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CHAPTER 1
INTRODUCTION

The current interest in alk;}i halides, KC1l in particualr, is
sparked by a desire te use them as window materials for high power CO2
lagers. KCl has several advantages that make it appealing for this
application. One advantage is that it is beth readily available and
relatively inexpensive. Anether advantage of greater importance is
its low infrared optical absorption. Pure KC1l has a serious disadvan-
tage in.that it exhibits a low mechanical strength.

The problem, then, is how to increase this mechanical strength -
without distrubing its infrared absorption properties. The first
hint of a selutien te this problem was discovered by Goldstein (1)
late in the 1800's. This occurred when Goldstein created a Farbzentren
or F center in some alkali halide samples by bombarding them with an
electron beam. The same effect was noted later when the irradiation
was done with X-rays, and later still with gamma rays. It has been
ghewn hy Nadeau (2,3) and by Sibley and Sonder (4) that this type of .

F center creation produces significant hardening of alkall halide

| “gamples. In 1932 Edner (5), Metag (6), and Schionfeld (7) showed that
the flow stress of sodium Eﬁioride increased when small concentratiens
of divalent cations were grown inteo the crystal lattice. Both of these
hardening methods‘harden§;he sample by creating tetragonal lattice

distertiens. Radiation causes this distortion by cenverting a negative



ion to a neutral atom and moving the atom te an interstitial pesition,
leaving the electron in the original pesition, forming an F center.
Doping with divalent ions creates distertion, because for the sample.
to remain electrically neutral a pesitive ion vacancy must be created.
This vacancy pairs with the two plus ioen creating a tetragonal defect.
Fleischer (8) has developed a theory te explain the hardening of face
" centered cubic crystals by tetragonal lattice distertiens.
The degree 6fihardening obtained by the doping of KC1l with Ca++

and Sr++, by irradiating pure KCl, and by forming mixed crystals of .
KClxKBrl—x as compared to the initial hardness of pure KCl, pure KBr,
and pure NaCl was measured using several techniques. The list of
techniques empleyed includes the Vickers microhardness test, flow
stress determinatien by both uniaxial compression and four point
‘bending tests, and measurement of the size of the dislecation rosette
'igound a Vickers,indeptation. rThe increase in hardness observed will

be compared te predictiens made by Fleischer's theory.



CHAPTER II
EXPERIMENTAL METHOD

The KCl samples were cleaved from Czochralski grown crystal
boules. These samples were grown at Oak Ridge National Laboratory.
Their characterization has been given by Sibley and Russell (16). All
samples used in this work are from 8 to 10 years old; therefore, the
results from these samples may not be typical of those for freshly
grown crystals since some precipitation of the dopants may have
ovcurred. The samples of KBr and NaCl used in this work were obtained
from Harshaw.

The KCl samples used in determining the effect of radiation damage
upon the resolved flow stress were irradiated by a 10 pA current of
1.5 MeV electrons for various lengths of time in the Oklahoma State
University Van de Graaff facility. Since this type of irradiation
creates interstitials and F centers simultaneously, the number of
F centers is a convenient measure of the amount of radiation damage.
The F center concentration was determined from absorption spectra
obtained on a Cary 14 spectrophotometer using Smakula's formula (9,16).
Smakula's formula yields the F center concentration NF (cm-l) when

applied to a Gaussian shaped absorption peak, and is given by
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2 2
NF f = 0.87x10 Noamaxwk / (No + 2)

(1)

where f is the oscillator strength, W% (eV) is the width at half



maximum of the F band peak, N° is the index of refraction, and O o
is the F band absorption coefficient.

The strength of the samples was measured using four different

techniques. They are the uniaxial compression test, the four point
bend test, the Vickers microhardness test, and the wing size test.
Each of these techniques is an independent method for determining the
mechanical strength of a sample. Except for the Vickers microhardness
test, they either give the flow stress directly, or give a value that
is inversely proportional to the flow stress.

