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PREFACE 

This study is concerned with an investigation in a supersonic 

free jet. The purposes of the study were to determine the range of 

Reynolds number for which the jet is laminar, and to characterize 

the fluctuations in the jet (whether it was laminar or turbulent). The 

hot-wire anemometer was used for this investigation, with the Reynolds 

and Mach numbers of the jet being found through Pitot and static 

pressure measurements made at various locations in the facility. 

Some similarities between the results of thi:s work and that done by 

other investigators in the laminar supersonic wake are noted. 
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advisor, Dr. Dennis K. McLaughlin, and to his other committee mem
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iii 



Finally, the author would like to recognize the financial support 

of the National Science Foundation, whose grant number GK-32686 

made this study possible. 

iv 



TABLE OF CONTENTS 

· Chapter 

I. INTRODUCTION 

II. EXPERIMENT AL INVESTIGATION . 

. Equipm,ent . . 
Experimental Procedure. . 

III. EXPERIMENT AL RESULTS AND CONCLUSIONS 

IV. SUMMARY . 

SELECTED BIBLIOGRAPHY 

v 

Page 

1 

6 

6 
12 

17 

41 

43 



LIST OF TABLES 

Table 

I. Parameters for the Hot-Wire Measurements Consisting 
of Spectra and Spatial Amplitude Distributions of the 

Page 

Hot-Wire Fluctuations for Six Test Conditions . 4 

vi 



LIST OF FIGURES 

Figure 

1. Schematic of the Free Jet Test Section, ....••. , 

2. Detail Drawing of the Hot-Wire Probe (Full Scc1le). 

3. Circuit Diagram of the Voltage Divider System .•• 

4. Jet Centerline Mach Number as a Function of Nozzle 
Stagnation Pressure, with Representative Uncer -
tainty Limits Shown ••••....•....•..•..•• 

5. Jet Centerline Mach Number at x/d = 2 as a Function 
M the Pressure Balance C<cmdition Described by 

6. 

7. 

8. 

rb, with Representative Uncertainty Limits Shown. 

RMS Amplitude of Hot-Wire Voltage Fluctuations 
(Horizontal Scale, 31 mv/in or 12. 2 mv/cm) 
Plotted Against Radial Position in the Jet 
(Vertical Axis) for Several Downstream Loca
tions; Re = 1. 23 x 104, r b = 1. 04 (Ideally 
Expandef- Jet) ....•.•.•.....•..•... " •. 

RMS Amplitude of Hot- Wire Voltage Fluctuations 
(Horizontal Scale, 234 mv/in or 92. 1 mv/cm) 
Plotted Against Radial Pas it ion in the Jet 
(Vertical Axis) for Several Downstream Loca
tions; Re = 2. 47 x 104, r = 1. 03 ·(Ideally 
Expandef Jet) ••..•.. ~ ..•..•..• , , , • , 

RMS Amplitude of Hot- Wire Voltage Fluctuations 
(Horizontal Scale, 234 mv/in or 92. 1 mv/cm) 
Plotted Against Radial Position in the Jet 
(Vertical Axis) For Several Downstream Loca
tions; Red= 3. 70 x 10~ rb = 1. 04 (Ideally 
Expanded Jet) ..••..•...•••.•..•..•• 

vii 

Page 

7 

11 

14 ~ 

18 

20 

22 

23 

24 



' 
Figure Page 

9. Maximum Normalized RMS Fluctuation Level in the Shear 
Annulus as a Function of Downstream Position for the 
Ideally Expanded Jet at Three Reynolds Numbers .••.. 

10. Normalized RMS Fluctuation Level on the Jet Centerline 
as a Function of Downstream Position for the Ideally 
Expanded Jet at Three Reynolds Numbers ..••. 

11. 

12. 

RMS Amplitude of Hot-Wire Voltage Fluctuations 
(Horizontal Scale, 31 mv/in or 12. 2 mv/cm) 
Plotted Against Radial Posit ion in the Jet 
(Vertical Axis) for Several Downstream. Loca
tions; Red= 1. 23 x 104; rb =l. 85 (Under Expanded 
Jet) . ............ o I.I .................. . 

Frequency Spectrum of Hot- Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 
Red= 2. 47 x 104, rb = 1. 03, x/d = 4, r/d = O. 8 

13. Frequency Spectrum of Hot- Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 
Red=2.47xl04, rb=l.03, x/d=4, r/d=0.8 ........ . 

14. Frequency Spectrum of Hot- Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 
Red"' 3. 70 x 104, rb= 1. 04, x/d = 3. 5, r/d = 0. 8 ........ . 

15. Frequency Spectrum of Hot-Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 
Red= 1.23 x 104, rb= 1.84, x/d = 5, r/d = 0.9., .. , ..... 

