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CHAPTER I

INTRODUCTION

A manipulator is a device that can perfonn certain tasks aﬁd has
definite similarity to the human arm and hand. Originally manipulators
were used to substitute for the human arm and hand in hostile environ-
.ments, but with the advance in techﬁology, use of manipulators extended
far beyond hostile-environments to simple, tedious and hazardous tasks.
The control of manipulators is a problem by itself and only recently
- have there been breakthroughs in this particular area of technology.

Manipulator control can be divided into two broad classes, human
control and computer control. In human control, the manipulator is
coupled to the human arm in such a way.thét both mofements are highly
correlated. In the computer contrdl, it is the job of the digital com-
puter to process the information related to the manipulator's task and
the obstacles to be-avoided. Computer control can be further subdivid-
ed'according to the way the information regarding the manipulator's
task and the obstaclées is fed into the computer. If the infermation
regarding the task ig all contained in the memory of the computer be-
fore the manipulator starts moving and no further information enters
the computer during the realization of the task, then we have cpesn-
locp control. If the information related to the manipulator'!s posi-~

tions and taskse and its obstacles is fed during the resalization of the
(]



task as for example, with an electronic sensory device, then we have a
closed-loop control. This thesis proposes a method by which a manipu-
lator is guided through obstacles using both open~loop and closed-lcop
control features. The descriptien of the obstacles is stored in the
memory of the digital computer before the task starts, but the posi-
tion of the manipulator is fed cencurrently with the realization of
the task. |

In Chapter II we will develop the algorithm which will fulfill
the proposed goal.

In Chapter III we will present results and analysis.

In Chapter IV we present conclusions and some suggestions for fu-
ture work.

Chapter V contains computer programs and instructions on how to
use the algoritim.

In the next section we present a brief history of manipulators

and related fields.
History of Manipulators

The development of manipulators started with tﬁe development of
atomic energy. In order to protect an operator from radioactive mate-
rials, equipment was needed that could duplicate the operator's capa-
bilities without exposing him to a hazardous environment. Research on
general purpose manipulators was started in Argonne National Labora-
tory in 1947. The first manipulator built at Argonne had six degrees
of freedom, were controlled by mechanical drives and had hydraulical-
ly opersted grips. Later, electric drives were substituted for mechan-

ical drives. They were suitable for simple tasks, but because they



lacked force fesdback then although an operator exerted a light pres-
sure on the grip, the manipulator reacted always with the same force
making it unsuitable for handling delicate tasks; as can be deduced
from the abeve, the early manipulators fell into the classification
28 human controlled. Later on, in 1948 the people at Argonne decided
to develop manipulat§rs with force feedback and with motion very sim-
ilar to the human hand., These are called master-slave manipulators be-
cause both motions are coupled in such a way that the motion of the
slave follows the motion of the master and the force in the slave is
reflected attenuated at the master. Several of these were built and
they are still commercially available teday.

x These manipulators have several drawbacks. They require the op-
erator and the manipulator to be physically close together. Also the
strengih of the manipwlator is limited by the strength of the oper-
ator. Later on GEC and Argonne developed other manipulators that could
be controlled from far away through a cable., However, because of their
higher cost, their use is limited. Powered manipulators, not of the
master-slave types, have been developed by AMF, GEC,;Westinghouse,

FMC, etc. The most advanced human controlled type of manipulatoer is
built by GEC urder the name CAMS ( Cybernetic Anthropomorphous Machine
Systems), 41l these manipulators, being human controlled, suffer from
the inherent limitations of human beings;’they are subject to fatigus
and are error prone., Efforts are being made at present to create sys-
tems in which man has no more than a supervisory task.

Computer controlled manipulators offer a partial solution:to human
limitations. In space exploration for example, the delay invoived bet~

ween a human operator on earth and a manipulator -in some remote planet



points out the necessity of controlling a'manipulator with a computer,
Computer-manipulator systems are now being built and used in material
handling applications such as AMF!'s Vesatran and Unimation Inc.'!s
Unimate. These machines are of the open-loop type and are programmed
through a predetermined series of positions. They are used to perform
spécific operations having a fixed cycle. They cannot make decisions.
However if the parts are not in the right positions, the machine will
not operate successfully. They must be reprogrammed each time the
task varies. It is desirable therefore to include some decision-mak-
ing capability to the manipulator control system.

Research on systems with the above mentioned capabilities has been
and is being conducted mainly at two universities, M. I. T. and Stan-
ford. At M. I. T., Ernst [1] using a manipulator with sensory feed-
back, developed a system capabie of stacking bilccks. ZEimnmstts work was
furthér extended to include visual inputs and capability of manipula-
ting objects. Future goals include the development of a completely
autonomous system capable of manipulating objects with a sophisticated
level of decision making ability. At Stanford, Rosen [2] gnd others
developed a computer controlled mobile vehicle that berforms tasks on
a real environment. There, most of the emphasis is’placed on develop-
ing the feedback loop of tpe system (reception of viéual and other
sensory informaticn to direct the system-vehicle in this case towards
the completicn of tasks requiring the abilities to plan ahead and learn
from previous exgerience). At other universities [3], similar research
has been conducted in an effort to increase the decision making capa-

bilities of manipulator systems.



Contribution of the Propesed Hesearch

The algorithm developed represents an alternative to the few
already in existence for achieving the same goal. In addition the
method can be used with little variation for virtually unlimited types
of arms and obstacles. It does not require the complicated visual sen-
sors with very sophisticated pattern recognition software. It repre-
sents an advance with respect to the method outlined by Pieper in his
doctoral dissertation because it does not need to solve equations for
the angles thﬁt locate the hand at a certain peint. ‘It does this auto-
matically as the arm is advancing ﬁowards its objective. Future possi-
bilities of this method include the addition of logical decision
capabilities in order to select the best way to reach its objective.
This is accomplished after the criteria of what 'best™ means has been
adopted. The neit chapter will expl#in the derivation of the alge-

rithm.



CHAPTER II
ALGORITHM DEVELOPMENT

Selection of the Manipulator

Configuration

The primary criterion which was considered when selecting a con-
figuration was generality. The configuration needed to be general
enough as for representing most, if not all existing real manipulators.
The approach followed was to start with a generalized link, with sever-
2l degrees of freedom. Then, any real manipulator can be represented
with a certain number of generalized links, each of them with noﬁe, one
or more degrees of freed@m of motioh frozen. The generalized link is
shown in Figure 1. Let this link be the ith link of an open kinematic
chain. The end points of this link are P; ; and P;. Each 1link con-
tains a cylinder pair collinear with the link itself and a revolute
pair perpendicular to the link at the point P;. The extension of the
cylinder pair ﬁill be called a; and its rotation will be called ;.
The.rotatisn at the'rgvoluie pair will be denoted Oi. In our analysis
we will consider that the hand is small enough not to influence the al-
gorithm. We will assume therefore, that as long as the end point of
the manipulator,” in which the hand is attached keeps outside a certain
distance from the obstacles, then it could be assured that the:hand

doces not touch any cobstacle. Let's now use the generalized link to
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Figure 1. Generalized Link



describe some configuration of commercial manipulators. In the ith
link if some parameter is fixed, we will denote it by equating the pa-
rameter to its value when the parameter is a rotation or by stating
that the increment of the parameter is zero when it is a length. So
for example if in a manipulator, « of link 1 is fixed and equal to 0°,
© of link 2 is fixed and equal to 90° and if a of link 3 is fixed, then
we will dencte  the-manipulator by ( dl=00 ’ 0~2=900 ’ Aa‘j'= 0, 5 ) vhere
5 denotes number of links. Before going to specific examples it is
necessary'to define the number of links of a manipulator. We will as-
sume a definition based on convenience and practicality tha£ will have
its gdvantages in implementing the algorithm. This number consists of
all the links that do not have either of their ends clamped to the
ground. It might be argued that when the link clamped to the ground
stretches, it should be considered as a link, but as in most practica:i
cases this link dces not stretch, the definition is justified. 1In
order to use an array of numbers in the computer the indexes of the ar-
ray cannot be zero, so the link that has an end clamped to the ground
will be assigned number 1. Consider the practical manipulator struc-
tures shown in Figures 2 and 3. A simple analysis concludes that the
structures have descriptions ( a1=0, Xy = Oe, Aap=0, oy = 900, Aag= o,
«3'= 0°, aa) =0, ANsg=0, 4 ) and (82=0, &= o°', %5 =90°, pay=0,
Az = 0, 3 ) respectively. Having seen that the generalized links can
be uzed to represent practical manipulators, it is time to present the

foundations of the algorithm.



