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CHAPTER I 

INTRODUCTION 

Water pollution characterization is one of the most. challenging 

tasks confronting the analyst. Physicochemical and biochemical trans-

formations in aquatic environments must take into account interactions 

betw,een the atmosphere, hydrosphere and lithosphere as depictec:l in 

Figure 1 (1}, 

Three basic nutrients, carbon, nitrogen and phosphorus, greatly in-:-

fluence.aquatic biota, Eutrophication c<;3.uses changes.in pl~nt and ani-

mal life that may interfere with use of the water, detract from natural 

beauty and reduce property values, One common result is excessive growth 

of algae and larger aquatic pll;lnts. Such growth chokes open water, makes 

it nonpotable and increases the cost of filtration, The decomposition 

of excess vegetation fouls the air, adds obnoxious taste to the water, 

and consumes deep-water oxygen vital for fish and other forms of life. 

The limiting nutrient.in the eutrophication process is not the same 

in all bodies of water.. Many stuc;lies show that different nutrients may 

be limiting in the.same water at different times. However, McGauhey (2) 

describes one popular view.of nutrients in the following manner: 

It is generally conceded toc;lay that phosphorus is more im­
portant .than nitrogen.in causing algal ,blooms. In fact, an 
algal bloom may result. from excess phosphate.out of scale with 
the normal ratio of nitrogen to.phof:iphorus in plant growth. 
This is the resu.lt of the development of types of algae which 
can fix nitrogen.from the atmosphere provided there is plenty 
of available phosphate, 

1 



ATMOSPHERE 

HYDROSPHERE 

LITHOSPHERE 

02 

27~ ) l Photosynthesis I 
p 1 
N 15 
C 105, 

~ Decomposition 

so -2 = s-2 + 2 o /' 

PO 1 
N04 15 
co~ 1000 

_J 
410,000 I . 2 

-t I + I ..t- t + cs:P '+ p/ "-.; N/ '-.; c.., 
10,000 40,000 10,000 400,000 
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Major Elements in Aquatic Ecosystems. The Ratios are Based on the Num­
ber of Atoms of the Designated Element Per Atom of Phosphorus (1) 
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Furthermore, stathtics show that man is responsible for increasing 

phosphorus levels to a greater e:i:ctent than nitrogen levels, Table I (3). 

Th~ complete characterization of n1;1tural wat.er systems. require~ a 

large volume of .deta:Lled data~ These da~a can not,be practically ob-. 

tained via the .basis of grab sampling with subsequent laborato.ry analy­

sis •. Rapid and reliable, on"'.'sit~ continuous monitors are needed .to pro­

vide info;rlllation over extended per:1,.ods of time. This information could 

be. use<:i to evaluate future changes· in .water quality, <:ievise ~uality ,in-,,, 

dices anq. set; pollutj,on standards. 

The ol;>jective of this invest.ig~Ucm is t9 deve],op ap.d evaluat;e an, 

ion se.lective elec;rode for the detet"IQ.ination of orthophosphate in ·aque­

ous . solutions. 



TABLE I 

SUMMARY OF ESTIMATED NITROGEN AND PHOSPHORUS REACHING WISCONSIN SURFACE WATERS (3) 

N p N p 

Source Lbs. per year (% of total) 

Municipal treatment facilities 20,000,000 7,000,000 24.5 55.7 

Private sewage systems 4,800,000 280,000 5.9 2.2 

Industrial wastes* 1,500,000 100,000 1.8 0.8 

Rural sources . 

Manured lands 8,110,000 2,700,000 9.9 21.5 

Other cropland 576,000 384,000 0.7 3.1 . 

Forest land 435,000 43,500 0.5 0.3 

Pasture, woodlot & other lands 540,000 360,000 0.7 2.9 

Ground water 34,300,000 285,000 42.0 2.3 

Urban runoff 4,450,000· 1,250,000 5.5 10.0 

Precipitation on water areas 6,950,000 155,000 8.5 1.2 

Total 81,661,000 12,557,500 100.0 100.0 

* Excludes industrial wastes that discharge to municipal systems. Table does not.include contributions 
from aquatic nitrogen fixation, waterfowl, chemical deicers and wetland drainage. 

~ 



CHAPTER II 

SURVEY OF THE _LITERATURE 

Various Methods of Phosphorus Analysis 

Classical methods.for the determination of pho$phorus in wat~r re­

quir.es substantial time and. effort. Morec;,ver, the large diversity of .. 

analytical instrumentation and.increasing interest in,quant;lfying phos~. 

phorus content in water.has led to-the .developmer,.t of,many_direc; and 

indirect methods -of analysi.s (Table,!!). 

Phosphorus m.!:ly exis.t in ,natural waters as inorganic, phO!;!phates · 

(ortho"".', met:a-, or polyphosphates) or in organic comb,ination •. These 

compounds may be present in ._solu'ble or insqluble forms. Figure 2 

shows a. typical analytical scheme which ,is frequently _used for the dif­

ferentiation between ;he!,!e various forms of.phosphorus. Tq.e scl;ieme.con­

verts the various fractions ; ·of ·phosphorus· to orthophosphate ( 4) • 

Themost.commqn analytical.method of p~osphorus determination is 

based on.the colorimetric determin~tion of the phosphomolybdenum complex. 

Orthophosphate reacts ·with ammonium molybdate in acid medium to fo:rm 

phosphomolybdic_acid.which when reduced.yields a blue complex. The sen­

sitivity of the tes,t is largely !iepe~9ent on th_e reduction st,ep •. Red~<r­

tion with stannous chl.oride is considered the. most sensitive an<;l the ,best. 

suit~d method for the lower ranges of phosphates usually ,encountered (1). 