16. Frequency Spectrum of Hot-Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 

26 

28 

30 

32 

33 

34 

37 

Red= 2. 47 x 104, rb = 1. 84, x/d = 4, r/d = 1. 0 • . . . . . 38 

17. Frequency Spectrum of Hot- Wire Fluctuations in the 
Maximum Fluctuation Region of the Shear Annulus; 
Red= 3. 70 x 104, rb= 1. 84, x/d = 3. 5, r/d = 0. 95. . . . . . . . 39 

viii 



d 

e' 

E 

f 

f 
c 

M 

p 
0 

r 

Red 

St 

v. t Je 

x 

NOMENCLATURE 

nozzle exit diameter 

RMS amplitude of the fluctuation component of the hot-wire 
bridge voltage 

mean hot-wire bridge voltage 

frequency 

characteristic frequency of jet given by the ratio V. / d 
Jet 

Mach number 

nozzle back pres sure (test chamber pres sure) 

nozzle exit pressure 

stagnation pres sure measured upstream of the nozzle 

pressure measured by the Pitot probe 

radial position in the jet measured from the centerline 

Pressure balance ratio described by pn/pb 

Reynolds number based on the nozzle exit diameter 

Strauhal number, the non-dimensional frequency given by 
the ratio £/£ 

c 

centerline jet exit velocity calculated from isentropic 
relationships for compressible flow 

axial distance from the nozzle exit 
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CHAPTER I 

INTRODUCTION 

In recent years noise pollution has received considerable atten-

tion from legislators. In particular, jet aircraft are being subjected 

to ever more stringent noise requirements. Although significant prog-

ress in reducing jet engine noise has been made, further investigation 

along these lines is needed. 

Jet engine noise is made up primarily of two distinct components: 

noise from the bladed passages in the compressor and turbine and 

noise produced by the exhaust jet of hot gases. The noise production 

process in the compressor and turbine is mainly the result of the pas-

sage of the rotor blades by the stator blades at regular intervals, with 

a resulting almost pure tone noise. A combination of proper blade 

spacings and the use of acoustic absorption material in the inlet na-

celle has proved very effective in reducing this type of noise. Reduc-

tions in the noise of the exhaust jet are much more difficult to achieve, 

with the only effective method being to reduce the exhaust velocity . . 
Some techniques (such as a multiple exhaust nozzle) provide marginal 

noise reductions, but are not adequate to meet forthcoming standards. 

When the compressor and turbine noise are reduced by proper engine 
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design the exhaust noise may become predominant, necessitating effec

tive treatment of this noise source. 

Recently, jet noise investigators (1, 2) have theorized that a sub

stantial portion of the exhaust noise is produced by large-scale fluctu

ations in the jet which are similar to instability waves in a laminar 

supersonic jet. In fact, Tam (3) based a theoretical investigation of 

the acoustic waves radiated by a turbulent supersonic jet on a small

disturbance theory derived on the basis of an assumption that shear 

layer instability is the dominating factor in the radiation of orderly 

acoustic waves from the region of the jet very close to the nozzle exit. 

The theory is intended to predict the orientation of the radiated 

wave fronts with respect to the jet axis and was compared to experi

mental results he obtained for cold jets and a simulation of the heated 

exhaust of a jet engine (accomplished by operating a jet of helium into 

air). His results indicate close agreement between predicted and 

experimentally measured wave propagation angles, and support the 

idea that the shear layer instability is dominant in the physical process. 

However, this radiation constitutes only a small proportion of the total 

noise produced by the jet, The major noise production mechanism in 

the jet involves the presence of a large-scale instability in the jet core. 

This mode of jet instability closely resembles the large- scale insta

bility of a laminar jet. With shear-layer instability theories yielding 

good resuits, the possibility that further stability theories could yield 

valuable information about the jet core fluctuation becomes apparent. 
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However, an experimental investigation in a turbulent jet is compli

cated by the presence of turbulence in the flow, which increases the 

difficulty of determining the characteristics of the jet, In the laminar 

jet, deterministic measurements can be made, resulting in much sim-

pler data reduction. For the above reasons a complete stability analy

sis of a laminar supersonic jet has been undertaken. 

The first step in a stability investigation is a transition analysis, 

which determines the limits of laminar flow in the jet. The objectives 

of the author's work were to develop a facility capable of producing a 

free laminar supersonic jet and to determine some of the flow charac

teristics of the jet. These objectives entailed developing good control 

over the pressures throughout the test facility and adequate pressure 

instrumentation. The investigation was carried out using the hot-wire 

anemometer, a technique which has previously been employed in many 

stability and transition studies (see for example (4), (5) and (6)). 

It might be noted that the scare ity of information concerning 

transition in the laminar supersonic jet is somewhat alleviated by the 

information available from investigations of the laminar super sonic 

wake, which has characteristics somewhat similar to a laminar super

sonic jet, These points are discussed at greater length in the following 

chapters. 

