GROUP STIFFNESSES AND GROUP FIXED END

 STRESSES IN STRUCTURAL ANALYSISBy
MOHAMMED ABDUL RAWOOF Bachelor of Engineering Osmania University Hyderabad, A.P., India 1970

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

GROUP STIFFNESSES AND GROUP FIXED END

STRESSES IN STRUCTURAL ANALYSIS

Thesis Approved:

ACKNOWLEDGMENTS

The author wishes to express his deep and sincere appreciation to his major adviser, Dr. R. K. Munshi, for providing the guidance, inspiration and valuable encouragement throughout the graduate studies. His friendship has been invaluable.

Appreciation is expressed to Dr. W. P. Dawkins for his suggestions and for serving as a committee member.

The author wishes to express his sincere gratitude to Dr. D. S. Ellifritt, a committee member, for his careful reading of the manuscript and especially for the opportunity he provided to assist him as a graduate teaching assistant.

Also appreciated are the interest and cooperation of all his friends.

Most importantly, sincere thanks and appreciation go to his respected parents for their continued interest and constant encouragement. The author cannot thank them sufficiently.

Gratitude is also extended to Ms. Charlene Fries for her careful and accurate typing of this manuscript.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
General 1
Historical Review 2
Objective of the Study 2
Scope of the Study 3
II. SINGLE BRANCH GROUP 4
Theory 4
Development of the Computer Program 9
III. MULTI-BRANCH GROUP 12
Theory 12
Development of the Computer Program 16
IV. ILLUSTRATIVE EXAMPLES 20
Example 1 20
Example 2 22
Example 3 25
V. SUMMARY AND CONCLUSIONS 35
Summary 35
Conclusions 36
BIBLIOGRAPHY 37
APPENDIX - LISTING OF COMPUTER PROGRAMS 38

LIST OF TABLES

Table Page
I. Example 1, Results from Computer Program No. 1 23
II. Example 1, Results from Reference (1) 23
III. Example 2, Results from Computer Program No. 1 26
IV. Example 2, Results from Reference (1) 27
V. Substructure Boundary Joint Deformations, Figure 7 31
VI. Interior Joint Deformations of Substructure I, Figure 6 32
VII. Final Member Stresses in Substructure I, Figure 6 33
VIII. Support Reactions in Substructure I, Figure 6 34
LIST OF FIGURES
Figure Page

1. Single Branch Polygonal Frame 5
2. Flow Chart of Computer Program No. 1 11
3. Geodesic Dome ${ }^{150}$ ' Diameter, 45^{\prime} Height 13
4. A Typical Substructure of the Dome 17
5. Flow Chart of Computer Program No. 2 18
6. Two-Bar System, Symmetrical Bent Bar 21
7. Ten-Bar System, Symmetrical Circular Bar 24
8. Substructure I of the Dome Shown in Figure 2 28
9. Substructure Boundary Joints 30

CHAPTER I

INTRODUCTION

General

The direct procedure for analysis of structural systems by the stiffness matrix method is well suited for programming the electronic digital computer to analyze structures of moderate size. Unfortunately, for large structural systems, having a high degree of kinematic indeterminacy, this direct procedure can become quite cumbersome due to insufficient addressable core storage in the computer. A segmentation of the program with temporary storage of data on auxiliary storage devices such as magnetic tapes or discs becomes necessary. The use of auxiliary storage devices generally requires a large amount of computer time for transferring data into and out of the computer memory. The utilization of auxiliary storage results in increased cost to solve a problem. To eliminate the need for auxiliary storage, a large structure may be analyzed by dividing it into parts. These parts may be referred to as substructures.

A substructure may be a single bar member or it may be a large unit consisting of a group (or subassemblage) of members. The interactions between such groups of members at connection joints play a role which is similar to the interactions of individual members framing into the joints. Equilibrium equations for the connection joints can be solved
for the unknown displacements that are common to two or more substructures framing into those joints.

Historical Review

The technique of working with substructures when a structural system contains too many unknowns to be solved for has successfully been applied by Weaver (2), Beaufait et al. (3) and Wang (4) to small plane frames and plane trusses.

The concept of solving structural systems in terms of substructures and development of group stiffenesses is discussed in some detail in recent books such as Tuma and Munshi (1) and Jamal J. Azar (8).

The successful application of matrix structural analysis using substructures, by Przemieniecki (5), Rubinstein (6) and Meek (7), demonstrated the feasibility of using substructures.

Objective of the Study

Large structural systems often have repetitive geometry, i.e., they are assembled together using identical subsystems. Analysis by substructures can be of definite advantage in such cases.

The primary objective of this study is to investigate the possibility of the extension of the application of group stiffnesses to two specific problems. The first is the establishment of end stiffnesses of a planar polygonal bar system (Figure 3), and the second is the solution of a truss dome (Figure 4).

Scope of the Study

The properties of a polygonal bar are derived by starting with two bars connected at a joint. Equations are reviewed to see how the middle joint in the two bar system can be eliminated from the calculations and the properties of the two bar system expressed as if it were an equivalent single bar. This equivalent bar can in turn be combined with the next bar in the polygon and the process repeated. All interior joints in the polygonal bar can thus be eliminated from calculations. A computer program is written which accomplishes this and gives the end stiffnesses as well as fixed-end stress resultants of a planar polygonal bar.

The truss dome discussed is made up of six identical segments. The group stiffnesses of each segment are first derived by eliminating all its interior joints from the calculations. The solution of the dome is then shown synthesized using these substructure properties. Again a computer program is prepared to illustrate numerical application.

A summary and conclusion drawn from the study are recorded in the last chapter.

CHAPTER II

SINGLE BRANCH GROUP

Theory

For polygonal shape bars and frames with a large number of joints, it serves to an advantage to introduce the concept of single branch group stiffness. Group stiffnesses can be defined as the stiffnesses of a single equivalent bar to replace a given group of bars. A single branch group can best be illustrated by the polygonal frame shown in Figure 1(a).

Such polygonal bars and frames where two bars frame into each joint are called single branch systems. The development of group stiffnesses of such systems is as follows: first, two bars are taken and the joint formed by these bars is eliminated as shown later in this chapter. The group stiffnesses and group load functions obtained for this two bar system then represent the corresponding values of a single equivalent bar. Then the next bar is added to the single equivalent bar and the new joint thus formed is eliminated and the group stiffnesses and group load functions are obtained which again can represent a single equivalent bar. The procedure can be repeated for any number of bars. It may be noted that no matter how many bars are added (one at a time) the group stiffness matrix will always represent the system as a single equivalent bar and the size of the stiffness matrix will always be 6×6 (planar frames) and the size of the group end stress vector 6×1.

(a)

Figure 1. Single Branch Polygonal Frame

To derive the expressions for group stiffnesses, two consecutive bars, ij and jk as shown in Figure 1(b), are considered.

The joint equilibrium relations for joints i, j and k in these two bars are written as follows:

$$
\begin{align*}
& K_{i}^{0} \Delta_{i}^{0}+K_{i j}^{0} \Delta_{j}^{0}+F \sigma_{i}^{0}=W_{i}^{0} \tag{2.1a}\\
& K_{i j}^{0} \Delta_{i}^{0}+K_{j}^{0} \Delta_{j}^{0}+K_{j k}^{0} \Delta_{k}^{0}+F \sigma_{j}^{0}=W_{j}^{0} \tag{2.1b}\\
& K_{k j}^{0} \Delta_{j}^{0}+K_{k}^{0} \Delta_{k}^{0}+F_{k}^{0}=W_{k}^{0} \tag{2.1c}
\end{align*}
$$

in which $K_{i j}^{0}$ is a typical segmental stiffness submatrix, the coefficients of which are the end stresses (stress resultants) induced at j due to respective unit displacements applied at i, and

$$
K_{j}^{0}=K_{j j, i}^{0}+K_{j j, k}^{0}, \text { etc. }
$$

$\Delta_{i}^{0}, \Delta_{j}^{0}, \Delta_{k}^{0}$ are deformation vector values such that

$$
\left\{\Delta_{j}^{0}\right\}=\left\{\delta_{j x}^{0}, \delta_{j y}^{0}, \theta_{j z}^{0}\right\}, \text { etc. }
$$

$F \sigma_{i}^{0}, F \sigma_{j}^{0}, F \sigma_{k}^{0}$ are the total fixed end stress vector values such that

$$
F \sigma_{j}^{0}=F \sigma_{j i}^{0}+F \sigma_{j k}^{0}
$$

and

$$
\left\{F \sigma_{j i}^{0}\right\}=\left\{F N_{j i x}^{0}, F N_{j i y}^{0}, F M_{j i z}^{0}\right\} \text { etc., due to loads. }
$$

$W_{i}^{0}, W_{j}^{0}, W_{k}^{0}$ are applied joint load vector values such that

$$
w_{j}^{0}=w_{j i}^{0}+w_{j k}^{0}
$$

and

$$
\left\{W_{j i}^{0}\right\}=\left\{P_{j i x}^{0}, P_{j i y}^{0}, Q_{j i z}^{0}\right\}
$$

From Equation (2.1b) , Δ_{j}^{0} is solved for in terms of the remaining matrices.

$$
\begin{equation*}
\Delta_{j}^{0}=-K_{j}^{0}-1\left\{K_{j i}^{0} \Delta_{i}^{0}+K_{j k}^{0} \Delta_{k}^{0}+F_{j}^{0}-W_{j}^{0}\right\} \tag{2.2a}
\end{equation*}
$$

Δ_{j}^{0} is now eliminated from Equations (2.1a) and (2.1c) by substituting for it.