Commercially available automatic analyzers for on-site monitoring 
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TABLE II 

CLASSICAL METHODS USED IN THE DETERMINATION OF PHOSPHORUS 

Method 

Phosphomolybdate 

Reduction reagent 

aminonaphtbolsulfonic acid 
ascorbic.acid, 
metal sulfite 
stannous chloride 

Molybdovanate 

Malachite green - dodecamolybdatophosphoric acid 

Indirect colorimetric via La-chloranilate 

Fluorometry ' 

Indirect flame spectrophotometry 

stan4ard addition of lead nitrate 

elemental P preconcentrated on GLC 

Comments 

Official Method of the Association 
of Agricultural Chemists and the 
Environmental Protection Agency 

superior precision 

most sensitive 

colored stable salt. 

aluminum-morin and tin-flavonal 
systems 

inorganic phosphates give charac­
teristic slope in calibration 
curves 

d . 1· . 10-12 etection 1m1t,= g P 

Reference 

(5) 

(6) 
(7) 
(8) 
(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

er-



Method 

Atomic absorption 

Acti'\ration .analysis. 

Radiometry·. 

Gravimetric 

modified phosphomolybd~te 
quinol~nium molybdate· 
magnesia 

Pote,ntiomet:ric 

indirect polarographic 

silver-si:1.ver. chloride elect.rode 

pH titration 

TABLE II (Continued) 

Comments 

monitor molybdate·from decompositton 
of heteropoly acid 

f W187 . gamma spectrum o in tungsto-
molybdophosphoric acid· 

monitoring w187 in tungstomolybdo­
phosphoric acid 

tends to yield high results 
recommende4 for intei;nat:fonal trade 
good accuracy,·relatively slow 

titrationwitq uranyl solut:i,on 
titra~ion with ,bismuthyl ~elution 
tit~ation with bismutl;lyl plus EDTA 
titration with silver, u.se~ul in 

standardizing biological.solutions 
after salt to acid conversion via 

ion exchange 

Reference 

(1) 

(16) 

(17) 

(18) 
(19) 
(20) 

(21) 
(22) 
(23) 
(24) 

(25) 

--.J 



SAMPLE 
Total Sample (No Filtration) 

! 
Direct Hydrolysis Digestion 

' ~,, -~ • i, 

Orthophosphate Hydrolyzable and Phosphorus Orthophosphate 

.. , . Filter (through 0.45 µ membrane filter) 

.. i.- ..... 
Residue Filtrate 

.1 
Direct Hydrolysis Digestion ..,, .... .,, 

Dissolved Diss. Hydrolysis Dissolved 
Orthophosphate and Orthophosphate Phosphorus 

Figure 2. Analytical Scheme for Differentiation of Phosphorus Forms (4) 

00 



9 

use the phosphomolybdate method for orthophosphate determination. Auto-

analyzers, such as the Technicon CSM6 (4), use sulfuric acid as the 

hydrolyzing agent to obtain tqtal inorganic phosphate. These analyzers 

do not include a digestion step for ol?taining organic and pa:i;-tic4late 

phosphorus. A consideration which limits the use of these monitors is 

their cost. 

Current Status of Ion Selective Electrodes 

Ion selective electrodes and similar se-nsors are found to be -well 

suited for incorporation into cont:1,.nuous monitoring systems due to their 

relative simplicity and low cost. Table III lists e],ectrodes most com-

monly used inthese systems. 

Electrodes of the First Class 

Ion Selective Electrodes have been divided into three major classes. 

The first class consists of half-cells formed by metal!:! in contact with 

their metal ions in solution. The resultant potential is a function of 

the activity of the metal ions. This relationship is expressed in the 

Nernst equation: 

E = 0 
E ~ (0.059/n) log aMf-n (1) 

Mercury and amalgam electrode_s of. this class. have been used in the 

determination of standard potentials (26), activity coefficients (27), 

and.the effect of variables such as temperature and dissolved gases (28). 

Electrodes of tli>.is class can be used to indirectly measure anion 

concentration. For example, phosphate has been dt:ltermined by titration .. 

with bismuth while monitoring with a bismuth electrode (29) •. 
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TABLE III 

SELECTIVE ELECTRODES WHICH HAVE BEEN INCORPORATED 
INTO AUTOMATIC WATER QUALITY MONITORING SYSTEMS 

Electrode pH ra.nge Principle.intErrf.erence 

Bromide 14 - -2 0 CN ·, I , s 

Cadmium l- 14 + H +2 c +2 F +2 Ag , g ' u ' e ' 
Pb+2 

Calcium 5.5 - 11 +2 F +2 Pb+2 Cu+\ Zn , e ' 
Ni+2 

. ' 

Carbon Dioxide 

- -2 ..;. 

Chloride O - 14 Br ' I s ' CN 
' SCN""", NH3 

Cupric 0 - 14 + +2 Ag , Hg , Fe+2 

Cy~nide 0 - 14 -2 
s ' I 

Fluoric;le 0 - 8.5 OH 

Hardness 5. 5 - 11. z +2. +2 c +2 Ni+2 
n ' Fe , u ' ' (cat2 + Mg +2) B +2 +2 
a ' Sr 

Hydrogen 0 - 14 Na+ 

Iodide 0 - 14 -2 CN s ' 
Lead 2 - 14 A+. H +2 c +2 Cd+2, 

g+2 g ' u , 
Fe 

Oxygen 0 - 14 

- - -2 - -Nitrate 2 - 12 I ' Br ' s ' N0 2, CN 
' 

Cl - OAc-:- -2 HC03, 
' ' 

co3 , 

so-2 
3 

Sodium 0 - 14 H+ 
' 

K+ 
' 

Ag+ 

Suil.fide 0 - 14 
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Electrodes of the Second Class 

The second category conta:i.ns electrodes which are formed by coating 

a metal with a slightly soluble salt of that metal,.· The half,-cell po­

tential is a function of the activity of the anions of the salt in solu­

tion:. 

E = E0 + (0. 059Jn) log aA-m (2) 

Second Class Electrodes are comm~mly used .as reference rather than 

indicator electrodes. Better known.examples of this category are the 

calomel and silver-silver chloride electrodes. 

