} / 36
\end{align*}
$$

Empirically, the interactions $U_{v 1} U_{v 8}$ and $U_{p 1}$ are approximately equal, the interaction $U_{p 8}$ being significantly stronger. So, to a good approximation,

$$
\begin{equation*}
U(\bar{q} q)=U_{0}+\delta U_{p 8}\left(1-\sigma_{1} \cdot \sigma_{2}\right)\left(8+F_{1} \cdot F_{2}\right) / 36 \tag{5}
\end{equation*}
$$ Dalitz gives explicitly the form of this potential as

$$
\begin{equation*}
U(\bar{q} q)=\bar{u}(1)+\bar{u}(35)\left(-\sigma_{1} \cdot \sigma_{2}-F_{1} \cdot F_{2}+\sigma_{1} \cdot \sigma_{2} F_{1} \cdot F_{2}\right) \tag{6}
\end{equation*}
$$

and with $S U(6)$ symmetry the form expected for U ($\bar{q} q$) is

$$
\begin{equation*}
u(\bar{q} q)=\bar{u}_{0}+\bar{u}_{1}\left(1-\sigma_{1} \cdot \sigma_{2}\right)\left(1-F_{1} \cdot F_{2}\right) / 36 \tag{7}
\end{equation*}
$$

B. Specific Forms of Potentials:

Hydrogenic System Problem

Energy levels and eigenfunction are given by:

$$
\begin{align*}
& W=-Z^{2} e^{4} m_{e} / 2 \hbar^{2} n^{2} \tag{8}\\
& \Psi^{r}=N e^{-r / n} r^{l} L_{n-l-1}^{2 l+1}\binom{2 r}{n} y_{l}^{m}(\theta, \varphi) \tag{9}
\end{align*}
$$

as shown by Green (42). If we investigate the hydrogenic system problem for $\mathrm{l} \neq \mathrm{o}$, we find that an unusual degeneracy occurs in which the energy depends upon the integral combination

$$
\begin{equation*}
n=v+1+l \tag{10}
\end{equation*}
$$

Harmonic Oscillator:

The three-dimensional harmonic oscillator has been used in many discussions in nuclear physics to furnish a simple reference set of levels. The eigenfunction, as given by Powell (43) are

$$
\begin{equation*}
\psi_{n, l, m}=N e^{-r^{2} / 2} r^{l} L_{k}^{l+1 / 2}\left(r^{2}\right) Y_{l}^{m}(\theta, \phi) \tag{11}
\end{equation*}
$$

where $L_{k}^{\alpha}(t)$ is the Laguerre polynomial

$$
\begin{equation*}
L_{k}^{\alpha}(t)=\sum_{\nu=0}^{k}\binom{k+\alpha}{k-\nu} \frac{(-t)^{\nu}}{v!} \tag{12}
\end{equation*}
$$

The energy levels for this potential are given by

$$
\begin{equation*}
W=\left(2 v+l+\frac{3}{2}\right) \hbar \omega_{c}, \quad \omega_{c}=\sqrt{\frac{K}{m}} \tag{13a}
\end{equation*}
$$

Introducing the oscillator number $N=2 v+L$

$$
\begin{equation*}
W=\left(N+\frac{3}{2}\right) \hbar \omega_{C} \tag{13b}
\end{equation*}
$$

Spherica1 We11

Usually one assumes a naive picture of quarks moving nonrelativistically in a very deep flat potential well. For mesons, the form of potential naturally points to infinite spherical well. It is true that there is nothing particularly sacred about either the harmonic oscillator or the Coulomb potential. If one believes the potential picture, one would note that the Coulomb potential with it's singularity at the origin would tend to depress the states of lower angular momentum and therefore pull down the radially excited s - state to make it degenerate with the p - state, whereas the smooth harmonic - oscillator potential has the first radially excited s - state considerably higher. The data would indicate that if a potential has any meaning, the well goes down much more steeply than a harmonic oscillator but may not be quite as singular as the Coulomb potential.

The quark model is sometimes considered to be only a simple representation of anderlying algebraic structure without requiring the existence of physical quarks. With this approach the harmonic and Coulomb potentials can be considered from an algebraic point of view. The accidental degeneracies of these two potentials are characterized by the groups $\operatorname{SU}(3)$ and $O(4)$ respectively. Thus, one may attempt to classify the multiplets by using the representations of either of these internal symmetry groups as quantum numbers to label the states, without invoking the physical picture of a harmonic or Coulomb potential. At present, the experimental data are insufficient to provide great support for these approaches.

Particle in a Spherical Box

Green (44) has given the solutions for s and p states. For s states

$$
\begin{equation*}
W \simeq-V_{0}+(v+1)^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{14}
\end{equation*}
$$

For p states

$$
\begin{equation*}
W \simeq-V_{0}+\left(v+\frac{3}{2}\right)^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{15}
\end{equation*}
$$

Where the field of force is defined by

$$
\begin{array}{rlrl}
V(r) & =-V & 0<r<a \\
& =\infty & r>a \\
v & =0,1,2,3, \ldots \tag{16}
\end{array}
$$

For $d, f, \ldots . . s t a t e s$ we consider the general radial wave equation

$$
\begin{equation*}
G_{i}^{\prime \prime}+\left[\epsilon_{0}^{2}-\frac{l(l+1)}{p^{2}}-\epsilon_{w}^{2}\right] G_{i}=0 \tag{17a}
\end{equation*}
$$

Where

$$
\begin{equation*}
\epsilon_{0}^{2}=\frac{V_{0}}{E_{0}}, \epsilon_{W}^{2}=\mp \frac{W}{E_{0}}, p=r / a \tag{17b}
\end{equation*}
$$

This equation is identical to Bessel's equations and the solutions which vanish at $P=0$ are

$$
\begin{equation*}
G_{i}=\left[\frac{\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} \rho \pi}{2}\right]_{l+\frac{1}{2}}^{1 / 2}\left[\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} \rho\right] \tag{18}
\end{equation*}
$$

where $J_{l+\frac{1}{2}}$ are Bessel functions of half-integral order. Since the wave function must vanish at $\rho=1$, the values of ϵ must be such that

$$
\begin{equation*}
]_{l+\frac{1}{2}}\left[\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}\right]=0 \tag{19}
\end{equation*}
$$

Particle in a Spherical Well. We have in this case

$$
\begin{array}{rlrl}
V(r) & =-V_{0} & 0<r<a \\
& =0 & r>a \tag{20}\\
p & =r / a &
\end{array}
$$

where a is the radius of the spherical well.
Since V vanishes as $r \rightarrow \alpha$ the wave function no longer need vanish adentically outside the well. The exterior wave function for s - waves must be a well-behaved function

$$
\begin{align*}
& G_{e}^{\prime \prime}-\epsilon_{w}^{2} G_{e}=0 \tag{21}\\
& \therefore G_{e}=C_{e} \exp \left(-\epsilon_{w} p\right) \\
& G_{i}=C_{i} \sin \left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} p \tag{22}
\end{align*}
$$

whereas

Normalization condition

$$
\begin{equation*}
\left.\int_{0}^{a} \mid \epsilon_{i}\right]^{2} d r+\int_{a}^{\infty} \int_{a} \sigma^{2} d r=1 \tag{24}
\end{equation*}
$$

Now,

$$
\begin{align*}
& {\left[G_{i}^{\prime} / G_{i}\right]_{\rho=1}=\left[G_{e}^{\prime} / G_{e}\right]_{\rho=1} } \tag{25}\\
\therefore & \tan \left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}=-\frac{\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}}{\epsilon_{w}} \tag{26}
\end{align*}
$$

When the well is shallow, it is impossible to express the energy levels in terms of an explicit formula. In this case, we must find the roots of the above equation by approximate numerical or graphical methods. The no. of ϵ_{W} roots which exist depends upon the well parameter ϵ_{0}

(a)

(b)

Figure 7. Schematic Diagram Showing Low-lying s States and the Corresponding Wave Functions when $\epsilon_{a}=7 \pi / 2$ in (a) a Spherical Box and (b) a Spherical Well

We note that in each of the latter cases the wave function extends into the external region. This region would be inaccesible to the particle if classical laws were obeyed, since here the classical kinetic energy $T=W-V$ would be negative.

Let's now consider briefly the p states of binding ($L=1$) for the spherical well. The radial wave equation for the interior region is given by

$$
\begin{equation*}
G_{i}^{\prime \prime}+\left(\epsilon_{0}^{2}-\frac{2}{\rho}-\epsilon_{w}^{2}\right) G_{i}=0 \tag{27}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
G_{i p}=C_{i p}\left[\frac{\sin \left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} p}{\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} p}-\cos \left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2} p\right] \tag{28}
\end{equation*}
$$

as can be easily verified by direct differentiation. The wave-equation for the exterior region is given by

$$
\begin{equation*}
G_{e}^{\prime \prime}-\left(\frac{2}{p^{2}}+\epsilon_{w}^{2}\right) G_{e}=0 \tag{29}
\end{equation*}
$$

The solution is:

$$
\begin{equation*}
G_{e p}=C_{e p}\left(\epsilon_{w}+\frac{1}{p}\right) \exp \left(-\epsilon_{w} p\right) \tag{30}
\end{equation*}
$$

as also can be proved by direct differentiation. The boundary condition is given by:

$$
\begin{equation*}
\left.\frac{G_{e}^{\prime}}{G_{e}}\right|_{p=1}=\left.\frac{G_{i}^{1}}{G_{i}}\right|_{p=1} \tag{31}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\left.\frac{G_{e}^{\prime}}{G_{e}}\right|_{p=1}=-\epsilon_{w}-\frac{1}{\epsilon_{w}+1} \tag{32}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left.\frac{G_{i}^{\prime}}{G_{i}}\right|_{p=1}=-1+\frac{\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}}{\left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right)^{-1 / 2}-\cot \left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right)^{1 / 2}} \tag{33}
\end{equation*}
$$

This yields the energy eigenvalue equation as

$$
\begin{equation*}
\frac{\cot \left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right)^{1 / 2}}{\left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right)^{1 / 2}}-\frac{1}{\epsilon_{0}^{2}-\epsilon_{w}^{2}}=\frac{1}{\epsilon_{w}}+\frac{1}{\epsilon_{w}^{2}} \tag{34}
\end{equation*}
$$

So, for the case of a shallow well, we find that the critical ϵ_{0} values, each of which gives rise to a p state of zero energy $\left(\epsilon_{W}=0\right)$ are $\pi, 2 \pi$;
corresponding to the relation

$$
\begin{equation*}
\tan \epsilon_{0}=0 \tag{35}
\end{equation*}
$$

For the solutions for d, f, g, \ldots. states, we need to find the general solutions of the radial equations inside and outside the well for an arbitrary 1. These solutions are

$$
\begin{align*}
& G_{i l}=\left[\frac{\left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right) \rho \pi}{2}\right]^{1 / 2} J_{L+\frac{1}{2}}\left[\left(\epsilon_{0}^{2}-\epsilon_{W}^{2}\right)^{1 / 2} \rho\right] \tag{36}\\
& G_{e l}=\left(\frac{\rho \pi}{2}\right)^{1 / 2} N_{l+\frac{1}{2}}(\rho) \tag{37}
\end{align*}
$$

where $J_{1+\frac{1}{2}}$ and $N_{1+\frac{1}{2}}$ are Bessel and Newman functions of half-integral order. On the basis of the properties of these functions the eigenvalues and the eigenfunction can be determined for any ϵ_{0}.

