This dissertation has been microfilmed exactly as received

68-14,204

L

KINGSBURY, Phyllis Jean, 1938-PLANKTON PRODUCTION AND SPECIES DISTRIBUTION IN THE LIMNOLOGICAL PROVINCES OF OKLAHOMA.

The University of Oklahoma, Ph.D., 1968 Zoology

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

PLANKTON PRODUCTION AND SPECIES DISTRIBUTION IN THE LIMNOLOGICAL PROVINCES OF OKLAHOMA

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

BY PHYLLIS JEAN KINGSBURY Norman, Oklahoma 1968 PLANKTON PRODUCTION AND SPECIES DISTRIBUTION IN THE LIMNOLOGICAL PROVINCES OF OKLAHOMA

APPROVED BY

men 0

DISSERTATION COMMITTEE

ACKNOWLEDGEMENTS

I wish to express my appreciation to Dr. Howard P. Clemens, under whose direction the investigation was conducted, for his continuous interest, encouragement, invaluable suggestions and cooperation in providing data from previous work.

I also wish to thank the students and assistants of the Limnology classes at the University of Oklahoma from 1959 to 1963 who conducted the preliminary studies and did the chemical analyses for characterizing the provinces. Special thanks is due to the assistance of the Limnology classes of 1965 and 1966 without which the scope of the present investigation would have been impossible.

This study was aided by a Graduate Cooperative Fellowship from the National Science Foundation and by an NSF Grant-in-Aid from the University of Oklahoma Biological Station. For their aid and the help of the Department of Zoology, its faculty, staff and students, I am greatly indebted.

iii

TABLE OF CONTENTS

	Page
LIST OF TABLES	vi
LIST OF ILLUSTRATIONS	vii
INTRODUCTION	1
The Study Area	35 13
METHODS	15
The Lakes Sampled	15 16 20
PLANKTON PRODUCTION	23
The Amount of Plankton Collected	23 24
Morphological Conditions	29
SPECIES DISTRIBUTION	30
Kinds of Plankton Collected	, 30
Province	32
Distribution	, 38
DISCUSSION	. 42
SUMMARY	. 46
LITERATURE CITED	. 48

APPENDICES . 53 I. Miscellaneous Collection Data, Appendix 1965, 1966. 54 Appendix II. Conductivity, Temperature and Light Profiles, 1965, 1966.... 57 Climatological Data, 1965, 1966 . . Appendix III. 67 Plankton Standing Crops in 1966 . . 68 Appendix IV. Appendix V. Depth Distribution, 1965, 1966. . . 71 Appendix VI. Systematic List of Copepoda and Cladocera, 1965, 1966 75 Species Occurrence in Lakes in Appendix VII. 76 1965. Appendix VIII. Species Occurrence in Lakes in 1966. 78 Percentage Composition of the Appendix IX. Major Species of the Total Crustacean Population, 1966 . . 81

ν

LIST OF TABLES

٩.

•

Table		Page
1.	Chemical Characteristics of the Limnological Provinces, 1961	9
2.	Differences of Standing Crops and Specific Conductance within a Lake, 1966	18
3.	Specific Conductance Differences between Years and Province means 1965, 1966	21
4.	Standing Crops of Plankton According to Province	25
5.	Coefficient of Variation of the Sampling Methods	26
6.	Relationship of Plankton Standing Crop to the Chemical Characteristics of the Provinces	27
7.	Percentage of Lakes in Each Province in which the Major Species Occurred 1965, 1966	31
8.	Species Associations of <u>Diaptomus</u>	33
9.	Matrix for Comparison of Species Composition between Provinces	ւեր

vi

LIST OF ILLUSTRATIONS

Figure		Page
1.	The Limnological Provinces of Oklahoma	• 7
2.	Chemical Differences between Adjoining Provinces	. 12
3.	Province Vertical Haul in Relation to Province Conductivity	. 28
¥.	Diaptomid Distribution	• 35
5.	Daphnid Distribution	• 37
6.	Cyclopoid Distribution	• 39

.

PLANKTON PRODUCTION AND SPECIES DISTRIBUTION IN THE LIMNOLOGICAL PROVINCES OF OKLAHOMA

INTRODUCTION

By 1974, Oklahoma is estimated to have more than 1,300,000 surface acres of water; fifty percent will be in large reservoirs and thirty-two percent will be in farm ponds (Lambou, <u>et al.</u>, 1965). If the water chemistry and biological production of these impoundments could be characterized, it would enhance their management and study.

Regional limnology is based on a study of biological production (Naumann, 1932) and the relation of production to its controlling factors. The concept of regional limnology includes the recognition of two principal classes of factors, edaphic and climatic, operating upon the lake biocoenosis with a third class, the morphometric, responsible for lakes being products of their substrate and drainage (Deevey, 1940). Edaphic factors determine the kinds and amounts of primary nutritive materials while morphology and climate largely determine the utilization of these materials (Rawson, 1939).

-

Deevey, working on Connecticut lakes, stated that in circumscribed regions under essentially uniform climatic conditions the edaphic factors are of supreme importance. Naumann (1932) showed the relationship between "surficial geology" and water-type in lakes in Sweden. A similar relationship was alluded to by Birge and Juday in their many studies on Wisconsin lakes.

Rawson, in his work on lakes in the Canadian Rockies and Central British Columbia, suggested that the total mineral content of waters (1951) and the total dissolved solids (1961) provided crude indices of the edaphic conditions which in some measure affect the productivity of lakes. Toth and Smith (Frey, 1963) showed a correlation between soil constituents, water characteristics and fish productivity in three edaphically distinct regions of New Jersey.

Little in the way of regional limnology has been done in the state of Oklahoma. Limnological work has been restricted to studies in connection with fisheries biology (Summers, 1961; Gasaway, 1961; Orr, 1958), pre-impoundment fishery investigations (Clemens, 1954; Jenkins, <u>et al.</u>, 1952) and studies of oil pollution (Baumgardner, 1966; Mathis, 1965; Minter, 1964; Wilhm, 1965; Copeland, 1963; Clemens and Finnell, 1957). Hornuff (1957) conducted a limnological survey of four Oklahoma streams and concluded that edaphic features did not correlate with production; morphological characteristics appeared to be the principal

factors influencing production through rate of flow and bottom type.

The present study was undertaken to see if there were any differences in production within the state. Oklahoma waters contain a wide range in ion content and this presents a fine opportunity to see if edaphic factors are influencing production.

The Study Area

Oklahoma is a plain which slopes from the highest altitude in the northwest toward the lowest in the extreme southeast and is interrupted by the Ozark Mountains in the northeast, the Ouachita Mountains in the southeast and the Arbuckle and Wichita Mountains in the south.

The climate is temperate with relatively short and mild winters. In the north and west the temperatures are usually cooler than in the south and east which is affected by the Gulf of Mexico (Snider, 1917). Killing frosts are not common in the southern section later than early April or earlier than mid-November. The average annual precipitation ranges from 18 to 50 inches with over half of the state receiving 30 inches mostly occurring during the warmer months (Gray and Galloway, 1959).

Shelford (1963) placed eastern Oklahoma in the temperate deciduous forest and western Oklahoma in the temperate grassland. Webb (1950) recognized the major part of

the state as being an ecotone between the two biotic provinces. The physiographic areas of the state were mapped by Curtis and Ham (1957).

Oklahoma is underlain by sedimentary rock with the exception of small areas along the axes of the Wichita and Arbuckle Mountains where there are igneous outcrops. The oldest rocks occur in the eastern and the youngest in the western parts of the state (Walling, <u>et al.</u>, 1951). The geology of the state has been well mapped by Miser (1954). Pre-cambrian granite rocks occur only as cores of the Arbuckle and Wichita Mountains where they are surrounded by Paleozoic rocks. These older Paleozoic rocks are also present in valleys in the Ozark Mountains and in a few areas of the Ouachita Mountains.

Mississippian rocks occur in the Ozark Mountain region as limestone, flint and chert, and in the Ouachita Mountains as shale and sandstone. In the east, Pennsylvanian rocks occupy a broad L-shaped area which in the southern and eastern part consists of sandstones and shales with several limestone beds in the north.

Permian rocks of soft red shales and sandstones outcrop over most of the western half of the state. They were deposited in and around the Permian Sea which covered most of the central and western part of the state. Deposition of these rocks was in an evaporating environment resulting in the concentration of large quantities of

sodium, calcium, potassium, magnesium, carbonates and sulfates.

During the lower Cretaceous, the sea advanced from the south covering the eastern part of the state north to the Ouachita and Arbuckle Mountains. The lower Cretaceous rocks consist primarily of limestones and soft shales with some sandstones.

Tertiary rocks are soft unconsolidated clays, sands and gravel which form a covering in the northwest. In the valleys of the streams, the alluvial soil is of sufficient depth-to be classed as a distinct formation--the Recent Alluvium. Along the rivers, in the west, there are large areas of sand hills blown from the river beds.

Calcium carbonate is the principal constituent of limestone and calcium-magnesium carbonate is the chief constituent of dolomite; therefore water analyses from these areas show relatively large amounts of calcium, magnesium and carbonates. Calcium carbonate occurs in many sandstones and shales. Waters traversing siliceous rocks are relatively free of dissolved inert substances and silica is often the predominant constituent (Walling, <u>et al.</u>, 1951).

The Limnological Provinces

During the spring of 1959 a study of 70 different impoundments by Dr. Howard Clemens with the aid of his Limnology class revealed remarkable similarities in ionic

values of impoundments of given regions of the state and that these similarities could be related to specific rock types. Originally it appeared that soil types might be the basis for regional considerations of edaphic control but it was discovered that the details of soil distribution had not been worked out to a suitable extent. Since then they have been studied (Gray and Galloway, 1959).

To determine the influence of geologic rock types on the ionic content of water, 135 impoundments throughout the state, exclusive of the Panhandle, were sampled during the spring of 1961. Each sample was analyzed for calcium, sodium, potassium, magnesium, sulfates, phosphates, bicarbonates, carbonates, hydrogen-ion and total electrolytes. There were rather consistent values for certain ions in waters in specific rock types. Fluctuations of a given ion in a geologic unit could be related to specific geologic causes.

Twelve limnological provinces, demarcated on the geological areas of Miser, are recognized as having waters with distinctive ionic compositions (Figure 1). The geological areas having waters of similar ionic composition have been grouped. Gypsum had a marked affect on the ionic composition when it occurred and these areas have been separated from the non-gypsum areas (non-gyp) in each of the provinces.

Figure 1: The Limnological Provinces of Oklahoma.

Western Oklahoma Provinces

In western Oklahoma, the large amount of salts deposited in the Permian rocks influenced the water in this region to be rich in sodium, calcium, potassium, magnesium, bicarbonates and sulfates as compared to waters in other parts of the state (Table 1).

<u>Blaine Province</u>.--Impoundments located in the Blaine gypsum in northwestern Oklahoma were characterized by consistently high values for all cations as well as sulfates. The average specific conductance was 2,866 μ mhos/cm³ at 25^oC.

<u>Western Province</u>.--The Western Province was generally lower in ions than other provinces of Permian rock. Ion concentrations were similar to those of the Central Province with the exception of sodium which was less in the Western. The average specific conductance was 225 μ mhos/cm³.

<u>Midwestern Province</u>.--The calcium, sodium, bicarbonate and specific conductance values were higher than for the Permian areas of the western half of the state. The average specific conductance was $422 \,\mu$ mhos/cm³.

<u>Alluvium Province</u>.--The western alluvium is rich in salts drained from salt rich areas. Leaching in some regions has resulted in a reduction making the ionic composition of the Alluvium Province varied. The specific conductance in the non-gyp areas averaged 523 μ mhos/cm³ and 1,922 μ mhos/cm³ in the gyp areas.

