DYNAMIC ANALYSIS OF A TRANSMISSION

LINE TERMINATED BY A BISTABLE

AMPLIFIER

By

BALAKRISHNA MUDUNURI

/
Bachelor of Science Andhra University Waltair, India 1964

Bachelor of Engineering Andhra University Waltair, India 1967

Master of Science in Engineering Indlan Institute of Science Bangalore, India 1971

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1973

OKLAHOMA state universit LIBRARY

DYNAMIC ANALYSIS OF A TRANSMISSION

LINE TERMINATED BY A BISTABLE

AMPLIFIER

Thesis Approved:

Dean of the Graduate College

ACKNOWLEDGEMENTS

The author wishes to express his profound sense of gratitude and appreciation to Dr. Karl N. Reid for suggesting this problem and for providing valuable suggestions and assistance. His creative genius, great research capabilities, and critical reasoning have a profound influence on the author in many respects. The author also wishes to acknowledge the helpful suggestions of Dr. H. R. Sebesta.

Special thanks are due to his wife, Rajeswari, for her patience, understanding, and encouragement during the more trying moments.

Finally he wishes to acknowledge Mrs. Barbara Moore for her elegant typing of the thesis.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. LITERATURE SURVEY 2
III. ANALYSIS. 9
IV. EXPERIMENTAL APPARATUS AND TECHNIQUE 23
V. RESULTS AND DISCUSSION 27
VI. CONCLUSIONS AND RECOMMENDATIONS 52
BIBLIOGRAPHY. 54
APPENDIX 56

LIST OF TABLES

Table Page
I. Dimensions of the Corning Flip-Flop \#190424 25
II. Effect of Line Length on Switching Time. 42

LIST OF ILLUSTRATIONS

Figure Page

1. Schematic of an Unvented and a Vented Bistable Fluid Amplifier 5
2. Jet Path During the Switching Transient 6
3. Input Characteristics of the Bistable Amplifier 20
4. Flow Chart for Computing the Switching Time of the Line-Amplifier System 22
5. Schematic Diagram of Experimental Setup 24
6. Computed Step Responses of a Pneumatic Transmission Line Terminated With a Linear Resistance-- Rational Approximate Model With No Heat Transfer 28
7. Computed Step Responses of a Pneumatic Transmission Line Terminated With a Linear Resistance-- Extended Rational Approximate Model With Heat Transfer 29
8. Comparison of the Rational Approximate Models 31
9. Computed Step Response of a Transmission Line-- Rational Approximate Model With No Heat Transfer and $n=4$ 32
10. Experimental Step Response of a Transmission Line (length $=109.5 \mathrm{in}$. 33
11. Experimental Step Response of a Transmission Line (Only Response is Shown) (Line Length $=109.5$ in.) 34
12. Experimental Traces Showing Line Response (Line Length = 109.5 in.$)$ 35
Figure Page
13. Experimental Step Response of a Transmission Line (Line Length = 77 in.) 36
14. Experimental Traces Showing Line Response (Line Length $=77$ in.) 37
15. Experimental Traces Showing Line Response (Line Length $=44 \mathrm{in}$. 38
16. Comparison of Theoretical and Experimental Results for the Step Response of a Transmission Line Terminated by a Linear Resistance 40
17. Diagram Defining Experimental Switching Time 41
18. Experimental Traces for Predicting Switching Time (Line Length $=109.5 \mathrm{in}$.) 43
19. Experimental Traces for Predicting Switching Time (Line Length = 77 in .) 45
20. Experimental Traces for Predicting Switching Time (Line Length $=44 \mathrm{in}$. 46
21. Experimental Traces for Predicting Switching Time (Line Length $=14.5$ in.) 47
22. Experimental Traces for Predicting Switching Time (line length $=2.0 \mathrm{in}$.) 48
23. Variation of Switching Time With Line Length 50

NOMENCLATURE

A, B, C, D, E, F - Constants
ab_{c}

$$
\mathrm{b}_{\mathrm{s}}
$$$\mathrm{C}_{0}$

${ }^{d}$$\mathrm{d}_{0}$
E_{1}jJ_{0}, J_{1}, J_{2}
$J_{c}(t)$
J_{s}
kℓ
$\mathrm{M}(\mathrm{s}), \mathrm{N}(\mathrm{s})$

n

- Cross-sectional area of the line, in. ${ }^{2}$
- Control port width, in.
- Supply port width, in.
- Acoustic velocity of the fluid, in/sec
- Depth of the amplifier, in.
- Diameter of the line, in
- Control to supply jet momentum ratio
$-\sqrt{-1}$
- Bessel functions of the first kind
- Control jet momentum at any time t
- Supply jet momentum
$-\mathrm{r}_{0}^{2} / \nu_{0}$
- Length of the line, in.
- Polynomials in s of order m and n respectively
- Order of approximation
- Upstream and downstream pressures of the
line respectively, psig
- Supply pressure, psig

P_{1}	-k/5.78
P_{2}	-k/56.6
P_{3}	-k/40.9
$\mathrm{P}_{\text {bubble }}$	- Bubble pressure, pssig
$P_{s w}$	- Switching pressure, psig
r_{0}	- Radius of the line, in.
s	- Laplace variable, sec. ${ }^{-1}$
Te	$-\ell / \mathrm{C}_{0}$
T_{1}	$-\mathrm{T}_{\mathrm{e}}^{2} \mathrm{~A} / \mathrm{k}$
T_{2}	$-9 \mathrm{~T}_{1}$
T_{3}	$-25 \mathrm{~T}_{1}$
T_{4}	$-49 \mathrm{~T}_{1}$
t	- time, sec.
$U_{s}(t)$	- Unit step function
$\mathrm{W}_{\mathrm{a}}, \mathrm{W}_{\mathrm{b}}$	- Mass flow rates corresponding to $\mathrm{P}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}$
	respectively, $1 \mathrm{lb} . \mathrm{m}_{\mathrm{m}} / \mathrm{sec}$.
$\mathrm{W}_{\text {s }}$	- Supply mass flow rate, lb. $\mathrm{m}^{\text {/ }} \mathrm{sec}$.
X, Y	- Coordinates
Z_{0}	$-\mathrm{C}_{0} / \mathrm{a}$
$\mathrm{Z}_{\mathrm{C}}(\mathrm{s})$	- Characteristic impedance of the line, (in.-sec.) ${ }^{-1}$
Z_{R}	- Load impedance, (in.-sec.) ${ }^{-1}$
$\alpha_{i, n}$	- Roots of the Bessel's equation, $J_{i}\left(\alpha_{i, n}\right)$
γ	- Ratio of specific heats

- Kinematic viscosity of the fluid, in. ${ }^{2} / \mathrm{sec}$.
- Propagation operator
- Jet deflection angle at anytime, t

CHAPTER I

INTRODUCTION

In any application of fluid logic and control devices involving high power level, and/or fast dynamic response, line dynamics effects must be included in the analysis. For instance, neglecting line dynamics effects in a digital fluidic circuit may cause dynamic hazards. (A dynamic hazard is the occurrence of an unplanned state due to time delays,) It has long been recognized that the accuracy of analytical design of a fluidic system depends on the validity of the mathematical models for the system components.

The purpose of this thesis was to study the effect of input pulse characteristics on the switching time of a fluidic logic element (more specifically a flip flop) in correlation with the pulse form from a transmission line. For this study the theoretical model developed by Epstein $[1,2]^{1}$ for the end wall switching in a bistable amplifier was used. Various approximate models were tried for the transmission line and a comparison was made. The line-amplifier model was verified experimentally using a commercially available flip flop.

[^0]
CHAPTER II

LITERATURE SURVEY

Transmission Lines

Numerous problems involving signal and power transmission in fluid lines have emerged in the field of fluidics. Although a complete description of dynamic behaviour of a fluid line is extremely difficult, a number of approximate descriptions are available which yield rather good results for engineering design purposes.

Two general approaches to modeling transmission lines have been employed in fluid system analysis [3, 4, 5]:
(1) Lumped Parameter Models
(2) Distributed Parameter Models

The lumped parameter model is valid whenever the time required for a pressure wave to travel the length of the line is short with respect to the period of the highest frequency wave that is to be transmitted. In case where the pressure wave input to the line contains a broad band of frequencies (e.g., step and pulse inputs), a distributed parameter model must be used to achieve acceptable accuracy.

Distributed parameter models are obtained by solving the equations of motion under varying degrees of approximations.
(i) Lossless Model. The lossless model does not include dissipation or heat transfer and hence it yields pure time delay.
(ii) Linear Friction Model. The linear friction model assumes that losses are proportional to mean velocity and heat transfer effects are negligible.
(iii) Constant R-L-C Model. The constant R-L-C model accounts for attenuation only and is valid for cases where the frequency is low and the length to diameter ratio is large.
(iv) Dissipative Model. The dissipative model takes into account the viscous and heat transfer effects and is termed the "Exact Model" [7].

The distributed parameter models can be identified in terms of two functions--the propagation operator, $\Gamma(s)$, and the characteristic impedance, $Z_{c}(s)$; s is the Laplace variable. These functions result from the solution of a set of equations chosen to describe the line. Brown [7] has obtained expressions for $\Gamma(s)$ and $Z_{c}(s)$ which are given in the analysis which follows. The exact model does not allow easy computation because of the complex nature of $\Gamma(s)$ and $Z_{c}(s)$. To overcome this difficulty, many approximations have been suggested in the literature. In this thesis only two will be considered. They are:
(a.) Goodson's Rational Approximation
(b.) Brown's High Frequency Approximation

These will be discussed in detail in the analysis.

Bistable Amplifier

The bistable wall attachment amplifier is essentially a (turbulent) jet confined in a geometry like that illustrated in Figure l. The jet, in the stable mode, reattaches to one of the two walls due to the Coanda effect. The jet may be switched from one stable mode to another, i.e., from reattaching to one wall to the opposite wall, by the application of a proper control signal. This control signal usually takes the form of a control flow introduced into the control port.

Epstein [1, 2] studied the switching mechanism in a bistable wall attachment fluid amplifier. Depending on the particular geometry of the amplifier, three basic types of switching phenomena can occur (Fig. 2). Of the three, two depend on the length of attachment walls and their offset and the third on the location of the splitter.