The uniaxial compression test was run on an Instron testing
machine which recorded the force applied to the sample by means of a
load cell and chart recorder while the sample was compressed at a
constant rate of strain. The flow stress was determined at a strain
rate of approximately 10_3 sec—l. The flow stress, Ty is taken as the
stress value at the point of intersection of tangents drawn to the
elastic and first plastic regions of the stress strain curve as shown
in Figure 1. Ty is calculated by taking the force at the point
specified above and dividing by the cross sectional area A of the
sample. The resolved flow stress, Tps which equals the shear stress,
is calculated by dividing the force component parallel to the slip
plane by the area of the slip plane as shown in Figure 2, The resolved .

flow stress can be written as

T, = F sin ¢cos ¢ /A

= 7, sin¢cos ¢ (2)

where F = applied force, A = the cross sectional area of the sample,

and ¢ is the angle the slip plane makes with the central axis along
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Figure 1. Stress-strain Curve for a Typical
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which F is being applied. For KCl, the primary slip direction is 110 .
The force was applied along a 100 direction; thus ¢= 450; and T, can

be written as
T, " T°/2'. (3)

The four point bend test was also run on the Instron testing
machine. To obtain pure bending, a special jig had to be made as
shown in Figure 3. To calculate the flow stress of a sample bent by
this jig, the internal bending moment is first calculated. Then,
the external bending moment 1s set equal to it. This assumes an
equilibrium state between the bénding moments of the sample. To make
this calculation, one assumes that the sample is in the shape of a
beam with a width W and thickness t, that a length 1 exists between
the support points, and that d ig the distance between the force point
and its associated support as shown in Figure 3. One also assumes
that the sample has been bent by a total force P such that it has a
radius of curvature R, but is still within iﬁs elastic limit. With
these conditions satisfied, the internal bending moment M equals the
integral of the incremental bending moment, Am, over the entire cross
section of the sample. Am for an incremental area, AA, a distance y

from the neutral axis caused by a stress ¢ is given by

Am = oyAA = oyWdy .

t/2
m= Am = - oyWdy . (4)
Area \I\—t/Z

Then

When y = t/2, the stress ¢ is equal to the maximum value it can

have, O pax’ under the applied force P. 86 ¢ can be rewritten as



Total Force=P

t15 P2 P/

Figure 3. Diagram for a Four Point Bending Jig



omaxy/(t/Z). Substituting this into the integral equation for m yields
t/2 2
mmg  /(t/2) f yWdy = o 1/(t/2) , (5)
-t/2
where I is the moment of inertia. For the beam, I can be evaluated as
t/2 2 3
I= f y2udy = We3/12 (6)
-t/2

and m can be evaluated as

2
m=o .t W/6 . (7)

This internal bending moment was created by applying an external
bending moment m'. The two bending moments must be equal since the
system is in an equilibrium state. The external bending moment is
equal to the applied force, P/2, times the moment arm, d. Using

]

m' = m, the following relation is derived:

2
! = - -
m Pd/2 m m o wt=/6 . (8)
Solving this equation for o yields
max

2
A 3pd/wt” . (9)

If P is evaluated as the force at the intersection of the tangents,

as 1n the compression test, then o = 1 and %t = 1_, yielding the
max o ) r

resolved flow stress from the four point bend test.

The Vickers micrehardness test is an indentation test. A square
base pyramidal diamond of large apex angle is lowered onto the sample
at a controlled rate of descent and under a specific dead weight load
as shown in Figure 4. The hardness number that results from this type

of test is a measure of the resistance of the plastically deformed
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sample .to further plastic flew. That 1s, the indentor will continue
into the sample until the sample's resistance is equal to the force
applied by the indentor. The hardness number is calculated from the

indentor load and the surface area of the indentation by the formula
HV = P/A , (10)

where HV = the Vickers hardness number in kg/mmz,

P = the indentor load in kilograms, and

A = gurface area of the indentatioen in‘mmz.
The surface area of the indentation is calculated from the apex angles
of the diamond and the microscopically measured diagonals of the
indentation. For the diamond used in this work, the formula for

Vickers hardness numbers can be written as
2
HV = 1854.4:P/4" , (11)

where d is the length of the diagonals in ym.