The scope of the investigation of the jet flow included determin

ation of the jet Reynolds and Mach numbers from the pressure data, 

and determination of the laminar or turbulent character of the jet from. 



4 

the hot-wire measurements. The hot-wire measurements consisted 

of" spatial amplitude distributions of the hot-wire fluctuations and fre-

quency spectra of the fluctuations at a point in the jet. These measure-

ments were made for three Reynolds numbers at two pressure balance 

conditions for each Reynolds number ( see Table 1 ). 

TABLE I 

PARAMETERS FOR THE HOT-WIRE MEASUREMENTS CONSISTING 
OF SPECTRA AND SPATIAL.AMPLITUDE DISTRIBUTIONS 

OF THE HOT-WIRE FLUCTUATIONS 
FOR SIX TEST CONDITIONS 

Run Reynolds Number 

1 1. 23 x 104 1. 04 

2 1. 85 

3 2. 47 x 104 1. 03 

4 1. 84 * 
5 3. 70 x 104 1. 04 

6 1. 84* 

* Spatial amplitude distributions of RMS hot-wire fluctuations were 
not included for these two cases for reasons discussed in Chapter 3. 
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These measurements were sufficient to describe the behavior of the 

jet, and the results and conclusions of the investigation are presented 

in Chapter 3. 



CHAPTER II 

EXPERIMENTAL INVESTIGATION 

Equipment 

The current research is being carried out in the free-jet test 

section of the Oklahoma State University high-speed wind tunnel for a 

jet of nominal Mach number 2. 65. The tunnel is operated by evacua

ting its downstream sect~on and maintaining the stagnation pressure at 

14. 7 psia (7.6. 0 cm Hg) or less, with the result that the jet exhausts 

into an ambient pressure of 0. 675 psia (3. 52 cm Hg) or less in the test 

section (see Figure 1 ). This procedure is used so that a low jet Rey

nolds number may be obtained in contrast to the research of other 

investigators (for example, see Nagamatsu (7), who exhausted the jet 

to atmospheric pressure}, The Reynolds numbe·r of the jet under con

sideration is hence at least a factor of 20 lower than those investigated 

previously. 

The inlet to the tunnel consists of a stilling section which admits 

room air to the facility at a stagnation temperature of about 70 °F 

(21 ° C). ·The stilling section provides for reduction of turbulence and 

control of the stagnation pressure to the nozzle. A diaphragm valve 

at the. inlet affords precise control over the flow rate and hence over 

6 
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the stagnation pressure. Following the valve is an adapter to the 

large diameter (6 inches; 15. 24 cm.) quieting section. Flow through 

the adapter impinges on a plate mounted in the stilling section, with 

the air flowing through 32 evenly distributed 3/16 inch (0, 48 cm,) 

holes in the plate. The purpose of the plate is to distribute the flow 

more evenly over the cross-section of the stilling section. Fpllowing 

the plate, reduction of turbulence is obtained through a two-inch 

(5. 08 cm.) thick section of foam rubber, which precedes six progres

sively finer screens spaced two inches (5. 08 cm.) aparL The last 

screen is at a distance of 10 inches (25. 4 cm,) from the nozzle throat, 

allowing time for the small- scale distrubance s it introduces to dis si-

pate before reaching the nozzle. 

The nozzle is a converging-diverging axisymmetric nozzle, with 

a throat diameter of O. 215 inches (5. 46 mm.) and an exit diameter of 

O. 375 inches (9. 52 mm.). The calculated area ratio A/ A,:< is 3. 036, 

which yields a nominal Mach number of 2. 65. The distance from the 

throat to the exit plane is two inches (5. 08 cm.), and the walls are cut 

straight, with a resulting included divergence angle of 4. 58 degrees. 

The nozzle had a simple conical exit section rather than a contoured 

section for several reasons. First, it was much easier to construct 

than a contoured nozzle would have been. Second, in order to get 

parallel flow from a contoured nozzle, a boundary layer calculation 

would have been necessary, but would have been valid for only one 

Reynolds number. The design was made with the knowledge that the 
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nozzle would be operated over a range of Reynolds numbers. Finally, 

the flow is seen to deviate only slightly from parallel because the 

divergence of the nozzle is small. Note that the ratio of the stilling 

section area to nozzle exit area (or the contraction ratio) is 256 to 1, 

a factor which tends to further diminish the effect of any turbulence in 

the stilling section. 

Downstream of the nozzle is a variable throat diffuser (see Fig-

ure 1) which allows precise control over the test chamber pressure. 

The diffuser is two-dimensional, with control being achieved by two 

flexible stainless steel bands which are operated by a crank mounted 

external to the test chamber. The chamber pressure pb (back pres-

sure for the nozzle) may be set so that the pressure balance ratio rb 

(given by p /pb where p is the nozzle exit pressure) results in any 
n n 

pressure balance condition desired. That is, for rb < 1 the jet is 

over-expanded, while for rb = 1 it is ideally expanded, and the jet is 

under-expanded for rb > 1. Flow through the diffuser exhausts into a 

i 

12-inch (30. 48 cm.) diameter pipe about 50 feet (15. 23 m.) long, 

which leads to a 1, 100 cubic foot (31. 8 cubic meter) va.cuum reservoir. 