End Wall Switching

With relatively short attachment walls, large offset and/or jets with a relatively small control to supply jet momentum ratio, E_{1} (see equation ll), the reattachment point, moves downstream until it reaches the edge k of the vent. The jet then separates from the wall, travels across the amplifier and finally reattaches to the opposite wall. Far this type of switching to occur it is also necessary to have the splitter located far enough away from the nozzle exit so that it does not interfere with the jet before it separates.from the original

a.) Schematic of an Unvented Bistable Fluid Amplifier

b. Schematic of a Vented Bistable Fluid Amplifier

Figure 1. Schematic of an Unvented and a Vented Bistable Fluid Amplifier

a.) End Wall Switching

b.) Splitter Switching

Small offset

> c.) Opposite Wall Switching

Figure 2. Jet Path During the Switching Transient
wall.

Splitter Switching

If the splitter location is as shown in Fig. 2(b), switching occurs when the reattachment point moves downstream a sufficient distance to cause instability of the jet about the splitter leading edge.

Opposite Wall Switching

With relatively small offset and/or la rge control to supply jet momentum ratio, E_{1}, the jet attaches to the opposite wall immediately after the control flow is started. The jet, however, still remains attached to the original wall. The two reattachment points move down the amplifier until the flow enters the second outlet. This type of switching is illustrated in Fig. 2(c).

Epstein analyzes only the end wall type switching transient.

He divides the end wall swhtching transient into three phases:

Phase I. Begins when a step input in the control fluid flow is applied and ends when the jet deflection angle, ψ, (see equation 10) reaches its stable value $\psi_{\text {final }}$ corresponding to the final control to supply jet momentum ratio, E_{1} 。 During this phase the attachment point is assumed to remain at its original position.

Phase II. Follows Phase I and ends when the reattachment point reaches the edge of the vent. During this phase $\psi=\psi_{\text {final }}=$ constant.

Phase III. Follows Phase II and ends when a pressure signal is obtained in the receiver connected to the outlet (2) of the amplifier. During this phase $\psi=\psi_{\text {final }}=$ constant and the jet is no longer attached to wall (1).

CHAPTER III

ANALYSIS

Transmission Line

A fluid transmission line can be represented in general by a four terminal element having two inputs and two outputs. One particular case is shown below:

P_{a} and P_{b} are pressures and W_{a} and W_{b} are mass flow rates. The arrows indicate the causality of the variables, ice., P_{a} and W_{b} are independent variables and W_{a} and P_{b} are dependent variables.

The relation between pressures and flows is given by the matrix equation (1):

$$
\left[\begin{array}{c}
P_{b}(s) \tag{1}\\
W_{b}(s)
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Cosh} \Gamma(s) & -Z_{c}(s) \operatorname{Sinh} \Gamma(s) \\
-\frac{1}{Z_{c}(s)} \operatorname{Sinh} \Gamma(s) & \operatorname{Cosh} \Gamma(s)
\end{array}\right]\left[\begin{array}{l}
P_{a}(s) \\
W_{a}(s)
\end{array}\right]
$$

where $\Gamma(s)$ is termed the propogation operator and $Z_{c}(s)$ is termed the
characteristic impedance.
Brown [7] has derived expressions for $\Gamma(s)$ and $Z_{c}(s)$ for the case of a pneumatic transmission line and suggested approximations for the high frequency range. The expressions given by Brown are:

$$
\Gamma(s)=T_{e} s\left[\frac{1+\frac{2(y-1) J_{1}(y)}{y J_{0}(y)}}{1-\frac{2 J_{1}(x)}{x J_{0}(x)}}\right]^{1 / 2}
$$

and

$$
\left.Z_{c}(s)=\frac{Z_{0}}{\left[1+\frac{2(y-1) J_{1}(y)}{y J_{0}(y)} \cdot 1-\frac{2 J_{1}(x)}{x J_{0}(x)}\right.}\right]^{1 / 2}
$$

where

$$
y=j \sqrt{\frac{\sigma_{0}^{2}}{\nu_{0}}} ; \quad x=j \sqrt{\frac{\mathrm{sr}_{0}^{2}}{\nu_{0}}} ; \quad z_{0}=\frac{C_{0}}{a}
$$

For a line loaded with a linear resistor of impedance, Z_{R}, the relation between P_{b} and W_{b} is

$$
\begin{equation*}
P_{b}(t)=Z_{R} W_{b}(t) \tag{2}
\end{equation*}
$$

or in terms of the Laplace variable, s,

$$
\begin{equation*}
P_{b}(s)=Z_{R} W_{b}(s) \tag{3}
\end{equation*}
$$

From equations (1) and (3), $P_{b}(s)$ can be expressed as a function of $P_{a}(s)$ as shown below:

$$
P_{b}(s)=\frac{P_{a}(s)}{\left[\operatorname{Cosh} \Gamma(s)+\frac{Z_{c}(s)}{Z_{R}} \operatorname{Sinh} \Gamma(s)\right]}
$$

If $P_{a}(t)$ is a step input of amplitude, P_{a}, then

$$
\begin{align*}
& P_{a}(s)=\frac{P_{a}}{s} \\
& \frac{P_{b}(s)}{P_{a}}=\frac{1}{s\left[\operatorname{Cosh} \Gamma(s)+\frac{Z_{c}(s)}{Z_{R}} \operatorname{Sinh} \Gamma(s)\right]} \tag{4}
\end{align*}
$$

The inverse transform of equation (4) is difficult to obtain due to the complex forms of $\Gamma(s)$ and $Z_{c}(s)$. A closed form solution can be obtained if approximations are used for $\Gamma(s)$ and $Z_{c}(s)$. Three approximations are considered below.

Brown's Approximation

For high frequencies or short transient times, $\Gamma(s)$ and $Z_{c}(s)$ can be approximated by [7]

$$
\Gamma(s) \approx T_{e} s\left[1+A\left(\frac{1}{k s}\right)^{1 / 2}+B \frac{1}{k s}+C\left(\frac{1}{k s}\right)^{3 / 2}\right]
$$

and

$$
Z_{c}(s) \approx \frac{Z_{0}}{\left[1+D\left(\frac{1}{k s}\right)^{1 / 2}+E\left(\frac{1}{k s}\right)+F\left(\frac{1}{k s}\right)^{3 / 2}\right]}
$$

where, for liquids,

$$
\begin{aligned}
& \mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=7 / 8 \\
& \mathrm{D}=1, \mathrm{E}=0, \mathrm{~F}=0.13
\end{aligned}
$$

and for gases,

$$
\begin{aligned}
& \mathrm{A}=1.478, \mathrm{~B}=1.078, \mathrm{C}=1.058 \\
& \mathrm{D}=-0.52, \mathrm{E}=-0.88, \mathrm{~F}=0.64
\end{aligned}
$$

For sufficiently high frequencies, the fourth terms in the above expressions for $\Gamma(s)$ and $Z_{c}(s)$ may be neglected. With this additional simplification the inverse transform of equation (4) for the liquids case is:

$$
\begin{aligned}
\frac{P_{b}(t)}{P_{a}} & =2 \exp \left(\frac{-B T_{e}}{k}\right) \operatorname{erfc}\left(\frac{1}{2} \sqrt{\frac{T_{1}}{\left(t-T_{e}\right)}}\right) U_{s}\left(t-T_{e}\right) \\
& -2 \exp \left(\frac{-3 B T_{e}}{k}\right) \operatorname{erfc}\left(\frac{1}{2} \sqrt{\left.\frac{T_{2}}{\left(t-3 T_{e}\right)}\right) U_{s}\left(t-3 T_{e}\right)}\right. \\
& -\frac{2 Z_{0}}{Z_{R}} \exp \left(\frac{-B T e}{k}\right) \exp \left(\frac{D^{2}\left(t-T_{e}\right)}{k}+\sqrt{\frac{D^{2} T_{1}}{k}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{erfc}\left(\sqrt{\frac{D^{2}\left(t-T_{e}\right)}{k}}+\frac{1}{2} \sqrt{\frac{T}{\left(t-T_{e}\right)}}\right) U_{s}\left(t-T_{e}\right) \\
& +\frac{6 Z_{0}}{Z_{R}} \exp \left(\frac{-3 B T e^{2}}{k}\right) \exp \left(\frac{D^{2}\left(t-3 T_{e}\right)}{k}+\sqrt{\frac{D^{2} T_{2}}{k}}\right) \\
& \operatorname{erfc}\left(\sqrt{\frac{D^{2}\left(t-3 T_{e}\right)}{k}}+\frac{1}{2} \sqrt{\frac{T_{2}}{\left(t-3 T_{e}\right)}}\right)_{s}\left(t-3 T_{e}\right) \\
& -\frac{6 Z_{0}}{Z_{R}} \exp \left(\frac{-5 B T}{k}\right) \exp \left(\frac{D^{2}\left(t-5 T_{e}\right)}{k}+\sqrt{\frac{D^{2} T_{3}}{k}}\right) \\
& \operatorname{erfc}\left(\sqrt{\frac{D^{2}\left(t-5 T_{e}\right)}{k}}+\frac{1}{2} \sqrt{\frac{T_{3}}{\left(t-5 T_{e}\right)}}\right) U_{s}\left(t-5 T_{e}\right) \\
& +\frac{2 Z_{0}}{Z_{R}} \exp \left(\frac{-7 B T e}{k}\right) \exp \left(\frac{D^{2}\left(t-7 T_{e}\right)}{k}+\sqrt{\frac{D^{2} T_{4}}{k}}\right) \\
& \operatorname{erfc}\left(\sqrt{\frac{D^{2}\left(t-7 T_{e}\right)}{k}}+\frac{1}{2} \sqrt{\frac{T}{4}}\left(t-7 T_{e}\right) \cdot U_{s}\left(t-7 T e^{\prime}\right)\right. \tag{5}
\end{align*}
$$

where

$$
U_{s}(t-T)=\left\{\begin{array}{l}
0 \text { for } t<T \\
1 \text { for } t>T
\end{array}\right.
$$

$$
\mathrm{T}_{1}=\frac{\mathrm{T}_{\mathrm{e}}^{2} \mathrm{~A}^{2}}{\mathrm{k}} ; \quad \mathrm{T}_{2}=9 \mathrm{~T}_{1} ; \quad \mathrm{T}_{3}=25 \mathrm{~T}_{1} ; \mathrm{T}_{4}=49 \mathrm{~T}_{1}
$$

for the liquid case.