Ito (30) has developed a silver-silver phosphate electrode for the 

determination of concentrated phosphoric,acid.at high te111p.eratures, 

200-300°C. 

Montalvo and Crochet (31) developed a phosphate selective electrode. 

composed of S.A.E. 111095 carbon steel coate.d with "insoluble crystalline 

phosphate." This was accomplished by immersion of the carbon rod in hot 

phosphoric acid. The resultant el~ctrode was claimed to have a.linear 

response from 10 to 9500 ppm phospha'(:e and good selectivity. 

Membrane Electrodes 

The. third type of . electrodes include.s al+ membrane elec troq.es. Due 

to a variation of physical and chemical.parameters, this group is.the 

largest and may hold vast latent possibilities in potentiometric analy­

sis. These electrodes range from simple, non-selective membranes, which . 

develop potentials due to total ionic.activity or mobility, to highly 

selective membranes of glass or crystal whose·potential is far more 

sensitive to specific ions. 
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To be useful in an electrode, a membrane must have two properties: 

(i) its resistance must be sufficiently large such that it allows the 

development of a measurable potential between the reference and sample 

solutions, yet not too large for current amplification by high impedance 

electrometers, and (ii) the membrane should be selective to the passage 

of certain ions. In actual practice ,the later condition is only approx­

imated. 

Membrane electrodes have been divided into four sub-categories. 

These are solid state or crystal, sol:i,d ion exchange, liquid ion ex­

change, and heterogeneous membrane electrodes. 

Solid State Membrane Electrodes. Electrodes of this group have a 

thin crystalline material as a membrane which conducts electrical cur­

rent at room temperature. These membranes are mechanically stable, 

chemically inert, and.relatively insoluble in the sample solution. Con­

duction through a crystal is by a lattice defect m~chanism in which a 

mobile ion adjacent to a vacancy defect moves into the vacancy. A vacan­

cy is fixed with respect to size, shape and charge distribution. This 

allows many crystals to be.very selective to the ions which can be mobile 

within the crystal. Theory and experience have shown that only small 

univalent ions have sufficient mobilities to be useful in this type of 

electrode. This is quite advantageous in the pH and fluoride selective 

solid state electrode. Ross (32) descl;'.ibes this type of electrode .and 

lists ten examples with their principle interferences, 

Solid Ion Exchange Membranes. Eisenman (33) describes ion movement 

in this membrane by exchange from one relatively fixed site to another. 

Electrode selectivity is dependent on the relative mobilities of com-
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peting iol'ls in __ the membrane a!iJ wel+ as on their ion exchange equilibrium 

constants. 

The mobilities 9£: the. orthepho~ph~te · species are very low becaus.e 

of their large si~e ancl diffuse charge.· ·Thus if a membrane of this_ type 

is to be us.ed in .a selective el~ctrode f.or phosphate, more stringent 

requitements must be met by the exchange equilibrium constant. 

Madden (29), ev~luated polyvinylbenzyltrcimethylai;nmonium hydroxi,de as 

an anion ,exchange.membrane. A·linear,response of 30mV per decede change 

in phosphate .activity :was obtained. However, the_ membl;"ane sh.owed litt,le 

or no select~vity. 

Rohm and Guj,.ltbault (34) has presented· a preliminary .repol;'t ,on .. th_e 

devel~pment · of . a pho!1Jphate selective membrane. T'hi.1:1 membrane. elect.rode 

exhibited a geod response which was nc:m-linear. · Selectivit::!-es· fc;,r di­

basic pho.sphate over univalent_ ions ,were .fair. Sulfate was the. only di­

VB:lent anio.n other than dibasic phosphate to be studied. No selectivity . 

over sulfate was found. 

The electrode contained a membrane· formed by the polymeric r~action 

of gluteraldehyde and thipurea. A~-=er silver had been complexed wi,th 

th.is polymer, dibasic · phosphate was -added-. A structu;-al determination 

of the re~ulting membrane had not been.attenipted. The mem\,rane may,be­

a heter~genec:,us, .memb_ran~. containing silver. phospht!tte or tbe polymer may. 

have be_en _phosp):iorylated yielding a solid ion exchangerq 

Liquid Ion Exchatige Membranes. These .membranes differ ft".~m the -

solid variety in that the si_tes themselves are· mob,ile. Thu~ the mobil:tty 

and exchange equilib.rium conetants are prim.arily dependent upon the mem- , 

brane so.lvel'lt. Liquid. ion ,exchangers a;-e relatively high molecu.lar 

weight organic compoundE:1 or.complexe!iJ. with; low dielectr!c consta1',t. 
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Their volatility and splubility in aqueous solutions are very low. · 

Ross (32) has described the constructio~ and mechanism of this type 

of electrode, and lists eight different examples with many of their se­

lectivity constants. The·Orion Calcilll1,l Ion Electrode ts the best known 

example of this category. 

Heterogeneous Membrane Electrodes. These membranes are essentially 

less perfect fo.rms of solid state :membranes. Solid st.ate material may 

lack the necessary mechanical properties for· electrode incorporation. 

These properties may be cont.rolled by dispersing an active substance in 

an inert matrix. The substances, successfully used to date, inc~ude ion 

exchange resins, sparingly soluble metal salts ,and chelates, and other 

materials which possess simple face-centered cubic crystal structure. 

Matrix materials include siliqon rubbers, paraffin wax,.., collodion, poly­

vinyl chloride, polystyr~ne and polyethlene (35), 

Pungor.(36) reported good response to phosphate activity using a . . 

silicon rubber membrane.containing manganese (III) phosphate. However, 

details of the electrode or its further development have not been report-

edo A similar electrode consisting of bismuth phosphate as the active 

material had been evaluated by Rechnitz (37). ·The electrode gave a.re­

sponse of 7 mV per decade change of phosphate activity. The·stability 

was poor, drifting 1 mV in ten minutes •. 



