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PREFACE

This study is concerned with the hybrid computer simulation of
stochastic systems operating in a time-critical environment. The
primary objective is to determine the effects of time-critical hybrid
computer operations on systems with random parameters operating in an
unmodeled noisy environment, The stochastic model chosen for this study
is a linear system with the Tinear Kalman filter and a nonlinear system
with related variational and extended Kalman filters,
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CHAPTER I
INTRODUCT ION

For more than a decade the areas of computer simulation and optimal
control iheory have made explosive contributions to the existing body of
theoretical and technological information related to the engineering
sciences. In particular, the use of hybrid computers as a simulation
tool and optimal filtering algorithms for stochastic estimation have
given specific impetus for scientific development. The application of
hybrid computers and filtering techniques to practical engineering prob-
lems have resulted in increased economy and improved performance, - In
addition, the investigation of large-scale engineering problems of a
more complex nature has now become possible.

The motivation for recent improvements in hybrid computer simula-
tion has been to increase the capabilities for handling sophisticated
problems that could not be simulated with previously existing analog or
digital computers. Typical problems included reaitime simulation of
missile systems with hardwaréwin-the-]oopu The objective has been to
combine the inherent speed and parallel computation of the analog com-
puter with the improved accuracy and dynamic range of the digital com-
puter, The application of hybrid computers to aerospace trajectory
optimization problems, air defense missile analysis in a time-critical
environment and Monte Carlo simu]atioﬁ studies have demonstrated the use-

fulness of such a tool. However, hybrid computation has introduced new



dimensions of complexities to the analysis problem, such as time delay
due to digital computation, signal sampling, data quantization and data
reconstruction,

The continuing effort to obtain improved performances from engine-
ering systems, particularly those operating in noisy environments, has
introduced a new era in the development of optimization techniques.
Using stochastic optimal estimation theory, improved performance can be
obtained for those dynamical systems subjected to random input and
measurement disturbances, This better performance typically requires
accurate modeling of the physical system in terms of time-varying para-
meters, plant dynamics, and the statistical nature of the environment.
Significant in the development of optimal filtering and smoothing theory
has been the study, evaluation and implementation of suboptimal filters.
Furthermore, economic considerations and realtime operation requirements
have provided the motivation for developing fast and efficient methods
for handling the enormous computational requirements of a fully imple-
mented optimal filter.

The hybrid computer implementation of the optimal estimation algo-
rithm establishes a basis for improved dynamical system performance re-
sulting from increased computational efficiency. This improved compu-
tation permits faster update rates for the estimation algorithm, which
results in reduced mean-square error for optimal and suboptimal filters

in a realtime environment,
Background

The optimal selection of system parameters is one of the most

important problems in systems engineering. The use of hybrid computers



with Monte Carlo methods has been the most practical approach for in-
vestigating complex nonlinear dynamical systems with random parameters,
random inputs and random initial conditions. Parameter selection in a
multiparameter system using a hybrid computer has been studied by Bekey
(1), and dynamical systems with random disturbances have been investi-
gated by Korn (2,3) and Steinmetz (4).

The advantage of combined operation of the analog and digital
computers has been realized only by overcoming a unique set of problems
characterizing hybrid computers. Specifically, digitization problems
(5,6) include compensation for the inherent time delay due to digital
computation, sampled-data problems, analog-to-digital quantization and
digital-to-analog data reconstruction. Furthermore, analog related
problems (7,8) include the Timited bandwidth of the analog computer
components, delays due to analog computer mode switching and reset time
and delays caused by digital-to-analog conversion. Difficulties en-
countered with hybrid computer simulation for time-critical environments
have been identified by Fineberg and Serlin (9). An equally important,
but Tess obvious, problem is the partitioning of a given system between
the analog computer and the digital computer in a hybrid system (10).

Recent advances in analog and digital computer technologies have
minimized many of the basic problems that characterize the hybrid com-
puter. Bedient and Dike (11) described the configuration of a modern
hybrid computer using a Control Data CDC 6400 digital computer, four
Comcor Ci-5000 analog computers and associated linkage equipment.
Further development by Soma,. Crunkleton and Lord (12) resulted in
analog-digital computer interface improvements and related software for

improved hybrid computer simulation. Moreover, Graycon, Nolby and



Sanson (13) presented a detailed description of the actual operation of
a high performance computing system for a time-critical application..
Comprehensive error analyses of hybrid computer systems were performed
by Karplus (14) and Mjtchell (15). Miura and Iwata (16) studied the
effects of delays due to digital computer execution in a hybrid computer.
Furthermore, Mitchell (17) determined the effects of digital computer
compensation of the computational delay. Vidal, Karplus and Kaludjlan
(18) investigated the use of sensitivity coefficients for correcting
quantization errors, while Gelman (19) proposed a method of corrected
inputs for improved hybrid simulation. However, the dilemma of problem
partitioning between the analog and digital computer remains with the
hybrid computer user. At present there are no clear guidelines avail-
able to expedite this decision. However, a reasonable initial parti-
tioning effort involves a general knowledge of hybrid computation, a
detailed knowledge of the particular hybrid computer system to be used
and a working knowledge of the dynamics of the given engineering problem. .