The wing size test measures the size of the dislocation rosette
around a Vickers indentation. These rosettes were revealed by etching
the sample, rinsing in acetone, and blotting dry. Glaclal acetic acid
was found tp be the best etchant for pure samples, and a saturated
selution of BaBr2 in absolute methanol was best for doped samples.

The indenting and etching were carried out in a dry box with the
relative humidity kept below 40%. Hopkins, Miller, and Martin (11)
gave a physical description of what happens when the diamond of the
indentor contacts the surface of the sample. In Figure 4a it is clear
that the stress, given by the force/area, 1s a maximum at first

contact. When this contact is made, the point on the indentor
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generates a string of dislocations. The first of these is pushed out
by succeeding ones to the distance Wo for which the stress applied by
the indentor equals the minimum gtress T, required to move new dis-
locations along their primary slip direction of<<ild;? Therefore, the
greater Tes the smaller WB. As the indentor continues into the
surface, it will physically displace.crystal material, If one assumes
that the distance of this displacement is AW, then the wing size, W,
measured from photographs such as that in Figure 5 will be equal to
Wo ¥ AW. Since Wo is the wing size that is related to T,» @ correc-

tion for this must be made when using this test.



Figure 5.

A Dislocation Rosette of a 50 gm
Load Indentation on KCl:Sr
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CHAPTER III
RESULTS

Table I compares the results of the four different techniques for
measuring the hardness of a sample on a number of different samples.
It should be noted that the units used for stress are kg/mmz, rather
than force/mmz, and that the concentration given in ppm is a mole
fraction concentration. Included in this list of samples is a series
of pure and doped KCl1l samples for which the dopant level of Sr was
varied from less than 1l ppm to approximately 470 ppm. When the
resolved flow stress, T, (4 pt.), as determined by the four point
bend test, is compared te the resolved flow stress, T, (uni), as
determined by the uniaxial compression test, a linear relationship
is obtained. This is shown in Figure 6. Since both measuring tech-
niques yield essentially the same result for any particular measure-
ment and the internal stress in the bend test is nonuniform, only
the flow stress determined from uniaxial compression measurements will
be considered further.

The resolved flow stress and Vickers hardness numbers for pure
KCl are given as a function of irradiation in Table II. Figure 7
(upper curve) is a graph of this data and clearly shows the nonlinear
dependence of the resolved flow stress on the radiation damage as
measured by the F center concentration. The lower curve in the same

figure presents the unpublished results of Sibley (12) and shows a
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similar but less pronounced dependence of the resolved flow stress of

unirradiated doped KCl on the dopant level of Sr.

For equivalent

concentrations, radiation damage is more effective for hardening KC1l

than is Sr doping.

RESOLVED FLOW STRESS UNIAXIAL, T

TABLE I

(uni),

RESOLVED FLOW STRESS FOUR POINTrBEND,
T, (4 pt.), VICKERS HARDNESS, HV,

WING SIZE, w_, AND CONCEN-
TRATION OF BOPANT LEVEL,

c, FOR SELECTED ALKALI

HALIDES

Material c* Ty (uni) tr (4 pt.) HV W

(ppm) (kg /mm2) (kg /mm?) (kg/mm2) (ud)
KCl-P-1 0 0.11 —— 9,2 91
KC1l-P-2 0 0.15 ——— 9.0 91
KC1-P-3 0 0.13 0.15 10.2 -
KCl-Sr-1 50-150 0.23 0.27 13.0 77
KCl-Sr-2 470 0.56 0.64 16.9 41
KBr 0 0.10 0.10 7.7 -
NaCl 0 0.24 0.21 16.5 -