Rational Approximation [8,9]

Oldenburger and Goodson [9] have shown that the hyperbolic functions of equation (4) can be expanded into the following infinite product forms:

$$
\begin{aligned}
& \operatorname{Cosh} \Gamma(s)=\prod_{n=0}^{\infty}\left[1+\frac{4 \Gamma^{2}(s)}{(2 n+1)^{2} \pi^{2}}\right] \\
& \operatorname{Sinh} \Gamma(s)=\Gamma(s) \prod_{n=1}^{\infty}\left[1+\frac{\Gamma^{2}(s)}{(n \pi)^{2}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\Gamma(s)= & \frac{T_{e^{s}}}{[1 / 2} \\
& {\left[\begin{array}{c}
2 J_{1}(x) \\
1-J_{0}(x)
\end{array}\right]^{*} }
\end{aligned}
$$

The identity

$$
J_{1}(x)=\frac{x}{2}\left[J_{0}(x)+J_{2}(x)\right]
$$

gives the result:

$$
\left[1-\frac{2 J_{1}(x)}{x J_{0}(x)}\right]=-\frac{J_{2}(x)}{J_{0}(x)}
$$

Infinite product expansions for $J_{0}(x)$ and $J_{2}(x)$ are

$$
\begin{aligned}
& J_{0}(x)=\prod_{n=1}^{\infty}\left[1-\frac{x^{2}}{\alpha_{0, n}^{2}}\right]=\prod_{n=1}^{\infty}\left[1+\frac{k s}{\alpha_{0, n}^{2}}\right] \\
& J_{2}(x)=\frac{x^{2}}{8} \prod_{n=1}^{\infty}\left[1-\frac{x^{2}}{\alpha_{2, n}^{2}}\right]=-\frac{k s}{8} \prod_{n=1}^{\infty}\left[1+\frac{k s}{\alpha_{2, n}^{2}}\right]
\end{aligned}
$$

Thus:

$$
-\frac{J_{2}(x)}{J_{0}(x)}=\frac{\frac{k s}{8}}{\left[\begin{array}{l}
1+\frac{k s}{2} \\
\frac{\alpha_{0, n}}{\infty}\left[\begin{array}{l}
\frac{k s}{2} \\
\alpha_{2, n}
\end{array}\right]
\end{array}\right]}
$$

where $\alpha_{i, n}$ stand for the roots of the equation

$$
J_{i}\left(\alpha_{i, n}\right)=0 ; n=1,2, \ldots ; i=0,1,2, \ldots
$$

Goodson $[8,9]$ has found that a good approximation to the infinite products which contain the Bessel function zeros is

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left[\frac{1+\frac{k s}{2}}{\alpha_{0, n}}\left[\frac{\left(1+P_{1} s\right)\left(1+P_{2} s\right)}{\left(1+\frac{k s}{\alpha_{2, n}}\right.}\right]=\frac{\left(P_{3} s\right)}{} \text { for }|k s|<400\right. \tag{6}
\end{equation*}
$$

where

$$
P_{1}=\frac{k}{5.78} ; \quad P_{2}=\frac{k}{56.6} ; \quad P_{3}=\frac{k}{40.9}
$$

Thus:

$$
\Gamma^{2}(s)=\frac{T_{e^{2}}^{2}}{\left[1-\frac{2 J_{1}(x)}{x J_{0}(x)}\right]}=\frac{\frac{8 T_{e}^{2}}{k}}{\frac{\left(1+P_{3} s\right)}{\left(1+P_{1} s\right)\left(1+P_{2} s\right)}}
$$

With this approximation, equation (4) can be rewritten as

$$
\frac{P_{b}(s)}{P_{a}}=\frac{M(s)}{N(s)}
$$

where $M(s)$ and $N(s)$ are polynomials in s of powers of m and n respectively.

The time domain solution can be obtained by the application of the expansion theorem [10] and can be written as

$$
\begin{equation*}
\frac{P_{b}(t)}{P_{a}}=\frac{M(0)}{N(0)}+\sum_{i=1}^{i} \frac{M\left(s_{i}\right)}{s_{i} \frac{d}{d s_{i}}}\left\{N\left(s_{i}\right)\right\} \tag{7}
\end{equation*}
$$

where s_{i} are given by the roots of the equation

$$
N\left(s_{i}\right)=0
$$

Equation (7) was evaluated for $\mathrm{n}=0,1,2,3,4$.

Case

Using the same expressions for $\operatorname{Cosh} \Gamma(s)$ and $\operatorname{Sinh} \Gamma(s)$ as given earlier, $\Gamma^{2}(s)$ for the pneumatic case becomes

$$
\Gamma^{2}(\mathrm{~s})=\frac{\frac{8 \mathrm{~T}_{\mathrm{e}}^{2}}{\mathrm{k}}\left[\gamma-(v-1) \frac{\sigma_{\mathrm{ks}}}{8} \frac{1}{\prod_{\mathrm{n}=\mathrm{m}_{1}}^{\infty}\left[\frac{1+\frac{\sigma_{\mathrm{ks}}^{2}}{\alpha_{0, \mathrm{n}}}}{1+\frac{\sigma_{\mathrm{ks}}^{2}}{\alpha_{2, \mathrm{n}}}}\right]}\right]}{\prod_{\mathrm{n}=1}^{\infty}\left[\frac{1+\frac{\mathrm{ks}}{2}}{1+\frac{\alpha_{0, \mathrm{n}}}{\alpha_{2}^{2}}}\right]}
$$

where σ is the Prandtl number and γ is the ratio of specific heats.
The numerator of equation (8) on the right side containing the zeros of the Bessel function can be approximated by

$$
\prod_{n=1}^{\infty}\left[\begin{array}{l}
1+\frac{\sigma k s}{2} \tag{9}\\
\frac{\alpha_{0, \mathrm{n}}}{1+\frac{\sigma \mathrm{ks}}{2}} \\
\alpha_{2, n}
\end{array}\right]=\frac{\left(1+\sigma P_{1} s\right)\left(1+\sigma \mathrm{P}_{2} s\right)}{\left(1+\sigma P_{3} s\right)} \text { for }|\sigma \mathrm{ks}|<400
$$

The denominator of equation (8) is the same as given in equation (6).
$\Gamma^{2}(s)=\frac{\frac{8 \mathrm{~T}_{\mathrm{e}}^{2} \mathrm{~s}\left(1+\mathrm{P}_{1} \mathrm{~s}\right)\left(1+\mathrm{P}_{2} s\right)}{\mathrm{k}}\left[\gamma\left(1+\sigma \mathrm{P}_{1} \mathrm{~s}\right)\left(1+\sigma \mathrm{P}_{2} \mathrm{~s}\right)-\frac{(\gamma-1) \sigma \mathrm{ks}\left(1+\sigma P_{3} s\right)}{8}\right]}{\left(1+\sigma P_{1} s\right)\left(1+\sigma P_{2} s\right)\left(1+P_{3} s\right)}$
Using this approximation for $\Gamma^{2}(s)$, the time domain solution for equation (4) can be obtained in the smae way as described earlier. Equation (7) was evaluted for $n=0,1,2$. Higher values of n were not considered due to computational difficulties.

Bistable Amplifier

The Epstein model (see figure 2(a)) may be used to obtain the switching time of the bistable amplifier. To include line dynamics effects on the switching time, it is necessary to modify the Phase I of the Epstein model.

In Epstein's work, Phase I begins when a step input pressure is applied to the transmission line and ends when the jet deflection angle, ψ, reaches its final value, $\psi_{\text {final }}$ corresponding to the maximum value of the jet momentum ratio, E_{1}. It is assumed that the jet deflection angle, ψ, as measured at the point of interaction of supply and control jet is given by

$$
\begin{equation*}
\psi=\tan ^{-1}\left(E_{q}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E}_{1}=\frac{\mathrm{J}_{\mathrm{c}}}{\mathrm{~J}_{\mathrm{s}}} \tag{11}
\end{equation*}
$$

It is assumed that the control jet total momentum, J_{c}, is given by

$$
\begin{equation*}
J_{c}=\frac{w_{b}^{2}}{b_{c}^{d}{ }_{p}^{d}}+p_{b u b b l e} b_{c}^{d} p^{\prime} \tag{12}
\end{equation*}
$$

and the supply jet momentum is

$$
\begin{equation*}
J_{s}=\frac{w_{s}^{2}}{\rho b_{s} d_{p}} \tag{13}
\end{equation*}
$$

Since W_{b} is a function of time, J_{c} and ψ are functions of time. Knowing $P_{b}(t), W_{b}(t)$ can be determined. Hence $\psi(t)$ can be determined. It is assumed that the test amplifier loads the line as if it were a linear resistance, i.e., the input resistance of the amplifier is Z_{R} as implied by equation (2). A suitable value for Z_{R} can be determined from a measured pressure-flow characteristic for the amplifier control input port. A measured input characteristic for the test amplifier used is shown in Figure 3; the input resistance is approximately constant.

Phases II and III are not altered since, in accordance with the as sumptions of Epstein, $\psi=\psi_{\text {final }}=$ constant and hence W_{b} is constant, corresponding to the switching pressure, P_{sw}.

Switching Time Prediction

The objective of this thesis was to determine the effect of line dynamics on the switching time of a fluidic bistable amplifier.

Figure 3. Input Characteristic of the Bistable Amplifier

Switching time is defined here as the time elapsed, beginning with the time of introduction of a step input at the upstream end of the line and commencing with the time when the pressure in the output leg of the bistable amplifier reaches 95% of its final value, less the transport delay.

Figure 4 is a computer flow chart which describes the steps required to predict the switching time for the line-amplifier system, when'a step input (approximate) is provided to the line.

Figure 4. Flow Chart For Computing the Switching Time of the Line-Amplifier System

CHAPTER IV

EXPERIMENTAL APPARATUS

AND TECHNIQUE

Figure 5 shows a schematic of the experimental apparatus used. A transmission line connected an output leg of an input amplifier to a control input port of a test amplifier. Both amplifiers were Corning model 190424 bistable flip-flops. Table I gives the dimensions of both amplifiers.

A "step input" to the line was generated by causing the input amplifier output to "switch" from O_{2} to O_{1}. This technique produced a step input having a rise time ${ }^{l}$ of approximately 2 msec (msec means millisecond). Attempts to generate a "step" having a rise time less than 2 msec were unsuccessful. Each output leg of the test amplifier was loaded by a control port (resistance) of a similar amplifier.

The supply pressure, $P_{s 2}$, was held constant at 2 psig for all tests. Dynamic pressure measurements were made at the entrance to the line $\left(P_{a}\right)$, the exit of the line $\left(P_{b}\right)$, and the 01 outlet of the test amplifier $\left(\mathrm{P}_{01}\right)$. All dynamic pressures were measured with Kistler
${ }^{l}$ Rise time is defined as the time required for the pressure signal to change from 5 percent to 95 percent of its final value.

