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PREFACE 

This study is concerned with the hybrid computer simulation of 

stochastic systems operating in a time·critica1 environment. The 

primary objective is to determine the effects of time·critical hybrid 

computer operations on systems with random parameters operating in an 

unmodeled noisy environment, The stochastic model chosen for this study 

is a linear system with the linear Kalman filter and a nonlinear system 

with related variational and extended Kalman filters. 
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CHAPTER I 

INTRODUCTION 

For more than a decade the areas of computer simulation and optimal 

control theory have made explosive contributions to the existing body of 

theoretical and technological information related to the engineering 

sciences. In particular, the use of hybrid computers as a simulation 

tool and optimal filtering algorithms for stochastic estimation have 

given specific impetus for scientific development. The application of 

hybrid computers and filtering techniques to practical engineering prob­

lems have resulted in increased economy and improved performance, In 

addition, the investigation of large-scale engineering problems of a 

more complex nature has now become possible. 

The motiva,tion for recent improvements in hybrid computer simula­

tion has been to increase the capabilities for handling sophisticated 

problems that could not be simulated with previously existing analog or 

digital computers. Typic<:ll problems included realtime simulation of 

missile systems with hardware-in-the-loop. The objective has been to 

combine the inherent speed and parallel computation of the analog com­

puter with the improved accuracy and dynamic range of the digital com­

puter~ The application of hybrid computers to aerospace trajectory 

optimization probl~ms, air defense missile analysis in a time-critical 

environment and Monte Carlo simulation studies have demonstrated the use­

fulness of such a tool. However, hybrid computation has introduced new 
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dimensions of complexities to the analysis problem, such as time delay 

due to digital computation, signal sampling, data quantization and data 

reconstruction. 

The continuing effort to obtain improved performances from engine­

ering systems, particularly those operating in noisy environments, has 

introduced a new era in the development of optimization techniques. 

Using stochastic optimal estimation theory, improved performance can be 

obtained for those dynamical systems subjected to random input and 

measurement disturbances. This better performance typically requires 

accurate modeling of the physical system in terms of time-varying para­

meters, plant dynamics, and the sta,tistical nature of the environment. 

Significant in the development of optimal filtering and smoothing theory 

has been the study, evaluation and implementation of suboptimal filters. 

Furthermore, economic considerations and realtime operation requirements 

have provided the motivation for developing fast and efficient methods 

for handling the enormous computational requirements of a fully imple­

mented optimal filter. 

The hybrid computer implementation of the optimal estimation algo­

rithm establishes a basis for improved dynamical system performance re­

sulting from increased computational efficiency, This improved compu­

tation permits faster update rates for the estimation algorithm, which 

results in reduced mean-square error for optimal and suboptimal filters 

in a realtime environment. 

Background 

The optimal selection of system parameters is one of the most 

important problems in systems engineering. The use of hybrid computers 
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with Monte Carlo methods has been the most practical approach for in­

vestigating complex nonlinear dynamical systems with random parameters, 

random inputs and random initial conditions. Parameter selection in a 

multiparameter system using a hybrid computer has been studied by Bekey 

(1), and dynamical systems with random disturbances have been investi­

gated by Korn (2,3) and Steinmetz (4). 

The advantage of combined operation of the analog and digital 

computers has been realized only by overcoming a unique set of problems 

characterizing hybrid computers. Specifically, digitization problems 

(5,6) include compensation for the inherent time delay due to digital 

computation, sampled-data problems, analog-to-digital quantization and 

digital-to-analog data reconstruction.· Furthermore, analog related 

problems (7,8) include the limited bandwidth of the analog computer 

components, delays due to analog computer mode switching and reset time 

and delays caused by digital-to~analog conversion. Difficulties en­

countered with hybrid computer simulation for time-critical environments 

have been identified by Fineberg and Serl in (9). An equally important, 

but less obvious, problem is the partitioning of a given system between 

the analog computer and the digital computer in a hybrid system (lO)o 

Recent advances in analog and digital computer technologies have 

minimized many of the basic problems that characterize the hybrid com­

puter. Bedient and Dike (11) described the configuration of a modern 

hybrid computer using a Control Data CDC 6400 digital computer, four 

Comcor Ci-5000 analog computers and associated linkage equipment. 

Further development by Soma, Crunkleton and Lord (12) resulted in 

analog-digital computer interface improvements and related software for 

improved hybrid computer simulation. Moreover, Graycon, Nolby and 
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Sanson (13) presented a detailed ·description of the actual operation of 

a high performance computing system for a time-critical application,. 

Comprehensive error analyses of hybrid computer systems were performed 

by Karplus (14) and Mitchell (15L Miura and Iwata (16) studied the 

effects of delays due to digital computer execution in a hybrid computer. 

Furthermore, Mitchell (l7) determined the effects of di gi ta l computer 

compensation of the computational delay~ Vidal, Karplus and Kaludjlan 

(18) investigated the use of sensitivity coefficients for correcting 

quantization errors, while.Gelman (19) proposed a method of corrected 

inputs for improved hybrid simulation, However, the dilemma of problem 

partitioning between the analog and digital computer remains with the 

hybrid computer user. At present there are no clear guidelines avail­

able to expedite this decision. However, a reasonable initial parti­

tioning effort involves a general knowledge of hybr·Jd computation, a 

detailed knowledge of the particular hybrid computer system to be used 

and a working knowledge of the dynamics of the given engineeting problem,. 

Recent activities in optimal filtering theory, initiated by Kalman 

(20) and Kalman and Bucy (al) in the early sixties; have established a 

new basis for optimization techniques, An increasing body of literature 

on Kalman fi 1 teri ng pro vi des a means for obtaining improved performances 

for engineering systems in a realtime environment with stochastic dis­

turbances. Mendel and Gieseking (22) compiled a bibliography in excess 

of 900 references on the linear-quadratic-Gaussian problem of which 

optimal linear filtering is an integral part,· 

Since the earliest applications of Kalman filtering, the need for 

improved implementation including more efficient computation has become 

a primary consideration, Practical applications have been reported by 
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Gains (23) and by Schmidt, Weinberg and Lukesh (24) and theoretical pre­

sentations have been made by Meditch ·(25), Jaz:winski (26), Sage and 

Melsa (27) and Bryson and Ho (28). Recently, .Mendel (29) reviewed the 

practicality of a. fully implemented Kalman filter from the computational 

viewpoint; and Simon and Stubberud (30) investigated the possibility of 

reducing the orde.r of" the fi"lter equations to obtain a more efficient 

computation •. Brown and Sage (31) demonstrated the effects of simplify­

ing assumptions on the statistical information or modeling errors in 

plant dynamics, which typically results in a suboptimal filter, In 

addition. Fitzgerald (32), Schlee, Standish and Toda (33), and Price 

(34) investigated divergence of the Kalman filter for various error 

sources. 

Applications of the Kalman filter to larger and increasingly more 

complex engineering systems operating in time-critical environments re­

quires special considerations with regard to practical imp1ementations. · 

Bierman (35) and Friedland (36) discussed imp1ementatfon problems for 

the discrete Kalman filter, and-Nishimura (37) investigated error bounds 

for the continuqus filter applications. Bucy, Merritt and Miller (38) 

demonstrated the enormous computational advantage in using hybrid com­

puters for a particular nonlinear estimation problem. In particular, 
•· 

the results of this effort showed that one hybrid computer with 25Q in­

tegrators and multi pliers operates at speeds equivalent to forty-nine 

CDC q600 digital computers operating in parallel. However, their results 

were obtained in an all-digital environment by synthesizing the hybrid 

computer on a digital computer. Hybrid computer implementation of 
~ 

Kalman fi1tering for· systems with stochastic parameters operating in a 

time-critical e~vironment has not been sufficiently imvestigated to 
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determine the relative advantages over an all-digital implementation. 

It is significant to note that only three documents, Bucy et al, (38), 

Tacker (39,40), on the time-critical hybrid computation of Kalman filter­

ing were located in a computerized search of the libraries of the U,S, 

Army Document Center and the National Aeronautics and Space Administra-

tion. These two libraries include over two million research documents, 

engineering reports and scientific abstracts. This extensive search 

indicates the minimal amount of investigation that has been directed 

toward using the hybrid computer as a tool for improved computation in 

Ka·lman filtering. 

System and Filter Descriptions 

Consider an nth-order linear, time-varying, dynamical system S 

described by 

. 
~(t) = ~(t) ~(t) + §(t) ~(T) (L l) 

S: 
t(t) = H(t) ~(t) (L2) 

where ~(t) is then-dimensional state vector of S, W(t) is an r-vector 

input, A(t) is an n x n matrixi. B(t) is then x r gain matrix, ,t(t) is 

them-vector output, and H(t) is the output matrix of S. It is assumed 

that the input ~(t) to Sis a vector-valued white-noise Gaussian pro­

cess with zero-mean given as 

E{~(t)} = 0 for all t ( 1 , 3) 

and covariance matrix denoted as 

( l O 4) 
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where o( ·) is the Dirac delta function and Qw(t) is an r x r symmetric 

positive semidefinite matrix. Let t 0 denote the initial time and ~(t0 ) 

the initial state vector of S. It is assumed that ~(t0 ) is a vector­

valued Gaussian random variable, independent of ~(t), with known mean 

~nd known covariance matrix 

Suppose the output i(t) can be observed only in the presence of white 

Gaussian noise, Therefore, let the observed signal be denoted as 

z(t) = H(t) x(t) + v(t) - ~ . (1. 7) 

where y(t) is a vector of Gaussian white-noise processes with zero means 

E{v(t)} = o for all t (LS) - -
and covariance matrix 

cov[y(t);y(-r)]::; E{y(t) yT(-r)} "'Q/t) o(t--r) {L9) 

where Q/t) is symmetric positive definite, Furthermore, it is assumed 

that y(t), ~{t) and ~(t0 ) are independent, 

The Kalman Filter 

In general the state of Sis not available for measurement, There­

fore, the problem is to obtain an estimate of the state ~(t) in the 
A 

sense of least mean-square error. This estimate ~(t) must be obtained 
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by using the noise-corrupted signal ~(t). The objective is to construct 

a filter F to accept the available data ~{t) in realtime and produce a 
... 

vector-valued signal ~{t) such that the error to be minimized in some 

sense is defined as 

" ~{t) =. ~{t) - ~{t). {1.10) 

The resulting filter for such a system is directly related to the im­

posed constraints. Here the filter will be constrained to be linear and 

time-varying. It is required that the estimate of the state of s be 

unbiased and, moreover, that the estimate be a minimum-variance estimate. 

The derivation of the Kalman filtering algorithm has been developed 

by various authors as previously indicated. A different derivation or 

variation of the algorithm usually reflects the particular intended 

application. For completeness, the general results for the optimum 

linear continuous filtering algorithm are included hereo The optimal 

linear time"'.'varying filter for the system S given in (L 1) and {L2) is 
. 
A A A 

~(t) = A{t) ~{t) + K(t) [~{t) - H(t) ~(t)J (1. 11) 

with an error covariance matFix differential equation 

P(t) = A{t) P(t) + P{t) AT{t) - P(t) HT{t) QV-l(t) H(t) P(T) + 

(1.12) 

The time-varying gain K{t) is given as 

(L 13) 

where P(t) is the. n x n error covariance matrixo The remaining terms in 



9 

(1.11}, (1.12) and (l.13) have been defined previously for the dynamical 

system. An important result of the linear optimal time-varying filter 

is that the time-varying gain K(t) can be precomputedo The non-realtime 

results can be used during the actual system operation and optimal 

estimation procedures. This also implies that the P(t) calculation will 

not be required during on-line operation, whic;:h is a very important con­

sideration for time .. critical computation or simulation operations. How­

ever, as will be shown later, for certain applications of the filtering 

algorithm for nonlinear systems, this efficiency of operation is not 

possible. A dynamic simulation of the linear time-varying system model 

and the linear optimal filter is shown in Figure lo 

Extensions to Nonlinear Systems 

The stat~d results and operating conditions of the previous section 

were developed for linear systems. If the system involved is nonlinear, 

then the use of the Ka 1 man fi 1 teri ng algorithm requires a different set 

of constraints and operating conditions. The application of the filter­

ing algorithm to nonlinear systems has been treated by a number of 

authors, such as Sage and Mel sa (27) and Jazwinski (26). The two 

particular extensions of the linear filtering algorithm of interest are 

the linearized, or variational filter, and the extended filter. In the 

first case the filtering algorithm is applied to linearized variations 

of the system about a nominal trajectory ~N(t) obtained by replacing all 

noise disturbances by their mean values. Jaz.winski defined this con­

figuration of the Kalman filter as the 11 variational filter 11 • The extend­

ed filter involves the application of the filtering algorithm to varia-
A 

tions about the estimate of the system state ~(t}o For continuity the 
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r------- IC=P(O) ____ .- .------------, 

P(tl K(t) 
1-----.....-ll't P( t) HT( t )Oy(t r I i--..------,~ 

A(t) P(t) •-----1 

TIME­
VARYING 
GAIN 

PRE-CALCULATION OF GAi N _J 
L-------------- -------------

r--- ·-----·-------, 
I 
I IC= ~(O) y'(t) 

I 
I . I wm + X(t) 

I .. B(t) 

I 
I 
I 
I 
I 
L DYNAMICAL SYSTEM 
------------ ___ J 

r--- --------, 
I\ 

IC=~(O) 

I\ 

~(t) 

---.H(t)I"". t----~ 

L KALMAN FILTER · . J 
---------·----

Figure 1. Block Diagram for the Linear Dynamical System and 
Related Kalman Filter. 
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resu1 ts for these appl i cati ans of the two particular fi 1 ter confi gura­

tions are included here •. 