Recent activities in optimal filtering theory, initiated by Kalman
(20) and Kalman and Bucy (21) in the early sixties, have established a
new basis for optimization techniques. An increasing body of Titerature
on Kalman filtering provides a means for obtaining improved performances
for engineering systems in a realtime environment with stochastic dis-
turbances. Mendel and Gieseking (22) compiled a bibliography in excess
of 900 references on the ]inear—qﬁadratic-Gaussian problem of which
optimal linear filtering is an integral part.:

Since the earliest app]icationé of Kalman fi]tering, the need for
improved implementation including more efficient computation has become

a primary consideration, Practical applications have been reported by
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Gains (23) and by Schmidt, Weinberg and Lukesh (24) and theoretical pre-
sentations have been made by Meditch (25), Jazwinski (26), Sage and
Melsa (27) and Bryson and Ho (28). Recently, Mendel (29) reviewed the
practicality of a fully implemented Kalman filter from the computational
viewpoint, and Simon and Stubberud (30) investigated the possibility of
reducing thé order of the filter equations to obtain a more efficient
computation.. Brown and Sage (31) demonstrated the effects of simplify-
ing assumptions on the statistical information or modeling errors in
plant dynamics, which typically results in a suboptimal filter. In
addition, Fitzgerald (32), Schlee, Standish and Toda (33), and Price
(34) investigated divergence of the Kalman filter for various error
sources-

Applications of the Kalman filter to larger and increasingly more
complex engineering systems operating in time-critical environments re-
quires special considerations with regard to practical implementations.:
Bierman (35) and Friedland (36) discussed implementation problems for
the discrete Kalman filter, and Nishimura (37) investigated error bounds
for the continuqus filter applications. Bucy, Merritt and Miller (38)
demonstrated the enormous computational advantage in using hybrid com-
puters for a particular nonlinear estimation probiem. In particular,
the results of this effort §howed that one hybrid computer with 250 in-
tegrators and mu]tib]iers oberates at speeds equivalent to forty-nine
CDC 6800 digital computers operating in parallel. However, their results
were obtained in an all-digital environment by synthesizing the hybrid
computer on a digital computer. Hybrid computer implementation of
Kalman filtgring for systems wié%_stochastic parameters cperating in a

time-critical environment has not been sufficiently investigated to



determine the relative advantages over an all-digital implementation.

It is significant to note that only three documents, Bucy et al. (38),
Tacker (39,40), on the time-critical hybrid computation of Kalman filter-
ing were located in a computerized search of the libraries of the U.S.
Army Document Center and the Nationa]'Aeronautics and Space Administra-
tion. These two libraries include over two million research documents,
engineering reports and scientific abstracts. This extensive search
indicates the minimal amount of investigation that has been directed
toward using the hybrid computer as a tool for improved computation in

Kalman filtering.
System and Filter Descriptions

Consider an nth-order linear, time-varying, dyramical system S

described by

(=) (1.1)

y(t) = H(t) X(t) (1.2)

where X(t) is the n-dimensional state vector of S, W(t) is an r-vector
input, A(t) is an n x n matrix, B(t) is the n x r gain matrix, y(t) is
the m-vector output, and H(t) is the output matrix of S. It is assumed
that the input W(t) to S is a vector-valued white-noise Gaussian pro-

cess with zero-mean given as
E{W(t)} =0 for all t (1.3)
and covariance matrix denoted as

covW(t); W(T)] = EQ(E) W)Y = Q(t) 6(t-r) (1.4)



where 6(+) is the Dirac delta function and Qw(t) is an r x r symmetric
positive semidefinite matrix. Let tO denote the initial time and X(to)
the initial state vector of S. It is assumed that g(to) is a vector-

valued Gaussian random variable, independent of W(t), with known mean

(t) (1.5)

4
E{X(t,)} = ny(t,

and known covariance matrix

cov[x(t,)ix(t,)] = E{[X(t,) - né(to)l

[X(t,) - ny(t,)17} & P(t,). (1.6)

Suppose the output y(t) can be observed only in the presence of white

Gaussian noise. Therefore, let the observed signal be denoted as
z(t) = H(t) x(t) + v(t) (1.7)
where y(t) is a vector of Gaussian white-noise processesvwith Zero means

E{v(t)} =0 for all t (1.8)

and covariance matrix

cov[V(t)3¥(1)] = EQ¥(t) V(1)) = Q(t) 8(t-1) (1.9)

v

where Qv(t) is symmetric positive definite. Furthermore, it is assumed

that y(t), W(t) and x(to) are independent.

The Kalman Fi]ter

In general the state of S is not available for measurement. There-
fore, the problem is to obtain an estimate of the state X(t) in the

sense of least mean-square error. This estimate Z(t) must be obtained



by using the noise-corrupted signal z(t). The objective is to construct
a filter F to accept the available data ;(t) in realtime and produce a
vector-valued signal X(t) such that the error to be minimized in some

sense is defined as
e(t) = X(t) - X(t). (1.10)

The resulting filter for such a system is directly ke]ated to the im-
posed constraints. Here the filter will be constrained to be linear and
time-varying. It is required that the estimate of the state of S be
unbiased and, moreover, that the estimate be a minimum-variance estimate.
The derivation of the Kalman filtering algorithm has been developed
by various authors as previously indicated. A different derivation or
variation of the algorithm usually reflects the particular intended
application. For completeness, the general results for the optimum
linear continuous filtering algorithm are included here. The optimal

linear time-varying filter for the system S given in {1.1) and (1.2) is
X(t) = A(t) X(t) + K(t) [z(t) - H(t) X(t)] (1.11)
with an error covariance matrix differential equation