$$
\begin{align*}
K_{i}^{0} \Delta_{i}^{0} & +K_{i j}^{0}\left\{-K_{j}^{0}\right)-1 \\
& \left.\left.+K_{j i}^{0} \Delta_{i}^{0}=W_{i}^{0}+K_{j k}^{0} \Delta_{k}^{0}+F \sigma_{j}^{0}-W_{j}^{0}\right)\right\} \tag{2.2b}\\
& \left.K_{k j}^{0}\left\{-K_{j}^{0}\right)-1\left(K_{j i}^{0} \Delta_{i}^{0}+K_{j k}^{0} \Delta_{k}^{0}+F \sigma_{j}^{0}-W_{j}^{0}\right)\right\}+K_{k}^{0} \Delta_{k}^{o} \\
& +F \sigma_{k}^{0}=W_{k}^{0} \tag{2.2c}
\end{align*}
$$

These equations can be rearranged and written as

$$
\begin{align*}
& \left.\left.k_{i}^{0}\right) G \Delta_{i}^{0}+k_{i k}^{0}\right) G \Delta_{k}^{0}+F_{\sigma_{i}^{0}}^{0} G=W_{i}^{0} \tag{2.3a}\\
& \left.K_{k i}^{0) G} \Delta_{i}^{0}+K_{k}^{0}\right) G \Delta_{k}^{0}+F_{\sigma_{k}^{0}}^{0} G=W_{k}^{0} \tag{2.3b}
\end{align*}
$$

in which

$$
\begin{align*}
& \left.K_{i}^{0}\right) G=K_{i}^{0}-K_{i j}^{0} K_{j}^{0}-1 K_{j i}^{0} \tag{2.3c}\\
& K_{i k}^{0} G=-K_{i j}^{0} K_{j}^{0}-1 K_{j k}^{0} \tag{2.3d}\\
& K_{k i}^{0) G}=-K_{k j}^{0} K_{j}^{0}-1 K_{j i}^{0} \tag{2.3e}\\
& K_{k}^{0) G}=K_{k}^{0}-K_{k j}^{0} K_{j}^{0}-1 K_{j k}^{0} \tag{2.3f}
\end{align*}
$$

are the group stiffnesses (end stiffnesses of the bar ijk, acting as a single unit) and

$$
\begin{equation*}
\left.\left.F \sigma_{i}^{0}\right) G=F \sigma_{i}^{0}-K_{i j}^{0} K_{j}^{0}\right)-1\left\{F \sigma_{j}^{0}-W_{j}^{0}\right\} \tag{2.3~g}
\end{equation*}
$$

$$
\begin{equation*}
\left.F \sigma_{k}^{0}\right) G=F \sigma_{k}^{0}-K_{k j}^{0} K_{j}^{0)-1}\left\{F \sigma_{j}^{0}-W_{j}^{0}\right\} \tag{2.3h}
\end{equation*}
$$

are the group fixed end stress vectors.
Equations (2.1a) through (2.1c) have thus been modified as if there is a single bar "ik". The next bar "kl" is joined at k as shown in Figure 1(c), and the equilibrium equations are set up for joint i, k and 1 in the equivalent frame ikl.

$$
\begin{align*}
& \left.\left.K_{i}^{0}\right) G \Delta_{i}^{0}+K_{i k}^{0) G} \Delta_{k}^{0}+F \sigma_{i}^{0}\right) G=W_{i} \tag{2.4a}\\
& K_{k i}^{0} G \Delta_{i}^{0}+\Sigma K_{k}^{0} \Delta_{k}^{0}+K_{k 1}^{0} \Delta_{1}^{0}+\Sigma F \sigma_{k}^{0}=W_{k}^{0} \tag{2.4b}\\
& K_{1 k}^{0} \Delta_{k}^{0}+K_{1}^{0} \Delta_{1}^{0}+F \sigma_{1}^{0}=W_{1}^{0} \tag{2.4c}
\end{align*}
$$

in which

$$
\left.\Sigma K_{k}^{0}=K_{k}^{o}\right) G+K_{k k, 1}^{0}
$$

and

$$
\left.\Sigma F \sigma_{k}^{0}=F \sigma_{k}^{0}\right) G+F \sigma_{k k, 1}^{0}
$$

The new group stiffnesses for the group ijkl obtained by eliminating joint k can be written by comparison with Equations (2.3a) and (2.3b).

$$
\begin{align*}
& \left.K_{i}^{0} G^{\prime} \Delta_{i}^{0}+K_{i 1}^{0}\right) G \Delta_{1}^{0}+F \sigma_{i}^{0} G^{\prime}=W_{i}^{0} \tag{2.5a}\\
& \left.\left.K_{1 i}^{0) G} \Delta_{i}^{0}+K_{1}^{0}\right) G \Delta_{1}^{0}+F \sigma_{1}^{0}\right) G=W_{1}^{0} \tag{2.5b}
\end{align*}
$$

where

$$
\begin{aligned}
& \left.\left.\left.K_{i}^{0} G^{\prime}=K_{i}^{0}\right) G-K_{i k}^{0) G} K_{k}^{0}\right) G-1 K_{k i}^{0}\right) \\
& K_{i 1}^{0} G=-K_{i k}^{0} G K_{k}^{0}(G)-1 K_{k 1}^{0} \\
& \left.K_{1 i}^{0) G}=-K_{1 k}^{0}\right) G K_{k}^{0}(G)-1 K_{k i}^{0) G}
\end{aligned}
$$

$$
K_{1}^{0) G}=K_{1}^{0}-K_{1 k}^{0} K_{k}^{0) G}-1 K_{k 1}^{0}
$$

are the new group stiffnesses at i and 1 of the bar $i j k 1$, and

$$
\begin{aligned}
& \left.\left.\left.F \sigma_{i}^{0} G^{\prime}=F \sigma_{i}^{0}\right) G-K_{i k}^{0}\right) G K_{k}^{0}\right) G-1\left\{F \sigma_{k}^{0}-W_{k}^{0}\right\} \\
& \left.F \sigma_{1}^{0}\right) G=F \sigma_{1}^{0}-K_{1 k}^{0} K_{k}^{0}(G)-1\left\{F \sigma_{k}^{0}-W_{k}^{0}\right\}
\end{aligned}
$$

are the new group fixed end stress vectors at i and 1 of the bar $i j k l$ in which

$$
K_{k}^{0) G)-1} \equiv\left\{K_{k}^{0) G}+K_{k k, l}^{0}\right\}^{-1}
$$

In the same manner the joint 1 can also be eliminated from the bar system ijklm, i.e., the equivalent bar system ilm, and final force deformation relation at i and m of the system $i j k 1 m$ (Figure $1(d)$) can be written as

$$
\begin{align*}
& \left.k_{i}^{0} G^{\prime \prime} \Delta_{i}^{0}+k_{i m}^{0}\right) G \Delta_{m}^{0}+F_{i}^{0}\left(G^{\prime \prime}=W_{i}^{0}\right. \tag{2.6a}\\
& \left.\left.K_{m i}^{0) G} \Delta_{i}^{0}+k_{m}^{0}\right) G \Delta_{m}^{0}+F_{m}^{0}\right) G=W_{m}^{0} \tag{2.6b}
\end{align*}
$$

where the matrices $K_{i}^{0)} G^{\prime \prime}, K_{i m}^{0) G}, K_{m i}^{0)} G$ and $K_{m}^{0) G}$ are the group stiffness matrices, and $\left.F \sigma_{i}{ }^{0} G^{\prime \prime}, F \sigma_{m}{ }^{0}\right) G$ are group fixed end stress vectors, all being related to the joints i and m only, when the joints j, k and 1 are free to displace.

Development of the Computer Program

The development of group stiffnesses and load functions for a single branch group such as a polygonal shape frame described earlier in this chapter has been programmed for numerical computation on a digital computer. The program No. 1 has been written in FORTRAN language and tested on the IBM 360-65 model.

The program generates the group stiffnesses and load functions. The results are printed in appropriate matrix form with proper headings. Two illustrative examples have been solved and the results were compared with the values given in reference (1).

The steps involved in the program are shown in Figure 2 as a flow chart.

Figure 2. Flow Chart of Computer Program No. 1

CHAPTER III

MULTI-BRANCH GROUP

Theory

The technique of eliminating some unknowns and developing the stiffness matrix in terms of stresses due to certain unit displacements of the system leads to the generalized group stiffness matrix concept. It can best be illustrated by an example, such as the geodesic dome shown in Figure 3. Such complex frames and trusses are classified as multi-branch systems and their analysis can also be performed by developing group stiffnesses and group load functions. In this approach the system is conveniently partitioned into regions or substructures. A substructure can be defined as a structure restrained at the joints that are common to adjacent substructures and that connect the various substructures together. Once the substructures for a structural system have been defined, each substructure is treated independently for the loads applied within that region of the substructure and for the possible joint deformations. All the interior joints of each substructure are eliminated from calculations by using the technique discussed earlier in Chapter II. All substructures are then connected together at the boundaries by using the group stiffnesses and group load functions. The development of group stiffnesses and group load functions for a typical substructure in a multi-branch system is as follows.