Ficure 2. Humanoid Type Manipulator

Figure 3, Unimate Type Manipulator
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Mathematical Description of

the Mhnipulatof

Any manipulator formed by a chain of N generalized links will have
at most 3(N+1) parameters although ®,; and )41 Will not really be
considered because they deal with the position of the hand. In order
to describe the configuration of the manipulator we need to specify
each of the 3N+l parameters which are ( &), ag,eeces, 8,75 %7 Ysers
evey Ay 61, 62,...., GN ). Describing the configuration means in our
case knowing the peositions with respect to a fixed frame of the end
points of all links. Now let's discuss what we mean by a guidance al~
gorithm. Given a configuration as indicated previeously by ( Bygeeeoae
eeey By ) , if we can find an incremental cenfiguration ( Dayyeee,

AS,, ) as a function of the configuration ( al,....,igng), then by suc-
cessive iterations ( compute the incremgntal configuration and add it
to the configuration to obtain a new configuration, and so on ), we

can move the manipulator in a certain way. Let's now consider t to be
an independent variable. ( It is not important whether t is time or
not, because we are interested mainly in trajectory generation and not
in solving dynasmic problems ). Then {_Aa,l, ceees AQN} = {él’ ceey éN}At
where the dets indicate the derivative with respect to the parameter t.
Then fer each ( aj,..., 6y ) we should find ( yseees éN ). Let's de-
ncte the end points of the links of the manipulator by Pl’ P2,.....,
Pisees, Py,j where P represents the point of coordinates ( xy, s zi)
and its derivatives with respect to the independent variable t by P ,

sesy Piyees, Py o vnere P, represents ( X;5 ¥is 2 ). Our algoritha

1

has three clearly differenciated parts:
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1) Given { ayseeey Oy ) compute ( Pyyecees Py ).

2) Knowing ( Piyeese, the destination of Py ., and the descrip-

PN+1 )5 N

tion of the cobstacles, generate a set of M™velocities™ or influences

( either of these two tems will be used indistinctly ) ( Fl,..., PN+1 )
that will be compatible with the physical.dimensions of the links in
the manipulator.

3) Once ( él""’ éN+i:) are computed calculate ( ;1,..., oy ).

Steps 1) and 3) are straightforward although their derivation is rather
lengthy. Step 2) is not straightforward and its selution requires en-
gineering ingenuity. The analytical tool to be used in steps 1) and 3)
are the 4x), matrices proposed by Hartenberg and Denavit [h]. This ma-
trix is to bte denoted by [Ri] enclosed by square brackets, where i de-
notes the link number to which the matrix is referred. The positions
of the end points of the links in the manipulator will be denoted by
Pi,j where i is the number of the end point as defined previously, and

J indicated the link number to which a frame of reference is attached.

Its form will be:

X. 1
i
Pi,j - T3 or X, (2-1)
23 j yi
2y
J

The second form is the one that will be used in our derivation because

we are using 4xi watrices.
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Position Description

Our goal is to know the location of all points ( Piyeees Py )
with respect to a fixed frame of reference attached to link 1. To do
this we fix on each link i a frame of reference i whose origin coin-
cides with the end point Pi—l’ whose x axis coincides with the line de-
fined by points Pi~l ard Pi’ and whose z axis coincides with the axis
of the revolute pair at Pi-l' Let!'s now consider a generic link i as
indicated in Figure 4 with its reference frame attached to it. Suppose
that we know the ccordinates of a certain point with respect to frame
i+l, and we want to find the position of the same point with respest to
frame i. Hartenberg and Denavit discovered a matrix that accomplishes
this coordinate transfofmation. Our matrix will differ from theirs by
the order in which the rotations « and © are taken. To transform a
certain point Pg referred to frame i+l into frame i+3, we have to mul-~

tiply Pg,i+l by the matrix:

r' —y

1 0 o) o)

0 coso, -3ind, o)
1 1 (2__2>

0 51nGi cosG.l 0

0 0 0 1

- .

This matrix will be denoted by ERe] . To find the coordinates of point
i
P_ziven in frame i+: to frame i, we have to multiply P_ . 3 by the
g gy1+3

matrix:



LINK I

Figure L. Frames of Reference

13
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1l 0 0 o)
a; 1 0 0]
| . (2-3)
0 0 cosoy  =sinx,
0 0 sine, cosx
i 4
This matrix will be denoted by [R :]‘ Then, P_ . as a function of
ot 8,1
P i1l be:
g,i+l w ©

P, ™ [R“i] [Rei Pe i1
Or, after multiplying the matrices in the indicated order:

Pg,i=[Ri]Pg,i+l

Equation (2-4) is the abbreviated form of (2-5) shown below,

\ — R
1 1 0] 0 BN 0 1
x \ _la; cos8, -sinB. 0 b’
g =, 1 1 i g (2_5)
Tg i 0 cosw;sin®; cosx;cos8;  ~sin« g
Zg N L? sina&sinei sino(icosOi cosal ngi+1
In (2-1), (2-4) and (2-5) g stands for any generic point. Let's now

use our results for finding ( Pl 1reeees P ) meaning ( Pl,....
" »

N+1,1

-es Py,1 ) with respect to frame 1 which is attached to the ground.
Consider now the coordinates of endpoint P-l with respect to frame of

reference i. These coordinates are:

AR
:
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1

2, |
Py 4= o (2-6)

0

So the problem of finding ( Pl,l’ Py 1sesees Pua1 ) while we know

( Pl,l’ P2,2""’ PN*l,N+l ) is just that of several coordinate trans-
formations appilied successively to Pi,i‘ These transformations are
indicated below

Pi=F 1=F 1

%‘%4’@ﬂ%g
%=%J=@Jﬁg%ﬁ
{2-7)

LR R N N N N N NN N]

Pia=Pia,1= (B R [Ra)eeeene[R] Pivl,in
Then the positions of endpoints ( Pyseees Py ) with respect to fixed
frame 1 are known because the right hand sides of equations (2~7) are
formed by known parameters, Here the generic link number has been cho-

sen &s i+l instead of i for convenience as we will see later.
Velocity Description

Now, using the same tools let's derive step 3). Assuming that a
set of Mvelocities™ ( ﬁl,...., ?N+l ) has been computed at step 2),
the procedure of computing ( 8y,e..., éN ) has to be carried out. As
can ba seen from the definition itself of the Mvelocities', él}will dew

fine é.l, P, will define a5, %5 67, P3 will define ag, %, &, and 50
&
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forth. Stated in another form the probleﬁ can be proposed as follows;

given a set ( 31,ee0, 85, %,eeee, &i-l’ él,..., éi-l ) and §i+l con-
pute ( &;,, %, éi ). If we apply this procedure from the first to
the last link we will have solved the initially posed problem. In or-
der to do this, let's find the derivative of equations (2-7) with res-
pect to the independent variable t.

B () Rolee oo s [ TPigy gaao (B IR ee e [By JRp g sag veeennn

RN | 5 T OO |- P, 1ar* Pl [£,]...... [Ri]l"id,iﬁ (2-8)

Where [ﬁi] is,

po

o} . 0
2 8. sind
ai - iSln i
. [ 2 L
U ~&s 51nws $ind; + v;cos«icosem
: - L d
:D RiCOS«i31nei+ 9131naicosei
0 0
6. cos® 0
- iCOS i
L ] * . L ]
- &3sinx;jcos®;~ ©;cosw;sindy ~ ®5c0804 (2-9)
& e é . {16 s
< . - 9, &, . - N .
3 Cosa; cosB, - 8, sinx, sin 5 5 5iney
and
0
) § — 834l (2-10)
> i+l,i+l 0 ==
0

-

With the assuuphions made all terms in equations.(2—8) are kKnown except
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{_ﬁ;} and *éi +1,i+ls SO We solve the equatibn for these two terms,
. . -l -1 -1 ~l¢.
[8;] Piel, i1t (%] Pi41,i417 [Ri-l-.] RS R i I 1Y {Pi+1 -

I8, ] [Rz]""[Ri]P 141,141 [Rll[:éz]""{Ri]Pi«sl,iq-l Toeessesees

coomRy ] Bpleeen ‘[ﬁi-l_-l[ﬁijp 141,141

(2-11)