Infinite Spherical Well

The eigenfunction and $\epsilon_{0}^{2}-\epsilon_{W}^{2}$ eigenvalues of the spherical well go over to those of the spherical box as $\mathrm{V}_{0} \rightarrow \infty$ So, for d states,

$$
\begin{equation*}
J_{5 / 2}(\theta)=0 \text { where } \theta=\left[\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}\right] \tag{38}
\end{equation*}
$$

Now,

$$
\begin{align*}
J_{p}(x) & =\sum_{k=0}^{\infty} \frac{(-)^{k}\left(\frac{x}{2}\right)^{2 k+p}}{k!(k+p)!} \tag{39}\\
\therefore J_{5 / 2}(\theta) & =\frac{(\theta / 2)^{5 / 2}}{(5 / 2)!}-\frac{(\theta / 2)^{9 / 2}}{(9 / 2)!}+\frac{(\theta / 2)^{13 / 2}}{(13 / 2)!}- \tag{40}\\
\therefore J_{5 / 2}(\theta) & =\frac{(\theta / 2)^{5 / 2}}{T(7 / 2)} \prod_{s=1}^{\infty}\left(1-\frac{\theta^{2}}{p_{s}^{2}}\right) \tag{41}
\end{align*}
$$

where p_{s} are the real zero of $J_{5 / 2}(\theta)$.

Now (45)

$$
\begin{align*}
& J_{\nu}(z) \sim \sqrt{ }\left(\frac{2}{\pi z}\right)\left[\cos \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) \sum_{s=0}^{\infty} \frac{(-)^{s}(\nu, 2 s)}{(2 z)^{2 s}}\right. \\
&\left.-\sin \left(z-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) \sum_{s=0}^{\infty} \frac{(-)^{s}(\nu, 2 s+1)}{(2 z)^{2 s+1}}\right] \tag{44}
\end{align*}
$$

Where

$$
\begin{align*}
& (v, s)=\frac{2^{-2 s}}{s!}\left[\left(4 v^{2}-1^{2}\right)\left(4 v^{2}-3^{2}\right) \cdots \cdots\left\{4 v^{2}-(2 s-1)^{2}\right\}\right] \\
& \text { and } \quad(v, 0)=1 \tag{43}\\
& \therefore J_{5 / 2}(z) \sim\left(\frac{2}{\pi z}\right)^{1 / 2}\left[P_{5 / 2}(z) \cos \left(z-\frac{3 \pi}{2}\right)-Q_{5 / 2}(z) \sin \left(z-\frac{3 \pi}{2}\right)\right] \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
P_{5 / 2}(z) & =\frac{\left(\frac{5}{2}, 0\right)}{1}-\frac{\left(\frac{5}{2}, 2\right)}{4 z^{2}}+\frac{\left(\frac{5}{2}, 4\right)}{16 z^{4}}-\cdots \\
& =1-\frac{3}{z^{2}} \tag{45}
\end{align*}
$$

$$
\begin{align*}
& Q_{5 / 2}(z)=\frac{\left(\frac{5}{2}, 1\right)}{2 z}-\frac{\left(\frac{5}{2}, 3\right)}{4 z^{2}} \frac{1}{2 z}+\frac{(5 / 2,5)}{(2 z)^{5}}-\cdots \\
&=\frac{3}{z} \tag{46}\\
& \therefore\left(\frac{\pi z}{2}\right)^{1 / 2} J_{5 / 2}(z) \sim\left\{P_{1 / 2}^{2}(z)+Q_{5 / 2}^{2}(z)\right\}^{1 / 2} \cos \left(z-\frac{3 \pi}{2}-\theta\right)_{(47)}^{(46)} \tag{47}
\end{align*}
$$

where

$$
\begin{equation*}
\tan \theta=-Q_{5 / 2}(z) / P_{5 / 2}(z)=\frac{3 z}{3-z^{2}} \tag{48}
\end{equation*}
$$

So the positive zeros are defined by

$$
\begin{align*}
z-\frac{3 \pi}{2}-\theta & =\left(s-\frac{1}{2}\right) \pi, s=1,2,3 \tag{49}\\
\cdot & =(s+1) \pi+\tan ^{-1}\left(\frac{3 z}{3-z^{2}}\right) \tag{50}
\end{align*}
$$

So for the zeros we have the formula:

$$
\begin{align*}
& \text { for the zeros we have the formula: } \tag{51}\\
& \left(\epsilon_{0}^{2}-t_{w}^{2}\right)^{1 / 2}=(s+1) \pi+\tan ^{-1}\left(\frac{3\left(t_{0}^{2}-t_{w}^{2}\right)^{1 / 2}}{3-\left(\epsilon_{0}^{2}-t_{w}^{2}\right)}\right)
\end{align*}
$$

For a well which has a large $\epsilon_{0}, \epsilon_{w}$ will be close to ϵ_{0} for low-1ying state and so

$$
\begin{align*}
& \tan ^{-1}\left(\frac{3\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}}{3-\epsilon_{0}^{2}+\epsilon_{w}^{2}}\right) \cong \tan ^{-1} 0=0 \tag{52}\\
& \therefore\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}=(s+1) \pi ; s=1,2,3, \tag{53}\\
& =(v+2) \pi ; \nu=0,1,2
\end{align*}
$$

Similarly for f states,

$$
\begin{equation*}
\left(\frac{\pi z}{2}\right)^{1 / 2} J_{7 / 2}(z) \sim\left\{P_{7 / 2}^{2}(z)+Q_{7 / 2}^{2}(z)\right\}^{1 / 2} \cos (z-2 \pi-\theta) \tag{55}
\end{equation*}
$$

where

$$
\begin{align*}
\tan \theta & =-Q_{7 / 2}(z) / P_{7 / 2}(z) \\
& =3\left(-\frac{2}{z}-\frac{25}{z^{3}}-\cdots\right) \tag{56}
\end{align*}
$$

So the positive zeros are given by

$$
\begin{align*}
& z-2 \pi-\theta=\left(s-\frac{1}{2}\right) \pi, \quad S=1,2,3, \tag{57}\\
& \therefore z=\left(s+\frac{3}{2}\right) \pi-\frac{6}{z}-\frac{3}{z^{3}}+ \tag{58}
\end{align*}
$$

Writing $\alpha=\left(\mathrm{S}+\frac{3}{2}\right) \pi$ and assuming $z=\alpha+\frac{\lambda}{\alpha}+\frac{\mu}{\alpha^{3}}+$ substituting and neglecting α^{-5} etc., we have

$$
\begin{array}{r}
\alpha+\frac{\lambda}{\alpha}+\frac{\mu}{\alpha^{3}}+\cdots=\alpha-6\left(\frac{1}{\alpha}-\frac{\lambda}{\alpha^{3}}+\cdots\right) \tag{59}\\
\left.-3\left(\frac{1}{\alpha^{3}}-\cdots\right)+\cdots\right)
\end{array}
$$

and so that equating the co-efficients of α^{-1} and α^{-3} we have

$$
\begin{gather*}
\lambda=-6, \quad \mu=6 \lambda-3=-39 \tag{60}\\
\therefore z \sim\left(s+\frac{3}{2}\right) \pi-\frac{6}{\left(s+\frac{3}{2}\right) \pi}-\frac{39}{\left(s+\frac{3}{2}\right)^{3} \pi^{3}}-\cdots \tag{61}
\end{gather*}
$$

This gives the approximate solution as

$$
\begin{align*}
& \left(\epsilon_{0}^{2}-t_{w}^{2}\right)^{1 / 2} \sim\left(v+\frac{5}{2}\right) \pi \tag{62}\\
& \therefore \quad W \simeq-V_{0}+\frac{\left(v+\frac{5}{2}\right)^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{63}
\end{align*}
$$

Similarly, for arbitrary l

$$
\begin{equation*}
\left(\frac{\pi z}{2}\right)^{1 / 2} J_{l+\frac{1}{2}}(z)=\left\{p_{l+\frac{1}{2}}^{2}(z)+Q_{l+\frac{1}{2}}^{2}(z)\right\} \cos \left(z-\frac{(l+1) \pi}{2}-\theta\right) \tag{64}
\end{equation*}
$$

$$
\begin{aligned}
& P_{l+\frac{1}{2}}(z)=\sum_{s=0}^{\infty}(-)^{s} \frac{\left(l+\frac{1}{2}, 2 s\right)}{(2 z)^{2 s}} \\
& =1-\frac{l(l+1)(l+2)(l-1)}{2!(2 z)^{2}}+\frac{l(l+1)(l+2)(l+3)(l+l)(l-1)(l-2)(l-3)}{4!(2 z)^{4}} \\
& -\cdots \cdots(l+2 s)(l-1)(l-2) \cdots \cdots(l-2 s+1)
\end{aligned}
$$

and

$$
\begin{align*}
& Q_{l+\frac{1}{2}}(z)=\sum_{s=0}^{\infty}(-)^{s} \frac{\left(l+\frac{1}{2}, 2 s+1\right)}{(2 z)^{2 s+1}} \\
& =\frac{l(l+1)}{1!2 z}-\frac{l(l+1)(l+2)(l+3)(l-1)(l-2)}{3!(2 z)^{3}} \\
& + \\
& +(-)^{s} \frac{l(l+1)(l+2) \cdots(l+2 s+1)(l-1)(l-2) \cdots(l-2 s)}{(2 s+1)!(2 z)^{2 s+1}}
\end{align*}
$$

Also

$$
\begin{equation*}
\theta=\tan ^{-1}-\frac{Q_{l+\frac{1}{2}(z)}}{P_{L+\frac{1}{2}}(z)} \tag{66}
\end{equation*}
$$

Generalizing the notation,

$$
\begin{align*}
& Q_{l+\frac{1}{2}}(z) \\
& =\sum_{s=0}^{\left[\frac{1-1}{2}\right]} \frac{(-)^{s}(1-2 s) \cdots \cdots((l+1) \cdots(l+2 s+1)}{(2 s+1)!(2 z)^{2 s+1}} \tag{67}
\end{align*}
$$

So the positive zeros are given by

$$
z-\frac{(l+1) \pi}{2}-\theta=\left(v+\frac{1}{2}\right) \pi
$$

Assuming that the expansion $\tan ^{-1}\left(-Q_{1+\frac{1}{2}}(z) / P_{t+\frac{1}{2}}(z)\right)$ represent small contributions, the approximate energy eigenvalues are given by

$$
\begin{align*}
& \left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}=\left(v+\frac{1}{2}+1\right) \pi \tag{69}\\
& W-\left(v+\frac{1}{2}+1\right)^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \tag{70}
\end{align*}
$$

Schiff (46) has given the solutions for a spherical well as

$$
\begin{align*}
& G_{i}=A_{i} p^{1 / 2} J_{i+\frac{1}{2}}\left(\epsilon^{\prime} \rho\right) \tag{71}\\
& G_{e}=A_{e} p^{1 / 2} K_{l+\frac{1}{2}}\left(\epsilon_{w} \rho\right) \tag{72}
\end{align*}
$$