PROVINCE (N)	P Dı ₊ ppm	HCO ₃ ppm	Ca ppm	Na ppm	K ppm	Mg ppm	SO ₄ ppm	Conductivity u mhos/cm ³ at 25°C
OUACHITA (4)	.0925 ± .1673	33.50 ± 7.36	10.75 ± 1.38	3.25 ± 0.56	1.75 ± 0.48	3.00 ± 0.00	< 50	60.75 ± 15.29
OZARK (4)	.0750 ± .0195	37.00 ± 14.88	6.50 ± 3.77	1.50 ± 0.91	6.25 ± 2.18	3.50 ± 0.29	< 50	76.75 ± 26.83
CRETACEOUS SANDSTONE (7)	.061 ¹ 4 ± .0005	67.14 ± 15.30	15.14 ± 1.05	4.14 ± 0.88	10.57 ± 7.73	16.28 ± 6.33	<50	146.71 <u>+</u> 40.71
CRETACEOUS LIMESTONE (5)		184.40 ± 51.96	30.80 <u>+</u> 11.55	7.40 ± 1.60	3.40 ± 1.08	3.80 <u>+</u> 0.58	<50	271.60 ± 48.99
EASTERN (20)	.0935 <u>+</u> .0073	¹ +9.90 ± 7.94	11.70 <u>+</u> 2.02	6.70 <u>+</u> 0.52	7.00 <u>+</u> 0.72	6.25 <u>+</u> 1.47	<50	131.90 ± 18.54
CENTRAL (20)	.1010 ± .0145	106.70 ± 12.14	25.75 ± 3.05	14.65 ± 3.75	6.60 ± 0.72	7.85 ± 1.49	<50	249.75 ± 28.75
WICHITA MTS. (3)	.0766 <u>+</u> .0334	51.66 <u>+</u> 3.26	17.33 <u>+</u> 6.74	6.33 ± 1.67	7.00 ± 4.51	3.33 ± 1.14	<50	130.33 ± 18.44
ARBUCKLE MTS. (6)	.0633 ± .0033	116.66 ± 28.96	26.30 ± 3.21	11.30 ± 7.49	3.50 ± 0.88	20.16 ± 6.89	<50	271.50 <u>+</u> 66.05
MIDWESTERN NON-GYP (13)	.1190 ± .0296	148.92 ± 17.71	39.77 ± 4.01	28.75 ± 3.46	8.55 ± 1.76	21.23 ± 4.32	<50	441.62 ± 69.25
MIDWESTERN GYP (11)	.1180 ± .0162	126.73 ± 22.18	199.82 ± 62.40	203.36 ± 75.30	14.73 ± 3.04	55.00 ± 20.70	462.4 ± 116.9	1,735.27 ± 447.20
WESTERN NON-GYP (12)	.1569 ± .0009	100.60 ± 11.30	31.54 ± 4.29	4.77 ± 1.40	11.77 ± 3.29	10.61 ± 2.32	< 50	224.9 ± 10.10
ALLUVIUM NON-GYP (16)	.1456 <u>+</u> .0608	149.30 ± 24.00	34.18 ± 6.42	65.81 ± 19.66	10.00 ± 1.59	17.75 ± 3.36	< 50	523.00 ± 116.70
ALLUVIUM GYP (3)	.1130 <u>+</u> .0417	162.00 <u>+</u> 61.08	188.00 <u>+</u> 29.40	150.30 ± 35.87	9.33 ± 3.77	46.00 ± 5.39	6 ¹ 0.7 ± 163.7	1,922.00 ± 350.23
BLAINE (5)		66.80 ± 5.46	294.40 ± 41.70	189.20 ± 93.40	13.00 ± 1.52	85.00 ± 43.93	1,086.6 ± 92.0	2,866.40 ± 472.80

Table 1: Chemical characteristics of the Limnological Provinces, 1961. Province mean \pm standard error.

<u>Central Province</u>.--The waters of the Central Province had a lower ionic composition than the Midwestern Province to the west and higher values than provinces to the east. The average specific conductance was 250 μ mhos/cm³.

Eastern Oklahoma Provinces

Although the waters of eastern Oklahoma are not so varied as those of the western part and have moderate to low concentrations of ions, there appears to be sufficient reason for recognizing six provinces. The names are modifications of the physiographic provinces (Curtis and Ham, 1957).

Eastern Province.--The Eastern Province includes a wide range, from the very low ionic areas on the east to the much higher areas in the northern part. The average specific conductance was $132 \ \mu$ mhos/cm³.

<u>Cretaceous Limestone Province</u> and <u>Cretaceous Sand-</u> <u>stone and Shale Province</u>.--Relatively uniform ion concentrations characterized the two Cretaceous provinces. Some ionic values were similar to the Eastern Province and others were higher. Ionic content of the Cretaceous Sandstone and Shale Province was higher than that of the Ouachita Mountain Province. The Cretaceous Limestone Province is separated from the surrounding province of sandstone and shale by the higher calcium, bicarbonate, carbonate and specific conductance values. The average specific conductance for the Cretaceous Limestone Province was 272 μ mhos/cm³ and 147 μ mhos/cm³ for the Cretaceous Sandstone Province.

<u>Arbuckle Mountain Province</u>.--The Arbuckle Mountain Province while surrounded by the Central, Eastern, Ouachita and Cretaceous provinces is delineated by geology. Its average specific conductance was 272 μ mhos/cm³.

<u>Ozark Plateau Province</u>.--The Ozark Plateau Province is demarcated by low ionic values. The major rocks of the area are cherts with highly insoluble silicates and low ionic values are expected. The average specific conductance was 77μ mhos/cm³.

<u>Ouachita Mountain Province</u>.--The Ouachita Mountain Province was also characterized by low ionic values. The average specific conductance was 61 μ mhos/cm³, the lowest of all provinces.

In summary, the provinces are separated by geology, geographic location and by unique combinations of ionic values. The ionic values of the gyp area were separated from the non-gyp areas (Table 1). Ion concentrations of adjoining provinces were tested for significantly different ion concentrations with the "t" test. Adjoining provinces were usually separated by two or more ions which are of statistically different concentrations (Figure 2).

1

Figure 2: Chemical differences between adjoining provinces. The factors listed are those which are significantly different between provinces using the "t" test.

N

<u>Cladocera</u> and <u>Copepoda</u>

The Cladocera, are sometimes cited as a group where a geographical distribution study promises little because such species as <u>Chydorus sphaericus</u> are cosmopolitan. But the range of many forms includes several continents while a significant number are restricted even further. Studies of taxonomy and distribution could be of considerable zoogeographical interest (Brooks, 1959).

Most species of Cladocera are littoral but the limnetic region of lakes has a cladoceran population large in individuals but not rich in species (<u>Daphnia</u>, <u>Diaphanosoma</u>, <u>Bosmina</u> and <u>Holopedium</u>; Brooks, 1959). The Cladocera of Oklahoma have been described by Jones (1954, 1955).

The number of generations of perennial species may be ten per year in temperate lakes. The number may be less than occurs in rotifers, but more than would be expected in copepods (Hutchinson, 1967).

The Copepoda contain the most important planktonic crustacea. The fresh water copepods, particularly the Diaptomidae, appear to exhibit a great deal of regional endemicity. In the list of North American copepods approximately half the cyclopoid species are known in the Old World, whereas only about 10 percent of the Calanoida occur in both areas (Hutchinson, 1967).

Most Calanoida belong permanently to the plankton. There is a differentiation between pond and lake and between limnetic and littoral species. The calanoids mature in one to two months and live for 10 to 13 months. Some are multivoltine, with many generations per year, while others are univoltine, exhibiting a single generation per year.

The Cyclopoida are mainly littoral benthic pond forms but the small proportion of planktonic species is of immense importance. Nearly all species are cosmopolitan and of wide distribution.

The Cladocera and Copepoda represent major planktonic groups which are basic to fresh water food chains. They have a longer life span and period of development than do phytoplankton and rotifers and their populations are not as likely to have as rapid a fluctuation.

The objectives were: primarily, to study copepod and cladoceran productions in relation to the limnological provinces in Oklahoma to determine whether or not differences in production could be detected between provinces during the spring; and secondarily, to study species distribution of copepods and cladocera in relation to the limnological provinces in Oklahoma to determine whether or not species were limited in their distribution from province to province.

•.•

METHODS

The Lakes Sampled

From April 16 to May 2, 1965, 32 impoundments were visited and in 1966 between April 7 and May 1, 54 lakes were visited. Of these 86 lakes, 81 are included in this study. A total of 65 different impoundments were visited during the two years. Each year collections were begun in the southern part of the state and continued northward. It was hoped that in this way the lakes would be sampled more at the same state of seasonal development and the effect of seasonal succession could be minimized.

The lakes sampled were grouped into eleven provinces. The Cretaceous Limestone Province is a narrow band and no lakes existed in it alone. Several lakes in the Cretaceous Sandstone appeared to have drainages which included some of the Cretaceous Limestone. In this investigation, the lakes of these two areas were grouped as Cretaceous. Otherwise lakes were selected whose drainages were restricted to one province.

The average size of the lakes was 200 acres and the average maximum depth of the samples was 5 meters. Lakes in

Oklahoma are almost all man-made, very shallow and relatively smaller than lakes in other parts of the continent. These small shallow lakes are more subject to rapid temperature changes and stratify only during periods of no wind and high temperatures. During the summer the bottom temperatures are lower than the surface but never reach 4°C, thus classifying the lakes as temperate, third order lakes (Welch, 1952). Exact locations for the lakes may be obtained from the Oklahoma Water Resources Board (1965).

Methods of Collection

All plankton collections were made in the deep-water area of the lakes. Ruttner (1963) stated that observations of a particular place are valid for the lakes as a whole because the horizontal distribution of plankton is approximately of the same density provided the basin is not too extensive, not divided into separate basins and not too shallow. Horizontal distribution depends on age, sex, food organisms and the species. Species have been shown to be randomly distributed horizontally and then the same forms have been shown to be superdispersed horizontally by other investigators (Hutchinson, 1967).

Three methods were used in sampling the plankton populations. With the first, called the vertical haul sample, a No. 25 silk bolting plankton net 20 cm in diameter was allowed to sink to the bottom, then drawn to the surface. All the contents were washed into the collecting bottle and

preserved. The number in the vertical haul was divided by the depth of the water column sampled to get a quantitative measurement per meter.

With the second method, ten liters were collected at a certain depth using the Kemmerer water bottle and emptied into a No. 25 plankton net and preserved. This way the plankton from a definite quantity of water at a particular depth was sampled. In lakes where the top, middle and bottom meters were sampled, these values were averaged to give a top, middle and bottom mean. The Kemmerer water bottle was filled five times for each depth to minimize any clumping effect of the plankton.

In the 1966 collections, an additional method was the horizontal tow. A No. 25 mesh nylon net, 50 cm in diameter was towed 20 feet behind the boat through the deep water area for one minute. The boat was headed into the wind and speed was maintained to keep the net in the upper three meters. This sample was preserved after all the plankton was in the collecting jar. The sample, composed of plankton and water, was measured into a graduated tube and the water was drawn off by a Buchner funnel. The total volume minus the volume of water removed gave the volume of plankton present.

To give an indication of the amount of variation within a lake, five lakes were sampled twice in 1966 (Table 2). Collections were taken under different conditions

Province	Гаке	Date	Time	Sp. Cond. wmhos/cm3 at 18°C	Vertical Haul (No.)	Vertical/ Depth (No./m)	Horizontal Tow (ml)	Top, Middle Bottom, Ave (No./1)
Wichita Mts.	Q. Parker I	4/16	06:30	174	7 ¹ + ¹ +	186	8.7	27.0
	Q. Parker II	4/14	12:45	158	2,482	354	11.0	22.0
Wichita Mts.	E. Thomas I	4/15	18:00	171	7,300	1,043	8.8	113.7
	E. Thomas II	4/14	09:15	166	3,580	398	9.1	17.1
Eastern	Wetumka I	4/30	18:30	271	1,588	318	3.0	30.5
	Wetumka II	4/28	13:30	260	427	81	5.9	7.2
Alluvium	Elmer I	4/17	10:45	367	8,080	3,026	8.0	79.1
	Elmer II	4/21	12:30	384	1,868	467	38.5	85.0
Blaine	Watonga I	4/17	08:00	1,878	9,592	1,599	8.1	73.3
	Watonga II	4/21	10 : 50	1,404	4,076	816	3.5	48.7

1

(

Table 2: Differences of standing crops and specific conductance within a lake, 1966.

.

and the variation within a lake was large with all three methods.

During the summer of 1967, I did a study to get an indication of the amount of variation between repeated collections using the same three methods. The vertical haul samples had a coefficient of variation (Steel and Torrie, 1960) of 23% while the horizontal tow was 42%. Ten liter samples taken repeatedly at the same depth had coefficients of variation from 35% to 71%. The samples were taken during mid-summer when the plankton is minimal and this may have magnified the amount of variation. However, it seemed that the vertical haul had the best reliability between replicate samples.

Winsor and Clarke (1940) reported a coefficient of variation of 53% in repeated vertical hauls taken on the same lake while other investigators reported 43% and 47%. Ruttner (1963) stated that variations of 10 to 20% are to be expected in plankton counts.

At the plankton sampling station, an Industrial Instruments Soil Conductivity Bridge Model No. RC-12 CIP was used to measure specific conductance. The conductivity bridge had been modified by the addition of a photoelectric cell and photoresistance readings for light penetration were taken until zero penetration or the bottom was reached. Water temperatures were recorded for every meter using a Foxboro underwater thermometer.

Juday and Birge (1933) found specific conductance was characteristic of a lake and tended to remain approximately the same. Rodhe (1949) demonstrated that measuring total content of electrolytes provided a measurement of total mineral content. Edmondson (1956) used electrical conductivity to measure salt content, while Williams (1966) used conductivity to measure total dissolved solids.