The reservoir is evacuated by a Kinney vacuum pump having a capa-

city of 200 cfm (5, 590 liters per minute). The large volume of the 

vacuum reservoir and associated piping minimizes any pres sure 

fluctuations that could reach the test chamber from the vacuum pump. 

Vibration is minimized by the flexible piping which connects the 

vacuum pump and the reservoir. Thus the test chamber is effectively 
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isolated from vibration and pressure fluctuations. Another feature of 

the vacuum system is that it provides for continuous test runs. 

Pressures throughout the wind tunnel are measured on two mano-

meters, one with mercury as the working fluid and the other having DC 

200 silicone oil as the working fluid. The stagnation pres sure (p ) and 
0 

the Pitot preslmre (p ) are measured on the mercury manometer, while 
p 

the nozzle exit pressure (pn) and the test chamber pressure (pb) are 

measured on the silicone manometer. The stagnation pressure (p ) is 
0 

1 
taken at a static tap in the stilling section downstream of the screens, 

while p is the pressure measured by a Pitot probe mounted on the 
p 

probe drive. Nozzle exit pressure (p ) is taken at a static tap less than 
n 

1 /8 inch (3 mm.) from the jet exit, while pb is taken at a static tap in 

the chamber wall. The manometer is used for p in order to get· 
n 

greater sensitivity and accuracy in these mea'surements and for good 

accuracy in determining rb (_defined as the ratio pn/pb). Both manome

-s 
ters were referenced to a vacuum of 10 psia (0, 02 mm Hg) as mea-

sured by a Kinney type T. D. 2 vacuum guage. 

Hot-wire measurements were made in order to investigate the 

1 
Since the ratio of the cross-section area of the stilling section 

to the nozzle throat area is about 800, the velocity in the stilling sec
tion i.s about two feet per second, The difference between static pres
sure and total pressure will therefore be negltible at this point. 
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mean and fluctuating components of velocity2 in the jet. These measure-

ments were made with a Disa model SSA53 sub-miniature probe mounted 

on a brass wedge airfoil (see Figure 2). The probe is operated in the 

constant-temperature mode by the Disa model SSAOl Constant Temper-

ature Anemometer. The anemometer provides outputs for the mean and 

fluctuating components of the hot-wire bridge voltage. Meters on the 

front of the anemometer indicate mean voltage and the root-mean-

square intensity of the voltage fluctuations. Other equipment used in 

conjunction with the hot-wire anemometer include a Ballantine model 

710A linear AC to DC converter, a Mosely model 2DX-Y plotter, and a 

Hewlett-Packard model 302A Wave Analyzer. The procedure for the 

use of this equipment is described in the next section, 

Experimental Procedure 

The transition process is largely delineated by spatial amplitude 

distribution measurements of the hot-wire voltage fluctuations. The 

spatial amplitude distribution is a record of the RMS fluctuation level 

as a function of probe position, These measurements were made with 

2 In supersonic flow the hot-wire is actually sensitive to velocity 
pressure, and temperature fluctuations in the jet. Finding the true 
volocity fluctuation levels is very difficult experimentally and mathe
matically, and is beyond the scope of this work. This detailed investi
gation is not necessary for a transition study, however, as only relative 
and not absolute fluctuation levels are needed for the analysis, As a 
result, the terms "velocity fluctuation" and "hot-wire bridge voltage 
fluctuation" may not be interchanged; and the distiction is kept in mind 
throughout this work. 
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the probe mounted on the two-degree-of freedom drive mechanism in 

the test chamber. The probe was operated at an overheat of 20 per-

cent, wh~ch gave good sensitivity and long wire life. (The latter is 

important due to the difficulty involved in the repair of this small size 

probe.) The overheat was set by measuring the probe cold resistance 

(R ), which was always found to be within O. 2% of 2. 82 ohms, and then 
c 

multiplying this value by 1. 2 to get operating resistance (Rh). With Rh 

set on the anemometer, the correct overheat was maintained. The op-

erating resistance for this overheat was 3. 38 ohms, with a correspond-

ing difference between the wire temperature and the stagnation 

temperature of the jet and the flow of 90 ° F. ( 50 °C. ) This operating 

temperature was maintained by the anemometer. 