The boundary condition yields the energy eigenvalue condition as

$$
\begin{equation*}
\epsilon^{\prime} \frac{j_{l-1}\left(\epsilon^{\prime}\right)}{j_{l}\left(\epsilon^{\prime}\right)}=i \epsilon_{w} \frac{h_{l-1}^{(1)}\left(i \epsilon_{w}\right)}{h_{l}^{(1)}\left(i \epsilon_{w}\right)} \tag{73}
\end{equation*}
$$

Looking at the asymptotic behavior of the Hankel functions, this simplifies to,

$$
\begin{equation*}
\frac{j_{i}\left(\epsilon^{\prime}\right)}{j_{l-1}\left(\epsilon^{\prime}\right)}=-\frac{\epsilon^{\prime}}{\epsilon_{w}} \tag{74}
\end{equation*}
$$

So for $l=1$,

$$
\begin{equation*}
\frac{j_{1}\left(\epsilon^{\prime}\right)}{j_{0}\left(\epsilon^{\prime}\right)}=-\frac{\epsilon^{\prime}}{\epsilon_{W}} \tag{75}
\end{equation*}
$$

We know that if we put the right hand side equal to zero, the values of ϵ^{\prime}. which satisfy the equation $j_{1}\left(\epsilon^{\prime}\right)=0$ are a trifle smaller than $\frac{3 \pi}{2}, \frac{5 \pi}{2}$, $\frac{7 \pi}{2}$, and so on. If we now make a Taylor series expansion of $j_{1}(\rho)$ about $\rho=p_{1}$ and keep terms upto first order,

$$
\begin{equation*}
j_{1}(p)=j_{1}\left(p_{1}\right)+\left.\left(p-p_{1}\right) \frac{d j_{1}}{d p}\right|_{p=p_{1}} \tag{76}
\end{equation*}
$$

Since $\quad j_{1}\left(P_{1}\right)=0$

$$
\begin{align*}
j_{1}(\rho) & =\left(\rho-\rho_{1}\right)\left[j_{0}\left(\rho_{1}\right)-\frac{2}{\rho} j_{1}\left(\rho_{1}\right)\right] \\
& =\left(\rho-P_{1}\right) j_{0}\left(\rho_{1}\right) \tag{77}\\
\therefore \rho & =\rho_{1}+\frac{j_{1}(\rho)}{j_{0}\left(\rho_{1}\right)} \approx \rho_{1} \tag{78}
\end{align*}
$$

For $\quad l=2$

$$
\begin{align*}
& \frac{j_{2}(P)}{j_{1}(P)}=-\frac{P}{\epsilon_{W}} ; P_{1} \approx 2 \pi, 3 \pi, 4 \pi \tag{79}\\
& j_{2}(P)=\left(P-P_{1}\right) j_{1}\left(P_{1}\right) \tag{80}\\
& P=P_{1}+j_{2}(P) / j_{1}\left(P_{1}\right)
\end{align*}
$$

$$
\begin{align*}
& \text { In general for } l=n \text {, } \\
& p=p_{1}+\frac{j_{n}(\rho)}{j_{n-1}(\rho)} \\
& \text { Now for } l=1 \text {, } \\
& \rho=\rho_{1}-\frac{\rho}{\epsilon_{W}} \frac{j_{0}(\rho)}{j_{0}\left(\rho_{1}\right)} \tag{83}\\
& \therefore p=\frac{P_{1}}{1+\frac{\mathrm{j}_{0}(\rho)}{\mathrm{j}_{0}\left(\rho_{1}\right)} \frac{1}{\epsilon_{w}}} \simeq \frac{P_{1}}{1+\frac{2}{2 t_{w}}} \tag{84}\\
& \therefore p^{2} \simeq p_{1}^{2}\left(1-\frac{2}{\epsilon_{w}}\right)=k\left(1-\frac{2}{\epsilon_{w}}\right) \tag{85}\\
& \therefore \epsilon_{0}^{2}-\epsilon_{W}^{2}=K\left(1-\frac{2}{\epsilon_{W}}\right) \tag{86}\\
& \therefore \epsilon_{w}^{3}+\left(k-\epsilon_{0}^{2}\right) \epsilon_{w}-2 k=0 \tag{87}
\end{align*}
$$

Solutions of cubic equations of this type have been discussed by Cowles (47). Using his notation, the three roots are given by

$$
\begin{align*}
& \epsilon_{w 1}=y+z \tag{88}\\
& \epsilon_{w 2}=\omega y+\omega^{2} z \tag{89}\\
& \epsilon_{w 3}=\omega^{2} y+\omega z \tag{90}\\
& y=\left(p_{1}^{2}+\left(p_{1}^{4}+\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 2}\right)^{1 / 3} \tag{91}\\
& z=\left(p_{1}^{2}-\left(p_{1}^{4}+\left(\frac{p_{1}^{2}-\epsilon_{0}^{2}}{3}\right)^{3}\right)^{1 / 2}\right)^{1 / 3} \tag{92}
\end{align*}
$$

Now, we note that even though the roots are all real, they can not be reduced to real algebraic form because the square root of the discriminant is imaginary. This is the so called irreducible case of the cubic equation and the roots can only be found by trigonometric methods (48).

Let

$$
\begin{align*}
& A=-\frac{r}{2}+i \sqrt{-\left(\frac{r^{2}}{4}+\frac{q^{3}}{27}\right)} \tag{93}\\
& B=-\frac{r}{2}-i \sqrt{-\left(\frac{r^{2}}{4}+\frac{q^{3}}{27}\right)} \tag{94}
\end{align*}
$$

Where

$$
\begin{align*}
& q=k-\epsilon_{0}^{2} \tag{95}\\
& r=-2 k \tag{96}
\end{align*}
$$

So the roots of the irreducible case of the cubic are given by,

$$
\begin{equation*}
r_{1}=2 m^{1 / 3} \cos \frac{0}{3} \tag{99}
\end{equation*}
$$

$$
\begin{equation*}
r_{2}=2 m^{1 / 3} \cos \frac{\theta+2 \pi}{3} \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
r_{3}=2 m^{1 / 3} \cos \frac{\theta+4 \pi}{3} \tag{101}
\end{equation*}
$$

where

$$
\begin{align*}
m & =\left(-\frac{\left(\rho_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 2} \tag{102}\\
\cos \theta & =\rho_{1}^{2}\left(-\frac{\left(\rho_{1}^{2}-\epsilon_{0}^{2}\right)^{-3}}{1 / 27}\right)^{1 / 2} \tag{103}
\end{align*}
$$

$$
\begin{align*}
\therefore \epsilon_{w 1} & =2\left(-\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 6} \cos \frac{\theta}{3} \tag{104}\\
\epsilon_{w 2} & =2\left(-\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 6} \cos \frac{\theta+2 \pi}{3} \tag{105}\\
\epsilon_{w 3} & =2\left(-\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 6} \cos \frac{\theta+4 \pi}{3} \tag{106}
\end{align*}
$$

Now,

$$
\begin{equation*}
\cos \theta=\rho_{1}^{2}\left(-\frac{27}{\left(\rho_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}\right)^{1 / 2} \tag{107}
\end{equation*}
$$

So to a first order of approximation,

$$
\begin{gather*}
\cos \theta \approx\left(\frac{27 p_{1}^{4}}{t_{0}^{6}}\right)^{1 / 2} \simeq 0 \tag{108}\\
\therefore \approx \pi / 2 \tag{109}
\end{gather*}
$$

To improve our calculations, let us assume $\theta=\frac{\pi}{2}+\epsilon$ where ϵ represents a small contribution to θ due to the term $3 \sqrt{3} p_{1}^{2} / \epsilon_{0}^{3}$ in $\cos \theta$.

$$
\begin{align*}
& \therefore \frac{\theta}{3}=\frac{\pi}{6}+\frac{\theta}{3} \tag{110}\\
& \epsilon_{w 1}=\sqrt{3}\left(-\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right.}{27}\right)^{3}-\frac{\epsilon}{3}\left(-\frac{\left(p_{1}^{2}-\epsilon_{0}^{2}\right.}{27}\right)^{3 / 6} \tag{111}\\
& \text { since } \cos \frac{t}{3} \simeq 1 \text { and } \sin \frac{t}{3} \simeq \frac{t}{3} \\
& \text { Similarly, } \\
& \epsilon_{w_{2}}=\sqrt{3}\left(-\frac{\left(\mathbb{l}^{2}-\epsilon_{2}\right)^{3}}{27}\right)^{1 / 6}-\frac{\epsilon}{3}\left(-\frac{\left(p^{2}-\epsilon_{2}^{2}\right)^{3}}{27}\right)^{1 / 6} \\
& \epsilon_{W 3}=\frac{2 \epsilon}{3}\left(-\left(p_{1}^{2}-\epsilon_{0}^{2}\right)^{3} / 27\right)^{1 / 6} \tag{114}
\end{align*}
$$

$$
\begin{align*}
\text { Approximately, since } & \theta \simeq \pi / 2 \\
\epsilon_{w 1} & \simeq \sqrt{3} \tag{115}\\
\epsilon_{w 2} & \simeq-\sqrt{3}\left(-\frac{\left(P_{1}^{2}-\epsilon_{0}^{2}\right)^{3}}{27}\right)^{1 / 6} \tag{116}\\
\left.\epsilon_{w 3}^{2}-\epsilon_{0}^{2}\right)^{3} & \simeq 0 \tag{117}
\end{align*}
$$

Another way of improving our order of magnitude calculations is to go back to our original cubic equations and try to improve our roots by algebraic methods:

$$
\begin{gather*}
\epsilon_{w}^{3}+\left(p_{1}^{2}-\epsilon_{0}^{2}\right) \epsilon_{w}-2 p_{1}^{2}=0 \tag{118}\\
\therefore\left(\epsilon_{0}^{2}-p^{2}\right)^{3 / 2}+\left(p_{1}^{2}-\epsilon_{0}^{2}\right)\left(\epsilon_{0}^{2}-p^{2}\right)^{1 / 2}-2 p_{1}^{2}=0 \tag{119}
\end{gather*}
$$

Simplification yields

$$
\begin{equation*}
-\rho^{2} \epsilon_{0}^{2 e}+\rho^{4}+\rho_{1}^{2}\left(\epsilon_{0}^{2}-\rho^{2}\right)=2 \rho_{1}^{2}\left(\epsilon_{0}^{2}-\rho^{2}\right)^{1 / 2} \tag{120}
\end{equation*}
$$

Let us assume

$$
\begin{equation*}
P=P_{1}+C \tag{121}
\end{equation*}
$$

So the right hand side is equal to

So to a first-order of approximation,

$$
\begin{align*}
& c=\frac{2 p_{1}^{2} \epsilon_{0}-\frac{p_{1}^{4}}{\epsilon_{0}}}{p_{1}^{3}-p_{1} \epsilon_{0}^{2}+\frac{p_{1}^{3}}{\epsilon_{0}}} \tag{124}\\
& p=p_{1}+\frac{2 p_{1}^{2} \epsilon_{0}-\frac{p_{1}^{4}}{\epsilon_{0}}}{p_{1}^{3}-p_{1} \epsilon_{0}^{2}+\frac{p_{1}^{3}}{\epsilon_{0}}} \tag{125}
\end{align*}
$$

Also,

$$
\begin{equation*}
p^{4}-p^{2}\left(p_{1}^{2}+\epsilon_{0}^{2}-\frac{p_{1}^{2}}{\epsilon_{0}}\right)-p_{1}^{2} \epsilon_{0}\left(2-\epsilon_{0}\right)=0 \tag{126}
\end{equation*}
$$