CHAPTER III 

THEORETICAL CONSIDERATIONS 

Depenclence of Phosphate Spectes on pH 

Any aqueous solution containing phosphate must.satisfy the follow-

irig equi:).ibria: 

+ - 7.5 -3 H3Po4 t H + H2Po4 K =· x 10 1 

- + -2 
K2 6.2 x 10-8 H2Po4 ~ H + HP04 = 

HP04- 2 ~ H+ + P04- 3 
K3 = 4.7 x 10-13 

H2o * H+ + OH- K = 1.0x 10-14 
w 

Control of the pH of the system circumvents the problem of these 

multiple equil::1-bria. At a fixed pH, the relative ratios of the four 

phosphate species are constan~ and independent of the.total amount of 

phosphate. The average degree of protonation of the orthophosphate 

species in solution, ii, is the.refore a constant. The concentration of 

-3 
total phosphate may thus b~ wrttten as HnPo4 • 

Bismuth (III) Solut~ons 

Many phosphate salts are. slightly soluble in neutral or basic, solu-:-

tions. However, in solutions of high acidity only bismuth phosphate is 

very slightly soluble. This suggests tha~ bisni,uth-,bismuth phosphate 

15 
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might be a good metal-metal.salt to be used in ·an.electrode of the sec-

ond kind. 

Bismuth ions in neutral or basic solutions readily hydrolyze to 

form bismuth trioxide, Bi203• This precipitate persists until the pH is 

lowered to approximately one. As :the hydrogen ion concentration ap­

proaches one-tenth molar, the precipitate dbsolves forming tl).e bis­

muthyl ion, BiO+ (38). This solution is stable as long as high acidity 

is maintained; however, in solutioni:i of higher pH, bismuthyl salts such 

as BiO(No3) and Bi2o3 (OH)No3 are readily precipitated (39). 

Bismuth .Amalgams 

Bismuth amalgams have been.prepared using three different tech~ 

niques: electrolysis of bismuth solutions, replacement reactions of. 
• i . ., • 

sodium amalgams on .bismuth soluti.onf:I, and by direct .addition of bismuth 

metal to mercury at elevated temperatures. It has been found .that amal.-

gams with more mercury than.Hg:Bi = 9:1 are liquid; thos~ with less mer-. 

cury than.Hg:Bi = 2:1 are solid (.40). Complexes that have been c:J,.aimed 

to exist include HgBi; HgBi2, HgBi3, HgBi4, HgBi5, and Hg38Bi. Apart 

from these,.polynary alloys.of even.greater complexity are known to 

exist (41). 

There are three other properties of bismuth amalga,ms whi.ch should 

be considered. The solubility of bismuth in mercury is 1.4 weight .per­

cent at 25° C. These amalgams·are stable in air. And, bismuth amalgam~ 

change e~ectrical resistance when placed in an electrical field (40). 

The· Bismuth Half-.Cell 

The half-cell reaction of the proposed electrode is 
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(3) 

The half-cell potential at 25°c for Equation (3) may be written 

E = (4) 

At a constant pH, aH+ is constant which allows '5quation (4) to be writ-

ten as 

E = K + (0.059/3) log aH-PO n-3 
n 4 

The change in the potential is a function of the change in t.he 

ii~3 
logarithm pf the activity of HiiPo4 , , , 

At low and constant pH, the predoniii;iate,phospha.te anion is H2Po4 , 

(5) 

(6) 

(7) 

-..... 

and th~ .concentrations of HP04".'"2 and P04-3 approach zero. Theanaiytical 

concentra~ion of phpsphate ~;.u0w be written as a simple function pf 

the ,monobasic, apecie: 

(8) 

I 

RegardlesSI of the phosphate speci~:(s) involved, in ,the precipitation 

mechanisn'i~ the plot of emf vs ,the logarithm of,Hl04- activity will be, 

equivalent'to ,the plot of emf vs the logarithm of the total phosphate 
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concentrati<;m at constant pH-•. 

Measuring the potential of the indicator electrode requires addi.,.. 

tion of another half.,-oell to serve as the reference electrode. This 

ele.ctrode must have a stable potential. Thus, for the electrode.vs a. 

0 reference electrode, such as the calomel, at 25 C, we have 

Emv = Ek + ,19. 7 log (phosphate) total,. (9) 

where Emv is the observed potential,, and Ek is the effective standard 

cell potential, which includes effects of junction potentials, internal 

resistance, and the ionic strength~ 

In actual practice the value of Ek is not exactly constant. Further­

more, deviation from ideal response in the indicator electrode is not un-

common, especially near the limit of sensitivity. However, through use 

of calibration curves,' large ranges of the nonlinear response. can. be 

utilized (32). 



CID\PTER IV 

EXPERIMENTAL ACTIVITY 

The metalsi used in these ele.ctrodes; were Bismuth Metal Granules, 

Mallinckr9dt Chemical Company catalog number' 0220, marked 99. 8 percent .. 

pure, and Bethlehem Instrument triply disti:\.led Merc1.,1ry. All chemicals 

used in the solutions were Ba~er Analyzed Reagents. Phosphate solutions· 

were prepared by dissolving potassium dihydrogen phosphate·in.0.1 M ni-

tric acid. 

Potenti~~ measurements.were made on al). Orion Research Digit~! pH-mV 

Meter, Model 801. Unit increments .are at 0.1 mV and 0.0001 pH intervals. 

0 0 The temperature was manually ,cont~olled at,25 ± 1 C. 

The pH was found to vary less than one tenth of a unit around pH= 

1.0. 

A potassium nitrate salt bridge was.constructed with tygon tubing 

plugged at both ends with a piece of unfired Vicar (Corning 117930). 

Comparative tests showed no interference from the reference electrolyt~s 

which contained chloride ions. If the test conditions.required extre~e"".' 

ly small volumes .of solu.tion, with the .reference electrode· remaining in 

the.solution for long periods, t}J.e salt bridge.was necessary. 

