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CHAPTER I 

IN'IRODUCTION 

A manipulator is a device that can perfonn certain tasks and has 

definite similarity to the hum.an arm and hand. Originally manipulators 

were.used to substitute for the human arm and hand in hostile environ

ments, but with the advance in technology, use of manipulators extended 

far·beyond hostile environments to si~ple, tedious and hazardous tasks. 

The control of manipulators is a problem by itself and only recently 

have there been breakthroughs in this particular area of technology. 

Manipulator control can be divided into two broad classes, hu.'llan 

control and computer control. In human control, the manipulator is 

coupled to the human arm in such a way that both movements are highly 

correlated. In the computer control, it is the job of the digital com

puter to process the infonnation related to the manipulator's task and 

the obstacles to be avoided. Computer control can be further subdivid

ed according to the way the information regarding the manipulator's 

task and the obstacl~s is fed into the computer. If the information 

regarding the task is all contained in the memory of the computer be

fore the manipu.lator starts moving and no further information enters 

the computer during the realization of the task, then we have open

loop control~ If the inf'o:nnation related. to the manipulator's posi

tions and tasks and its obstacles is fed during the realization of the 
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task as for example, with an electronic sensory device, then we have a 

closed-loop control. This thesis proposes a methQd by which a manipu

later is guided through obstacles using both open-loop and closed-loop 

control features. The description of the obstacles is stored in the 

memory of the digital computer before the task starts, but the posi

tion of the IIia.nipulator is fed concurrently with the realization of 

the task. 

In Chapter II we will develop the algorithm which will fulfill 

the proposed goal. 

In Chapter III we will present results and analysis. 

In Chapter IV we present conclusions and some suggestions for fu

ture work. 

Chapter V contains computer programs and instructions on how to 

use tlre algorithm .• 

In the next section we present a brief history of manipulators 

and related fields. 

History of Manipulators 

The developnent of manipulators started with the development of 

atomic energy. In order to protect ~n operator from radioactive mate

rials, equipment was needed that could dupli~ate the operator's capa

bilities without exposing him to a hazardous environ~ent. Research on 

general purpose manipulators was started in Argonne National Labora

tory in 1947. 'lbe first manipulator built at Argonne had six degrees 

or. freedom, were controlled by mechanical drives and had hydraulical

ly operated grips. Later, electric drives were substituted for mechan

ical drives. They were suitable for simple tasks, but because they 



lacked force feedback· then although an operator exerted a light pres

sure on the grip, the manipulator reacted always with the same force 

making it unsuitable for handling delicate tasks; as can be deduced 

from the above, the early manipulators fell into the classification 
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as human controlled. Later on, in 1948 the people at Argonne decided 

to develop manipulators with force feedback and with motion very sim

ilar to the human hand. These are called master-slave manipulators be

cause both motions are coupled in such a way that the motion of the 

slave follows the motion of the master and the force in the slave is 

reflected attenuated at the master. Several of these were built and 

they are still commercially available today. 

These manipulators have several drawbacks. They require the op

erator and the manipulator to be physically close together. Also the 

str&ngth of the manipulator is li.'llited by the strength of the oper= 

ator. Later on GF.C and Argonne developed other manipulators that could 

be controlled from far away through a cable. However, because of their 

higher cost, their use is limited. Powered manipulators, not of the 

master-slave types, have been developed by AMF, GEC,. Westinghouse, 

FMC, etc~ The most advanced human controlled type of manipulator is 

built by GEC ur.ider the name CA.L\fS ( Cybernetic Anthropomorphous Ma.chine 

Syst£ms). All these manipulators, being human controlled, suffer from 

the inherent limitations of human beings; they are subject to fatigue 

and are errnr prone. Efforts are being made at present to create sys

tems in which marl ha.s no more than a supervisory task. 

Computer controlled manipulators offer a partial solution to human 

li'1litations. In space exploration for example, the delay involved bet

ween a human operator on earth and a manipulator ·in some remote pl~.net 



points out the necessity of controlling a manipulator with a computer. 

Computer-manipulator systems are now being built and used in material 

handling applications such as AMF's Vesatran and Unim.ation Inc.'s 

Unir.ua.te. These machines are of the open-loop type and are programmed 

through a predetermined series of positions. They are used to perform 

specific operations having a fixed cycle. They cannot make decisions. 

However if the parts are not in the right positions, the machine will 

not operate successfully. They must be reprogrammed each time the 

task Yaries. It is desirable therefore to include some decision-mak

ing capability to the manipulator control system. 
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Research on systems with the above mentioned capabilities has been 

and is being conducted mainly at two universities, M. I. T. and Stan

ford. At M. I. T., Erpst [1] using a manipulator with sensory feed

back, deve:i.oped a system capable oi stacking blocks. E:rt1stt5 wo1·k Wei.$ 

further extended to include visual inputs and capability of manipula

ting objects .. Future goals include the develo:p11.ent of a completely 

autonomous system c.apable of manipulating objects with a sophisticated 

level of decision making ability. At Stanford, Rosen [2] and others 

developed a computer controlled mobile vehicle that performs tasks on 

a real environment. There, most of the emphasis is placed on develop

ing the feedback loop of the system (reception of visual and other 

sensory inform.ation to direct the system-vehicle in this case towards 

the completion of tasks requiring the abilities to plan ahead and learn 

from previous experience). At other universities [3], similar research 

has been conducted in an effort to increase the decision making capa

bilities of manipulator systems. 
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Contribution of .the Proposed Research 

The algorithm developed represents an alternative to the few 

already in existence for achieving the same goal. In addition the 

method can be used with little variation for virtually unlimited types 

of arms and obstacles. It does not reqtdre the complicated visual sen

sors with very sophisticated pattern recognition software. It repre

sents an advance with respect to the method outlined by Pieper in his 

doctoral dissertation because it does not need to solve equations for 

the angles that locate the hand at a certain point. It does this auto

matically as the arm is advancing towards its objective. Future possi

bilities of this method include the addttion of logical decision 

capabilities in order to select the best way to reach its objective. 

This is accomplished a.fter the criteria of what "best" means has been 

adopted. The next chapter will explain the derivation of the algo

rithn. 



CHAPI'ER II 

ALGORITHM DEVELOPMENT 

Selection of the Manipulator 

Configuration 

The primary criterion which was considered when selecting a con

figuration was generality. The configuration needed to be general 

enough as for representing most, if not all existing real manipulators. 

The approach followed was to start with a generalized link, with sever

al degrees of freedom. Then, any real manipulator can be represented 

with a certain number of generalized links, each of them with none, one 

or more degrees of freedom of motion frozen. The generalized link is 

shown in Figure 1. Let this link be the ith link of an open kinematic 

chain. The end points of this link are Pi-land Pi. Each link con

tains a cylinder pa.ir collinear with the link itself and a revolute 

pair perpendicular to the link at the point Pi. The extension of the 

cylinder pair will be called ai and its rotation will be called c<'i. 

The rotation at the revolute pair will be denoted Oi. In our analysis 

we will consider that the hand is small enough not to influence the al

gorithm. We will assume therefore, that as long as the end point of 

the manipulator; in which the hand is attached keeps outside a certain 

dista.nc(i from the obstacles, then it could be assured that the h.and 

does· not touch any obstacle. Let's now use the generalized lin!{ to 
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LINK I 
Figure 1. Generalized Link 
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describe some configuration of commercial manipulators. In the ith 

link if some parameter is fixed, we will denote it by equating the pa-
-

ram.eter to its value when the parameter is a rotation or by stating 

that the increment of the parameter is zero when it is a length. So 

for exa..'llple if in a manipulator, °' of link 1 is fixed and equal to o°, 

Q of link 2 is ·fixed and equal to 90° and if a ~f link 3 is fixed, then 

we· will d·en:ot·e- the manipulator by ( °' -=0°, e -=-90°, ti.a.:c-: O , 5 ) wh.ere 
1 2 3 

5 denotes number of links. Before going to specific examples it is 

necessary to define the number of links of a manipulator. We will as-

sume a definition based on convenience and practicality that will have 

its advantages in implementing the algorithm. This number consists of 

all the links that do not have either of their ends clamped to the 

ground. It might be argued that when the link clamped to the ground 

stretches, it should be considered as a link, but as in most practical 

cases this link does not stretch, the definition is justified. In 

order to use an array of ·numbers in the c~mputer the indexes of the ar-

ray cannot be zero, so the link that has an end clamped to the ground 

will be assigned number 1. Consider the practical manipulator struc-

tures shown in Figures 2 and 3. A simple analysis concludes that the 

structures have descriptions ( 
0 0 

a1 =-0, o<1 :o ,.Aa2 =0, « 2 =90 ,Aa3= O, 

<X3 = 0°, Aa4 -== O, Aa.5= O, 4 ) and ( ~l-== O, o<.1-= 0°, o<.2 ~ 90° 1 Aa2 = O, 

na4~ 0 1 3) respectively. Having seen that the generalized links can 

be used to ~epresent practical manipulators, it is time to present the 

foundations of the algorithm. 
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Figure 2. Humanoid Type ~..a.ni.pula tor 

F·igure J . Unimate Type Manipulator 
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Mathematical Description. of 

the Manipulator 

Any manipulator fonned by a chain of N generalized links will have 

at most 3(N+l) parameters although °N+l and 9N+l will not really be 

considered because they deal with th.e position. ot the hand. In order 

to describe the configuration of the manipulator we need to specify 

each of the JN+l paraneters which are ( a1, a2, •••• ~, aN+l' ix1, 0(2,··· 

••• , o(N' el' 02, •••• , QN ). Describing the configuration means in our 

case knowing the positions with respect to a fixed frame of the end 

points of all links. Now let's discuss what we mean by a guidance al

gorithm. Given a configuration as indicated pre~iously by ( a1,···~· 

••• , 9N), if we can find an incremental configuration ( .D.a.1, ••• , 

A0N ) as a. .function of the configuration ( a1, •••• , 9~ ) , then by suc

cessive iterations ( compute the increm~ntal configuration and add it 

to the configuration to obtain a new configuration, and so on), we 

can move the manipulator in a certain way. Let's now consider t to be 

an independent variable. ( It is not important whether tis time or 

not, because we are interested mainly in trajectory·generation and not 

in solving dynamic problems ) • Then {Aa1, •••• , AQN} = { a.1 , .. ·, sN}.At 
where the dots indicate the derivative with respect to the parameter t. 