Previous work has shown that the specific conductance values can be characteristic of a province (Table 1). A comparison of province conductivities between 1961 and the current study (Tables 1 and 3) illustrated the relative constancy of this measurement for a province. The specific conductance for a province will fall within a certain range, and thus can be helpful in determining the province of a lake. The variation found between lakes sampled in both 1965 and 1966 (Table 3) was with a few exceptions, small.

Methods of Counting and Identification

In the vertical and quantitative samples the number of adult copepods and cladocera were counted using a gridded petri dish and dissecting scope. If individuals were scarce, the entire sample was counted. If a large number of individuals was present the total number was estimated by a partial count. Organisms were identified to genus during the counting and representative individuals were withdrawn, dissected when necessary, then permanently mounted in glycerin jelly or Turtox CMC-S, sealed and identified using

Province Lake	1965	1966	Prov- ince N	Specific Conductance Mean <u>+</u> Standard Error
OUACHITA Clayton O. Cobb N. Waiya Schooler	54.2 65.2 75.6 73.6	53.8 58.8 73.2 63.4	8	66.3 ± 3.10
OZARK Francis Greenleaf	243.3 191.9	201.9 127.9	6	119.8 <u>+</u> 15.66
CRETACEOUS Carter R. Gary	243.9 157.4	212.0 166.9	5	177.3 <u>+</u> 23.62
EASTERN Holdenville Okmulgee Bluestem Hominy Carleton	161.3 265.0 546.0 869.4 78.3	154.6 297.9 482.2 282.4 57.2	20	271.5 ± 42.49
CENTRAL Shawnee Pawnee	265.0 446.6	213.7 339.0	11	325.7 ± 37.54
WICHITA MTS. Rush	105.6	90.2	9	144.1 ± 15.66
ARBUCKLE MTS. Mountain	281.7	332.4	3	295.9 ± 18.40
MIDWESTERN			5	459.7 ± 71.58
WESTERN Hobart Clinton	780.4 696.8	588.2 455.4	у+	615.2 ± 74.75
ALLUVIUM Mahoney #1	1,459.2	1,207.4	6	1,044.4 ± 210.45
BLAINE Watonga	1,989.6	1,904.8 1,422.0	3	1,772.1 ± 176.72

Table 3: Specific conductance differences between years and province means 1965, 1966.

۰.

Pennak (1963) and Yeatman (1959) for the cyclopoid copepods, Wilson (1959) for the calanoid copepods, and Brooks (1957, 1959) for the cladocera.

PLANKTON PRODUCTION

The Amount of Plankton Collected

Horizontal tows yielded from 0.9 ml of plankton per minute of towing in Lake Carleton to 69.5 ml in Yashoo Lake; however, most values were around 2 to 4 ml or 9 to 10 ml. The top, middle and bottom mean ranged from 286 individuals per liter in Snyder Lake to 0.9/1 in Lake Francis. Six lakes had means of over 100/1 while three lakes were under 10/1.

The horizontal tow collected only those organisms present in the upper water layers. Collections were made under varying conditions of cloud cover and at different times of the day. These factors influence the vertical migration of the Cladocera and Copepoda and the amount of plankton present at the towing depth. The top, middle and bottom mean tended to offset the different amounts of plankton resulting from the movement of plankton with light changes but sometimes collections occurred in the area of greatest concentration, while other times they did not.

The vertical haul counts ranged from a total cf 9,592 adult copepods and cladocera in Watonga Lake to 49 in Lake Francis. Seven lakes had counts of over 5,000 while

twelve were below 1,000 and six of these were below 500. Only in the vertical hauls where the entire water column was sampled could the entire population be represented. The data from this method are used in the remainder of the paper (Table 4).

The coefficient of variation of the vertical samples ranged from 6.86% in the Arbuckle Mts. Province to 114.69% in the Ozark Province (Table 5). The mean of all the coefficients of variation for all provinces for the vertical haul was 58.33%. This was higher than the coefficient of variation obtained for replicate samples on one lake (23%) during the summer of 1967 but not much higher than the values others have reported for replicate samples on the same lake (Winsor and Clarke, 1940).

Plankton Production with Respect to Province

The most comprehensive measurement taken of the water chemistry was specific conductance which is a result of all the ions present. In general, the conductivity for each province increased as each of the various ions increased (Table 6). Thus there was a general increase in conductivity as the amount of plankton increased (Figure 3). The correlation coefficient between the mean province conductivity and the mean province vertical haul was .57 indicating a positive correlation between the two variables.

Province	N	Vertical Haul (No.)	Vertical/ Depth (No./m)	Horizontal Tow (ml)	Top, Middle, Bottom Ave. (No./1)
Ouachita	դ	1,436 ± 213	376 ± 61	4.9 ± 2.1	50.1 ± 14.5
Ozark	3	73 ¹ 4 ± 4814	112 ± 83	2.2 ± 0.4	14.5 ± 7.7
Cretaceous	3	2,120 ± 576	440 ± 103	30.9 ± 19.2	9 ¹ 4.3 ± 38.2
Eastern	14	1,042 <u>+</u> 187	168 <u>+</u> 44	4.9 ± 0.9	18.9 ± 2.7
Central	7	2,046 ± 421	369 ± 58	5.4 ± 1.0	64.8 ± 12.1
Wichita Mts.	6	4,872 ± 1,224	680 ± 208	10.3 ± 1.0	55.3 ± 20.9
Arbuckle Mts.	2	2,331 ± 115	307 ± 63	23.4 ± 14.6	16.1 ± 8.2
Midwestern	λ +	3,355 ± 1,579	1,047 ± 661	19.4 ± 6.9	67.5 ± 17.5
Western	. 2	3,952 ± 2,016	687 <u>+</u> 232	9.5 ± 2.0	59.6 <u>+</u> 31.4
Alluvium	5	2,679 ± 428	902 ± 146	18.7 ± 1.9	124.7 ± 43.7
Blaine	2	6,834 ± 2,759	$1,207 \pm 392$	5.8 ± 2.3	61.0 ± 12.3

Table 4: Standing crops of Plankton according to province (mean ± standard error).

Province	Vertical Haul	Vertical/ Depth	Horizontal Tow	Top, Middle, Bottom Ave.
OUACHITA	29.60	32.18	85.71	58.08
OZARK	114.69	128.57	36.36	92.41
CRETACEOUS	47.03	40.45	107.77	69.99
EASTERN	66.99	97.62	65.31	54.50
CENTRAL	54.45	41.73	50.00	49.38
WICHITA MTS.	61.53	75.00	24.27	92.77
ARBUCKLE MTS	. 6.86	28.99	88.46	72.05
MIDWESTERN	94.10	126.17	70.62	51.85
WESTERN	72.14	47.60	29.47	74.33
ALLUVIUM	37.74	38.14	24.60	82,76
BLAINE	57.08	45.90	56.90	28.52
Mean C.V. for all Provinces	58.38	63.85	58.13	66.06

.

Table 5: Coefficient of variation of the sampling methods.

Province	POl _t ppm	HCO3 ppm	Ca ppm	Na ppm	K ppm	Mg ppm	SO _L PPm	1961 Specific Specific Conductivity M mhos/cm3 at 250C Mean + Standard Error	1966 Vertical Haul (No.) Mean + Standard Error
Ouachita	.09	34	11	3	2	3	< 50	61 <u>+</u> 15	1,436 <u>+</u> 213
Ozark	.08	37	7	2	6	4	< 50	77 <u>+</u> 29	73 ¹ + <u>+</u> ¹ +8 ¹ +
Cretaceous Sandstone	.06	67	15	<u>4</u>	11	16	< 50	147 ± 41	2,120 ± 576
Eastern	.09	50	12	7	7	6	< 50	132 ± 18	$1,042 \pm 187$
Central	.10	107	26	15	7	8	< 50	250 ± 29	2,046 ± 421
Wichita Mts.	.08	52	17	6	7	3	< 50	130 ± 18	4,872 ± 1,224
Arbuckle Mts.	.06	117	26	11	4	20	< 50	272 ± 66	2,331 ± 115
Midwestern non-gyp	.12	149	40	29	9	21	< 50	442 ± 69	3,355 ± 1,579
Western non-gyp	.16	101	32	5	12	11	< 50	225 ± 10	3,952 ± 2,016
Alluvium gyp	.11	162	188	150	9	46	641	1,922 ± 350	2,679 ± 428
Blaine		67	29 ¹ 4	189	13	85	1,087	2,866 ± 473	6,834 ± 2,759

Table 6: Relationship of plankton standing crop to the chemical characteristics of the provinces.

•

Figure 3: Province vertical haul in relation to province conductivity.
<u>Plankton Production with Respect to Physical</u> <u>and Morphological Conditions</u>

Attempts were made to correlate the amount of plankton to the depth, surface area and water temperature of the lakes. Smaller shallower lakes are usually more productive than deeper larger lakes (Welch, 1952). The correlation coefficient between the lake vertical haul and lake size was -.11. The correlation coefficient between lake vertical haul and lake depth was .026. Thus in this study, the size and depth of the lakes showed no relationship to the amount of plankton collected.

The correlation coefficient between the mean lake temperature and the amount of plankton present in the vertical haul was -.12 showing that there was no correlation even though thermal stratification was present in 33% of the lakes in 1966. Stratification was present in 55% of the 1965 lakes and the mean air temperature was 8°F higher than in 1966 (Weather Bureau, 1965, 1966).

Light penetration values showed that the small lakes of the Wichita Mountains were all relatively clear. These lakes supported large growths of higher aquatic vegetation in the limnetic area. Some of the organisms collected from these lakes were weed-inhabiting forms which may account for the increased production in the Wichita Mountain Province.

SPECIES DISTRIBUTION

Kinds of Plankton Collected

A total of four Diaptomidae, six Cyclopoidae and twenty-one Cladocera were identified from the limnetic samples of all the lakes during the two years of sampling. The species found most frequently, the cladoceran <u>Bosmina</u> <u>longirostris</u>, occurred in 60 of the 81 lakes or in 74% of all the samples (Table 7). Other cladocerans collected in order of decreasing frequency were: <u>Daphnia parvula</u>, <u>Diaphanosoma sp., Ceriodaphnia lacustris, Chydorus sphaericus</u>, <u>Daphnia ambigua</u>. Cladocerans occurring in less than 10% of the samples were: <u>Daphnia laevis</u>, <u>Pleuroxus denticulatus</u>, <u>Simocephalus serrulatus</u>, <u>Daphnia schodleri</u> and <u>Holopedium</u> <u>amazonicum</u>.

<u>Diaptomus pallidus</u> (68%) was the most frequently collected diaptomid while <u>Mesocyclops edax</u> (72%) was the most frequently collected cyclopoid. Other copepods ranked in decreasing frequency were: <u>Cyclops bicuspidatus thomasi</u>, <u>D. siciloides</u>, <u>Cyclops vernalis</u>, <u>D. reighardi</u>, <u>D. clavipes</u> and <u>Macrocyclops albidus</u>.

Even though a total of 31 species was found only about 10 of these comprised a major part of the plankton

Species	Province (N) Ouachita (6)	0 zar k (6)	Cretaceous (7)	Eastern (21)	Wichita Mts. (9)	Central (11)	Arbuckle Mts. (3)	Midwestern (5)	Western (4)	Alluvium (6)	Blaine (3)	Total Occurrences (81) % Occurrence	/ vocurrence in all lakes
M. edax B. longirostris C. lacustris C. sphaericus D. pallidus C. vernalis B. coregoni D. siciloides D. parvula D. ambigua D. ambigua Diaphanosoma sp. C. b. thomasi D. laevis D. schodleri D. schodleri D. clavipes Pleuroxus sp. M. albidus D. reighardi Holopedium sp.	100 83 67 100 17 17 50 50 83	50 83 67 17 33 100 33 50 67 83	100 100 57 100 86 29 100 43	85 76 67 38 62 15 38 81 38 81 29 10	56 100 33 89 89 33 11 11 89 33 11 22 22 67 22	8238755712925899 84199	67 67 33 67 100 33 33 33 67 33	40 60 40 60 80 60 100 20 20 20	250 505 755 100 755 100	50 33 67 33 100 17 50 33 67 17 17	67 33 33 67 100 67 100 33 100	58 60 4 3 56 56 56 56 56 56 56 56 56 56	72442823276739569475

Table 7: Percentage of lakes in each province in which the major species occurred 1965, 1966.

:

.

populations while the remainder occurred occasionally. Limnetic communities have a few species each of which may have many individuals and the dominant species are important when community types and the percentage similarity between lakes are being determined. Some of the dominant forms were <u>Diaptomus pallidus</u>, <u>D. siciloides</u>, <u>D. reighardi</u>, <u>Daphnia</u> <u>parvula</u>, <u>D. ambigua</u>, <u>C. b. thomasi</u> and <u>M. edax</u>. Distributional patterns will be presented for these major forms.