Bismuth Amalgam Preparation 

Liquid and· two phase~ solid.-liquid, amalgams were prepared by the 

method of Scribner and Reilley ,(43). Grannular bismuth was added to 
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mercury in.the amount necessary to prepare·the desired composition. The 

mixture was heated.for four hours at ao° C, while being stirred mechan-

ically. The mixture was allowed to. cool to room temperature, and the 

amalgam was washed twice with·distilled water .and transferred to .a sep-:­

aratory.funnel. The liquid.was allowed to drain slowly into 1 N sulfuric 

acid, under which it wa~ stored until needed. Amalgams of 0~5, 1.0 and 

an exceas c:;,~ 1. 4 weight percen'I; bismuth .. were .prepared and test·ed. 

Bismuth Amalgam Electrodes· 
:. ' ,. 

The amalgam. electrode body was a pyrex funnel with ·,the stem bent in 

the shape·of a U-tube. The amalgam was poured into 'the funnel to fill 

it just above the ~pex of the cone. Electrical contact.with ·the volt"." 

metet;"wa:s,made through a.plat:i,num wire inserted.through th~ f~nnel stem. 

Phosphate test solutions were poured on top of the amalgam .. anQ the refer­

ences electrode. or salt bridge was .lowere4 int.o solution. Data were re-

corded. aa · soon as, the potential becal\le ·relatively .~table. Th~s usually 

required from five to twen;y minutes. · Deqxygenation of the .soluirions 

with. ni:troget?- gas. did no,t affect .the· stability. 

A,fter each test, the solution was removec;l with a suctio~ tube. The 

surface,of the electrode wa$ ri1;1sed with distilled water several.times 

and.w:L,ped ~ty with ·a strip of .filter paper. 

Appendix ,A lis.t.s the activity -coef.fi~ientsi used in a~l calculatiot?-s 

and plots. Table IV lbts typic~l observed potentials of replicate 

measurements made in rand91I1 sequenc~. · Fiijure · 3 is a plot .of · these po- . 

. tentiala vs the activ~ty o~ HlO 4- •.. Using various sets of data; slopes 

of the linear portion of s.imilar curves were calculated ,by the. least· 

square.methpd and found tc:;,.be 19.7 ± 0.7 mV per decade of concentration. 
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This is in accord with the theoretical value predicted by Equation (9). 

Frequent calibration of the electrode.became·necessary since the paten.,. 

tials were drifted as much as 7 mV.over a twelve hour period. 

Total 

TABLE IV 

RESPONSE OF BI.SMUTH AMALGAM ELECTRODE TO 
CHANGES IN PHOSPHATE CONCENTRATION 

Phosphate Concentr,ation Electrode Response Average Response 
(molarity) (in mV) (in mV) 

1 x 10"'"5 18.4, 20.6, 18.0, 16.7 18.4 

1 x 10"'"4 20.3, 20.6, 21.3, 19.3 20.4 

3 x 10"'"4 23.2, 22 •. 9, 23.5~ 22.8 23.1 

1 x 10"'"3 36.5, 34.2, 35.2, 38.8 36.2 

3 x 10-:-3 48.4, 46.6, 45.8, 46.9 46.9 

1 x 10"'"2 54.7, 55.4, 54.6, 55.6 55.1 

3 x 10"'"2 59.0, 61.5, 58.7, 60.7 60.0 

1 x 10"'"1 75.0, 73.9, 74.5, 74.0 74.4 

During a test, the surface of the electrode became coated with a 

white. film. Several of these films were collected; subsequent quaiita .... 

tive analyses were positive for bismuth and phosphate. This strongly 

suggests that the electrode is of the Second Class. 

Interferences 

In.considering possible interferring ions, attention was .given to 

the experimental proced'l,lre used to gather data on which to base the cal ... 

culations of selec~ivity ratios. Unfortunately, there is little ,agree ... 
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ment in th,e lit.erature regarding the :optiIJlal methods of. determining se-:-

lectivities in general or f~r a, spec:l;fied electroqe.· · This difficulty is 

due to .• a small n~ber of systematic ,studies a11d th.e tenchmcy to report, 

under a single, and of~en ·arbitrary, set of conditions~. 

The select,ivit;y ratios in this·study are 0 ba~ed on two.accepted: 

methoq.s. ·One dete~ines the.ratio of.primary iotJ. activity to interfer-. 

ing· ion activity req~ired to yield the,same cell emf under otherwise 

identic,l·conditions (44). The second, more pr~ctical.analytic~l situ­

ation,· determines· the effect on ·the cell. potential when both· o;r perh~ps 

many ions are'present whic;:h must be estimate4 or determined. The mathe..-

maticEt,l derivation of the selectivity ratios for both methods are shown 

in Appendix B. 

Table V lists the emfs of pote.ntia~ly inter~erring· ions and 'their 

select.ivities.: These potentials :vs their molar activities are plotted .. 

in Figure·4. 

Me~aperiodate was originally throught.likely to show subst;:anti;al 

i1;1terference. However, in acidic .. solut;::t.ons. metaperiodat;:e is. read:i,.ly 

cqnverted to the only slightly soluble,paraperiodate form (39). Initial 

tests of .. sohitions of this 1;1a;lt at pH l ,showed very unstable negative . 

potentials,· yielded a white ,prec:f,pitE1,t,e while .in contact with. the ,ai:nal-

gam~ and ,were ,.therefore not graphed. 

-4 Iodate·selutions great.er in .concentration thari. 10 · M exhibited 

similar behavior to the. paraperiodate solt;1,ti01lS ,and were the;efoz:e ·not 

graphed. 

Table VI shows a compar:l,son .of· selectivity coefficients. for chlor-

ide ,using the . two methods previously. met1.t;i,one4. 