* mole fraction



TABLE I1

RESOLVED FLOW STRESS, t,, VICKERS HARDNESS,
HV, AND F CENTER CONCENTRATIONS, c,
FOR PURE KCl

Material c* Ty HV
(ppm) (kg/mm?) (kg/mm?)
KC1-P-1 0 0.11 9.2
KC1-P-2 0 0.15 9.0
KC1-P-3 0 0.13 10.2
KC1-P-3 7.1 0.43 11.4
KC1-P-3 19.4 0.64 12.6
KC1~P-3 54.0 0.85 13.2
KC1-P-3 56.3 0.87 12.0

KC1l-P-3 71.3 0.93 14.8

* mole fraction
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CHAPTER IV
DISCUSSION

The strengthening of alkali halide crystals can be accomplished
in several ways. Two of these are hardening by irradiation and
hardening by doping with divalent cationic impurities. These methods
harden the sample by creating tetragonal lattice distortions. Irra-
diation of the sample by ionizing radiation creates a tetragonal
lattice distortion by converting a negative ion to a neutral atom and
moving the atom to an interstitial site, leaving the electron in the
original site creating an F center. Therefore, measuring the concen-
tration of F centers is a convenient method of determining the number
of interstitials that have been formed during any particular irra-
diation process. That interstitials and not F centers cause the
observed hardening has been established by Sibley and Sonder (4), and
by Hopkins (13), who has additively and electrolytically colored pure
KCl., Hopkins measured the flow stress before and after the coloring
process and found no significant change. Doping the crystal with
divalent ions creates tetragonal distortien because a positive ion
vacancy must be created for the samplé to remain electrolytically
neutral, The divalent ion and the positive ion vacancy pair up to
form the tetragonal defect. The axis of the tetragonal defect caused
by interstitials is a <103 axis while that caused by divacancies is

a 1@ axis.
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Fleischer (8) developed a theory to explain the hardening of face
centered cubic crystals by tetragonal lattice distortions. Because of
the importance of this theory in explaining the hardening observed in
these samples a brief review of it is in order. To compute the
hardening of a.crystal by defects, in general one must first compute
the interaction energy of the dislocation with the defect with which
it will interact. This computation is simplified 1f two conditions
are satisfied. First the force on a dislocation due to a defect must
fall off rapidly as their distance of separation increases, and
second, the concentration, of these defects must be small when compared
to the number of lattice sites. The second condition is usually
satisfied since the solubility of defects that strongly distort the
lattice is low. Fleischer demonstrated that the force of interaction
falls off as the square of the distance of separation, which satisfies
condition one. The calculation, then, is for a dislocation interacting
only with widely scattered defects on its slip plane,

Toe find the minimum force necessary to move a dislecation along
a slip direction one must first calculate the maximum force the
crystal can exert upon the dislocation. To do this, one assumes that
Fmax is the maximum ferce any one defect can exert upon.the dislocation
and 1 is the spacing of defects along the dislocation line. Then, the

minimum stress necessary to move the dislecation can be expressed as

T = Fmax /bl (12)

where b is the slip vector (Burgers vector) of the dislocation.
The problem has now been separated into two manageable parts,

which are to find 1 and te find Fmax' 1 is easy enough to find if the
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assumption of random distribution of defects is valid. With this
assumption, and by knowing the concentration of interacting defects

and their cross sectional area, 1 can be calculated as
l-= (area/concentra.t:i.on);5 . (13)

To calculate Fmax’ Fleischer first calculated the interaction
energies of the dislocation with various orientations of a tetragonal
defect. If the energy density Ed’ which is given by the stress
tensor of the dislocation times the strain tensor of the defect, is

known for each orientation, then the interaction energy E is given by

E=EV, (14)

where V is the volume of the defect. In face centered cubic crystals,
the atomic volume is equal to b3//5, so the interaction energy per

atomic volume can be written as

E = ¢ v3VT (15)

v & %1374

where Eij is the strain tensor, T is the stress tensor, and repeated

3

indices indicate summation. The total interaction energy can then be

written as
Em nEv , (16)

where n is the number of atomic volumes the defect occupies. For
interstitials and divacancies, this number is 2.