Certain of the major forms of the limnetic zooplankton communities were found in almost all lakes sampled. For this reason it appears that the ion content of the water is not limiting their distribution. These forms were: <u>Mesocyclops edax, Bosmina longirostris, Ceriodaphnia</u> <u>lacustris and Chydorus sphaericus</u> (Table 7).

When co-existing species association of <u>Diaptomus</u> were studied (Table 8), 76% of the lakes contained only one species. The most frequently found association was <u>D</u>. <u>pal</u>-<u>lidus</u> with <u>D</u>. <u>siciloides</u>. Since diaptomid species are known to co-exist (Rigler and Langford, 1967; Cole, 1961) some parameter must be limiting the distribution of the missing species.

<u>Kinds of Plankton Collected with</u> <u>Respect to the Province</u>

Since the provinces represent areas of similar water quality, a percentage occurrence of each major species was calculated for each province (Table 7). This represented

				Ty	pe of	: Ass	socia	atior	1 [.]		
DIAPTOMUS SPP	. 1	2	3	4	5	6	7	8	9	10	Total
<u>D. pallidus</u>	Х				X	Х	X	Х			
<u>D. siciloides</u>		Х			Χ			Х	Х	Х	
<u>D</u> . <u>reighardi</u>			Х			Х		Х	Х		
<u>D</u> . <u>clavipes</u>				Х			X		Х	Χ	
No. of lakes, 1965	15	3	5	1	<u></u>	0	0	0	0	0	28
No. of lakes, 1966	21	3	7	0	10	1	1	1	1	2	47
Total No. of lakes	36	6	12	1	14	1	1	1	1	2	75

Table 8: Species associations of <u>Diaptomus</u>.

.

.

the percentage of lakes of each province in which the species occurred. Twelve of the major species were found in conductivity ranges which included the mean conductivities of all the provinces. This suggested that the distribution of these forms was not limited by either the high or low conductivities represented and that the distributions of these species was primarily influenced by factors other than edaphic. However, there are some forms (<u>Diaptomus pallidus</u>, <u>D. reighardi</u>, <u>D. siciloides</u>, <u>Daphnia ambigua</u>, <u>Holopedium</u>) where edaphic control did appear to influence their occurrence in the limnological provinces.

Diaptomus pallidus (Figure 4) occurred from 55 to 100% of the time in lakes of all provinces with the exception of the Ozark Province (Table 7). This gap in occurrence may be influenced directly by the presence of high silicate waters which inhibit the species or indirectly by the high silicate waters enhancing the presence of <u>D</u>. <u>reighardi</u>. <u>D</u>. <u>reighardi</u> (Figure 4) occurred only in the Ozark Province (83%) and the neighboring Eastern Province (43%). <u>D</u>. <u>reighardi</u> distribution is centered in the Great Lakes area and extends into the southern part of the United States (Kincaid, 1953; Wilson, 1959) and Oklahoma may be on the western edge of its distribution.

Since <u>D</u>. <u>siciloides</u> occurred in a wide range of soft and moderately hard waters (Hutchinson, 1967) it would be expected to occur in all provinces. However, it was found

.

only in the Ouachita, Eastern, Central, Arbuckle Mt., Midwestern and Western Provinces (Figure 4) and its absence from the Alluvium, Blaine, Cretaceous and Ozark Provinces is difficult to explain on an edaphic basis.

Since <u>Daphnia parvula</u> and <u>D. ambigua</u> are southern forms characteristic of ponds and small lakes (Brooks, 1957), they might be expected to occur throughout the state. Absences in the distribution of <u>D. parvula</u> were observed in the Arbuckle and Blaine Provinces (Figure 5). The high gypsum of the Blaine Province may exclude <u>D. parvula</u> but there is no apparent edaphic basis for its exclusion from the Arbuckles. In Oklahoma, <u>D. ambigua</u> (Figure 5) was concentrated in the eastern part suggesting that the higher ionic waters of the western provinces may exert some edaphic control. It occurred in the Blaine 100% of the time suggesting its ability to thrive in high ionic waters even though all the occurrences in this province were in the same lake.

<u>Daphnia rosea</u>, <u>D</u>. <u>laevis</u>, and <u>D</u>. <u>schodleri</u> are primarily inhabitants of ponds (Brooks, 1957). Oklahoma is apparently the eastern limit for <u>D</u>. <u>schodleri</u> and it occurred in the Wichita Mountain and Central Provinces. <u>D</u>. <u>rosea</u> is also a western species but it was found in the Eastern, Alluvium and Arbuckle Provinces. <u>D</u>. <u>laevis</u> is a southern species occurring in the southern third of the United States. In Oklahoma, it was found in the Eastern, Arbuckle and

Figure 5: Daphnid distribution.

.

Alluvium provinces. The distribution of these pond daphnids is hard to explain especially in the Arbuckle Mountain Province where <u>D. laevis</u> and <u>D. schodleri</u> seemed to replace <u>D. parvula</u> and <u>D. ambigua</u> in small lakes of 133 and 70 acres.

A fairly clear case of edaphic control was presented by <u>Holopedium</u>. Its distribution was restricted to a single province, the Ouachita, whose waters are characteristically soft and low in calcium. <u>H</u>. <u>amazonicum</u> is a South American form with its northern most distribution reaching into Oklahoma (Brooks, 1959; Jones, 1954). Its exclusion from other low calcium waters of the state (Eastern and Ozark Provinces) may be due to the limit of its geographical distribution.

<u>Miscellaneous Factors Influencing</u> <u>Plankton Distribution</u>

Other environmental influences incidental to this study were temperature, light, depth and biological factors. The distribution of certain plankton appeared to be influenced by these factors.

<u>Cyclops bicuspidatus thomasi</u> occurred more in the northern part of the state while <u>Mesocyclops edax</u> was found throughout Oklahoma (Figure 6). The former species is a winter form and the latter a summer species (Cole, 1961) which are believed to go through a seasonal alternation. Temperature seemed to limit the distribution of <u>C</u>. <u>b</u>. <u>thomasi</u> during the spring in Oklahoma.

Figure 6: Cyclopoid distribution.

Since eastern temperatures are slightly higher than western temperatures in the spring and <u>Diaphanosoma</u> is a summer form, temperature control was also suggested. This may be the same for <u>D</u>. <u>ambigua</u> but its seasonal distribution is unknown.

Littoral forms limited by depth occurred more frequently in the limnetic plankton of the lakes of the Wichita Mountain Province. This could be directly influenced by the large amount of vegetation covering the bottom of the limnetic zones of these small lakes (10, 11, and 54 acres). Two clear water littoral forms, <u>Eurycercus lamellatus</u> and <u>Leydgia quadrangularis</u>, occurred in one of the clearest lakes of the state in the Cretaceous Province.

The severe amount of competition expected between members of the same subgenus with the same size (which determines food requirements), may account for the fact that <u>Diaptomus pallidus</u> and <u>D. reighardi</u> rarely occurred in the same lake. <u>D. reighardi</u> is known to out-compete <u>D. pallidus</u> (Yeatman, 1956). The coexistence of <u>D. pallidus</u> and <u>D. siciloides</u> occurred more on the eastern side of the range of <u>D. siciloides</u> (Figure 4). When they co-existed in the Central Province, <u>D. siciloides</u> usually outnumbered <u>D. pallidus</u> while in the Eastern Province, <u>D. pallidus</u> usually outnumbered <u>D. siciloides</u>.

Competition may also have influenced the distribution of <u>Cyclops</u> <u>vernalis</u> which occurred in all but one of the

provinces. However, it was usually important only in lakes where \underline{M} . <u>edax</u> and \underline{C} . <u>b</u>. <u>thomasi</u> were rare or absent.

DISCUSSION

. د

The quantity of plankton is influenced by the amount of primary nutritive materials entering a lake and the way these materials are used within a lake. The utilization depends on the climate and the morphology of the lake basin (Rawson, 1941). The amount of primary nutritive materials entering is determined by the kinds of materials in the surrounding area. Thus if the climate and morphological factors could be kept relatively constant, the edaphic influence could be measured.

In this investigation, the influence of morphology and climate were undoubtedly influencing production but exactly how and how much were not determined, since production, in general, showed no correlation with temperature, size or depth of the lake. Therefore, we can conclude that edaphic factors primarily influenced the production level.

This influence could be related to the conductivity in general but not to any specific ion. Conductivity represents a complex of separate ion gradients which are interrelated and together they may have various physiological implications. In addition, there are biological influences such as competitive relations which may produce different

biological communities. Conductivity represents the chemical characteristic of an environment in which the biological community is determined and develops.

The quality of plankton is influenced by morphological, climatological and edaphic factors. Some organisms exist only under very special conditions while cosmopolitan forms exist over a wide range.

It was noticed that some species were restricted to certain provinces indicating that edaphic factors were largely operative (<u>D</u>. <u>reighardi</u> in the Eastern and Ozark and <u>Holopedium</u> in the Ouachita) while other species were found in all provinces (<u>M</u>. <u>edax</u>, <u>B</u>. <u>longirostris</u>). <u>D</u>. <u>ambigua</u> and <u>D</u>. <u>parvula</u> were complementary in all provinces to <u>D</u>. <u>laevis</u> and D. schodleri.

When the <u>coefficient of community</u> and <u>percentage</u> <u>similarity</u> (Whittaker and Fairbanks, 1957) were applied to Table 7 to compare community composition both methods showed that distinct communities could not be determined for any of the provinces (Table 9).

The limnological province concept appears to be most useful in the study of crustacean plankton production and of limited use in the study of species distribution. The concept needs to be studied for other trophic levels to determine if the same relationship holds. Further work with plankton should be extended to include all seasons. Limnology needs improved methods for characterizing biological

	Blaine	Alluvium	Western	Midwestern	Central	Arbuckle Mts.	Eastern	Cretaceous	Wichita Mts.	Ozark	Ouachita
Ouachita	316	350	284	304	403	301	¹ 493	512	366	333	
Ozark	299	265	275	330	377	200	461	425	304		43
Wichita Mts.	<u>դ</u> դյե	338	313	319	364	400	384	496		56	47
Cretaceous	395	405	343	366	471	324	548		67	67	54
Eastern	348	401	378	441	536	334		60	61	71	69
Arbuckle Mts.	333	316	349	332	354		50	33	56	33	43
Central	342	357	414	473		67	81	56	76	56	56
Midwestern	313	360	515		80	57	86	57	59	57	57
Western	330	333		75	60	73	64	46	50	46	58
Alluvium	366		62	71	80	57	73	57	69	47	47
Blaine		62	50	62	60	46	64	73	60	73	46

Table 9: Matrix for comparison of species composition between provinces. Values above the diagonal correspond to accumulative percentage similarities, those below to correspond to the coefficient of community.

•

production on a regional basis and the limnological province concept offers such a possibility.

SUMMARY

1. Specific conductance was used to confirm the limnological province for 81 lakes sampled in April 1965 and April 1966. The mean specific conductance for these provinces ranged from 61 to 1,922 µ mhos/cm³ at 18°C.

2. Limnetic plankton samples were taken and studied quantitatively by counting and qualitatively by species identification. Three methods were used in sampling the standing crop of zooplankton.

3. Plankton production as measured by the vertical haul showed no correlation with the depth, size or temperature of the lake.

4. The quantity of Cladocera and Copepoda showed an increase with conductivity in most cases.

5. No one measure was ideally suited to the above hypothesis but vertical hauls suggested this trend. The top, middle and bottom mean was helpful but horizontal tows showed too much variation and may have been influenced by time of sampling.

6. Certain microcrustaceans were cosmopolitan in the state (<u>Mesocyclops edax</u>, <u>Bosmina longirostris</u>, <u>Ceriodaphnia lacustris</u>, <u>Chydorus sphaericus</u>) while others

were restricted. These restrictions appeared to be more influenced by physical and morphological factors than edaphic factors. However, some zooplankters did not appear in certain limnological provinces. In some of these situations edaphic control seemed to be limiting their appearance (<u>Holopedium</u>, <u>Diaptomus reighardi</u>, <u>Diaptomus siciloides</u>, <u>Daphnia laevis</u>, <u>Daphnia schodleri</u>, <u>Daphnia ambigua</u>).

7. Distributional patterns were presented for three species of <u>Diaptomus</u>. <u>D</u>. <u>reighardi</u> was limited to the northeastern part of Oklahoma while <u>D</u>. <u>pallidus</u> was found abundantly over the remainder of the state. <u>D</u>. <u>siciloides</u> was characteristic of the western half of the state. <u>D</u>. <u>clavipes</u> was found infrequently.