TABLE V 

SELECTIVITY_COEFFICIENTS- OF SOME INTERFERRING ION,S 

[H/04-] - Ion 2 [Ion2l mV a = aH PO · 1 - :2 - 4 

10-2 . -3 - -2 72.5. 9.28 x 10 HS04 1.3 x ·10 

10-2 72.5 9.28 x 10 -3 Cl"." 4.0 x ,10 -2 

10-3 54.5 - 9.75 x 10 -4 HSo4- 7 .o x 10 -3 

10-3 54.5 9.75 x 10""4 " Cl - -2 1.8 x 10 

10-4 - 36.5 9.88 x 10 -5 H2Aso4"."" 1.5 x 10 -4 

10-4 . 36.5 -5 -4 9.88 x 10 HSO-- 4.6 x-10 4 

10-4 36.5 -5 Cl - -3 9.88 x 10 7 .6 x .10 

10-4 36.5 -5 SCN - -2 ~.·88 x 10 3.5 x.-10 

a2. 

1.2 x ·10 -2 

3.5 x-10 -2 

6.0 x 10-3 · 

1.6 x 10-2 : 

1.5 x 10 -4 

4.5 x 10 -4 

-3 7 .. 1 x 10 -

3.3 x·lO -2 

K -_ 

7.7 x 10 -1 

2.7 x -10 -1 

-1 1.6 x 10 · 

6.1 x 10 -2 

6.7 x 10 -1· 

2.2 x-10 -1 

1.4 x 10 -2 

3.1 x 10 -3 

N 
~ 
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9.28x 10""3 

9·. 75 x 10-4 

9~8ij x 10 -5 

TABLE VI 

COMPARISON-OF SELECTIVITY COEFFICIENTS. FOR 
PHOSPHATE IONS OVER CHLORIDE IONS 

USING TWO DIFFERENT METHODS 

Method I 
aCl"". K single ion 

3.5 x 10 
.... 2 

2 •. 7 x 10'""1 

1.6 x 10-2 6.1 x 10-2 

7~1 x ·10 -3 1.4 x 10 -2 

pH Titratio-q.s 
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Method II 
K mixture 

1.9 x 10-1 

5.3 x 10"'."'2 

1.0 X·.·10 -2 

Fig.ure. 5 shows ia plot of the., chang,e ·in. potential as 300 ml of phos-

phate. solut_ion was titra~ed with a ,potassium hydroxide solution. The 

concentrat:L.on of the potassium hydroxide titrant wa.s chosen to be 0.1 M 

to maintain.a constant ionic stl;'ength du,;:ing the titration. Figure 6 is 

a plot of the.volume·of potassium hydroxide solution vs pH for these ti-

trations. 
I 

Dropping Bismuth Amalgam.Electrodes. 

Various configurat:t.ons of dropping amalgam electro.c;les were investi­

gated in an attempt to improve the--"!ft~fti':t¥ of .. th~ am:algam electrode. 

The apparatus .con~isted of a.mechanically adjusted amalgam head and a 

c,pilJ,.ary tubing having an inside_diameter,of 1/32 of·an inch. This 

y:i,eldec;l very fast 'drop rates, unstable, .. and irreproducible potentials. 

After 20 minutes of .use, the -ca,pil~ary .was. partially clogged and a drop 

-2 rate of 1 drep per 2 minutes resulted. · At .the time a, 10 M phosphate 

solution was being tested. As the drc;,p grew on. the end of the capillary . 
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the potential appeared to asymptotic~lly approach 92 mV. This trend in, 

the potential was observed for about 10 minutes.. Finally, an attempt 

waE? made·to change the.sample solution. During careful manipulation of 

the solutions, the clog was freed. While uniptent·iona+ clogging became 

a.serious problem, a clog giving similar sl9w flow rate and potential 

was.not observed. Usually, flow was co,mpletely: 1:1topped. Clogging and 

drop rate were therefore approacl}ed as two sep{:l,rate problems. 

Hydroflouric acid was, poured through a .. tube containing a glass · frit 

increasing the pore size of the frit until the frit would allow pass~ge 

of the liquid pertion ef the ~malgam while filtering mast of the solid­

phase amalgam. Although this filter did not prevent capillary clogging, 

it did reduce the clegging frequency for a.short while. Finally clogging 

of the frit was ·effected. Cleaning the fri.t •proved impractical. Equally 

effective .filt~ring was accemplished by a plug o:f glass ·wool in the Tygon, 

tubing leading to the capillary. 

Rate of flow through a capillary at qonstant conditions is con­

trolled by the.diameter and length of the capillary, and the viscosity 

of the liquid. Viscosity .of the amalgam is fixed and t:he length of the 

capillary·is limited by practicality. A short.piec": of m~rine barometer 

capillary tubing, approximate I.D. = 3/1000 ,inch,. gave a drop rat;:e of l. 

drop per 10-15 seconds. No b1provement in. the potential was noted. 

The· slowest flow ra.te .was accomplished by inverting the ,capillary. 

Amalg~ entered .the test solution by bei;q.g f9rced up the tubing~ It s4b­

sequently beaded and finally flowed away from the capillaty, Positive 

press·U1;:-e was applied . to the amalgam reservoir by. leaking nitrogen gas · 

through a mic,rometer. A repreducible, flow rate. of 1 drop per 2 minutes 

was obtained by using capillary tubing with a.large inside diameter. Thia 
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also decre~sed the cloggiµg frequei:i,cy, however, no improvement in emf 

stability could be observed. 

Amalgamated Bismuth Billet Electrode. 

Madden (29) found that a bismuth b:f,llet electrode gave an irrepro-

ducible response tq phofj!phat.e activity. This electrode ,was used success-

fully .in monitoring titr~tions 'of pur~ phosphate solutions. The irre-

producibility of the response at a given phosphate concentration and pH· 

was attributed to .the surface cha:racteristics of the billet. 

In the, present.study a similar electrode; Figure 7, was prepared. 

In an attempt to.minimize the internal stress :of the billet, the molten 

bismuth was allowed to cool in ,a temperature controlled oven after cast-

ing, The active end .of the bil:J.et was 'tllade planar by resting on a porce-

lain plate during casting. This formed a flat surface which revealed 

small air pockets.upon microscopic_investig~tion. To rem.ave these pock-

ets and any oxide that might have formed during casting, this billet was 

machined and bu~fed with croc~us cloth. The·resultant surface was 

shiny and regular. 