Figure 5. Schematic Diagram of Experimental Setup
model 601 piezoelectric transducers and associated signal conditioning equipment. The step input amplitude was approximately 0.4 psi above atmospheric pressure far all tests. Permanent recordings were made using a storage oscilloscope and camera,

TABLE I

DIMENSIONS OF THE CORNING FLIP-FLOP \#190424

Supply Port Nozzle Width

Control Port Nozzle Width
Vent Location
Splitter Location
Wall Angle
Wall Offset
Depth of Amplifier
Vent Discharge Coefficient [1]
Jet Spread Parameter [1]
Maximum Possible Jet Turning Angle [1]
$b_{s}=0.02 \mathrm{in}$.
$b_{c}=0.02 \mathrm{in}$.
$\mathrm{X}_{\mathrm{V}}=0.184 \mathrm{in}$.
$\ell_{s}=0.22 \mathrm{in}$.
$A_{L}=12^{\circ}$
$D=0.010 \mathrm{in}$.
$d_{p}=0.08 \mathrm{in}$.
$C_{d_{0}}=0.65$
$S G=31.5$
$T_{M}=67^{\circ}$
ties in the line were determined at room temperature and atmospheric pressure.

CHAPTER V

RESULTS AND DISCUSSION

This chapter presents predicted and measured step responses for a pneumatic transmission line terminated by a linear resistor of impedance, Z_{R}. The effect of input pulse characteristics on the switching time of a bistable amplifier is demonstrated.

Figure 6 shows the calculated step responses for the transmission line loaded at its downstream end with a linear fixed resistance, based on the rational approximate line model with no heat transfer effect (equation 7). There is a marked improvement in the result as the order of approximation (n) is increased. The larger rise time for smaller values of n is a result of neglecting high frequency terms.

In the present work, the rational approximate line model was extended to include heat transfer effects (equation 7). The step response for the line computed using the extended rational approximate model is shown in Figure 7. Computational difficulties prohibited considering values of n greater than 2 . In this case also an improvement in the result was observed by increasing n.

It is of interest to examine the importance of heat transfer

Figure 6. Computed Step Responses of a Fneumatic Transmission Line Terminated With a Linear Resis-tance--Rational Approximate Model With No Heat Transfer

Figure 7. Computed Step Responses of a Pneumatic Transmission Line Terminated With a Linear Resis-tance--Extended Rational Approximate Model With Heat Transfer
effects on the line dynamics. Step responses calculated using the rational approximate models for $n=2$ are shown in Figure 8. For the range of conditions considered, it can be concluded that the heat transfer effects are small.

Figure 9 is a replot of the $n=4$ step response from Figure 6 on an extended time scale. A steady state value was reached a round 80 msecs.

An experimental study was carried out to provide a means for making a qualitative assessment of the validity of the theoretical predictions and to permit determination of the effect of line dynamics on the switching time of the bistable amplifier. Figure 10 through 13 show measured step responses for the transmission line loaded by a bistable amplifier, having an input resistance of $Z_{R}=1,649,000$ (insec) ${ }^{-1}$.

Figure 10 shows that the input transient rise time is of the order of 2 msec , There is no response at the downstream end of the line (bend) until an elapsed time of 8 msecs which corresponds to the transport delay. After this, there is a sudden rise which is followed by a slow rise until steady state is reached. The effective rise time is about 10 msecs .

Figure 11 expands the time scale of the lower trace of Figure 10 , so that more accurate value of the rise time can be determined.

Figures 13 and 14 show measured responses for a line length of 77 in., and Figure 15 shows the measured response for line length of

Figure 8. Comparison of the Rational Approximate Models

Figure 9. Computed Step Response of a Transmission Line-Rational Approximate Model With No Heat Transfer and $n=4$

(a) $\mathrm{P}_{\mathrm{a}}(\mathrm{t})$
(b) $P_{b}(t)$

Scale: X--1 unit $=2 \mathrm{msecs}$.
$\mathrm{Y}--1$ unit $=0.2 \mathrm{psig}$.
$\mathrm{P}_{\mathrm{s}}=2 \mathrm{psig}$.
Figure 10. Experimental Step Response of a Transmission Line (length $=109.5 \mathrm{in}$.

(b) $P_{b}(t)$

$$
\begin{aligned}
\text { Scale: } & X--1 \text { unit }=1 \mathrm{msec} . \\
& Y--1 \text { unit }=0.2 \mathrm{psig} . \\
& P_{\mathrm{S}}=2 \text { psig. }
\end{aligned}
$$

Figure 11. Experimental Step Response of a Transmission Line (Only Response is Shown) (Line Length $=109.5 \mathrm{in}$.

(a) $\mathrm{P}_{\mathrm{a}}(\mathrm{t})$
(b) $P_{b}(t)$

Scale: X--1 unit $=5 \mathrm{msecs}$.
$\mathrm{Y}--1$ unit $=0.2 \mathrm{psig}$.
$P_{s}=2$ psig.
Figure 12. Experimental Traces Showing Line Response (Line Length $=109.5 \mathrm{in}$.

(a) $P_{a}(t)$
(b) $P_{b}(t)$

Scale: $X--1$ unit $=2 \mathrm{msec}$.
Y--1 unit $=0.2 \mathrm{psig}$.
$P_{s}=2$ psig.
Figure 13. Experimental Step Response of a Transmission Line (Line Length $=77$ in.)

(a) $\mathrm{P}_{\mathrm{a}}(\mathrm{t})$
(b) $P_{b}(t)$

Scale: X--1 unit $=5 \mathrm{msecs}$.
$\mathrm{Y}--1$ unit $=0.2 \mathrm{psig}$. (trace (a))
1 unit $=0.2$ psig. (trace (b))
$P_{s}=2$ psig.
Figure 14. Experimental Traces Showing Line Response (Line Length $=77 \mathrm{in}$.)

(a) $\mathrm{P}_{\mathrm{a}}(\mathrm{t})$
(b) $P_{b}(t)$

Scale: X--1 unit $=5 \mathrm{msec}$.
$\mathrm{Y}--1$ unit $=0.2 \mathrm{psig}$.
$P_{s}=2$ psig.
Figure 15. Experimental Traces Showing Line Response (Line Length $=44 \mathrm{in}$.)

44 in. The behaviour is similar to that for the longer line.
The step response of a transmission line computed using Brown's high frequency approximation (without heat transfer effectsequation 5) is shown in Figure 16. The approximation is valid for an elapsed time of 40 msecs. Also shown in Figure 16 is a step response of a transmission line computed using the rational approximate model (without heat transfer effects-equation 7) with $n=4$. Brown's approximation gives the shortest rise time compared to the rational approximate model. Predictions using the rational approximate model can be improved by increasing the order of approximation, n; however, computational time is accordingly increased. Also shown in Figure 16 are the experimental points obtained from Figure 10. The experimental data correlates well with the predicted results based on Brown's high frequency approximation.

In order to determine the effect of input pulse shape on the switching time of the bistable amplifier, the length of the line was varied and the switching time (see Figurel7) of the amplifier was obtained experimentally and theoretically (using Brown's approximation). The values of switching times for various line lengths are tabulated in Table II.

The experimental switching times were obtained from Figures 18 through 22.

Figure 18 shows measured responses of the line-amplifier system for a line length of 109.5 inches. Trace (a) is the input tran-

Figure l6. Comparison of Theoretical and Experimental Results for the Step Response of a Transmission Line Terminated by a Linear Resistance

Figure 17. Diagram Defining Experimental Switching Time

TABLE II

EFFECT OF LINE LENGTH ON SWITCHING TIME

| | Line
 Length, in. | Transport
 Delay, msec | Uncorrected
 Theoretical
 Switching Time,
 msec | Corrected
 Switching Time,
 msec |
| :---: | :---: | :---: | :---: | :---: | | Experimental
 Switching Time,
 msec |
| :---: |
| 1. |

(a) $\mathrm{P}_{\mathrm{a}}(\mathrm{t})$
(b) $\mathrm{P}_{01}(\mathrm{t})$

Scale: X--1 unit $=2 \mathrm{msecs}$.
Y--1 unit $=0.2$ psig. (trace (a))
1 unit $=1.0 \mathrm{psig}$. (trace (b))
$P_{S}=2$ psig.
Figure 18. Experimental Traces for Predicting Switching Time (Line Length $=109.5$ in.)
sient at the beginning of the line and trace (b) is the pressure transient at the output leg of the amplifier. The experimental switching time is approximately 4.0 msecs (see Figure 17 for the method of determining the switching time). The uncorrected (see later dis. cussion) theoretical switching time for this case was found to be 5.2 msecs using Brown's approximation'for the line.

Figures 19 and 20 show measured responses of the line-amplifier system for line lengths of 77 in. and 44 in. respectively. The corresponding experimental switching times are 3.4 msecs and 2.8 msecs. The uncorrected theoretical switching times using Brown's approximation for the line are 4.9 msecs and 4.4 msecs respectively for the 77 in. and 44 in . lines.

Figures 21 and 22 show measured responses of the line-amplifier system for line lengths of 14.5 in. and 2 in. respectively. The corresponding experimental switching times are 3.6 msecs and 3.0 msecs.

Since the input to the line was not an ideal step, it is necessary to correct the theoretical switching times. A least square fit to the measured input to the line can be a straight line passing through the point Q (see Figure 17) which corresponds to 50% of the input amplitude. It was assumed that the time corresponding to the point Q is the correction which has to be subtracted from the uncorrected theoretical switching time in order to have correspondence with the measured input, and measured switching time. This correction was

(a) $P_{a}(t)$
(b) $\mathrm{P}_{01}(\mathrm{t})$

Scale: X--1 unit $=2 \mathrm{msec}$.
$\mathrm{Y}--1$ unit $=0.2$ psig. $($ trace $(\mathrm{a}))$
1 unit $=1.0 \mathrm{psig}$. (trace (b))
$P_{s}=2$ psig.
Figure 19. Experimental Traces for Predicting Switching Time (Line Length $=77 \mathrm{in}$.

Scale: X--1 unit $=1 \mathrm{msec}$.
Y--1 unit $=0.2$ psig. (trace (a))
1 unit $=1.0$ psig. (trace (b))
$P_{S}=2$ psig.
Figure 20. Experimental Traces for Predicting Switching Time (Line Length $=44 \mathrm{in}$.)

(a) $P_{a}(t)$
(b) $\mathrm{P}_{01}(\mathrm{t})$

Scale: X--1 unit $=2 \mathrm{msec}$.
$\mathrm{Y}--1$ unit $=0.2 \mathrm{psig}($ trace (a))
1 unit $=1.0 \mathrm{psig}$ (trace (b))
$\mathrm{P}_{\mathrm{s}}=2 \mathrm{psig}$.
Figure 21. Experimental Traces for Predicting Switching Time (Line Length $=14.5 \mathrm{in}$.