8. Edaphic conditions appeared to influence zooplankton production to a much greater degree than species distribution.

LITERATURE CITED

- * Baumgardner, R.K. 1966. Oxygen balance in a stream receiving domestic and oil refinery effluents. Ph. D. dissertation, Oklahoma State University, Stillwater.
 - Brooks, J.L. 1957. The Systematics of North American <u>Daphnia</u>. Mem. Conn. Acad. Arts Sci., 13: 1-180.
 - _____. 1959. Cladocera, p. 587-656. In W.T. Edmondson (ed.) Fresh-water Biology, J. Wiley and Sons, Inc., N.Y.
- * Clemens, H.P. 1954. Pre-impoundment studies of the summer food of three species of fishes in Tenkiller and Fort Gibson Reservoirs, Oklahoma. Proc. Okla. Acad. Sci., 33: 72-79.
- * Clemens, H.P., and J.C. Finnell. 1957. Biological conditions in a brine-polluted stream in Oklahoma. Trans. Amer. Fish. Soc., 85: 18-27.
 - Cole, G.A. 1961. Some calanoid copepods from Arizona with notes on congeneric occurrence of <u>Diaptomus</u> species. Limnol. Oceanog., 6: 432-442.
- * Copeland, B.J. 1963. Oxygen relationships in oil refinery effluent holding ponds. Ph. D. dissertation, Oklahoma State University, Stillwater.
 - Curtis, N.M., Jr., and W.E. Ham. 1957. Physiographic map of Oklahoma. Educational Series, May 4, 1957. Oklahoma Geological Survey, Norman.
 - Deevey, E.S. 1940. Limnological studies in Connecticut. V. A contribution to regional limnology. Amer. J. Sci., 238: 717-741.
 - Edmondson, W.T. 1956. Measurements of conductivity of lake water <u>in situ</u>. Ecology, 37: 201-204.
 - Frey, D.G., editor. 1963. Limnology in North America, University of Wisconsin Press, Madison.

- Gasaway, C.R. 1961. The control of phytoplankton, zooplankton and higher aquatic vegetation in relation to fish production in hatchery ponds. M.S. thesis, University of Oklahoma, Norman.
- Gray, F. and H.M. Galloway. 1959. Soils of Oklahoma. Okla. State Univ. Exper. Station. Miscellaneous pub. Mp-56, Stillwater.
- Hornuff, L.E. 1957. A survey of four Oklahoma streams with reference to production. Okla. Fishery Res. Lab., Report No. 62, Norman.
- Hutchinson, G.E. 1967. A treatise on limnology, Vol. II Introduction to lake biology and the limnoplankton. J. Wiley and Sons, Inc., N.Y.
- * Jenkins, R.M., E.M. Leonard, and G.E. Hall. 1952. An investigation of the fisheries resources of the Illinois River and pre-impoundment study of Tenkiller Reservoir, Oklahoma. Okla. Fishery Res. Lab., Report 26, Norman.
 - Jones, W.H. 1954. Cladocera of Oklahoma. Ph. D. dissertation, University of Oklahoma, Norman.
 - _____. 1955. Checklist of the Cladocera of Oklahoma. Proc. Okla. Acad. of Sci., 36: 78-81.
 - Juday, C. and E.A. Birge. 1933. The transparency, the color and the specific conductance of the lake waters of northeastern Wisconsin. Trans. Wis. Acad. Arts Lett., 28: 205-259.
 - Kincaid, T. 1953. A Contribution to the Taxonomy and Distribution of the American Calanoid Crustacea. The Callistoma Co., Seattle.
 - Lambou, V.W., C.R. Gasaway, M.G. Bross and A. Ming. 1965. Oklahoma fishing waters--a preliminary inventory. Okla. Fishery Res. Lab., Bulletin No. 2, Norman.
- * Mathis, B.J. 1965. Community structure of benthic macroinvertebrates in an intermittent stream receiving oil field brines. Ph. D. dissertation, Oklahoma State University, Stillwater.
- * Minter, K.W. 1964. Standing crop and community structure of plankton in oil refinery effluent holding ponds, Ph. D. dissertation, Oklahoma State University, Stillwater.

- Miser, H.D. 1954. Geologic map of Oklahoma. Prepared cooperatively by the U.S. Geological Survey and the Oklahoma Geological Survey, Norman.
- * Naumann, E. 1932. Grundzüge der regionalen Limnologie. Die Binengewässer, 11: 1-176.
 - Oklahoma Water Resources Board. 1965. Oklahoma's water resources. Okla. Water Resources Board, Pub. No. 10, Oklahoma City.
- * Orr, O.E. 1958. The population of fishes and limnological condition of Heyburn Reservoir with reference to productivity. Ph. D. dissertation, Oklahoma State University, Stillwater.
 - Pennak, R.W. 1963. Species identification of the freshwater cyclopoid copepoda of the United States. Trans. Amer. Micros. Soc., 82: 353-359.
- * Rawson, D.S. 1939. Some physical and chemical factors in the metabolism of lakes. In R.F. Moulton (ed.), Problems in lake biology. Amer. Assoc. Advance. Sci., Publ. 10.
 - . 1941. Soils as a primary influence in the biological productivity of lakes. Trans. Canad. Conserv. Assoc., 78-87.
 - _____. 1951. The total mineral content of lake waters. Ecology, 32: 669-672.
 - . 1961. A critical analysis of the limnological variables used in assessing the productivity of northern Saskatchewan lakes. Verh. Internat. Verein. Limnol., 14: 160-166.
 - Rigler, F.H. and R.R. Langford. 1967. Congeneric occurrences of species of <u>Diaptomus</u> in Southern Ontario lakes. Canad. J. Zool., 45: 81-90.
- * Rodhe, W. 1949. The ionic composition of lake waters. Verhandl. d. Internat. Vereining. f. Limnologie, 10: 377-386.
 - Ruttner, F. 1963. Fundamentals of Limnology. Trans. by D.G. Frey and F.E.J. Fry. University of Toronto Press, Toronto.
 - Shelford, V.E. 1963. The Ecology of North America. University of Illinois Press, Urbana.

- Snider, L.D. 1917. Geography of Oklahoma. Oklahoma Geological Survey, Bull. No. 27, Norman.
- Steel, R.G.D. and J.H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., Inc., N.Y.
- Summers, P.B. 1961. Observations on the limnological dynamics of Tenkiller Reservoir. Okla. Dept. of Wildlife Conserv., Oklahoma City.
- Walling, I.W., S.L. Schoff and T.B. Dover. 1951. Chemical character of surface waters of Oklahoma, 1946-1949. Oklahoma Planning and Resources Board, Bull. No. 5, Stillwater.
- Weather Bureau. 1965. Climatological Data, Oklahoma. Annual Summary, Vol. 75, No. 13. Environ. Sci. Serv. Adm., U.S. Dept. of Commerce, Washington.

_____. 1966. Climatological Data, Oklahoma. Annual Summary, Vol. 76, No. 13. Environ. Sci. Serv. Adm., U.S. Dept. of Commerce, Washington.

- Webb, W.L. 1950. Biographical regions of Texas and Oklahoma. Ecology, 31: 426-433.
- Welch, P.S. 1952. Limnology, 2nd Ed. McGraw-Hill Book Co., Inc., N.Y.
- Whittaker, R.H. and C.W. Fairbanks. 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology, 39: 46-65.
- * Wilhm, J.L. 1965. Species diversity of benthic macroinvertebrates in a stream receiving domestic and oil refinery effluents. Ph. D. dissertation, Oklahoma State University, Stillwater.
 - Williams, W.D. 1966. Conductivity and the concentration of total dissolved solids in Australian lakes. Aust. J. Mar. FW Res., 17: 169-176.
 - Wilson, M.S. 1959. Calanoida, p. 738-794. In W.T. Edmondson (ed.) Fresh-water Biology. J. Wiley and Sons, Inc., N.Y.
 - Winsor, C.P. and G.L. Clarke. 1940. A statistical study of variation in the catch of plankton nets. Sears Found: Jo. Mar. Res., 3: 1-34.

Yeatman, H.C. 1956. Plankton studies on Woods Reservoir, Tennessee. J. Tenn. Acad. Sci., 31: 32-53.

_____. 1959. Cyclopoida, p. 795-815. In W.T. Edmondson (ed.) Fresh-water Biology. J. Wiley and Sons, Inc., N.Y.

* Original reference not seen.

APPENDICES

PROVINCE Lake	Size	Date	Time	Sky
OUACHITA Clayton Nanih Waiya Ozzie Cobb Schooler Clayton Nanih Waiya Ozzie Cobb ~ Schooler	75 acres 131 117 35 75 131 117 35	4/17/65 4/17/65 4/17/65 4/17/65 4/10/66 4/10/66 4/10/66 4/ 9/66	10:30 09:35 12:00 14:00 12:45 14:30 12:30 14:45	Clear Clear Clear Clear Clear Clear Clear Clear
OZARK Greenleaf Francis Tenkiller Greenleaf Eucha Francis	920 12,500 920 2,880	4/30/65 5/ 2/65 5/ 2/65 4/30/66 4/23/66 4/23/66	16:30 10:15 15:50 09:00 12:45 11:00	Clear Clear Clear Rain Cloudy Cloudy
CRETACEOUS Carter Raymond Gary Carter Raymond Gary Yashoo	68 390 68 390 42	4/17/65 4/17/65 4/ 8/66 4/ 9/66 4/10/66	19:00 15:15 19:00 18:00 09:35	Clear Clear Clear Clear Cloudy
EASTERN Holdenville McAlester Carleton Okmulgee Ardmore Club Bluestem Hominy Carleton Atoka Res. Okmulgee Henryetta Wetumka I Wetumka II Ardmore City Claremore Wewoka Sportsman Holdenville Bluestem	550 2,100 46 643 20 800 18 46 5,500 643 616 185 185 185 185 185 185 185 550 800	4/16/65 4/16/65 4/17/655 4/17/655 4/125/655 4/25/656 4/25/666 4/25/666 4/20/666 4/28/666 4/28/666 4/28/666 4/28/666 4/28/666 4/28/666 4/28/666	15:15 20:30 06:30 10:40 10:40 17:00 10:40 10:40 10:40 13:30 17:30 13:30 10:05 18:30 10:05 18:30 10:05 18:30 10:05 10:00 12:00 10:15 10:00	Clear Clear Clear Clear Cloudy Cloudy Clear Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy Cloudy

Appendix I: Miscellaneous collecting data 1965, 1966.

PROVINCE Lake	Size	Date	Time	Sky
EASTERN (cont.) Hominy Hudson	18 acres 335	4/24/66 4/24/66	12:30 06:30	Clear Clear
CENTRAL Blackwell Pawnee Shawnee Comanche Tecumseh Guthrie Pawnee Perry City Paul's Valley Cushing Shawnee	3,380 257 1,336 201 127 184 257 400 750 440 1,336	4/25/65 4/25/65 4/30/65 4/18/65 4/28/66 4/17/66 4/24/66 4/17/66 4/24/66 4/24/66 4/24/66	15:00 12:35 13::45 135:20 14::430 15::00 15:30 15:30	Clear Cloudy Clear Cloudy Cloudy Clear Clear Clear Clear Rain
WICHITA MTS. Caddo Post Oak Rush Quanah Parker I Quanah Parker II Jed Johnson Elmer Thomas I Elmer Thomas II	11 10 54 96 98 422 422	4/23/65 4/23/65 4/14/66 4/16/66 4/14/66 4/16/66 4/15/66 4/14/66	15:30 16:30 14:30 11:00 06:30 12:45 07:15 18:00 09:15	Clear Clear Cloudy Clear Cloudy Clear Clear Clear
ARBUCKLE MTS. Mountain Mountain Veterans	133 133 70	4/18/65 4/ 7/66 4/ 7/66	11:15 15:40 12:00	Clear Clear Clear
MIDWESTERN Duncan Northwood Elmer I Elmer II Clear	400 110 58 58 560	4/18/65 4/21/66 4/17/68 4/21/66 4/14/66	15:30 08:45 10:45 12:30 16:00	Cloudy Clear Clear Clear Clear
WESTERN Hobart Clinton Hobart Clinton	450 335 450 335	4/23/65 4/24/65 4/16/66 4/16/66	18:35 08:40 14:45 16:30	Clear Cloudy Clear Clear

Appendix I: Miscellaneous collecting data 1965, 1966 (cont.)

PROVINCE Lake		Size	Date	Time	Sky
ALLUVIUM Mahoney Mahoney Vincent Roebuck Snyder	#1 #1 #2	10 acres 10 10 20 350 130	4/24/65 4/17/66 4/21/66 4/21/66 4/ 9/66 4/16/66	14:00 12:00 14:30 15:30 16:30 10:30	Clear Clear Clear Clear Clear Clear
BLAINE Watonga Watonga Watonga	I II	65 65 65	4/24/65 4/17/66 4/21/66	11:25 08:00 10:50	Clear Clear Clear

Appendix I: Miscellaneous collecting data 1965, 1966 (cont.)