Modification of the billet was effected in an attempt to .obtain a 

more reproducible active surface; After cleaning the billet with ace-

tone, mercury was electrolytically deposited on.the electrode from a 0.1 

M mercurous'nitrate solution. The liquid mercury dissolved into the 
\ 

bismuth leaving an unsmooth grey surface. 

This electrode, exhibited an unstable and_poor potentiaJ,. response 

(approximately 5 mV per decade change iri phosphate concentration). A 

thin white film, believed to be BiJ?04, formed on the.active end of the 

electrode. Th±s,film was removed and further merc4ry deposition was 
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attemp;ed. The mechanical integr:(.ty of the .electrode decreased with the 

appearance of cracks in the active surface of the billet. 



CHAPTER V 

DlSCUSSION . 

As em1merated in Chapter II, atte111pts to develop an ion selective 

membrane electrode.for phosphate have had very little suc~ess. The mem-

brane electrodes which are r9isponsive to changes in phosphate concentra-

tion, show little or no selectivity to phosphate over other ions. The 

selectivitie.s of membrane electrodes are primarily dependent µpan the 

relative mobility of; the ions in the membranes, The diffuse charge and 

large siz.e of the phosphate species result in low mobilities for phos-

phate in the membranes. 

Ross (32) theorizes that only small univalent ions can have suffi-

cient mobility in a crystal lattice to be, useful in membrane elect.rodes. 

Bi.smuth Amalgam Electrode 

The procedu~e described by Scribner and Reilley (43) for preparing 

amalgams is straightforward and proved satisfactory. Variation in amal-

gam composition between 0.5 and 1.4 weight percent bismuth does not in-

fluence the potet;1.tial of the electrode. 
•. ' . \ . . 

Electrode Response 

The bismuth amalgam.electrode exhipits a response to phosphate which 

is lirte~r over approximately a 4 decade range of phosphate concentration. 

The,siope of the linear portion of the.calibration curves is in excellent 
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agreement withthe theore1;:ically predicted valu,e of the Nernst equation, 

0 or, at 25 C 

E = mV 

= 

Ek+ RT/nF log (pho~phate)total' (10) 

Ek+ 19.7 log (phofi!phate)total' (11) 

where EmV is the observed cell potential and Ek b the effective stand­

ard cell potential,.which includes·eff.ects of junction potentials, in-

temal resistance, and the ionic strength. The numerical value of the 

slope is determined by the gas constant;, R, the absolute temperature, T, 

Faraday's constant, F, and the.number of moles of electrons transferred 

in the indicator electrode, n. 

Accuracy 

The-expecteq relative error, RE, in the concentration due to.the 

error in the potential, ~E~ can be seen in. the first derivative of Equa-

tion (10) with respect to concentration (45): 0 at 25 C, 

= (0.2568/n)(lOO ~C/C) 

(0.2568/n)(RE). 

(12) 

(13) 

Therefore, the relative error in concentration is independent of the con-

centration range or the .size.of the sample in which the. potential is. 

being measured. ' Rather, at constant temperature the relative error is 

directly .proportionaLto n and the error in the measured potential. 

Since the bismuth amalgam electrode undergoes a 3 electron change, 

the relative error in conc,entration is -.11. 7 percent per mV error in th.e 

potential. 
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Selectivity 

A comparison o~ the selectivity coefficients for phosphate ions 

over chloride ions using two different methods is made in Table VI. 

The calculations of .Method II, using potentials measured in solutions 

containing orthophosphate and chloride ions, gave selectivity cqeffi- · 

cients smaller than those of Method I. This implies that the selectiv­

ity coefficients listed in Table V are slightly larger, than those which 

would be encountered in practical analytical situations. 

pH Titrations 

Titrations of the orthophosphate.solutions (Figures 5 and 6) showed 

several important po~nts. While the volume of .. titrant (0.1 M potassium 

hydroxide) required to produce a specific pH was very reproducible, the 

potential at the,new pH became less reproducible ai; the new pH increased. 

The slope of the curve for each phosphate concentration is greatest 

around a pH of one. Control of pH is the1;efore more critical in this 

area. Deviations from 1:!-nearity occur above pH= 2. This is especially 

true around the pK1 of phosphoric acid (pK1 = 2.125) where a decrease.in 

the potenti1;1l is observed.. The· decrease is more pronounced in the great­

er concentrations of phospha~e. The overall trend can be attributed to 

not only the multiple equilibria of the phosphate species; but also to 

the competition of the hydroxide io'Q.S for the bi$muthyl fons. 

Droppit)cg Bismuth Amalgam:Electrodes 

The·problems of reproducible drop r~tes and capill~ry clogging can 

be explained by the surfa~e·properties ;of bismut~ and merc\1sry. Bismuth 

is a glass wetting metal and mei;cury is a glass non~wettirtg metal. After 
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the.apparatus had been used for several weeks, a film cquld. be seen on 

the tygon tubing leading from the amalgam reservoir to the glass tubing. 

This film is believ:ed to be bismuth metal and was probably being deposit-

ed on the. walls of the capillary tubing as well. 

Amalgamated Bismuth Billet Electrode 

Madden. (29) attributed the potential irreproducibility ,of the bis ... 

muth billet.electrode.to its surface.characteristics. During the present 

investigation mereury was e:t,ectrolyticallydeposited on such an.elec-

trade, Figure 7~ · This resulted in a lack of improveiµent in the potential 

reproducibility and .a decrease in the change of emf for a given change. 

in phosphate concentration. 

Summary. 

The formation .of a BiP04 film on th~ amalgam suggest,s that the bis­

muth all).Slgam.electrode is performing ~s a~ electrode of the Second Class. 

from 3 x 10-4 to The electrode gives a Nernstian slope of 19.7 mV/pCPO 
4 -1 1 x 10 M phosphate concentration. The test solutions must have a pH 

of·one due ·to_the competition of the hydroxide ions.for the bismuthyl 

ions in more basic sol.utions. The bismuth amalgam electrode has selec-

tivity over int~rferring ion~ (Tables V and VI) which is better than 

other phosphate·selective electrodes described in.the literature. How-

eyer, in comparison to the selectivities of other electrodes for other 

ions; the selectivities of the bismuth atl),algam electrode can only be 

consi4ered fair. 