The right hand side of equation (2-11) can be computed with the assum-

ed data, and the result is a vector V whose components are,

- Hewriting equation (2~11),

(% ]P01,500 EN: iel,iel =V
This equation splits into three equations with unknowns éi +12

b4 . . .
- 24,184510@; + 85,7C0884 = vy - 33

s ’ e .
= a:,1c.3inok. sin®. + a  9,.cosx,.cosB, + a,
14173 it i i i i i

cos«,sin®, = v
1+] 1 1 1

+1

a: -&.Cosx.Sind, + a, é.sino(.cos@ a.\ sinx.sin®. = v
i+l i ) i i+l171 i T8, i i 2

i i+l

Rewriting it in the matrix form,



cosei - ai+131n9i
Co3oj sindy 8 4] COS%; COSE;
31nq131n9i ai+131n“i°°sei

18

Solving the system (2-16) by inverting the matrix we get,

(aitD F-cosei cosa&51n6i
.. - -sin; cos«iCOsei
e = |5 "

i+l i+l
. - 8inu,
iuﬁ ) 0 ai+1sinei

0 a'i-o-l
ai+1sinu&sin9i éi =
ai+lcosdisin6%J &i
Vx éi

V. {o0 2-16
v, (2-16)
v, 0

7 R
sino(’isinei fv - a3
sine. cos®.
—— < v, (2-17)
i+l
cosxs
5 i v, |
8141547 \ J

The matrix in (2-17) will be denoted [S;] and U; will denote the vec-

tor:

oL 1Y

i+l

Poe

i

%

Thus we have found the way in which given ( aj,..., 8, 1 ) and P

we compute Ui' So applying this procedure successively as indicated

in (2"‘18) we can find Ul, Uz,ooo.., UN

2
&
1
L
- P 1
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V2= [52]{[317!-1{13 5 - (8] ﬁzz]? 3, 3} - 52;2 } ‘ (2-18)
U3= [33] {[sz-llej-l{éa ‘[él] [Rz] [RB] Py -[Rl][éZ] [R3]PA,A} B 1;3,3 }

And we continue to generate the angular( extensional ) ™velocities®
of the Joints for as many links as we need.

An additional feature which allows us to widen the group of mani-
pulators which can use this algorithm is the following: We have pre-
viously assumed that the end point PO of link 1 was clamped to the
ground, and that this link was parallel to the x axis. This new fea-
ture which can be seen in Figure 5 presents two additional degrees of
freedom which are translations along the y and z axes of the previous-~
ly clamped point Py. The analytical derivations of steps 1) and 3)
woid eacepl that we should add the a_ and a_, translation componenits o

y Z

all y and z components of the positions ( Pl,...., PN+1

ther, we should substract éy and éz from all components of the "veloc~

), and, fur-

ities™ ( ?1,...., éN+l ) respectively. Steps 1) and 3) are thus

concluded.
Guiding the Manipulator

- The remaining step 2) in this algorithm makes dse of the positiocns

( Piseeees Py ) to find a set of tvelocities™ or influences { ﬁl""

.oy %N+1 ). 1he way in which this step was solved makes use of the

following assunptionz, The end point Py, of the manipulator moves in

-

a straight line towards its destination point Pﬁest whenever there is

not an obstacle close to PN+1’ When there is an obstacle between PN+1

and P, L3 and P

des is close to an obstacle, the motion of P will be
S : .

Hal. N+1



Figure 5. Additional Degrees of Freedom

20
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the sum of an influence of approach to P&est and an influence of rejec-
tion by the cbstacle, which will result in a total influence §N+l which
is fairly parallel to the surface of the obstacle. In a later para-
graph we will describe the procedure accurately. The motion of PN is
determined by the condition that the link N may be stretched, contrac-
ted, or fixed, and by the proximity of obstacles. Note that the des=
tination point Pdest does not influence PN directly, but as PN is in-
fluenced by PN+1’ then PN is indirectly influenced by Pdest as are all
Pi's. So éi is influenced by §i+l’ and by the close obstacles. Re-

peating this step for as many times as necessary the set ( Pp,.., éN+l)

will be generated. Before studying how we generate ( P geeey ) in

1 PN+l
further detail, we first will consider a general obstacle and see how
we construct the rejection influence of the manipulator links and
joinus uy such au ovbstacle. A rejection influence from an cbstacle
will‘be a vector g applied at one or two consecutive joints which when
added to the influences of other obstacles and to the components ne-
cessary for ensuring physical continuity, will determine the total in-
fluence éi of that jeint. The criteria for determining thg magnitude
and direction of vector g is as follows: Suppose we'have a link i with
endponts Piml and Pi' Three possibilities can occﬁr; a) point Pi is
the closest to the obstaclg; b) segment Pi—lpi is tﬁe closest to the
obstacle; c¢) point Pi—l is the closest to the obstacle. In possibility
a) shown in Figure 6 the vector g is constructed such that: it passes
by P;, it is perﬁendicular to the surface of the obstacle at the sur-~
face's nearest point and its magnitude is a continuous and decreasing

function of the minimun distance from the obstacle tO'Ri. In 6rder

to ensure that there is no possibility of contact with the obstacle,



Figure 6. Influence of an Obstacle on Pi

LINK I#1 /

Figure 7. 1Influence of an QObslacle on P

1-1F1
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we choose this function to be infinitely large when the minimun dis-
tance from the obstacle to Fj approaches to zero, and in order:to avoeid
influence by the obstacle when the{link iis far, we choose this func-
tion to be zero for a certain distance or greater. In possibility b)
the common normal between the segment Pi-lpi and the surface of the
obstacle will determine the direction of vector.g, its magnitude will
be determined as in possibility a). The vector g will be applied to Pi
and to Pi-l in the following way: if this obstacle influenced segment
P; ,1P; of link i+l as well, then the influence on Pi will be half the
vectorial sum of the influences in the i+l and i links, as éhown in
"Figure 7. Here g, stands for the g computed in the previous step at
link i+l. If this obstacle influenced link i+l at one of its endpoints

( if possibility a) or c) applied to link i+l ), then no modification-
| of the g computed previously will be made as shown in Figure 8. 1In

possibility c) we take no action because we will consider Pi- as part

1
of the i-l link.

So each obstacle k will generate an influence on P; which we des-

ignate by gik' Let us return now to our goal on how we generate ( P

l’
ceeeny §N+l ). Introducing coordinates as Py .4 ( Xgs Ygr Zg ) and
Py ( Xy Fis 23 ), the influence towards Pdest on point PN+l will be a
vector w whose detail is shown below,
blxg- xy,)
wo= b0 vy, | (2-19)
blzg= zy,,)

where b iz an arbitrary constant. Then finally,



2k

cacle o8 Py fe

an OpS



25

= 2a
P =W+ ggml’k - (2-20)

where the sumation is applied to all the obstacles. Suppose now that

we have Pi+1 and we want to find ﬁi' Let us define

P,y -F
u, 11 = L* = (2-21)
1+1l,]1 -
’ 'Pi__l Pil

The projection of vector Pi+ on vector u, is a vector whose length

1 i+l,i
is Li+l and is computed as
. .=P, . -22
161 Fra1 c %5 (2-22)
Let
Vv - (2-23)
obs,i = 28k (2-23)
K
The vector V . cannot alone be P, beczuse P, and P, are parts of
obs,i i i+l i

a deformable link and have a constraint. Let éi+ be the stretching

1
rate of link i+l. Letting

. - v . 2—2
obs,i ~ obs,i | i+l,i (2-21)

as most of the time .

L -1 (2-25)

i+l obs,ii# %141

we define a varisble ¢ such that physical compatibility is preserved

L = L o +a. . +c¢C (2-26)



Then

© =1L = Lops,i =414 | (2-27)
Finally

B = ;;gi,k YoM | (2-28)

By applying the same procedure from PN to Pl we find all ( 1.31,.......

eey P ). An observation remains to be expressed with respect to

N+l
a, . Suppose that link i+l is an extensible link and let a, and
i+l i+l,max

ai+l,min be the maximun and minimun lengths of link i+l respectively.

In order to find ¢ we have to make assumptions which are realistic.