B(t) = A(t) P(t) + P(t) AT(t) - P(£) HT(£) Q' (¥) H(t) P(T) +

+ B(t) Q (t) BT (t). (1.12)
The time-varying gain K(t) is given as

K(t) = P(t) W1 () Q7 (¥) (1.13)

where P(t) is the n x n error covariance matrix. The remaining terms in



(1.11), (1.12) and (1.13) have been defined previously for the dynamical
system. An important result of the linear optimal time-varying filter
is that the time-varying gain K(t) can be precomputed. The non-realtime
results can be used during the actual system operation and cptimal
estimation procedures. This also implies that the P{t) calculation will
not be required during on-Tine operation, which is a very important con-
sideration for time-critical computation or simulation operations. How-
ever, as will be shown Tater, for certain applications of the filtering
algorithm for nonlinear systems, this efficiency of operation is not
possible. A dynamic simulation of the Tinear time-varying system model

and the linear optimal filter is shown in Figure 1.

Extensions to Nonlinear Systems

The stated results and operating conditions. of the previous section
were developed for linear systems. If the system invelved is nonlinear,
then the use of the Kalman filtering algorithm requires a different set
of constraints and operating conditions. The application of the filter-
ing algorithm to nonlinear systems has been treated by a number of
authors, such as Sage and Melsa (27) and Jazwinski (26). The two
particular extensions of the linear filtering algorithm of interest are
- the linearized, or variational filter, and the extended filter. In the
first case the filtering algorithm is applied to linearized variations
of the system about a nominal trajectory gN(t) obtained by replacing all
noise disturbances by their mean values. Jazwinski defined this con-
figuration of the Kalman filter as the "variational filter". The extend-
ed filter involves the application of the filtering algorithm to varia-

tions about the estimate of the system state X(t). For continuity the
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Figure 1. Block Diagram for the Linear Dynamical System and
Related Kalman Filter.
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results for these applications of the two particular filter configura-

tions are included here, .

The Variational Kalman Filter

Consider a nonlinear, continuous, time-varying system described by

the nonlinear differential equation

X(t) = £(X(t),W(t),t) (1.14)
with a nonlinear observation of the system states given as the vector
z(t) = h(X(t),t) + V(t) (1.15)

where t is time, X(t) is the vector of states, W(t) is a vector of white
noise processes described by (1.3) and (1.4). A deterministic reference

or nominal trajectory xN(t) is obtained from
Ky (t) = £06,(£)om(t),t) (1.16)

where X, (t) is a vector of the nominal states. Here the deviation or

-variation from the nominal trajectory is defined as

8X(t) = X(t) - ¥y(t) (1.17)
and |
sk(t) = X(t) - % (). (1.18)

Using expressions (1.16), (1.17) and (1.18), the nonlinear system
functional f(-) can be expanded in a Taylor series to obtain the dif-
ferential equation that gives the variation between the actual state

and the nominal state to first order.
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" j[x(t),w(t),t]i SK(t) + BELX(t),W(t) ,t]| SH(t) (1.19)
X(t) = == ' 1.
i 3X(t) t(t) W]y (t)

nw(t) nw(t)

The variation of the observation vector evaluated about the nominal is

shEX(t),t]| SX(t) + V(t)

2(t) = (N () (1.20)
XN

The results shown in equation (1.19) are in the same form as the expres=

sion for the linear system given in equations (1.1) and (1.2) where

p AfLX(t iW(t),t]
Alt) = — 3%(,:) Xy (t) (.21)
ny(t)
and
p OFLX(t),W(t),t]
B % g1, () - .22)
nw(t)

By evaluating the new expressions for A(t) and B(t) at the nominal value
of the sytem state, the linear filtering algorithm can be applied to
nonlinear systems. An important characteristic is retained in this
particular application, Since the nominal trajectory is deterministic
and can be pre—computed, the time-varying gain K(t) can also be pre-
computed, In Figure 1 the value of XN(t) would be subtracted out ot the
summing point for z(t) to yield §Z(t). This modification results in the

filter output being §Xﬂt), which requires that the nominal éN(t) be
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added to the filter output to give the estimated state g(t)o

The Extended Ka1man_F11ter

The results for the extended filtering algorithm are derived by the
same procedure as for the variational case. The one essential dif-
ference in the expressions in (1,19), (1.20), (1.21) and (1.22) is that
the nominal X\ (t) is replaced by the estimate of the state g(t)a The

required results are given as

af[X(t),W(t),t]].
( ) é ax(t) x(t) ‘ (].23)
ny(t)
£IX(t),W(t),t]|.
B(t) & Eaf-ﬂtgw%i§) t] i) (1.24)
ny(t)
sz (t) é%g(t) (1.25)

A very important difference exists between the variational and ex-
tended filtering algorithms with regard to time-critical applications.
For the extended case the estimated trajectory or state about which the
variations occur is no longer deterministic and cannot be precomputed,
which prevents the pre-calculation of the time-varying gain K(t).
Therefore, the error covariance matrix must be computed on-1ine. This
requirement places severe constraints on the time-critical application
of the extended filter. It should also be pointed out that the pre-
calculated nominal ZN(t) in Figure 1 enters into the simulation as

described above for the variational application.
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Time-Critical Hybrid Computer Operation