The dro~ping bis~uth. amalgam configuration and the amalgamated bis-

muth billet ,electrode are unsuited for the direct determination of· 



phosphate du~ to their irreproducible potentials for given concentra~ 

tio~s, but may be suited for titration analysis. 
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APPENDIX A 

ACTIVITY ,COEFFICIENTS USED IN THE CALCULATION 

OF MOLAR ACTIVITIES AND SELECTIVITY 

COEFFICIENTS 

The relationship. b~tween activity, ai, and concentration, Ci, of the 

ion, i, is given by: 

= (1) 

where Yi is the activi~y coefficient of tl;ie ion.,, 

In this investigation, the activity coefficients of various ions 

were obta.ined from two sourc,es. The activity coefficiel).ts for ions at 

-3 -1 several concentrations between.! x 10 and 1 x 10 M were obtained 

from Refel;'ence 46 and are listed in Table VII. All other activity coef-

ficients were ob,tained from th~ extended form· of the Debye"'."Huckel limit, 

ing law, Equation (2) (47). These values are·listed in Table VIII. The 

coefficieI).ts which are in the concentratioI). range of Table VII,are in 

excdient agreement with the interpolated values from this tab1E!. 

The· Debye-Hucke~ equa tioi::i. states, . 

-log Yi (A z/ If) I (l .+ B a If), (2) 

where A = constant (at 25° C, A• 0.5115), 

= the charge of the ion, 

= the.ionic strength (I= 1/2 i Ci zi2), 
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TABLE VII 

INDIV.IDU~L ACTIVITY COEFFICIENTS OF IONS. IN WATER (46) 

Inorganic Ion Concentrat;ion ,(in M) Activity Coefficients 

Hl04 1 x 10-3 0.975 

1 x 10-3 0.964 

H2Aso4 · 5 x 10-3 0.947 

1 x 10-Z 0.928 

103 2 x 10-2 · 0.902 

5 x 10-2 0.86 

HSO 
-1 o. 82 .· 1 x 10 . 4 

2 x 10-1 . o. 775 

1 x 10-3 0.975 

2 x 10-3 0.964 

Cl - 5 x 10-3 0.945 

1 x 10-2 0.925 

N0 3 2 x 10-2 0.899 

5 x 10-2 0.85 

1 x 10 -1 0.805 

2 x 10-1 0;755 

1 x 10-3 0.975 
2 x 10-3 0.964 
5 x 10-3 0.946 

-2 0.926 NCS- 1 x 10 
2 x 10-2 0.900 
5 x 10-2 0.855 
1 x 107"1 0.81 

2 x 10 0.76 



Inorganic Ion 

H/04 

Hso4 

HlsO~ 

-
I03, Cl 

No;·and SCN -

TABLE VIII . 

INDIVIDUAL ACTIVITY COEFFICIENTS OF IONS IN 
WATER FROM THE DEBYE~HUCKEL LIMITING 

LAW (EXTENDED FORM) 

43 

Concentration (in M) · Activity Coefficients 

7 x 10-7 0.999 
7 x 10-6 0.997 
2 x 10-5 0.995 
7 x 10-5 . 0.990 
2 x 10-4 0.984 

5.6 x-10 -7 0.999 
5.6 x 10 -6 0.997 
5.6 x 10 -5 0.991 
5.6 x 10 -4 0.973 

1 x 10-5 0.996 

l.x 10 -4 0.988 
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and, B = _constant -(at 25° C_, 10-S B = O. 3291) •. 

Equation (2) may be used to calculate activity coefficients at tempera-

0 tures other than 25 C, by using the.appropriate values for the tempera-

ture dependant constants, A and B •. 



APPENDIX B 

TWO METHODS USED TO CALCULATE 

SELECTIVITY COEFFICIENTS (4.8) 

The potentials measured with ion selective electrodes in solutions 

~ont;:aining the primary ion and any other ion to.which the.electrode re­

sponds, have be~n found to fit the.empirical equation 

where 

E = E0 + 2.303 RT/F log (a1 + Ka2) 

a1 = act~vity of the primary univalent anion 1 

a2 = activity of any other univalent anion 2, to which the 

electrode responds 

and K = selectivity ratio of.anion 2 for the given electrode. 

(1) 

The selectivity ratio can,be evaluated, using this equatiott, by 

carrying out poten~iometric measurements in solutions containing mixtures 

of the ions of ip.terest or by utilizing a series of solutions each con­

taining only a single salt. Two .major evaluat~ve methods may be used. 

Method I., The poten;ial of an ion selective electrode in a solu-:­

tion containing only th,e primary univalent anion is given by 

El = E0 + 2.303 RT/Flog a1 (2) 

If the solution does not. cqntain the primary anion but any other univa­

lent anion witll a selecti,vity ratio K, th.e potential of the electrode in. 

such a solutio1;1 can be ~xpressed by Equation (3), obtained by substitut-
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ing a1 = 0 in Equation (1): 

If Equations (2) and (3) are combined.with E1 = E2 , we get 

where a1 and a 2 are the activities of.the two ions which produ<re the 

same potential when present separately. 
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(3) 

(4) 

Method II. The potentia+s of .the electrode.in solutions containing 

only the primary ion of interest, Equation (2), and in solutions contain-

ing both ions, Equation (1), ,is ·used in. this method. · Combining these 

two equations, one obtains · 

E - E = 1 

a1 + Ka2 
2. 303 RT /F log ----­

al 

which can.be rearranged,to give an explicit expression for K, 

K = 

E1 - E 
(exp { RT/F }) al - al 

a2 

(5) 

(6) 
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