Then for each ( a11 ••• , eN ) we should find .( al' ... , 6N ) • Let's de

note the end points of the links of the manipulator by P1, P2, ••••• , 

Pp ••• ., PN+l where Pi represents ·the point of coordinates ( Xi_, Yi' zi) 

and its derivatives with respect to the independent variable t by P1, 

.... , Pi' ... , PN+l where Pi represents ( .ii, Yp ;i ). Our algorith!n 

has three clearly di.f.f'erenciated parts: 
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1) Given { a1, ••• , eN) compute ( P1, .••• , PN+l ). 

2) Knowing ( P1 , •••• , PN+l ), the destination of PN+l' and the descrip

tion of the obstacles, generate a set of "velocities" or influences 

{ either of these two terns will be used indistinctly ) { Pi, ••• , PN+l ) 

that will be compatible with the physical dimensions of the links in 

the manipulator. 

3) Once ( P1,···, PN+-l-) are computed calculate ( a1,···, eN ). 
Steps 1) and 3) are straightforward although their derivation is rather 

lengthy. Step 2) is not straightforward and its solution requires en

gineering ingenuity. The analytical tool to be used in steps 1) and 3) 

are the 4:x1+ matrices proposed by Hartenberg and Denavit [4]. This ma

trix is to ·be denoted by [ai] enclosed by square brackets, where i de

notes the link number to which the matrix is referred. The positions 

of the end points of the links in the manipulator will be denoted by 

P .. where :I.. is the number of the end point as defined previously, and 
1, J 

j indicated the link number to which a frame of reference is attached. 

Its form will be: 

1 

P .. 1,J - or (2-1) 

z. y .. 
]. 

j 
]. 

z. 
1 j 

The second form is the one that will be used in our derivation because 

we are us1.ng L,x4 'ma.trices. 



Position Description 

Our goal is to know the location of all points ( P1, ••• , PN+l) 

with respect to a fixed frame of reference attached to link 1. To do 

this we fix on each link i a frame of reference i whose origin coin-
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cides with t.he end point P. 1, whose x axis coincides with the line de-
1-

fined by points Pi-land Pi' and whose z axis coincides with the axis 

of the revolute pair at P. 1 • Let's now consider a generic link i as 
1-

indicated in Figure 4 with its reference frame attached to it. Suppose 

that we know the coordinates of a certain point with respect to frame 

i+l, and we want to find the position of the sa~e point with respest to 

frame i. Hartenberg and Denavit discover.ed a matrix that accomplishes 

this coordinate trans.formation. Our matrix will differ from theirs by 

the order in which the rotations c(. and 9 are taken. To transform a 

certain point Pa referred to frame i+l into frame i+i, we have to mu.l-
o 

tiply P . 1 by the matrix: g,i+ 

1 

0 

0 

0 

0 

cos0. 
1 

sin9i 

0 

0 0 

-sinS. 0 
1 (2-2) 

cos0i 0 

0 1 

This matrix will be denoted by [ReJ • To find the coordinates of point 
]: 

P given in frame itJ to frame i, we have to multiply P . 1 by the g - g,1+2 

matrix: 
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LINK I 

Figure 4. Frames of Reference 



11+ 

1 0 0 0 

a. 1 0 0 
l. (2-3) 

0 0 cos~ -sin«. 
l. 

0 0 sine.. COS<\ 
l. 

This matrix will be denoted by [ R~] • 

P i will be: g, .+1 

Then, P . as a function of 
g,1 

P . : [Ro<][Rn lp . 
g,1 i ~iJ g,1.+l 

Or, after multiplying the matrices in the indicated order: 

P .:::[R.]P . l g,1 l. g,1+ 

Equation (2-L~) is the abbreviated form of (2-5) shown below, 

\ ·':.,.· 
,, 

1 l 0 0 -, -o 1 

x a. Cos0. -sine. 0 x g l. l. 1 g 

Yg 0 COSoc'isin0i COS°'i_COS0i -sin«. y O' l. b 

zg i 
0 sin«:i_ sine i sine<. cos6. 

l. l. 
COSO{. 

1 
z 

g 'i ... l 

(2-5) 

In (2-1), (2-4) and (2-5) g stands for any generic point. Let's now 

use our results for finding ( P111, •••• , PN+l,l) meaning ( P1, •••• 

~., PN+l) with respect to frame 1 which is attached to the ground. 

Consider now the coordinates of endpoint Pi with respect to frame of 

reference i. These coordinates are: 
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1 

a. 
P . l. {2-6) . -

1,1. 0 

0 

So the problem of finding ( Pl,l' P2,l' •••• , PN+l,l ) while we lmow 

( Pl,l' P2, 2, ••• , PN+l.;N+l) is just that of several coordinate trans

formations applied successively to P ..• These transformations are 
1.,1. 

indicated below 

pl: Pl,l: Pl,l 

P2 =P2,1= [_RJP2,2 

p3 = P3,l = LR1]~1121P3,3 

(2-'l) 
~·~······················· 

Then the positions of endpoints ( P1, ••• , PN+l) with respect to fixed 

frame 1 are known because the right hand sides of equations (2-7) are 

formed by known parameters. Here the generic link number has been cho-

sen as i+l instead of i for convenience as we will see later. 

Velocity Description 

Now, using the same tools let's derive step 3). Assuming that a 

set cf nvelocitiesn ( Pi, •... , PN+l ) has '!teen computed at step 2), 

the pro~ooure cf computing ( a.1, •••• , 9N) has to be carried out. As 
• 

can be seen from the definition itself of the .11velocities11 , P1 will de--

fir,,:- a1 , 1\ w111 ctetine ; 2 , «1 , el' P3 w111 define a.y ~2, e2 and so 
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forth. Stated in another form the problem can be proposed as follows; 

( . . . . . . . 
given a set a1, ••• , ai, c,,,••••, ~i-l' 91, ••• , Gi-l) and Pi+l com-

If we apply this procedure from the first to 

the last link we will have solved the initially posed problem. In or

der to do this, let's find the derivative of equations (2-7) with res-

pect to the independent variable t. 

pi+l: Lail Ca2]• • ••• LRi]Pi;-l,i+l+[R1l[a2l•• •• [Rilpi+l,i+l+ ••• • •• • • • 

• • • • .+[R1J[R2l • • • • • [Rilp i+l,i+l+[Rll [R2l· • • • • • [Ri]P i+l,i+l 

and. 

0 

• - e. sin9. l. . l. 

-~.; sin<X.; sinE:7; -t 6; COStX1, COSt1~ 
• 4 ~ - ~ 

0 

• • 
- ~isin~1cos9i- eicos~isine1 

~ 1.cos~1.cose.- 9.sin~.sine. 
l. l. l. l. 

0 

• 
pi+l,i+l- 0 

0 

0 

0 

• 
·- o<i cosoci 

• 
- 0<1sin°'i_ 

(2-8) 

(2-9) 

(2-10) 

With the a.s:;;u:uptions ::1ade all terms in equations. (2-8) are known exc>.:,pt 



17 

[R;) and Pi+l,i+l• SQ we solve the equation for these two tenns, 

-f.R1l LR2] .• • .[Ri]Pi+l,i+l- [R1J[Ii2l· • .•• [Ri]Pi+l,i+l -

···-(RJ[R2J •...•.. [ai_J[RJPi+l,i+l 

••••••••• 

(2-ll) 

The right hand side of equation (2-11) can be computed with the assum-

ed data, and the result is a vector V whose components are, 

0 

VX 
v= 

Vy 

Vz 

Rewriting equation (2-11), 

[R .JP. i . i + rR .JP. i . i =- v 1 1+ ,1+ L 1 1+ ,i+ 
(2-12) 

This equation splits into three equations with unknowns 

• • • 
- ai+l0isin0i + ai+lCOS9i: Vx - ai (2-13) 

• • 
- ai+l~1.sin~~sin61. + a e.coso{.cos0. + a. 1cos~.sin0.-= v 

• i+l 1 1 1 J.+ 1 1 Y 
(2-14) 

(2-15) 

Rewriting it in t,he matrix !onn, 
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cos9i - a- 1sine. 0 • 
l.+ l. ai+l 

• COSO(.iSin0i ai+lcos0<icosQi - ai 1 sino<. sine. 
+ 1 l. ei 

• 
sino<isinSi ai+lsin~cosei a. 1COSO(,_j_Sin0. "'· l.+ l. l. 