(a) $P_{a}(t)$
(b) $\mathrm{P}_{01}(\mathrm{t})$

Scale: X--1 unit $=2 \mathrm{msec}$.
Y--1 unit $=0.2 \mathrm{psig}$ (trace (a))
1 unit $=1.0 \mathrm{psig}$ (trace (b))
Figure 22. Experimental Traces for Predicting Switching Time (line length $=2.0 \mathrm{in}$.)
found to be of the order of 1.6 msec . The corrected theoretical switching times are $3.6,3.3$, and 2.8 msecs , respectively for line lengths of $109.5 \mathrm{in},, 77 \mathrm{in} .$, and 44 in . The corresponding measured switching times are $4.0,3.4$ and 2.8 msecs . Measured switching times for line lengths of 14.5 in , and 2.0 in , are found to be 2.6 and 2.45 msecs , respectively.

Figure 23 shows the plots of measured and predicted switching times versus the line length. As the line length increases, the switching time also increases. At the limiting conditions of zero line length, there remains a time delay of about 2.7 msecs, which accounts for the fundamental dynamics of the bistable amplifiers. The agreement between theory and experiment is good. The theoretical switching time is about 10% less than the measured switching time for a length of 109.5 in . and is less than 1% for line lengths of 77 in , and 44 in. From this it can be concluded that the capacitance effect of the separation bubble is small. Large variation for longer lengths may be due to the larger rise time of the line response.

It is not apparent why the theoretical prediction diverges from the experimental data at small line lengths and as line length increases. The disparity between experiment and theory for small line lengths may be due to complex end effects and reflections.

From Figures 18 through 22 it can be concluded that the rise time of the pressure transient at the outlet leg of the bistable amplifier

Figure 23. Variation of Switching Time with Line Length
is independent of the input pressure pulse rise of the transmission line.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This thesis can be divided into two parts. The first part considered the step response of a pneumatic transmission line terminated by a linear resistance load. Three approximate methods were presented for computing the step response of the line. Of the three approximations evaluated, Brown's high frequency approximation with no heat transfer effects included correlates best with experimental data.

The second part considered the effect of input pulse characteristic on the switching time of a bistable amplifier. A theoretical model was developed for the line-amplifier system by modifying Epstein's model to include line dynamics effects. An experimental verification was carried out using a commercially available bistable amplifier. Two conclusions may be drawn from this study.

Transmission lines of different lengths were used to "produce" different input pulse characteristics. First, there is a significant effect of line dynamics on the switching time of a bistable amplifier. In general, the switching time increases with increases in line length. Second, the rise time of the pressure transient at the output leg of the
amplifier is independent of the input pressure pulse shape of the transmission line.

Recommendations for Future Work

The Epstein model is valid for a bistable amplifier with 'endwall switching. " Most commercially available amplifiers utilize "opposite-wall switching." The amplifier model of Epstein should be extended to hold for this more common case.

The line model used in the present work was obtained by solving the linearized continuity, momentum, and energy equations and the equation of state. An analysis to extend the linear model to include the nonlinearities will be useful for accurate prediction of line responses.

Also of importance would be extensions of the methods used in this thesis to cases involving other logic elements like the AND element, OR element, NOT element, etc.

BIBLIOGRAPHY

(1) Epstein, M., "Theoretical Investigation of the Switching Mechanism in a Wall Attachment Fluid Amplifier, " Ph. D. Thesis, Design Division, Mechanical Engineering Department, Stanford University, Stanford, California, October, 1970.
(2) Epstein, M., "Theoretical Investigation of the Switching Mechanism in a Wall Attachment Fluid Amplifier, " ASME Paper No. 70-Flcs-3.
(3) Reid, K. N., ''Fluid Transmission Lines," Special Summer Course in Fluid Power Control, Department of Mechanical Engineering, M.I. T., July 1966.
(4) Reid, K. N., "Dynamic Models of Fluid Transmission Lines," Published in the Proceedings of the Symposium on Fluidics and Internal Flows, Pennsylvania State University, October 1969.
(5) Goodson, R. E. and Leonard, R. G., "A Survey of Modeling Techniques for Fluid Line Transients," ASME Paper No. 71-WA/FE-9.
(6) Balakrishna, M., "Step Response of a Pneumatic Transmission Line," A paper presented at the 4th Southwestern Graduate Student Research Conference, Las Cruces, New Mexico, March 23, 24, 1973.
(7) Brown, F. T., "The Transient Response of Fluid Lines," Trans. ASME, J. of Basic Engipeering, Series D, Vol, 84, No. 4, December 1962, pp. 547-553.
(8) Reid, K. N., and Brun, R. F., "An Analytical and Experimental Study of a Pulsating Flow Hydraulic System, " Report to Allis-Chalmers Mfg. Co., School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, March 1971.
(9) Oldenburger, R. and Goodson, R. E., "Simplification of Hydraulic Line Dynamics by Use of Infinite Products,'" Trans. ASME, J, of Basic Engineering, Vol. 86, 1964.
(10) Fodor, G., "Laplace Transforms in Engineering," Akademiai Kiado, Budapest, 1965.

APPENDIX

COMPUTER LISTINGS

15 READ（5，16）EE，M，QS
16 FODMAT $\{3 F i 0.5\}$
a WRITE（6，19）KO Th 21

20 GOTO！
$\begin{array}{ll}21 \\ 27 \\ \mathrm{P} S & =0.0 \\ 0.0\end{array}$
$22 \mathrm{PS}=0.0$
$23 \mathrm{CDO}=0.65$
$102 \mathrm{PY}=3.1415$
$R \Pi=R 0(112 * 12 * 12)$. AREA $=$ PY＊R＊P
$70=C O / A R E A$
103 万TR $1=0.0 .5$
C ITFRATION PROCEDURE FDR DETFRMINING THE INITIAL STEAGY STATE VALUES

105 EP $=(2 * T M) / P Y$
！OR PRI＝TRI／EP
\｛07 ARG＝EP \＃TAN\｛ PRII
108 3T＝ATAN（ARGI
$109 G M=B T+T R I-A L$
$1104 R G I=1 G M+O Y 1$
$111 \mathrm{~T}=2 * \operatorname{COS}(A R G 1)$
$12 \mathrm{~S}=\mathrm{SG} \neq \mathrm{BS} *(1.0 /$
$134=5 /(0.62 * P R 1+0.38 * S$ IN（PRI）
14 RR＝A＊S IN（PRI）
15 OH＝RR＊SINTRI－ALI／COS：AL
116 OC1＝DW－O
117．IF（ABSCDO1）．LT．0．001＊D）GO TO 142
$119 \mathrm{PRI}=\mathrm{TR}$ I／$/ \mathrm{EP}$
$20 \Delta R G=E P * T A N(P R I)$
$1 ? 1 \begin{aligned} & \text { RT }\end{aligned}=A T A N(A R G)$
$12 \geq G M=A T+T R I-A L$
$2 ? \quad G M=A T+T R I-A L$
23 ARFI $=1$ GM＋PY $1 / 3$.
$124 \mathrm{~T}=2 * \mathrm{CS}(A R G 1)$
$\begin{array}{ll}124 & \mathrm{~T}=2 * \mathrm{CDS(ARG1)} \\ 125 & S=S G * B S *(1.0)\end{array}$
S $=$ SG＊BS＊（1．0／（T＊T）－1．0）／3．0
$126 A=S /(0.62 * D R I+0.3 日 * S i N(P R i)$
$1272 R=\Delta * \operatorname{SIN}\left(P P_{1}\right)$
29 DW＝RR＊SIN（TRI－AL－1／COS（AL）
129 DO2 $=0 \mathrm{DH}-\mathrm{D}$

132 IF（ $(D D 1 * D D 2 . G T \cdot 0.0)$ ．AND．（ABSC（OD2）． FT ．ABS（DO1 111 GO TO 13 S
3.3 IF（DO1＊DO2．LT．0．0）GO Tn 139

35 GOT T 1
$36 \quad 371=$ กח2
137 DTPI＝－ntaI
2850 T0 119
40 DTPI $=-0.1 \neq 1$
41 GOT」119
142 \quad＝RR＊CCS（TRII／COS（AL）

－ENO DE ITEPATION PETCEDHE
144 WRITE 16,145

```
C: LEVEL ?!

```

146 HRITE $(5,147)$

```


```

149 FOQMAT I11X,3F10.4,20X,F10.4,10X,F10.4
DSW=0.2*PSUP
JJ $=1$
TIME (JJ) $=0.0$
2ETA $J J=0.0$
IF ICALL FO.0)
IF (ICALL.FQ.0) Gn Tn 9998
IF IF ICALL.EQ.1)
IF
IICALL.FQ.
9998 CALL RATINN
9907 CALL EXTRAT
GOTO 150
9996 CALL 820 HN

```