The Variational Kalman Filter 

Consider a nonlinear, continuous, time-varying system described by 

the nonlinear differential equation 

8(t) = f(~(t),~(t),t) (L 14) 

with a nonlinear observation of the system states given as the vector 

;(t) = b(~(t),t) + y(t) (1.15) 

where tis time, ~(t) is the vector of states, ~(t) is a vector of white 

noise processes described by (1.3) and (1.4). A deterministic reference 

or nominal trajectory ~N(t) is obtained from 

where ~N(t) is a vector of the nominal states. Here the deviation or 

·va~iation from the nominal ~rajectory is defined as 

·· 2! ( t) = ~ ( t) - ~N ( t) (1.17) 

and 

~(t) = !(t) - ~N(t). ( 1. 18) 

Using expressions (1.16), (1.17) and (1.18), the nonlinear system 

functional f(•) can be expanded in a Taylor series to obtain the dif­

ferential equation that gives the variation between the actual state 

and the nominal state to first order. 
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t 

• ~f[X(t),~(t),t] 2!(t) + af[~(t),~(t)~tJ oW(t) 
cSX(t) ~."'!"" (L 19) = ax(t) a~(t) .,. ~N ( t) ~N(t) 

nw(t) nw(t) 

The variation of the observation vector evaluated about the nominal is 

Z(t) 
arr[~(t),tJ a~(t) + ~(t) 

-= - ag(t> · 
~N ( t) 

(L20) 

The results shown in equation (1.19) are in the same form as the expres­

sion for the linear system given in equations (1.1) and (1.2) where 

t>, af[~(tJ~.~(t),tJ 
A( t) - , a8{'tJ' , ~N ( t) (l.21) 

nw(t) 

and 

( ) ~ af[~(t),~(t),tJ 
B t - , a~(t) ~N(t) • ( 1. 22) 

nw(t) 

By evaluating the new expressions for A(t) and B(t) at the nominal value 

of the sytem state, the linear filtering algorithm can be applied to 

nonlinear systems. An important characteristic is retained in this 

particular application, Since the nominal trajectory is deterministic 

and can be pre-computed, the time-varying gain K(t) can also be pre= 
' ' 

computed, In Figure 1 the value of ~N(t) would be subtracted out ot the 

summing point for z(t) to yield oZ(t). This modification results in the - ....,...... 
"' filter output being g(t), which requires that the nominal ~N(t) be 
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added to the filter output to give the estimated state R(t)o 

The Extended Kalman Filter 

The results for the extended filtering algorithm are derived by the 

same procedure as for the variational case. The one essential dif­

ference in the expressions in (1.19), (l.20), (1.21) and (l.22) is that 
"' the nominal ~N(t) is replaced by the estimate of the state ~(t). The 

required results are given as 

( ) ~ af[~{t),~(t),t] A 

At = .. . a8(t) ~(t) { l. 23) 

riw(t) 

{ ·)A af[~(t),~(t),tJ" 
B t - 1 a~(tj ~(t) ( 1 • 24) 

nw{t) 

A ah[~(t),tJ " 
oz(t) - 4 a8(t). ~(t) (L25) 

A very important difference exists between the variational and ex-

tended filtering algorithms with regard to time-critical applications. 

For the extended case the estimated trajectory or state about which the 

variations occur is no longer deterministic and cannot be precomputed, 

which prevents the pre-calculation of the time-varying gain K(t), 

Therefore, the error covariance matrix must be computed on-line. This 

requirement places severe constraints on the time-critical ,application 

of the extended filter. It should also be pointed out that the pre­

calculated nominal ~N(t) in Figure l enters into the simulation as 

described above for the variational application. 
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Time-Critical Hybrid Computer Operation 

The increased complexity of simulation requires that a precise 

definition of realtime and time-critical operations be established, The 

most gener,al clefinition of realti"me operation with digital computers 

applies to such operation as on .. line banking systems, airline reserva­

tion systems and, inventory control;· The nature of these systems is 

such that a variable response time from the computer of a few seconds 

is not detrimental to the system operations. Therefore, any definition 

of realtime operatiohs must be sufficient to include all realtime com-
1':, 

puter operations independent of the size of the simul.ator orthe problem 

under study. A consistent working ·definition of time-critical hybrid 

computer operation is given by Fineberg and Serlin (9) and GraYton, 

Nolby ancl Sanson (13}. In particulc;lr, an application is said to be 

time-critical if it demands a response from the digital computer within 

a fixed time after it has received a st'imul us. This required response 

time is a1;. least one or two orders of magnitude shorter than previously 

described for on-line realtime operations. Furthermore, for a time­

critical operation, not a single omission of the stimulus-response cycle 

is permitted during the entire operation. 

Any discussion of a time-critical hybrid computer operation with 

hardware-in-the-loop must be referenced to the concept of frame time 

(41}. The frame time generally can be considered to be the total con­

tiguous time required for the digital computer to complete the required 

digital operation for one iteration of the simulation. The maximum 

length of this time period is determined by the dynamics of the system, 

sampling rates, error budgets and related factors.· Figure 2 shows some 



PRIORITY. EVENT 
INPUT I OUTPUT 

.. 

Tc 

Tr 

Tt 

EVENT 1 
1/0 

PRIORITY EVENT 
INPUT I OUTPUT 

--
TIM 

Figure 2. Frame Time Consideration in Hybrid Computation. 

15 

E 



16 

of the parameters for an ideal time-critical frame timeo The priority 

or stimulys events are generated by real world events and may typically 

be a realtime clock with period Tf. The period Tc is the amount of time 

the digital computel" takes to perform the actual calculation, and Tr is 

the time in which the real world demands a response from the digital 

computer and the output is required, In all cases, Tr must be equal to 

or less than Tf~ and the ideal situation is that Tc= Tr= Tf. However,· 

for any but the simplest problem this ideal situation is not achieved. 

Due to the dynamics in a typical problem, multi-rate sampling is 

usually necessary c,l.nd requires cal cul ati on and output with different 

priority levels, Multi-rate sampling and a variable interval within the 

frame time makes any compensation for computational delay difficult, if 

not impossible. Without compensation the error in the simulation result 

increases very rapidly, Shown in Figure 3 is an example of a realistic 

time-critical hybrid computer frame time. A dynamical subsystem may re­

quire an output response at Trl' but only requires computational time 

Sl. The calculation for a second subsystem can begin immediately after 

completing the calculation Sl. This calculation continues until time 

for a stimulus response for subsystem Sl, shown as Event lo The calcu~ 

lation for 52 can be interrupted for the Event 1 input-output since its 

stimulus-response cycle is Tr2 or greater. The distribution of calcu­

lation time over multiple sub-frames of the basic frame time is required 

to achieve an efficient computer operation. However, the allowable dis­

tribution is directl,y dependent upon the partitioning of the dynamical 

system between the analog and digital computers. The partitioned con­

figuration contributes to the random noise in the hybrid computer oper­

ation indir~ctly through sampling rate errors, quantization, data 
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reconstruction, truncation, roundoff, time skew and uncompen,s.ated time~ 

delays. Thi$ dependency emphasizes the importance of the partitioning 

process. The difficulties in obtaining time-critical hybrid computer 

results increases when the dynamical system includes stochastic 

processes. 

A realtime hybrid computer ope·ration is typically viewed as the 

synchronized exchange of data between the analog and digital computers 

through an interface. A time-critical operation with hardware included 

adds a new dimension of complexity to the total simulation, All inter­

faces, either for hardware or simulation, act as an error source and 

each input channel is .a potential source of unknown random disturbances. 

Figure 4 shows a typical configuration of a time-critkal h¥brid com­

puter with _possible noise sources indicated. Two noise sources used for 

hybrid operations in this thesis research were a zero-mean Gaussian dis­

tribution to represent hybridization noise and a z@ro-mean uniformly 

distributed noise source to represent the sampling errors. 

Research Objectives 

The initial objective of this research is to determine the effects 

of the time-cri ti ca 1 hybrid computer implementation of cont'inuous 

stochastic filtering algorithms. Secondly, for any degradation that 

might occur in the stochastic filter performance due to this implementa­

tion, modifications will be made to obtain an improved operation. This 

research wi11 be accomplished by developing an all-digital computer 

simulation of a time-critical hybrid computer operation" The Kalman 

filtering algorithm will be implemented with the time-critical simulation 

and the effects of hybridizing the noisy system and filtering algorithm 
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will be established~ Monte Carlo evaluations will be performed for com­

parison of results. 

Thesis Outline 

Following this introductory material on time-critical hybrid oper­

ations for stochastic systems, the implemented all-digital and time­

critical simulation program ts described at the beginning of Chapter II. 

Simulated hybrid computer results with the Kalman filter as a particular 

stochastic algorithm for linear systems are then giveno In Chapter III 

a variation of the stochastic algorithm is used for a nonlinear system 

to determine the effects of time-critical operation in a more complex 

simulation model. Chapter IV included hybrid simulation refinements for 

frame time compensation, Kalman gain modification and problem partition­

ing. CQhclusions and recommendations are presented in Chapter V, 

i g l ' 



CHAPTER II 

TIME-CRITICAL SIMULATION OF LINEAR 
CONTINUOUS SYSTEMS 

The success of simulating any time-critical operation is directly 

related both to the mathematica·l representation of the physical system 

and to the simulation of these models. Therefore, it is important to 

discuss the approach in developing the simulation used in this research. 

The time-critical system operation was simulated by developing an all­

digital computer program. The simulation was designed to include linear 

and nonlinear systems with related filter configurations. Only that 

part of the total simulation that pertains to linear systems will be 

discussed in this chapter. The results of the simulation program pre­

sented is for a particular· linear system and the related Kalman filter. 

The features of the simulation program for nonlinear systems and re­

lated fi 1 ter configurations wi 11 be discussed in Chapter II I. A com­

plete Fortran list1ng of the total computer program is included in the 

Appendix~ 

Non-Time-Critical Simulation Operation 

The total simulation .Program has seven distinct operational modes: 

time-critical (ITC=l), non-time-critical {ITC=O), Monte Carlo operation 

{MCR=Number of runs), single sampl~ function {MCR=l), linear system and 

Kalman filter {~FNRL=l), nonlinear system with variational filter 

{KFNRL=2), and nonlinear system with extended filter {KFNRL=3). 
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Additional options may be specified for some of the major modes of oper­

ation, e.g. for time-criticql operation the hybrid sampling update rate 

and frame time may be specified· with TSAMP. The integer value associat­

ed with TSAMP designates the number of non-time-critical integration 

time intervals to be included in the hybrid update frame time .. The 

operational modes of primary interest here are time-critical, non-time­

critical and Monte Carlo operation for a linear system and, related 

Kalman filter. 

Time-critical operation implies the synchronous operation of an 

analog computer and a digital computer with the associated frame time. 

For the purpose of this research the non-time-critical mode implies that 

the simulation process is in parallel, analogous to a,nalog computer 

operations in which the concept of frame time does not apply. In the 

hybrid or time-critical mode, the analog simulation may be represented 

by a non-time-critical operation. The totally non-time-critical simula­

tion represents the continuous system without any of the associated 

effects of hybridization, The results from this mode of simulation may 

be used as basis of comparison for the time-critical hybrid computer 

operation. Since the non-time-critical mode of operation corresponds to 

a very accurate analog computer simulation, the digital computer inte­

gration step size must be chosen to minimize the effects of digital com­

puter integration. Acceptable hybrid computer results may typically be 

obtained if the particular system variable partitioned on the digital 

computer is sampled at least ten times per cycle for the highest fre­

quency of interest. This lower bound often requires some compensation 

for the sampling error reflected as digital computer execution time. 