PROVINCE				OUAC	CHITA			
Lake	Clayton 1965	N. Waiya 1965	0. Cobb 1965	Schooler 1965	N. Waiya 1966	0. Cobb 1966	Clayton 1966	Schooler 1966
Conductivity µmhos/cm ³ at 18°C	54	76	65	74	73	59	54	64
Water Temp OF Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15	66.0 66.0 65.6 63.0	66.6 66.6	69.2 69.2 69.0	70.0 69.0 50.0 49.2 49.2	62.5 62.3 62.5 61.5	64.5 62.0 61.5 60.0 58.5	59.5 59.5 59.5 59.5 59.5	68.0 67.0 62.0 58.0 55.0
Light Pent. (%) Surface 1 meter 2 3 4 5 6 7 8 9 10	100 27 9 4	100 28 14	100 29 3	100 42 9 3 1 1	100 11 1 1	100 32 5 1 0	100 46 20 8 2 1	100 86 54 31 11

Appendix II: Conductivity, temperature and light profiles 1965, 1966.

PROVINCE				OZARI	2			CRETACEOUS		
	Lake	Francis 1965	Greenleaf 1965	Tenkiller 1965	Greenleaf 1966	Eucha 1966	Francis 1966	C a rter 1965	R. Gary 1965	
Conductivity µmhos/cm ³ at 18°C		243	191	210	128	212	202	244	157	
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1	66.6 66.4 66.2	66.741482697 6643.284555555555555555555555555555555555555	67.7 67.9 68.0 68.0 68.0 68.0 68.0 68.0 68.0 68.0	63.0 64.0 64.0 64.0 63.0 63.0 63.0 63.0 61.5 61.5	60.5 59.0 57.9 55.7 53.0	61.0 60.5 60.0 60.0	66.2 66.2 66.2 66.2 60.4 50.9 50.1 50.1	71.0 71.0 67.5 64.0	
Light Pent. (Surface 1 meter 2 3 4 5 6 7 8 9	(%)	100 55 16 7 3 2	100 37 16 7 3 2 1	100 57 24 14 4 32 10	100 29 0	100 100 100 67 57 40 0	100 4 0	100 5 4 3 3 0	100 32 9 3	

.

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

PROVINCE	CR	ETACE((cont	ວບຣ •)		E4	STERI	J	
ل ح ب	Carter 1966	R. Gary 1966	Yashoo 1966	Holdenville 1965	McAlester 1965	Carleton 1965	Okmulgee 1965	Ardmore Club 1965
Conductivity µmhos/cm ³ at 18°C	212	169	164	161	72	77	269	287
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15	63.0 63.0 62.0 62.0	69.0 66.5 65.0 63.0 63.0	64.5 64.5 64.5 62.5 61.0	65.0 65.0 64.5 64.0 64.0	65.93 63.00 63.00 632.05 632.05 622.55 51.0	63.5 63.5 63.5 49.0	67.8 67.3 67.0 67.0 665.3 67.0 665.3 64.3 20.9 555 550 7 555	68.3 66.5 66.3 66.3
Light Pent. (%) Surface 1 meter 2 3 4 5 6 7 8 9		100 31 10 4 1	100 100 95 95 91	100 53 16 6		100 19 6	100 24 5 0	

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

PROVINCE				EA	STERN	V (cor	nt.)		
	Lake	Carleton 1966	Atoka 1966	Okmulgee 1966	Henryetta 1966	Wetumka I 1966	Ardmore City 1966	Claremore 1966	Wewoka 1966
Conductivity µmhos/cm ³ at 18°C			113	285	122	271	329	202	268
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15		61.0 61.0 61.0 59.0	57.0 577.0 577.0 577.0 577.0 577.0 577.0 577.0 577.0	59.5 60.0 60.0 60.0	60.0 60.9 59.5 60.9 58.0 58.0 58.0	62.0 62.0 61.5 61.5 61.5	63.0 63.0 61.5 59.5 59.5 59.0	60.0 60.0 60.0 60.0	62.5 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0
Light Pent. (%) Surface 1 meter 2 3 4 5 6 7 8 9		100 7 1 0	100 26 3 1 0	100 27 7	100 2 2 2 2 2 0	100 13 0	100 38 18 7 2 1 0	100 54 0	100 33 7 2 1 0

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

PROVINCE				EA	STERN	l (cor	nt.)		
	Lake	Sportsman 1966	Holdenville 1966	Wetumka II 1966	Bluestem 1965	Hominy 1965	Bluestem 1966	Hominy 1966	Hudson 1966
Conductivity µmhos/cm ³ at 18°C		372	154	260	548	882	370	280	315
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15		62.0 62.0 62.5 62.5 62.5 63.0	63.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0	64.50 655.000 655.000 655.000 655.0000000000	65.8 655.8 655.6 66.0 66.0 66.0 65.1 60.3 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59	69.9 66.7 66.7 66.3 66.2 62.3	05000005555 05555555555555555555555555	550000005555 998888776666 	60.55555556 600.5555555 600.5555 600.5555 58.0
Light Pent. (%) Surface 1 meter 2 3 4 5 6 7 8 9		100 57 8 5 30	100 16 4 3 3 2 2	100 15 2 2 2 0	100 28 15 9 8 7 0	100 58 26 17 12 7	100 81 54 43 36 31 23 17	100 76 54 39 27 22 19 10 7	100 62 37 22 12 7 4 2

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

•.1

PROVINCE					CEI	ITRAL			
	Lake	Blackwell 1965	Pawnee 1965	Shawnee 1965	Comanche 1966	Tecumseh 1966	Guthrie 1966	Pawnee 1966	Perry City 1966
Conductivity µmhos/cm3 at 18°C		729	475	270	325	160	492	338	272
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15		65.2 655.0 655.0 655.0 654.9 644.5	71.4 71.4 71.4 71.5 71.5 71.0 70.1 67.4	68.6	65.4 65.1 65.1 64.8 64.2 64.2	60.5 62.0 62.0 61.5	62.6 62.9 62.6 62.2 62.1 62.5 61.6 57.6	62.0 62.0 58.5 58.5 58.5 58.5	57.8 57.4 57.9 57.9 57.8
Light Pent. (%) Surface 1 meter 2 3 4 5 6 7 8 9		100 43 13 7 5 4 0	100 15 7 0	100 12 3 2 2 0	100 63 37 19 16 4 0	100 1 1 0	100 31 6 0	100 23 8 2	100 0

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

	_		<u></u>						
PROVINCE		CENTRAL (cont.)			WICHITA MOUNTAINS				
	Lake	Paul's Valley 1966	Cushing 1966	Shawnee 1966	Caddo 1965	Post Oak 1965	Rush 1965	Rush 1966	Q. Parker II 1966
Conductivity µmhos/cm ³ at 18 ^o C		270 [.]	198	187	234	92	178	58	158
Water Temp ^O F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15		60.5 60.5 60.5 60.5 61.0 61.0 61.0 61.0 57.0	65.0 63.0 60.0 60.0	64.5 62.0 62.0 62.0 62.0 62.0 61.5 61.5	70.6 70.4 65.3 60.0 53.3 50.0	71.7 71.0 68.3 61.9 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8	71.0 70.8 70.0 63.0	60.0 60.0 59.0 59.0 59.0 59.0	62.0 62.0 62.0 62.0 60.0 60.0 60.0 60.0
Light Pent. (9 Surface 1 meter 2 3 4 5 6 7 8 9	%)	100 24 5 1 0	100 0	100 18 7 3	100 15 4 2 1	100 43 12 4 2 0	100 48 21 18 0	100 64 52 37 22 15 11	100 62 53 41 30 23 17 14

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

PROVINCE		WICHITA MOUNTAINS (cont.)				ARBUCKLE MOUNTAINS			
	Lake	Q. Parker I 1966	J. Johnson 1966	E. Thomas II 1966	E. Thomas I 1966		Mountain 1965	Veterans 1966	Mountain 1966
Conductivity µmhos/cm ³ at 18°C		174	106	166	171		282	274	332
Water Temp ^o F Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15		62.5 62.0 60.0 60.0	60.0 60.0 60.0 60 60 60 55 55 55 55 55 55 55 55 55 55 55 55 55	59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0	62.0 62.0 62.0 62.0 62.0 62.0 62.0 60.0		65.8 65.9 6654.9 6654.9 6654.9 6659.0 6659.0 661552 65598.5 29 8 8 5599.6 15522 2 8 8 9 5 9 8 8 5 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 2 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 9 8 8 8 9 9 9 8 8 9 9 9 8 8 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 9 9 8 8 8 9 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 9 8 8 8 9 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 8 9 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 8 8 9 9 8 8 9 8 8 8 9 8 8 8 8 8 9 8 8 8 8 8 8 8 8 9 9 8 8 8 9 8 8 8 9 9 8 8 8 9 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 9 8 8 8 9 8 8 9 9 8 9 8 9 9 8 8 8 9 9 8 8 8 9 9 8 9 8 9 9 8 8 9 9 9 8 9 8 9 9 8 9 9 8 9 9 9 9 8 9 9 9 9 9 9 9 8 9 9 9 9 9 8 9	63.5 63.5 64.0 64.0 64.0 64.0 64.0 64.0	62.0 62.0 61.0 61.0 61.0 61.0 61.0 59.0
Light Pent. (; Surface 1 meter 2 3 4 5 6 7 8 9	78)	100 79 75 71 54	100 72 55 33 26 16 12	100 88 62 46 33 22 15 9 7	100 56 37 25 17 11 5			100 67 60 46 34 30	100 74 43 23 12 6 2 1

•.•

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).
PROVINCE			MIDV	VESTEI	RN			WESTI	ERN	
	Гаке	Duncan 1965	Northwood 1966	Elmer 1966	Elmer 1966	Clear 1966	Hobart 1965	Clinton 1965	Hobart 1966	Clinton 1966
Conductivi µmhos/cm3 18°C	ty at	490	719	384	367	600	796	700	522	450
Water Temp Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15) o ¹	68.2 68.2 68.0 68.0	58.5 59.0 59.0 59.0 59.0 59.0 58.5	58.0 58.0 57.5 57.5 57.5 57.5	61.5 61.5 61.5	62.0 62.0 62.0 62.0	67.4 67.4 67.4 67.4 66.0	66.4 66.0 66.0 66.0 66.0 66.0	59.5 59.5 59.0 57.0 57.0	62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0
Light Pent Surface 1 meter 2 3 4 5 6 7 8 9	t.	(%) 100 20 7 6	100 20 5 0	100 0 0	100 13 0	100 57 25 13 4 2	100 21 0	100 26 14 11 10 9	100 14 0	100 15 3 0

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

•.•

PROVINCE		AI	TUAII	JM			BI	LAINE	
Lake	Mahoney #1 1965	Mahoney #1 1966	Mahoney #2 1966	Vincent 1966	Roebuck 1966	Snyder 1966	Watonga 1965	Watonga #1 1966	Watonga #2 1966
Conductivity µmhos/cm ³ at 18°C	1475	1192	1022	1172	339	560	2040	1878	1404
Water Temp ^O I Surface 1 meter 2 3 4 5 6 7 8 9 10 11 12 13 14 15	70.2 70.2 69.8 69.5 68.9	62.5 62.0 61.8 60.8	62.5 62.0 62.0 62.0 61.5	64.0 64.0 63.0 62.5	65.5 65.5	60.0 60.0 59.5 59.5	72.5 71.7 71.7 70.8 70.6 69.8	60.0 63.0 61.0 64.0 64.0 64.0	60.0 60.0 60.0 60.0 60.0
Light Pent. Surface 1 meter 2 3 4 5 6 7 8 9	(%) 100 64 32 27 23	100 86 33 11 0	100 71 31 13 5 1	100 80 62 57 38	100 8 1	100 16 2 0		100 77 540 335 17	100 86 73 55 37 37 33

Appendix II: Conductivity, temperature and light profiles 1965, 1966 (cont.).

1965		Avera	ge air ⁻	temperat	ture	
Region:	MAR	<u>CH</u>	APR	IL	MAT	<u>Y</u>
North Central North East West Central Central East Central South West South Central South East	Ave. 39.4 39.7 40.5 41.1 41.8 42.9 44.0 43.5	d -8.7 -9.3 -8.7 -9.0 -9.1 -8.6 -9.1 -9.7	Ave. 63.5 64.8 63.7 65.6 65.6 65.9 66.2	d 4.2 4.7 3.8 4.7 3.7 4.5 8 4.5 3.4 3.4	Ave. 70.5 70.9 70.3 70.9 71.6 71.8 71.4 70.7	d 2.4 2.7 1.9 2.0 2.6 1.6 0.5
1966						
Region:						
North Central North East West Central Central East Central South West South Central South East	52.1 52.3 53.9 53.6 555.8 555.7 53.7	4.0 3.0 4.1 3.4 4.1 2.7 0.5	56.8 58.0 59.5 60.1 60.9 62.1 61.4	-2.5 -2.0 -1.9 -1.4 -1.3 -1.1 -1.0 -1.4	68.1 66.7 68.4 68.1 67.7 70.3 69.4 67.7	0.0 -1.5 0.0 -0.8 -1.3 -0.2 -1.2 -2.5
Precipitation						
1955 Central 1966 Central	1.16 0.75	96 -1.37	2.48 3.68	95 .25	3.63 1.91	-1.71 -3.43

Appendix III: Climatological data (Weather Bureau 1965, 1966).