```

WRTTE $(6,751)$

```

``` \(\mathrm{JJ}=\) !
\(789 \mathrm{JJ=JJ+1}\)
\(C=1 \subseteq T A(J J)\)
```




```
\(778 \mathrm{PC}=0.0\)
\(779 W C=(P C /(0.741 * P S U P)+0.144) * W\)
9 JS =WS*WS *396.4/(TO*BS*DEPTH)
\(10 \mathrm{JC}=W C * W C * 38 \mathrm{~h} .4 /(\) RD*BC*DEPTH)
\(11 E E=J C / J S\)
\(12 M=W C / W S\)
13 OS \(=H S / R D\)
206 PSF=ATAN(EE)
WRITE(6.250) PC,WC,TA,EF,M
250 FOQMATIIOX,5FI 0.5)
ANGLR(JJ)=PSF
IF (PC.EQ.O.0) GO T7 789
IF(PC.GE.PSW) GO TO 786
PSE=
\(786 \mathrm{PSF}=(\operatorname{ANGLEIJJ)+\Delta VGLᄃ(JJ-1)1/2.}\) \(T A=\) TTIM
\(P S=P S\)
\(207 \mathrm{~S}=5-\mathrm{BC} / 2.0\)
210 ARG \(=1 \cdot 0+\) TAN \((P S 1 * *\) ?
\(211 B=R S *(1.0+M) *(1.0+M) / S O R T(A R G)\)
\(212 A R G=1 \cdot G+3.0 * S /(S G * B)\)
\(214 \mathrm{~KB}=0.5-\operatorname{COS}(A R G 1)\)
214 K \(=0.5\)-COS (ARG1)*S ORT (ARG)
\(216 \mathrm{DXA}=\left(\mathrm{BC}+\mathrm{BA} A \mathrm{~S}_{\mathrm{I}} \mathrm{N}(P S) / /(2.0 * C \cap S(A L))\right.\)
317 DII \(=0+D \times \Delta * S I N(A L)-(B A * \operatorname{COS}(P S)-B S) / 2.0\)
\(218 \times 1=X-0 \times A\)
246 HRITE \((6,247)\)
44 FORMAT \(\left(10^{2}, 8 \mathrm{x}, 3\right.\). BEGINING PHASE \(\left.2,1 / 1\right)\)
```

TLINE $=$ TA $* 1000$
$300 \mathrm{DX!}=(\mathrm{XV}-\mathrm{XI}-\mathrm{DXA}) / \geq 5.0$
INCPFASING BUBRLE VOL UME USING SMALL INCREMENTS DXI $301 \times$ ! $=\times 1+$ +XI
30) $\mathrm{L}=\mathrm{XI}$ * SIN(AL)
$30^{2} A R G=(L+D I I) * * 2+1 \times 1 * C(T S(A L)) * * 2$
$304 R R=S Q R T(A P G)$
$305 \triangle R G=D I I * C O S(A L) / R R$
306 TR $11=A P S T N(A R G\}+P S+\Delta L$
307 PRII=TRII/EP
$308 \mathrm{~A}=\mathrm{RR} / \mathrm{SINTPRII}$
$309 \mathrm{ARG}=2.0 * P R I I$
310 VWI $=(A * A * T M /(? .0 * P Y)$ ) (PRIT-0.5*5IN(ARG))
$311 \Delta R C_{1}=T P_{11}-P S$
21? VH2 $2=0.5 * D I I * D R * C O C(\triangle R G)$
$31^{2} \quad V W^{2}=0.5 * D \times A *(D I I+D 1 * C \cap S(A L)$
$3!4 \quad V W=V W I+V W 2+V{ }^{2}{ }^{2}$
315 IF ( $(V W-V) . L C .0 .01$ GC Tn 201
317 ARGEFP *TAN(PRII)
$3!8 \quad$ ST $=4 T A N(A R G)$
$319 \mathrm{SM}=\mathrm{QT}+\mathrm{TRII-PS-AL}$
$320 S=A *(0.62 * P F T T+0.39 * S I N(P R I I))$
$371 A R G=1.0+3.0 * S /(5 \Gamma * B)$
$322 \Delta R G L=(G M+P Y) / 3.0$
32. $K B=0.5-\operatorname{CDS}(A R G 1)+S Q R T(A R G)$

$326 \Gamma I I=0+D X \Delta * S I N(A L)-(B \Delta * \operatorname{COS}(P S)-B S) / 2.0$
$227 x=x 1+n \times 4$
$228 \mathrm{DV}=\mathrm{VH}-\mathrm{V}$
$329 \quad$ VVT $=$ DV/OTA
$330 \quad V=V W$
$31 T_{A}=T A$
333 WRITE $(6,333)$ TA,PS,GM,DV,DVT,V,KB,X
334 TF (IXV-x):LT:(nx)/?.01) GO TO 337
335 IF IKB.LT.0.00011 GO TO 900
336 ro TO 301
337 WRITE 16,3381
8X,'4. gEGINING PHASE 3://1
WRITE $(6,147)$
$A R G=1 G M+P Y 1 / 3$
306 T $4=$ =2.0*CCSIARG)
397 S S $4=\mathrm{S}+\left(\mathrm{SG} * \mathrm{~F}_{\mathrm{P}}\right) / 3.0$
397 DEL4 $=1.925 * 554 / 56$
$298 \quad \angle R G=(1.0+74) /(1.0-T 4)$


$402 L V=X V I * S I N(A L)$
40? $11=D+D X * S I N(A L)-(B * \operatorname{CDS}(P S)-B S) / 2.0$
403 IF $10 \mathrm{I} . \operatorname{LT} .0 .01 \mathrm{GO}$ TO 903
404 ARG=(CI + LV) **2 $+1 \times V I * \operatorname{Cos}(A L 1) * * 2$
405 DRI =SQRT (ARG)

07 THIFARCDS (ARGItPS
C. ITFRATION PROCFDIJRE FOR DFTFRMIVING THE INITIAL PASSAGE WIDTH Z IN PHASF 3 408 DTPI $=0.01$
$410 \quad 1=0$

$412 \mathrm{PPI=TPI/EP}$
413 ARG=EP*TAN(PPI)
$414 B T=A T A N(A R G I$
415 ARG=THI-TPI
$416 \quad Z=R R I * S I N(A R G) / C O S(B T)$
$418 \mathrm{PP}=\mathrm{RR}$ I * COS (ARG
$4!9 A=R P / S$ IN(PPI)
$420 A R G=2.0 * P P_{1}$
$421 \quad V W 1=(A * A * T M /(2.0 * P Y)) *(P P I-0.5 * S I N(A R G))$
$42 ? A R G=T H 1-T P J$
423 VW2 $=R P * R Q_{I} * S I N(A P G) / 7.0$
424 VW3 $=(01 * X V I+(D+D I) \neq 0 X) * C O S(A L) / ? .0$
$425 \quad V W=V W 1+V W 2+V W 2$
426 IF (II.EQ. 2 ) 60 T 427
427 IF (I.EQ.1) GO
$4 \rightarrow P$ IF (V.EQ.1) GC TO 433
478 IF (VW.LT.V) GO TO 411
429 IF (VW.FQ.V) GO TO 438
430 OTPI $=-0.1$ *DTPI
43: $1=1$
432 GO TO 411
$43 x$ IF (VW.GT.V) on To 411
434 OTP
$425 \quad$ I
4
436 GO TO 411
427 IF (VW.LT.V) Gn TO 411
C END DF ITERAT TON PPOCEDURS
438 TTPI $=0.50^{*}(T H I-T P I)$
C INCREASTNG RUBBLE VDLUMF USING SMALL INCREMENTS DTPI

$44!\operatorname{ARG}=F P$ *TAN(PPI)
44? BT=ATAN(ARG)
443 ARG $=T H T-T P I$
444 2=RRI*SIN(ARG)/COS(RT)
445 ARC= $=\mathrm{BT}+$ TPI-THI
446 RP P PR R \# \#COSSARG / /COS(RT)

440 VWl $=(A * \Delta * T \mu /(2.0 * P Y)) *(P P T-0.5 * S I N(A P G))$
$450 \quad \triangle R G=T H I-T P I$
451 VWP $=$ RRARPI*SIN(ARGI/?.0
45? VW $3=(01 * \times V I+(D+D I) * T X) * \operatorname{COS}(A L) / 2.0$
$453 \quad V W=V W 1+V W 2+V W 3$
454 PRP $=$ RP / (2.0*SIN(TPI)
$1454 \mathrm{KI}=R 2 P+8 / 2.0-Y$

$455 \quad F=R C L$ * $C O S(P S)$
$456 E=L S-(A C / 2.0+P C L * S I N(P S))$
457 ARG $=F$ *F $+E * E$
$450 \mathrm{H}=\mathrm{G}=\mathrm{PCL}$

450 ARG $=E / F$
461 LAM=AT $\triangle N(A D G)$
46 ? $\mathrm{SS}=\mathrm{SG} * \mathrm{~B} / 3.0+\mathrm{SCL}(\mathrm{PS}+\mathrm{LAM})$
$463 \mathrm{HEL}=1.025 * S 5 / \mathrm{SG}$
485 IF (H.LT.(-0.7*DFLI) GT T? 754
$365 \mathrm{CD}=\mathrm{CDD}+11 \cdot 0-$ EXP (ARG) )
$466 \triangle R G=2.0 /\left(Q^{\circ}(L * B)\right.$
$467 \mathrm{~KB}=\mathrm{CD}+2 * \mathrm{SOR}^{\text {T }}$ (ARG)
469 DTA $=(V W-V) /(K B * Q S *(1.0+M))$
$469 \quad \mathrm{VV}=\mathrm{VH}-\mathrm{V}$
$470 \mathrm{~V}=\mathrm{VW}$
471 TA $A=T A+$ DT $A$
472 DVT=DV/DTA
$473 \mathrm{HDEL=H} / \mathrm{OEL}$
474 WRITE $(6,475)$ TA, PS, OM, DV, OVT, $V, K B, X, H D E L$
475 FORMAT (11X,9F10.4)
475 IF (I.GF.400) G1 Tn 894
$475 \mathrm{I}=\mathrm{I}+1$
894 WRITE $(6,895)$
895 FCRMAT ('0',20X, 'TOO CLOS ए TO ASYMPTJTE')
806 GOTO




903 WRITE 15,904 )
904 FOPMAT ('0',20X, DI<O (IMPMSSIRLEJ)
005 GOTO 1
0.54 TA TA 1000
c instructinns fig printing awplififr and flew parameters data
27 WPITE $(6,28) \mathrm{K}$
? 8 FDRMAT ('11, $6 X$, PRRBLEM NUMBER', ! 7 )
3 G WRITE 16,301
30 FORMAT ${ }^{\prime \prime}, 6 X$, SWITCHING TIME IN RISTABLE WALL ATTACHMENT FLUID AMPLIFTEPS (FND WALL SWITCHING TRANSIFNT):///) IFIICALL.EQ. D) G? TN 67