(2-16) 

Solving the system (2-16) by inverting the matrix we get., 

• cosei C0S«:i_Sin6i si~sinei a. 1 l.+ . 

-sine. COS°'-j_COS0i sinoti cosE\ .. - l. 
01 - a. 1 a. 1 ai+l l.+ l.+ 

I - sinO(. COSO(i . )_ 

i o<.: i L 0 a.. 1sin6. a.i+lsinei \ .L ) l.+ l. 

I 

J 

The matrix in (2-17) will be denoted [s~] and Ui will denote the vec-

tor: 

. 
ai+l 
• u. ei l. 

o(. 
l. 

• • 
Thus we have fou."l<l the way in which given ( a.1 ., ••• ., ei-l ) and Pi+l 

we compute U .• 
]. 

So applying this procedure successively as indicated 

in (2-18) we can find 

al : [o l O o] Pl 

u i-, -.J r;J ;) 1 
1 = l ~\ l . 2 .. r 1.,1) 
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u2 " [sJ{[RJ1{P3 :. [R1J[a2h,3} - P2,2} (2-1s) 

U3 = [ sJ{ [R2f 1[R1r1{ P 4 -[R11 [R2J[R3h,4 -[R1J[RJ[R3} 4,4 }- i, 3 ,J 
And we continue to generate the angular( extensional) "velocities" 

of the joints for as many links as we need. 

An ad.di-tional fea.t~ewhich allows us to widen the group .of mani-

pulators whi.ch can use this algorithm is the following: We have pre

viously assuqi.ed that the end point P0 of link 1 was clamped to the 

ground, and that this link was parallel to the x a.xis. This new fea-

ture which can be seen in Figure 5 presents two additional degrees of 

freedom which are translations a.long they and z axes of the previous-

ly clamped point P0• The analytical derivations of steps 1) and 3) 

l,rJld excefit. tilat Wt, ;:,hould add the ·a.7 and az translation components to 

a.11 y and z components of the positions ( P1 , •••• , PN+l ), and, fur-

• • ther, we should substract a.y and az from all components of the "veloc-

itiestt ( Pl' .... , PN+l ) respectively. Steps 1) and 3) o.re thus 

concluded. 

Guiding the Manipulator 

The remaining step 2) in this algoritn~ makes use of the positions 
• 

( P1, •••• , PNTl) to find a set of "velocities" or influences ( P1, ••• 

•• , PN+l )o 1he way in which this step was solved makes use of the 

following assumptions .. The end point PN+l of the manipulator moves in 

a straight line towards its destination point Pdest whenever there is 
I 

not an obstacle close to PN 1 • When there is an obstacle between PN ~ + . . +J. 

and Pdest' and PN'+l is close to an obstacle, the :notion of PN+l will be 
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Figure 5. Additional Degrees of Freedom 
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the sl.En of an influence of approach to Pdest and an influence of rejec-

• tion by the obstacle, which will result-in a total influence PN+l which 

is fairly parallel to the surface of the obstacle. In a later para-

graph we will describe the procedure accurately. The motion of P N is 

determined by the condition that the link N may be stretched, contrac-
. . 

ted, or fixed, and by the proximity of. obstacles. Note that the des-

tination point Pdest does not influence PN directly, but as PN is in

fluenced by PN+l' then PN is indirectly influenced by Pdest as are all 

P1•s. So Pi is influenced by Pi+l' and by the close obstacles. Re-
• • 

peating this step for as many times as necessary the set ( P1, •• , PN+l) 

will_~e generated. Before studying how we generate ( P1, ••• , PN+l) in 

further detail, we first will consider a general obstacle and see how 

we construct the rejection influence of the manipulator links and 

joini-1:i ·u:/ such an obstacle. A rejection influence from an obstacle 

will be a vector g applied at one or two consecutive joints which when 

added to the influences of other obstacles and to the components ne-

cessary for ensuring physical continuity, will determine the total in-

fluence P. of that joint. The criteria for detennining the magnitude 
l. . 

and direction of vector g is as follows: Suppose we have a link i with 

endpont.s P. , and P .• Three possibilities can occur; a) point P. is 
. J.-..1. l. J. 

the closest to the obstacle; b) segment P. 1P. is the closest to the 
. l.- l. 

obstacle; c) point P. 1 is the closest to· the obstacle. In possibility 
l.-

a) shown in Figure 6 the vector g is constructed such that: it passes 

by Pi, it is perpendicular to the surface of the obstacle at the sur-

fa.ce's nearest point and its magnitude is a continuous and decrea.sing 
\ 

fw1ction of the minimun distance from the obstacle to Pi. In order 

to ensu.::-e that there is no possibility of contact with the obstacle, 
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OBSTACLE 

Figure 6. Influence of an Obstacle on Pi 

LINJ< I+I I 

OBSTACLE. 

Figure 7. Influence ~fan Obstacl~ on P1_1Pi 
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we choose this function to be infinitely large when the minimun dis-

tance from the obstacle to Pi approaches to zero, and in order to avoid 
-

influence by the obstacle when the link i is far, we choose this func-

tion to be zero for a certain distance or greater. In possibility b) 

the common nonn.a.l between the segment P. 1P. and the surface of the 
l.- l. 

obstacle ~i.11 determine the direction of vector g, its magnitude will 

be determined as in possibility a). The vector g will be applied to P1 

and to Pi.-l in the following way: if this obstacle influenced segment 

Pi+lpi of link i+l as well, then the influence on Pi will be half the 

vectorial sum.of the influences in the i+l and i links, as shown in 

·Figure 7. Here ga stands for the g computed in the previous step at 

link i+l. If this obstacle influenced link i+l at one of its endpoints 

( if possibility a) or c) applied to link i+l ), then no modification 

of the g computed previously will·be made as shown in Figure 8. In 

possibility c) we take no action because we will consider P. 1 as part 
l.-

of the i-1 link. 

So each obstacle k will generate an influence on Pi which we des-

ignate by gik" 
• 

••••• , p ). 
N+l 

Let us return now to our goal on how we generate ( P1, 

Introducing coordinates as Pd~st ( xd, yd, zd) and 

Pi ( xi' Yi, zi )',, the influence towards Pdest on point PN+l will be a 

vector w whose detail is shown below, 

w 

b(xd- ~+l) 

b(yd,.. 7N-.1) 

b(zd- ~+l) 

where b ia an arbitrary constant. Then finally, 

(2-19) 
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PN 1-== w + }-:gN l (2-20) 
+ I( + ,k 

where the smna.tion is applied to all. the obstacles. Suppose now that 

we have Pi+l and we want to find Pi. Let us define 

u -i+l,i 

P, l - P. 
J.+ l. 

lpi-1 - pi' 

(2-21) 

• 
The projection of vector P. 1 on vector u. 1 . is a vector whose length 

J.+ J.+ ,i 

is L. 1 and is computed as 
l.+ 

. 
L. 1 -::. P. l • u. . i• J.+ i+l,i 

Let 

v . 
obs ,i 

The vector Vb . cannot alone be P. because P and 
i+l o s,i l. 
• 

a deformable link and have a constraint. Let a. 1 be 
J.+ 

rate of link i+l. Letting 

Lb . - v . u 
o s,i obs ,i i+l,i 

as most of the time 

. 
L - L -'- a. l i+l obs,i, i+ 

(2-22) 

(2-23) 

P. are parts of 
l. 

the stretching 

(2-24) 

(2-25) 

we define a variable c such that physical compatibility is preserv~'<i 

L 
i+l 

. 
- Lb . + a. l + c o s,1. i+ 

(2-26) 
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Then 

(2-27) 

Finally 

• 
P. = ~ g + c u 
l. . f i,k i+l,i 

(2-28) 

. 
By applying the same procedure from PN to P1 we find all ( P1, ••••••• 

•• , PN+l ). An observation remains to be expressed with respect to 

• a. 1 • Suppose that link i+l is an extensible link and let a. 1 and 
i+ 1+ ,max 

· a. 1 . be the maximun and minimun lengths of link i+l respectively. 
1+. ,min 

In order to find c we have to make assumptions which are realistic. 

These are: whenever possible 

a. = L - L 
i+l i+l obs,i 

(2-29) 

therefore c = 0 and 

(2-30) 

By possible we mean that .i. 1 ~ 0 and a. 1 '.::!.: a. 1 do not hold both 
1+ 1+ ... 1+ ,max 

simultaneously and a. 1< 0 and a. 1~ a. . do not hold simultaneous-
1+ 1+ 1+l,m1n 

ly as well. The meaning is clear. If the link is fully extended a. l 
J.+ 

can only be zero or negative. Similarly if the link is fully contrac-

ted a can only be zero or positive. If any of the impossible condi
i+l 

tions hold., then ai+l w:i.11 be taken as zero and 

c = L. 1 - L 
i+-. obs,i 

(2-31) 
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Although we have given the general method for finding the succes

sive inflttences ( P 1 , ••• , P N+l ) , there is a special combination of pa

rameters in which P2 will have to ?e diff~rent from the P2 given in the 

previous procedure because otherwise the assumed influences will not be 

• 
physically realizable. We should choose a vector P2 which will be tan-

gent to a sphere of center ( a1, ay, az) and radius a2 whenever a1, 

a2, a3, ay and a.z are fixed at the same time, and whose projection on 

u will be the same as the projection of P3• Let ( x2 , y2, z2 ) be 
3,2 . 

the components of the originally computed P2 and let the unit normal to 

the sphere of radius a and whose polar coordinates are e1 and~ be, 

n sin01cos<Xi (2-32) 

sin9, sino<, 
\. ..!.. ..L ) 

• 
In order to find the projection of P2 on the tangent plane at the sur-

• 
face of the sphere, we first find the projection of P2 on the normal n 

. 
and then substract this projection from P2• The projection on n is, 

• 
p = ( P 2 • n ) ri (2-33) 

Then the projection on the tangent plane P2pr will be 

p 2pr -= p 2 - p -= p 2 - ( p 2 • n ) n = ~ I J - [ n ® nJJ p 2 (2-34) 

where the symbol~ indicates tensor or dyadic product. In coordinates 

(2-34) gives 



• 
~pr 

f 2pr: -cose1sin91cos«1 

z2pr ~Cos01sin91sill°'J. 