Figure 3. Geodesic Dome 150' Diameter, 45' Height

The equations of equilibrium at all joints with (any) degrees of freedom can be arranged in the following matrix form.

$$
\left[\begin{array}{lll}
K_{L}^{0} & K_{L M}^{0} & K_{L R}^{0} \tag{3.1}\\
K_{M L}^{0} & K_{M}^{0} & K_{M R}^{0} \\
K_{R L}^{0} & K_{R M}^{0} & K_{R}^{0}
\end{array}\right]\left[\begin{array}{c}
\Delta_{L}^{0} \\
\Delta_{M}^{0} \\
\Delta_{R}^{0}
\end{array}\right]+\left[\begin{array}{c}
F_{\sigma}^{0} \\
F_{L}^{0} \\
F_{M}^{0} \\
R
\end{array}\right]=\left[\begin{array}{c}
W_{L}^{0} \\
W_{M}^{0} \\
W_{R}^{0}
\end{array}\right]
$$

in which (see Figure 4) Δ_{L}^{0} and Δ_{R}^{0} are the deformation vector values at joints on the left and the right boundaries, respectively, such that

$$
\left\{\Delta_{L}^{0}\right\}=\left\{\Delta_{1}^{0}, \Delta_{2}^{0}, \cdots, \Delta_{5}^{0}\right\} ;
$$

Δ_{M}^{0} is the deformation vector of the interior joints such that

$$
\left\{\Delta_{M}^{0}\right\}=\left\{\Delta_{6}^{0}, \Delta_{7}^{0}, \ldots, \Delta_{17}^{0}\right\} ;
$$

$K_{L M}^{0}$ is a typical stiffness submatrix, the coefficients of which are stress influence values at joints on the left (L) boundary due to unit deformation at interior joints $(M) ; F \sigma_{L}^{0}, F \sigma_{M}^{0}, F \sigma_{R}^{0}$ are the fixed end stress vector values such that

$$
\left\{F_{L}^{0}\right\}=\left\{F_{\sigma}^{0}, F_{2}^{0}, \ldots, F_{5}^{0}\right\} ;
$$

and $W_{L}^{0}, W_{M}^{0}, W_{R}^{0}$ are the applied joint load vector values such that

$$
\left\{W_{L}^{0}\right\}=\left\{W_{1}^{0}, W_{2}^{0}, \cdots, W_{5}^{0}\right\}
$$

In Equation (3.1) Δ_{M}^{0} corresponds to interior joints to be eliminated. Following a procedure similar to the one used in Chapter II,

$$
\begin{equation*}
\left.\Delta_{M}^{0}=-K_{M}^{0}\right)-1\left\{K_{M L}^{0} \Delta_{L}^{0}+K_{M R}^{0} \Delta_{R}^{0}+F \sigma_{M}^{0}-W_{M}^{0}\right\} \tag{3.2}
\end{equation*}
$$

Δ_{M}^{0} can now be eliminated from the first and the third rows of matrix Equation (3.1) by substituting for it and the results rearranged as follows:

$$
\begin{align*}
& K_{L}^{0) G} \Delta_{L}^{0}+K_{L R}^{0) G} \Delta_{R}^{0}+F \sigma_{L}^{0} G=W_{L}^{0} \tag{3.3}\\
& \left.K_{R L}^{0) G} \Delta_{L}^{0}+K_{R}^{0) G} \Delta_{R}^{0}+F \sigma_{R}^{0}\right) G=W_{R}^{0} \tag{3.4}
\end{align*}
$$

in which

$$
\begin{align*}
& \left.K_{L}^{0}\right) G=K_{L}^{0}-K_{L M}^{0} K_{M}^{0}-1 K_{M L}^{0} \tag{3.5a}\\
& K_{L R}^{0) G}=K_{L R}^{0}-K_{L M}^{0} K_{M}^{0}-1 K_{M R}^{0} \tag{3.5b}\\
& \left.K_{R L}^{0}\right) G=K_{R L}^{0}-K_{R M}^{0} K_{M}^{0}-1 K_{M L}^{0} \tag{3.5c}\\
& \left.K_{R}^{0}\right) G=K_{R}^{0}-K_{R M}^{0} K_{M}^{0}-1 K_{M R}^{0} \tag{3.5d}
\end{align*}
$$

are the multi-branch group stiffness matrices, and

$$
\begin{align*}
& F_{L}^{0} L^{\prime} G=F \sigma_{L}^{0}-K_{L M}^{0} K_{M}^{0}-1\left(F \sigma_{M}^{0}-W_{M}^{0}\right) \tag{3.6a}\\
& \left.F \sigma_{R}^{0}\right) G=F \sigma_{R}^{0}-K_{R M}^{0} K_{M}^{0}-1\left(F \sigma_{M}^{0}-W_{M}^{0}\right) \tag{3.6b}
\end{align*}
$$

are the multi-branch group fixed end stress vectors due to loads or other causes.

These modified functions are used to relate the interaction with adjacent substructures at the connection joints.

The given system can now be solved by setting up the system equilibrium stiffness matrix equation for just the joints at the boundaries of the substructures. Having found the boundary joint deformations, the deformations at interior joints of each substructure can be found by using Equation (3.2). Finally, all member end actions and support reactions are computed from member force-deformation relationship.

Development of the Computer Program

The elimination procedure of interior joints and the development of multi-branch group stiffnesses and group load functions described earlier in this chapter can be programmed for solution on a digital computer. Obviously there is an infinite variety of complex structures that can be classified as multi-branch systems. Therefore, no attempt is made to write a completely general program. However, a program is written to analyze a geodesic truss dome such as the one shown in Figure 3, by using substructures. The program generates the group stiffnesses and group load functions for one of the six identical substructures of the geodesic truss dome, Figure 4. The system equilibrium matrix equation is solved for the boundary joints of all substructures. The interior joints, member forces and support reactions are then computed. Various steps involved in the program are presented in the flow chart, Figure 5.

The computer program No. 2 has been written in FORTRAN language and tested on IBM 360-65 model operated by the Ok1ahoma State University Computer Center.

Figure 4. A Typical Substructure of the Dome

Figure 5. Flow Chart of Computer Program No. 2

Figure 5. (Continued)

CHAPTER IV

ILLUSTRATIVE EXAMPLES

Three numerical examples are presented to illustrate the technique of working with substructures and the development of group stiffnesses and group load functions.

The first two examples demonstrate the application to single branch structures.

Example 1

A two bar system of constant cross section shown in Figure 6 is considered. It is desired to verify the group end stiffnesses and group fixed end stresses obtained by the procedure outlined in Chapter II.

It is assumed that,

$$
\begin{aligned}
& E I=290,000 k-f t^{2} \\
& E A=1,073,000.00 \mathrm{k} .
\end{aligned}
$$

Member stiffness matrix for each bar in its local axes is

$$
K=\left[\begin{array}{cccccc}
53650 & 0 & 0 & -53650 & 0 & 0 \\
0 & 435 & 4350 & 0 & -435 & 4350 \\
0 & 4350 & 58000 & 0 & -4350 & 29000 \\
-53650 & 0 & 0 & 53650 & 0 & 0 \\
0 & -435 & -4350 & 0 & 435 & -4350 \\
0 & 4350 & 29000 & 0 & -4350 & 58000
\end{array}\right]
$$

Figure 6. Two-Bar System, Symmetrical Bent Bar

Also the fixed end stress vectors in local axes are

$$
\begin{aligned}
& { }^{F \sigma_{\mathrm{Li}}^{0}}=(0.0,4.33,12.52) \\
& \mathrm{Fo}_{\mathrm{iL}}^{0}=(0.0,4.33,-12.52) \\
& \mathrm{Fo}_{\mathrm{iR}}^{0}=(-2.5,0.0,-6.25) \\
& \mathrm{Fo}_{\mathrm{Ri}}^{0}=(-2.5,0.0,6.25) .
\end{aligned}
$$

The group stiffness and group load functions obtained by using these data in Computer Program No. 1 (Appendix) are given in Table I.

The results are checked out and compare very well with those computed from Tables 10-8 and 10-9 of Tuma and Munshi (1), which are presented in Table II.

Example 2

The elastic properties (end stiffnesses) and load functions (fixed end stresses) for a circular constant section bar are to be computed. To illustrate the application of the program developed in Chapter II, this bar is replaced by a polygonal bar consisting of the chord lengths connecting points located at $1 / 10$ the total length along the curve, Figure 7.

The same values of EI and EA as used in Example 1 are also used for this 10-bar system.

The segmental stiffness matrix in member axes for a typical bar is as shown below.

TABLE I
EXAMPLE 1, RESULTS FROM COMPUTER PROGRAM NO. 1

Left End			Right End		
869.8	0.0	-4348.9	-869.8	0.0	4348.9
0.0	72.5	1255.7	0.0	-72.5	1255.7
-4348.9	1255.7	50744.6	-4348.9	-1255.7	-7244.9
-869.8	0.0	4348.9	869.8	0.0	-4348.9
0.0	-72.5	-1255.7	0.0	72.5	-1255.7
4348.9	1255.7	-7244.9	-4348.9	-1255.7	50744.6
${ }^{\mathrm{FO}_{\mathrm{L}}{ }_{\mathrm{O}}{ }^{-} \mathrm{G}}$	$\{2.5,6.6$		$\left.\mathrm{F}_{\mathrm{o}}{ }_{\mathrm{R}}\right)^{\text {(G)}}$	$7.5,2 .$	$10.9\}$

TABLE II
EXAMPLE 1, RESULTS FROM REFERENCE (1)

Left End			Right End		
870.0	0.0	-4350.0	-870.0	0.0	4350.0
0.0	72.5	1255.8	0.0	-72.5	1255.8
-4350.0	1255.8	50750.0	4350.0	-1255.8	-7250.0
-870.0	0.0	4350.0	870.0	0.0	-4350.0
0.0	-72.5	-1255.8	0.0	72.5	-1255.8
4350.0	1255.8	-7250.0	-4350.0	-1255.8	50750.0
$\left.\mathrm{Fo}_{\mathrm{L}}^{0}\right)_{\mathrm{G}}=\{2.5,6.6,17.2\}$			$\left.F \sigma_{R}^{0}\right)^{\prime}$	$7.5,2$	$0.9\}$

Figure 7. Ten-Bar System, Symmetrical Circular Bar

$$
K=\left[\begin{array}{cccccc}
6837880 & 0 & 0 & -6837880 & 0 & 0 \\
0 & 901 & 7066 & 0 & -901 & 7066 \\
0 & 7066 & 73923 & 0 & -7066 & 36962 \\
-6837880 & 0 & 0 & 6837880 & 0 & 0 \\
0 & -901 & -7066 & 0 & 901 & -7066 \\
0 & 7066 & 36962 & 0 & -7066 & 73923
\end{array}\right]
$$

Fixed end stress vectors for bar No. 4 are as follows:

$$
\begin{aligned}
& \mathrm{F}_{45}^{0}=(0.0,5.0,18.64) \\
& \mathrm{F}_{54}^{0}=(0.0,5.0,-18.64)
\end{aligned}
$$

The group stiffness matrix and group load functions are generated using Computer Program No. 1 (Appendix).