Plots of the RMS spatial distribution of hot-wire voltage fluctua-

tion amplitude were made on the X-Y plotter. The Y axis of the pl@tter 

was driven by the output of a voltage divider system 3 , with the vertical 

displacement on the plotter being proportioned to the vertical displace-

ment of the prpbe from its. reference position. The X-axis of the plotter 

was driven by a DC voltage proportional to the RMS hot-wire fluctuation 

3The voltage' divider consists of a linear (to 1 percent) 10, 000 
ohm ten-turn potentiometer whtch is driven through a gear reduction 
by the vertical scr~w drive on the probe drive. The exciter voltage 
is provided by a six volt heavy du~y battery. Another voltage divider 
is placed in series with the above to allow zeroing of the output voltage 
with the probe in its reference posit ion. (See Figure 3 for circuit 
diagram. ) Use of the variable gain on the Y-axis of the plotter allowed 
any scale factor between vertical probe travel and pen motion to be 
set. (This was approximately 11 in all cases. ) 
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voltage. The DC voltage was provided by passing the fluctuation signal 

from the anemometer through the Ballantine AC-DC converter. With 

this arrangement, driving the probe upward through the jet resulted in 

a continuous trace of RMS fluctuation level as a function of vertical po

sition at a constant downstream location. The fact that the horizontal 

pen deflection was proportional to RMS fluctuation level was verified by 

recording the maximum and minimum fluctuation levels in the jet read 

from the RMS milli-volt meter on the anemometer to the maximum and 

minimum pen deflections. These were found to agree very well. Re

cording the mean bridge voltage along with the fluctuation level allowed 

estimation of the relative levels of turbulence in the jet. After each 

traverse the probe was moved downstream one jet diameter (3/8 inch or 

0. 952 cm.) and a new traverse made until the limit of the probe travel 

was reached ( 10 jet diameters). For each new traverse the reference 

point on the X-axis of the plotter was changed to prevent overlapping 

and confusion of the traces. The resulting system of plots depicts the 

behavior of the RMS fluctuation amplitude transverse to the jet and in 

the downstream direction. 

Frequency spectra of the hot-wire voltage fluctuations give infor

mation which is very useful in determining whether or not the jet flow 

is laminar (in particular for the ideally expanded cases). They also 

provide interesting information concerning the behavior or turbulent 

jets for the under-expanded case. These phenomena are discussed at 

greater length in the following chapter. 
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Spectrum information was again obtained by employing the X- Y 

plotter. The input to the X-axis of the plotter was the voltage output of 

the Hewlett-Packard Sweep Drive, which is linearly proportioned to 

frequency of the Hewlett-Packard 302A Wave Analyzer. ·The suitably 

filtered4 fluctuation voltage was the input to the Wave Analyzer, whose 

output drove the Y-axis of the plotter. Data were taken by positioning 

the probe at the desired location in the jet and, by means of the sweep 

drive, sweeping the Analyzer through the desired frequency range (0 to 

about 25, 000 Hz). The frequency "window" of the wave analyzer (6 Hz) 

combined with the sweep rate of the drive (1000 Hz per minute) pro-

duced an "analyzing time" at any single frequency of O. 36 seconds. 

The resulting spectrum is not extremely accurate (due to the short 

averaging time) but it does show the major spectral components of the 

fluctuations at a point in the jet. 

The hot-wire investigations were carried out for six jet cases 

(as described in Chapter 1). The pressures set in each case were 

based on the results of the Pitot probe measurements. The results of 

the pressure measurements and hot-wire investigation are discussed 

in the following chapter. 

4 Filter settings were 200 Hz for the high pass filter and 50, 000 
Hz for the low-pass filter. These settings prevented power supply 
noise or any electrical resonance in the probe -anemometer set-up 
(at about 100 kilo Hz) from appearing in the fluctuation output but did 
not interfere with any significant signals. 



CHAPTER III 

EXPERIMENTAL RESULTS AND CONCLUSIONS 

Pitot and static pressure measurements were required in order 

to determine the Mach and Reynolds numbers of the jet. At a fixed 

Mach number, the Reynolds number is dependent only on the stagnation 

pressure of the jet (for constant stagnation temperature), When the jet 

Mach number is known, determining the jet Reynolds number is a 

straightforward task, 

The experimentally determined Mach number on the jet center-

line was based on the ratio of the Pitot pressure at the nozzle exit to 

the stagnation pressure 1 , assuming isentropic flow through the nozzle. 

Figure 4 shows the variation in jet Mach number with stagnation pres-

sure. These measurements were made with the Pitot probe located 

on the jet axis in the nozzle exit plane. This figure indicates that the 

jet centerline Mach number decreases with decreasing nozzle stagna-

tion pressure, or decreasing Reynolds number. However, for the 

range of stagnation pressures used in the investigation, 1. 98 psia to 

1 All Mach numbers determined on the basis of pressure or area 
ratio were found by means of using tables in Reference 8. Also, Rey

, ~~lds numbers were calculated wi.th the aid of Chart 25, page 69, in 
Reference 8. 