IFIICALL.EQ.II G? Tก 67 IFICALL.EQ.2) G? TO 672
671 WRITE( 6,661$)$
 sMODL FTR THE TRANSMISSION LINE WITH NO HEAT TRANSFER EFFECTS', " GO TO 555
572 WRTTE(6,552)
\&APPROXIMATE MCDEL FRE PRCGEAN UTILISES THE EXTFNOED RAF TONALSEDD, $/$ G0 T0 555
673 WRITE( $t$; 653 )
65? FORMAT(BO1,IgX, 'THIC PROGRAY UTILISSO THE GROWN HIGH FREQUFNCY SAPPROXIMATION FOR THF TRAASNISSION LINE WITH NO HFAT TRANSFFR 1, 11
555 WRITF(6, 77 )
FRRMAT( 0,70 , RX, 'I. TRANSMISSION LINF DATA: $\cdot$
O FBRMAT('O',RX, 'LENGTH OF TRANSMISSION LINE: WDITE(K,71) CO
$X L=1, F 0.31$
7. FORMAT(IOV.8X,1ACOUSTIC VELOCITY:
FRRMAT( 6,75 ) R , RADIUS OF TH= TRANSMISSIMA LIME:

33 WRITE $(5,34)$
34 FORMAT (10', $8 \mathrm{X}, \mathrm{D}$ ?
WRITE 6,664 ) DEPTH ANPLIFIER DATA:')
664 FORMAT $(1,18 X$, ' DERTH OF THE AMDLIFIER:
36 FORMAT ( $10 \cdot 18 \mathrm{I}$, 'SUPPLY PORT HIOTH:
37 WRITE $(6,38) \mathrm{BC}$
38 FORMAT
, CONTROL PORT WIOTH:
38 FORMAT I', 18 X, , CONTROL PORT WIOTH:
30 WRITE 16,40 ) XV
40 FORMAT (:, 1 BX, VENT LOCATICN:
1040 WRITE $(6,2040)$ CDO
040 FORMAT (4 , iel ivent DISCharge coefficient
42 WRITF $(6,42)$ LS , SDLITTED LOCATITN:
43 WRITE $(6,44)$ D
44 FORMAT i' ' ', 18X, 'WALL DFFSFT
45 WRITE 16,46 ) AL
46 FORMAT (: 18 , 8 X , WALL ANGLF
47 WRITE $(6,48)$


5! WRITF 16,521 TM

53 WRITE $(6,54)$ EF
54 FORMAT (?O,:I\&X,'C/S JET NOMENTUM RATIO:
55 WP ITF $(6,56) \mathrm{M}$
57 WRITE 16,59 ) 8 , 0 C/S MASS FLOW RATE RATIC:

59 IF ( $\mathrm{N} . E Q .1$ ) GO Th 8 R

6! FIRMAT (:0',! RX, 'SUPPIY MASS FLJH RATE:
62 WPITE $(5,63)$ WC.
63 FDRMAT $1: 1,18 X, C O N T R O L ~ W A S S ~ F L O W ~ R A T E: ~$
64 FRITE 6,65 i PC, CONTED WASS FLOW RATE
65 FIRMAT (: ',18X, CCHTPRL PDRT PRESSIJPF:
6 W WITE $(6,67)$ R
67 FOPMAT ( $1,18 \mathrm{~A}$, , FL,UIS DFNS [TY:
 FORMAT( ${ }^{\prime}$ ', 18 XX,
WRITE 5,55 ) GA
WRITE(S, 658) GA
G8 CONTINUE
WRITE(6,009) TA
 955 GT TH 1
999 RETURN
$D P=: F F 9.71$
BS=, FF6.31
$B C=1, F 6.3!$
$X V=1, F \in .31$
$\operatorname{COC=}=$, F5.31
LS=1,F6.31
$0=1, F 5$. ?
$A L=1, F 6.31$

SG=',FE.31
TM=4,F6.3:
$E=$, F9.71
$M=1, F \cap .71$
$Q S=1, F 9.61$
WS=', F9.71
$W C=1, F O, 7)$
PC= ', F6.31
$P \cap=1, F G .7)$
SI=:,FQ. HI
$G \Delta=\cdot, F Q, E)$
subagutine ration
c raticinal appriximate model with no heat transffr effects.
COMPLEX S(501,CMPLX,SUN,DISO),CEXP,AN
TIMENSION CI(50), C2(501,AAS 501
(30) BJOTR(30), ROTT [(30)

CTMMTN/GET/ANU,XL,CD, R, ZR, IETA(200), TIME(200), JJ, WS, PO, NORDER,
SI,GA,TI.DT, TMAX
$R K=R \neq R / A N U$
$\rho_{I}=22.0 / 7.0$
$P R E A=P I * R * R$
$2 \mathrm{D}=\mathrm{CO} / \mathrm{AREA}$
$T E=X L / C D$
$T 1=R K / 5.78$
$T 2=0 K / 56.6$
$T 3=R K / 40.9$
$T 1$ PT $2=T 1+T$ T
$\mathrm{T} \mathrm{T}_{2}=\mathrm{T} 1 * \mathrm{~T}_{2}$
$\mathrm{N}=\mathrm{NOROFR}$
CALL TRANSAM, RK, ZO, TE, T1PT2, T1T2,T3,G1,C $1, N 1, Z P)$ CALL TRANSA\{N,PK,2O,TE,TIPTT,T1TT,T3,G2,C2,N2,LRI $0040 \mathrm{I}=1$, N2
(1)*G1 +C?(I)*G?
$A \Delta\left(N_{2}+1\right)=C 1(N 1) * G 1$
$M=\mathrm{N} 2$
WRITE $(6,254)$
254 FחRMATII5X, 'COFFFICIENTS OF POLYNOMIAL IN S IN ASCENDING POWFQS') $0050 \mathrm{~J}=1, \mathrm{~N} 1$
284 FIRMAT(10x, ᄃ15.8.1 $\operatorname{XCOF}(J)=A A(J)$
50 CONTINUE
CALL PGLRT (XCTF, COF, M, ROOTR, ROOTI,IER) $S S=1.1 \times C O F(1)$
264 FחRMAT (25X,'RFAL', 35 X, 'IMAGINARY', 1$)$ OD $291 \mathrm{I}=1, \mathrm{M}$
WRITE(t, 294) ROOTR(I),ROOTIII)
?OL FTRMAT (20X,E15.R,2OX,F15.8.1)
291 CONTINUE
$T=T r$
$\in 0$ SUM $=(0.0,0.0)$
D(1)=xCOF(2)
S(I)=CMPLXIROOTR(I), ROCTI(I))
$90300 \mathrm{~J}=2, \mathrm{M}$
000 (J) $=0(J-1)+J *(S([) * *(J-1)) * \times \operatorname{CDF}(J+1)$ $A N=11.0+T 3 * S(1)$ $A N=\Delta N * *(N+1)$
$S$
(S(I)*T)/(0(4)*S(I))
SUM $=(S S+S U M) \neq P C$
JJ=jJ+1
$\operatorname{TIME}(J J)=T$
2ETa(JJ)=SUM

WPITF16,2921 SU4, T
FORMAT(20X,F!5.8,20X,E!5.8,?OX, E15.9.11
$998 T=T+D T$
TFIT-TM) $60,60,4$ ?
4. RFTURN

SIMRRUUTINE TRANSAIN,RK,ZO,TF,TIPTZ,TITZ,T3,GN,CN,NN,ZRI OIMENSION CN(PO), COI 20 ), XN(?O), XO(20), YN(20), YDI 201 PIBYTE=? $7.0 / 7.0 / T$ T
CONSTERK/22.0*PIRYTE\#PIRYTE
$G N=1.0 / C O N S T$
$\mathrm{ND}=4$
N
$\mathrm{NN}=4$
$\mathrm{NN}=4$
$\mathrm{CN}(1)=\mathrm{CONST}$
CN(2) $=$ CONSTET3+1. 0
CN( 3$)=T l P T)$
$C N(4)=T 1 T$
IF(N.EO.OI RETUR
YN( 3 ) $=C N(3)$
$Y N(4)=C N(4)$
$0 \cap 30 M=1$,
On $30 \mathrm{M}=1$, N
TMP $1=2^{* * M+1}$
CII $=$ CONS T*TMP1*TMP!
CLI =CONS T*TMP1*
YN 1 II $=$ CII
YN(1)=C11
$Y N(2)=C 11$
$Y N(2)=C 11 * T 3+1$
$G N=G N / C l 1$
NNX $=$ NN
$0010 \mathrm{I}=1$, NNX
10 XN(I) $=$ CN(I)
$\begin{aligned} & 10 x=N D \\ & 0\end{aligned}$
OR 20 I=1, NDX
YOCII = YNG
?o YOCII =YN(I) $\begin{aligned} & \text { CALL PMPY(CN, NN, } X N, N N X, Y D, N D X)\end{aligned}$
CONTINUE
RETUQ
FND

SUBROUTINF TRANS BIN，RK，ZO，TE，T1PT2，T1T2，T3，T，M，CN，NN，ZP）
IMENSION CN（20），CO（？O），XN（20），X）（つO），YN（20），YO（つO）
IAYTE＝23．0／7．0／TF
CONST $=$ PK／32．0＊PIBYTE＊PIBYTE
GN＝3．0＊TF＊Zの／（RK＊ZR）
$\mathrm{NN}=3$
NC＝4
CN（1）＝1．0
$C N(2)=T 1 P T 2$
IFIN．FQ．OI RETURY
YN（3）＝T1PT2
YN（4）＝T1T？
DO $30 \mathrm{M}=1$ ， N
C12 $=$ CONS T＊M $* M * 4.0$
YN（！）＝C12
N（2）$=\mathrm{C}!2^{\text {＊T }} 3+1.0$
$\mathrm{N}=\mathrm{GN} / \mathrm{Cl}$
$0010 \quad \mathrm{I}=1$ ，NNX
$10 \times N(I)=C N(I)$
NO $x=$ NO
DO $20 \mathrm{~J}=1$ ，NOX
20 YOLJ）＝YN（J）
CALL PMP YICN，NN，XN，NNX，YO，NDXI
30 CONT INU
RETURN
©NO

SHPROUTINE PMPYIZ，INIML，X，IOIMX，Y，IDMY
TIMENSION $Z(50), \times(50), Y(50)$

กั 30 I $=1$ ， 101 mz
$20211)=0.0$
On $40 \mathrm{I}=1$ ，IDIMX
$K=1-1$
On $40 \mathrm{~J}=1,10 \mathrm{INY}$
$z(\mathrm{~K})=\mathrm{x}(\mathrm{I})+\mathrm{Y}(\mathrm{J})+2(\mathrm{~K})$
$2 E T U R N$
END

WRITE(6, 292) SUM, T
29? FRRMATI20X,F15.8,?OX, E!5.8,?OX, F15.3.11 TIMRMATI $20 x$
TETA $=T$ IF (REALISUM).GE.POI RETURN
$299 \mathrm{~T}=\mathrm{T}+\mathrm{DT}$
IF(T-TM) $60,60,42$
4) RETURN
SSI,GA,TO,D
RK $=R * R / \triangle N U$
PI $=22.017 .0$
$A R A=P I * R A R$
$z 0=$ CO/AREA
TE $\mathrm{CxL} / \mathrm{CO}$
T1=RK/5.78
T $2=R K / 56.6$
$\begin{aligned} & T \\ & T=R K / 56.6 \\ & T 1 P K / 40.9\end{aligned}$
$T 3=R K / 40.9$
$T 1 P T)=T T+T$

N=NORDER
[ALL TPANSC(N,RK,20,TC,T1,TT,T3,GI,CI,NI, ZR,GA,SII