For a realistic simulation of the analog operation, an integration 
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interval corresponding to forty samRles per cycle was selected for use 

with a fourth-order Runge-Kutta (RK4} integration at~orithm, 

Shown in Figure 5 is a flow diagram of the dominant operational 

features of the non...;time...;criti cal simulation. The maj,ori ty of the oper­

ations indicated are common to other modes of the simulation, The pre­

calculation of a nomina-1 trqjectory ~N(t) systematizes the filtering 

procedures for 1 inear systems with non-zero-mean disturbances and for 

nonlinear systems. The value of ~N(t) is subtracted and added at the 

appropriate points for the Kalman filter operation. Generating ~N(t) 

is an off-line process, and no significant penalty is incurred for time­

critical operations. 

The time-varying Kalman gain GK(t) is calculated with the same 

precision as the nominal trajectory values. The gain calculation is 

shown separately from the nominal trajectory calculation since one 

particular nonlinear problem configuration to be considered in Chapter 

III does not permit the pre-calculation of GK(t), It should be noted 

that the pre-calculation of the gain is by-passed in that particular 

nonlinear mode. 

The random disturbances for the non-time-critical mode consist of 

two independent, zero-mean Gaussian white noise processes for W(t) and 

V(t). The values are simulated with a pseudo-random number generator 

by.using a multiplicative congruential method with a recurrence formula 

of the form 

Zk+l = A Zk (MODULO M). 

The scalar constants A and Mare selected to insure good statistical 

properties. The random sequence obtained from (2.1) is approximately 



INITIALIZE PROGRAM 

CALCULATE NOMINAL ~N (t l 

CALCULATE GAi N GK ( t l 

NO MONTE CARLO 
RUN? 

YES 

MC= MC R 

GENERATE RANDOM 
NUMBERS W(tl V(t l 

CALCULATE NOi SE-FORCED 
RESPONSE ~NM(t) 

8z(t)= !(t) - H(t) ~N(t) 

CALCULATE ESTIMATE 

ti (t) 
ESTIMATE OF STATE 

" A ~ ( t ) = ~ ( t ) + ~N( t ) 

,.. 
ERROR= ~NM (t)- ~ (t) 

IS MC> I ? 

NO 

STOP 

DATA EVALUATION 
FOR MONTE 

CARLO RESULTS 

YES 

Figure 5. Flow Chart for Non-Time-Critical Simulation. 

24 



25 

uniformly distributed on the unit interval (0,1), Box and Muller (42) 

developed an ex9-ct approach for transforming two independent random 

variables which are uniformly distributed on the unit interval to a pair 

of independent random variables with zero-mean, unity variance Gaussian 

distributions. The closed-form relation developed by Box and Muller is 

:!,.: 
G1 = (~2 LOG~ u1) 2cos 2u u2 

(2,2) 
G2 = (-2 LOGe u,)~SIN 2TI U2 

where u1 and u2 are uniformly distributed, and G1 and G2 are Gaussianly 

distributed random variables. The resulting number sequence satisfies 

the requirements necessary for the digital representation of Gaussian 

white noise. This particular generator has been evaluated and found to 

be slightly better than the central 1imit method of averaging twelve 

uniformly distributed numbers (43)o Using this pseudo-random Gaussian 

number generator, any particular variance may be obtained by multiplying 

the generated number sequence by the desired variance. The use of ran­

dom numbers as disturbance input sample functions for dynamical systems 

requires special considerations for variance representation, It is 

necessary to determine a discrete representation for continuous noise 

processes. Rowland and Gupta (44) have shown that the relationship be-

tween variances of discrete and continuous noise processes is 

(2,3) 

where QWd and QW are the variance of the discrete and continuous cases, 

respectively, and OT is the sampling interval, 

Using the generated random numbers as the disturbance inputs with 
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specified means and variances, the measurement value !(t) is obtained by 

summing the output of the noi'se-forced response H(t)~NM(t) with the 

measurement noise Y(t). The mean value of ~(t} detennines the pre-cal­

culated nominal ~N(t).· The linear system resfJ'3nsefor an equivalent 

zero-mean Gaussian noise is obtained by 

(2.4) 

The value of .2!(t) is the forcing function to the Kalman filter for 

estimating the state oX ( t). The total estimate for non-zero-mean 

Gaussian noise is obtained by summing the nominal soluti_on ~N(t) and the 

quantity oX(t) such that 

"" ~(t) = ~N(t) + §!(t). 

The error in the estimate of the state is defined as 

A 

EPS = ~NM(t) - ~(t). 

Verification of means and variances for linear and nonlinear sys­

tems is achieved by using a se1 e,cted number of Monte Carlo runs.. The 

sample means and sample variances of the typical system variables of 

interest in this simulation are defined by 

MGR 
i: (XNMl(t)) 

RX1AVG = MC=lMCR 

VARXl 

MCR 2 
E (XNMl(t) - RXlAVG) 

MC=l = --................. - ........ -----(MCR - 1) 

For consistency the program variable names are shown. The sample 



variance VARXl may be computed by using running sums according to 

MCR 2 
E (XNMl(t)) 

MC"'l 
RX2AVG = (MCR -l) 

VARXl = RX2AVG - (RX1AVG} 2(M~~~l) 
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Similar express i ans for the sample means and sample variances of all 

system variables and filter estimates are utilized in the program of the 

Appendix. 

Non-Time-Critical Linear System Simulation 

The block diagram of the second~order linear system used in the 

simulation program is shown in Figure 6. This system may be expressed 

as a set of first-order linear differential equations. 

10.0VL1NJ[X1(t)J [ 0 J + !cl( t)' 
-50.0 x2(t) 50.0 

(2,9) 

The particular configuration for the second-order system was chosen for 

two reasons .. The system can represent two separate physical systems 

operationally interfaced with a gain VLlN, and error sources can be 

introduced to Subsystem l without affecting Subystem 2, Secondly, for 

purposes of partitioning, the system frequencies should be uncoupled and 

somewhat separated. These system freiquencies essentially determine an 

acceptable hybrid computer update rate and frame time, Subsystem 2 is 

chosen with w2 = 50 radians per second with a resulting frequency of 
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f2 = 7;96 cycles/seco The non-time-critical opera_tion of 40 integration 

intervals per cycle or 320 samples per second requires an integration 

step size of 0.003125 seco.is. · Similarly, Subsystem 1 with w1 = 10 

radians per second requires an integration step of notgreater than 

0,015625 seconds. 

The effect of time-critical o~eration on the selected system and 

related Kalman filter was established by comparing time~critical per­

formance with non-time-criti'~al results, For further evaluation of 

operating in an increased noisy environment, results were obtained for 

two operating conditions of the stochastic system. The first condition 

utilized an input Gaussian noise with a mean of 10.0 and a variance of 

unity. A second operating condition was chosen with increased input 

disturbances of the same mean and a variance of 5e The measurement 

noise in all cases was Gaussianly disturbed with a mean ~f zero and a 

variance of 0.5. Sample functions for the two conditions are shown in 

Figures 7 and 80 The noise-forced system response is denoted by 
A 

xNMl(t) and the estimate of the system state by x1(t). Further com-

parisons are shown in Figures 9 and 10 by ensemble-averagin-g 100 Monte 

Carlo runs. 

Time-Critical Simulation Operation 

Time-critical operation implies that the simulation model has been 

partitioned between the analog and the digital computer, Correct simu­

lation of a time-critical operation requires that the non-time-critical 

program as described in the previous section must be expanded, The 

changes must include provision for multi-rate integration and the effect 

of sampling rate errors for continuous data transmitted to the digital 
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computer. Figure 11 shows a block diagram of the dominant operating 

features of the time-critical mode of the simulation program. The 

operations discussed in the previous section have been indicated col­

lectively. Without any specific guideline, the initial partitioning 

choice may be conditioned only on elementary considerations of the 

system dynamics, i.e. the higher frequency system models are placed on 

the analog computer and the slower dynamics on the digital computer,· 

Since one of the objectives of this simulation is to determine the 

effects of errors introduced by hybridization, the initial partitioning 

need not be completely arbitrary. For purposes of comparing various 

partitioning configurations, an initial choice was made to use a large 

digital computer fra~e time and a minimum contribution to hybridization 

errors. This is achieved by placing Subsystem 1 on the digital computer 

and performing all required filter calculations on the digital sideo 

The time-varying filter gain GK(t) is pre-computed and does not con­

tribute to the frame time. This partitioned con fl guration requires only 

that the input to S~bsystem l be corrupted by quantization and hybrid 

system noise. A simulation diagram of the partitioned time-critical 

configuration is shown in Figure 12. The effects of partitioning with­

out hybrid system and quantization noise were initially determined. 

Minimum sampling of ten samples per cycle of the highest frequency of 

interest required an ideal frame time of 12.5 milliseconds. This was 

due directly to the total system dynamics being included in the Kalman 

filter" Direct comparisons of the effects of time-critical operation 

were made with Monte Carlo results. 

Simul ati ans of time-critical determi ni sti c systems typically use 

the mean of the variables of interest to determine the correctness of 
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the simulation and to evaluate particular ertor sources, The effects of 

partitioning on the Monte ··Carlo mean for this system is minimal as shown 

in Figure 13. However, the system ,!Nith stochastic processes must in-. 

elude other considerations, such as the variation of the variables of 

interest, Recall that equation (2. 3) gave the relationship between the 

discretized and continuous vari anoes -as 

(2.3) 

The step size OT used for the continuous non-time-critical operation was 

00003125 seconds. The importance of using the correct time step is 

shown with results in Figure 14. Curve A is the non-time-critical re­

sults where all operations used the same size step, Straightforward 

partitioning of the problem and using the noise generated for the non­

time-critical operations resulted in Curve B •. Correct variance modifi­

cation using the hybrid frame time in generating noise for use on the 

digital computer resulted in Curve C. The difference in Curve Band 

Curve C emphasizes the importance of the hybrid computer f:""ame time in 

generating random functions for hybrid simulation, The correct imple­

mentation of the variance modification becomes more complex for multi­

rate updating. This error also emphasizes the desirability of fixed­

interval sampling as opposed to variable intervals obtained with adap­

tive sampling techniques. The difference in Curve A and Curve C in 

Figure 14 is attributed to sampling rate errors •. 

Included in the objectives of this research is the determination of 

the effects of hybrid computer implementation of stochastic systems 

operating in a time-critical environment. Inherent in Such operating 
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conditions are random disturbances not specifically included in the 

stochastic system model. Here hybrid noise is used to represent the 

ground or electrical noise typical in an actual hybrid computer system, 

For purposes of this research, a zero-mean Gaussian white noise process 

was used to simulate the hybrid system noise. Particular variances 

are specified depending on the simulating operation conditionc A uni­

formly distributed white noise process with amplitude proportional to 

one-half the hybrid update rate was used to represent sampling noise, 

The effects of hybrid noise on the partitioned configuration is shown in 

Figure 15. Curve A is the partitioned time-critical result of including 

hybrid noise with a variance QH = 1.0,. Curve C shows the effects of in­

cluding both hybrid and sampling noise, 

The ideal uncompensated frame time of 12,5 milliseconds was used to 

determine the effects of hybrid computer partitioning, The actual 

digital computer execution time was measured as approximately 16 milli­

seconds. This time would have to .be reduced to achieve real time 

operation, Further reductions would be necessary if any improvement 

with increased hybrid update rates are to be accomplished. The options 

available for possible improved operations are (1) use a faster digital 

computer, (2) utilize more efficient programming in terms of machine 

or assembly language programs, and (3) repartition the total system 

model between the analog and digital computer with careful consideration 

given to noise generation process in the partitioned model and noise 

sources not included in the model. Due to fixed resources, the first 

option is usually not available. Combinations of options (2) and (3) 

are typically used where tradeoffs must be accomplished to achieve a 

realistic time-critical simulation. 
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Summary 

A straightforward time-critical simulation of a linear stochastic 

system was developed in this chapter. Sample funetions and Monte Carlo 

results showed that the particular partitioning process resulted in a 

large increase in the variance of the system variables,. The increased 

variation due directly to partitioning made the error contribution of 

hybrid and sampling noise less obvious. Time-critical simulation of a 

stochastic system requires that special considerations be given to the 

hybrid update rates~ system partitioning and random noise generated 

for the systems on the digital and analog computers. These and other 

options form a basis for hybrid simulation refinements to be discussed 

in a later chapter. 