The increased complexity of simulation requfres that a precise
definition of realtime and time-critical operations be established. The
most general definition of reattime operation with digital computers
applies to such operation as on-Tine banking systems, airline reserva-
tion systems and inventpry control. The nature of these systems is
such that a variable response time from the computer of a few seconds
is not detrimental to the system operations. - Therefore, any definition
of realtime operatiohs must be sufficient to include all realtime com-
puter operations independent of the size of the simulator oéwthe problem
under study, A consistent working definition of time-critical hybrid
computer operation is given by Fineberg and Serlin (9) and Graycon,
Nolby and Sanson (13). In particular, an application is said to be
time-critical if it demands a response from the digital computer within
a fixed time after it has received a stimulus, This required response
time is at least one or two orders of magnitude shortér than previously
described for on-line realtime operations. Furthermore, for a time-
critical operation, not a single omission of the stimulus-response cycle
is permitted during the entire operation.

Any discussion of a time-critical hybrid computer operation with
hardware-in-the-loop must be referenced to the concept of frame time
(41). The frame time generally can be considered to be the total con-
tiguous time required for the digital computer ﬁo complete the required
digital operation for one iteration of the simulation. The maximum
length of this time period is determined by the dynamics of the system,

sampling rates, error budgets and related factors. Figure 2 shows some
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Frame Time Consideration in Hybrid Computation.
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of the parameters for an ideal time-critical frame time. The priority
or stimulus events are generated by real world events and may typically
be a realtime clock with period'Tf. The period TC is the amount of time
the digital computer takes to perform the actual calculation, and T, is
the time in whicH the real world demands a response from the digital
computer and the output is required, In all cases, Tr must be equal to
or less than T, and the ideal situation is that T . =T, = T.. However,
for any but the simplest problem this ideal situation is not achieved.
Due to the dynamics in a typical problem, multi-rate sampling is
usually necessary and requires calculation and output with different
priority levels, Multi-rate sampling and a variable interval within the
frame time makes any compensation for computational delay difficult, if
not impossible, Without compensation the error. in the simulation result
increases very rapidly., Shown in Figure 3 is an example of a realistic
time-critical hybrid computer frame time. A dynamical subsystem may re-
quire an output response at Tr1' but only requires computational time
ST. The calculation for a second subsystem can begin immediately after
completing the calculation S1, This calculation continues until time
for a stimulus response for subsystem S1, shown as Event 1. The calcu-
lation for S2 can be interrupted for the Event 1 input-output since its
stimulus-response cycle is Tr2 or greater. The distribution of calcu-
lation time over multiple sub-frames of the basic frame time is required
to achieve an efficient computer operation. However, the allowable dis-
tribution is directly dependent upon the partitioning of the dynamical
system between the ana]og and digital computers. The partitioned con-
figuration contributes to the random nbise in the hybrid computer cper-

ation indirectly through sampling rate errors, quantization, data
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reconstruction, truncation, roundoff, time skew and uncompensated time.
delays. This dependency emphasizes the importance of the partitioning
process. The difficulties in obtaining time-critical hybrid computer
results increases when the dynamical system includes stochastic
processes.

A realtime hybrid computer operation is typically viewed as the
synchronized exchange of data between the analog and digital computers
through an interface. A time-critical operation with hardware included
adds a new dimension of complexity to the total simulation. All inter-
faces, either for hardware or simulation, act as an error source and
each input channel is a potential source of unknown random disturbances.
Figure 4 shows a typical configuration of a time-critical hybrid com-
puter with possible noise sources indicated. Two noise sources used for
hybrid operations in this thesis research were a zero-mean Gaussian dis-
tribution to represent hybridization noise and a zero-mean uniformly

distributed noise source to represent the sampling errors.
Research Objectives

The initial objective of this research is to determine the effects
of the time-critical hybrid computer implementation of continuous
stochastic filtering algorithms.. Secondly, for any degradation that
might occur in the stochastic filter performance due to this implementa-
tion, modifications will be made to obtain an improved operation. This
research will be accomplished by developing an all-digital computer
simulation of a time-critical hybrid computer operation. The Kalman
filtering algorithm will be implemented with the time-critical simulation

and the effects of hybridizing the noisy system and filtering algorithm
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will be established. Mante Carlo evaluations will be performed for com-

parison of results.
Thesis Outline

Following this introductory material on time-critical hybrid oper-
ations for stochastic systems, the implemented all-digital and time-
critical simulation program is described at the beginning of Chapter II.
Simulated hybrid computer results with the Kalman filter as a particular
stochastic algorithm for linear systems are then given.. In Chapter III
a variation of the stochastic algorithm is used for a nonlinear system
to determine the effects of time-critical operation in a more complex
simulation model. Chapter IV included hybrid simulation refinements for
frame time compensation, Kalman-gain modification and problem partition-

ing. Cahclusions and recommendations are presented in Chapter V.