-cose1sin91cos«:i_ 
2 2 

(1-sin e1cos °)_) 

-sin2e1cos 1sin°1 

• 
So far we have found the direction of the modified P. 

2 
find its magnitude we proceed as follows, 
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In order to 

b :. • (2-36) 

and finally 

p • u3,2· 2pr 

• 
p 2modified "==- b p 2pr (2-37) 

In the Appendix we will develop the details of the computations 

for finding g. k for obstacles of different shapes. The problem of 
1, 

finding the common normal between a segment and a surface, or the nor-

mal from a point to a surface is simply a·problem of Analytic Geometry. 

The same happens with computing the distance from a point or a line to 

a surface. In the Appendix we compute vector g. k for the following 
1, 

elemental obstacles:. 1) triangular plane element; 2) sphere; 3) cylin-

der. The reason we choose these elements is that any obstacle can be 

approximated by a finite number of these elements. In the resulting 

polyhedron formed by triangular faces, the edges are limited cylinders 

of radius equal to zero, and the vertices are spheres also of radius 

equa.l to zero. So using these three elements the vector g can be corn.-

puted for a great variety of obstacles. Thus, step 2) is concluded. 



CHAPTER III 

RESULTS AND ANALYSIS 

In this chapter, we will outline a method in which the algorithm 

we have developed in the previous chapter is applied to practical pro-

blems, and we will illustrate an example of it. 

The correct procedure for tes~i,ng an algorithm such as the one we 

have developed is to apply it directly to a computer controlled manipu-

lator. Such a manipulator should have in each mobile revolute pair or 

cylinder pair devices for transforming the angles and/or the extensions 

of the joints into some i'or-m amena'ule tc, dat.;. prc.ceasir:,g. 

current technology, electronic digital signals are the most commonly 

used. Such devices are called shaft encoders and are commercially 

available in a wide variety of types. In order to avoid the computa-

tion of sines and cosines of several angles, shaft encoders could be 

built which could encode the shaft rotation directly into a digital 

signal which is the sine and cosine of the rotated angle. So far we 

have indicated the way in which information is obtained from the manip-

ulator as input to our algorithm. To use the output of our algorithm 

we rnust transform these electronic digital signals into some form which 

will be able to exert a motion on the joints of our manipulator. The 

most conventional ways of doing this are to convert the electronic dig-

ital signal into an electronic analog signal using D/A converters, then 

to amplify it until it can drive an electric motor at each joint or 
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convert it to a hydraulic signal with an electrohydraulic servovalve 

and drive hydraulic motors at the joints. 

The way in which such a system would.operate during each cycle 

would be as follows: the co:nputer "readstt from the shaft encoders, 

computes, and "writes11 in the actuators or motors. By 1'writingtt we 

mean that the computed information flows outward from the computer to 

the actuators, commanding them to move al th.e computed speed until the 

computer writes again. The interval of real time between the start of 

each cycle is dependent on the computer speed and on the manipulator 

dynamics. In control systems vocabulary a system like the previous one 

would be referred to as a "sampled data control system". 

One question renains. What is the relation between the computed 

( a1, ••• , 9N) and the real angular and extensional velocities ( alreal 
• 

••••••• 9" ., ) at which the joints should move? If we multiply the - • 1'lrea.J. ~ 

set ( al' ... , eN ) by a constant the manipulator will move by the same 

trajectory but at a different speed. So if we neglect the manipulator 

dyna~ics and assume that the speed is only limited by the actuator 

characteristics, the fastest way to move the manipulator would be when 

one of the actuators is close to saturation, this meaning at maximun 

speed. In order to find the set ( a.1 1 , •••• , QN l) that will move rea rea 

at ·the maximun attainable speed, we compute a m.unber e as follows, 

. . 
al e 

( 
N ) e - Max • ' .............. , • 

almax. e 
Nma.x 

So e is the largest vf all nunbers enclosed by the parenthesis in 

(.3-1). To find the real speed we should divide the computed speed 

by the number e. So, 

(3-1) 
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• 
• . -

alreal-
--- , ............... ., e 

Nreal 

eN 
- ------ (3-2) 

e e 

As our limited resources preclude the access to a computer con-

trolled manipulator, in order to test the algorithm, we simulate the 

manipulator, its actuators and its encoders with the digital co:nputer 

itself. To simulate these three elements is very simple because their 

net effect from the output of the computer t.o the input is that the 

inputs ( a1, •••• , 9N) are the integrals of the outputs ( a1, ••• , SN) 

with respect to the independent variable t. As the simulation is not 

made in real time and as we are interested only in the trajectory gen-

eration we assume the nu~ber e equal to one throughout the simulation. 

Out of the several simulations run, one of them will be illustrated 

which is planar, thus having the advantage of easy interpretation. 

The chosen manipulator has six links with fixed link lengths. 

These are a1 = 0, a2 = a3 = .•••••• -::. a7 = 2' and oc1 = ••••• = ~ ·= 0, a y = O, 

a ~o. The obstacles arbitrarily chosen were three cylinders with z 
vertical a.~es ( seen as circles in the drawings) with the following 

centers ( 4.4, 5. ), ( 9., 5.5) and ( 7.5, 1.5) all of which had 

radii equal to 1.5 •. The destination point Pdest of the endpoint P7 

was arbitralily chosen behind the cylinders from the initial position 

but with the condition that Pdest is close enough that it is within 

the grasp of the manipulator. This point was ( 6.8, 8. ). The ini-

tial 6's were e1-::b, e2=-2b, 0y::2b, E\-:.-2b, e5 :2b, e6:-2b with 

b=l.44 radians close to pi/2 radians for making the manipulator 
I 

folded. The integration was carried out using the Euler method be-

cause it proceeds i.n the same way as a sa11pled data control does ( the 
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derivatives of the parameters of the manipulator with respect tot re

main constant during the cycle). Figures 9 to 13 show the trajecto

ries of points P3, P4, P5, P6 and _P7• P{ and P2 are not shown because 

they will be a point and an arc of circle respectively. Figures 14 to 

34 show the successive positions of the manipulator from its initial 

position until. it reaches its destination point. 
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CHAPl'ER IV · 

CONCLUSIONS 

The developed algorithm is quite general, can be used with small 

modifieations in any configuration. Its obstacle catalog can be in

creased with needs. It is fast because only a few square roots besides 

elementary operations have to be carried out at each cycle, provided 

trigonometric shaft encoders are used. The square root is a very fast 

operation in digital computers. It is a non-iterative algorithm and is 

easy to use. The user has to allocate memory for some arrays, has to 

specify the upper and lower bounds of°the para.'lleters, and has to write 

a subroutine describing the obstacle configuration. Although the al

gorithm works on most .manipulators and configuration of obstacles, 

there are some cases for which the algorithm might not be able to pro

ceed past a cert.ain position towards its destination. This is spe

cial~ true in some three dimensional cases in.which the obstacles are 

close~ spaced. This is an inherent limitation of the method which is 

a sequential process not having learning capability. That is, it can

not improve from previous experience. Another feature which is not 

implemented, but which could be so if needed is logic decision capa

bilities, which would allow the selection of a different trajectory 

if the previously generated one leads to a dead end. 

The generated trajectory is one of the infinite available. It is 

not opti'Il.al with respect to any functional, but it fulfills its objec-



tives. Further study needs to be done on trajectory generation in or

der to select ·the best approach to the manipulator guidance problem. 

In this work we have overlooked the dyna1Ilic and stress problems in the 

manipulator. We have also neglected the accuracy problem due to errors 

in measurement, truncation errors and deflection under loads. All 

these areas pose an interesting challenge for the future of the manipu

lator science. The problem of reaching a destination point with a spe

cified attitude of the last link can be easily extended in this 

algorith~, by adding an influence on the next to the last endpoint. 

Further work has to be made with respect to how the positions of the 

obstacles are fed i.nto the digital computer. In our algorithm the po

sition of the obstacles ·is assumed known· a priori, but with further 

advance in computer science, the positions of the obstacles could be 

determined· htrp:rocesiing- the imaga fcrmed for example in a TV camera or 

other seeing device. 

Finally further work could be done to make the manipulator reach a. 

moving destination point with moving attitude by prediction from the 

past motion of the destination point and the destination attitude. The 

prediction would be then used to select the best way to attain its ob

jective .. 