PROVINCE Lake	Vertical (No.)	Vertical/ depth (No/m)	Hori - zontal Tow (ml)	Top, Middle, Bottom Ave. (No./1)
OUACHITA Clayton N. Waiya O. Cobb Schooler Mean S.D. S.E.	1,056 1,804 1,080 <u>1,804</u> 1,436 425 213	211 481 360 <u>451</u> 376 121 61	3.1 4.0 1.6 11.1 4.9 4.2 2.1	67.9 31.9 50.5 50.1 29.1 14.5
OZARK Francis Greenleaf Eucha Mean S.D. S.E.	49 485 <u>1,668</u> 734 838 484	20 37 <u>278</u> 112 144 83	1.7 3.1 <u>1.9</u> 2.2 0.8 0.4	0.9 15.2 <u>27.6</u> 14.5 13.4 7.7
CRETACEOUS Carter R. Gary Yashoo Mean S.D. S.E.	2,848 2,528 <u>984</u> 2,120 997 576	407 632 <u>281</u> 440 178 103	10.6 12.5 <u>69.5</u> 30.9 33.3 19.2	52.4 170.4 <u>60.2</u> 94.3 66.0 38.2
EASTERN Carleton Atoka Res. Okmulgee Henryetta Wetumka Ardmore City Claremore Wewoka Sportsman Holdenville Vetumka II Hominy Bluestem Hudson Mean S.D. S.E.	2,378 2,072 6328 1,288 1,288 1,288 2452 67588 1,5882 1,288 2452 67588 1,5882 1,5882 1,288 2452 67588 1,5882 1,5882 1,288 1,298 1,298 1,298 1,298 1,298 1,298 1,298 1,299	680 138 158 153 318 164 97 562 182 181 175 68 164 164 44	0232341827549666 <u>9</u> 29	31.0 40.8 11.0 7.3 30.5 28.5 12.1 12.6 15.6 14.3 7.2 10.2 20.7 <u>22.3</u> 18.9 10.3 2.7

,

Appendix IV: Plankton standing crops in 1966.

	<u></u>			
PROVINCE Lake	Vertical (No.)	Vertical/ depth (No/m)	Hori- zontal Tow (ml)	Top, Middle, Bottom Ave. (No./1)
CENTRAL Tecumseh Guthrie Pawnee Perry Paul's Valley Cushing Shawnee Mean S.D. S.E.	1,040 1,932 2,790 960 4,160 1,764 <u>1,676</u> 2,046 1,114 421	347 276 507 240 588 <u>168</u> 154 58	4.9 9.5 2.0 7.0 7.0 7.0 5.7 1.0	24.6 83.2 111.2 54.2 26.6 86.3 <u>67.8</u> 64.8 32.0 12.1
WICHITA MTS. Rush Q. Parker I Q. Parker II J. Johnson E. Thomas I E. Thomas II Mean S.D. S.E.	7,916 744 2,482 7,320 7,300 <u>3,580</u> 4,874 2,999 1,224	1,319 186 354 781 1,043 <u>398</u> 680 510 208	9.1 8.7 11.0 15.1 8.8 <u>9.1</u> 10.3 2.5 1.0	23.2 27.1 22.0 128.5 113.8 <u>17.1</u> 55.3 51.3 20.9
ARBUCKLE MTS. Veterans Mountain Mean S.D. S.E.	2,218 2,444 2,331 160 115	370 <u>244</u> 307 89 63	8.8 <u>38.0</u> 23.4 20.7 14.6	7.9 <u>24.3</u> 16.1 11.6 8.2
MIDWESTERN Northwood Elmer I Elmer II Clear Mean S.D. S.E.	1,980 8,080 1,868 <u>1,492</u> 3,355 3,157 1,579	3963,0264672991,0471,321661	20.0 8.0 38.5 <u>11.0</u> 19.4 13.7 6.9	90.5 79.1 85.0 <u>15.5</u> 67.5 35.0 17.5

.

Appendix IV: Plankton standing crops in 1966 (cont.)

PROVINCE Lake	Vertical (No.)	Vertical/ depth (No/m)	Hori- zontal Tow (ml)	Top, Middle, Bottom Ave. (No./1)
WESTERN Hobart Clinton Mean S.D. S.E.	1,936 <u>5,968</u> 3,952 2,851 2,016	456 918 687 327 232	7.5 <u>11.5</u> 9.5 2.8 2.0	28.3 <u>91.0</u> 59.6 44.3 31.4
ALLUVIUM Mahoney #1 Mahoney #2 Vincent Roebuck Snyder Mean S.D. S.E.	2,020 2,692 1,796 2,520 <u>4,368</u> 2,679 1,011 428	808 539 449 1,260 <u>1,456</u> 902 344 146	24.5 19.0 21.0 17.0 <u>12.2</u> 18.7 4.6 1.9	42.2 112.9 30.4 152.1 <u>286.0</u> 124.7 103.2 43.7
BLAINE Watonga I Watonga II Mean S.D. S.E.	9,592 <u>4,076</u> 6,834 3,901 2,759	1,599 <u>816</u> 1,207 554 392	8.1 <u>3.5</u> 5.8 3.3 2.3	73.3 <u>48.7</u> 61.0 17.4 12.3

Appendix IV: Plankton standing crops in 1966 (cont.)

•

.

PROVINCE Lake	Depth 1 Meter	N	ſ	±	٢	Q	2		6	10	£	13	7
OUACHITA * Clayton * N. Waiya * O. Cobb * Schooler N. Waiya O. Cobb Clayton Schooler	304 256 226 456 882 452	390 316 58 226 683 377	472 129										
OZARK * Francis * Greenleaf * Tenkiller Greenleaf Eucha Francis	358 176 94 139 355 10	970 104 234 372 330 7		212		142	66	124			180	252	
CRETACEOUS * Carter * R. Gary Carter R. Gary Yashoo EASTERN	182 348 331 3,366 995	388 122 762 862 442	368	884			481	`					
* Holdenville * McAlester * Carleton * Okmulgee * Ardmore Club	244 57 122 286 324	222 58 502 740	36										

•

-

Appendix V: Depth distribution, 1965, 1966 (* = collections made in 1965).

و المالية المي المحكمية المحكمية المنابع عن المحاولين في معالمة ومن المحكمين المحكمين المحكمين المحكم المحكم ا المحكمة المحكمية المح													
PROVINCE	1 Me ter	୯	ŝ	4	۲.	9	2	¢	σ	10	<u>-</u>	13	15
EASTERN (cont.) Carleton	279	308	343				<u>م ۵</u> ۱,						liot
Okmulgee Henryetta	127 98	210 66 87	137 33				304						401
Wetumka 1 Wetumka II Ardmore City	_270 61 549	308 32 478	336 68 128	27		88	178						
Claremore	142	116	104	400	4.0.(. / 0						
Wewoka Sportsman	76 139	210 125	152 144	218	126		202						
Holdenville	190	186	152	86		86							
* Hominy	590 140	550 426								_			
Bluestem Hominy	43 143	130 165			396 37					182			
Hudson	392	180		137	57		139			. 20			
CENTRAL * Blackwell	134	204											
* Pawnee	750	786											
* Shawnee * Comanche	84 154	184 98											
Tecumseh	139	372		212	tang gan		66		124		180	252	
Guthrie Pawnee	366 464	480	426		2,392	-	,704						
Perry	728	321	576		-,3/-								
Paul's Valley Cushing	172	400	858	416					210				
Shawnee	380	1,558	0,0		6-e -m						97		

Appendix V: Depth distribution, 1965, 1966 (* = collections made in 1965) (cont.).

PROVINCE d Lake C	1 Meter	N	m	4	Ъ	9	2	œ	6	10	<u>~</u>	13	1 5
WICHITA MTS. * Caddo * Post Oak * Rush	642 850 130	658 330 334											
Rush Q. Parker II Q. Parker I	291 211	245 144 370	350 177 170	150	195	137	271						
J. Johnson E. Thomas II E. Thomas I	148 210 1,168	478 252 894	124 1,148	1,516 227	218		163		2,192 94 1,097				
ARBUCKLE MTS. * Mountain Veterans	998 17 250	652 45 872	54	220	172	23	253		229	162			
MIDWESTERN	2,0	(1)	900	270	510		2))		22)	102			
* Duncan Northwood Elmer II Elmer I	722 1,050 770 424	1,864 912	1,222 824 1,948	840	422 956								
Clear WESTERN	76	152	207		183								
* Hobart * Clinton Hobart	1,776 762 432	1,190 1,060 191	a - 0	225	4	265							
ULINTON	000	520	750		í	,302							

Appendix V: Depth distribution; 1965, 1966 (* = collections made in 1965) (cont.).

PROVINCE Lake	Depth	1 Meter	2	Ω.	4	ы	9	2	ω	6	10	₹ T	13	7
ALLUVIUM * Mahoney Mahoney Vincent Roebuck Snyder BLAINE	#1 #1 #2	306 956 174 1,072 1 3,214	916 622 564 120 ,968	2, ⁶⁴⁴ 2,852 262 2,516	1ኑኑ 660									
* Watonga Watonga Watonga	I II	31 498 229	31 464 150	1,212 159		1,074	490							

.

,

Appendix V: Depth distribution, 1965, 1966 (* = collections made in 1965) (cont.).

Appendix VI: Systematic list of Copepoda and Cladocera, 1965, 1966. Class Crustacea Order Copepoda Suborder Calanoida Family Diaptomidae <u>Diaptomus</u> (Aglaodiaptomus) <u>clavipes</u> Schacht 1897 <u>Diaptomus</u> (Leptodiaptomus) <u>siciloides</u> Lilljeborg 1889 <u>Diaptomus</u> (Skistodiaptomus) <u>pallidus</u> Herrick 1879 Diaptomus (Skistodiaptomus) reighardi Marsh 1895 Suborder Cyclopoida Family Cyclopidae <u>Eucyclops</u> <u>agilis</u> (Koch) 1838 <u>Tropocyclops</u> prasinus (Fischer) 1860 Cyclops vernalis Fischer 1863 <u>Cyclops</u> <u>bicuspidatus</u> <u>thomasi</u> S.A. Forbes 1882 Mesocyclops edax (S.A. Forbes) 1891 Macrocyclops albidus (Jurine) 1820 Order Cladocera Suborder Eucladocera Superfamily Sidoidea Family Sididae <u>Diaphanosoma</u> sp. Family Holopedidae Holopedium amazonicum Stingelin 1904 Superfamily Chydoridea Family Daphnidae Daphnia ambigua Scourfield 1947 <u>Daphnia laevis</u> Birge 1879 Daphnia rosea Sars 1862 emend. Richard 1896 <u>Daphnia parvula</u> Fordyce 1901 <u>Daphnia schodleri</u> Sars 1862 <u>Simocephalus</u> <u>serrulatus</u> (Koch) 1841 <u>Scapholeberis kingi</u> Sars 1903 <u>Ceriodaphnia lacustris</u> Birge 1893 Family Bosminidae <u>Bosmina longirostris (O.F. Muller) 1785</u> Bosmina coregoni Baird 1857 Family Chydoridae <u>Eurycercus lamellatus (0.F. Muller) 1785</u> Leydgia quadrangularis (Leydig) 1860 <u>Alona affinis</u> (Leydig) 1860 <u>Alona costata</u> Sars 1862 <u>Alona rectangula</u> Sars 1861 <u>Alona quadrangularis</u> (O.F. Muller) 1785 <u>Pleuroxus</u> <u>denticulatus</u> Birge 1878 Chydorus sphaericus (0.F. Muller) 1785 <u>Chydorus globosus</u> Baird 1850 Family Macrothricidae <u>Macrothrix laticornis</u> (Jurine) 1820 Ilyocryptus sordidus (Lieven) 1848

• • • • • • • • • • • • • • • • • • •									
	D. pallidus D. siciloides	D. reighardi D. clavipes	M. edax C. b. thomasi	C. vernalis M. albidus	unident. cyclops E. agilis A. affinis	A. costata B. longirostris	B. coregoni Diaphanosoma sp.	C. lacustris C. sphaericus P. denticulatus	 S. serrulatus H. amazonicum L. quadrangularis D. parvula D. ambigua D. laevis D. rosea
OUACHITA Clayton N. Waiya O. Cobb Schooler	X X X X		X X X X		ХХХ	X X X X X	X X X X X X	X X X	X X X X X X X X
Francis Greenleaf Tenkiller CRETACEOUS		X X X	X X X X	х	X	x x	х	X X X	X X X
Carter R. Gary EASTERN	X X		X X X			X X X	X X	X X X X	X X
McAlester Carleton Okmulgee Ardmore Club Holdenville Bluestem Hominy	X X X X X	X X X	X X X X X X X	X	x x	X X X X X X X	X X X X X	X X X X	X X X X X X X X X X X
Blackwell Pawnee Shawnee Comanche	X X X X X X X		X X X X X	X X X	X	X X X X	X X X	X X	X X X X X X X
Caddo Post Oak Rush	X X			X X X X	x x	X X X		X X X X X X X X Z	X X X X X X
ARBUCKLE MTS. Mountain Lake MIDWESTERN	X X		Х				X	X Z	X X
Duncan WESTERN	Х			Χ	X	X	Χ	X	X
Hobart Clinton	X X	•	Х	X X		Х	х	X X	X X

Appendix VII: Species occurring in 1965.