CHAPTER II

TIME-CRITICAL SIMULATION OF LINEAR
CONTINUQUS SYSTEMS

The success of simulating any time-critical operation is directly
related both to the mathematical representation of the physical system
and to the simulation of these models. Therefore, it is important to
discuss the approach in developing the simulation used in this research.
The time-critical system operation was simulated by developing an all-
digital computer program. The simulation was designed to include linear
and nonlinear systems with related filter configurations. Only that
part of the total simulation that pertains to linear systems will be
discussed in this chapter. The results of the simulation program pre-
sented is for a particular Tinear system and the related Kalman filter.
The features of the simulation program for nonlinear systems and re-
Tated filter configurations will be discussed tn Chapter III. A com-
plete Fortran listing of the total computer program is included in the

Appendix,
Non-Time-Critical Simulation Operation

The total simulation program has seven distinct operational modes:
time-critical (ITC=1), non-time-critical (ITC=0), Monte Carlo operation
(MCR=Number of runs), single sample function (MCR=1), linear system and
Kalman filter (KFNRL=1), nonlinear system with variational filter

(KFNRL=2), and nonlinear system with extended filter (KFNRL=3).

[ah}
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Additional options may be specified for some of the major modes of oper-
ation, e.g. for time-critical operation the hybrid sampling update rate
and frame time may be specified with TSAMP. The integer value associat-
ed with TSAMP designates the number of non-time-critical integration
time intervals to be included in the hybrid update frame time. The
operational modes of primary interest here are time-critical, non-time-
critical and Monte Carlo operation for a Tinear system and related
Kalman filter.

Time-critical operation implies the synchronous operation of an
analog computer and a digital computer with the associated frame time.
For the purpose of this research the non-time-critical mode implies that
the simulation process is in parallel, analogous to analog computer
operations in which the concept of frame time does not apply. In the
hybrid or time-critical mode, the analog simulation may be represented
by a non-time-critical operation. The totally non-time-critical simula-
tion represents the continuous system without any of the associated
effects of hybridization, The results from this mode of simulation may
be used as basis of comparison  for the time-critical hybrid computer
operation. Since the non-time-critical mode of operation corresponds to
a very accurate analog computer simulation, the digital computer inte-
gration step size must be chosen to minimize the effects of digital com-
puter integration. Acceptable hybrid computer results may typically be
obtained if the particular system variable partitioned on the digital
computer is sampled at Teast ten times per cycle for the highest fre-
quency ofvinterest., This Tower bound often requires some compensation
for the sampling error reflected as digital computer execution time.

For a realistic simulation of the analog operation, an integration
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interval corresponding to forty samgles per cycle was selected for use
with -a fourth-order Runge-Kutta (RK4)‘1ntegration algorithm..

Shown in Figure 5 is a flow diagram of the dominant operational
features of the non-time-critical simuTation. The majority of the oper-
ations indicated are common to other modes of the simulation. The pre-
calculation of a nominal trqjectoryfo(t) systematizes the filtering
procedures for linear systems with non-zero-mean disturbances and for
nonlinear systems. The value of XN(t) is subtracted and added at the
appropriate points for the Kalman filter operation. Generating ZN(t)
is an off-line process, and no significant penalty is incurred for time-
critical operations.

The time-varying Kalman gain GK(t) is calculated with the same
precision as the nominal- trajectory values. The gain calculation is -
shown separately from the nominal trajectory calculation since one
particular nonlinear problem configuration to be considered in Chapter
III does not permit the pre-calculation of GK(t). It should be noted
that the pre-calculation of the gain is by-passed in that particular
nonlinear mode.

The random disturbances for the non-time-critical mode consist of
two independent, zero-mean Gaussian white noise @rocesses for W(t) and
V(t). The values are simulated with a pseudo-random number generator
by using a multiplicative congruential method with a recurrence formula

of the form

Zs1 = A Z, (MODULO M), | (2.1)

k+

The scalar constants A and M are selected to insure good statistical.

properties. The random sequence obtained from (2.1) is approximately
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uniformly distributed on the unit interval (0,1). Box and Muller (42)
developed an exact approach for transforming two independent randem
variables which are uniform1yvdistributed on the unit interval to a pair
of independent random variables with zero-mean, unity variance Gaussian

distributions. The closed-form relation developed by Box and Muller is

)2c0S 27 U

[p]
n

(-2 LOGé'U

1 2

(2.2)

(-2 Log, U])%SIN on U

Gy 2

where U] and U2 are uniformly distributed, and G1 and G2 are Gaussianly
distributed random variables. The resulting number sequence satisfies
the requirements necessary for the digital representation of Gaussian
white noise. This particular generator has been evaluated and found to
be slightly better than the central Timit method of averaging twelve
uniformly distributed numbers (43). " Using this pseudo-random Gaussian
number generator, any particular variance may be obtained by multiplying
the generated number sequence by the desired variance. The use of ran-
dom numbers as disturbance input sample functions for dynamical systems
requires special considerations for variance representation. It is
necessary to determine a discrete representation for continuous noise
processes. Rowland and Gupta (44) have shown that the relationship be-

tween variances of discrete and continuous noise processes is

L

_Qy
Qud = 7T (2.3)

where QWd and Qw are the variance of the discrete and continuous cases,
respectively, and DT is the sampling interval.