CHAPl'ER V 

COMPUTER PROGRAMS 

Description 

The algorithm has been implemented in FORTRAN IV. The part of the 

program that will be illustrated will be the part that transforms the 
> 

angles and link lengths into their derivatives with respect tot. This 

is done by subroutine FCT. The structure.of FCT is very similar to the 

way we subdivided the development of chapter II. The subroutine FCT 

finds the trigonometric functions of the angles, and then co:nputes step 

1) by calling FDS. Step 2) is computed by calling the subroutine GUIDE 

and step 3) is computed by calling VEL. Subroutines POS and VEL make 

use of subroutines MTG, MTGI, :t,.ITGD and SANGI which simply generate all 

the matrices used by POS and VEL. In addition, MTPL multiplies ma.tri

ces, and SUBT substracts vectors. Subroutine GUIDE-computes ( P1, ••• 

• 
•• , PN+l) by taking care of the length compatibility conditions, and 

by calling the subroutine OBSTACLE N+i times ( one for each end point) 

each cycle. Subroutine OBSTACLE computes ~g. k particular type ob
.. 1.' 

sta.cle subroutines and adding the computed influences for all obstacles 

in space. These particular type obstacle subroutines compute g for dif-

ferent elemental shapes like cylinders, spheres, planes, cones, ellip-

soids, toroids, etc. In our simulation the subroutine CYLIN (der) was 

used as an exai11ple of particular type obstacle subroutine. GUIDE uses 
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• 
MPR. for modifying P2 as,,seen at the end of chapter II. In addition 

OBSTACLE uses SUMU and EQU for performing elementary operations. 

Use 

In order to use the program, the user should: 1) give the upper 

and lower bounds of the parameters of the arm ( a1 ., ••• , eN) by just 

writing the DATA cards in the subroutine FCT. If the upper and lower 

bounds are the same then the corresponding parameter will remain fixed 

throughout the simulation. Give the number of links N according to the 

definition given in chapter II. 3)_Write subroutine OBSTACLE whose job 

is to compute ~g. k for each end point of the manipulator, that is for 
k 1, 

each i. In order to see how this subroutine is written let us refer to 

table I page 68. In this example three obstacles are used but the pro-

cedure for 13.T?J nurnber of obstacles does not cha.nge. The DUW.NSION 

sta~ement ha.s several vectors of dimension four, the G(4), and the 

GAn(4)'s. F..ach obstacle has an n associated with it., and there a.re as 

many GA's as obstacles. These are used for storing information regard-

ing the influence to the previous link. The JA's are integers which 

contain infonnation about whether the GA.ts sho1il.d be used or not. We 

also have one JAn for each obstacle., Prior to statement 1 all JA's 

used should be made equal to minus one. Prior to statement 2 all JA's 

should be made equal to zero. The rest of the subroutine is a repeti

tion of the following three steps: a) Call a particular type obstacle 

subroutine. In the example CYLIN is used. This subroutine computes 

G and J if the points defining the axis of the cylinder XA, YA, ZA and 

XB, YB, ZB, the radius R, the physical half-size of the link DIST, the 

end points of the link Xl, Yl, Zl, and X2, Y2, 22, the previous GI\ and 
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JA are all given. b).Call EQU which makes GAn for the obstacle equal 

to the just computed G so that it may be used later. The same happens 

with JAn and J. c) Call SUMU which adds the vector g to the partial 

sum ~gi k• By repeating steps a), b) and c) for as many obstacles 
K J 

as there are, the subroutine OBSTACLE is written. 



TABLE I 

COMPUTER PROGRAM 

SUBROUTINE FCT(Tl~E,THETA,TH~TJ,ALr~,ALFD,A,AO,AY,AYD,AZ,AZD,NI 
Oli-lENSIO:-J THETA(lJ,TH;::TD(ll,ALFAlll,ALFD(ll,Alll,AO(ll 
D Pl F N SI ON C US TH_ ( 6 l , S I r~ lH ( h l , C CJ S A L I 6 I , S l N A L ( 6 I , X ( 7 l , Y ( 7 I , Z (7 ) , 

l X D ( 7 I , YD ( 7 l , l O ( 7 I , ,\P ( 4, 7) , CJ t 7 I 
DATA XP,YP,ZP/6,8,o,,O,/ 

D HIEN SI ON T-i '1 AX( 6) , TH MIN ( 6 J , AL MAX ( 61 , A UH N ( 6 I , AM AX 17 I , AM IN I 7) 
DATA AMAX/0,,6*2,/,A~l~/D,,6*2,/,AL~AX/6*0,/,ALMIN/6*0,/ 
DATA THMAX/6*3,14/,Tf-WIN/6*-3,14/ 
DATA AYMAX/0,/,AY~IN/O,/,AZ~AX/O,/,AZMIN/O,/ 

DATA NP/0/ 
IF IN,1:0,NPI GO TO 111 
NP=N 

NPl=l\+1 
111 CONTI t~UE 

DO l I= 1, N 
TE=TAN(HFA(ll/2,I 
TE TE :.TE,qE 

DENE= 1, +TETE 
SINAL(il= 2,*TUD:'NE 

COSAU 11=( 1,-T::TEI /DENE 
T =TAN IT H ET A ( I I / Z , l 
TT=T* T 

DENO= l, +TT 
S INT H ( I l = 2, *TI D E'JO 

l COSTHIII= 11.-TTJ/DEI\O 
CALL POS(CDSTH,SINTH,COSAL,SINAL,A,AY,AZ,X,Y,Z,AP,N) 

CA L l MP R ( C OS T H I l I , S I NT f I I l I , COS AL I 1 l , S I N AL ( l I l 
:ALL GUI)E( X,Y,Z 1 XP,Yf:',ZP,XD,Yll,ZD,A,AMAX,A~1IN,AY,AYMAX, 

l AYFilN,Al,AZMAX,f,L.'1F4,:J ,CJ i 
C Al L V f- l( X n , Y D, l '.), C,:J 3 T H I S INT H, Cl S M. 1 S PJ ., t , A Y [), A 7. D 

1 A , AD , TH[ TA , TH': TiJ, ALF A,,\ L FIJ, THMA x , THI·\ IN, AL MAX, Al MI r~, en, N l 
RETURN 
END 

SUB RO UT I NE PC1S { cos TH' s I NTH t cu s AL' s I NAL' /It A y' A z' x' y' l 'A p' N l 
D I MENS I ON ::: 0 SAL ( 11 , SI ~IA LI 11 ,COS TH ( l l , SI NTH Cl I , X Cl l , Y ( l I , Z ( l J 

1, AW(4,4l,AP(4,ll,,\(ll 
DA TA NP /0/ 
IF(N,F.Q,fl.PI GO TO 111 
NP=N 
NPl=N+l 

111 CONT I\J UE 
CO 3 I =l, NPl 

K=N-I+l 
AP(l,!l=l, 
AP(2 ,1 )-=A(K+l) 
AP(3,ll=O. 
APl 1+,ll=O, 

If-<K,E0,01 GC TO 8 
CALL HTG(C:lSTH(Kl ,Sl'HH{KI ,COS4UKI ,SI NAU Kl ,A(Kl ,AW 

3 CALL MTPLfhP,A;..J,AP,4,1,41 
8 DO 5 J=l ,NPl 

X(N+2-,J l=AP(Z,JI 
Y(N+2-Jl=,\P(3,J) +AY 

5 Zil\+2-Ji"'t,P(4,Jl +AZ 
RETURN 

END 
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TABLE I (Continued) 

SUBROUTINE VELIXO,Yu, ZO,COSTH,S INTH,COSAL, SINAL, AYO,AZD 
I A,AD,THETA,THETD,ALFA,ALFD,TH~AX,THMIN,ALMAX,AL~l~,CO,NI 

D IM ENS ION X D I ii , YD I ll , lD ( 11 , ,\ I 11 , AD ( l ) , TH E TA I 11 , THE TO ( 1 I , CO ( 11 , 
1 ALFA 11 I , ALF D ( l I , COST H (1 I , S PH rl I l I, CJS Al ( l I, S I~ Al ( 11 , ALMA XI 11, 
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2 ALMI N( 11 , THM AX ( l I , THM IN I 11 ,RES ( 3 I , VE LO I 4 I , P OS I (4 I , PAS (4) , PASS ( 41 
DIMENSION R!4,41,Rl(4,4l,RDl't,4l,SI!3,41 ,W!4,41,WI!4,41,wG(4,4) 

DIMENSION Wl(4,4l,W2(4,4J,,"314,41,rl4(4,'+1,w5(4,4l 

C DIMENSION ••••• ,wM(4,41, ••••••••• wN~l(4,4l 
c 

c 

AO ( lJ = XO ( ll. 
AYD=YD!l I 

AZD=ZD!ll 
DD l I= 1, 4 
00 l J-=l ,4 
W!I,Jl=O. 
WIII,Jl=O. 

1 WG(l,Jl=O. 
0021=1,4 
WCI, ll=l. 

2 
Wl(I,Il=l. 

WG! I , I I= 1. 
DO. 9 I= 1, N 
VELOlll=O. 
VEL0!2)=XD(I+ll 
VE LO I 3 I= YD I I+ l I 
VEL0(4l =lD( l+l I 

f>OSil2l=Ai I+ll 
POSI I 31 =O. 
POSl(4l=O. 