These are: whenever possible

él+l = Li+l - Lobs,i (2-29)
therefore ¢=0 and
f’i = Zgi,k | (2-30)
By possible we me’an. that éi*l>0 and as,13 ai+l,ma.x do not hold both
simultanecusly and é'i+l< 0O and a; 1€ ai+l,min do not hold simultaneous-

ly as well. The meaning is clear. If the link is fully extended a.'i-o-l

can only be zero or negative. Similarly if the link is fully contrac~

ted é"+l can only be zero or positive. If any of the impossible condi-~
i

tions hold, then éi+l will be taken as zero and

- - L 2.
¢ = L Iobs,i (2-31)
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Althcugh we have given the general method for finding the succes-

sive influences ( ?l,..., P ), there is a special combination of pa-

N+1
rameters.in which PZ will have to pe different from the §2 given in the
previous procedure because otherwise the assumed influences will not be
physically realizable. We should choose a vector éZ which will be tan-
gent to a sphere of center ( a

,a,a ) and radius a_ whenever a_,
y =z 1

1 2
3o a3, ay and az are fixed at the same time, and whose projection on
u3,2 will be the same as the projection of é3' Let ( iz, 52, 22 ) be
the components of the originally computed P2 and let the unit normal to

the sphere of radius a and whose polar coordinates are el and Ml be,

cosel
92)

n
\

n = sin®, cose; (
5ing, sine(
\ A e

In order to find the projection of P on the tangent plane at the sur-

2
face of the sphere, we first find the projection of ﬁz on the normal n

and then substract this projection from P2. The projection on n is,

Then the projection on the tangent plane P2pr will be

i)Zpr= 1.’2 -p —.-..152 - ( I:’2 .n)n = [[I] - [n@n]] 1:"2 (2-34)

vhere the symbol & indicates tensor or dyadic product. In coordinates

(2-34) gives
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Xopr sin &, ~c0s6, 51nB, cosoy —coselsinelsin&; Xy

* 2 . ' o

Y 2pr)=|-c0s®, 8108, cosey (l-:ln 6, cos «l) -sin el:os ls;ngl ¥,

Zonr ~cos® sing sin;  -sin Glcos 18ine (1-sin 6 sin dl) &,
" (2-35)

So far we have found the direction of the modified §2. In order to

find its magnitude we proceed as follows,

Boou,
P = ._..L_.il_ (2_36)
P . '
2pr u3s2
and finally
Ponodifiea = © Fopr (2-37)

In the Appendix we will develop the details of the computations
for finding gi,k for obstacles of different shapes. The problem of
finding the commcn normal between a segment and a surface, or the nor-
mal from a point tc a surface is simply a problem of.Analytic Geometry.
The same happens with cemputing the distance from a point or a line to
a surface. In the Appendix we compute vector‘gi,k for the following
elemental obstacles: 1) triangular plane element; 2) sphere; 3) cylin-
der. The reason Qe choose these elements is that any obstacle can be
apﬁroximated by a finite number of these elements. In the resulting
polyhedron formed by £riangular faces, the edges are limited cylinders
of radius equal to zero, and the vertices are spheres also of radius
equal to zero. So using these three elements the vector g can be com-

puted for a great variety of obstacles. Thus, step 2) is concluded.



CHAPTER III
RESULTS AND ANALYSIS

In tﬁis chapter, we will outline a method in which‘the algorithm
we have developed in the previous chapter is applied to practical pro-
blems, and we will illustrate an example of it.

The correct procedure for testing an algorithm such as the one we
have developed is to apply it direcﬁly to a computer controlled manipu-
lator. Such a manipulator should have in each mobile revolute pair or

cylinder pair devices for transforming the angles and/or the extensions

e g o Y e g mani o 1

gy i A - o e PO Q. Tl S v~
HENAULE CO -Uala processiiige Wil Oul

of the joints into some form
currgnt technology, electronic digital signals are the most commorly
used. Such devices are called shaft encoders and are commercially
available in a wide variety of types. In order to zvoid the computa-
tion of sines and cosines of several angles, shaft encodars could be
built which could encode the shaft rotation directly intec a digital
signal which is the sine and cosine of the rotated angle. 3o far we
have indicated the way in which information is obtained from the manip-
ulator as input to our algorithm. To use the output of our algorithm
we must transform these electronip digital signals into some form which
will be able to exert a motion on the joints of our manipulator. The
most conventional waysrof doing this are to convert the electronic dig--
ital signal into an electronic analog signal using D/A converters, then

te amplify it until it can drive an electric motor at each joinb or
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convert it to a hydraulic signal with an electrohydraulic servovalve
and drive hydraulic motors at the joints.

The way in which such a system would operate dﬁring each cycle
would be as follows: the computer "reads'! from the shaft encoders,
computes, and ™writes™ in the actuators or motors. By writing" we
mean that the computed information flows outward from the computer to
the actuators, commanding them to move al the computed speed until the
computer writes again. The interval of real time between the starf of
each cycle is dependent on the computer speed and on the manipulator
dynamics. In control systems vocabulary a system like the brevious one
‘would be referred to as a "sampled data control system'.

| One question remains. What is the rélation between the computed
(3. ,000, éN ) and the real angular and extensional velocities ( a

1

)
$0°°°%* “Nreal

1real

J at which the joints should move? If we multiply the
set ( él,..., ON ) by a constant the manipulator will move by the same
trajectory but at a different speed. 5o if we neglect the manipulator
dynamics and assume that the speed is only limited by the actuator
characteristics, the fastest way to move the manipulator would be when
one of the actuators is close to saturation, this meaning at maximun

é

Nreal ) that will move

speed. In order to find the set ( alreal"""

at ‘the maximun attainable speed, we compute a number e as follows,

i éN
e = Max ( < ’c-ooooooooocoo,—é—— ) (3-1)
lmax ‘ Nmax

So e is the largest of all numnbers enclosed by the parenthesis in
(3-1). To find the real speed we should divide the cemputed speed

by the aumber e, So,
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al . )

,.......‘.......,

— e =
8'lre:a.l e Nreal e

—

(3-2)

As our limited resources preclude the access to a computer con-
trolled manipulator, in order to test the algorithm, we simulate the
manipulator, its actuators and its encoders with the digital computer
itself. To siﬁulate these three elements is very simple because their
net effect from the output of the computer to the input is that the
inputs ( Ty QN ) are the integrals of the outputs ( él,..., éN )
with respect to the independent variable t. As the simulation is not
made in real time and as we are interested only in the trajectory gen-
eration we assume the numnber e equal to one throughout the simulation.
Out of the several simulations run, one of them will be illustrated
- which is planar, thus having the advantage of easy interpretation.

The chosen manipulator has six links with fixed link lengths.
These are a,= 0, a,= 3.3-_-.......:37:2' and o= sesee =o<6=0, ay:,O,
az=.0. The obstacles arbitrarily chosén were three cylinders with
vertical axes ( seen as circles in the drawings ) with the following
centers ( 4oy 5. ), ( 9., 5.5 ) and ( 7.5, 175) all of which had
radii gqpal to l.s.. The destination point Pdest of the endpoint P7
was arbitralily chesen behind the cylinders from the initial position
but with the condition that Pdest is close enough that it is within
the grasp of the manipulator. This point was ( 6.8, 8. ). The ini-
tial ©'s were 6= D, 92= ~2b, 93.—.2b, Gh=—2b, 65=2b, 86=-2b with
b =1.44 radians close to pi/2 radians for paking the manipulator

folded. The integration was carried out using the Euler method be-

cause it preoceeds in the same way as a sampled data control does { the
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derivatives of the parameters of the manipulator with respect to t re-
main constant during the cycle ). Figures 9 to 13 show the tréjecto-

ries of points P,_, Ph’ PS’ P6 and.P7. Pi"and P2 are not shown because
they will be a point and an arc of circle respectively. Figures 14 to

34 show the successive positions of the manipulator from its irnitial

position until it reaches its destination point;
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CHAPTER IV

CONCLUSIONS

The.developed algorithm is quite general, can be used with small
modifications in any configuration. Its obstacle catalog can be in-
creased with needs. It is fast because only a few square roots besides
elementary operations have to be carried out at each cycle, provided
trigonometric shaft encoders are used. The square root is a very fast
operation in digital computers. It is a non-iterative algorithm and is
easy to use. The user has to allocate memory for some arrays, has to
specify the upper and lower bounds of the parameters, and has to write
a sgbroutine describing the obstacle configuration. Although the al-
gorithm works on most manipulators and configuration of obstacles,
there are some cases for which the algorithm might not be able to pro-
ceed past a certain position towards its destination. This is spe-
cially true in some three dimensional cases in'which the obstacles are
closely spaced. This is an inherent limitation of the method which is
a sequential precess not having learning capability. That is, it can-
not improve from previous experience. Another feature which is not
implemented, but which could be so if needed is logic decision capa-
bilities, which would allow the selection of a different trajectory
if the previously generated one leads to a dead end.

The generated trajectory is one of the infinite available. It is

not optimal with respect to any functional, but it fulfills its objec-

e
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tives. Further study needs to be done on trajectory generation in or-
der to select the best aﬁproach to the manipulator.guidance problem.