Using the generated random numbers as the disturbance inputs with
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specified means and variances, the measurement value g(t) is obtained by
summing the output of the noise-forced response»H(t)xNM(t) with the
measurement noise Y(t). The mean value of W(t) determines the pre-cal-
culated nominal XN(t); The Tinear system respense for an equivalent

zero-mean Gaussian noise is obtained by

The value of §z(t) is the forcing function to the Kalman filter for
estimating the state 8X(t). The total estimate for non-zero-mean
Gaussian noise is obtained by summing the nominal solution XN(t) and the

quantity 6X(t) such that
(t) + 8x(t). (2.5)

The error in the estimate of the state is defined as

EPS = 5NM(t) - X(t). (2.6)
Verification of means and variances for Tinear and nonlinear sys-
tems is achieved by using a selected number of Monte Carlo runs.. The
sample means and sample variances of the typical system variables of

interest in this simulation are defined by

MCR
2 Uy (£))

= MC=
RXTAVG WCR

MCR(

(X

_pge1 M
MR = T)

(t) - RXIAVG)Z

VARX1

For consistency the program variable names are shown. The sample
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variance VARXT may be computed by using running sums according to

MCR )
5 (g (£))
RxeAve = Me=]
(MR =T)
(2.8)
VARXT = RX2AVG - (RX1AVG)® (poeny)

Similar expressions for the sample means and sample variances of all
system variables and filter estimates are utilized in the program of the

Appendix.
Non-Time-Critical Linear System Simulation

The block diagram of the second-order Tinear system used in the
simulation program is shown in Figure 6. This system may be expressed

as a set of first-order linear differential equations.

Xy (t) 2100 T0.0VLIN || % (t) 0
= + Wit). (2.9)

X2(t) 0 -50.0 Xz(t) 50.0

The particu]af_configuration for the second-order system was chosen for
two reasons. The system can represent two separate physical systems
operationally interfaced with a gain VLIN, and error sources can be
introduced to Subsystem 1 without affecting Subystem 2. Secondly, for
purposes of partitioning, the system frequencies should be uncoupled and
somewhat separated. These system fraquencies essentially determine an
acceptable hybrid computer update rate and frame time. Subsystem 2 is

chosen with wy = 50 radians per second with a resulting frequency of
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f2 = 7.96 cycles/sec, The‘non-timg-qritjca] operation of 40 integration
intervals per cycle or 320 samples per second requires an integration
step size of 0.003125 secomds. Similarly, Subsystem 1 with wy = 10
radians per second requires an integration step of not greater than
0.015625 seconds.

The effect of time-critical operation on the selected system and
related Kalman filter was established by comparing time-critical per-
formance with non-time-critical results. For further evaluation of
operating in an increased noisy environment, results were obtained for
two operating conditions of the stochastic system. The first condition
utilized an input Gaussian noise with a mean of 10.0 and a variance of
unity. A second operating condition was chosen with increased input
disturbances of the same mean and a variance of 5. The measurement
noise in all cases was Gaussianly disturbed with a mean ®f zero and a
variance of 0.5. Sample functions for the two conditions are shown 1in
Figures 7 and 8. The noise-forced system response is denoted by
XNMl(t) and the estimate of the system state by Ql(t), Further com-
parisons are shown in Figures 9 and 10 by ensemble-averaging 100 Monte

Carlo runs.
Time-Critical Simulation Operation

Time-critical operation 1mplies that the simulation model has been
partitioned between the analog and the digital computer. Correct simu-
lation of a time—critica] operation requires that the non-time-critical
program as described in the previous section must be expanded. The
changes must include provision for multi-rate integration and the effect

of sampling rate errors for continuous data transmitted to the digital
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computer. Figure 11 shows a block diagram of the dominant operating
features of the time-critical mode of the simulation program. The
operations discussed in the previous section have been indicated col-
lectively. Without any specific guideline, the initial partitioning
choice may be conditioned only on elementary considerations of the
system dynamics, i.e. the higher frequency system models are placed on
the analog computer and the slower dynamics on the digital computer. -
Since one of the objectives of this simulation is to determine the
effects of errors introduced by hybridization, the initial partitioning
need not be comp]ete]y arbitrary. = For purposes of comparing various
partitioning configurations, an initial choice was made to use a large
digital computer *frame time and a minimum contribution to hybridization
errors. This is achieved by placing Subsystem 1 on the digital computer
and performing all required filter calculations on the digital side.
The time-varying filter gain GK(t) is pre-computed and does not con-
tribute to the frame time. This partitioned configuration requires only
that the input to Subsystem 1 be corrupted by quantization and hybrid
system noise. A simulation diagram of the partitioned time-critical
configuration is shown in Figure 12. The effects of partitioning with-
out hybrid system and quantization noise were initially determined.
Minimum sampling of ten samples per cycle of the highest frequency of
interest required an ideal frame time of 12.5 milliseconds. This was
due directly to the total system dynamics being included in the Kalman
filter. Direct comparisons of the effects of time-critical operation
were made with Monte Carlo results.