17 
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5. 93 psia (1 O. 1 to 30. 4 cm Hg)., the jet Mach number is constant within 

about 2%. The variation in Mach number is probably due to variations 

in the boundary layer thickness with Reynolds number (as the Reynolds 

number decreases the boundary layer thickens), which would result in 

changes in the effective area ratio of the nozzle and a reduction in jet 

Mach number. This is not a very pronounced effect for the nozzle used, 

however. 

An important factor in the behavior of the jet is the pres sure bal-

ance condition described by the balance ratio rb (ratio of nozzle exit 

pressure, pn' to the back pressure in the test chamber, pb). This 

ratio may be set so that the jet is over-expanded (rb>l), ideally 

expanded (rb ~ 1 ), or under-expanded (rb> 1). Figure 5 shows the 

variation in Mach numbers at x/d = 2 as a function of rb for stagnation 

pressures of 1. 98 and 9. 88 psia (10. 1 and 30. 4 cm Hg). This figure 

indicates that an effective jet Mach number may be based on the ratio 

pb/p0 , ·assuming the jet expands to the chamber pressure after exiting 

from the nozzle. For hot-wire measurements in the jet, two values of 

rb were chosen; one for the ideally expanded jet (rb = 1. 04) and one for 

a highly under-expanded jet (rb =. 1. 84, corresponding to an effective 

Mach number of 3. 0 based on the ratio pb/p0 ). 

The pressure balance ratio noted above for the ideally expanded 

case (rb = 1. 04) differs from the value of 1. 00 which would be expected 

(the value of 1. 04 was determined by trial and error). This discrepancy 

is due to the fact that p . d1oes not represent the true static pressure on 
n 
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the axis of the nozzle at its exit, a conclusion which can be deducted 

for the following evidence. At a stagnation pressure of 5. 9 psia (30. 4 

cm Hg), the jet Mach number calculated from the ratio p /p (see 
p O 

Figure 4) is 2. 55 + O. 02, while the Mach number based on the ratio 

p /p is 2. 44 + O. 02. Since Pitot pressure measurements are fairly 
n o -

insensitive to probe alignment errors, and since accurate static 

pressure measurements are sometimes very difficult, it was concluded 

that p was in error. This error could have been due to streamline 
n 

curvature at the nozzle exit. Calculations indicate that a streamline 

radius of curvature of O. 37 in. (9. 4 mm) would be sufficiently small to 

produce the observed difference between measured and theoretically 

calculated values of static pressure on the centerline at the nozzle exit. 

The actual cause is not known at the pre sent time, however. 

Figures 6, 7, and 8 are plots of the spatial amplitude distribution 

of RMS hot-wire voltage fluctuations in the ideally expanded jet for 

Reynolds numbers of 1. 23 x 104, 2. 47 x 104 , and 3. 70 x 104, re spec-

tively. It should be noted that the horizontal scale factors (correspond-

ing to the RMS hot-wire fluctuation level) differ by a factor of about 

seven between Figures 6 and 7. The maximum fluctuation level in 

Figure 7 is actually about 30% higher th.an that in Figure 6, but is 

comparable to that of Figure 8 (the horizontal scale is the same for 

Figures 7 and 8). 

In each figure (for the x/d = 1 profile) peaks in the RMS fluctuation 

amplitude occur at a radial position, r Id of about O. 5. These peaks 
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occur at the shear annulus (region of high velocity gradient at the jet 

edge). The flow in the jet core and exterior to the jet is fairly uniform, 

with low fluctuation levels. At locations further downstream in the jet, 

the high fluctuation shear annulus is found to thicken and converge, with 

the result that the peak level of RMS fluctuations is finally located ap

proximately on the jet axis. At the location of the appearance of the 

maximum fluctuation level on the jet centerline, the jet may be con

sidered fully turbulent, with dissipation decreasing the fluctuation 

levels in the downstream direction. 

An introductory note on the behavior of trubulent jets is appro

priate at this time. Nagamatsu, et al (7) carried out a fairly complete 

investigation of the turbulent jet. A major feature of the turbulent jet. 

is the initially high fluctuation level in the ·shear annulus, with a rela

tively quiescent flow on the jet axis. The quiescent flow on the jet axis 

extends downstream for an appreciable distance (about 4 to 6 jet 

diameters), and corresponds to the pressence of a "potential core" in 

the jet. The potential core results from the fact that the high level 

fluctuations generated in the shear annulus spread across the jet 

fairly slowly. The potential core and initially high fluctuation levels 

in the shear annulus are important features of the turbulent jet. 

Figure 9 is a plot of maximum RMS fluctuation level in the shear 

annulus as a function of downstream distance for the cases shown in 

Figures 6, 7 and 8. The plot for Red= 1. 23 x 104 is markedly different 

from the others, as the fluctuation level is initially very low, and 
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fluctuations grow at an approximately exponential rate, (exponential 

growth is predicted by laminar stability theory if accelerations in the 

streamwise direction are not large). The plots for the Reynolds num

bers of 2. 4 7 x 104 and 3. 70 x 104 show behavior more consistent with 

that of the turbulent jet discussed previously. 