Table III shows these values which can be compared with the corresponding values computed from Tables 10-12 and 10-14 of Tuma and Munshi (1), shown in Table IV.

Example 3

A geodesic dome of base diameter 150 ft . and 45 ft . high (as shown in plan view in Figure 3) is analyzed by Computer Program No.2. The dome structure is considered as a space truss and it consists of six identical substructures. All the joints at the base are assumed to be pinned end supports. Group stiffnesses and group load functions for a typical substructure are developed by using equations derived in Chapter III.

The dome is analyzed for a uniform gravity load of $1 \mathrm{k} / \mathrm{sft}$ on the actual area. Figure 8 shows a substructure with joint loads computed from respective tributary areas.

TABLE III
EXAMPLE 2, RESULTS FROM COMPUTER PROGRAM NO. 1

	Group Stiffnesses						Group Fixed End Stresses
	GLLR			GLR			Left End
	1	2	3	1	2	3	1
1	23.971302	0.000000	-458.714308	-23.971302	0.000000	458.714309	9.127295
2	0.000000	1.021301	72.217742	-0.000000	-1.021301	72.217742	7.318540
3	-458.714308	72.217742	15732.646697	458.714311	-72.217744	-5519.398024	23.042503
		GRL			GRRL		Right End
	1	2	3	1	2	3	1
1	-23.971302	-0.000000	458.714309	23.971299	0.000002	-458.714303	-9.127295
2	0.000000	-1.021301	-72.217742	0.000000	1.021301	-72.217742	2.681460
3	458.714309	72.217742	-5519.398023	-458.714294	-72.217751	15732.646664	72.123942

TABLE IV
EXAMPLE 2, RESULTS FROM REFERENCE (1)

Left End			Right End		
23.9	0	-461.09	-23.90	0	461.09
0	1.02	71.85	0	-1.02	71.85
-461.09	71.85	15835.75	461.09	-71.85	-5674.28
-23.9	0	461.09	23.90	0	-461.09
0	-1.02	-71.85	0	1.02	-71.85
461.09	71.85	-5674.28	-461.09	-71.85	15835.75
$F \sigma_{L}^{0) G}=\{9.08,7.31,20.72\}$			$\left.F \sigma_{R}^{0}\right) \mathrm{G}=\{-9.08,2.69,71.43\}$		

Figure 8. Substructure I of the Dome Shown in Figure 2

The system stiffness matrix is constructed by superposition of all transformed substructure group stiffness matrices. Fixed end stress vector is set up by the superposition of transformed group load functions of each substructure. The applied joint load vector is also set up by the superposition of all connecting joint loads with proper transformation. The system equilibrium matrix equation is written for those joints which are connecting adjacent substructures as shown in Figure 9. The unknown joint deformation vector is obtained by solving the system equilibrium matrix equation. The known deformations of each substructure are substituted in Equation (3.2), for solving for interior joint deformations. Finally, all member forces and reactions are computed by using the member force-deformation relationship.

All substructure boundary joint deformations are presented in Table V and the interior joint deformations of the substructure I are shown in Table VI. The final member stresses in a typical substructure are summarized in Table VII and the support reactions in Table VIII. The results are checked out and compared by solving the dome using STRUDL II.

Figure 9. Substructure Boundary Joints

TABLE V
SUBSTRUCTURE BOUNDARY JOINT DEFORMATIONS, FIGURE 7

Joint Number	X-Disp.	Y-Disp.	Z-Disp.
1	0.000000	-0.000000	-0.216258
2	-0.031746	-0.000000	-0.261964
3	-0.057029	-0.000000	-0.216807
4	-0.070657	0.000000	-0.159325
5	-0.014584	0.000000	-0.042307
6	-0.015873	-0.027493	-0.261964
7	-0.028514	-0.049388	-0.216807
8	-0.035328	-0.061190	-0.159325
9	-0.007292	-0.012630	-0.042307
10	0.015873	-0.027493	-0.261964
11	0.028514	-0.049388	-0.216807
12	0.035328	-0.061190	-0.159325
13	0.007292	-0.012630	-0.042307
14	0.031746	-0.000000	-0.261964
15	0.057029	-0.000000	-0.216807
16	0.070657	-0.000000	-0.159325
17	0.014584	-0.000000	-0.042307
18	0.015873	0.027493	-0.261964
19	0.028514	0.049388	-0.216807
20	0.035328	0.061190	-0.159325
21	0.007292	0.012630	-0.042307
22	-0.015873	0.027493	-0.261964
23	-0.028514	0.049388	-0.216807
24	-0.035328	0.061790	-0.159325
25	-0.007292	0.012630	-0.042307

TABLE VI

INTERIOR JOINT DEFORMATIONS OF SUBSTRUCTURE I, FIGURE 6

Joint Number	X-Disp.	Y-Disp.	Z-Disp.
6	0.034448	0.009763	-0.021846
7	0.046401	0.026790	-0.009544
8	0.025679	0.024951	-0.021846
9	-0.016904	-0.015073	-0.140511
10	-0.021505	-0.007103	-0.140511
11	-0.034995	-0.020205	-0.236507

TABLE VII
FINAL MEMBER STRESSES IN SUBSTRUCTURE I, FIGURE 6

Member Number	From Joint	To Joint	Axial Force	Member Number	From Joint	To Joint	Axial Force
1	2	1	-435.5762185	23	8	15	58.2736876
2	3	2	-627.3663875	24	15	14	-647.1357546
3	4	3	-674.9366381	25	8	14	-211.9581489
4	5	4	-647.1357546	26	8	9	-590.4985033
5	21	5	-437.8402026	27	7	9	-425.8343988
6	21	20	0.0000000	28	7	10	-425.8343988
7	20	19	0.0000000	29	6	10	-590.4985033
8	19	18	0.0000000	30	6	4	-211.9581489
9	18	17	0.0000000	31	4	10	-261.2757901
10	17	16	0.0000000	32	10	9	-154.8369822
11	16	15	-437.8402026	33	9	14	-261.2757901
12	17	15	-281.5501713	34	14	13	-674.9366381
13	17	8	-596.6250395	35	9	13	-213.3368859
14	18	8	-443.5447351	36	9	11	-516.2025175
15	18	7	-520.7355366	37	10	11	-516.2025175
16	19	7	-520.7355366	38	10	3	-213.3368859
17	19	6	-443.5447351	39	3	11	-410.3527044
18	20	6	-596.6250395	40	11	13	-410.3527044
19	20	5	-281.5501713	41	13	12	-627.3663875
20	5	6	58.2736876	42	11	12	-323.0359605
21	6	7	198.2170523	43	11	2	-323.0359605
22	7	8	198.2170523	44	2	12	-522.3295297
				45	12	1	-435.5762185
1	20						

TABLE VIII

SUPPORT REACTIONS FOR SUBSTRUCTURE I, FIGURE 6

Support Number	X-Force	Y-Force	Z-Force
16	-123.253118	-213.480663	361.854554
17	-356.654799	-315.889647	665.813964
18	-433.581653	-275.682385	714.758759
19	-455.538775	-237.651533	714.758759
20	-451.895859	-150.927293	665.813964
21	-246.506236	-0.000000	361.854554

CHAPTER V

SUMMARY AND CONCLUSIONS

Summary

The application of group stiffnesses for analyzing single branch systems (polygonal shape frames) and multi-branch systems (complex frames and trusses) is investigated in this study. Group end stiffnesses of a polygonal bar system is established by taking two examples of single branch systems. A two bar system of constant cross section is considered to develop and verify the group end stiffnesses and group fixed end stresses. Another example of a single branch system considered is a circular constant section bar. To illustrate the application of group stiffnesses, this bar is replaced by a polygonal bar consisting of the chord lengths connecting points located at $1 / 10$ the total length along the curve. A computer program No. 1 (Appendix) is developed to compute the end stiffnesses as well as fixed end stress resultants of a planar polygonal bar. An attempt is also made to work with substructures in the case of multi-branch systems. A geodesic dome structure with six identical substructures is analyzed as a space truss dome. The group stiffnesses and group fixed end stresses are developed for a typical substructure and the same were used with proper axes transformation to synthesize the whole dome structure. The computer program No. 2 (Appendix) is written which accomplishes this and analyzes the dome and prints
out the final joint deformations, member forces and support reactions. The same truss dome is also analyzed by using STRUDL II to verify the results of the computer program No. 2.