After extracting the root of the equation and simplifying, we have

$$
\begin{align*}
\therefore \rho^{2}= & {\left[\left(p_{1}^{2}+\epsilon_{0}^{2}-p_{1}^{2} / \epsilon_{0}\right) \pm\left(p_{1}^{2}-\epsilon_{0}^{2}-\frac{p_{1}^{2}}{\epsilon_{0}}\right)\right.} \\
& \left. \pm\left(\frac{2 p_{1}^{2} \epsilon_{0}}{p_{1}^{2}-\epsilon_{0}^{2}-\frac{p_{1}^{2}}{\epsilon_{0}}}\right)\right] / 2 \tag{127}
\end{align*}
$$

If we take the positive sign,

$$
\begin{align*}
& p^{2} \simeq p_{1}^{2}-\frac{2 p_{1}^{2}}{\epsilon_{0}} \tag{128}\\
& p \simeq p_{1}-\frac{p_{1}}{\epsilon_{0}} \tag{129}
\end{align*}
$$

If we take the negative sign,

$$
\begin{equation*}
p^{2} \approx \epsilon_{0}^{2}-\frac{p_{1}^{2}}{\epsilon_{0}} \tag{130}
\end{equation*}
$$

which accounts for the root $\epsilon_{W} \simeq 0$ when to a first approximation we have $P^{2} \simeq \epsilon_{0}^{2}$. So the final formula for an arbitrary state l is given by

$$
\begin{equation*}
W \simeq-V_{0}+\left(v+\frac{1}{2}+1\right)^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}+\frac{\hbar^{2}}{2 m a^{2}} \tan ^{-1}\left(\frac{3\left(\epsilon_{0}^{2}-\epsilon_{w}^{2}\right)^{1 / 2}}{3-\epsilon_{0}^{2}+\epsilon_{w}^{2}}\right) \tag{131}
\end{equation*}
$$

This completes our discussion of the infinite square well with firstorder corrections to the binding-energy formula. We note, that if we take an order - of - magnitude approximation for M and V_{0}, the third term in the binding energy formula is negligible compared to the first two terms.

CHAPTER V

MASS FORMULA CALCULATIONS

Let us consider a $q \bar{q}$ pair bound in a potential of average strength U_{0} If the quark velocities in the low lying states are to be non-relativistic and the quark masses very large, then the potential is presumably 'flat-bottomed' in the manner of a square-well or harmonic oscillator. For reasonable and deep potentials of this sort the level structure is roughly independent of the shape and there is no loss in generality in supposing that the potential is a square well.

Referring to equation no. (131) in Chapter V, we can now write the general mass formula as

$$
\begin{equation*}
M^{2}=M 1+n \Delta+V_{1} \vec{L} \cdot \vec{S}+V_{2} \vec{S}_{1} \cdot \vec{S}_{2}+\left(v+\frac{L}{2}+1\right)^{2} V_{3} \tag{1}
\end{equation*}
$$

where $M 1$ is the square of the term representing twice the quark mass minus the average well-depth; n is the number of strange quarks making up the boson, S is the spin-operator and L is the orbital angular momentum operator, v is the total quantum number and Δ, V_{1}, V_{2} and V_{3} are constants.

The $\vec{L} . \vec{S}$ term is given by the formula

$$
\begin{equation*}
\vec{L} \cdot \vec{S}=\left(\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right) / 2 \tag{2}
\end{equation*}
$$

This yields for the triplet:

$$
\begin{align*}
\vec{L} \cdot \vec{S} & =L \quad \text { for } J=L+1 \tag{3}\\
& =-1 \quad \text { for } J=L \tag{4}\\
& =-L-1 \text { for } J=L-1 \tag{5}
\end{align*}
$$

For the singlet

$$
\begin{equation*}
\vec{L}, \vec{S}=0 \tag{6}
\end{equation*}
$$

The $\vec{S}_{1} \cdot \overrightarrow{\mathrm{~S}}_{2}$ term is given by

$$
\begin{equation*}
\vec{S}_{1} \cdot \vec{S}_{2}=\frac{\vec{S}^{2}-\vec{S}_{1}^{2}-\vec{S}_{2}^{2}}{2} \tag{7}
\end{equation*}
$$

This yields

$$
\begin{align*}
\vec{S}_{1} \cdot \vec{S}_{2} & =\frac{1}{4} \text { for } \quad S=1 \tag{8}\\
& =-3 / 4 \text { for } S=0 \tag{9}
\end{align*}
$$

The number of excess λ quarks making up the bosons is found by finding the expectation value of the quark content with respect to the Hamiltonian. A complete list is shown in the following table. A list giving the particle masses and the appropriate quantum numbers is also given in Table VI. Two graphs corresponding to this table are given in Pages 56 and 57.

TABLE V

NUMBER OF STRANGE QUARKS FOR MESONS

Particle Number of Excess $\boldsymbol{\lambda}$ Quarks

π	0
p	0
δ	0
A1	0
A2	0
B	0
$\Pi_{\text {A }}$	0
K	1
K*	1
K_{N}	1
$\mathrm{K}^{\text {N }}$	1
K**	1
K*	1
η	1.333
ω	0
S*	0
f	0
E	0
\emptyset	0
D	2
f^{\prime}	2
X_{0}	0.666

TABLE VI
MESON MASSES WITH $\nu, L, L . S, S_{1} . S_{2}$ VALUES

Particle	Mass in MeV	v	1	L.S	$S_{1} \cdot S_{2}$
π	135	0	0	0	-3/4
K	498	0	0	0	-3/4
η	549	0	0	0	-3/4
p	765	0	0	0	1/4
K*	892	0	0	0	1/4
ϕ	1019	0	0	0	1/4
ω	784	0	0	0	1/4
δ	966	1	1	-2	1/4
K	1170	1	1	-2	1/4
S ${ }^{\text {N }}$	1070	1	1	-2	1/4
A1	1070	1	1	-1	1/4
K*	1230	1	1	-1	1/4
D	1285	1.	1	-1	1/4
A2	1300	1	1	1	1/4
K**	1420	1	1	1	1/4
f^{\prime}	1514	1	1	1	1/4
f	1260	1	1	1	1/4
B	1235	1	1	0	-3/4
K*	1320	1	1	0	-3/4
E	1422	2	0	0	-3/4
π_{A}	1640	2	2	0	-3/4

Figure 8. M^{2} Versus I-Values for Mesons

Figure 9. M^{2} Versus J^{P}-Values for Mesons.

So according to our mass formula we have five unknown parameters to fit the experimentally established twenty-one masses. To obtain a best fit, we need to minimize (49)

$$
\begin{equation*}
R=\sum_{i=1}^{N=21}\left\{\frac{t_{i}-a-b x_{i}-c z_{i}-d w_{i}-e y_{i}}{t_{i}}\right\}^{2} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& t_{i}=M^{2} \exp \\
& a=M 1 \\
& \mathrm{~b}=\Delta \\
& x_{i}=n_{1} \\
& \mathrm{c}=\mathrm{V}_{1} \\
& z_{i}=\text { LbS } \\
& \mathrm{d}=\mathrm{V}_{2} \\
& w_{i}=S_{1} \cdot S_{2} \\
& \begin{aligned}
e & =v_{3} \\
y_{i} & =\left(v+\frac{1}{2}+1\right)^{2} \ldots
\end{aligned} \tag{11}\\
& \therefore R=\sum_{i=1}^{21}\left[1-\frac{a}{t_{i}}-\frac{b x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right]^{2} \\
& \frac{\partial R}{\partial a}=-2 \sum\left[1-\frac{a}{t_{i}}-b \frac{x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right] \frac{1}{t_{i}}=0 \\
& \frac{\partial R}{\partial b}=-2 \sum\left[1-\frac{a}{t_{i}}-b \frac{x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right] \frac{x_{i}}{t_{i}}=0 \\
& \frac{\partial R}{\partial c}=-2 \sum\left[1-\frac{a}{t_{i}}-b \frac{x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right] \frac{z_{i}}{t_{i}}=0 \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial R}{\partial d}=-2 \sum\left[1-\frac{a}{t_{i}}-b \frac{x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right] \frac{\omega_{i}}{t_{i}}=0 \\
& \frac{\partial R}{\partial e}=-2 \sum\left[1-\frac{a}{t_{i}}-b \frac{x_{i}}{t_{i}}-c \frac{z_{i}}{t_{i}}-d \frac{\omega_{i}}{t_{i}}-e \frac{y_{i}}{t_{i}}\right] \frac{y_{i}}{t_{i}}=0 \tag{13}
\end{align*}
$$

So, we can write these equations in matrix form as:

Evaluating the constants a, b, c, d and e with the help of a computer program (Appendix A) yields the values as:

$$
\begin{array}{ll}
M_{1}=a=215071.5818717349 & (\mathrm{MeV})^{2} \\
\Delta=b=225594.9380004106 & (\mathrm{MeV})^{2} \\
v_{1}=c=273067.3632776805 & (\mathrm{MeV})^{2} \\
v_{2}=d=525934.6181602061 & (\mathrm{MeV})^{2} \\
v_{3}=e=197697.6403414621 & (\mathrm{MeV})^{2}
\end{array}
$$

Using these values we have constructed a complete table of quark-antiquarl meson states, as shown in Table VII. The table is correct up to three
significant decimal places. We have shown a comparison between the predicted masses and the experimental masses in Table VIII. We are also able to identify our predicted particles with the following, not fully confirmed, particles in Table IX. We have not taken into account the X^{0} particle in our calculations. This is due to the appreciable mass difference between the singlet and the octet in the pseudoscalar nonet. If we take into account this mass difference, the X^{0} can easily be fitted in our table. The average deviation turns out to be 4.7% for al1 the established mesons to date.