76

;

Percentage Occurrence	Occurrences (29)	BLALNE Watonga	ALLUVIUM Mahoney #1	
6124009919443278583336499 621764633977154310008169	1975109127211355304337222	X X X X X X	X X X X	D. pallidus D. siciloides D. reighardi D. clavipes M. edax C. b. thomasi C. vernalis M. albidus Unident. cyclops E. agilis A. affinis A. affinis A. costata B. longirostris B. coregoni Diaphanosoma sp. C. lacustris C. sphaericus P. denticulatus S. serrulatus H. amazonicum L. quadrangularis D. parvula D. laevis D. rosea

-

Appendix VII: Species occurring in 1965 (Cont.).

PROVINCE Lake	<pre>D. pallidus D. siciloides D. reighardi </pre>	M. edax M. edax C. b. thomasi C. vernalis M. olhidis	E. agilis T. prasinus unident. cyclops	Holopedium Diaphanosoma spp D. ambigua D. parvula D. laevis D. schodleri	 S. serrulatus C. lacustris B. longirostris B. coregoni L. quadrangularis C. sphaericus S. kingi 	 Lameria vus A. affinis A. costata A. rectangula A. quadrangularis P. denticulatus C. globosus M. laticornis I. sordidus
OUACHITA N. Waiya O. Cobb Clayton Schooler OZARK	X X X X X	X X X X	X X X	X X X X X X X X X X X X	X X X X X X X X X X X X	Х
GreenLeaf Eucha Francis CRETACEOUS	X X X	X X X X		X X X X X X X	X X X X X	х
Carter R. Gary Yashoo EASTEBN	X X X	X X X X X		X X X X X X	X X X X X X X X X X X	X
Carleton Atoka Okmulgee Henryetta	X X X X X X	X X X X X	X X X	X X X X X X X X X X X X X X	X X X X X	
Wetumka I Wetumka II Ardmore City Claremore Sportsman		X X X X X	X	X X X X X X X X X X X X	XX XXX XX XX XX XX	Х

Appendix VIII: Species occurring in 1966.

:

÷.

PROVINCE Lake	D. pallidus	D. siciloides	D. reighardi	D. clavipes	M. edax	C. b. thomasi	C. vernalis	M. albidus	E. agilis	SULLASTIC - I	unident. cyclops	Holopedium	Diaphanosoma spp	D. ambigua	D. parvula	D. laevis	D. rosea	D. schodleri	S. serrulatus	C. lacustris	B. longirostris	B. coregoni	L. quadrangularis	C. sphaericus	D. KILLL F. Jamellatur	ידידידי סרקידיה	A. costata	A. rectangula	A. quadrangularis	P. denticulatus	C. globosus	M. laticornis	I. sordidus
EASTERN (cont.) Holdenville Bluestem Hominy Hudson Wewoka	x x x x x	x x	X X X		X X X X X	X X X	X X						X X X	X X X	x x					X X X X X	X X X X	X X		X X X X	X	X		Х					
Tecumseh Guthrie Pawnee Perry City Paul's Valley Cushing Shawnee	X X X	X X X X X X X X		х	X X X X X X X	X X	X X X				X X		X X X X X X		X X X X X X X			Х		X	X X X X X X	X X X		x X				Х					
Rush Q. Parker I Q. Parker II J. Johnson E. Thomas I E. Thomas II	X X X X X X				X X X X X	X	Χ						X X X	X X X X	X	X X		X X	Х	X X X	X X X X X X X	Х	-	X X X X X X		х	Х			X X X			
Veterans Mountain	X X				х		Х			2	X			X		X X	х				X X			X X		Х							

Appendix VIII: Species occurring in 1966 (cont.).

ALLOVION Mahoney #1 X	Appendix VIII: PROVINCE Lake MIDWESTERN Northwood Elmer I Elmer II Clear Hobart Hobart	XX X X D. pallidus D. pallidus XX XX D. siciloides D. reighardi XX D. clavipes D. clavipes XX M. edax O. b. thomasi XX XXX C. b. thomasi XX XXX C. vernalis XX XXX C. vernalis XX XXX C. vernalis X X In off X X X X
Issterning X	e NCE	D. pallidus D. siciloides D. reighardi D. clavipes M. edax C. b. thomasi C. vernalis M. albidus E. agilis T. prasinus unident. cycl Holopedium Diaphanosoma D. ambigua D. parvula D. laevis D. rosea
TERN obart Nobart X X UVIUM ahoney #1 X X incent X X incent X X	WESTERN orthwood lmer I lmer II lear	X X X X X X X X X X X X X X X X X X X
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ekn bart inton VTTM	X X X X X X X X X
ALME Matonga I X Matonga II X X Natonga II X	Mahoney #1 Mahoney #1 Vincent Sovebuck Snyder	X X X X X X X X X X X X X X X X X X X
Jumber of 0c- 8 90 5885 vurrences 52 3 10 5885 1 1 9 138752 orcentage 3 652 7168 73488 1 9 138752 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5885 1 97939662 3 10 5358 1 97939662 3 10 5358 1 97939662 3 10 5358 1 97939662 3 10 5358 1 97939662 3 10 5358 1 97939662 3 10 5358 1 97939662 3 10 5358 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Watonga I Watonga II	X X X X X X X X X X X X X X X X X X X
ercentage 15271689719396627932 currence 7319732 17939662788 580738	Number of Oc- Surrences (52)	3 1 1 5 8 1 5 8 1 5 1 4 1 9 1 1 8 7 5 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
	ercentage ccurrence	731 365 192 97 731 346 288 19 77 19 173 19 596 346 712 97 38

,.

Province Lake	Total Vertical	No. Naupli	No. Adults	D. pallidus	D. siciloides	D. reighardi	D. <u>clavipes</u>	<u>M</u> . <u>edax</u>	<u>C. b. thomasi</u>	C. <u>vernalis</u>	Other cyclopoids	D. parvula	D. ambigua	Other daphnids	C. lacustris	B. longirostris	<u>Diaphanosoma</u> sp.	Other cladocera
OUACHITA	······································																	
N. Waiya	1,904	200	1,704	36	•			1		7		-	35		1	15	3	
0. Cobb	1,280	200	1,080	11	3			-			73	3	1		-	-	6	1 50
Schoolon	1,290	200	1,000	30 62				л			<u></u>	10	10		_	2	_	52
OZARK	2,104	200	1,004	02				-1			-1	10	12		<u> </u>		_	-
Greenleaf	621	136	485		[52		1	6			21			-	3	1	2
Eucha	1,948	280	1,668		Ĺ	+3		-	18			15	5		- '	18	-	1
Francis	72	22	49			8				32		6	10		ć	22	-	13
CRETACEOUS								~							-			~
Carter	3,248	400	2,848	16				5	~ 0			75			2		-	3
R. Gary	2,728	200	2,528					1	28			46			12		3	1
Yashoo	1,084	100	984	50				3	4			24			-	1	-	3
LADIERN)1)1 S	28	<u>ل</u> بر	10	C	57		12				11			1	7	З	1
Conloton		800	2 378	37	-) (-		16		ຈໍ່ຂໍ			2	Ŕ	ц Ц	1
	708	164	2,370 708	57	ľ	+6		դ		10	11	10	6		_	ž	19	•
Henrvetta	832	Ϊųμ́	788		32 2	24	16	1	3		• •	-	_			5	24	
Atoka	2,472	400	2,072	25	25				2	4		. 5	2		- 3	34	-	
Wetumka I	1,788	96	1,692	36	16			20			12	8			-	1	6	
Wetumka II	588	161	472	16	33			26				13			2	1	8	1

Appendix IX: Percentage composition of the major species of the total crustacean population, 1966 (- = less than 1%).

<u>∞</u>

Province Lake	Total Vertical	No. Naupli	No. Adults	D. <u>pallidus</u> D. <u>siciloides</u>	<u>D. reighardi</u> <u>D. clavipes</u>	<u>M. edax</u> C. b. thomasi	C. <u>vernalis</u>	Other cyclopoids <u>D</u> . <u>parvula</u>	D. ambigua	Other daphnids	C. <u>lacustris</u>	B. longirostris	<u>Diaphanosoma</u> sp Other Cladocera	5 1 5 5 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5
EASTERN (cont.) Sportman Holdenville Claremore Bluestem Hominy Hudson Ardmore City	542 1,716 506 2,350 876 1,020 1,332	296 264 168 596 200 432 100	246 1,452 338 1,754 676 588 1,232	18 3 17 5 4 52	24 66 3 52	70 9 3 20 3 17 - 2 ¹ 3 3 ¹ 20	0 7 ++	6 8 4 5	35 60		- 5 2 1 1 7	58 10 1 8	- 2 3 4 - 8 2 10 - 2 2 1	} + 3 2 2
CENTRAL Tecumseh Guthrie Pawnee Perry City Paul's Valley Cushing Shawnee	1,060 2,000 3,404 1,152 4,060 2,020 2,164	20 68 614 192 800 256 176	1,040 1,932 2,790 960 4,160 1,764 1,988	22 20 47 42 19 15 35 9 85 32	22	5 2 1 11 24 6 1 5	2 5 1 2 21	10 4 49 32 27 2 4 16 34		22	- 1	5 1 20 15 8	22 2 1 1 2 4 1	2
WICHITA MTS Rush Q. Parker I Q. Parker II	11,132 936 2,938	3,216 192 456	7,916 744 2,430	30 65 54		12 20 15	12	5	32 3 23	1	2	3 7 7	- 5 - 3 - 3	5 } }

Appendix IX: Percentage composition of the major species of the total crustacean population, 1966 (cont.) (- = less than 1%).

Province Lake	Total Vertical	No. Naupli	No. Adults	D. pallidus	D. siciloides	D. reighardi	D. <u>clavipes</u>	M. edax	<u>C. b. thomasi</u>	<u>C</u> . <u>vernalis</u>	Other cyclopoids	D. parvula	<u>D</u> . <u>ambigua</u>	Other daphnids	C. <u>lacustris</u>	B. longirostris	<u>Diaphanosoma</u> sp	Other Cladocera
WICHITA MTS (con J. Johnson E. Thomas I E. Thomas II ADDUCKIE MTS	t.) 8,120 8,120 4,288	800 800 1,708	7,320 7,320 3,580	32 32 35				3 15	3	-			31	6 38 30		29 29 18	-	2 2 1
Veterans Mountain	2,784 3,022	516 568	2,268 2,444	53 31				13		3	2		-	հ 1414 29		- 17	-	2 2
Northwood Elmer I Elmer II Clear	3,096 8,080 2,048 1,902	1,062 180 430	2,034 8,080 1,868 1,472	41 42	36 9		7 11	5 4 9	8	2 16 29	1	50 14 24 46				2 1	-	2 28 15 1
Hobart Clinton ALLIVIIM	2,336 6,768	400 800	1,936 5,968	ւ 20	55 1 7					22 27		18 21			6	10		5
Mahoney #1 Mahoney #2	2,812 4,124	792 1,432	2,020 2,692	65 34			4	8	27 16			12	2			<u> </u>		1 2

Appendix IX: Percentage composition of the major species of the total crustacean population, 1966 (cont.)(- = less than 1%).

Province Lake	Total Vertical	No. Naupli	No. Adults	D. pallidus	D. <u>siciloides</u> D. <u>reighardi</u> D. <u>clavipes</u> M. edax	<u>C. b. thomasi</u>	C. <u>vernalis</u> Other cyclopoids <u>D. parvula</u> <u>D. ambigua</u>	Other daphnids <u>C. lacustris</u> <u>B. longirostris</u> <u>Diaphanosoma</u> sp Other Cladocera
ALLUVIUM (con Vincent Roebuck Snyder BLAINE Watonga I Watonga II	11,992 4,852	1,704 800 800 2,400 776	1,796 2,520 4,368 9,592 4,076	37 36 1 53 66	¹⁺²	48 3 11	5 8 29 4 2 36 5 21	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

•

Appendix IX: Percentage composition of the major species of the total crustacean population, 1966 (cont.) (- = less than 1%).

8<u>4</u>