Conclusions

The investigation of the extension of the application of group stiffnesses to the illustrative examples showed that the concept of group stiffnesses and group fixed end stresses can be applied to plane and space structures with appreciable accuracy. Further, that it is easy and convenient to work with substructures by developing group stiffnesses and group fixed end stresses when the structural system has repetitive geometry. The first computer program can be easily modified to be suitable for a three dimensional, single branch system.
(1) Tuma, J. J. and R. K. Munshi. "Advanced Structural Analysis." Schaum's Outline Series. New York: McGraw-Hill Book Company, 1971.
(2) Weaver, W., Jr. Computer Programs for Structural Analysis. Princeton, N. J.: D. Van Nostrand Co., Inc., 1967.
(3) Beaufait, F. W., et al. Computer Methods of Structural Analysis. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1970.
(4) Wang, C. K. Matrix Methods of Structural Analysis. Scranton, Pa.: International Text Book Co., 1970.
(5) Przemieniecki, J. S. "Matrix Structural Analysis of Substructures." AIAA Journal, Vol. 1, No. 1 (January 1963), 258-261.
(6) Rubinstein, M. F. Matrix Computer Analysis of Structures. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1966.
(7) Meek, J. L. Matrix Structural Analysis. New York: McGraw-Hill Book Company, 1971.
(8) Jamal, J. Azar. Matrix Structural Analysis. New York: Pergamon Press, Inc., 1972.

APPENDIX

LISTING OF COMPUTER PROGRAMS
* ${ }^{*}$ Program \# 1
single branch group stiffnesses and grdup lead functigns
LANGUAGE USED : FORTRAN IV

description of pragram
THIS PROGRAM DEVELDPS GROUP STIFFVESSES AVO
GROUP LOAD FUNCTION OF SINGLE BRANCH PULYGONA-
SHAPE FRAME MAJE UP JF STRAIGHT 8ARS OF CONSTANT
(CHAPTERIV) WERE SOLVED WITH THIS PROGRAM.
IMPLICIT REAL * B (A-H,O-Z)
OIMENS ION TITLE 110$)$

DIMENSION $T 1(3,3), T 2(3,3), T 3(3,3), T 4(3,3), T 5(3,1), T 613,1$
1 FORMAT $10 \times, 15$,

FORMAT \{ 4 F10.5, $\}$
format 111, lox, thar *', $15,1 / 1,17 x$; LE NGTH
10X,' EI :, 10x," THETA $, 1 /, 10 x, 4(F 12.1,5 \times 1$
30 FORMAT $(6 F 3.4,6 F 5.2)$
110 FORMAT 11 HI
120 FORMAT $1 / 1 / 1 / 40 \mathrm{x}, 17$ HGROUP STIFFNESSES , $/ 1 / / 1$
30 FORMAT $(35 x, 4 H G L L R, 45 X, 3 H G L R, 1 / 1$,

153 FCRMAT $/ / / /, 35 \mathrm{X}, 4 \mathrm{H}$ GRL, $45 \mathrm{X}, 4 \mathrm{HGRRL}, / /$


```
\(\stackrel{c}{c}\)
```



```
* * a number gf proslems
        READ 1, npralm
        035000 NUM \(=1\), NRRBLM
    PRINT 1 1to
        PRINT 10, TITLE
C
C
C \(\mathrm{H}^{*} * * * * * * * * * * * * * *\)
```



```
    REAN 20, XL: EA, EI, ThFTA
        \(E A=E A\)
\(M N=1\)
        PRINT 25, 4N, XL, EA, EI, THETA
```



```
    - (WRL(I), 1 ), \(i=1,31\)
```



```
        PRINT \(8, ~\)
PRINT 9 ;
FLRLR
        CALL STIFF (XL, EA, EI, THETA,SLLR,SLR,SRRL, SRL)
C
\(\mathrm{c} * * * * * * * * * * * * * * * * * * * *\)
C * \(-\ldots\) REAO PROPERTIES DF NEXT BAR
SO REAO 20, XL, EA, EI, THETA
    IF (XL) \(100,100,55\)
```



```
        (wxa(1,1), \(1=1,3.1\)
            \(M N=M N+1\)
\(E A=E A * 100.0\)
            PRINT 25 , MN, XL , EA, EI, THETA
        PRINT \({ }^{2}\) PRINT FSRXIIII) \(1=1,3\)
        PRIVI 8, ( \(\operatorname{FSR} \times(1,1), 1=1,3\) ), ( \(\operatorname{FSXR}(1,1), 1=1,3\) )
        PRINT 9, , \((W R X(1,1), 1=1,3),(\operatorname{WXRR}(1,1), 1=1,3)\)
```



```
c * * * * * * * * * * * * * * * * *
```


CALL GRPSTF (SLLR,SLR,SRRL,SRL,SRRX,SRX,SXXR,SXR,
FSLR,FSKL,FSRX,FSXR,WLR,WRL,WRX,WXR, T1, T2, T3,T4,T5,T6


```
    1CO PRINT 110
    PRINT 120
    PRINT 130
    OD 135 I=1,3 (SLLR{I,N),J=1,3),(SLRII,J),J=1,3)
    PRINT 150
    152 PRINT. 140, (i,(SFL(I,J),J=1,3),(SRRLII,J),J=1,3)
        PRINT 153
    154 PRINT 155, I, FSLRII,1)
    PQINT 160,
    165 PRINT 170, I,FSRL(I,1)
    OCO CONTINUE
        PRINT
    STOP
C
C*********************************************
Clol
    SURRCUTINE STIFF (XL,EA,EI,THETA,SAAB,SAB,SBBA,SBA)
    IMPLICIT REAL * & (A-H,O-2)
    DIMENSION SAABI3,3),SAB(3,3),SBBA1 3, 3),SBA(3,3),W( 3,3),WT(3,3)
c -.--
DIMENSION X(3,3)
            INITIALIE
            CALL ZERO (SAAB,3,3)
            ALL ZERO (SBBA, 3,3)
            CALL ZERO (SBA, 3,3)
            CALL ZERO ( W,3,3)
            CALL ZERO ( }\textrm{X},3,3,3
SAAB(1,1) = EA/ XL
SAAB(2,2)=112.0*E1)/(xL**3
SAAB(2,3)=(6.0*EEI),(XL**2)
SAAB(3,2)=SAAB(2,3)
SAB(2,3)=(3)
SAB(2,2)= - SAAB(2,2
SAB(2,2)=- SAAB(2,2
SAB(2,2)=-SAAB(2,3)
SAB(3,3)=(2.0* * E1) /
SBBA(2,2)=SAAB(1,1)
SBBA(2,2)=SAAB(2,2)
SBBA(2,3)=-SAAB12,3)
```

THETA $=\mathrm{THF}_{4}=\operatorname{SAAB}(3$,

$n(1,2)=$ OSIM(THETA)
$w(2,1)=-w(1)$,
$w(2,2)=w(1,1)$
$w(3,3)=1.0$
CALL TRAN ($\mathrm{w}, \mathrm{WT}, 3,3$)
CALL LERO TSAAE,3,31
CALL ZFRE $(x, 3,3), 3,3)$
CALL MULT $(5 A B, n, x, 3,3)$
CALL LERO (SAB $, 3,31$
CALL MULT (WT, X, SAB, 3, 3)
CAlL TRAN $(S A B, S 3 A, 3, x)$
CALL 2 ERO $\{x, 3,3$
CALL MSLT (SUAA, $\mathrm{N}, \mathrm{X}, 3,3$
CALL MULT $2 F R O$ ($\mathrm{TS}, \mathrm{XBBA}, \mathrm{SBBA}, 3,31$
RETURN

SURRNUTINE GRPSTFISLLR,SLR,SRRL,SRL,SRRX,SRX,SXXR,SXR
FSLQ,FSRL,FSRX,FSXR,WLR,WRL, HR X,WXR, O1,D2,03,04,05,06
IMPLICIT REAL * 8 ($A-H, \mathrm{D}-1$ I
DIMENSION SLLR(3, $31, \operatorname{SL2}(3,3), \operatorname{SSRR}(3,3), \operatorname{SRL}(3,3), \operatorname{SR} \times(3,3), \operatorname{SXR}(3,3)$
$\operatorname{SXXR}(3,2), F S L R(3,1), \operatorname{SFSR}(3,1), F S X R(3,1), \operatorname{SinR}(3,1)$
MERSION 3 OSIR 3,3 , SSRRIC 3,3$),$ FSRLi 3 ,
IMENSION OSLR(3,3), SSRRI(3,3),FSRL(3,1),SRRX(3,3)
DIMENSICN FSRX(3,1) WRL 13,11 ; WRX $(3,1)$, NLR(3,1$), W X 2(3,1)$
DIMENSICN
FSRX
IMENSION
D $1(3,3)$, wRL
CALL ADSUB (SRRL,SRRX,SSRRI, $3,3,+11$
CALL $A D S U B$ (FSRL,FSRX,SFSR,3,1,+1)
CALL \triangle OSUB (WRL, WRX,SWR, $3,1,+11$
CALE INVERT (SSRRI, 3)
CALL ZEPO $(x, 3,31$
ALL LER $(x, 3, ?$
Call Lfza $(\mathrm{Q}, \mathrm{z}, \mathrm{l}$
CALL MULT OUPL ISLR,OSLR,3,3)
CALL MJLT SLLF,SSRRI, $X, 3,3$
CALL MJLT (X, SRL, $Y, 3,3$) $, 3,-1$)
CALL $Z E Q Q^{(S L L R, Y,}(x, 3,3)$
CALL $2 \in R O \quad(X, 3,3)$
CALL MULT (SLR,SSR2I, $X, 3,3$)
CALL LfRO (SLR,3,3)