PAS<ll= O. 
PAS I 21 -=AD I I I 
PAS(3)=0. 
PAS(4l=O. 
lF(l.LT.21 GO TJ 10 
K=I-1 

IF(I.LT.31 GO TO 11 
l= I- 2 

-YO( 1 l 
-ZD(l l 

CALL MTG(COSTH(Ll,SINTHILl,COS4l!Ll,Sl'lAL(Ll,A(LI, RI 
CALL ,~TPL(w:;,i~G,P,4,4,4) 

11 CALL MTGD(CDSTrllKl,SINTH(Kl,COSALIKl,SINAL(Kl.,AO!Kl ,ALFD(Kl,THETO 
l (Kl, RD I 

GO TO 14,5,6,7,81,K 

C GO TO (4,5,6,7,8, •••••••••• ,15, ••••••••• ),K 
c 

4 CALL MTPL(Wl,WG,RD,4,4,41 
GO TO 3 

5 CALL MTPLI ~12, WG ,RD ,4 ,4 ,41 
GO TO 3 

6 CALL MTPL(W3,WG,RD,4,4,41 
GO TO 3 

7 CALL MTPL(W4,~G,RD,4,4,4) 
CO TC 3 

B CALL MTPL(w5,wG,RD,4,4,4l 



c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

TABLE I (Continued) 

................ 
15 CALL MTPL(WM,WG,RD,4,4,41 

GO TO 3 

................ 
3 CONTINUE 

CALL MTGI( COSTHIKl,SINTHKl,COSAUKl,SPJAL(<l,A(KI, ~II 
CALL MTG!COSTHIII ,SINTHI 11,COSALIII ,SINALIIl,A(Ii, RI 
CALL MTPL(WI,RI,WI,4,4,41 

CALL MTPL(Wl ,Wl,R,4,4,41 
CALL MTPL ( Pf,SS, wl ,POST ,4, l ,41 
CALL SUBT IVELO,VEL'J,PASS,41 
IF(I.LT.31 GCJ TO 10 
CALL MTPL(W2,W2,~,4,4,4l 

CALL MTPL(P,\SS,i'i2,POS l,4,1,41 
CALL SUBTIV::LO,V~LO,PASS,41 
IF l[.LT.41 GO TO 10 

CALL MTPL(W3,W3,~,4,4,41 
CALL MTPLIP.\SS,W3,POSI,4,l,4l 
CALL SU BT IV ELD ,VELO, PASS, 41 

IF( I.LT.51 GO TO 10 
CALL M TP LI h 4, W 4, R , 4 , 4 , 4 I 

CALL HTPLIPA5S,W4,POSI,4,l,4l 
CALL SURT(VELO,VFLO,PASS,41 
lF{I.LT.6l GQ TO 10 
CA LL ~HP L I h 5 , ,.; 5 , R , 4, 4, 4 l 
CALL MTPLI PAS5,..,5 ,POSI ,4 ,1,41 
CALL SUBTIVELb,VELO,PASSi4l 

ti •••••••••••••••••••••••••••••••••••••••••••••••• 

IFII.LT.M+ll GO TO 10 
CALL MTPL(h~,WM,R,4,4,4) 

CALL MTPUPASS,11M,POSI,4,l,41 
CALL SUBTIVELO,VELO,PASS,41 

•..............•.............................•... 
10 CONTINUE 

CALL MTPUPASS,WI, VELD,4,1,41 
CAL·L SUBT (PASS,PASS,PAS,41 
CALL SA NG I ( C OS TH I I I , S I NTH I I l , C OS AL I I l , S I N AL· I I I I A I I + 1 I , S I I 
CALL MlPL(F,::S,ST,PASS,3,l,41 
AD I I + 1 l =CO I I + l I * Rf: S I 11 
THETDl!I= P~Sl2l 
ALFD I I l = RES I 3 l 

IF ( (THETA I I I • l::. T HM IN ( I I l • tern. IT HETO ( I I • LT • J • I l THE T 0( I I= 0. 
IF I I THE TA I I I • GE. TH.'1,\ X ( I I I • ~ND. I THE TD ( I I • GT. 0. I I T HET DI I I =O • 
IF ( ( ALF A I I I • GE • ALM AX I I I I • M~ lJ • ( ALF D I I I • ST • 0. I I AL FD I I I = O. 

9 I F I ( A L F A I I l , Lf' • AL M I N ( I I I • A 'D • ( AL F O I I I • LT • 0 • I l AL F O I I l = 0. 
RETURN 

ENC 

,· 
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TABLE I (Continued) 

SUBROUTII\JF GUIDE (X,Y,Z,XP,YP,ZP,XD,YD,ZD,A,AMAX,AMIN, AY,AYMAX, 
1 AYMIN,Al,AZMAX,AZMIN,N ,CO I 

l 

01/JEl\:SION . W0(3l 
DIMc:NSION Xl7) ,Y171,Zl71,XD(71,YD(7J,ZD(71, 
AC71,AMAX!7l,AMIN(71,CO ( 71 

COM/JON/ AG!X MPR 13, 3 I 
DATA ou~110. 4/ 

DATA CT/2./ 
DATA NP/0/ 
IF (N.EQ.NP) GO TO 111 

NP=N 
NPl=N+l 
NP2=N+2 
NP3=1\+3 

111 CONTINUE 
DO 4 1-=l,NPl 
IF(l.EQ,.NPll GO TO 5 

CA LL 03 S TAC LE I X ( NP2 -I I , Y ( NP2- I I , Z I NP2 -I I , X ( NPl - I J, Y ( NP 1- I l, l (NP 1- I l, 
11,XD(NP2-Il,YDINP2-Il,ZDINP2-11,I I 

GC TO & 
5 CALL 08 ST AC LE ( XI l I , Y ( l l , l ( 11 , ( X ( 1 l -1 • I , Y ( 1 I , l ( l I , X D ( l I , Y D ( l I , Z D ( 1 I , 
l,NPll 

6 IFII.GT.llGC Ta l 
DENN= SQR Tl ( XP-XI NP l l J **2+( YP-Y( NP 111 **2i- ( ZP-Z (NPl 11 **2 l 

VX= IXP-X INPl J l/ DENN 
VY= (YP-Y(NPll I/DENN 
VZ= (ZP-ZH-,Plll/D::NN 
Pf\ =X Ji l~Pl I *'J /.. l·Y D (~,Pl} ;,vy + l O t Nf' 1 l *Y Z 
VS=D UM-PR 
IF<vs.u.o., vs=o. 
IF(VS.GT,ICT*OUMII VS=CT*OUM 
XD (NP l l = XL) ( NP 11 t VS* VX 
YD(NPll=YD(\JPll+YS*VY 
ZD(NPll=ZD!NPll+VS*VZ 

1 CONTINUE 
IF(I.LE.11 GO TO 2 
VELCT=XD(l':P2-I l*UX+YDINP2-I l*UYi-ZD(NP2-I l*UZ 

VSUM=VELPR -VELCT 
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IF ( I I A ( N P3 - i l .LT • AM /IX I NP 3- I I I .J ii. • I V S1.PI. LT. 0. I I • A \J). ( ( ~ (NP 3- I I • :; T. AM IN( N P3-
1 MIN ( N P3- I! I ,CR. ( VSUM.GT.O. l l I VSUe"l=J. . 

COINP3-ll,:l. 
lF(V~U~.NE.J.I COINP3-Il=O. 
XD I NP 2 - I l = X!J I Ill ? 2 - I l + V S U ~* U X 
YD i NP 2- r l-= Y J I "l P 2- I I +VS u·~ *UY 
ZDINP2-ll=ZD(~P2-Il+VSU~*UZ 

2 CONTINUE 
I F II • E Q • NP 11 GO • TCl 4 . 

DE N=S Q~ T I i X I Ni'."'2- l I -X I NPl - I 11 **2 + I Y ( :'>I P2- I 1-Y I NP 1-1 I I ** 2+ ( l I NP 2- I I - Z ( 'l P 1- I I 
lZlNPl-111*~'21 

UX=lXINPZ-ll-XINPl-111/D~:'l 
UY=( YI NP2-I 1-Y ( NP1 -I I I /JEN 
Ul=( ZI NP 2-I 1-l I 'H' 1- I I I /')EN 
VE LP P. = X D It if' 2 - I I .;.u X + Y D I "I P 2- I I *UY + Z O ( NP 2- I I * U l 

IF(I.NE.(N-111 GO TO 4 

VX=UX 
VY=UY 



VZ=UZ 
V3=VELPR 

4 CONTINUE 

TABLE I (Continued) 

IF(A(ll.LT.A"lAX(lll GO TO 20 
IF IXDlllo GE.O,I XCJlll=O. 