CHAPTER II I 

TIME-CRITICAL SIMULATION OF NONLINEAR 
CONTINUOUS SYSTEMS 

This chapter deals with the time-critical simulation of nonlinear 

stochastic systems with the variational and the extended Kalman filter 

algorithms as given in Chapter I.· In particular, the simulation program 

and results for linear systems developed in Chapter II are extended to a 

nonlinear system modeled by nonlinear differential equations involving 

a cubic nonlinearity. The effects of time-critical operations are 

determined for a particular nonlinear system using the variational and 

extended Kalman filters. The time-critical operations are compared with 

non-time-critical results using 100 Monte Carlo runs. 

Non-Time-Critical Simulation Operation 

Expanding the previously described simulation program for nonlinear 

systems operations for use with the variational and the extended filter 

requires three prime considerations. Firsti capabilities are needed to 

evaluate partial derivatiyes of the nonlinear system along a nominal 

trajectory as indicated by equations (l. 19) through (l .22)o Secondly~ 

it is necessary to evaluate the system partial derivatives along an 

estimate of the system states according to equations (1.23) through 

(1.25). The third censideration is for on-line calculations of the 

Kalman gains GK(t) for extended filter operations. The required on=line 

calculation must be includ~d for both the time=critical and non=time= 
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critical modes. The effect of time skew as an additional error source 

can be minimized by giving car-eful attention to implementing the co­

variance and gain calculation in the extended filter time=critical 

operation. The Monte Carlo mode of operations and other options remain 

essentially the same as previously described. 

Nonlinear Systems Operation 

The.nonlinear system with a cubic nonlinearity selected for the 

research is shown in Figure 16 and is described by a set of nonlinear 

differential equations as 

i 1(t) = 10(-X1(t) + VLIN X2(t) + ALPHA x23(t)) 

x2(t) = so(-x2(t) + w(t)). 
{3.1) 

The required partial derivatives for this system from equations (l.21) 

and {1.23) are 

[
-10,0 

A( t) = O 

lO(VLIN + 3.0 ALPHA x,2(t)J 

-50.0 

(3o2} 

where A(t) is evaluated along the nominal ~N(t) for the variational 

filter and along the estimate of the state for the extended mo;de. The 

system ~as modeled to achieve a weighted combination of the linear and 

nonlinear effects by selecting values for VLIN and ALPHA. This option 

allowed the determination of the effect of ti.me=critical operations for 

various degrees of nonlinearities. 

The chosen nonlinearity made the system very responsive-to- small 

signals or noise. A harsh nonlinear operating condition was achieved 
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with ALPHA= 0,1, VLIN = 0, QW = 1.0 and QV = 0.5. Monte Carlo results 

for the variational filter in the non-time-critical mode are shown in 

Figure 17. The magnitude of the resulting error variance indicates that 

this particular nonlinear mode of operation may not ~e suitable for 

initially determining the effects of hybridization. A mild nonlinear 

operation condition was achieved by choosing ALPHA= 0.01 and VLIN = 0.2 

with the same input noise conditions. Sample functions for this non= 

time-critical operation with the variational and the extended filter are 

shown in Figure 18. The extended filter showed an improved performance 

even for this mild nonlinear operating condition. Monte Carlo results 

for the selected operating conditions are shown in Figure 19 with the· 

extended filter showing improved error conditions. These results were 

used for comparing the effects of hybridization for time=critical 

ope.-ations. 

Time-Critical Simulation Operation 

The initial choice of partitioning was the same as in the previous 

ch~pter with Subsystem l for non~time-critical (analog) operations and 

Subsystem 2 on the digital computer~ This configuration placed the non­

linear element on the digital computer. Maintaining the same approxi= 

mate accuracy for nonl'inear as for linear systems.. in dig.ital computa~ 

tions generally requires a higher sampling or update rate. However~ 

for this initial effort using the mild nonlinear condition the same 

sampling rate was used as with the linear system. The effects of 

partitioning.on the operation of"the variational and extended filters 

were shown with Monte Carlo results. Figure 20 shows the effects of 

time-critical operation on the variational filter 8 and Figure 21 shows 
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the results for the extended filter. 

The selection of a suitable ~perating noisy environment for this 

nonlinear system was by trial and error" What appeared to be suitable 

operating conditions were obtained in sample functions with QH = 1.0. 

However, Monte Carlo results showed a max#num error variance of 390 for 

what was selected ~s a mild nonlinear condition. This discrepancy 

emphasizes that single sample functions are not always a reliable in­

dicator of the range of errors to be encountered in a stochastic non­

linear system. A zero~mean Gaussian white noise process with a variance 

QH = D.10 was selected for a suitable representation of hybrid noise. 

As previously discussed, uniformly distributed white noise was used to 

represent the sampling error. This noise was a function of the sampling 

or update interval and did not change for the simulation described here. 

Figure 22 shows the Monte Carlo results of the variational filter oper­

ating in a time-critical environment with both modeled and unrnodeled 

disturbances. Curve A shows the partitioned results with only modeled 

noises with variances QW = l.O and QV = 0.5. Curve B shows the results 

of adding unmodeled hybrid noise to the system variable transmitted to 

the digital computer, Curve C shows the results of adding both hybrid 

and sampling noise to the simulation. Similar results are shown for the 

extended filter in Figure 23. 

Summary 

A description of the time~critical simulation program for'linear 

systems as expanded to include nonlinear systems and related Kalman 

fi1ters has been presented in this chapter. The expanded simulation 

program was used with a particular nonlinear system with a cubic 
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nonlinearity for both the variational filter and the extended filter. 

Results from 100 Monte Carlo runs were used to show the effects of 

hybrid computer partitioning and operation in a time-critical environ­

ment. Monte Carlo results were also used to show the effects of hybrid 

a.nd sampling noise not modeled in the stochastic syst-em. These results 

were obtained with an ideal hybrid computer frame time and without any 

compensation for the effects of the frame time. The simulation frame 

time was 12.5 milliseconds, while tbe actual digital compute'Y' time re­

quired for the variational filter was approximately 20 milliseconds~ 

and the extended filter requirement was approximately 32 milliseconds. 

While these total results are significant, there is a need to consider 

further refinements to achieve improved operations. 



CHAPTER IV 

HYBRID SIMULATION REFINEMENTS 

Program refinements and improvements for time-criti ca 1 simulation 

which were investigated are described in this chapter. In particular, 

frame time compensation was applied to the time-critical stochastic 

simulation in the straightforward manner typically applied to determ1n­

istic systems. The reductia.n of the error variance was investigated by 

modifying the Kalman gains calculated in Chapters I and II to include 

the effects of hybridization noise. Additional improvements in the 

error variance were obtained by repartitioning the simulation model 

between the analog and digital computers" 

Frame Time Compensation 

One of the most serious errors introduced into hybrid computer 

simulation is due to the Ume delays inherent in digital computation. 

The problem is significantly more complex with closed-loop systems. 

The effects of delay due to digital computation have been extensively 

investigated for determintstic systems {6.,14-19)o The time delay error 

is serious enough in most hybrid systems to justify continuous compensa­

tion. The effect of the time delay i' is to cause the input to the 

analog or digital computer to arrive 't seconds late" One method of com­

pensatien is to use a prediction scheme to offset the delay" 

A widely used compensation technique is to include in the 
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simulation an approximatton to the ideal predictor eT5 to eliminate the 

time delay. The first two terms of a Taylor series expansion of the 

ideal prediction 

eTS l 1 2 2 = +TS+ 2 T S + , •• ( 4, l) 

are used as an approximate prediction shceme, wheres denotes the deriv­

ative operator. The variable to be delayed is passed through this pre­

dictor filter for approximate delay compensation, Sped fi c impl ementa­

ti on of the delay compensation is determined, to a large extent, by the 

specific problem being simulated, Bekey and Karplus (8) have given as 

three general approaches to time delay- compensation imp1ementation (1) 

the modification of the analog computer input by the additi6~ ·of a 

voltage corresponding to -rsy(s). (2) the modification of the analog com­

puter output by the addition of a term 1:s~{s), and (3) modification of 

the output of the digital computer by a term corresponding to -rsY(s), 

Generally, if the analog output is obtained from an integration, the 

second method is simple and straightforward to use, Thi-s method is 

referred to as the predistortion method since the analog output is dis­

torted with the predictor before input to the time delay of dig'ita1 

computation, Monte Carlo results for the straightforward application 

of the predistortion technique to the variational filter are shown in 

Figure 24. Curve A depicts the time-critical operation with no frame 

time compensation, and Curve B shows the results obtained by using the 

predistortion technique. The increase in error variance is attributed 

to the derivative term used for prediction not representing an ave:rage 

or typically expected value across the sampling interval, This effect 

is due directly to the stochastic nature of the system. Improved error 
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v~riance results were obtained when a weighted average was used for the 

derivative term. Since the hybrid frame time was four integration in­

tervals of the non-time-critical analog side 9 four values of the deriv­

ative terms were used to obtain an average. The results are shown as 

Curve C in Figure 24. These results show that the straightforward ap­

plication of the predistortion technique does not give the desired re­

sults for the stochastic system used in this simulation, Furthermore, 

additional considerations must be given to the derivative term used 

when white noise disturbances have not been smoothed either through the 

system dynamics or other smoothing operations such as an averaging or 

filtering circuit. Similar Monte Carlo results are shown for the extend­

ed filter in Figure 25. 

Kalman Gain Modification 

The effects of the operating environment on the dynamical system 

not included in the model are designated as modeling errors. For the 

purpose of this research, hybrid system and sampling noise has been in­

cluded in the simulation but not in the model of the dynamical system 

and .related filters. The effects of these modeling errors have been 

discussed in Chapters II and III. One way to compensate for the unknown 

noise parameter is to include a fictitious noise source in the system 

model" If possible an estimate of the required statistics for the 

fictitious noise source can be obtained by a direct measurement of the 

operating environmento Otherwise, assumed values of the required 

statistics must be made and results verified by simulation evaluation,. 

Essentially, .what was required to include the fictitious noise 

sources in the model was to determine particular values to be inserted 
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in the noise coefficient matrix·B(t) and the noise input covariance 

matrix·Qw{t). These matrtces were used in the calculation of B(t)QW(t) 

BT(t) in-{L12) for the error covariance matrix equationo · The particu­

lar system used in this research had the modeled noise as input to Sub­

system 2, which resulted in a nonzero value only in the (2,2} position 

of BQBL The unmodeled notse was .. simulated ·as being added to the input 

of Sybsystem 1. The requtred expressi"on ·for B(t) was obtained by using 

(L21 )-(1.24) to yield 

BQBT (1,1) = VK(t)*A{l,2)*A(l,2) (4,2) 

where VK(t) is the variance of the fictitious noise source. Equation 

(4o2) was evaluated along the nominal trajectory ~N(t) for the varia-
A 

tional filter and about the estimate of the state ~(t) for the extended 

filter. 

The mean and variance of the hybrid noise used in this simulation 

was known and included in the initial effort for improved performance 

with gain modification~ The Monte Carlo results for the variational 

filter are shown in Figure 26. As shown with Curve B the improvement 

in error variance was fl'\'inimalo The variance of the fictitious error 

source included in the model was increased to VK = Oo4, while .the 

variance of the hybrid noise in the simulation remained at QH = Oolo 

The Monte Carlo results from this operating condition are shown in 

Figure 27 •. An overal 1 improved error variance of approximately five 

percent was achieved. Improved results were obtained with variances of 

the modeled fictitious noise source~greater than the variance of the 

simulation noise sourceo - This indicates that the effective variance of 

the noise in the hybrid simulation was greater than the simulated hybrid 



w 
u 

35 

30 

25 

~ 20 
0:: 
<( 
> 

15 

10 

5 

A: WITHOUT GAi N CHANGE 

B: WITH GAIN COMPENSATION 

( VK = QH = . I ) 

KFNRL = 2 

MCR = 100 

62 

o--~--~__._~___.~~---~......._~_._~__._~~---~......._~-
o .10 .20 .30 .40 .50 

Tl ME ( SECONDS) 

Figure 260 Effects of approximate compensation for hybrid noise by 
Kalman gain modification for the variational filter, 



30 

25 

w 20 
u 
z 
<( 

. 0:: 

~ 15 

10 

5 

.10 

WITHOUT GAIN COMPENSATION 

GAIN COMPENSATION 
(VK = .4) 

WITH GAIN 
COMPENSATION 
( VK = Q H = . I ) 

(WITH HYBRID NOISE) 
MCR = 100 
KFNRL = 3 (TC) 
QH = .I 
Ov = .5 
Ow = 1.0 

.20 .30 .40 

· TIME ( SECONDS) 

.50 

Figure 27. Effects of Approximate Compensation for Hybrid Noise by 
Kalman Gain Modifications for the Extended Filter. 