Simulations of time-critical deterministic systems typically use

the mean of the variables of interest to determine the correctness of
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the simulation and to evaluate particular errvor sources. The effects of
partitioning on the Monte Carlo mean for this system is minimal as shown
in Figure 13. However, the system with stochastic processes must in-_
clude other considerations, such as the variation of the variables of
interest. Recall that equation (2.3) gave the relationship between the

discretized and continuous variances as

QWd = B-T- . (2.3)

The step size DT used for the continuous non-time-critical operation was
0.003125 seconds. The importance of using the correct time step is
shown with results in Figure 14, Curve A is the non-time-critical re-
sults where all operations used the same size step. Straightforward
partitioning of the problem and using the noise generated for the non-
time-critical operations resulted in Curve B. Correct variance modifi-
cation using the hybrid frame time in generating noise for use on the
digital computer resulted in Curve C. The difference in Curve B and
Curve C emphasizes the importance of the hybrid computer frame time in
generating random functions for hybrid simulation. The correct imple-
mentation of the variance modification becomes more complex for multi-
rate updating. This error also emphasizes the desirability of fixed-
interval sampling as opposed to variable intervals obtained with adap-
tive sampling techniques. The difference in Curve A and Curve C in
Figure 14 is attributed to sampling rate errors.

Included in the objectives of this research is the determination of
the effects of hybrid computer implementation of stochastic systems

operating in a time-critical environment. Inherent in such operating
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conditions are random disturbances not specifically included in the
stochastic system model. Here hybrid noise is used to represent the
ground drre1ectr1ca1 noise typical in an actual hybrid computer system.
For purposes of this research, a zero-mean Gaussian white noise process
was used to simulate the hybrid system noise. Particular variances

are specified depending on the simulating operation condition. A uni-
formly distributed white noise process with amplitude- proportional to
one-half the hybrid update rate was used to represent sampling noise.
The effects of hybrid noise on the partitioned configuration is shown in
Figure 15. Curve-A is the partitioned time-critical result of including
hybrid noise with a variance QH = 1,0. Curve C shows the effects of in-
cluding both hybrid and sampling noise.

The ideal uncompensated frame time of 12.5 milliseconds was used to
determine the effects of hybrid computer partitioning. The actual
digital computer execution time was measured as approximately 16 milli-
seconds. This time would have to be reduced to achieve realtime
operation. Further reductions would be necessary if any improvement
with increased hybrid update rates are to be accomplished. The options
available for possible improved operations are (1) use a faster digital
computer, (2) utilize more efficient programming in terms of machine
or assembly language programs, and (3) repartition the total system
model between the analog and digital computer with careful consideration
given to noise generation process in the partitioned mode! and noise
sources not included in the model. Due to fixed resources, the first
option is usually not available. Combinations of options (2) and (3)
are typically used where tradeoffs must be accomplished to achieve a

realistic time-critical simulation.



1 1 1 i 1 T i T T
C: WITH HYBRID AN
12t SAMPLING NOISE .
IoF 2 -
-
_ / \ & - AN D
/ \ ,// N J/ N
8t \ / : \
" A O Bwith HveriD N\ \%
) / -
o | A \V NOISE (Qu=1.0) .
<T
< 6f ~ “-A! WITHOUT NOISE .
>
4t ]
oL KFNRL = 1
MCR =100 (TC)
n Qw =5 -
QV =5
O R { i 1 1 | I 1 i 1
0 10 20 30 40 50

TIME (SECONDS)

Figure 15. Effects of Hybrid and Sampling Noise on Error
Variance.

Lt



42

Summary

A straightforward time-critical simulation of a linear stochastic
system was developed in this chapter. Sample fun€tions and Monte Carlo
results showed that the particular partitioning process resulted in a
large increase in.the varijance of the system variables.. The increased
variation due directly to partitioning made the error contribution of
hybrid and sampling noise less obvious. Time-critical simulation of a
stochastic system requires that special considerations be given to the
hybrid update rates, system partitioning and random noise generated
for the systems on the digital and analog computers. These and other
options form a basis for hybrid simulation refinements to be discussed

in a later chapter.



CHAPTER III

TIME-CRITICAL SIMULATION OF NONLINEAR
CONTINUQUS SYSTEMS

This chapter deals with the time-critical simulation of nonlinear
stochastic systems with the variational and the extended Kalman filter
algorithms as given in Chapter I.:- In particular, the simulation program
and results for Tinear systems developed in Chapter II are extended to a
nonlinear system modeled by nonlinear differential equations involving
a cubic nonlinearity. The effects of time-critical operations are
determined for a particular nonlinear system using the variational and
extended Kalman filters. The time-critical operations are compared with

non-time-critical results using 100 Monte Carlo runs.
Non-Time-Critical Simulation Operation

Expanding the previously described simulation program for nonlinear
systems operations for use with the variational and the extended filter
requires three prime considerations. First, capabilities are needed to
evaluate partial derivatives of the nonlinear system aleng a nominal
trajectory as indicated by equations (1.19) through (1.22). Secondly,
it is necessary to evaluate the system partial derivatives along an
estimate of the system states according to equations (1.23) through
’(1025)0 The third censideration is for on-line calculations of the
Kalman gains GK(t) for extended filter operations. The required on=11ine

calculation must be included for both the time=-critical and non-time-=
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critical modes. The effect of time skew as an additional error source-
can be minimized by giving careful attention to implementing the co-
variance and gain calculation in the extended filter time-critical
operation. . The Monte Carlo mode of operations and other options remain

essentially the same as previously described.
Nonlinear Systems Operation

The nonlinear system with a cubic nonlinearity selected for the
research is shown in Figure 16 and is described by a set of nonlinear

differential equations as

Xy (£) = 10(-X;(t) + VLIN X,(t) + ALPHA X,°(t))
(3.1)

><
N
—
+
~—
1l

50(-X2(t) + W(t)).