20 IF (A 111 • GT • AM IN I 1 I I GO TO 21 
IFIXD(ll,LE.0,1 XDlll=O. 

21 IF ( A Y • LT• A Y'I A X I GO TO 2 2 
lflYCtll,GE.O.I YU!ll=O, 

22 IF(AY.GT.AYMINI GO TO 23 
IF (YD ( ll • l E • 0. I YD ( ll = 0 • 

23 IF(AZ.LT.AZMAX I GD TO 24 
IFIZD(lJ,GE',0,-l ZD(ll=O. 

24 IFIAZ, GT.AZMl~I GO TO 25 
IF(ZD(ll,LE,0,1 ZDlll=O, 

25 CONTINUE 
JF(VSUM,EQ.O,l GO TO 30 

WD(ll = XDl2l-XO(l I 
lrlDI 21= YO( 21 -YD( U 

r/0(3)= Z0(21 -lD(ll 
CALL MTPL( 1-.0 ,XMPR, WO ,3 ,1 ,3 I 
CTE=V3/ (WDI ll*VXi-1,DI 2l*VYt-,ID(3l*VZI 

X0(2 I= CTE*wDll It- XO( ll 
YD(2l = CT!:~'1,0(21 t-YDtll 
ZD(21=CTE*WDl3l t-ZD(ll 

30 CONTINUE 
RE TURN 
END 

SUBROUTINE OBSTACLE(Xl,Yl,Zl·,x2,v2,z2,xo,YD,ZD,I f 
DIMENSION G(41,GA1141,GA2(41,GA314) 
XD=O, 

YD= 0, 
ZD=O, 

lF(I.NE,01 GO TO 1 
JAl=-1 
JAZ=-1 
JA3=-1 

1 IF(l,NE,ll GO TO 2 
JA l=O 
JAZ=O 
JA3=0. 

2 CALL CYLHd4. 1+,5.,-5.,4,4,5,,5,,1,5,0,,Xl, Yl,Zl,X2,Y2,Z2,GA1, 
l JAl,G,JI 

CALL EQU!GAl,G,JAl,Jl 
CALL SJ.V.U (XO, YD, lD, GI 

CALL CY Ll N { 9, , 5 , 5 , -5 • , 9. , 5 , 5 , 5 • , 1 , 5, G , , X 1 , Y 1, Z 1, X 2, Y 2, Z 2, GA 2, J A 2, 
1 G,JI 

CALL SU~UIXC,YD,ZD,GI 
CALL El.JU( GA2,G,JA2,JI 

C AL l CY L I N ( 7 • 5 , l • 5 , - 5 , , 7 • 5 , 1 , 5 , 5 , , 1 • 5 , 0. , X 1 , Y 1 , Z l , X 2 , Y 2 , Z 2 , G A3 , J A3 
1,G,Jl 

CALL SUMU(XD,YD,ZD,GI 
CALI. E JU l GA 3, G, J A 3, J l 
RETURN 

END 
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TABLE I (Continued) 

SUBROUTINE CYL IN I YrA,YA,ZA,XB, YB,ZB,R,DI ST,Xl ,Yl ,Zl ,X2,Y2 ,Z2,GA,JA, 
l A,G,JI 

DIMENSION Gl41 ,GA(41 
OATA N/~/,UE0/2./ 
DATA H/0.4/ 

C S=I XB- XA) * * 2+ I YH --YA I** 2 + ( Zd-ZA I*"' 2 
FS=IXl-XAl*(XB-XAl+(Vl-YAl*IYB-YAl+IZi-ZAl*IZS-ZAI 

IFIJA.EQ.(-111 GO TO 3 
AS= I XB- XA i * ( X2- Xl l + I YB- YA I* I Y2-Yl I+ ( Z8-ZA I* I Z2-Zl I 

BS=-IX2-Xl I **2-'( Y2-Yl l.**2-1 Z2-Z ll **2 
DS=-AS 
ES= I Xl-X!>. I *I x2-x 11 +-( Y 1-YA l *' Y2-Yll +I Z 1-ZAI * I Z2-Zll 

DEN= AS*OS-BS*CS 
XL= ([S*DS-:3S*FSI/DEN 
XM= (AS~'FS-CS*ESI/OEN 

IF{( XL.LT.11.AND.(XL.GT.o.ll GO TO 2 
4 DO 1 Kl= 1, 4 
1 GIKll=O. 

RETURN 
2 IF ((XM.u.o.1.CJR.(XM.GT.1.11 GO TO 3 

DELTX= Xl-XA+ XM*IX2-Xll- XL*(XO-XAI 
DEL TY= Yl-YA+ XM*(Y2-Yl l- XL*(Y8-YAI 
DELTZ= Zl-ZA+ XM*IZ2-Zll- XL*(ZB-ZAI 

D= SQRT( DELTX*OELTX+DELTY*DELTY+DELTZ*DELTZI 
DE=D*ID-R-DISTl**N 
IFIID-R-OISTI.U:.O.I INT=2 
DNUM= 2.*H*(H-D+R+DIST I 

IF(DNUM.LT.O.I DNUM=O. 
Gill= ONUM*DELTX/OE 
GIZI~ D~U~*D~LTY/DE 
G( 3! =·· DNU'·l=~J!:L TZ /OE 
G(4i= DNUr4*·D/DE 
J=l 
IF(JA.EQ.01 RETU'<-N· 

G( 4 I =SQRT ( G [4 I* GI 4 I +GA I 4 I *GA ( 4 I+ 2 • *I G ( 11 *GA I 11 +:; I 2 I *GA ( 21 +GI 3 I* 
1 GAi 311 l /DED 

G(ll=(G( U+vAI 111/DED 
Gl2l=(G(21-+GAl211/DED 
GI 31 =(GI 3l+GA( 311 /DED 
RETURN 

3 XL=F SICS 
J=O 

IFIXM.GT.1.1 GO TO 4 
OELTX= X1-XA -XL*IXB-XAI 
DELTY= Yl-YA -XL*(YO-YAI 
DELT Z= Zl-ZA -XL *I ZA-l,\I 
O= SQRT(_DEL TX*DELTX+DELTY*DELTY+DELT Z*DELT ZI 

IF((D-R-O[STI.GT.o.J GO TO 18 
l F I l NT • E Q • 2 I GO TO 18 

I NT::l 
18 CONTINUE 

Oc=D*(D-~-DISTl**N 
ONU!~= 2.~'H*IH-D+R+OI STI 

IF-IDNUM,LT.0,1 DNUM=O. 
G ( 11-= DNU~i*DEL TX/DE 
G(2l= D~U~*OELTY/DE 

GI 31 = DNUr1*'.lEL TZ/DE 
Gl41= DNJM>C'JJ/r1E 

IFIJA.rH:,ll RETURN 
JFICl4l.GE.GA(411 RETURN 

DO 5 II=l,4 
5 G ([ I I =G A I I II 

RETURN 
ENC 
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TABLE I (Continued) 

SUBROUTINE MTG(CDSTH,SINTH,CJSAL,SINI\L,A, AZ 
DIMENSION Al(4,41 -

AZ ( 1, l l = l. 
Al (2 ,1 l=A 
AZ(3,ll=O. 
AZ(4,ll=O. 
AZ 11,2 l=O. 

AZ(2,2l=COSTH 
Al(3,21= COSAL*SINTH 

AZ(4_,21= SI"IAL*SINTH 
AZ (l , 3 l = O. 

Al( 2, 3)= -S !NTH 
All3,3l= CCSfll~,cOSTH 

AZ ( 4, 3 I = SI Nt\ l *COS TH 
AZ(l,4l= o. 
AZ 12 ,4) =O. 
AZ(3,4)= -SINAL 
AZ(4,41= COSAL 
RETURN 
END 

SUBROUT!Nr:: MTGf(COSTH,SINTH,:OSAL,SINAL,A, All 
DIMENSION AZ(4,4l 

AZ{ltll= 1. 
AZ(2,ll= -A*COSTH 
AZD,ll= A~'SINTH 
AZ ( 4 , 11 = o. 

AZ( 1, 21=0. 
AZ (2 ,2 I= COST H 
AZ(3,21= -SINTH 

Al12,31= CCSAL*SINTH 
AZ(3,3 l= COSAL*CiJSTH 

AZ(4,3i =-SINAL 
AZ(l,4J=O. 
Al(Z,41= SINAL*SINTH 
AZ(3,41= SINAL*COSTH 

AZ(4,4l= CUSAL 
RETURN 

ENO 

SUBROUTINE MTGD(C~STH,SINTH,C~SAL,S!NAL, AD,ALFD,THETD,AZI 
DIMENSION AZ(4,41 

DO 1 I=l,4 
1 AZ 11,Il=O. 

AZ(2.ll=AD 
AZ! 3, ll=O. 

AZl4,ll=O. 
AZ(2,2l=-THETD*SINTH 

AZ ( 3, 2 l = - :..L FD,:, S IN.'\ L ,, SI NT rl i- TH r:: TD *COS,\ l * C CJS TH 
All4,2 I= ALFD*CrJSt.L *S lNTH+THEfD*SUML*COSTH 

AZ12,3l =-THEHHCOSTH 
AZ( 3, 31" -ALFD*SINH*COSTH-TH"TD''COSAL~'SINTH 
Al(4,3)= ALFO•COSAL*COSTH-THETO•SINAL*SINTH 
AZ(2,4)=1). 
AZ(3,4l -= -ALFD*COSI\L 
AZ (4 ,41= -ALFD*S INAL 

RETURN 
END 
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TABLE I (Continued) 
SU3ROUTL~:: S,\NGI (COSTH,SINTH,COSAL,SINI\L,A, SI 
OIMFl'.SION SI( 3,41 
S 1 (l , 1 I =O. 
SI(Z,11"'0• 
SI13,ll=O. 