In Figure 10 these observations are confirmed. · This figure is a 

plot of RMS fluctuation level on the centerline of the jet for three Rey

nolds numbers. For the Reynolds numbers of 2. 47 x 104 and 3. 70 x 104 

the presence of the potential core is indicated, but for Red = 1. 23 x 104 

a clear difference is evident. The point of sharp increase in fluctuation 

level on the jet centerline occurs about two jet diameters further down

stream than for the two higher Reynolds numbers. 

An interesting comparison between the super sonic jet and super

sonic wake flows can be made at this point. Demetriades (6) performed 

a hot-wire investigation to determine the spatial distribution of fluctu

ation amplitudes in a laminar two-dimensional supersonic wake. His 

results clearly show some similarities to the lowest Reynolds number 

jet flow (Figure 6). The wake fluctuation profiles indicate small 

fluctuation peaks at the shear layers for locations near the body (a 

wedge), with the amplitude growing in the downstream direction and with 

the shear layers becoming thicker. The behavior on the wake axis is 

similar to that shown in the jet, where initially low fluctuation ampli

tudes grow in the downstream direction. One must be careful not to 

over-interpret this comparison because of the complicating feature 
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of the potential core in the "fully" turbulent jet. 

Since growth fluctuations (in accordance with predictions of lam

inar stability theory) only occurs for the case of Red= 1. 23 x 104, this 

flow is the only one which can be said to be initially laminar, and the 

jet should be considered turbulent for Red= 2. 47 x 104 and Red = 3. 70 x 

I 04 from this standpoint. These conclusions are subject to further 

interpretation in light of information obtained from frequency spectra 

of the hot-wire fluctuations, 

Figure 11 is a plot of the spatial distribution of RMS hot-wire 

voltage fluctuations for the under-expanded jet at Red= 1.235 x 104• A 

comparison between this figure and Figure 6 indicates the effect of 

under-expanding the jet as far as the spatial distribution of fluctuation 

amplitudes is concerned. In Figure 6 (ideally expanded jet) at x/d = 1, 

small humps in the fluctuation profile may be noted near the jet axis. 

These correspond to weak expansion waves from the nozzle lip, and 

their effects die out before the downstream position x/d = 4 is reached. 

In Figure 11 (highly under-expanded case), however, a shock cell 

structure is formed that greatly influences the flow. The higher effec

tive Mach number seems to increase the length from the nozzle exit 

before the jet is fully turbulent as compared to the ideally expanded 

case, but the picture is somewhat clouaed by the shock structure, which 

increases the difficulty of drawing other meaningful conclusions. The 

spatial amplitude distributions for the under-expanded jet at Reynolds 

numbers of 2. 47 x 104 and 3. 70 x 104 were not included because they 
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show the same effects as indicated; the point of fully turbulent flow

moves downstream about one jet diameter from that of the ideally 

expanded case, and the shock structure becomes evident. The other 

spatial behavior characteristics of the jet (spatial growth, fluctuation 

levels): change only slightly. 

Figures 12, 13 and 14 represent frequency spectra of the hot-

wire fluctuations for the ideally expanded jet at Reynolds numbers of 

1. 23 x 104, 2. 47 x 104, and 3. 7 x 104 respectively. All spectra were 

taken at the radial poisition of highest RMS fluctuation level in the shear 

annulus, with the downstream position of the probe optimized so that 

the best "pure tone"(as determined with the hot-wire fluctuation vol

tage displayed on an oscilloscope) was obtained. Features of interest 

in the spectra are major peaks (corresponding to oscillations of dis

crete frequency content) which appear far more than one Reynolds 

number. For example, Figure 12 :indicates a discrete peak at a non

dimensional frequency of O. 182, with a harmonic at St = O. 364 (for 

Red= 1. 23 x 104 ). Figure 13 shows a discrete peak at O. 193, with a 

harmonic at O. 396 (for Red = 2. 4 7 x 104 ). The difference in frequency 

for the fundamental peaks in the two cases amounts to about 5%. This 

discrepancy c.ould be caused by the difference in jet Mach number 

between the cases, which amounts to about 2%. Also, the frequency of 

the discrete oscillation may be slightly dependent on jet Reynolds num

ber. In any case, the agreement between the frequencies of the discrete 

oscillations in these two cases is sufficient to support the conclusion 
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that the same physical process is taking place at the jet Reynolds 

numbers of 1. 23 x 104 and 2. 47 x 10". F'or these Reynolds numbers 

the fluctuations in the jet a:re mainly due to the presence of orderly 

laminar instability waves in the jet. Discrete frequency instability 

waves have also been reported in a laminar supersonic cone wake by 

McLaughlin (9). 