TABLE VII

COMPLETE TABLE OF QUARK-ANTIQUARK MESON STATES

v	L	S	JPC	$\mathrm{I}=1$	$\mathrm{I}=\frac{\mathrm{I}}{2}$	$\mathrm{I}=0$	$\mathrm{I}=0$	L. S	$S_{1} \cdot S_{2}$
0	0	0	O+	T (135)	K (494)	η (564)	$\mathrm{X}^{0}(958)$	0	-3/4
		1	1--	p (738)	K* (877)	\emptyset (998)	ω (738)	0	1/4
1	1	0						0	
		1	$0+1$	$\delta(1022)$	$\mathrm{K}_{\mathrm{N}}(1128)$	X_{3}^{1} (1219)	S* (1022)	-2	1/4
		1	1+	A1 (1148)	$K^{*}(1242)$	D (1330)	$\mathrm{X}_{4}(1144)$	-1	1/4
		1	$2+$	A2 (1365)		$\mathrm{f}^{\prime}(1521)$	f^{4} (1365)	1	1/4
2	0	0						0	
		1	1--	$\mathrm{X}_{8}(1458)$	$\mathrm{X}_{9}(1533)$	$\mathrm{X}_{10}(1605)$	$X_{11}(1458)$	0	$1 / 4$
	2	0	2-7	A3 (1727)	X_{12} (1791)	X_{13} (1853)	$\mathrm{X}_{14}(1727)$	0	$-3 / 4$
		1	1--	X_{15} (1640)	$\mathrm{X}_{16}(1707)$	$\mathrm{X}_{17}(1772)$	$\mathrm{X}_{18}(1640)$	-3	1/4
		1	2--	$\mathrm{X}_{19}(1799)$	X_{20}^{16} (1861)	$\mathrm{X}_{21}(1920)$	$\mathrm{X}_{22}(1799)$	-1	1/4
		1	3--	X_{23} (2013)	$\mathrm{X}_{24}(2069)$	$\mathrm{X}_{25}(2123)$	$\mathrm{X}_{26}(2013)$	-2	1/4
3	1	0						0	-3/4
		1	O+	$\mathrm{X}_{31}(1950)$	$\mathrm{x}_{32}(2007)$	$X_{33}(2063)$	$\mathrm{X}_{34}(1950)$	-2	1/4
		1	1+	X_{35} (2019)	X_{36} (2074)	$\mathrm{X}_{37}(2128$	$\mathrm{X}_{38}(2019)$	-1	1/4
		1	$2++$	$\mathrm{X}_{39}(2150)$	$\mathrm{X}_{40}(2202)$	X_{41} (2253)	$\mathrm{X}_{42}(2150)$	1	1/4
	3	0	3+-	$\mathrm{X}_{43}(2408)$	$\mathrm{X}_{44}^{40}(2455)$	$\mathrm{X}_{45}(2500)$	$\mathrm{X}_{46}(2409)$	0	-3/4
		1	$2+$	$\mathrm{X}_{47}(2288)$	$\mathrm{X}_{48}(2337)$	$\mathrm{X}_{49}(2384)$	$\mathrm{X}_{50}(2288)$	-4	1/4
		1	3+1	$\mathrm{X}_{51}(2460)$	$\mathrm{X}_{52}(2506)$	$\mathrm{X}_{53}(2550)$	$\mathrm{X}_{54}(2460)$	-1	1/4
		1	$4+$	$\mathrm{X}_{55}(2673)$	X_{56} (2715)	$\mathrm{X}_{57}(2756)$	$\mathrm{X}_{58}(2673)$	3	1/4

TABLE VII(Continued)

v	L	S	JPC	$\mathrm{I}=1$	$\mathrm{I}=\frac{1}{2}$	$1=0$	$\mathrm{I}=0$	L. S	$\mathrm{S}_{1} \cdot \mathrm{~S}_{2}$
4	0	0	O-1		X_{60} (2233)	X_{61} (2283)		0	-3/4
		1	1--	$\mathrm{X}_{63}(2300)$	$\mathrm{X}_{64}^{60}(2348)$	$\mathrm{X}_{65}(2396)$	X_{66}^{62} (2299)	0	1/4
	2	0	2-+	$\mathrm{X}_{67}(2634)$	$\mathrm{X}_{68}(2676)$	X_{69} (2718)	X_{70}^{66} (2633)	0	-3/4
		1	1--	X_{71} (2578)	$\mathrm{X}_{72}(2621)$	$\mathrm{X}_{73}(2664)$	$\mathrm{X}_{74}(2577)$	-3	1/4
		1	2--	$\mathrm{X}_{75}(2682)$	X_{76} (2723)	X_{77} (2764)	$\mathrm{X}_{78}{ }^{(2681)}$	-1	1/4
		1	3--	$\mathrm{X}_{79}(2830)$	$\mathrm{X}_{80}(2869)$	X_{81} (2909)	$\mathrm{X}_{82}(2830)$	2	1/4
	4	0	4-	$\mathrm{X}_{83}(3083)$	$\mathrm{X}_{84}(3119)$	$\mathrm{X}_{85}^{81}(3156)$	$\mathrm{X}_{86}^{82}(3083)$	0	-3/4
		1	3--	$\mathrm{X}_{87} \mathbf{(2 9 4 4)}$	X_{88}^{84} (2982)	$\mathrm{X}_{89}(3620)$	$\mathrm{X}_{90}(2944)$	-5	1/4
		1	4--	$\mathrm{X}_{91}(3124)$	$\mathrm{X}_{92}(3160)$	$\mathrm{X}_{93}(3195)$	X_{94} (3124)	-1	1/4
		1	5--	$\mathrm{X}_{95}^{1}(3336)$	$\mathrm{X}_{96}^{92}(3369)$	$\mathrm{X}_{97}^{93}(3403)$	X_{98}^{94} (3335)	4	1/4

TABLE VIII

COMPARISON OF EXPERIMENTAL AND PREDICTED MESONIC MASSES

Particle	$\begin{gathered} \text { Experimental } \\ \text { Mass } \end{gathered}$	$\begin{aligned} & \text { Predicted } \\ & \text { Mass } \end{aligned}$	\% Error
π	135	135	0\%
K	498	494	0.8\%
η	549	564	2.8\%
p	765	738	3.5\%
K*	892	877	1.8\%
ϕ	1019	998	2.0\%
ω	784	738	6.0\%
δ	966	1022	5.8\%
K_{N}	1170	1128	3.5\%
S*	1070	1022	4.0\%
A1	1070	1148	7.0\%
K*	1230	1242	0.9\%
D	1285	1330	3.4\%
A2	1300	1365	5.0\%
K**	1420	1445	1.8\%
f^{\prime}	1514	1521	0.4\%
f	1260	1365	8.0\%
B	1235	1032	15.0\%
K*	1320	1138	13.0\%
E	1422	1265	10.0\%
π_{A}	1640	1727	5.3\%

TABLE IX

COMPARISON OF PREDICTED MESONS WITH NEW MESONS

Predicted JPC	Predicted Mesons	New Mesons	Predicted Mass	Experimenta1 Mass
$0+$	X_{7}	X_{o}	1432	
$1--$	X_{8}	X_{1}	1458	1430
$1--$	X_{15}	P^{\prime}	1640	1440
$1--$	X_{18}	ω_{-}	1640	1660
$2--$	X_{19}	X^{-}	1799	1675
$3+-$	X_{43}	NN^{1}	2408	1795
$2++$	X_{16}	$\mathrm{~K}_{\mathrm{N}}$	2384	2360
$1--$	X_{20}	$\mathrm{~K}_{\mathrm{N}}$	1707	2375
$2-\cdots$			1861	1660
				1760

CONCLUSIONS

We have presented in this thesis a model of the bosons in which they are viewed as bound states of a quark and an antiquark moving in a very deep potential. Some degree of symmetry has been implied in the model in two different ways. First, invariance under the isotopic spin transformations has been assumed to hold for two members of the quark triplet. Second, the binding potential has been assumed to be independent of the isotopic spin state of the bound pair. In comparing the model with real life, one finds some comforting successes. The mass difference between the λ quark and nucleon quarks that describes the pseudoscalar and vector mass splittings also works for the tensor $\left(2^{+}\right)$nonet. The major importance of the non-relativistic quark approach lies in its potential for extrapolations of mass-spectra. Of course, some difficulties have already presented themselves. The B (1235) and K* (1230) mesons seem not to fit very well with our parameters. Though the square-well parameter ma^{2} has been determined, it's difficult to quote m separately since the value of a is not known.

At this moment, it is hard to take these difficulties seriously, remembering the uncertain state of our experimental information. We have been able to match our predictions with some new mesons, not yet fully confirmed experimentally. This seems to be a good indication of the success of the model. And, as mentioned before, all mesons,
established to date, fit into our formula with errors of the order of a few per cent.

This, then is the quark model for mesons. Inspite of the fact, that no quark has yet been discovered in nature, most of the successes of the model are astonishing and essential features of the mathematical structure of the quark model must survive the test of time.

SELECTED BIBLIOGRAPHY

(1) Fermi, E., and Yang, C. N., Phys. Rev. 76, 1739 (1949).
(2) Sakata, S. Progr. Theor. Phys. (Kyoto), 16, 686 (1956).
(3) Ikeda, M., Ogawa, S. and Ohnuki, Y. Progr. Theor. Phys. (Kyoto) 22, 715 (1959).
(4) Yamaguchi, Y. Progr. Theor. Phys. (Kyoto) Supp1. No. 11, 1 and 37 (1960).
(5) Wess, J., Nuovo Cimento 10, 15, (1960).
(6) Fujii, Y., Progr. Theor. Phys. (Kyoto) 21, 232 (1959).
(7) Kobzarev, L. and Okun L., Soviet Physics -JETP 14, 358 (1962).
(8) Gell-Mann, M., Phys. Rev. 125, 1067 (1962).
(9) Gell-Mann, M., Phys. Letters 8, 214 (1964).
(10) Zweig, G. An Su (3) Model for Strong Interaction Symmetry and its Breaking, CERN Preprint 8419/TH. 412 (February, 1964).
(11) Feinberg, G., and Goldhaber, M. Proc. Nat. Acad. Sci., 45, 1301 (1959).
(12) Blum, Brandt, Cocconi, Czyzewski, Danysz, Jobes, Keliner, Miller, Morrison, Neal and Rushbrooke, . Phys. Rev. Letters 13, 353a (1964).
(13) Leipuner, Chu, Larsen and Adair, Phys. Rev. Letters 12, 423 (1964).
(14) Dorfan, Eades, Lerderman, Lee and Ting, Phys. Rev. Letters, 14, 999 (1965).
(15) Bowen, Delise, Kalbach and Martare, Phys. Rev. Letters, 13, 728 (1964).
(16) McCusker, C. B. A., and Cairns, I., Phys. Rev. Letters 23, 658, (1969).
(17) Chu, W. T., et a1., Phys. Rev. Letters 24, 917, (1970).
(18) Hazen, W. E., Phys. Rev. Letters 26, 582 (1971); Kiraly, P. and Wolfendale, A. W., Phys. Letters 31B, 410 (1970)
(19) Kokkedee, J. J. J., The Quark Mode1. New York: W. A. Benjamin, Inc., 1969.
(20) Fujii, Y., Progr. Theo. Phys. (Kyoto) 21, 232, (1959).
(21) Morpurgo, G., Physics 2, 95, (1965).
(22) Schwinger, J., Phys. Rev. 135, B816 (1964).
(23) Gell-Mann, M. and Ne'eman, Y., The Eightfold Way, New York: W. A. Benjamin, Inc., (1964).
(24) Gursey, F., Lee, T. D. and Nauenberg, M. Phys. Rev. 135, B467 (1964).
(25) Wick, G. C. Phys. Rev. 96, 1124 (1954).
(26) Cutkosky, R. E., Phys. Rev. 96, 1135 (1954).
(27) Samue1, M. A., Phys. Rev. 3, 2913, (1971).
(28) Dalitz, R. H. High Energy Physics, Ecole d'Ete de Physique Theorque, Dewitt, C. and Jacob, M. Eds. Les Houches, 1965 (Gordon and Breach, New York, 1966); in XIIIth International Conference on High-Energy Physics, Berke1ey, 1966 (Univ. of Calif. Press, 1967).
(29) Barnes, Culwick, Guidoni, Kalbfleisch, London, Palmer, Radojcic, Rahm, Rau, Richardson, Samios and Smith, Phys. Rev. Letters, 15, 322 (1965).
(30) Haque, Scotter, Musgrave, Blair, Grant, Hughes, Negus, Turnbu11, Ahmad, Baker, Celnikier, Misbahuddin, Sherman, Skillicorn, Atherton, Chadwick, Davies, Field, Gray, Lawrence, Loken, Lyons, Mulvey, Oxley, Wilkinson, Fisher, Pickup, Rangan, Scarr, and Segar, Phys. Letters 14, 338 (1965).
(31) Hardy, Chung, Dah1, Hess, Kirz, and Miller, Phys. Rev. Letters, 15, 329 (1965).
(32) Miller, Chung, Dah1, Hess, Hardy, Kirz and Koellner, Phys. Rev. Letters 14, 1074 (1965)
(33) d'Andlau, Astier, Della, Negra, Dobrzynski, Wojcicki, Barlow, Jacobsen, Montanet, Tallone, Phys. Letters, 17, 347, (1965).
(34) Alitti, Baton, Neveu-Rene, Crussard, Gimestet, Tran, Gessaroli and Romano, Phys. Letters 15, 69, (1965).
(35) Armenteros, Edwards, Jacobsen, Montanet, Vandermeulen, d'Andlau, Astier, Baillon, Cohen-Ganouna, Defoix, Siaud, Ghesquiere and Rivet, Phys. Letters 9, 207 (1964).
(36) Barsch, Bondar, Braunbeck, Deutschmann, Eicke1, Grote, Kaufmann, Lanius, Leiste, Pose, Colley, Dodd, Musgrave, Simmons, Bockmann, Nellen, Blobe1, Butenschon, von Handel, Knies, Schilling, Wolf, Brownlee, Butterworth, Campayne, Ibbotson, Saeed, Biswas, Luers, Schmitz and Weigl, Phys. Letters 11, 167 (1965)
(37) Glashow, S. L., and Socolow, R. H. Phys. Rev. Letters 15, 329, (1965)
(38) Gursey, F. and Radicati, L. A. Phys. Rev. Letters 13, 173 (1964).
(39) Sakita, B. Phys. Rev. 136, B 1756 (1964).
(40) Gell-Mann, M. Phys. Rev. 125, 1067, (1962)
(41) DeSwart, J. J. Revs. Modern Physics, 35, 916, (1963)
(42) Green, A. E. S., Nuclear Physics, New York: McGraw Hill, (1955).
(43) Powe11, J. L., Quantum Mechanics. Massachusetts: A-W Company, (1961).
(44) Green, A. E. S., Phys. Rev. 75, 1926, (1949)
(45) Tranter, C. J., Bessel Functions with some Physical Applications. London: The English Universitites Press Ltd., (1968).
(46) Schiff, L. I., Quantum Mechanics. New York: McGraw-Hill Book Company Inc., (1949).
(47) Cowles, T., Algebra. New York: D. Van Nostrand Company, Inc., (1947).
(48) Fine, H. B., College Algebra. Princeton University Press: Ginn \& Company, (1905).
(49) Melissinos, A. C., Experiments in Modern Physics, New York: Academic Press,(1966).