CALL MULT $(x, \operatorname{Sex}, y, 3,3)$
CALL ADSUB (Y, $Y, 0,0,3,3,0)$
CALL ZCRD $(x, 3,3)$
CALL MULT $\operatorname{LERO}(Y, 3,3)$
CALL MULT(X,SRL,Y,3,3)
CALL ZERO $(S R L ; 3,3)$

$\begin{array}{ll}\text { CALL } & \text { ZERO } \\ \text { CALL } \\ \text { ZERO } & (x, 3,3) \\ (x, 3,3)\end{array}$
CALL MULT (SXR,SSRRI, $X, 3,3$)
CALL MULT ($X, S R X, Y, 3,3$)
CALL AOSUB (SXXR,Y, $04,3,3,-1$)
CALL AJSUB (SFSR, SWR,P,3,1,-1)
CALL MULT (OSLR, SSRRRI,Y,3,3)
CALL AJSUB (FSLR,Q, DS
CALL ZERO $(Y, 3,3$
CALL ZERO ($P, 3,1$)

CALL ADSUB (SFSR, SWR, P, 3,1,-
CALL MJLT (SXR,SSRRI,Y,3,3)
CALL MULT ($Y, P, Q, 3,1$
ALL ADSUB (FSXR, 2, , DG $, 3,1,-11$
RETURN RETUR
c
c
c

SUBROUTINE PRNT (x, M, N)
IMPLICIT REAL * B (A-H,J-Z) DIMENSION
$10 \quad \mathrm{t}=\mathrm{I}, \mathrm{M}$
DO $10 \quad \mathrm{t}=\mathrm{I}, \mathrm{M}$
10 PRINT 20, $1,(X(I, J), J=1, N)$
10x,11,5X,3(013.6,2X)
RETURN
END

```
*********************************
```

C SUBRDUTINE MULT TO MULTIPLY TWO MATRICES
C
C
$* * * * * * * * * * * * * * ~$
SUBROUTINE MULT ${ }^{*}(X, Y, Z, M, N)$
IMPLICIT REAL * 8 \& 1 A- $\mathrm{H}_{4} \mathrm{O}-\mathrm{Z}$)
OTMENSION $X(M, M), Y(M, N), Z(M, N)$
DO $100 \quad 1=1, M$
TEMP $=0.0$,
DO $50 \mathrm{KEMP}=\mathrm{KE}, \mathrm{MP}+\mathrm{X}(1, K) \geqslant Y(K, J)$
$802(1, \mathrm{~J})=$ TEM

100 continue

RETURN EMD.

```
C
```



```
TO CHANGE SIGNJS T) ADD(X+Y) JF SUZTRAET (X-Y) UR
C
    SUBRCUTINE AUSUB ( }X,Y,Z,M,N,ISIGN
        IMPLICIT REAL * 3 ( A-H,D-2)
        IMENSIJN X (M,N),Y(U,N),Z(Y,V)
        F(ISIGN) 10,40,70
    00 30 I=1,M
    20 2(I,J)& XII,J) - Y(I,N)
    30 CONTHES
    40 60 r0 100
    D0 50 J=1,N
    50 z(I,J)= -x(I,J)
    O0 CONTINUE
    G0 TO 100
    DO 90 I=1,M
    8J Z(I,J)=x(I,J)+Y(I,J)
    90 continue
c
c
    Subroutine tran (x,y,m,N)
        IMPLICIT RFAL * a, (A-H,O-Z )
        OIMENSIIN X(M,N),Y(N,M)
        00 20 {=1,M
    10 Y(J,1)= XIt,N)
        20 CONTINSE
        RETU
```



```
        MATRIX XIM XNNIZERDM
            SUBROUTINE LERC ( }x,4,N
            MPLICIT REAL * 8 ( A-H,O-Z
            IMENSION X(M,N)
            Do 10 I=I,M
    x(1,j) =0.0
10. Continue
```

```
        RE TURN
C
    SURROUTINE DUPL (X,Y,M,N)
        SMMLICIT REAL * 8,YA-H,O-Z 
        D0 10 I=1,M
        Y(1, J)=X(1,J)
    continue
        RETU
C C * * * * * * * *******************************
C
    SUBROUTINE INVERT (X,M)
    SUGMPINE INVERT (X,M)
    DIMENSION X(M,M)
    D0 80 I=1,M
    S=1,0/x(1,1)
    10 }X(1,J)=X = (I,M) #s 
    x(I,1) = s
    IF (J EEQ. I) GO TO so
    lim
    x(J,II=0.0
    0 X(J,K)=X(J,K)-S*X(I,K)
    60 continue
sentry
```


PROGRAM *

MULTIBRANCH GROUP STIFFNESSES AND group lead funct lins of a space tzuss

desiription of program :
this program develops grdup st iffnesses an u
GROUP LTAD FUNCTIONS OF EACH SUBSTRUCTURE AND
CONNECTS ALL SUBSTRJCTURES DF THE SPACE TRUSS.
CALCULATES JOINT DEFDRMATIONS OF CONNECTION NODES A AND SUPPCRT REACTIONS
the illustrative example \# 3 (chapteriv) has been solved with this prjgram.

INPJT PARAMETERS:

```
prgiblem title
PRGBLEM TITLE
NJ,' NMEM, NSPRTS , VIJF , NSUBRS (CONTKCL DATA)
mN, R, freta, z(JN) I JOINT CJORDiNATE DATA,
```

LN, IN LOADIVG NJMBE?
JN, FX, FY, FL (JOIMT STRESSFS

.
Implicir kEaL * 3 (A-H, O-Z

OMENSEGN TITLF RIJ
DIMENSIJN S(53,53), X(21), Y(21), Z(21), JOINTJ(45), JDINTK(45),

TEMPS(12,11,T=Mp si2t,1),

DIMENSISN RGFSR27: $:$ KK (27,27)

fogmat (luas,
5 FGRYAT (IHI)

2 z-CJORD.',N 11
, ,/1,S88H NJ.JTS. V2,MEMS. VJ.SUPars. YJ.1JE

43 Fonkat (10x,15,5x, 3F:0.6)

x-CJCRO. \quad z-COORD. \quad-CODRD. , 1

49 H MEM.NO. FRTM TO JT.

FOP'YAT (10X, 15)

-y-oisp. \quad z-jisp. $1,1 / i^{2 x}$ is.

FORMAT,, $1 /$;

FORYAT (///1,1JX, 1***** ERRJर *****', /)
READ \& ECHO TITLE
PRINT: TITLS

READ E ECHO CONTRDL DATA
EAO 20, NJT, NMEA, NSPKTS, NIJE,NSUBGS
REAO 20, NJT, NMEM, NSPRTS, NIJE,NSUBRS

$v=(N N+1) / 2$
$=3 *$ (NN $-N$
$N=3 * N$
$M=3 * N I$
$M=3 * N I$
$K=N+L$
JMS $=3 *$ (NSUBRS $*($ L/3 $)+1$)
$N P L=N+\frac{1}{N}$
READ \& ECHO JOINT CJDRDIVATE dATA PIOHRO $=$

$$
\begin{aligned}
& \text { PRINT } 25 \\
& \text { DO } 45 \text { I }
\end{aligned}
$$

$$
\begin{aligned}
& \text { READ } 40 ; \text { JN, R, THETA, 2(JW) } \\
& \text { PRINT SO, JN, R, THETA, 2(JN) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { THETAR }=\text { THETA } * P \text { PTHBO } \\
& \times(J N)=R * O C O S(T H E T A R)
\end{aligned}
$$

$$
\begin{aligned}
& X(J N)=R * \text { OCSNOTHETAR) } \\
& \text { Y(JN) }
\end{aligned}
$$

CONT inue
PRINT 5
DO $55 \mathrm{JN}=1$, VJT
PRINT 60, JN, XIJNI, Y(JN), Z(JN)
READ \& FGHO MEMBER DATA AND MEMBER PROPERTIES
$0065 \mathrm{I}=1$, NMEM
65 READ 70, MN, JCINTJIMN), JOINTK (MN), AEIMN) PRINT 5
DO 75 MN $=1$, NMEM
PRIVT MO,MN, JOINTJCMN), JOINTKIMNI, AE(MNI
set up suastructure stiffness matrix
initialize
CALL ZERO (SNNO,NO)
MEMBFR STIFFNESS MATRIX