In this work we have overlooked the dynamic and stress problems in the
manipulator. We have also neglected the accuracy problem due to errors
in measurement, truncation errors and deflection under loads. A4ll
these areas pose an interesting challenge for the future of the manipu-
lator science. The problem of reaching a deétination péint with a spe-
cified ;ttitude cf the last link can be easily extended in this
algorithm, by adding an influence on the next to the last endpoint.
Further work has to be made with respect to how the positions of the
obstacles are fed into the digital computer. In our algori?hm the po-
sition of the obstacles 'is assumed known a priori, but with further
advance in computer science, the positions of the obstacles could be
determined be-processing the image formed for example in a TV camera or
other seeing device.

Finally further work could be done to make the manipulator reach a
moving destination point with moving attitude by prediction from the
past motion of the destination point and the destination attitude. The
prediction would be then used to select the best wa& to attain its ob-

Jjective.



CHAPTER V
COMPUTER PROGRAMS
Description

The algorithm has been implemented in FORTRAN IV. The part of the
program that will be illustrated will be the part that transforms the
angles and 1link lengths into their derivatives with respect to t. This
is done by subroutine FCT. The structure of FCT is very similar to theu
way we subdivided the development of chapter II. The subroutine FCT
finds the trigcnometric functions of the angles, and then computes step
1) by calling FOS. Step 2) is computed by calling the subroutine GUIDE
and step 3) is computed by calling VEL. Subroutines POS and VEL make
use of subroutines MTG, MIGI, MTGD and SANGI which simply generate all
the matrices used by POS and VEL. In addition, MTPL multiplies matri-
ces, and SUBT substracts vectors. Subroutine GUIDE computes ( él""

cey PN+l ) by taking care of the length compatibility conditions, and

by calling the subroutine OBSTACLE N+l times ( one for each end point)
each cycle. Subroutine OBSTACLE computes :;gi,k particular type ob-
stacle subreutines and adding the computed influences for all obstacles
in space. These particular type obstacle subroutines compute g for dif-
ferent elemental shapes like cylinders, spheres, planes, cones, ellip-

soids, torocids, ete. In our simulation the subroutine CYLIN (der) was

used ag a2n example of particwlar type obstacle subroutine, GUIDE uses
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MPR for modifying ?2 as seen at the end of'chapter,II. In addition

OBSTACLE uses~SUMU and EQU for performing elementary operations.
Use

In order to use the program, the user should: 1) give the upper
and lowe; bounds of the parameters of the arm ( al,...,:GN ) by just
writing the DATA cards in the subroutine FCT. If the upper and lewer
bounds are the same then the corresponding parametef will remain fixed
throughout the simulation. Give the number of links N according to the
definition given in chapter II. 3)_Write subroutine OBSTACLE whose job.
is to compute Z;gi,k for each end point of the manipulator, that is for
each i. In order to see how this subrouﬁine is written let us refer to
table I page 68. In this example three obstacles are used but the pro-
cedure forlany numbef of obstacles does not change. The DIMENSIQON
statement has several vectors of dimension four, the G(4), and the
GAn(4)¥s. Fach obstacle has an n associated with it, and there are as
many GA's as cbstacles. These are used for storing information regard-—
ing the influence to the previous link. The JA's are integers which
contain information about whether the GA's should bé used or not. We
also have one Jin for each obstacle. Prior to statement 1 all JA's
used should be made equal to minus one. Prior to statement 2 all JA's
should be made equal to zero. The rest of the subroutine is a repeti-
tion of the following three steps: a) Call a particular type obstacle
subroutine. In the example CYLIN is used. This subroutine computes
G and J if the points defining the axis of the cylinder XA, YA, ZA and
XB, Y¥B, ZB, the radius R, the physical half-size of the link DIST, the

end points of the link X1, Y1, 21, and X2, Y2, Z2, the previous GA and
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JA are all given. b). Call EQU which makeé GAn for the cbstacle equal
to the just computed G so that it may be used later. The same happens
with JAn and J. c) Call SUMU which adds the vector g to the partial
sum %;gi,k' By repeating steps a), b) and c) for as many obstacles

as there are, the subroutine OBSTACLE is written.
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TABLE I

COMPUTER FROGRAM

SUBROUTINE FCTY{TIME ,THETA, THET) 4 ALT A, ALFDsAsADWAY L AYD ,AZ 4AZD N}
DIMENSION THETA(L}2THETD(L1) yALFACYLI ALFDIL I, ALL)},AD( L)
DIMENSICON CUSTH(6) 3 SINTHIA) yCOSALLO6) ySINALIO ) WX ITH oY UT 14 Z(T ),
1XO(T1eYD(T)oZDET) AP 4y T} ,COLTY
DATA XPyYP4ZP/6.8434,04/
DIMENSION THMAX{ 6) y THMIN( &) yALMAX{6) o ALMIN(S) s AMAX(7) 4 AMIN(7)
DATA AMAX/O e €52/ b AM TN/ 00y 6524/ yALMAX/ 6% 00 / JALMIN/ 6% 04 /
DATA THMAX/6%3,14/ ,THNMIN/E*=3 14/
"DATA AYMAX/ O/ AYMIN/Qu/ sAZHMAX/04/ yAZNMIN/O8/
DATA NP/O/
IF (N.SQNP) GO TO 111
NP=N '
NPLl=N+1
111 CONTINUE
DO 1 I=1,N
TE=TAN(ALFA(I)/2.)
TETE=TEXTE
DENE=1.+TETE
SINAL(I)= 2% TE/DENE
COSAL(I)=(1.-TETE} /DENE
T=TAN(THETA(I}/2.)
TT=T*T
DENO=1,+TT
SINTH(I)= 2.%xT/DEND
1 COSTH{I)= (1.=-TT}/DERND
CALL POS{COSTH,SINTH,COSAL,SINALsAyAYAZyXyY+Z+APyN)
CALL MPR(COSTHI{L)sSINTH(L),COSAL(Y},SINAL( 1)}
CALL GUIDE( XY sZyXPyYP,ZP XD yY Uy ZDy A AMAX ¢ AMIN, AY 4 AY MAX
1 OAYIINY AL AZMAK AZMINGH 4 CD )
CALL VEL{XMaYDs 2Dy COSTH,S INTH,COSAL,,SINAL, AYD,AZD
1 AyAD ,THETA s THETD yALF AL ALFD s THMAX o THMIN ALMAX y ALMIN, COy N)
RETURN '
END

SUBROUT I NE POSUCOSTHySINTH COSALySINAL Ay AY JAZy Xy Y42 4AP,N)
DIMENSION COSAL (1) o STNALCL) yCOSTH(L } o SINTHIL) oX (1) +Y(1)4Z(1)
1y, AWl4y4),4P(4,1),A(1)
DATA NP /0/
IFINLEQNP)Y GO TO 111
NP=N
NPl=n+1
111  CONT INUE
£0 3 I=1,NP1
K=N-1+1
AP(l,])=1,
AP(2+11=4(K+])
AP(2,1)=0,
AP(4%41)=C,
IF(KEQ.CY GC TO 8

CALL MTGULCDSTHIK) ySINTHIK) yCOSALIK) 3STNALIK) yALK) 4 AW )
3 CALL MTPLIAPy AN, APy 4y 14 4)
8 DO % y=1,NPL
X{N+2-3 1=AP(2,J)
YIN®2~JI=AP(3,4J) +AY
5 LIN+2-Ji=4P{&,J) +AZ
RETURN

-

END
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TABLE I (Continued)

SUBROUT INE VEL{XDyYUy ZDy COSTH,S INTH,COSALy SINAL,

65

AYD,AZ2D '

! A AD,THETA , THETO yALF A ALFD, THMAX , THMIN, ALMAXy ALMIN,CCyN)

DIMENSION XD{1),YD(1),ZD(1)4A(1)4AD{1),THETALL) , THETO{1) » CO(Ll},

1 ALFA{L) yALFD{1)y COSTH{1 )} oSINTH{L1)y CISALLL),SINAL(L),,ALMAXLI L),

2 ALMINC 1) o THMAX(1) s THMIN{ 1) yRES(3),VELO(4) 4POST (&) 4 PAS (&), PASS (4}
DIMENSTON R4y 4) sRI{434)yR0(494)¢ST394) 9wl 4,4) o WI(4y8) 4WG(4,4)

DIMENSION Wl (444) 9W2{444) yW3(444)yWda(444),uw5(444)

DIMENSION ..."'HM(4'4)'........‘HNMI("'A)
ADLL)=XD(1)
AYD=YDI(1}
AZD=20(1)
D01 I=ly4
o0 1 Jd=1,4
W(l,yd)=0.
WI(1,Jd)=0.

1 WG(1,3)=0.

DO 2 I=1,4
Wiil,1)=1.

WI(I,1)=1.