APPENDIX
 PROGRAM FOR CALCULATION OF MESONIC MASSES

This program, written in the Fortran IV language will calculate the constants a, b, c, d, e, and print out simultaneously the meson masses using the mass formula and the values of the constants. The data cards must give the values of the variables t, x, y, z and w. The masses are then adjusted to the appropriate table.

```
sJOB NOSUBCHK,TIME \(=30\)
```



```
            DIMENSION T(119),X(119),Y(119),2(1199),W(129),R(5),A(25),S(5,5)
            N=21
            T(1)=135.00**2
            T(2)=498.00**2
            (13)=765.00**2
            (4)=892.00**2
            (6) 5784.00**2
            T(7)=966.00**2
            T(8)=1170.00**
            I(9)=1070.00**2
            (10)=1230.00 **
            (11)=1300.00**2
            T(12)=1420.0 C**2
            (14)=132C.D0**2
            T(15)=1285.D C**2
            T(16)=1260.00**2
            (17)=1514.00***2
            (18)=1070.00**2
            T(19)=1422.00**2
            T(20)=1\in40.00**2
            T(21)=549.00**2
            T(21)=549.0
            x(2)=1.000
            x(1)=0.000
            x(4)=2.000
            x(3)}=0.00
            x(ó)=0.000
            x(7)=0.000
            x(8)=1.000
            x(9)=0.000
    x(10)=1.000
    x(11)=0.000
    x(12)=1.000
    x(14)=1.000
    x(15)=2.000
    x(16)=0.000
    x(117)=2.0000
    x(178)=0.000
    x(20)=0.000
    x(21)=1.33300
    x(22)=0.000
    x(23)=0.000
    x(24)=0.000
    x(25)=0.000
    x(26)=0.000
    x(27)=0.CDO
    x(28)=0.000
    x(29)=C.000
    x(33)=0.000
    x(31)=0.000
    x(32)=0.000
x(33)=0.000
x(34)=0.000
```


120	X $5551=0.000$
121	$x(96)=0.000$
122	$x(97)=0.000$
123	$x(98)=0.000$
124	$\mathrm{X}(99)=0.000$
125	$x(100)=0.000$
126	$x(102)=0.000$
127	$x(102)=0.000$
128	$x(103)=0.000$
129	$x(104)=0.000$
130	$x(105)=0.000$
132	$x(106)=0.000$
132	$x(107)=0.000$
133	$x(108)=0.000$
134	$x(109)=0.000$
135	$\mathrm{x}(110)=0.000$
136	$x(111)=0.000$
137	$x(112)=0.000$
138	$x(113)=0.000$
139	$x(114)=0.000$
140	$x(115)=0.000$
141	$x(116)=0.000$
142	$x(117)=0.000$
143	$x(118)=0.000$
144	$x(119)=0.000$
145	$211)=\mathrm{C} .000$
146	$2(2)=0.000$
147	$2(3)=0.000$
148	$Z(4)=0.000$
149	$2(5)=0.000$
150	$z(6)=C .000$
151	$z(7)=-2.000$
152	(18) $=-2.000$
153	$2(9)=-1.000$
154	$Z(10)=-1.000$
155	$2(11)=1.000$
156	2 212$\}=1.000$
157	2(13)=0.000
158	$2(14)=0.000$
159	$2(15)=-1.000$
160	z(16) $=1.000$
161	$2(17)=1.000$
162	$2(18)=-2.000$
163	$2(19)=0.000$
164	$z(20)=0.000$
165	$2(21)=0.000$
166	$2(22)=0.000$
167	$2(23)=0.000$
168	$2(24)=2.000$
169	$Z(25)=-1.000$
170.	$z(26)=-3.000$
171	2(27)=0.000
172	$z(28)=1.000$
173	$2(29)=-1.000$
174	Z(30) $=-2.000$
275	2(3) $=0.000$
176	$z(32)=3.000$
177	$2(33)=-1.000$
178	$Z(34)=-4.000$
179	$2(35)=0.000$

180	$2(36)=0.000$
192	L $(37)=0.000$
182	$2(38)=2.000$
183	$2(39)=-1.000$
184	$z(40)=-3.000$
185	$2(41)=0.000$
186	$2(42)=4.000$
187	$2(43)=-1.000$
188	2 144) $=5.000$
189	$2(45)=0.000$
190	$2(46)=0.000$
191	$2(47)=0.000$
192	$2(48)=2.000$
193	$2(49)=-1.000$
194	$2(50)=-3.000$
195	2(51) $=0.0$ co
196	2152)=1.000
197	2(53)=-1.000
198	$2(54)=-2.000$
199	$2(55)=0.000$
200	2(56) $=3.000$
201	$2(57)=-1.000$
202	$2(58)=-4.000$
203	$z(59)=0.000$
204	$2(60)=0.000$
205	$2(61)=0.000$
206.	$2(62)=2.000$
207	$2(63)=-1.000$
208	$2(64)=-3.000$
209	$2(65)=0.0 \mathrm{CO}$
210	$2(68)=4.600$
211	$2(67)=-1.000$
212	$2(58)=-5.000$
213	$2(69)=-2.000$
214	2(70) $=0.000$
215	$2(71)=0.000$
216.	$2(72)=0.000$
217	2(73) $=0.000$
218	$2(74)=2.000$
219	$2(75)=-1.000$
220	$2(75)=-3.000$
221	$2(77)=0 . \cos$
222	$2(78)=1.000$
223	$2(79)=-1.000$
224	$2(80)=-2.000$
225	$Z(81)=0.000$
226	$2(82)=3.000$
227	$2(83)=-1.000$
228	$2(84)=-4.000$
229	$2(25)=0.000$
230	$2(86)=0.000$
232	$2(87)=0.000$
232	$2(88)=2.000$
233	$2(39)=-1.000$
234	$2(90)=-3.000$
235	$2(91)=0.000$
236	2(92)=4.000
237	2(93) $=-1.000$
238	$2(94)=-5.000$
239	$Z(95)=-1.000$

240	$2(96)=0.000$
241	$2(97)=0.000$
242	$2(58)=0.000$
243	21991*2.000
244	2(100)=-1.000
245	[1101) $=-3.090$
246	2(102)=0.000
247	2(103)=1.000
248	2(104)=-1.000
247	$2(105)=-2.000$
250	$2(1 C E)=0.000$
251	$2(107)=3.000$
252	$2(103)=-1.000$
253	$2(109)=-4.000$
254	$2(110)=0.000$
255	2(111) $=0.000$
256	$2(112)=0.000$
257	$2(113)=2.000$
258	$2(114)=-1.000$
259	$\mathbf{L (1 1 5) = - 3 . 0 5 6}$
260	$2(116)=0.000$
261	2(117)=4.000
262	$2(118)=-1.000$
263	$2(119)=-5.000$
264	$W(1)=-0.7500$
265	$W(2)=-0.7500$
266	$w(3)=0.2500$
267	$H(4)=0.2500$
268	$H(5)=0.2500$
269	$W(6)=0.25 C 0$
270	$W(7)=0.2500$
271	$W(8)=0.2500$
272	$W(9)=0.2500$
273	$W(10)=0.2500$
27.4	$n(11)=0.2500$
275	$W(12)=0.2500$
276	$W(13)=-0.7500$
277	$W(14)=-0.7500$
278	$W(15)=0.2500$
279	$H(16)=0.2500$
280	$W(17)=0.2500$
281	$W(18)=0.2500$
282	$W(19)=-0.7500$
283	$\omega(20)=-0.7500$
294	W(21)=-0.7500
285	$W(22)=-0.7500$
286	$H(23)=0.2500$
287	$W(24)=0.2500$
288	$N(25)=0.2500$
289	Hi 261) 0.2500
290	$W(27)=-0.7500$
291.	$w 1281=0.2500$
292	$N(29)=0.2500$
293	$W(30)=0.2500$
294	$W(31)=-0.7500$
295	H(32) $=0.2500$
296	$W(33)=0.2500$
297	$W(34)=0.2500$
298	$W(35)=-0.7500$
299	$W(36)=0.2500$