JMN $=$ JOINTK $=$ JOIN
$D X=X(K M N)-X(J M N)$
$D Y=Y(K M N)-Y(J M N)$
$D L=Z(K M N)-Z(J M N$
$X_{L}=$ DSQRT $(D X * D X+O Y * D Y+D Z * D Z$)
$\mathrm{c}_{\mathrm{X}}=\mathrm{ox} / \mathrm{XL}$
$C Y=D Y / X L$
$C Z=D Z / X L$

```
AEGL = ME(MA)/XL
ACE MEMdFE STIFFN=S; YATQIX TO SUBSTRUETURE STIFF, vatoIX
MSHIFT = ** (JMV-!)
KSHIFT = * * (KM:N-1)
35 95 JJ = = 1, 3
J! = J5HIFT+'
J2=J5HIFT + JJ
K! = KSHIFT + JJ
K2 = KSHIFT + KK
S(Jl,J?)=S(J1,J2)+SM(JJ,kK)
S{K1,K2)=s(K1,K2)+SM(JJ+3,KK+3)
s(Ji,k2) = s(JI,K2) + su(JJ,kk+3)
comimu
continue
eliminatf interiok joints of the substructure
SUGSTRUE TUGE STIFF. MATRIX ( GRDUP STIFFNESSES ,
CALL GRPSTF I S,ND, L, M,N, GS, TEMP1, TEMP2,ST21,ST23,5321
SET UP JOINT STIFFNESS MATRIX
KM3 = K - 3
CALL LERC (SMJ,JMS,JMS)
CALL LERO (GTFMP,L,L1
CALL ADSM (SMJ,JMS,JMS,GS,K,K,!,1
NS = NSUBRS - 1
JSHIFT = 4
OO 190 I = 1 SHETA = NS
CALL ROTATE (GS, K, THETA,SG, RR )
CALL RMVSN: \SG,K,, K,TTEMP3, 3, 3, 1, 11
CALL \triangleOSM ( SNJ,J:AS,JMS
JSHIFT = JSHIFT+ +12
IF ' JSHIFY,FR.O4, GT TO 150
CALLL ADSMM ('SMJ,JMS,JMS,OTEMP1 KA3,KM3,KM3, JSHIFT, JSHHIFT,
CALL RMVSM (SG,KNK, SAVE1,3,24;,1, 4, JSHIFT,
CALL AOSM (SMS,JMS;JMS, SAVEI,3,24, 1, JSHIFT)
CALL TRAN: SAVE1, SAVEIT, 3, 24,',
```

```
c
        CALL RMVSM (SGG,K,', K, GTEMP, L, L, L, 4, 4, )
```



```
        CALL ADSM ; SMJ,JMS,JMS, GTEMP, L,L, 4,4
        CALL RMVSM ( SG,K,K, GTEMP,L,L, 4, 15)
        CALL ADSM ( SMJ,NMS,JMS, GTEMP,L,L,64, 4)
        CALL RMVSM ( SG,K,K, GTEMP,L,L, 15, 4,
        CALL RMVSM ( SG,K,K, SAVE2,3,12, 1,, 4,64
        CALL ADSM ( SMJ,JMS,JMS, SAVE2,3,12,1,64 1
        CALL TRAN ( SAVE2, SAVE2T, 3,'12,)
        CALL ADSM ( SMJ,JMS,JMS, SAVE2T,12,3,64,:
        GALL RMVSM (SG,K,K, SAVE2,3,12,1,1,!S,1
        CALL TRAN ( SAVEZ, SAVEZT, 3,12)
        CALL ADSM ( SMJ,JMS,JMS, SAVE2T,12,3,4,:1
        CONT INUS
            SYSTEM STIFFNESS MATRIX | SMJ.
        THETA = SIXTY SG, k, theta, sG,prg)
```

153

LOADING NUMBER
REAO 205, LN
IF I LN.EQ. 0 , GC TO 9993
READ 1, TITLE
PRINT 5
PRINT 210, LN
PRINT 10, TITLE

- READ JOINT STRESSES

CALL ZERO (VJST,JMS,
CALL
ZERO (VL,JMS,I)
$005001=1$, NSURRS
INITIALILE
CALL $2 E R O$ ($F S$, NO, 1)

JROW $=3$, $*$ IJN -1 ;
FS(JROM+1,1) $=F X$
FS(J2OW $+2,1)=F Y$
FS(JROWt 3,1) $=F$
CONTINUE
ECHO JCINT Stresses
initlalize
read applifo jutht luaos

REAU 4J, JN, WXX, NY, WZ
$* Z=-W Z$
JHOW $=3 \times(N-1)$
W(JKフW $+1,1$) $=W$ -
$n(J R 3 n+ว+1)=W Y$
$W(J R O W+3+1)=W Y$
contime
ECHi ApDLIEC JCINT loads
PRINT 125, I
PRINT 145
IN $=0$

CONTINUE NE. 1 : GOTO 300
INITIALIZE
CALL 2ERO (YY, M, 1
CALL
RFRO
CALL LERO ($C, N, 1$)
CALL RMYSM (FS, NO, 1, FSI,N,I,1,1)
CALL RMVSM IFS,ND,1,FS2,M,1,NP1,II
CALL ZMVSM FFS,VD, 1,FS3,L,1,NPMP1,11
CALL RMVSM (FS,VD, $1, F S 3, L, 1, N P M P 1$
CALL ADSUB (FSZ, H2,YY,M,1,-11)
CALL MULT (TEMPI,YY,C,N,M,11
CALL ADSUB (FSI,C,C,N,I,-1)

CALL ADSUB (FS $3, E, E, L, L,-1)$
CALL LERE (GFS,K,1)
c
c
c

CALL \triangle OSM (GFS,K, $1,2, N, 1,1,1$)
CALL ADSM GFS,K, $1, E, L, 1, N P 1+11$
CALL ADSM (VJST, JMS, 1,GFS,K,1,1,1)"

60 Tn $3 \in 0$
continus
peint 5
THETA $=$ MMONE $*$ SIXTY
CELL FOTATE (SG, K, THETA, SG, RR. I
CALL MUT (KK, KGES, GFS, K,K, II
CALL LERO (TEAPA, 3,1)
CALL ZERO (TFMPS, KM3
CALL RMUS* (GES,K,1,TEMP4, 3,1,1,1)
CALL AOSN VJST, JMS, L,TEMP4,3,1,1,1

[^0] Sulve for defiriatidns i connecting vooss, SMJ * DEL + VJST = VL

CALL MESUB (VL,VJST, VL, JMS.1,-11 CALL CECOAP I SYJ, JMS
CALL SOLVE I SMJ, VL , VJST, JMS 1
paint 510

$J N=J N+1$
PRIVT 520 , JN, VJSTII, $11, ~ V J S T(I+1,1), ~ V J S T I I t 2,1) ~$
CONT INUE
CALL RMVSM (VJST, 75,1, DELTAL,15,1,1,1,
CALL RMVSM (VJST,75,
CALL RMVSM (VJST,75, $1,0 \mathrm{ELTAG}, 12,1,16,1$,
CALL MULT I ST23,OELTAR, BETA,IR,I2:
CALL MULT SC2, YY, GAMA, 18,13,1';
CALL ADSUG I ALPHA, GETA, RETA, 18, 1, +1,
CALL ADSUB (BETA, SAMA, DELTAM, $18,1,+11$
CALL $A D S U B$ (DELTAN, OFLTAM, DELTAM, $18,1,01$,
PRINT 5
PRINT 510
PRINT 510
$\mathrm{JN}=0$
$\mathrm{OC}=550 \quad I=1,28,3$
$\mathrm{~N}=\mathrm{JN+1}$

550
CALL 2 ERS (U, S3, !
EALL ADSM (U,63,1, SELTAL,15,1,1.1 1
CALL AOSM 1 U,63,!, JELTAK,12,1, 34,1 PRIVT 5
PFint 560
SUlve for member end fooces \& reactions
MO $555 \mathrm{I}=1,21$
RELCTA(I) $=0.0$
REACTY(I) $=0.0$
REACTZII) $=0.0$
comitinu
SMN 7 OU MN $=1$, NMEM
KMN $=$ JOINTK(MN)

$\begin{array}{c:c:c}\text { IF } & M N E E Q 1! & F M=2 * F M \\ \text { IF } & M N Q E Q .24, F M=2 * F M\end{array}$
$\begin{array}{l:c:c}\text { IF } & M N . E Q .1: & F M=2 * F M \\ \text { IF } & M N \text { EQ. } 24 & F M=2 * F M \\ \text { IF } & M N E E Q & F M=2 * F M\end{array}$

PRINT GILO MN, JOINTJ (MN),
CALC ULATE REACTI ONS

GALC ULATE REACTI ONS
IF I JMN .LT. IS IG

 REACTX(I) = REACTXII) - FM * CX
 REACTY(1) \(=\) REACTY(I)-FM*CY
 RFACTZ(I) $=$ REACTZ(1)-FM*CZ
CONTINUE
ROMT $725=16$, 2
PRIVT 720, I, REAETXIII,RFACTY(I), REACTZII
CONTINUE
PRINT 5
$\stackrel{c}{c}$
6010200
ST0.
STOP
ENO
c
c
c
suerojtine multiply two hatrices
SUBROUTINE MULT (X,Y,Z,M,N,K)

DO $1001=1$,
© $900 j=1$, k
TEMP $=0.0$
$00500 \mathrm{~L}=1$,
TEMP $=$ TEMP $+X(1, L) * Y(L, J)$
TEMD $=$ TEMP +

CONT INU
END
c
$j J=3 *(J M N-1)$
$3 K=3 *(K M N-1)$
$x=X(K M N)-X(J M N A)$
$X_{Y}=Y(K M N)-Y(J M N)$
$D Z=Z(K M N)-Y(J N N)$
$0 Z=Z(K M N)-Z(J M N), D Y * D Y+0 Z * D Z 1$
$\begin{array}{ll}X L \\ C X & =D S X / X L\end{array}$
$C X=0 X / X L$
$C Y=0 Y / X L$
$C Y=0 Y / X L$
$C Z=E L / X L$
$C Z=C L I X L$
$A F O L$
$=A F(M N)$
$A E O L=A F(M N), X$

SUBKGUTIINE ADO SUBMATRIX INTJ A LAZGE MATRIX SUGEGUTINE DDSM (X, M, N, Y, i, j, K, L)
(MPLICIT $2 F A L * \& A A-H, 0-Z$)
DIMENS $\operatorname{ITN} X(M, N 1, Y(1, j)$

00
$L L$

LCNTINUF $=1$
$k k=k k+1$
CONT IVUE
RETURN
END
SURRTUTINE RMVSY ($X, Y, N, Y, 1, J, K, L$)
IMPLICIT REAL * 8 , A-H, $8-2$,
DIME NSION X(M, VI) Y Y Y I, J)