To calculate the stress and strain tensors for a particular
orientation, three assumptions are made: First, the stress from a

dislocation does not vary over the volume of the defect; second, this



22

stress 1s not altered by the presence of the defect; and third,
isotropic elasticity can be employed. With these assumptions and the
appropriate mathematical steps, Fleischer calculates the interaction
energy per atomic volume between a screw dislocation that is along a
[101] axis moving in the [121] direction in the (111) plane and a

tetragonal defect which has a [100] axis as
E, = ~Gb*Ac cos €/ (2/Z mr) , an

where: € is the angle between the [010] and a line from the dislocation
to the defect, and Ac is a measure of the strength of tetragonality
as shown in Figure 8. Similar calculations for a <110> defect yield

an energy of

Ev - -Gb4As (V2 cos €+ sin &)/ l4rr) . (18)

If ¢ is expressed in terms of x, the distance along the slip plane,
and y, the distance of closest approach, as shown in Figure 8, the

energy of the <10Q> defect can be written as
4 . 2 2
E, = Gb Aely + V2 x) /2076 (x° + y°) . (19)

The maximum force felt from this defect by the dislocation can be
found by maximizing the first partial derivative with respect to y
with respect to x. If this is done for both the <l0@> and the <110>

defects, the following forces/atomic volume are found:

FROD> _ cacht/9.45y2 | | (20)
FUI _ ant 9,43y . (21)

It should be noted that this quantity is essentially a constant
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[121]

Figure 8. Diagram Relating the Distance of Closest
Approach, y, and Distance in the Slip
Direction, x, to € for a Screw Dis-
location Interacting With a Defect
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regardless of the orientation of the defect. This means that the
hardening effect of the various defects depends primarily on their
size, concentration, and strength of tetragonality and not on their
orientations.

If the minimum stress is rewritten in terms of the force/defect/

atomic volume, it is given by
T = Fn/bl . (22)

This equation, along with the forces calculated above, and with the
assumption that 1 can be found, makes it possible to calculate a value
for T.

Knowing the concentration c of defects, 1 can be calculated as

1 = b//ic (23)
for interstitials, and
1= b//Ec/2 (24)

for divacancies, where £ is the fraction of the total concentration of
defects that are interacting. By evaluating Ac from calculations done
by Huntington (l4) for interstitials and from Weizer and Girifalco (15)
for divacancies as 0.55 and 0.08 respectively, and by assuming y = b
for distance of closest approach, the increase in stress can be cal-

culated as

ATr - Gc%/IO (25)
for interstitials, and

ar_ = c?/100 (26)

fer divacancies, where
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At =T ~-1T , 27

where T, = resolved flow stress of the sample at any particular concen-
tration of defects, and where T, ™ the original flow stress of the
pure .sample.,

Fleischer's theory predicts that for equivalent concentrations of
defects the interstitials will harden the sample approximately ten
times more effectively than will divacancies, and that this increase
in flow stress will be proportional to c%, When the experimentally