2 WGET,1)=1, i
DO 9 I=1,N
VELO(1})=0.
VELO(2)=XD(I+1)

(3)=YD(1+1) -YD(1l})

=ZD(1)

(2)=AD(1)

PAS(4)=0.

IF(T1.LT.2) GO T2 10
K=1=-1
IF({.LT.3)

L=1-2

GO TO 11

CALL MTG(COSTH(LY,SINTH(L),COSAL(L)SINAL(L)A(L),

CALL MTPLIWS y WG »R 94 94 44)

Ry

11 CALL MTGD(COSTA(K )« SINTHUK) yCOSALIK) ¢ SINAL(K) sAD(K) yALFD(K)THETD

1 (K), RD
GO TO (44546,748),K
GO TO (/4'1516'7'81'.QOQQOOODI15"0.'-00.')IK.

4 CALL MTPL(W1,WGRDy &4y 4y 4)
GO TC 3

5 CALL MTPL{W2yWo yRDy4,14,4)
GO TO 3

6 CALL MTPLIWIyWG1RDy414,44)
GO TO 2

7T CALL MTPLIWSG WGy RDs44444)
GO vC 3

8 CALL MTPLI{WS WG 4RDy 4y 444)

}
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TABLE I (Continued)

15 CALL MTPL(WMyWGsRD 4 14 44)
GO 70 3

3 CONTINUE
CALL MYGI{ COSTH(K)ySINTR(K), COSAL(K)ySTNAL(K),A(K ),y RT)
CALL MTG(COSTH(T) SINTH{L) 4COSAL{L) WSINAL(IYA(]), R)
CALL MYPLAWTIRI 9wy 4y4,4) ’
CALL MTPLI(W] yWl yRy&,444)
CALL MTPL(PASS,ywl,POST 4y4+1,4)
CALL SUBT(VELO,VELD4PASSy4)
IF(I.LTe3) GO TO 10
CALL MTPL(W2/W29494494,4)
CALL MTYPL(PASS,w2,P0SIy4y1,4])
CALL SUBT{VELO,VELD,PASS4)
iF (I.L.T«4) GO TO 10
CALL MYPL (W3 3W33Ry&y444)
CALL MTPL(PASS 43 ,P0OSI s441,4)
CALL SUBT(VELC,VELO,PASS,4)
IF{ 1.LT.5) GG TO 10
CALL MTPL W4y W4yR g4 s4494)
CALL MTPL (PASSyW44PDS 144, 1,4)
CALL SUBT(VELONFLOPASS 4
FF{Il.L7.6} GO T3 10
CALL HTPL(‘-‘:S,*SyRy41"?1‘{7}
CALL MTPL{PASS W5 +POSI 14 41 44)
CALL SUBT(VELO,VELGC,PASS, )

T EO BB CO OB EN 00000 TS PSPPI 000CNOsE0ORLIEOEOOESIOIEOIEOIITLEES

IF(TeLT M+l GO TO 10
CALL MYPLUWMyAMR 44 44 44)

CALL MTPL(PASS yaMyPOSI4,1s4)
CALL SUBT(VELO,VELO,PASS,4)

® 00 A0S RE PP L0 P LI PN DD LOOVENDCIIN NN LELODN

10 CONTINUE

CALL MTPL(PASS,WIy VELO:1491,4)

CAtL SUBT(PASS,PASS,PAS,4)

CALL SANGI(COSTHU{I ) oSINTH(I),COSAL(I),SINAL(T)A(I+1),ST)

CALL MTPL(RES,SI,PASS2y1,4)

AD(TI+1)=CC(I+1}%RES (1)

THETD(I) = R=S(2)

ALFD(1)= RES{3)
IFC(THETALL) L2 THMIN(T Y ) o AND(THETO{ 1) elT a0 o)) THETD{I)}=0.
FECOTHETA{ D) «GETHMAX(T) ) o AND G { THETD{I1.GTo0e)) THETD(I)=0.
FROCALFALT ) oGECALMAX(T)) dAND S (ALFDI L) GTe 0} ) ALFD(I)=0.

9 IF((ALFACI) JLESALMINCI}) ANDL{ALFD(1)WLT40e}) ALFD(I)=0Q.
RETURN
ENC -
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TABLE I (Continued)

SUBROUTINE GUIDE (XY 42 osXPeYPZPoXDyY Dy 1Dy Ay AMAXy AMIN, AY, AYMAX,

1 AYMINg AZyAZMAX,AZMINGN 4CO )
CIFENSION WO(3}
DIMzZNSION XET) o Y(T) 5 20T) oXD(T) oYD(T)2D(T),

1 A(T7)y AMAXET Y AMIN(T),CO 7)
COMMON/ AG/XMPR(3,3)
DATA DUM/044/
CATA CT/ 2./
DATA NP/OQ/
IF (NLEQ.NP) GO TO 111
NP =N ’
NP1=N+1
NP 2=N+2
NP3=N+3
111 CONTINUE
00 4 1=1,KP1
IF(L.EQNPLY GO TO 5
CALL C3STACLE(X{NP2=1) YINP2~1) yZ(NP2Z=11+X(NPL=1)yY (NP1-1)4Z(NP1-1),
L) e XDINP2=1), YDINP2=-T1)yZD(NP2=-1),1 )
GC TC 6
S CALL OBSTACLECX{L1Y oY1} gZ (1) p(XCL)=10a) oY1) 2Z(1)yXD(1),YD(1),42ZDI(1),
14NPL)
6 o IF(T.GTL1IGC TO 1
DENN=SQRT((XP=X{NP 1)) =x2+4(YP=-Y(NPL) )& %2+ (Z2P-2(NPL1))%%2)
VX= (XP-X(MP1) i)/ DENN
V= (YP—Y(NP!))/DENN
VZ= {IP-2{(MNPL1}}/DENN i
rr\-Xu\H’” }EVA HY L_v'\\'v"’l;:"/‘l +20(NP YV
VS=D UM~
IF(VS.LT.O.) VS=0.
TF(VS .GT L (CTHDUM) )Y - VS=CT *DUM
XD(NPL)=XDINPLY+VSRVX
YO(NPLI=YD{NPLi+VS=®VY
ZD{NPL )} =ZDINPL)+VS*VZ
1 CONTINUE
[F(I.LE.Y) GO TO 2
VELCT=XD(NP2-T)*UA+YD(NP2-1)2UY +ZD(NP2-1)%*UZ
VSUM=VELPR -VELCT
TECCLAINP3I=T) oL T  AMAX(NP3=T))eJR(VSUM. LT, O.)).AVJ.((A(VP3 I).uT-AMIN(N°3'
IMIN(NP3I-1)) 4 CR4(VSUMaGTH04))) VSUiM=0,
CO(NP3-T1)=1.
IF (VSUM.NELI W) CO(NP3-1)=0,
XO(NP2-1)=XD{NP2-1}+VSUMEYX
YOINP2=-13=YD(NPZ-1)+VSU4¥UY
IDINP2~1 )} =2DINP2-1)+VSUMRUZ
2 CONTINUE
IF(L. EJ.NPL) GO TO 4

DEN=SQRT ((X(V°7—l)‘X(NP1-I))**Zf(Y(VPZ-I)-Y(NPI-I))**2*(Z(NP2 I1-2(NP1-1)
1Z(NP1-T) %2}

UX=(XANP2~1§i~X(NP1-1))/DEN

UY=(Y{NP2-T) =Y (NP1 =T} }/DEN

UZ=(Z{NP2-T1)-2(NPY-1)) /DEN

VELPR= XD{HP2-T)*UX+YD(NP2-T)*UY+ZD(NP2-1)*UZ
IFCTeNES(N-L) ) GO0 T0 &

VX=UX

VY =UY

s



TABLE I (Continued)

vi=UZ
V3=VELPR

4 CONTINUE
IF(A(1 )} LTLAMAX(Y}) GO TO 20
IF {(X0{1)s GELO.} XD(11}=0,

20 IF(ALY1).GTLAMIN{LYY GO TO 21
TF{XD(L) LELO.) AD{1)=0.

21 IFCAY.LT,AYMAX) GO TO 22

IFIYC(1}.GE.Oe} YU{1)=0,

22 ITF{AY.GT.AYMIN) GO TO 23
IF(YD(1).LEL2.) YO(L1)=0.

23 IF(AZJLTLAZMEX) G2 YO 24
FF(ZD{1) «GEW 0. ZD(1) =0

26 IF(AZ. GY AZMIN) GO TO 25
IF(ZD{1}.LE«O.) 0(11)=0.
25 CONTINUE

IF(VSUM,EQ.0.) GO TO 30
WD(1) = XD(2)-XD(1)
HD(2)= YD(2) -YD(1})