$0013011=1$, I
1

$L L=L L+1$
ONTINJE
$K K=K K+1$
CONTINUE
RETUR
RETUR
$\stackrel{c}{c}$

SURRDUTINE PRNT (X, M, N)
SUBROUTINE PRNT
OM,
IMPLICIT REAL * 3 (A-H, O-2)
OIMENSITN $x(4, w)$
$k=1$
$k k=8$

PRINT 53, (L, L=K, KK)
DO IU $\mathrm{t}=1$, M $\quad \mathrm{L}=\mathrm{K}, \mathrm{KK}$,
PRIVT 20, I, i X(I, J), J $=k$, KK)
CONTINiFF
FF (Kk.e日a. \because) GC TO 200
$\mathrm{k}=\mathrm{Kk}+\mathrm{l}$.
$K K=K K+8$
IF $=K K+8$.GT. $N, K K=N$
60 TO 100

so FORMAT (/1,i2x,3(13,12x1,1)
200 COntinu
RETURN:
SURQUUTINE: SET UP MEMBER STIFFNSSS MATEIX
IMPLICIT REAL * G (A-H, O-L;
OMENSION (
CALL ZERN (S, G,S''' MEMBER STIFFNESS MATRIX AND ROTATIOV MATYIX
Q=OSURT ICX*CX + CL*CL I
If (1Q LTJE1.00-04*GO
S(1,2)=\triangleECL *CX*CY
S(2;1)= S(1,2)
S(2,?)=AEOL* CY \#CY
S(2,3)=AEOL*CY*CY
S(3,1)=S(1,3)
S(3,2)=S(2,3)
OD 100 I = 1, 3
ST=S(1,j)
S(I,J+3)=- ST
S(I+3,J)=- ST
CONTINUE
G0 TO 300
ST = AECL * CY *CY
S(2,2)=ST
S(2,2)=-ST
S(2,5)=-ST
CONTINUE
RE TU
C SUBRDUTINE: TO SET UP GROUP ST IFFNESS MATRIX
SUBROUTINE GRPSTF IS,ND,L,M,N,GS,TFMP1,TEMP2,S2?21,S2223,S22 1
IMPLICIT REAL * \& { A-H:O-Z I
C
OIMENSIJN S(63,63),S11115,15),S12(15,181,S13115,121,S21(13,15),
S22(18,18),523(18,121,531(12,151,532(12,18),532112,121,
2. S22(27,27),SEMP1(15,18),TEMP2(12,i3),A(15,15),B(15,1<),D(12,12),
3. BT(12,15),X(15,18),2(12,18)
DIMEVSION \$2221(18,15), S2223(18,12)
C
c $\quad \begin{aligned} & \text { INITIALI2 } \\ & \text { C }\end{aligned}$
INITIALIZE
CALL LERO (A, N, V)
CALL
CALL
ZERO
(A, N, V)
(B, N, L) CALL ZERO
CALL
ZERO
($0, \mathrm{~N}, \mathrm{~L}, \mathrm{~L})$

```

CALL ZERO (ET, L, iv
CALL LESO (TENDI, A, \(x\)
GALL \(2 \operatorname{EAR}\) (TGOP \(\mathrm{CL}, 4\)
CALL LFRC (GS,K,K)
CALL \(2 F R D(X, N, M)\)
CALL
LFAT
\((L, L, Y)\)
NP \(1=N+1\)
NPMP! \(=N+M+1\)
CALL RMSS (S.ND,NC,S11,N,N,1,I)

CALL RMVSY (S,NO,NC,S21,M,N,NP!,?1

CALL RMVSM IS,N3,NE,S23,M,L,NPI,NPMP
CALL RMVSM \(\{S, N D\), ND, S31, Li, N. NPMP1, ! 1

CALL INVERT 1 s? ? , M I
CALL MILT \((512,522, X, N, M, M)\)
CALL CUPL \((x, T \in Y P 1, N, N\) )
CALL ADSUB (SIL, A, \(A, N, N, N\) )
CALL MULT ( \(\mathrm{X}, \mathrm{S} 23, \mathrm{~B}, \mathrm{~N}, \mathrm{M}, \mathrm{L}\) )
GALL ADSUE ( \(513,3, B, N, L,-1\) )
CALL MULT (S32,S22,2,L,4,M)
CALL DUPL \((Z, T E N P 2, L, M)\)
CALL ADSUB (S33,D,D,L,L,-1)
CALL TRAN ( 3 , BT,N,L)
CALL ADSM (GS,K,K,A,N,N,1,1)
CALL
CALL
\(A D S M\)\((G S, K, K, B, N, L, 1, N+1)\)
CALL \(A O S M(G S, K, K, B T, L, N, N+1,1)\)
CALL ADSM ( \(G S, K, K, D, L, L, N+1, N+1)\)
CALL \(A D S M(G S, K, K, O, L, L, N+1, N+1)\)
CALL MULT \((S 22, S 21,52221,18,18,15)\) CALL MULT \(1522,523,52223,18,18,12\); RETURN

UGROUTINE ADSUB ( \(x, y, z, M_{2}\) N, I SIGNI

IF (ISIGN) \(10,40,70\)
\(1000.30 \mathrm{I}=!\mathrm{M}, \mathrm{M}\)
\(0020 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
2J \(2(1, J)=X(I, J)-Y(I, J)\)
30 CONTINUF
GO TO 130

50 DO \(50 \mathrm{~J}=1 \mathrm{~N}\)
6O CONTINUE

```

 lomaj=1,N
 8J 2GI,J)=x(
 lvo ROTUR
 C C**
ENO

```

```

SUBRDUTINE TRAN (X,Y,M,N)
IMPLICIT REAL * 8 (A-H,0-2)
TMENSIDN X(M,N),Y(N,M)
00 20 1=1,4
10 %o 10 J=1,N
10 YIJ,I)= = x(I,J)
CONTINJE
END
C

```

```

C *** MATRIX XIM X NI LERO
SUBROUTINE ZERO (X,M,N)
IMPLICIT REAL * 8 (A A-H,O-Z)
DIMENSIDN X(M,N)
00 10 I=1,M
M (1,J)=1,N
10 CONTINUE
RETURN
C

```

```

 IMPLICIT REAL * S (X,M-N,O-Z)
 DIMENSION X(M,N),Y(M,N)
 DC 10 }=1=1,
 . ril,j)=x(I,j)
 10. CONTINUE
 RETU
 C. * * **
**
SUHROUTINE INVERTTO RRPLACE XIMXMMS AS ITS INVERT
C***************************************
SUBROUTINE INVERT (X,M)
IMPLICITREAL * 8(A-H, O-Z)
DIMENSION X(M,M)

```
VITA ..... 1
Mohammed Abdul Rawoof
Candidate for the Degree of
Master of Science
Thesis: GROUP STIFFNESSES AND GROUP FIXED END STRESSES IN STRUCTURAL ANALYSIS
Major Field: Civil Engineering
Biographical:
Personal Data: Born September 25, 1946, in Nizamabad, India, theson of Mr. and Mrs. Mohammed Abdul Jabbar.
Education: Graduated from Government High School, Chowk,Hyderabad, India, in 1962; received the Bachelor of Engineer-ing degree from Osmania University in 1970; completed require-ments for the Master of Science degree at OKlahoma StateUniversity in December, 1973.
Professional Experience: Worked as a Junior Engineer, PWD(R\&B),Government of A.P., India, from March 1971 to August 1971;served as a graduate teaching assistant from January 1972to May 1973, and as a graduate research assistant fromAugust 1973 to present in the School of Civil Engineering,Oklahoma State University.```


[^0]:    

    | IF | I FQ. | 3 | GJ TY | 320 |  |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
    | IF | I | EU. | I | GO TC | 330 |

    
    
    

    CALL $\triangle$ USM (VJST,JMS, 1, TEMPG,KM3,1,13,i GO TO 360 IV JST JMS , TEMP KG 1 , 20 It
    CALL ADSM M
    CALL ADSM (VJST, JMS, 1, TEMPG,KM3,1,40,1)
    
    CALL ADSM (VJST, JMS, L,TEMPG,KM3,1,52,1)
    CALL RMVSM (GFS,K,1,TEMP5,L,1,4,1)
    CALL RMVSM (GFS,K,1,TSMP5,L,1,4,1)
    CALL RMVSM i GFS,K, 1, TEMP5, $L, 1,16,1$,
    CALL ADSM VGST, JMS, 1, TEMP5,L,1,4,i)
    GO TO 380
    SET UP APPLIED JJINT LUAD VECTIR
    CALL LERD (TENPG,KM3,1)
    CALL RMVSM (W,N,1,TEMP4,3,1,1,1)
    CALL ADSM IVL, JMS, 1, TEMP $4,3,1,1,1$
    CALL ADSM (TEMPG,KM3,1,TEMP5,L,1,1,1)
    CALL LERG (TEMPS,L,1)
    CALL RMVSM (H, NU, I,TEMP5,L,I,34,1)
    CALL $A D S M$ (TEMPS,KM3,1,TEYP5,L,1,13,1)
    IF I 1 . NE. 1 I GO TO 4 UO
    CALL AOSN (VL,JMS,1,TEMPS,KM3, 1,4, T)
    
    
    
    
    60 TJ 9999
    CALL ADSM IVL, JMS, 1, TEMP5,L,1,4,1
    
    CALL RMVSM (TEMPS,KM3,1,TEMP5,L,1,1,1
    CALL ADSM (VL,J45,1,TEMP 5,L,1, 64,11
    GO TO SU0 (VL,JMS,1, TE MPS,KM3,1,16,1)
    GO RO 500 (VL,JMS,1, TEMPB,KM3, $1,16,1$ )
    CALL AIJSM (VL,JMS,1,TEMPS,KM3,1,23,1)
    GOLL ADSM (VL, JYS,1,TEMP6,KM3,1,40,11
    60 To 500