300	$W(37)=-0.7500$
301	$w(38)=0.2500$
302	$w(39)=0.2500$
303	$W(40)=0.2500$
304	$W(41)=-0.7500$
305	$w(42)=0.2500$
306	$w(43)=0.2500$
307	$W(44)=0.2500$
308	w(45) $=-\mathrm{C} .7500$
309	$W(46)=0.2500$
310	$W(47)=-0.7500$
312	$w(48)=0.2500$
312	$w(49)=0.2550$
313	$W(50\rangle=0.2500$
314	$W(51)=0.7500$
315	$W(52)=C .2500$
316	$W(53)=0.2500$
317	$W(54)=0.2500$
318	$W(55)=-0.7500$
319	$W(56)=0.2500$
320	$W(57)=0.2500$
321	$W(58)=0.2500$
322	$W(59)=-0.7500$
323	$w(60)=0.2500$
324	$N(61)=-0.7500$
325	$W(62)=0.2500$
326	$W(53)=0.2500$
327	$W(64)=0.2500$
328	$W(55)=-0.75{ }^{\text {W }}$
329	$W(66)=0.2500$
330	$W(67)=0.2500$
331	$W(53)=0.2500$
332	$w(89)=0.2500$
333	$W(70)=-0.7500$
334	$W(71)=-0.7500$
335	$W(72)=0.2500$
336	$W(73)=-0.7500$
337	$W(74)=0.2500$
338	$W(75)=0.2590$
339	$W(76)=0.2500$
340	$w(77)=-0.7500$
341	$W(78)=0.2500$
342	$W(79)=0.2500$
343	$W(50)=0.2500$
344	$W(61)=-0.7500$
345	$W(92)=0.2500$
346	$W(83)=0.2500$
347	$W(84)=0.2500$
348	$W(85)=-0.7500$
349	$H(85)=0.2500$
350	$W(87)=-0.7500$
351	h(88) $=0.2500$
352	$w(89)=0.2500$
353	$W(90)=0.2500$
354	$W(91)=-0.7500$
355	$W(92)=0.2500$
356.	$W(53)=0.2500$
357	$W(94)=0.2500$
358	$W(95)=0.2500$
359.	W 196) $=-0.7500$

360	$H(97)=0.2500$
361	$W(98)=-0.7500$
362	$w(99)=0.2500$
$3 \in 3$	$W(100)=0.2500$
364	$w(101)=0.2530$
365	$N(102)=-0.7500$
366	$w(103)=0.2500$
367	$W(104)=0.2530$
358	$W(105)=0.2500$
369	$\mathrm{n}(106)=-0.7500$
370	$W(107)=0.2500$
371	$W(103)=0.2500$
372	$W(105)=0.2530$
373	$W(110)=-0.7500$
374	$\boldsymbol{H}(111)=0.2500$
375	$W(112)=-0.7500$
376	$w(113)=0.2500$
377	$H(114)=0.2500$
378	$N(115)=0.2500$
379	$\mathrm{H}(116)=-0.7500$
380	$W(117)=0.2500$
381	$w(118)=0.2500$
382	$W(115)=0.2500$
383	$Y(1)=1.000$
334	$Y(2)=1.000$
385	$Y(3)=1.000$
386	$Y(4)=1.000$
387	$Y(5)=1.000$
388	$Y(6)=1.000$
389	$Y(7)=6.300$
390	$Y(8)=6.300$
391	$Y(9)=6.300$
392	$Y(10)=6.300$
393	$Y(11)=6.300$
394	$Y(12)=6.300$
355	$Y(13)=6.300$
396	$Y(14)=6.300$
397	$Y(15)=6.300$
398	$Y(16)=6.300$
399	$Y(17)=6.300$
400	$Y(18)=6.300$
401	$Y(19)=9.000$
402	$Y(20)=16.000$
403	$Y(21)=1.000$
404	Y(22)=9.000
405	$Y(23)=9.000$
406	$Y(24)=16.000$
407	$Y(25)=16.000$
408	$Y(26)=16.000$
409	$Y(27)=20.2500$
410	$Y(28)=20.2500$
411	$r(29)=20.2500$
412	$Y(30)=20.2500$
413	$Y(31)=30.2500$
414	$Y(32)=30.2500$
415	$Y(33)=30.2500$
416	$Y(34)=30.2500$
417	$Y(35)=25.000$
418	$Y(36)=25.000$
419	$Y(37)=36.000$

420	$Y(38)=36.000$
421	$Y(39)=36.000$
422	$Y(40)=36.000$
423	$Y(41)=49.000$
424	$Y(42)=49.000$
425	$Y(43)=49.000$
426	$Y(44)=49.000$
427	Y $4451=9.000$
428	$Y(46)=9.000$
429	$Y(47)=16.000$
430	$Y(48)=16.000$
431	$Y(49)=16.000$
432	$Y(50)=16.000$
433	$Y(51)=20.2500$
434	$Y(52)=20.2500$
435	$Y(53)=20.2500$
436	$Y(54)=20.2500$
437	$Y(55)=30.2500$
438	$Y(56)=30.250$
439	$Y(57)=30.250$
440	$Y(58)=30.2500$
441	$Y(59)=25.000$
442	$Y(60)=25.000$
443	$Y(61)=36.000$
444	$Y(\epsilon 2)=36 . C D 0$
445	$Y(63)=36.000$
446	$Y(64)=36.000$
447	$Y(65)=49.000$
448	$Y(66)=49.000$
449	$Y(67)=49.000$
450	$Y(68)=49.000$
451	$Y(69)=6.2500$
452	$Y(70)=6.2500$
453	$Y(71)=9.000$
454	$Y(72)=9.000$
455	$Y(73)=16 . C 00$
456	$Y(74)=16.000$
457	$Y(75)=16.000$
458	$Y(76)=16.000$
459	$Y(77)=20.2500$
460	$Y(78)=20.2500$
461	$Y(79)=20.2500$
462	$Y(80)=20.2500$
463	$\mathrm{Y}(81)=30.2500$
464	$Y(82)=30.2500$
465	$Y(83)=30.2500$
466	$Y(84)=30.2500$
467	$Y(85)=25.000$
468	$Y(86)=25.000$
469	$Y(87)=36.000$
470	$Y(88)=36.000$
471	$Y(89)=36.000$
472	$Y(90)=36.000$
473	$Y(91)=49.000$
474	$Y(92)=49.000$
475	Y(93)=49.000
476	$Y(94)=49.000$
477	$Y(55)=6.2500$
478	$Y(96)=6.2500$
479	$\boldsymbol{Y}(57)=9.000$

```
    Y(9.8)=16.000
    Y(97)=16.000
    Y(100)=16.000
            Y(101)=16.000
            Y(102)=20.2500
            Y(104)=20.2500
            Y(105)=20.2500
            Y(105)=30.2500
            Y(107)=30.2500
            Y(106)=30.2500
            Y(20G)=30.2500
            Y(110)=25.050
            Y(110)=25.050
            Y(111)=25.000
            Y(112)=36.000
            Y(114)=36.000
            Y(115)=3t.000
            Y(11E)=49.000
            Y(117)=49.000
            Y(1181=49.050
    Y Y(119.)=49.000
            TSu4=0.00
            DO 10 i=1,21
                            10 TSUM=1.00/(T(1)**2)+TSUM
                            TSUM=1.00/(T(I)**
                                    T0 FIND S(1,2)
                                    XTSUM=0.00
                            20 XO 20 i= i=1,21
                            S(1,2)=XTSUM
TO FINO S(1,3)
O.DC
    O0 30 I.x1,21
    2TSUH=2(TI/IT(I)**2)+2TSUM
    S(1,3)=2TSUM
    WT SUM=O - CO
    20.40 I=1,21
    40WTSUM=W(I)/(TTI)**2)+WTSUM
        S(1,4)=WTSUM 
        TO FIND 
            OS 50 I=1,21
    50 YTSUM=Y(1)/(TII)**2)+YTSUM
        S(1,5)=YTSUM
        TO FIND S(2,i)
    C S(2,1)=S(1,2)
        XXTSUM=0.00
    60 XX XTSUM=(X(I)*X(I))/(T(I)**2)*XXTSUM
    XXTSUM=(X(1)*x
    C TO FIND 5(2,3)
        XZTSUM=0.00 [10, 21
    70 XLTSUM=(X(1)*2(1))/(TII)**2)+X2TSUM
    S(2,3)=x2TSUM
C TO FIND S(2,4)
```



```
160 SUM=1.DO/T(I)+SUM
TO FIND R(2)
    xSUM=0.00
    1=1,21
    170 xSUM=x(1)/T!11+XSUM
    R(2)=XSUM
        TO FIND R(3)
    LO 180 I=1,21
    180 2S(M=2(1)/T(1)+2SUM
    C TC FIND R(4)
        nSUM=0.DO
        HSUM=W(I)/T(I)+WSUM
    190 KSUM=WWUMT(I)+WSUM
```



```
        YSUM =0.00
        200 OD YSUM=Y(I)/TIII,YSUM
            R(5)=YSUM
        OD 1000 
        L=5*(J-1)+1
    1000 A(L)=S(1,J)
        EPS = 1.E-16
        CALL SYSTEM(R,A,5,1,EPS,IER)
        00500 K = 1,5
    500 MRITE16,600
    600 FJRMAT(O26.16)
        RN1=R(1)
        DEL=R(2)
        Y1=R(3)
        Y Y =R(4)
        00 2000 K=1,21
    RMASS2=RM1+X(K)*DEL+Y1*2(K) &Y 2*H(K) +VO*Y(K)
```



```
*EXTENSICN* OTHER-COMPILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS
*EXTENSION* OTHER COMPILERS MAY NOT ALLOW EXPRESSIONSS IN OUTPUTGILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS
    609 (%NON: OTHER COMPISERS NAY 
    610 00 5000 K=22,119
    RMASS3=RM1+X(K)*DEL+Y1*Z(K)+Y2*R(K)+V0*Y(K)
*EXTENSION* OTHER COMPILERS MAY NDT ALLON EXPRESSIONS IN DUTPUT LISTS
    613 7 FORMAT(I5,2026.16)
    614
    616. SURRJUTINE SYSTEMIR,A,M,N,EPS,IERI
            IMPLICIT REAL * 8 (A-H,O-2)
            REAL** 4 EPS
            DIMENSION A(1),R(1) DELG }2
C
``` USAGE DELG 80 CALL OGELG(R,A,M,N,EPS,IERI DELG 100 DESCRIPTION OF PARAMETERS DELG 110
OESERIPTION OF PARAMETERS - DOUBLE PRECISION m bY N RIGHT HANO SIDE MATRIX
 - dOUBLE PRECISION M by N RIGHT HANO SIDE MATRIX
(OESTROYED). CN RETURN R CONTAINS THE SOLUTIONS \(\begin{aligned} & R \quad \text { - DOUBLE PRECISION M BY N RIGHT HANO SIDE MATRIX } \\ & \text { OEESTROYED). CN RETURN R CONTAINS THE SOLUTIONS }\end{aligned}\) DOUBLE PRECISION M BY M COEFFICIENT MATRIX OEL G 120 - (DESTROYEO).
\(M\)
\(N \quad\) - THE NUMBER OF EQUATIONS IN THE SYSTEN.
N
EPS - SINGLE PRECISION INPUT CONSTANT WHICH IS USED AS RELATIVE TOLERANCE FOR TEST ON LOSS CF SIGNIFICANCE.
IER - RESULTING ERRCR farameter coded as follows ER=-1 NO ERROR
PI VOT ELEMENT AT ANY ELESS THAN 1 OR equal to o.
IER=K - WARNING CUE TO POSSIBLE LOSS OF SIGNIFI- DELG 280 CANCE INDICATED AT ELIMINATION STE? \(K+1\), DELG 290 here pivot element was less than or QQLAL TO THE INTERNAL TOLERANCE EPS TIMES ab SOLUTELY GREATEST ELEMENT OF MATRIX A.
REMARKS DELG 300 DELG 310 DELG 320
DELG 330 \(\begin{array}{ll}\text { DELG } & 330 \\ \text { DELG } & 340\end{array}\)
INPUT MATRICES R AND A ARE ASSUMED TO BE STORED COLUMNHI SE IN M*N RESP. M*M SUCCESSIVE STORAGE LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNHISE TOO. DELG 350 DELG 360
THE PROCECURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS DELG 380 GREATER THAN O AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS OELG 390 ARE OIFFERENT FROM O. HOWEVER WARNING IER=K - IF GIVEN NOICATES POSSIELE LCSS OF SIGNIFICANCE. IN CASE OF A WELL SCALED MATRIX A AND AFPRGPRIATE TOLERANCE EPS, IER=K MAY BE INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
GIVEN IN CASE \(M=1\). DELG 400 DELG 410
DELG 420 DELG 420 DELG 430 DELG 440
SUBROUT INES AND FUNCTION SUBPROGRAMS REQUIRED
NONE DELG 450
DELG 460
METHOD DELG 470 DELG 480 DELG 490 DELG 500 DELG 510 DELG 520 DELG 530 DELG 540 DELG 610 DELG 620 DELG 630 DELG 640
for greatest element in matrixa
DELG 650
PIV=0.00
DELG 660
M \(M=N \neq M\)
OELG 670
DELG 680
DELG 690
DELG 700
DELG 700
DELG 710