In contrast to the previously discussed cases, the spectrum for 

the ideally expanded jet at Red= 3. 70 x 104 is a rather broad-band 

spectrum (see Figure 14). In passing over the frequency range several 

times with the wave analyzer, most of the indicated "spikes'' showed up 

only randomly. Again, a longer averaging time (or a slightly broader 

bandwidth) on the wave analyzer would aid in resolution of the frequency 

spectra, but the available information is sufficient to indicate that the 

peaks due to laminar instability waves are obscurred in the high 

Reynolds number case. 

These measurements, together with the spatial amplitude distri

butions of the hot-wire voltage fluctuations are sufficient to determine 

the laminar or turbulent character of the jet. For jet Reynolds num

bers of 1. 23 x 104 and 2. 47 x 104 a large proportion of the fluctuations 

in the jet occur at a single frequency. This is due to the presence of 

orderly waves in the jet rather than the random and chaotic fluctuations 

which are a characteristic of turbulence. This orderly and predictable 

behavior agrees ·with the criteria of t'he definition of laminar flow, and 

the jet is concluded to be initially laminar for Reynolds numbers of 
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1. 23 x 104 and 2. 47 x 104• This conclusion is contrary to the conclu-

sion based on growth of fluctuations for the Reynolds number of 2. 47 x 

104, and indicates that both growth rates and spectra of the fluctuations 

should be considered in an investigation of the laminar or turbulent 

character of the jet flow. The flow is found to be turbulent for the 

Reynolds number of 3. 70 x 104, with both the criteria of random fluctu-

ations and no growth of disturbances being satisfied in this case. 

Spectra of the hot-wire fluctuations in the under-expanded jet for 

Reynolds numbers of 1. 23 x 104, 2. 47 x 104 and 3. 70 x 104 are presented 

in Figures 15, 16 and 17 respectively. The important features to be 

noted are that discrete peaks are shown for every Reynolds number, 

and that the frequencies of the discrete oscillations have been shifted 

* from those observed in the ideally expanded jet. For Red= 1. 23 x 104 

the major peaks occur at St = O. 144 and St = O. 167, with an apparent 

harmonic at St= O. 288 for the under-expanded case (Figure 12). These 

compare to the peak noted at St = O. 182 and the harmonic at St = O. 3h4, 

which were mentioned for the ideally expanded jet at Red= 1. 23 x 104 • 

A similar shift is observed at Red= -2. 47 x 104 , with the. major peak 

occurring at St = 3. 70 x 104 (Figure 17) a peak is noted at St = O. 148 

* An interesting characteristic of the shift (for Red = 1. 23 x 104 

and 2. 47 x 104) was that it occurred in a "jump" which was easily ob
served on an oscilloscope as the pres sure balance ratio r b was changed. 
For Red= 3. 70 x 104, where no discrete frequency fluctuafions were 
initially present, decreasing the nozzle back pressure (increasing rb) 
resulted in the sudden appearance of the discrete oscillation (also 
easily observed on the oscilloscope). 
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with a harmonic at St = O. 294. The conclusion suggested by these 

results is that operating the jet at an off-design pre ssu.l'e ratio (intro

ducing a relatively strong shock structure into the jet) may cause the 

inertial disturbances in the jet to "lock on 11 to some dimension which 

might be associated with the shock structure. However, this phenom

enon is not completely understood at the present time. 



CHAPTER IV 

SUMMARY 

A facility has been developed which allows control over the 

Reynolds number and back pressure of a free supersonic jet. The 

'ideally expanded Mach number 2. 55 jet is found to be initially laminar 

for Reynolds numbers of I. 23 x 104 and 2. 47 x 104, and turbulent at a 

Reynolds number of 3. 70 x 104 • Under-expanding the jet stabilizes 

the flow for both laminar and turbulent cases, and moves the initial 

point of fully· developed turbulence downstream about one jet diameter. 

Discrete frequency instability waves are present in the ideally 

expanded laminar jet,. but the fluctuations in the expanded turbulent 

jet show a broad-band spectrum. Operating the jet in an off-design 

pressure ratio, however, introduced discrete frequency fluctuations 

for all Reynolds numbers considered (with the under-expanded funda

mental frequency showing a 11 shift 11 from the ideally expanded laminar 

fluctuation fundamental frequency). 

Some similarities between the ideally expanded jet flow at 

Red = 1. 23 x 104 and laminar supersonic Wakes were noted. The spatial 

distributions of fluctuations amplitude showed similar characteristics 

for the two flows, and discrete frequency fluctuations were present in 

41 
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both flow situations. 

Futher investigations in the jet could utilize a smaller nozzle to 

study the transition Reynolds number of the jet, where 

Re = trans 

p v. t x ' . Je trans 
µ, 

Also, investigations of the under-expanded jet at higher Reynolds 

numbers might give some insight on the way in which the shock struc-

' 
ture influences the flow. Schli.eren flow visualization should be 

included in these investigations. 
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