CALL TRANSD(N,RK,7O,TE,T1,T2,T3,G2,C2,N2,ZR,GA,SI)
no $40 \mathrm{I}=1, \mathrm{~N} 2$
$A A(I)=C 1(I) * G 1+C, 2(I) * G 2$
40 CONTINUE
$\triangle A(N 2+1)=C 1(N 1) * G 1$
$\Delta A N$ ?
$M=N 2$
254 formatilix, COEFFICIENTS OF POLY NOMIAL IN S IN ASCENDING PRWERS',
กn $50 J=1, N 1$
HRITE(6,232) AA(J)
284 FDRMATIIOX,E!5.8,11
$X \operatorname{COF}(J)=\Delta \Delta(J)$
50 CONT INYE
CALL POLRTIXCOF, CMF,M, RECTR,ROQTI,IER
$S S=1.1 \times C O F(1)$
WRITS (6,264)
264 fORMAT(25X,'REAL', 35X,'IMAGINARY',N
on 29 $1=1, \mathrm{M}$
WRITE $(\in, 294)$ RCDTR(I), ROOTI(I)
204 FORMATI 20X, R15.8,20X, C15.3.11
291 C.ONTINUS
$T=T 0$
$T M=T M A X$
60 SUM $=(0.0,0.0)$
D(1) $=x$ COF( 2 )
DO $295 \mathrm{I}=1, \mathrm{M}$
S(I) = CMPLX(ROMTR(I), ROOTI(I)
DO $300 \mathrm{~J}=2 \mathrm{~m}$
$A N=(1.0+T 3 * S(1))$
$B N=(1.0+S[\# T 1 * S$
CN=(1.0+SI*T2*S(I)
$A N=A N * B N * C N$
$A N=A N * *(N+1)$
$S U M=S U M+\Delta N * C E X P(S(1) * T) /(D(M) * S(1))$
295 CONT INUE $\begin{aligned} & \text { SUM }=(S S+\text { SUM }) \text { \#PO }\end{aligned}$

SURROUTINE TRANSCIN,RK,ZC,TR,T:,T2,T3,GN,CN,NN,ZR,GA,SI) COMMON/ALL/PHI1, PHI2,A1,A2,A3,B1,B2
IMMENS ION CMISOI,COLSO
GN=1.0/CCNST
$\mathrm{ND}=6$
NN $=6$
$A!=S I * S I * T 1 * T 2 * T 3$
$2=S I * S I * T ? * T 2+S I * T 2 *(T!+T 2)$
Al $=5 A * S[* S 1 * T 1 * T$
*SI*RK*(Tl+T2+SI*TSA*SI*(T1+T2)*(T1+T2)+GA*T!*T2-(GA-1.0)
CN(1) $=$ CONST
CN(2) CONSTT*A3+GA
CN(
CN
C = CONST $=$ CONST $A 2+B 2$
CN(4) $=$ CONST* $A 1+B 1$
(SI*RK*(T1*TI*(T1+T2)*T1*T2+GA*SI*(T1+T2)*T1*T2-(GA-1.0)
*SI*RK*(TI + T 2) $1 * T 3 * S I+T 1 * T 21 / 8.0$
IFIN.EQ.DI RETURN
YN(6) CN( 5 )
YN( 5$)=C N(5)$
PH $1=Y N(5)$
PHII =YN(G)
$\mathrm{PH} \mathrm{I} 2=Y \mathrm{Y}(5)$
$\mathrm{OD} 30 \mathrm{M}=1, \mathrm{~N}$
$T M P 1=2 * M+1$
C11 =CONST*TMPI*TMP!
YN(4) $=C 11 * \Delta 1+8)$
$\mathrm{YN}(3)=\mathrm{C} 11$ * $\mathrm{A} 2+\mathrm{B} 2$
YN(2) $=C 11 * A 3+G A$
$Y N(1)=C 11$
$G N=G N / C 11$
$G N=G N / C l$
NNX $\mathrm{N} N$
nO 10
$\mathrm{XN}(I)=\mathrm{CN}(I)$
$\mathrm{NOX}=\mathrm{NO}$
DO 20 I=1, NDX
20 YOIII = YN(I)
CALL PMPY(CN, NR, XN, NAIX, YD, NDXI
CONT INUE
RETURN
END

SUBROUTINE TRANSDIN,RK,TO,TE,T1,T2,T3,GN,CN,NN,ZR,GA,SI CRMMON/ALL/PHI1,DHI2,A!,A2,A3,R1,B2
IMFNSION CN(50), CO(50), XN(50), X)(50), YN(50), YD(50)
IBYT $f=22.0 / 7.0 / \pi 5$
CONST=RK/32.0*PIBYTE*PIRYTE
GN=8.0*TEあ20/(RK\#2P1
$\mathrm{N}=5$
$\mathrm{ND}=5$
$C N(1)=1.0$
$C N(2)=151+1$
CN(2) $=(51+1.0) *(T 1+T 2)$
$N(3)=\{S I * S I * T 1 * T ?+S I *(T 1+T \geqslant) *(T 1+T \geq)+T 1 * T 2)$
$C N(4)=S I * S I * T 1 * T ? *(T 1+T 2)+S!* T I * T 2 *(T 1+T 2)$
TFIN.EG.OI RETURN
YN( S$)=\mathrm{PH} 11$
YN(5) $=\mathrm{PH} 12$
in $30 \mathrm{M}=1, \mathrm{~N}$
C $12=C$ NNS T $* H * M * 4.0$
$Y N(4)=C 12 * A 1+B 1$
$Y N(i)=C 12 * A 2+B 2$
$Y N(3)=C 12 * A 2+B 2$
$Y N(2)=C 12 * A 3+G A$
$\mathrm{N}(2)=C 12 * A 3+G A$
$Y N(1)=C 12$
N=GN/C 12
$\operatorname{NMX}=\mathrm{NN}$
10 XN: $10 \quad 1=1$, NNX
10 XN(I)=CN
CX = ND
OO $20 \quad \mathrm{I}=1$, NDX
$\mathrm{CD}(\mathrm{I})=\mathrm{YN}(\mathrm{I})$
20 YOIt $=\mathrm{yN}(\mathrm{I})$
CALL PMPY(CN, NN,XN, NNXX,YD,NDXI
30 CONTINUE
RETURN
fars
$r$ RRNWN'S HIGH FRCDUENCY ADPPOXIMATITV NO HEAT TRANSFFR FFFECTS
 SI, SA, TO, DT, TMAX
$R K=P * D / \Delta N U$
$0 I=02.0 / 7.0$

$\triangle 2 E \Lambda=F$ Y\#
$2 C=C D / A R F A$
$20=C D / \angle R F$
$T E=x 1 / C O$
$\Delta=$ ?

$T M=T M A X$
$T=T 0$

$2=9 \star T 1$
$T x=25 \# T 1$
$T 厶=40 * T 1$
$01=0 \pm 0 / R K$
$\mathrm{P}=\mathrm{n}=\mathrm{n} \mathrm{D} / \mathrm{RK}$
80 DELI = 0
IF (T.GE.TE) GO TO 10
GO 20
20 nEL $2=0$
IF (T.GF.3\#TF) GJ TO 30
GO $+\mathrm{Cn}_{4} 4$
30 TFL $2=1$
40 DFL $2=0$


50 OFL $3=1$
60 DEL $4=0$
IF (T.GE.T\#Ttig Gา $\rightarrow 70$
GO TO B8
70 DEL 4=:
BR SUM=0.0
TERM1 $=0.0$
$T E R M 2=0.0$
TERM3 $=0.0$
$\operatorname{TER~M4}=0.0$
TERM5 $=0.0$
TERM5 $=0.0$
TERM6 $=0.0$
IF (T. LE.TE) GO TH 210
$A R G 1=S Q R T 1 T 1 /(2 . * 50 R T 1 T-T A)$
TERM1 $=2$ ** $F$ PP(-B*TF/RK)*DFL * *ERFC(ARG1)
RG3=PI*(T-TE)+SORT(PI*T1)

IF IT.LE. 3.*TFI GO TO 210
ARG2 = SQRT (T2 1/ I?.*SQRT(T-3.*TF)
TFDM2 $=2 \cdot * E X P(-3 \cdot * B * T F / R K) * D E L 2 * E R F C(A R G ?)$
$A R G 5=91 *(T-3 . * T E)+S Q R T(P) * T ?$


ARG7=0! (*T-5.*TE) + SQRT(D)*T3)

TERM5=K.*EXP(-5.*R*TF/RK)*DFL 3*LI*FXP(ARG7)*ERFC(ARGB)/2R

$A R G G=P 1 *(T-7 . * T E)+S C R T(P 1 * T 厶)$
$\triangle{ }^{2} G 10=$
\$ SQRTSC*D*(T-7*TC)/RK)
10 TFRMS 2. *EXP(-7.*B*TE/RK)*DF-4*LO*FXP(ARG9)*ERFC(ARG101/Z
SUM $=$ SUM + TERMI - TEDMP-TERM3 + TERM4-TERM5 + TERME
SUM $=$ SUN: $P$
JJ=JJ+1
2ETA(JJJ = SUA
WRTTET6, 200) SUM,
OO FORMAT (20X.E15.3,20X,F15.8.1)
IFISUM.GE.POI RFTUPN
$T=T+D T$
IF (T-TM) 80,80.90
RFPUR
CND


#### Abstract

VITA

Balakrishna Mudunuri

Candidate for the Degree of Master of Science

\title{ Thesis: DYNAMIC ANALYSIS OF A TRANSMISSION LINE TERMINATED BY A BISTABLE AMPLIFIER }

Major Field: Mechanical Engineering

Biographical: Personal Data: Born in Masulipatnam, India, January 25, 1947, the son of Annapurna Devi and Seshagiri Rao Mudunuri. Married Rajeswari on May 28, 1971.

Education: Graduated from Hindu College Higher Secondary School, Masulipatnam, India, in 1961; received the Bachelor of Science degree from Andhra University, Waltair, India, in 1964; received the Bachelor of Engineering degree in Mechanical Engineering from Andhra University, Waltair, India, in 1967; received the Master of Science in Engineering degree in Mechanical Engineering from Indian Institute of Science, Bangalore, India, in 1971; completed the requirements for the Master of Science degree at Oklahoma State University in May, 1973.

Professional Experience: Graduate Research Assistant in the Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India, from August, 1967, to August, 1969; Teaching Assistant in the Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India, from September, 1969, to August, 1971; Graduate Teaching Assistant in the School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, from September, 1971, to December, 1972.


[^0]:    Numbers in brackets refer to bibliography.