WD(3 )= 2D(2}) ~-Z0(1}

CALL MTIPL{WDXMPR,yWDy3 41,3}
CTE=V3/ (WD{ 1} *VX+wD{2)*VY+WD(3)%VZ)

XD(2)= CTE*wD(1l)+ XDI(1}
YD(2]) = CTexwD(2) +YD(L)
2D0(2)=CTE¥D(3) +2D(1)

30 CONTINUE
RE TURN
END

SUBROUTINE OBSTACLE(XY,YY,2YyX2,Y2+22,XD,¥D,2D.,1 ]
DIMENS ION G(4)y GALl &) ,GA2(4),6A3(4)
XD=0.,
YD=04
IZC=0.
IF(I.NELD) GO TO 1
JAl=~1
JA2=~1
JA3=-1

1 IF{I.NELY) GO TO 2
JAl=0
JA2=0
JA3=0"

2 CALL CYLIN(4e%35e65=5e1%e405+495491e5¢0e09X1y Y1,421,X2,Y2,22,GA1,
D | JAL .G, ) . .
CALL CEQUIGAL,GyJAL v J)
CaLL SJUMUIXD,Y¥Dy2D,G)
CALL CYLINEO. 450595099 10+5¢5691 540 aeX1yY13214X20Y2:122¢GA2,4A2,
1 G,J)
CALL SUMU(XC,YDs20,G)
CALL EWUl GA2,G,JA2,J)
CALL CYLINC 7051 1e51-5e17e511e¢5+5¢ 1105400 1X10Y13Z)4X2,v2422,1GA3,+JA3
1167J) b
CALL SUMUIXD,YD ,42D,G)
CALL EJUICA3,G,JA3,J)
RETURN . :
END .
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SUBROUTINE CYLIN (XA ¢YAyZA XBsYB9ZByReDISTyXY Y1 921 4X24Y2 422 sGAsJA,
1 AyGod)
DIMENSION G(4) ,GA(4)
DATA N/2/,0ED/ 24/
DATA H/0.4/
CS=(XB-XA}&%2+4{ YB-YA) ¥%2+ (I3~ZA) %%
FS=(X1=XA){XB=XA}+(Y1-YA)R{Y3-YAI+{Z1-ZA)%{23~24)
IF(JALEQ.(=L)) GO TO 3
AS=(XB-XAi*{X2- X1 )+ (YB-YA)®(Y2-YL)I+(28-2A)*{Z2~-11)
BS=~(X2-X1}%%2={Y2-Y1)*xk2=(22- Zl)**z
DS=-AS
ES={X1-XA)X(X2-X1)+(Y1-YA R(Y2=-YL}+(21-2A)*(22~21)
DEN= AS*DS~-BS*(S
XL= {(ES*DS~3S*FS)/DEN

XM= (AS*FS-CS*ES)/DEN

IFL( XLaelTol) e AND«(XLeGT<0W)) GO TO 2
4 DO 1 KI=1l,4
1 G(KI)=0.

RETURN

2 IF ((XMuoLT.0.)eORW(XMuGTale))
DELTX= X1-XA+ XM%(X2-X1)- XL*{XB-XA)

GO T0 3

DELTY= Yl-YA+ XME(Y2=~YY)- AL*(YB-YA)
DELTZ= Z1-2ZA+ XM*(Z2-721)- XL*(1B-ZA)

D= SQQT( DELTX = OELTX+DELTY*DELTY+OELTZ*DELTZ)
DE=D*{D-R-DIST}#%N

IF((D—_—DI‘T).LE 0.) INT=2
DNUM= 2.4 %H% (H-D+R+DIST)
IF(ONUMGLT. Gs ) DNUM=0,

G(l)= DONUM*DELTX/DE
G(2) = DNUMKDELTY/DE
G 3= DRNUMTDIELTL /OE
Gidi= ONUM®D/DE

J=1

IF(JALEQ.O) RETURN-
G4 1=SRRT(G(6)*G(4) +GA(4 )*GA(4)+2,%(G(1)*GA(1)+5(2)%GA{2)+G(3)*
1 GAt3))} /DED

GIli=(GU1)+3A(1))/DED

G(2)=(G(2)+GA(2))/DED

GO3)=(G(3)+G54(3)) /CED

RETURN
3 XLsFS/CsS
J4=0
IF{XM.GCT,1s) GO TO 4
DELTX= X1-XA -XL®(XB-XA]}
DELTY= Y1-YA ~XL*(YB-YA)
DELT Z= Z1-ZA =XL*{ZB-1A)

D= SURT{DELTX:DELTX+0ELTY®DELTY+DELT Z%DELT 2}
IF((D=R-DIST}GT.0.) GO TO 18
IF(INT.EQe2) GO TO 18
INT=1
CONTINUE
DE=0* (D-R-DIST ) %£x%N
DNU4= 2,%H&(H-D+R+DI ST)
TF(DNUM LT .04 ) DNUM=0.
G{l) = DNUMSDELTX/DE

18

Gl2)=

Gl&)=
IF{JANELLY

DO 5 li=1,4
5 G(li)=6A(ll)
RETURM
END

DNUMKDELTY/DE
G(3)= DNUMXDE

LTZ/DE

DNUME/OE
RETURN
IF(G{4i.GEJGA(4))

RE TURN



TABLE I (Continued)

SUBKOUT INE MTGICOSTH, SINTH,CISAL,SINAL A, AZ )
DI MENST ON AL (4 44) )

AZ(1,1) C =1,

AZ(2,1)=A

AZ(3,1)=0.

AZ(‘OI).):U-

AZ(1,2)=0.
AZ(2,2)=COSTH
AZ(2,2)= COSAL*SINTH
AZ(4,2)= SINAL®SINTH
AZ{1,3)= Q.
AZ{2,3)= =SINTH
AZ(3,3)= CCSALxCOSTH
AZ(443)= SINAL®COSTH
AZ(1l.4)= O,
AZ (2 44) =0.
AZ{3,44)= —-SINAL
© All4,4)= COSAL
RETURN
END

SUBROUTINE MTGI(COSTH,SINTH,C OSAL,SINAL,A, AZ)
DIMENSION AZ(4,44)

AZ{l,1)= 1.

AZ(2,1)= ~A*COSTH
AZ(3,1})= AXSINTH

AZ{441)= 0O,

AZ{1,2)=0.

AZ(242)= COSTH
AZ(342)= ~SINTH

AZ{4,2)=0,

AZ(l,31=C.

AZL2,3)= CCSAL*SINTH
AZ(3,43)= COSAL*COSTH

AZ (4,3} =-SINAL
AZ{1l,4)=0. .

AL(2y4)= S INAL *S INTH
AZ(3,4)= SINAL*COSTH

AZl{4y4)= CUSAL

RETURN
END

SUBRCUT INE MTGD(COSTH,SINTH,COSAL,SINAL, AD,ALFD,THETD,AZ)
DI MENSI ON AZl444)
DO 1 I=1,4
1 AZ (1, 1)=0.
AZ(2+1)=AD
AZ{ 3y 11=0.
AZ(4,1)=0.
AZ{242) ==-THETD®SINTH
AZ{3y 2)=-ALFD*SINAL#SINTH+THE TD*COSAL=COSTH
AL(4 492 )= ALFD*COSAL*SINTHHTHETOXSINAL*COSTH
AZ(243)=-THETD*COSTH
AZ( 2y 3)= -ALFOXSINAL*COSTH-THETO®COSAL*SINTH
AZ(4y3)= ALFOXCOUSAL*COSTH-THETC=S INAL®=SINTH

AZ{2,4)=0.