SENTRY
0.2150715818717349006
0.2255945380041050
\(0.22559453800041 C 60\) 06
0.27306736327768050 O6
0.52593461815020610 OE
0.52593461815020610 OE
0.19765764034146210 Ot
\[
\begin{aligned}
& 0.1831825859304240 \mathrm{D} 05 \\
& 0.2439131965534530006 \\
& 0.544252876753246500 \\
& 0.76984781475365900 \text { O } \\
& 0.995442752754 \mathrm{C6} 98 \mathrm{D} 0 \\
& 0.54425287675324850 \\
& 0.1045915644007636007 \\
& \begin{array}{l}
0.1271510582 C C 8047007 \\
0.1313983007285317007
\end{array} \\
& \begin{array}{l}
0.13189830072853170 \\
0.15445779452857270
\end{array} \\
& 0.1 E \in 5117733 E 406780 \\
& 0.2090712671841088 \mathrm{D} 07 \\
& 0.106611575240279100 \\
& \begin{array}{l}
0.1291716690403202007 \\
0.17701728832861380 \\
07
\end{array}
\end{aligned}
\]
0.18225 CCOC00000000 0 0.24800400000000000 0.5 \&5225 C0000000000 0.755664 C000C000000 0 0.1038361000 CO 0000 D 0 0 - 144656 CCCOOOOOOOD . 733136 CCCOC000000 0.13689 CCCOOOOOOOOOD
\(0.11449 C C C O C C 000000\) 0.15129000000000000 0.16960 Cc 000000000 D \(0.2 \mathrm{C164CCOC00000000} 0\) 0.15252250000000000 of \(0.17424 C C C O C c C 00000 \quad 07\)
0.1651225000000000007
0.1353449614616015003 0.49387568941329050 \(0.7377349637595118 \mathrm{D}_{0}\) 0.8774097188620941003 \(0.9977187743818744 \mathrm{D} \quad 0\) 0.7377349637595118003 \(0.1022700173 C 7500 C D\) 0.1127612780172363 D 0 0.11484698547568920 0.13656931331161760 0.14455296911817970 . . 10325288143208360 \(\begin{array}{lll}0.1136534509112328 D & 04 \\ 0.13304784414961930 & 04\end{array}\)
0.1350000000003000003 . 49860000000000000 0.76500000000000000 0.892000000000000000 0.10190000000000000 0.78400000000000000 0.96600000060000000 . 10700000000000000 0.12300000000000000 . 13000000000000000 0.1420000000000000 D 0.12350000000000000 0.13200000000000000
0.1285000000000000 D
\(\begin{array}{llll}0.15876 C C G O C G O 000000 & 07 & 0.13656931331161760 & 04 \\ 0.22921560 C 0000000 D & 07 & 0.15219420520642360 & 04 \\ 0.1144490 c 000000000 & 07 & 0.10227001730750600 & 04 \\ 0.2022064 C C C C C 00000 & 07 & 0.12648712904184120 & 04 \\ 0.258896000000000 C 00 & 07 & 0.17273629797222620 & 04 \\ 0.3014 C 1 C 0000000000 & 06 & 0.56483299385534280 & 03\end{array}\) 0.12648712964184120
0.14580240051127230 0.20139146477521190 \(0.17990 \in 52367436830\) 0.16402750591975920 0.21501162332776510 0.2015124832705673004 0.19503327220684760 0.24085211725415260 0.2673221080751469004 0.2460455545923017004 0.2287933435139731004 0.21824429573675250 0.2633951755495310 \(0.263395 E 1755495310\)
0.28301556521721330 0.26815259598227020 0.25776865982643000 0.30834728789115720 0.33355672780284540 \(0.31242 C 74594792430\) 0.29442151410443880 \(0.153343 \in 568 \varepsilon 661330\) 0.15314736396931390 0.17914736396931390
0.2065165809313248 D \(0.186 \mathrm{C71090} 88650190\) 0.17076622412065410 0.20123600008861730 0.22019524869689440 0.20742372159541260 \(0.20 C 73347166756820\)
0.24549071625178040 0.24549071625178040
\(0.2715 C 885592507780\) \(0.2715 C E 85592507780\)
0.25058 EC37C5412C8D 0.23367144330513950 0.22335360680287560 \(0.234831667 C 0742795\) 0.26764399131205290 0. \(2 \varepsilon \in 573 E \in 555162820\) \(0.27232 \in 570 c 8242040\) \(0.2 \in 215865284980830\) 0.31158357287334540
0.33692141523290800 0.3160165565937024 D 0.25822866264259300 0.12195165591296350 0.12277706407902650 0.14321624409761430 0.16053111460043400 \(0.1 E 53367545 C 437770\)
0.21229755255134090
0.12600000000000000004 0.15140000000000000004 \(0.107000 \mathrm{C0000000000} 04\)
0.1422000000000000004 0.1640000000000000004 0.54900000000000000
\begin{tabular}{|c|c|c|}
\hline 76 & 0.3141705268042959007 & 0.1772485618571547004 \\
\hline 77 & 0.42751 E77111670C8D 07 & 0.2067652705646431004 \\
\hline 78 & \(0.50741896926048950 \mathrm{C7}\) & \(0.22525 ¢ 6211\) ¢200260 04 \\
\hline 79 & 0.4528054766049534007 & 0.2127922687585933004 \\
\hline 80 & \(0.42643876027718530 \mathrm{C7}\) & \(0.26627 t 2129469039004\) \\
\hline 81 & 0.6252164114581629007 & \(0.25004 \equiv 2785455675004\) \\
\hline 82 & 0.7597303822574875007 & 0.2756320159664852004 \\
\hline 83 & \(0.6505031365464154) \mathrm{C7}\) & 0.25504552986572150 \\
\hline 84 & \(0.56853292795311130 \cdot 07\) & \(0.23844 ¢ 7699648545004\) \\
\hline 85 & 0.5214251502782953007 & 0.2283473560781677004 \\
\hline 86 & \(0.57401861205491590 \mathrm{C7}\) & \(0.2355 \varepsilon \in \in 55525189310\) \\
\hline 87 & \(0.730357255 \div 5545035007\) & 0.2718257814583642004 \\
\hline 88 & \(0.846 \mathrm{Cc} 448912 \mathrm{CCEC20} \mathrm{C7}\) & 0.2508778934752623004 \\
\hline 87 & 0.7641792801427560007 & 0.27643752755901870 \\
\hline 90 & 0.7095558074872200007 & 0.2663767646562327004 \\
\hline 91 & 0.595859487Cs840420 07 & 0.3155767519936037004 \\
\hline 92 & 0.1157719894225497008 & 0.3402529316157702004 \\
\hline 93 & 0.1021106212585657008 & 0.3195600432761669004 \\
\hline 94 & 0.9119572672755845007 & \(0.3015 ¢ \in \in 333590517004\) \\
\hline 95 & 0.1307098125259244007 & 0.1144158260580464004 \\
\hline 96 & 0.1056250 ¢703¢57180 07 & \(0.1142773 C 5328738320\) \\
\hline 97 & \(0.21258337594845450 \mathrm{c7}\) & \(0.1458024 \cos 2127230\) \\
\hline 98 & 0.2733782863724973007 & 0.1727362979722262004 \\
\hline 99 & 0.4055352200436540307 & 0.2013914647752119004 \\
\hline 100 & 0.3236650113597459007 & 0.1755065236743683004 \\
\hline 101 & 0.26 ¢65153920421380 07 & 0.1645279059197592004 \\
\hline 102 & \(0.3823 ¢ ¢ 979351661870 \mathrm{C7}\) & 0.1555564456329831004 \\
\hline 103 & 0.4622999316604074007 & \(0.21501162332776510 \quad 64\) \\
\hline 104 & 0.4 C 7513655 CC 48713007 & 0.2010124832705673004 \\
\hline 105 & 0.3803797726711032007 & \(0.155 C 332722 C 68476004\) \\
\hline 106 & 0.5300774233580803007 & 0.2402521172541526004 \\
\hline 107 & 0.7146110546574055007 & 0.2673221080751469004 \\
\hline 108 & 0.6053841493463333007 & \(0.24 E C 455545923017004\) \\
\hline 109 & C. 5234635463636292007 & 0.2287933435159731004 \\
\hline 110 & 0.4763061626788152307 & 0.2182443957307525004 \\
\hline 111 & 0.5283493244948333007 & 0.2295761782028099004 \\
\hline 112 & 0.653773567 C5442150 07 & 0.2633958175549531004 \\
\hline 113 & \(0.80098050152557810 \mathrm{C7}\) & \(0.283 C 1 E 5852172133004\) \\
\hline 114 & 0.7190602925426740007 & \(0.268152 ¢ 959822702004\) \\
\hline 115 & 0.6644468158871379007 & 0.2577686598264300004 \\
\hline 116 & 0.9507304994583221007 & 0.3083472878911572004 \\
\hline 117 & \(0.11126 C 6906625415008\) & 0.3335567278028454004 \\
\hline 118 & 0.9760672245865746307 & 0.3124267459479243004 \\
\hline 119 & 0.8668402796755024007 & 0.29442151410443880 \\
\hline
\end{tabular}
core uṣage

core usage
 \(\%\)
 VITA
 Asok Kumar Ray
 Candidate for the Degree of
 Master of Science
Thesis: NON-RELATIVISTIC QUARK MODEL FOR MESONS
Major Field: Physics
Biographical:
 Personal Data: Born in Calcutta, India, September 11, 1948, the
 son of Sri Chittaranjan Roy and Sm. Anita Roy.
 Education: Graduated from Mitra Institution, Calcutta, India, in
 1964; received Bachelor of Science degree in Physics from
 Calcutta University in 1967; received Bachelor of Technology
 degree in Radio-Physics and Electronics from Calcutta Univer-
 sity in 1969; completed the requirements for the Master of
 Science degree in July, 1973.
 Professional Experience: Employed as a Graduate Assistant in
 Physics Department at Oklahoma State University from 1970 to
 1973.```