63 



64 

noise, which results directly from the error introduced by partitioning 

and frame time delay. The conclusions consistent with the results 

shown in Figures 20 and 21 showing errors introduced by partitioning 

only. 

Simulation Model Partitioning 

The partitioning of a dynamical system between the analog and 

digital computer for time-critical operations remains one of the most 

important areas in hybrid computer simulation. The overall choice is 

influenced by the actual hardware-in-the-loop, the simulator and the 

performance requirements. With little or no guidelines other than a 

knowledge of the dynamical system and a detailed understanding of the 

simu1ator, an acceptable simulation of a complex system may be achieved 

only after several partitioning efforts. However, the final choice is 

determined by the sensitivity of the partitioned system to artificia1ly 

introduced error sources and the system performance error budgeto 

Observing Figure 12, partitioning the Kalman filter with the ~igh 

speed dynamics (that portion with A22) on the analog computer is the 

most obvious first choice.. Curve B in Figure 28 shows the Monte Carlo 

results of such a partitioned· choice without other compensation con­

siderations. - An approximate partitioned choice was achieved with the 

high speed dynamics GR the analog side with continuous calculations of . 
"' 6X2(t) and 6X2(t) and the value of these variables being used as initial 

conditions on the digital calculation for the same quantities over the 

hybrid sampling interval. The improvement in error variance is shown _in 

Curve C in Figure 28. 
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Summary 

A number of compensation techniques have been examined for improved 

time-critical hybrid computer operation for a particular nonlinear 

stochastic sys tern. Straightforward ·application of frame time compensa­

tion as typically used for deterministic system did not give the desired 

results for the particular· parttttoned stochastic system, Results show­

ed that a smoother derivative was required for a white noise input to 

the sampled digital simulation. While the Kalman gain modification was 

effective in reducing errors due to unmodeled noise sources, the esti­

mated parameters must be obtained by simulation since the hybridization 

introduced appa.rent error sources not included in either the model or 

the simulatjon. Approximate re-partitioning of the simulation model 
ti . 

between the analog and digital computer did result in an improved 

operating condition, 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This research was accomplished by developing an all-digital com­

puter simulation of a time-critical hybrid computer operation. The 

developed simulation program applied the methodology of time-critical 

hybrid computer operation to a stochastic estimation problem. The total 

simulation includes a linear stochastic system with the related Kalman 

filter and a nonlinear system with variational and extended filters. 

This research was accomplished by using continuous and continuous­

di~crete models of a particular stochastic system, Results obtained 

using the continuous, analog, or non-time-critical mode of operations 

were used as references for performance comparisons with the partitioned 

system operating with both modeled and unmodeled random disturbances. 

The modeled random parameters were included in the dynamical system 

operations while the unmodel ed random noise sources were included in the 

simulation operating environment. 

The significance of correctly implement~d random disturbances was 

demonstrated with the linear system and related Kalman filter. The 

continuous-discrete representation of the random disturbance function 

was directly related to the hybrid computer frame time. Monte Carlo re­

sults showed that the error introduced by the direct partitioning 
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process was greater than the ·error: associated with the sampling noise, 

However, the combined effort":of hybridand sampling noise resulted in a 

significant error incl'ease in the time-:critical. operating environment. 

The importance of problem·partitioning and a correctly mode1ed. 

noisy environment was demonstrated with ·a particular nonlinear stochas­

tic system. 'Monte Carlo re.sults for non-time-critical and time-critical 

operations were compared for variation in .error. The cubic nonlinearity 

chosen for this simulation required a small attenuation factor which 

emphasized the sensitivity of this system to unmodeled random dis­

turbances. The difficulty in compensating for hybridization error in 

stochastic systems was shown by the direct application of various 

techniques typically used in the hybrid computer simulatfon of determin­

istic systems. Straightforward application of the predistortion method 

for frame time compensation resulted in an increase in error variance, 

This increase resulted from the direct input of white noise to the 

digital computer. Monte Carlo results showed that additional processing 

of the input signals to the digital computer is required for using this 

technique. Improved time-critical operating conditions were achieved 

by modifying the Kalman gains. Thts was accomplished by including in 

the dynamical system model a fictitious noise source representing the 

hybrid system noise. Additional improvements were obtained by re­

partitioning the system model between the analog and digital computers.' 

Recommendations Fqr Further Work 

The all".'digital simulation program developed for this research is 

flexible and c,an be readily expanded to investigate more complex time­

critical hybrid computer simulations. The particular stochastic 
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estimation problem chosen for this simulation included only open-loop 

operation, or one-way communication between the analog and digital com­

puters. This mode of operation eliminates the effect of accumulated 

phase error thq.t exists in·any closed;.;loop hybrid computer operation, 

The effect of hybrid operations on a closed-loop stochastic estimation 

problem is a logical extension of the results obtained in this researcho 

A particular important closed-loop stochastic estimation problem might 

include a Kalman filter in the feedback loop, 

Particularly important in any further research in the time-critical 

hybrid computer simulation of stochastic system is frame time compensa­

tion, The predistortion method used here includes the effect of a 

first-order hold circuit for which the results were not satisfactory. 

The results obtained with the minimal amount of sample averaging 

indicates that smoothing circuits might improve the time-critical oper­

ation, Another option for improving the frame time compensation is to 

increase the sampling rate. For a fixed simulation configuration, a 

reduced frame time could be achieved by the use of improved programming 

techniques such as an assembly o~ machine language, In addition, 

further frame time reductions could be achieved by us1ng more efficient 

digital integration algorithms. An accuracy versus speed tradeoff for 

various algorithms should give options for improved operationso Any 

reduction in frame time requirements wi 11 directly reduce the error due 

to partitioning. 

Precise guidelines for problem partitioning between the ana 1 og and 

digital computers are not available for either deterministic or stochas­

tic systems. However, the results of this research clearly indicates 

that the partitioned problem should not have wide band white noise going 
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directly to the digital computer. Further research is needed to estab­

lish some basis for partitioning a stochastic system with modeled and 

unmodeled random disturbances. ·This need is especially important for 

estimation problems that include the error covartance calculation as an 

on-line operation. 

Improved operations in the hybrid noise env1ronmeht were obtained 

by including a fictitious noise source in the dynamical system mode1, 

but the results from this effort were not conclusive. The partitioning 

process introduces an equivalent noise source in the hybrid computer 

operation that has not been included in the system model or simulation 

environment. However, improved operations were obtained when the 

variance of the fictitious noise was much greater than the hybrid noise. 

An equivalent noise representation of the error due to partitioning 

would give significant insight into the time-critical hybrid computer 

simulation of stochastic systems. 
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APPENDIX 

COMPUTER PROGRAM FOR SIMULATING TIME­
CRITICAL HYBRID COMPUTER OPERATIONS 

FOR STOCHASTIC SYSTEMS 

The digital computer simulation includes seven distinct operational 

modes: time-critical (ITC=l), non-time-critical (ITC=O), Monte Carlo 

operation (MCR=Number of Runs), single sample function (MCR=l), linear 

system and Kalman filter (KFNRL=l), nonlinear system with variational 

filter (KFNRL=2), and nonlinear system with extended filter (KFNRL=3)o 

Additional options may be specified for some of the major modes. In 

particular, TSAMP = (hybrid computer frame time), ALPHA and VLIN are the 

weighting factor for the nonlinear and linear signals. 

Standard Monte Carlo techniques are used to obtain statistical 

results from program operations. Pre-calculation of the Kalman gains 

are automatically bypassed for the extended filter mode of operation. 



c 

DIMENSION OUNU) 
D II-IE NS ION RNUll 5) ,RNU2( 51 ,RNGU( 5) 
DIMENSION RNUM(lO·) 
DIMENSION AX2Cl0) ,DX2Cl01 
DIMENSION DHVEC(lOl,HVECllO) 
DIMENSION POVECllOl,PVECllOI 
DIMENSION DELZ(3,31,PHK(3,31 
DIMENSION XE(21,0XN( 10),XNl1( 101,DX!:M(lO) ,DXDEM(lOI ,:;KI 13,31 
DIMENSION XN2(2011,GK1(20ll,GK2(2011,PT113,3),PH13,3),XNN( 10) 
O IME NS I ON D XDE I l O I , UFC T( 2) , U I NP UT ( 11 ,HK (3 ,3 I , PN I 3, 31 ,X Nl 1201) 
O I MENS I ON OXM 110 I, GK ( 3, 3), H( 3, 3), XNO ( U , XN( 101 , HT( 3, 31 ,O XE Cl 01 
O I ME t-.Sl ON BT I 3, 3 I , QBT 13 ,3 I, PAT ( 3, 3 I, X ( l O I, OX l 10), X IN [T ( 2 I, C Xl l O I 
O IME NS ION C ( 3, 3) , AH 3, 3) ,AP ( 3, 31 , PD I 3, 3 I ,Q( 3 ,3) , BQ BT ( 3 ,3 ) 
O IM ENS ION R ME ANl( 20 I, RME AN2 ( 20), TS AMP ( 101, A ( 3, 31, P ( 3, 31 ,8 ( 3, 3) 
DIMENSION VVSKF(lO) ,DXOMClO),XNillO),XA(lO),DXA(lOI 
DIM ENS [ON XHSU!>l 11 10), XHSUM2l 10) , XH SQ lC l 01 , XH SQ2 I 10) ,DVSKF ll 01 
DI ME NS I ON QI l 3 , 3 I , PH Q 1 l 3, 3 ) , P 111201 I , F.P SM l( 1 u I, E PS SQ 11 10) 
DIMENSION AEKF(2011 
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c 
C$$$$$S$$$$$$$$S$S$$$SSSSSSSSS$$SSSS$$$SSS$SS$S$$S$$SSSS$$$SSSSSSSSSSS$ 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

Tt11S PROGRAM SIMULATES A HYBRID COMPUTER OP.ERATlNG IN 
A TIME-CRITICAL ENVIRO~E~T AND A NON-TIME CRITICAL 
OPERATIONAL MODE REPRESENTING AN ANALOG COMPUTER SIMULATION 
THE PROGRAM HAS SEVEN DISTINCT MODES OF OPERATION 

MCR= 1 S INGLE SAMPLE FUNCTION 
MCR= NUMBER OF SIMULATION RUNS REQUIRED IN MONTE CARLO STATISTIC 
ITC=l TIME CRITICAL OR HYBRID COMPUTER MODE 
ITC=O NON-TIME CRITICAL 
KFNRL=l L[NEAR SYSTEM WITH LINEAR KALMAN FILTER 
KFNRL=2 NONLINEAR SYSTEM wlTH VARIATIONAL KALMAN FILTER 
KFNRL=3 NONLINEAR SYSTEM WITH EXTENDED KALMAN FIL T'ER 

OTHER OPTIONS INCLUDES 
ITSAMP= NUMBER OF NON-TIME CRITICAL STEP SIZES' INCLUDED 
IN THE HYBRID FRAME TIME 
VLIN= WEIGHTING VALUE ON LINEAR SIGNAL COUPLING 
SUBSYSTEM2 ANO SUBSYSTEML 
ALPHA= WEIGHTING VALUE ON CUSIC NONLINEARITY COUPLING 
SUBSVSTEMl ANO SU8SYSTEM2 

SEPERATE RANDOM NUMBER GENERATORS ARE USED FOR GENERATING 
Tl-<E WHITE NOISE PROCESS FOR THE MODELED SYSTE14 NJ ISE 
AND UNMODLED HYBRID SYSTEM AND SAMPLING NOISE 

WILLARD M. HOLMES 

c 
CS$$$$$$$$$$SSS$$$$SS$SSS$$$S$$$$$$$$$$SSSS$$$$.$$$$$$$$$SSSSSS$$SS$$$$ 
c 
c 



c 
c 
c 
c 
c 
c 
c 
c 

CCMMON INDEX3 
COMMON DXM 
COMMON MX 
CCMMON TINIT, TF INAL.I PR INT 
COMMON KUTTA ,DT ,NX ,X ,DX, Tl ME, DXA, DK C2 J 
COMMON XINIT 
COMMON UFCT 
COMMON PAT,AP,C ,PH,PQHI ,HT,HK,PN,PTl 
CCMHON AT 
C CM MON DUH Cl I , IX, DU Ml ,XNORM C2 J 
READ l 5, 10131 NX 
READ (5,10131 IPRINT 
READ CS,10411 DT 