Al(3,4) = ~ALFD#COSAL
AZ (6 44 )= ~ALFD%S INAL
RETURN

END
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SUBROUTINE SANGL  (COSTH,SINTH,COSAL,SINALyA, SI
DIMENS TON SI(2,4)
ST(1,11=0,

SI(241)=0. -
S1(3,11=0,

SI(142)= COSTH

SIL1,2) =SINTHACOSAL
ST(le4)= SINTHESIVAL
SI (2428 ==SINTH/A

SI{2y3)= COSAL*COSTH/A
SI(244)= SINALXCOSTH/A
SI(342)=0.
SI(3,3)= ~SINAL/{AXSINTH]
SI1(3,4)= COSAL/ (A%S INTH)
RE TURN
END

SUBROUT INE MPR{CISTH, SINTH,COSAL ,SINAL)
COMMUN/AG/XMPR(3,2)
XMPR{1ly,1)= SINTH*SINTH
XMPR (21 )=-COSTHxS INTH*CO3SAL
XMPR{341)= —COSTH®SINTH®SINAL
XMPR(243) = ~SINTH®SINTH®COSAL*=STNAL
XMPR(2 42)= 1«=S INTH%SINTH%COS AL*COSAL
XMPR{ 333)= 14-SINTH*SINTHA®*SINAL*SINAL
XMPR (1, 2})=XMPR(2,1)
XMPR{1,43)=XMPR(2,1)
XMPR{ 342} =XMPR(2+3)
RETURN
END

SUBRGUTINE SUBT{USV WsN)
DIMENSION UCN) o VIN) s W N) yAU(8)
DO 1 I=1,N :
1 AUD =V Ti=-wil}
VG 2 I=1,N
2 Ulli=Au(l)
RE TURN
END .
SUBRQUT INE SUMU({XDyYD42D,G)
DIMENSICN G(4)
XD=XD+G(1)
YO=YD+G(2)
2D=20+G(3)
RETURN
END

SUBROUTINE EQUIGA,GyJA,J)
DIMENSION Gl4) yGA(4)
DC 1 JJ=1,4
1 GAlJI) =G (JJ)
JA=J
RETURN
END

SUBRCUT INE MTPL{C+A,BsNyM,L)
C C=A%B
DIMENSICN CU{NM) sAINyL) yBL{LM)y D(8,8)
DO 1 I=1,N
DO 1 J=1,.M
D(1,Ji=0.
DO 1 K=1,L
i D‘I'J):D((-J)"A(IyK)*B(KrJ)
DO 2 I=14N
DO 2 J=l .M
2 C01,;0)=D(1,J}
RETURN
END
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APPENDIX

SOME OBSTACLES AND THEIR

INFLUENCES

We will develop the procedure by which the vector g is computed
for certain elementary obstacles which are, triangular plane elements,
spheres and cylinders. Other obstacles could be approximated by com-~

binations of the three mentioned above.
Triangular Plane Element

IFor a plane or région of plane only an endpoint can be ciosest to
it. Let ( a, b, c) be a vector and ( Xos Tos % ) be a point in space.
The plane that is perpendicular to the vector and passes by the point

is,
a(x - x.)+ b(y - yo) + c(z ",zo) =0 (A-1)
By analytic geometry the distance d from a point ( Xps T T Y to the

plane (A-1) is

(A-2)

a(xp— xo}+ b(yp— yo)+ c(zp- zo)

]

2 .2 2

Where s—.—\/a + b e ¢ (A-3)

The continucus and decreasing function of d mentioned previcusly will



Th

be chosen in this and in the next cases to be,

£(d) = —29@—3'21 | 0O<d<h (A-L)
d
£(d) = 0 d> h (A-5)
and g = £(d).( a/s, b/s, cfs )‘ (A-6)

where h is an arbitrary distance.

So far we have considered an unlimited plane. Let us now see how
to compute g for a triangular plane element. The vector g computed at
(A-6) will alsc hold for a triangular element provided the endpoint
is on the outward side of the triangle ( this is because the triangle
will always part of a solid body) and its projection on the plane of
the triangle falls inside it. ‘Létlthe triangular element be defined
by ité three vertices ( %, ¥, 2, ), ( X, Tus Zp ) and ( Xos Vo Zg)
such that the succession a, b, ¢ define an outward going normal when
a right hand screw is considered. In this case the components of the

normal to the plane when expressed as a function of the coordinates of

Pa’ Pb and.Pc are,
a-:(ys-ya)(zc-za)- (z~2,) (v,~7,) : (a-7)
b =(zb~za)(xc—xa)- (xb—xa)(zc-za) (A-8)
¢ =(x %)y v,)- (y,-v,) (x =) (a-9)

/ .
To cheeck whether Pp is in the outward face of the triangle we find
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d by using (A-2) and (A-3) and check its sign. If d is positive then
point Pp is towards the outward face of the triangle. To checkvwhether
the projection of Pp on the plane qf the £riangle falls inside it,

have to check whether the projection of Pp falls in one of the semi-
planes defined by each of the sides of the triangle. So for this to

happen each and all of these three determinants should be negative,

a b c'
1 Gepx,) (yp-ya) (z5-2,) | < O (4-10)
(%%, (n,v,) (z,-2,)

a b c

(x5x) (yp7p) (zp-z,) | < O (4-11)
(x,-x.) (v =7,) (z,-2,)

a b c ‘

(x52,) (75¥e) (z5-2)| < © (A-12)
(x,~x_) (v,-v,) | (z,-z )

So if d is positive and the three determinants are negative g will be
computed by (A--6). Otherwise, g will be taken as zero, this meaning
that the face of the triangle itself has no influence although the

sides and/or the vertices might have.
Sphere

Let the center of the sphere be Pc (.xc, Yor Z¢ ), the radius be

R ( for a point R equals zero ) and let a link be given by its two end-
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points Fy ( TRATE ) and P, ( Xps Yo Zp ). In order to find if the
endpoints or the segment itself are closest to Pc, we project P, on the

line defined by Pl and P2; the equation of the line is,

X = xl -+ ﬁ(x2-xl)
7=y, + plyyyy) (a-13)
z =z 4 /A(zz-zl)

The value of the parameter will determine which endpoint or segment
will be closest to Pc s by minimizing the square of the distance from

P, to P(/“)‘ The result is,

_ (xg=x3) (x5-%7) + (y.-v7) (Yz—il) + (zé—zl)(zz—zl)
- 2 \2 2 (A-14)
(X)) (yoyq)T + (2pm29)”

If /5<O, P, is closest to P,. If 0< m<1 the segment PlP2 is closest to
P, If u>1 P, is closest to P . As we know u we know P(/u.), we can
fird the vector (PC—PQM)) and its magnitude which is the distance d.

If /u<0 we have to take m=0 because Pl is then the. nearest point to
Pc. Similarly if /u> 1 we have to take /A’-‘—'l. We have now all the data

for computing g.
Cylinder

Let the cylinder be defined by its axis and its radius. Let the
axis be defined by two points Pa and Pb' We are interested only in lim~
ited cylinders, that is the influence will be zero if it falls outside

the segment defined by Pa and Pb' Let the endpoints of a link be Pl and

P2’ Then the equations of the axis and of the link are,
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xp-.: xl-o- /A(Xz-xl) '
Vo= ¥+ A1) (A-15)

5= o+ p(25-2,)

Xy = Xg+ )‘(xb'xa)
Yoy = Vot Aop-v,) (A-16)

B = B+ Azymzy

To find the influence of the c¢ylinder on the link we find the common
normal. This we do by minimizing the square of the distance PaxPp with
respect te the parameters /uand X. This gives,

N = doeg + bgfg agfg = cgeg

and M= aud, + bgc, (A-17-18)

d bec
astg * P55

ag = (x =xg) (xp-x7) + (y,,) (7p-yq) + (2y-2,)(z5-2)
2 2 2
bs = (xz'xl) + (Yz‘yl) + (ZZ-Zl)
2 2 2
cs = (p%a) + Gp¥a) + (72,
dg= - ag

ey =(xx) (xpmxy) + (r77,) (p7p) + (zl'za)(52'zl)

£ o= Gox Yx ) ¢+ (v )@y) + (272) (5 -2)

-

If A<0 or »>1 then the influence will originate outside the segment

Pan, so g will be rwll for this case. If 0< A<1, we have three pos-—

sibilities;/;&<0, meaning Pp is closest to the cylinder, in this case
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we take /&:0. If O<9u<d.then the segment Pl 5 is closest to the cyl-
inder. And if/4>]q then P; is closest to the cylinder and we'take
M=1. So when 0<x<1, we know P ()«) and P (/u) and we can find the
direction and magnitude of the vector (P -P ) which will be related
to g in that it has the same direction and 1ts magnitude minus the
radius of the cylinder is the distance d which we use for evaluate the

magnitude of g using the decreasing function previously defined.
General Obstacle

In order to use the three elements defined previously, iet us con-
sider a tetrahedron as an example. Let the tetrahedron be defined by
its four vertices P,, P,,, P, and Fy. In order to find the influence
created by the tetrahedron, we find the greatest of the influences

created by the following elements: triangles (PP, F ), (P P.Py)

a b c
(P Pb), (P,P,Py), cylinders (R=0) (P P ), (P P ), (P Pd), (P P ),
(Pde), (P,P3) and spheres (R=0) (Pa),~(Pb), (P.), (Pg). This proce-
dure can be extended any obstacle of arbitrary shape by approximating

the obstacle by a group of triangles like which is very similar to the

method of triangulation used by topographers and surveyors.
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