SI ( l ,2 I = COST H 
Sii l,31 =SINTH*COSAL 

St<l,'tl= SPHH*Sl'~AL 
SI (2 ,21 =-SI NTH/A 

SI<2,31= COSAL*COSTH/A 
Sl!2,4l"' SINAL*COSTH/A 
SI 13,21 =J. 
SI(3, 31= -SINAL/(A*SINTHI 
SI!3,4l= COSAL/ICl*SINTHI 
RETURN 
END 

SUBROUTINE MPR(C1STH,SINTH,COSC\L,SINAll 
COMMO~/AG/XMPRl3,31 

XMP?.{ 1, 11= SINTH*SPJTH 
XM PR (2, 1 )=-COST HX'S rnr ti*C'.JSAL 
XMPR(3,11= -COSTH*SINTH*SIN4L 

XMPR(2,3l -SINTH*SINTH*COSAL*SINAL 
XMPR(2,2l= 1.-SINTH*SINTH*C(;St,LnOSAL 
XMPR( 3,31= 1.-SINTH*SINTrl*SINAL*SINAL 

XMPR { 1, 2 l=X~lPR ( 2, 11 
Xl'PRl1,3l=XMPRD,1 I 

XMPR( 3,2)=XMPRC2,3l 
RETLJ RN 
END 

SUBROUTINE SUBT(U,V,W,Nl 
DIMEI-.SION U(Nl ,VCNI ,1-l(Nl 

l AU!!!:.V!I:-l~(Il 
LJO 2 I= l, N 

2 U!Il=AU(II 
RE TURN 

END 
SUBROUTl!'JE SU'IU(XD,YD,lD,GI 
DI l'Et-.SI CN G(4 I 

XO= XD+G ! 11 
YD=YO+G{Z l 

ZD=ZD+G(3l 
RETURN 

END 
SUBROUTI~E ECU(GA,G,JA,Jl 

Dl'IENSION G{4) ,GA(41 
DO 1 JJ=l,4 

l GACJJl=GIJJI 
.JA= J 

RETURN 
END 

SU~ROUT !NE MTPL!C,A,B,N,'1,ll 
C C=MB 

,AU(Sl 

OI:1ENSIO"I C(N,Ml ,A(N,LI ,B(L,Ml, 018,31 
DO 1 l=l,N 
DO l J=l, M 

0( I,Jl=O. 
DO 1 K=l,L 

l O I 1 , JI = D ( 1 , J I + C\ ( I , KI* B ( K , J l 
DU 2 I= 1, N 
DO 2 J=l , M 

2 C { I t J I =DI I , JI 
RETURN 
END 
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APPENDIX 

SOME OBSTACLES AND THEIR 

INFLUENCF.S 

We will develop the procedure by which the vector g is computed 

for certain elementary obstacles which are, triangular plane elements, 

spheres and cylinders. Other obstacles could be approximated by com-

binations of the three mentioned above. 

it. 

Triangular Plane Element 

For a plane or region of plane only an endpoint can be closest to 

Let ( a, b, c) be a vector and ( x, y, z ) be a point in space. 
0 0 0 

'1.'he plane that is perpendicular to the vector and passes by the point 

is, 

(A-1) 

By analytic geometry the distanced from a point ( ~, yp' zp) to the 

plane (A-1) is 

d (A-2) 
8 

Where (A-3) 

The continuot:s and decreasing function of d mentioned previously will 

,.,.., 



be chosen in this and. in the next cases to be, 

and 

f(d) 

f(d) = 0 

2h(h-d) 
d3 

g = f(d).( a/s, b/s, c/s ) 

where his an arbitrary distance. 

O<d<h 

d > h 
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(A-4) 

(A-5) 

(A-6) 

So far we have considered an unlimited plane. Let us now see how 

to compute g for a triangular plane element. The vector g computed at 

(A-6) will also hold for a triangular element provided the endpoint 

is on the outward side of the triangle ( this is because the triangle 

will always part of a solid body) and its projection on the plane of 

t.he triangle falls inside it. Let the triangular element be defined. 

by its three vertices ( Xa,, Ya, za ), ( xb, Yb, zb) and ( xc, Ye, zc) 

such that the succession a, b, c. define an outward going normal when 

a right hand screw is considered. In this case the components of the 

normal to the plane when expressed as a function of the coordinates of 

a -= (y:b-y ) (z -z )- (z. -z ) (y -y ) a c a o a c a 

c =(x..-x )(y -y )- {yb-y )(x -x) o a c a a c a 

I 

To check whether P J.s in the outward face of the triangle we find 
p 

(A-7) 

(A-9) 
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d by using (A-2) and (A-3) and check its sign. If d is positive~ then 

point P is towards the outward face of the triangle. To check whether 
p 

-
the projection of Pp on the plane ~f the triangle falls inside it, 

have to check whether the projection of Pp falls in one of the semi

planes defined by each of the sides of the triangle. So for this to 

happen each and all of these three determinants should be negative, 

a 

(x -x) 
p a 

(~-xa) 

a 

(~-xb) 

(xc-~·) 

...... 

a 

(xp-xc) 

(xa-xc) 

b 

(yp-Ya) 

(yb-ya) 

b 

(yp-yb) 

(ye-Yb) 

b 

(yp-yc) 

(ya-ye) 

c 

~ 0 (A-10) 

c 

(zp-~) <. 0 (A-11) 

(z -z) c . tr . 

c 

(zp-zc) < 0 (A-12) 

(za-zc) 

So if dis positive and the three determinants are negative g will be 

computed by (A ... 6). Otherwise, g will be taken as zero, this meaning 

that the face of the triangle itself has no influence although the 

sides and/or the vertices might have. 

Sphere 

Let the center of the sphere be Pc (.xc, Ye, zc ), the radius be 

R ( for a poir:t R equals zero ) and let a link be given by its two end-
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points P1 ( Xi, Yp z1 ) and P2 ( x2, y2, z2 ). In order to find if the 

endpoints or the segment itself are closest to Pc, we project Pc on the 

line defined by P1 and P2; the equation of the line is, 

x = Xi + r(x2-Xi) 

y - Y1 ... JA(Y 2-yl) 

z = z1 + t,(z2-z1) 

(A-13) 

The value of the parameter will determine which endpoint or segment 

will be closest to P , by minimizing the square of the distance from c 

Pc to P(ft). The result is, 

r= (xc-x1)(x2-x1) ... (yc-Y1)(y2-Y1) + (zc-zl)(z2-zl) 

(x2-x1)2 + (y2-Y1)2 + (z2-z1)2 
(A-14) 

If f-.<O, P1 is closest to Pc. If O<.r<l the segment P1P2 is closest to 

Pc• If )A >l P2 is closest to Pc• As we know f'- we know PCf-), we can 

find the vector (Pc-PCf-)) and its magnitude which is the distanced. 

If r < 0 we have to taker= 0 because Pl is then the_ nearest point to 

Pc. SiJnilarly if f" > 1 we have to take _r==l. We have now all the data 

for computing g. 

Cylinder 

Let the cylinder be defined by its axis and its radius. Let the 

axis be defined by two points Pa and Pb. We are interested only in lim

ited cylinders, that is the influence will be zero if it falls outside 

the segment def.1.ned by Pa and Pb. Let the endpoints of a link be P1 and 

P,.... Then the equations of the axis and of the link are, 
.,:. 



~-= x1 + rJ..x2-x1) 

Yp.-= Y1+ t4-(Y2-YJ 

z -:: zl + r<z2-z1) 
p 

Xax-:: Xa_+ ~(xb-xa) 

Yax: Ya+ .X(yb-ya) 

. zax = za+.). (zb-za) 
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(A-15) 

(A-16) 

To find the influence of the cylinder on the link we find the common 

normal. This we do by minimizing the square of the distance Pu?p with 

respect to the parameters /A and >.. This gives, 

). = dses + bsfs 

asds + bscs 
and 

asfs - Cses 

asds + bscs 

as:; (x -xaHx2-x1) + (yb-ya)(y2-y1) + (zb-za)(z2-z1 ) 

2 2 2 
bs-= (~-xl) + (y2-Y1) -t (z2-z1) 

2 2 2 
cs -:::: (xt,-Xa_) + (yb-y a> + (zb-za) 

f -= (x -x ) (x -x ) + (y -y ) (y_ -y ) + (z -z ) (z -z ) 
s la ba la ba la ba 

(A-17-18) 

If .>.. < 0 or ). '.> 1 then the influence will originate outside the segment 

P ,,.Pb'. so g will be null for this case. If O <_)l.<l., we have th~ee pos- , 

sibilities;/""<o, meaning P1 is closest to the cylinder, in this case 
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we take r-=O. If O<r<l then the segment P1P2 is closest to the cyl

inder. And if_µ> 1, then P2 is closest to the cylinder and we take 

)A= 1. So when O < >,. < 1, we know P a.,x ( >.) and Pp C,.) and we can f in.d the 

direction and magnitude of the vector (P -P ), which will be related 
ax P 

tog in that it has the same direction and its magnitude minus the 

radius of the cylinder is the distanced which we use for evaluate the 

magnitude of g using the decreasing function previously defined. 

General Obstacle 

In order to use the three elements defined previously, let us con-

sider a tetrahedron as an example. Let the tetrahedron be defined by 

its four vertices Pa, Pb, Pc and Pd. In order to find the influence 

created by the tetrahedron, we find the greatest of the influences 

created by the following elements: triangles (PaPbPc), (PaPcPd), 

(PaPdPb), (PcP'oPd), cylinders (R--0) (PaPb), (PaPc), (PaPd), (PbPc), 

(PbPd), (PcPd) and spheres (R=O) (Pa),· (~b), (Pc), (Pd). This proce-

dure can be e.xtended any obstacle of arbitrary shape by approxi.'Ilating 

the obstacle by a group of triangles like which is very similar to the 

method of triangulation used by topographers and surveyors. 
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