1041 FORMAT CFl0.61 
READ 15,1012) TINIT,TFINAL,'XINITC U,XINITl21 
WRITE C6,10il31 

1003 FORMAT l1Hl,T5, 1 INITIAL CONDITIONS'I 
WRITE C6 ,10011 NX,DT, T INIT,.TFINAL, IPR INT, XIN ITC 11; XINITC 21 

1001 FORMAT ClH0,5X,12,3X,F8.6,3X,F8.6,Fl0.6,13,3X,Fl0•6,Fl0.6J 
READ (5,10131 MX 

1013 FORMAT Cl21 
READ (5,10121 CCACI,J>,1•1,NXl,J=l,NXI 
READ l5, 10121 I IP( IP ,JP 1, IP• 1,NXI ,JP"'l,NXI 

1012 FORMAT C4F10.61 
READ C 5, 1014) CC Bl 18,JBI ,IB=l ,NXI ,JB•l ,MXI. 

1014 FORM AT 14 Fl O .61 
READ 15,10311 .1 IQC IQ,JC::l ,IQ=l,MXI ,JQ=l,MXJ 

1031 FORMAT I 4Fl0. 61 
WPITE C6 ,10181 NX, MX, I PRINT 

1018 FORMAT (1H0,5X, 1 NX=1 ,I2,5X, 1 MX= 1 ,I2,5X,' IPRINT•',121 
WR IT E C 6, 10 20 I 

1020 FOR MAT ClHO ,5.X, 1 P MATRIX• J 
WRITE C6,101611CP(JP,KPl,JP=l,NXl,KP•l,NXI 

1016 FORMAT C1H0,5X,4El6.81 
WRl TE (6 ,10211 

1021 FORMAT C lH0,5X, 1 B MATRIX 1 1 
WRITE C6,l017.IC CB(KB,LBl,KB=l,NXl,LB•l,MXI 

1017 FORMAT ClHJ ,.lOX ,4Fl0.61 
WRITE (6,10331 

1033 FORMAT l1HJ,5X,•Q MATRIX'I 
WRITE (6,10321 CCQCKQ,LQl,KQsl,MXl,LQ•l,NXI 

1032 FORMAT ClHO, 5X, 4El6. 81 
WRITE (6,10341 . 

1034 FORMAT 11H0,5X, 1 Q MATRIX BY ROWS'I 
WRITE 16,10351 QU,U,QCl,21,QC2,U,QC2,21 

1035 FORMAT ClHO,lOX,4El6.81 

••••••••••••••••••••••••• 
NX= ORDER· OF SYST.EM 
MX= NUMBER OF SYSTEM INPUTS 
INPUT MATRIX DATA MUST BE BY COLUMN,Al1,A21,Al2,A22,ETC 

••••••••••••••••••••• 
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c 
HDT•.5*DT 
HU,lJ•l.O 
HU ,2 J=O .O 
HI 2, U=O. 
Hl2,21•0.0 
UFCTCU •O.O 
UFC TC 2) .. 0. 
TNOM=o.o 
Xl"il I 11 sO. 0 
ERROR l=O.O 
E~ROR2=0 .O 
GKllU=O.O 
GK2( U=O.O 
GK Cl ,2 1=0 .O 
GKl.2,21=0.0 

c ········~····················~···· c 
C FIR ST ELEMENT IN XNl A~O XN2 IS SET EQUAL TO THE 
C INITIAL CONDITIONS ON XN( UAND XN(21 
c 
c •••••••••••••••••••••••••••••••••• ICYCLE=ITFINAL-TINIT)/DT+.5 

ICAL=ICYCLE/IPRINT 
DO 28 I Ll=l ,20 
RMEANl C ILL l=O.O 
RMEAN2 I I LU =O.O 

28 CONTINUE 
- DO 29 Kl6=l,10 

XHSUMlC Kl6) =O.O 
XHSUM 21 K 161 = O. 0 
XHSQl IK16)=0.0 
XHSQ21 Kl6) =O. 0 
EPSM1CK16t=o.o 
E PSS Ql C Kl 6 ) =O .o 

29 CONTINUE 
OUM l~O • 
OUM2=0. 
CALL TRANSA IB.NX,MX,BT) 
CALL MATMUL IQ,BT,MX,NX,MX,QBTI 
CALL MATMUL ( B,QBT ,NX, NX ,HX ,-BQBT I 
WRITE ( 6, 996) BQB TC 1, l> ,BQB TC 1,2) ,BQ8T 12 ,11 ,BQBT (2 ,2 I 
I PRT= IPR INT 

c ••••••••••••••••••••••••••••••••••••••••••• 
c 
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C FOR APPLICATION OF VARIOUS KALMAN FILTER CONFIGURATION TO LINEAR 
C AND NONLINEAR SYSTEMS ,THE VARIABLE KFNRI,. HAS THE VALUES 
C KFNRL=l APPLICATION OFKALMAN FILTER TO LINEAR SYSTEMS 
C KFNRL=2 REGULAR APPLICATION OF KALMAN FILTER TO VARIATION 
C AROUND A NOM[NAL TRAJECTCRY 
C KFNRL=3 APPLICATION Of THE EXTENDED KALMAN FILTER 
c 
c c •••••••••••••••••••••••••••••••••• 



ITCa:1 
MCR•lOO 
MX=2 
KFNRL=2 
Al.PHA•.Ol 
VLJN=.2 
VK• .1 
I TSAMP=4 
UINP= 10. 
QV= .5 
TSAMl=I TSAMP 
HSAMP=TSAMl*DT 
KCUNT=O 
TDIG=O. 
DDT= .5•HSAMP 
QIU,11=2.0 
Q II 1, 21 =O. 
Qll2,ll=O • 

. QI ( 2 ,2 I :aO • 
WRITE ( 6,10191 

1019 FORMAT (1H0,5X, 1 A MATRIXIJ 
AU ,11 =-10. 
A(l,21=10.0*VLIN 
A(2,1J=O.O 
A(2 ,21 =-50.o 
WRITE (6,10241 A(l,1),A(1,21,A(2,U,AC2,2J. 
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1024 FORMAT ClH0,5X,'A(l,1)= 1 Fl0.6,3X, 1 A(1,2J= 1Fl0.6,3X,'A(2,l>='Fl0.6 
1,3X,'A(2,21=1 Fl0.61 

QW=Q(l,lJ 
ZW=QW/DT 
IFI ITC.EQ. U GO TO 481 
ZV=QV/DT 

481 CONTINUE 
IF (ITC .EQ. 01 GO TO 482 

c ******••······················································· 
C KALMAN GAIN MODIFICATION FOR IMPROVED TIME CRITICAL OPERATIC~ 

BQB T( 1, ll=VK*A( 1,2J*A( 1,21 
c 
c *************************************************************** 

QH= .1 
ZV= QVI <TSAMl*CT J 
ZH=QHI( TSAMl*DTI 
SIGH=SQRTIZHI 

482 CONTINUE 
SIG\/= SQR TC Z VJ 
S IGW=SQRT( ZW I 
OFT=O .o 
RHYBN=O. 
RSAMPN=O • 
WRITE (6,7751 KFNRL,MCR,QW,QY,QH 

775 FORMAT I lHO, 5X t I KF NR L•1 I 113 XI I MCR=-1 1213X1 1 QWs 1 Fl O • 6 t 3X t I QV= 1 F 10 o6t 
12X, 'QH= 1 Fl0.61 

WRITE (6,7761 ALPHA,VLIN,ITSAMP,ltC,HSAMP 
776 FORMAT (1H0,5X,'ALPHA= 1 Fl0.6,2X,'VLIN= 1 Fl0.6,2X,'ITSAMP=•t2, 



• l2X, 1 1TC= 1 1l,2X, 1 HSAMP• 1 Fl0.6) 
WRITE (6,777) ZW,ZV,ZH 

117 
c 

FORMAT (lHJ,5X,'ZW=1 Fl0.6,2X, 1 ZV= 1 Fl0.6,2X, 1 ZH='F10.61 
******************************************* 

c 
c 
c 
c 

CALCULATION CF f\OMINAL SYSTEM TRAJECTORY 

********************************* 
INDEXl=l 
INDEX4=0 
XN(l l=XINIT(l l 
XN( 2l=XINIT(2) 
XNl( ll= X IN IT( 1) 
XN21ll=X1NIT(2) 
WR I TE ( 6 , 77 0 I 

770 FORMAT llHl,lOX,'NOMINAL SYSTEM RESPONSE•) 
DO 700 INOM•l,ICAL 
WRITE 16,1113) TNOM,XN(l),XNCZJ 
DO 70 l IN OUT= 1, IPR T 
DO 8 KUTT AN=l 1 4 
GO TO (12,22,12,22),KUTTAN 

22 CONTINUE 
TNGM=TNOM+HDT 

12 CONTINUE 

8 

XNO RM 11 l=O. 
CALL SY SEQ ( UJNP ,XNORf',Vll N,ALPHA,OX ,XNI 
CALL RUNK (KUTTAN,DT,OUMZ,NX,OX,XN) 
CONTINUE 
I N!>EXl=I NOE Xl+l 
XNl ( INDEX l )=XNI U 
Xl\2 ( l NOEXl I =XN12 I 

701 CONTINUE 
700 CONTINUE 

WRITE (6,11131 TNOM,XN(l>,XNC2) 
1113 FORMAT (lH0,5X,'TNOM= 1 Fl0.6,3X, 1 XN1ClNOEXll='El6.8,3X, 

l'XN2 ( lNDEXl 1= 1 El6 .8 l 
IFIKFNRL.GT.ll GO TO 14 
WRITE t 6, 1027) 

1027 FORMAT ClHu,lOX,'***LINEAR SYSTEM APPLICATION OF KALMAN FILTER*') 
14 CONTINUE 

c ***************••························· 
c 
C PRE-CALCULATION OF CCVARIANCE AND KALMAN GAIN 
c 
c ****************************************** 

IF(KFNRL.EQ.31 GO TO 469 
TCDV= 0. . 
CC 445 Kl8=1, 10 
PDVEC(K18l=O.O 
PVEC(KlBl=O.O 

445 CONT I NU E 
OD 446 Kl9=1,NX 
00 446 K20=1,NX 
P ( K 19 , K2 0 I = Ll • 0 
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446 CCNTI NUE 
INDEXl= 1 
DO 440 IPK:1, ICAL 
DO 441 IPOUT=l,IPRT 
DO 442 KUTTAP:1,4 
GC TO (13,23,13,231,KUTTAP 

23 CONTINUE 
TCOV=TCOV+HDT 

13 CQNTl NUE 
GO TO ( 4, 51 ,KFNRL 

5 CONTINUE 
XM 111 =XNl I I NOEXl I 
XNI I 21=XN2( lNDEXl) 
CALL AAIXN2,INDEX1,ALPHA,Vlll\l,A) 

c *************************************************************** 
C KALMAN GAIN MODIFICATION FOR IMPROVED TIME CRITICAL OPERATION 

BQBTU ,1 l=VK*AI 1,2 l*A 11, 2) 
c 
c **** **** ******* ***** ************* ** * *************·************** 

4 CONTINUE 
CALL TR A N SA I A , N X , N X, A Tl 
CALL COVPO IP,A,QI,B,H,NX,MX,BQBT,AT,PDI 
POVECI 11 =PD!l ,11 
P DV EC I 2 I =PD t l , 2 I 
POVEC131=PDl2,2) 
LP=3 
CALL RUNK I KUTT AP ,OT ,DUMl ,LP ,PDVEC ,PVEC) 
Pll ,1 l=PVEC(l I 
PU ,21 =PVEC (2 > 
P(2, 1 )=PVEC( 21 
P(2 ,21 =PVEC 13) 

442 CONTINUE 
INDEX l= lNOEXl+l 

CALL MATMUL IP,H,NX,MX,NX,PHK) 
CALL MATMUL (PHK,QI,NX,~X,MX,GK) 
GKl I INDEX l l=GKI 1, 1) 
GK21INDEXll=GK12,11 

441 CONTINUE 
WRITE 16,4431 TCOV,GKUINDEXH,GK2(1NDEX11 

443 FORMAT llH0,5X,'TCOV='Fl0.6,3X,'GKl(INDEXl)='El6.8,3X, 
l'GK21 INDEXll='El6.81 

WRITE (6,4441 P(l,11,P( 1,21,P(2, ll,P(2, 21 
444 FO~MAT (1H0,5X,'Pll,ll='Elo.8,2X,'P11,21=•Elo.8,2X, 

2' PI 2, 11 = 'E 16. 8, 2 X, • P I 2, 21 = • E 16. 81 
440 CCNT!NUE 

469 CONTINUE 
c ********************************** 
c 
C INITILIZATION OF RANDOM NUMBER GENERATORS 
C OUTSIDE OF MONTE CARLO LOOP 
c 
c ********************************** 