%

obtained flow stresses are plotted as a function of c¢* the predicted
linear relatienship is obtained, as shown in Figure 9. The upper line
is for interstitials and the lower for divacancies. If the increase

in flow stress is written as

At = (G/n)c;5 , (28)
and the equation of the c% lines graphed in Figure 9 as
AT = mc% s (29)
r
then
m=G/n , (30)
where m = the slope of the c%

line and n = the relative strength of

3

that particular type of defect. With G = 1,05x10 kg/mm2 the slope

¢

of the At versus c¢* lines yield values of n = 11.8 and 43.6 for

irradiated and Sr doped KCl respectively, The agreement with

Fleischer's theory is satisfactory considering the approximations made.
The increase in hardness for increased concentration of tetragonal

defects has been established using the resolved flow stress, T.» 38 a

measure of the hardness of the sample, This T, was determined by using
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Figure 9.
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The Resolved Flow Stress of Irradiated Pure
RC1l (upper curve) and Sr Doped KCl (lower
curve) as a Function of the Square Root
of the Concentration of Defects
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the uniaxial compression test. Figure 10 shows the comparison of this
technique with the Vickers microhardness technique. For the irradiated
KCl, HV increases by 257 while T, increases by a factor of 8 or 9.
Johnston and Westbrook ( reported by Johnston and Nadeau (17)) found
similar increases in HV and T, after irradiation of a number of alkall
halides, and Chin et al. (18) found a significant increase in HV with
increasing T, for the doped alkali halides. Microhardness tests
activate both the primary and secondary slip systems, while uniaxial
compression tests activate only the primary system; 1t is not
surprising that the two tests yield values that are not directly
proportional to each other. However, it is important to note that
hardening by radiation damage and by doping yield different relations
between HV and Ty

The wing size test makes use of motion in the primary slip system
to determine the hardness of the sample. Figure ll indicates that the
dislocation rosette size, w, is directly proportional to the load on
the indentor. Inspection of the figure suggests that there should be
a finite wing size, LA corresponding to zero load on the indentor, for
each value of the flow stress. In Chapter II it was suggested that
this initial wing size should be inversely proportional to the resolved
flow stress. In Figure 12 a graph of T, versus 100/w° is presented.
It shows LR to be inversely proportional to T, for larger values of Toe
v, seems to approach a maximum size for softer crystals. This can be
exﬁected, since for these softer crystals, LA is greater than 100 um
and subgrain boundarles or other macroscopic defects could easily limit

its size.
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CHAPTER V
SUMMARY

The mechanical strength of various alkali halide samples has been.
measured. The list of samples includes pure, irradiated, and Sr doped
KCl, as well as samples of pure NaCl, pure KBr, and a KClx‘KBrl_x
mixed crystal. The effect of doping with divalent ions and of
irradiating the samples on the resolved flow stress has been reported
and explained using Fleischer's theory. The mechanical strength of
several samples was measured using four different techniques in order
to compare their results. The four techniques used were the unilaxial
compression test, the four point bend test, the Vickers microhardness
test, and the wing size test.

The results of this comparison for the Vickers microhardness test
demonstrated that while the HV number increased for an increase in
flow stress, the relation between the two was not linear. When the
wing size test was compared to the flow stress, an inverse relation
was found for the harder samples while in the softer samples the wing
size appeared to approach a maximum size. This deviation was
attributed to subgrain boundaries and other macroscopic defects. A
linear relation was found when the flow stress determined by the four
peint bend test was compared to the flow stress determined by the
uniaxial compression test, Therefore, the three tests that yield a

value for the flow stress of a sample are the wing size test, the four
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point bend test, and the uniaxial compression test. Of these three,
only the wing size test is nearly nondestructive.

The resolved flow stress of pure KCl when irradiated, or when
doped .with the divalent ion Sr++, was found to be proportional to the
square root of the concentration of defects. It was also concluded .
that for equivalent concentration of defects, radiation damage
hardening of the sample was more effective than was doping the sample
with divalent ions. Both of these results were predicted by Fleischer's
theory. However, there are several areas that should be investigated
before radiation strengthened KCl is used for engineering purposes.
These areas include the following: How stable are the Cl interstitials
under ambient light? What is the thermal stability? How sensitive
is the radiation hardening and stability to the purity of the crystal?
All of these questiens should be answered before use is made of

radiation strengthened KC1.
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