XNORM U 1=0 • 
XNORMl21=0.0 
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c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

I X=31571 
JX=31571 
DUM(lJ=O.l 
DUN I 11 =. l 
DO 100 MC=l,MCR 
****************************•••············ 
INITIAL CONDI TIDNS FDR MONTECARLO 

********************************** 
DD 665 KP l= 1,NX 
DO 665 KP2=1,NX 
P(KP1,KP21=0.0 
DELZIKP1,KP2)=0.0 

665 CONTINUE 
********************************************* 

••••••••••••••••• 

FIRST ELEMENT IN XNl ANO XN2 ARRAY CONTAINS I C ON X NOMINAL 

********************************* 
GK( 1,11 =O.O 
GK( 2, 11=0. 0 
INDEX3=0 
DO 10 JK=l,NX 
X(JKl=XINIT(JK) 

10 CONTINUE 
DO 27 Kl 7=i ,10 
DVSKF(Kl71=0.0 
VVSKF(Kl71=0.0 

27 CONTINUE 
XNM(l)=XINIT(ll 
XNMl2l=XINIT(2) 
AX21 ll=XlNI Tl21 
AX212 l=X IN IT I 1) 
DXM(ll=O.O 
OXM( 21=0.0 
CXEMU l=O.O 
DXEM(21=0.0 
HVEC( 41=0 .O 
HVEC ( 5 ) =O .O 
HVECI 61=0.0 
T IME=T IN IT 
T=TI NIT 
1NDEX2=1 
XHATl=XINIT(l) 
XHAT2=XI NIT (2) 
************************'******** 
NONLINEAR SYSTEM Vi'IRUT ION ABOUT A NOMINAL TRAJECTORY 

********************************* 
IF( MCR.GT.l) GO TO 1111 
WRITE(6,8821 

882 FORMAT (1Hl,5X, 1 SYSTEM RESl'ONSE AND KALMAN GAIN CALCULATtoN FOR 
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2SlNGLE RUN' l 
1111 CON Tl N UE 

DO 50 lPL=l,lCAL 
IF(MCR.GT.ll GO TO 561 
WR I TE I 6, 98 91 T, XHA Tl , XH AT2 , GKl C 1 NDEXZ I , GK2 I I NDEX2 I 
WRITE16,990l ERRORl,ERROR2 
wR[ TEl6,99ll XNM(l 1,0ELZ11,l 1,XNMC21 
WRITEl6,9951 DXEMC21,XNORMI 11 ,XNORM(21,DXDEMIU ,DXDEMl21 
WRITEl6,993 I XNll INDEX21,DXOIC 11,RHYBN,RSAMPN 
wRITE (6 1 996) BQ8Tll,11,BQBT11,21,BQBT(2,ll,BQBT(2,2l 

561 CONTINUE 
DO 2 5 I =l, IPR T 

c ********************************* 
C INITIAL CONDITION GENERATES FIRST ELEMENT IN GKl AND GK2 
c ********************************* 

GO TO 138,39,40) ,KFNRL 
40 CONTINUE . 

XNl C 11 =XHATl 
XNIC2l=XHAT2 
AEKFl21=XHAT2 
CALL AAIAEKF,2,ALPHA,VLIN,AI 
CALL TRANSA IA,NX,NX,ATI 

c *************************~************************************* 
c 
C KALMAN GAIN MODIFICATION FOR IMPROVED TIME CRITICAL OPERATION 

BQBTU,1 l=VK*All,21*AC1,21 
c 
c *************************************************************** 

GO TO 41 
39 CONTINUE 

CALL AAIXN2,INDEX2,ALPHA,VLIN,AJ 
38 CONT I NUE 
41 CONTINUE 

CALL RANDOM I DJM, IX, XNORM I 
XNORMlll=XNORMlll*SIGW 
XNORM(21=XNORM(2l*SIGV 
I F I IT C. EQ • 11 GO TO 4 5 6 
DO 2 KUTTA=l ,4 
GO TO 111,21,11,211,KUTTA 

21 TIME=Tl~E+HDT 
11 CONTINUE 

CALL SYSE<J (UINP,XNORM,VLIN,ALPHA,DXOM,XNMJ 
DELZCl ,1 l=XNM(l l +XNOPM(2 l-XNl( INDEX2 I 
CALL KALMAN IDELZ,GK,H,A,NX,MX,DXEM,DXDEMI 
IFIKFNRL.LT.31 GO TO 447 
CALL COVPO IP,A,QI,B,H,NX,MX,BQBT,AT,POI 

447 CONTINUE 
CALL ARTOVE ICXOM,DXOEM,PD,XNM,OXEM,P,DVSKF,VVSl<.FI 

C*****************•******************** 
c 
C LX JS EWUAL TO THE NUMBER OF ELEMENTS lN VECTOR OVSKF 
c 
C************************************** 

IF (KFNRL.LT.31 GO TO 778 
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LX=7 
778 CONTINUE 

IF (KFNRL.EQ.31 GO TO 779 
LX=4 

779 CONTINUE 
CALl RUNK (KUTTA,DT,DUMl,LX,DVSKF,VVSKFI 
CALL VETOAR (VVSKF,XNM,DXEM,PI 

2 CQNTINUE 
456 C CNT [NU E 

IFIITC.EQ.01 GO TO 460 
c ******************************************* 
c 
C BEGIN TIME CRITICAL OPERATIONAL LCOP 
c 
C ITC=l,TIME-CRlTICAL OR HYBRID OPERAT.IONS 
C I TC =O, NON-Tl ME C'!U TI CAL OR TOT AL ANALOG 
C ITSAMP= NUMBE'l OF NON-TIME CRITICAL TIME STEPS IN THE 
C DIG IT AL COMPUTER FRAME TIME FOR HY BR ID OPERATION 
C ALPHA= WEIGHTING ON NCNLINEAR EFFECTS 
C VLIN= WEIGHTING FACTOR OF SUB2 OUTPUT TO SUBl INPUT 
c 

c 

DO 457 KUTTAA=l,4 
GO TO (458,45q,453,459),KUTTAA 

459 TIME=TIME+HDT 
458 CONTINUE 

D XA 2=50. O* (-XNM( 21 +UI NP+XNORM (111 
DX2( ll=DXA2 
LA=l 
CALL RUNK(KUTTAA,DT,DUM1,LA,DX2,AX21 
XN"1(2l=AX2(11 
OXEMl2l=AX2(2l 

457 CONTINUE. 
KOUNT=KOUNT+l 
IF(KOUNT.LT.ITSAMPI GO T,O 460 

·KOUNT=O 

C HYBRID SYSTEM AND SAMPLING NOISE FOR TC OPERATION 
IRN=2 

CALL RNGEN IDUN,JX,1,IRN,RNU2l 
RSAMPN=RNU2( ll*DOT 
IRN=3 
CALL RNGEN(OUN,JX,1,IRN,RNGUI 
RHYBN=RNGU(ll*SIGH 
XNM(21=XNM(21+RHYBN +RSAMPN 
DFT=O. 
DO 451 KUTTAO=l,4 
GO TO (452,453,452,4531,KUTTAO 

~53 TOIG=TDIG+OOT 
452 CONTINUE 

OHX1=10.0*I-XNM(ll+VLIN*XNM(2l+ALPHA*XNM(21*XNM(21*XNM(2ll 
H Xl= XNM( ll 
OELZ( 1, l l=XNM( ll+XNDRM( 21-XNlC INOE X21 
KX=l 
CALL KALMAN (DELZ,GK,H,A,NX,KX,DXEM,DXDEM) 
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780 

782 

451 

460 
c 
c 
c 
c 

IF (KFNRL.LT.31 GC TC 780 
CALL COVPD (P,A,QI,B,H,NX,MX,8QBT,AT,POI 
DHVEC(4)=PDll,1 I 
OHVEC!51zPOll ,21 
DHVEC(61=P0(2,21 
HVEC(4l=Pll,11 
H VE C ( 51 = P I 1 , 2 I 
HV E C I 6 I = P I 2 , 2 I 
LH=6 
CONTINUE 
IFIKFNRL.EQ.31 GO TO 782 
LH=3 
CONTINUE 
DHV EC 11 I= DX DEM I 1 I 
H VE C ( 2 I =D XE M ( 2 I 
OHVEC( 31=DHX1 
HVECU I =DXl:Mll I 
DHVEC!21=DXDEMl21 
HVEC(31=HX1 
CALL RUNK I KUTT AD, HS AMP, OUMl ,LH, OHVEC, HVEC I 
DXE Ml 11 =HVEC I 11 
OXEM(2l=HVECl21 
HXl =HVEC 131 
XNM( U=HVEC(31 
P 11, 1) = HV EC I 41 
P 11 , 21 =H VEC ( 51 
Pl2,U=HVEC(51 
P 12 ,2 l=HV EC 161 
CONTINUE 
X NM I 2 I= AX 2 ( 11 
CONTINUE 
******************************************* 
ENO OF TIME CRITICAL OPERATIONAL LOOP 

******************************************* 
ATI=(IPL...;ll*IPRT+I 
T=TI NI T+AT I *OT 
TIME=T 
INDEX2= INDEX2+1 

c ********************************* 
C CALCUl~TION OF GAIN K=PHQI 
c ********************************* 

IF(KFNRL.LT.31 GC TO 448 
CALL MATMUL (P,H,NX,MX,NX,PHK) 
CALL MATMUL (PHK,QI,NX,MX,MX,GK I 
GKl ( l NDEX2l =GK( l ,11 
GK2 ( INlJEX2 l=GK( 2, 1l 

448 CONTINUE 
IFIKFNRL.E~.31 GO TO 449 
GK( 1, 1 l=GKll INDEX21 
GK( 2 , l l =G K2 ( I ND EX 2 I 

449 CONTINUE 
C************************************************ 
c 
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XHATl=OXEM(l) +XNl <INDEX2 l 
XHAT2=0XEM(21+XN2(1NDEX2l 

25 CONTINUE 
ERRORl=XNMCll-XHATl 
ERROR2=XNMC 21-XHAT2 
IF(MCR.EQ.l l GO TO 49 

c ********************************* 
IND EX3= IPRT *IPL+ 1 
XHA Tl =DXEM(l l +X llol ( INC EX 3 l 
XHAT2=DXEM( 21+XN2 (I NDEX3) 
EPS l=XNM ( 11-XHAT l 
TSAjlo'P(IPLl=TIME 
RMEANl(IPLl=RMEANl(IPLl+XNM(ll 
RMEAN2( IPL l=RMEAN2( IPL l+XNM( ll*XNM( 11 
XHSUMl ( I PLI =XHSUMl ( I PU +XHATl 
EPSMllIPLl=EPSMlllPLl+EPSl 
XHSQl I IPL l=XHSQl I IPL l+XHATl*XHAT 1 
E PS SQl I I PU =E PS SQl ( I Pll +E PS 1 *E PS 1 

49 CONTINUE 
50 CONTINUE 
100 CON TI NUE 

IF(MCR.GT.11 GO TO 48 
WRITE I 6 ,9891 T ,XHAT 1,XHAT2, GKl ( 1NOEX21, GK2( INDEX2 I 

989 FURMAT (lH0,3X,'T='F8.6,2X, 1 XHATl='El5.7,2X, 1 XHAT2='E15.7,2X, 
1 1 GK 11 IN O EX 2 l = • E l 5 • 1, 2 X, • GK 2 ( l ND E X 21 = • E 15. 71 

WRITE(6,990l ERROR1,ERROR2 
990 FORMAT ( lH0,13X,'ERRORl='E15.8,2X, 1 ERROR2='El5o81 

WRITEC6,99l I XNMI 11,DELZI 1, 11,XNMI 21 
991 FORMAT llH0 113X,'XNl"(ll='El5.8,2X,'DELZ(l,1l= 1 El5.8,2X, 

l'XNM(2l= 1 El5.81 
WR[TEl6,9951 OXEMl2l,XNORM(ll 1 XNORMl21,DXDEM(ll,DXDEM(21 
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995 FORMAT(lH0,3X,'0XEM(2l='Fl5.7,2X, 1 XNORM(ll= 1 Fl5.7,2X,2X,F15.7,2X, 
1 1 DXOE:MI ll='Fl5.7,3X,Fl5.7l 

WR [TE (6 ,993 I XNl ( 1 NOEX2 I, OXEM (1 I, RHYBN,R SAMPN 
993 FORMAT< lH O 1 3X,' XN 1 ( I NDEX2 I=' Fl 5. 7 ,2 X, 1 DX EMll I= 1 F15 • 7, 2X, 

1 ' RHY BN = • F 10 • 6, 2 X, •RS AMP N = • F 1 0. 61 
WRITE (6,<1961 BQBTll,11,BQBTll,21,BQBT(2,ll,BQBTl2,21 

996 FORMAT llHO,lOX,'BUBT(l 1 ll= 1 El6.8,2X,'B~BT(l,21= 1 El6.8 1 2X, 
l' BQ BT ( 2 , l I=' El6 • 8 1 2X 1 • 81.) BTI 2 1 2 I= 1 E 16. 81 

48 CONTINUE 
c ********************************* 

IF(MCR.EQ.11 GO TO 149 
C STATlSTICS ONLY AT SAjlo'FLE PCINTS OBTAINED FROM 
C LAST VALUE IN PRINT LOOP 

WRITE (6,8831 
883 FORMAT(1Hl,5X,'MONTE CARLO RESULTS FOR NONLINEAR SYSTEM RESPONSE 

3W ITH EXT ENDED KALMAN FILTER I I 
WRITE (6,991 

qq FORM AT ( lH 1, 3X, 1 T SAMP • , T22 1 •RX 1 A VG• , T3 6, 1 VARXl' , T5 O, 1 X HV ARl 1 , T63, • 
lEPMENl' ,Tao,' EPVARl' ,T93, 1 XHMEN1' l 

XCR=MCR 
BET A= XCR I ( XCR-1. 0 I 
DO 150 IMC=l 1 !CAL 
R Xl A VG=R ME A Nl( I MC I / XC R 



RX2AVG=RMEAN2 ( tl'AC 1/IXCR-L.OI 
EPM EN 1= EP SM LI IMC l /XCR 
VARXl =RX2 AVG-RX l AVG* RX l AVG*BET A 
XHMENl=XHSUMl(IMCl/XCR 
EPMSQl=EPSSQl(IMCl/(XC~-1.01 
XHMSQl=XHSQl(IMCl/(XCR-1.0l 
XHVAR l= XHM SQ 1- XHMEN l* XHME Nl*BE TA 
EPV AR l= EPMS Ql-EP MEN 1 *EPM EN 1 *BE TA 
WRITE 16,8801 TSAMPllr-'Cl,RXlAVG,VARXl,XHVARl,EPMENl,EPVARl,XHMENl 

880 FORMAT (1H0,3X,F8.6 ,2X,El5.7,2X,El5.7,2X,El5.7,2X,E15.7,2X,El5.7, 
42X,E15.71 

15 0 C ON T I NU!: 
149 CONTINUE 

STOP 
END 
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c 
C SYSTEM EQUATIONS, EXPRESSE'.l IN N FIRST ORDER DIFFERENTIAL 
C EQUATIONS. NX=NUMBER Of EQUATIONS OR THE ORDER OF SYSTEM 
c 

SUBROUTINE SY SEQ f UI NP ,XNORM, VLI N ,ALPHA ,OX ,XI 
DIMENSION DXl21,XI 10 J·,XNORM( 21 
D XI 11 =1 O. O* f -X 111 + VLI I\*;( I 21 + Al PHA*X I 21 *X (2 I *X 12 I I 
DXl21=50.0*I-Xl2l+UINP+XNORMl111 
RETURN 
END 

SUBROUTINE AA IX,1,ALPHA,VLIN,AI 
DIMENSION XI 2011,AI 3,31 

C THIS ROUTINE IS USED TO REPLACE VALUES IN A MATRIX 
C FOR NONLINEAR SYSTEM . 

All, l>=-10.0 
A Cl ,2 l =10.0*IVLIN+3 .O OLPHA*XI I I *XI Ill 
Al2,ll=O.O 
A12,2l=-50.0 
RETURN 
ENO 

SUBROUTINE RANDOM IDUM,IX,XNORM) 
DIMENSION DUM ( 11, XNORMI 2) 

c ********************************* 
c 
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C MULTIPLICATIVE DIGITAL NUMBER GENERATOR WITH M=2 TO THE 20TH POWER 
C THIS RANDOM NUMBER GENERATOR ASSU~ES A UNITY VARIANCE AND ZERO 
C MEAN. REQUIREMENTS OtHER THAN UNITY VARIANCE AND ZERO MEAN IS 
C APPLIED TO THE VARIABLE XNORM IN MAIN PROGRAM 
c· 
c ********************************* 
c 

c 

IY=l 9971 *IX 
IPY=IY/1048576 
IX=IY-IPY*l048576 
AX=I X 
U=AX/1048576. 
1FCUJ5,5,6 

5 U=-U 
6 CONTINUE 

IX= IV 

C TRANSFORM TO NORMAL 
c 

Z=SQRTl-2.0*ALOGIOUMllll) 
XNORMlll=Z*COSC6.283l8*Ul 
XNORM(2 l=Z*S INf6 .2B318*U) 
D lJMI 11 = U 
RETURN 
END 



SWROUTI NE RUNK (KUTlA,DT,DUMl ,LX ,DX ,XI 
DIMENSION XAClOl,DXA(lOl 
OIME~SION OKC3,3l 
OIMElliSION XClOI 
DIM ENS ION OX( 10 l 
HOT=.5*DT 
GU TO 110,30,50,70),KUTTA 

10 DO 20 I=l ,LX 
XA!ll=XIII 
OXAI Il=OX( I I 
XI l l=X CI I +HOT •ox C 11 
DUMl=XCll 

20 CONTINUE 
RETURN 

30 DO 40.I=l,LX 
DXAC Il=DXAI I )+DX( l )+OX( I) 
X I I I =X A I 11 + HOT *DX ( I I 

40 CONT l NUE 
RETURN 

50 00 60 1=1,LX 
D XA C I I =D XA ( I I +OX ([ I+ DX C I I 

60 X(ll=XA(ll+DT*DXIII 
RETURN 

70 VDT=DT*.1666667 
DO 80 I= 1,LX 

80 XI I I =XA ( ll +VDT* (OX A ( I l +OX (II I 
RETURN 
END 

SUBROUT lNE TRAN SA IA, IAV,KAV,AII 
DIMENSION AC3,3l ,AIC3,31 
DO 77 5 J V= i , I AV 
DO 775 KV=l, KAV 
A IC KV, JV I =A ( JV, KV l 

775 CONTINUE 
RETURN 
ENO 

SU3ROUTINE MATADD (A,B,M,N,Cl 
DIMENSION A13,3J ,Bl 3,31,C( 3,31 
DO 20 l=l ,M 
DO 20 J=l,N 
C ( 1, J I= A ( I, J I +BC I, J l 

20 CONTINUE 
RETURN 
END 
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SWROUTINE MATSUB CA,B,M,N,CI 
DIMENSION Al3,31,Bl3,31,CC3,31 
DO 20 I :1,M 
DO 20 J= 1,N 
ClI,Jl=A(I,JI-Bll,J) 

20 c·oN TI NUE 
RETURN 
END 

SUBROUT lNE MATMUL (A,P, I I,JJ ,KK,C I 
DI ME I\S I ON A ( 3 , 3 I, P ( 3 , 3 l , CC 3 , 3 I 

c ********************************* 
C I I= NO. ROWS IN MATRIX A 
C JJ=NC.COLUMNS IN JVATRIX P 
C KK=NO.COLUMNS iN.A AND ROWS IN P 
C RESULTS MATRIX C HAS It ROWS AND JJ COLUMNS 
c ********************************* 

DO 10 t= 1, I I 
DO 10 J=l, JJ 
ClI,Jl=O.o 
DO 10 K=l,KK 
CCI ,Jl=C(I ,J)+ACI,Kl*PlK,JI 

10 CONTINUE 
RETURN 
END 

SUBROUTINE COVPD (P,A,QI,B,H,NX,MX,BQBT,AT,PD) 
DIMENSION P(3,31,A13,31,Qll3,31,B(3,3),HC3,31,BQBTC3,3),PD(3,31 
DIMENSION AT ( 3, 31 
DI ME t,.Sl Of\ PH QI 13 ,3 I , HT (3 ,3 I , HK (3, 3 >, PN ( 3 t 31, PT 1 ( 3, 3) 
DIMENSION PAT( 3,31 ,AP( 3,31,C( 3,31 ,PH(3 ,31 
CALL MATMUL CP~AT,NX,NX,NX,PATI 
CALL MATMUL (A,P,NX,NX,NX,AP) 
CALL MATADD (AP,PAT,NX,NX,CI 
CALL MATMUL CP,H,NX,MX,I\X,PHI 
CALL MATMUL (PH ,QI ,NX,IIIX,JVX,PHQII 
CALL TRANSA (H,NX,MX,HTI 
CALL JVA T MU L ( PH QI , HT , NX, NX, MX, HK I 
CALL MATMUL (HK ,P ,NX,NX,NX,PNI 
CALL MATADD (C,BQBT,I\IX,NX,PTU 
CALL MATSUB (PTl,PN,NX,NX,PDI 
RETURN 
ENO 
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SUBROUTINE ARTOVE CDXC~,CXOE~,PO,XNM,DXEM,P,DVSKF,VVSKFl 
01\IENSION DXOM( 101 ,DXDEMI 101, PD ( 3 ,31 ,XNMllOl ,DXEMllOI, PC3, 3 I 
DIMENSION DVSKF(lOl,VVSKF(lOl 
DVSKF( 1) =DXDMCl l 
OVSKF( 2 l=DXOM( 21 
DVS KH3 l =OX DE MC 1 I 
OVSKFI 4l=DXDEMC2l 
DVSKFI 5 l=PO( 1, 11 
D VS KF I 6 I = PD Cl , 2 I 
DVSKF( 71=PDC2,21 
VVSKFll l=XNM(l) 
VVSKFl2l=XNM(21 
VVSKFI 31=DXEMI 11 
VVSKF 14 l=DX EM 12 I 
VVSKFl51=Pll,11 
VVSKFI 6l=PI l,21 
VVSKFl71=P12,21 
RE TURN 
END 

SUBROUTINE VETO AR ( VVSKF, XNM,DXEM,PI 
DIME NS ION VVSKF( 101,XNM( 101,DXEMI 101 ,PC 3, 31 
XNM( ll = VVSKF 11 I 
XNM(21:VVSKF(21 
DXEMlll =VVSKF(31 
OXE Ml 21 =VVSKF ( 41 
Pll,ll=VVSKFl51 
PU ,21 =VVSKFC61 
P!2, ll=VVSKF( 61 
P!2,21=VVSKFC71 
RETURN 
END 

SUBROUTINE KALMAN IDELZ,GK,H,A,NX,~X,XHAT,XHATOI 
DIMENSION .HXHATC3,31,ZINOV(3,31,CORREl3,31,PRED13,31 
DI ME NS I ON DEL l (3, 3 I, GK (3, 3 I , HO, 3 I, A ( 3, 3 I, X HAT I 10 I, XHA TO ( 10 I 
CALL MATMUL (H,XHAT,NX,~X,NX,HXHATI 
CALL MATSUB lDELZ,HXI-AT,NX,MX,ZINOVI 
CALL MATMUL lGK,ZINOV,NX,~X,M,CORREI 
CALL MATMUL IA,XHAT,NX,MX,NX,PREDI 
CALL MATAOD lPRED,CORRE,NX,MX,XHATDl 
RETURN 
END 
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SUBROUTINE RNGEN(OUM,JX,NUM, IRN,RNUM) 
DIMENSION RNUMCNUMI ,OUM(ll 

c ********************************* 
c 

92 

C MULTIPLICATIVE DIGITAL NUMBER GENERATOR WITH M=2 TO THE 20TH POWER 
C DISTRIBUTION ARE GENERATED CONDITIONED ON INTEGER IRN 
C lRN-=1, UNIFORMLY DISTRIBUTED ON THE INTERVAL (O,U 
C IRN=2,UNIFORMLV DISTRIBUTED ON THE INTERVAL (-1,11 
C IRN=3,NORMAL DISTRIBUTION,ZERO MEAN,UN!TY VAR. 
c 
c ********************************* 
c 

c 

DO 1 l =l, l\iUM 
IY= 1366853*JX 
JX= IY 
IFC I Y. L T.01 IV=IY+2147483647+1 
U=IY*.4656613E-9 

C TRANSFOR~ TC NORMAL 
c 

l=S QRT C-2 .o *ALDGI OUM C 1 I I I 
XNORM=Z*COS(6.28318*UI 
OUM ( 1 l=U 
GC TO Cl,2,31,IRN 

1 RNUM(Il=U 
GO TO 10 

2 RNUMCll=2.0*U-l.O 
GO TO 10 

3 RNUMlll=XNORM 
10 CONTINUE 

7 .CONTINUE 
RETURN 
ENO 
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