The required partial derivatives for this system from equations (1.21)

and (1.23) are

-10,0 TO(VLIN + 3.0 ALPHA XZZ(t)

A(t) = (3.2)
0 -50.0

where A(t) is evaluated along the nominal éN(t) for the variational
filter and along the estimate of the state for the extended mode. The
system was modeled to achieve a weighted combination of the linear and
nonlinear effects by selecting values for VLIN and ALPHA. This option
allowed the determination of the effect of time-critical operations for
various degrees of nonlinearities.-

The chosen nonlinearity made the system very responsive to small

signals or noise. A harsh nonlinear operating condition was achieved
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with ALPHA = 0,1, VLIN =0, Qw = 1,0 and QV = 0.5. Monte Carlo results
for the variational filter in the non-time-critical mode are shown 1in
Figure 17,  The magnitude of the resulting error variance indicates that
this particular nonlinear mode of operation may not be suitable for
initially determining the effects of hybridization. A mild nonlinear
operation condition was achieved by choosing ALPHA = 0.01 and VLIN = 0.2
with the same input noise conditions. . Sample functions for this non-
time-critical operation with the variational and the extended filter are
shown in Figure 18, The extended filter showed an improved performance
even for this mild nonlinear operating condition. Monte Carlo results
for the selected operating conditions are shown in Figure ]9‘with the -
extended filter showing improved error conditions. These results were
used for comparing the effects of hybridization for time-critical

operations.
Time-Critical Simulation Operation

The initial choice of partitioning was the same as in the previous
‘chapter with Subsystem 1 for non=time-critical (analog) operations and
Subsystem 2 on the digital computer. This configuration placed the non-
linear element on the digital computer, Maintaining the same approxi-
mate accuracy for nonlinear as for linear systems. im digital computa-
tions generally requires a higher sampling or update rate. However,
for this initial effort using the mild nonlinear condition the same
sampling rate was used as with the linear system. The effects of
partitioning.on the operation of the variational and extended filters
were shown with Monte Carlo results. Figure 20 shows the effects of

time-~critical operation on the variational filter, and Figure 21 shows
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the results for the extended filter,

The selection of a suitable operating noisy environment for this
nonlinear system was by trial and error. What appeared to be suitable
operating conditions were obtained in sample functions with QH = 1.0,
However, Monte Carlo results showed a max¥mum error variance of 390 for
what was selected as a mild nonlinear condition. This discrepancy
emphasizes that single sample functions are not always a reliable in-
dicator of the range of errors to be encountered in a stochastic non-
linear system. A zero-mean Gaussian white noise process with a variance
QH = 0.10 was selected for a suitable representation of hybrid noise.

As previously discussed, uniformly distributed white noise was used to
represent the sampling error. This noise was a function of the sampling
or-update interval and did not change for the simulation descyribed here.
Figure 22 shows the Monte Carlo results of the variational filter oper-
ating in a time-critical environment with both modeled and unmodeled
disturbances. Curve A shows the partitioned results with only modeled
noises with variances Qw = 1.0 and QV'= 0.5. Curve B shows the results
of adding unmodeled hybrid noise to the system variable transmitted to
the digital computer. Curve C shows the results of adding both hybrid
and sampling noise to the simulation. Similar results are shown for the

extended filter in Figure 23,
Summary

A description of the time=critical simulation program for linear
systems as expanded to include nonlinear systems and related Kalman
filters has been presented in this chapter. The expanded simulation

program was used with a particular nonlinear system with a cubic
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nonlinearity for both the variational filter and the extended filter.
Results from 100 Monte Carlo runs were used to show the effects of
hybrid computer partitioning and operation in a time-critical environ-
ment. Monte Carlo results were also used to show the effects of hybrid
and sampling noise not modeled in the stochastic system. These results
were obtained with an ideal hybrid computer frame time and without any
compensation for the effects of the frame time. The simulation frame
time was 12.5 milliseconds, while the actual digital computer time re-
quired for the variational filter was approximately 20 milliseconds,
and the extended filter requirement was approximately 32 milliseconds.
While these total results are significant, there is a need to consider

further refinements to achieve improved operations.-



CHAPTER IV
HYBRID SIMULATION REFINEMENTS

Program refinements and improvements for time-critical simulation
which were investigated are described in this chapter. In particular,
frame time compensation was applied to the time-critical stochastic
simulation in the straightforward manner typically applied to determin-
istic systems. The reduction of the error variance was investigated by
modifying the Kalman gains calculated in Chapters I and II td include
the effects of hybridization noise. Additional improvements in the
error variance were obtained by repartitioning the simulation model

between the analog and digital computers.
Frame Time Compensation

One of the most serious errors introduced into hybrid computer
simulation is due to the time delays inherent in digital computation.
The problem is significantly more complex with closed-loop systems.

The effects of delay due to digital computation have been extensively
investigated for deterministic systems (6,14-19). The time delay error
is serious enough in most hybrid systems to justify continuous compensa-
tion. The effect of the time delay 1t is to cause the input to the
analog or digital computer to arrive T seconds late. One method of com-
pensation is to use a prediction scheme to offset the delay.

A widely used compensation technique is to inciude in the
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simulation an approximation to the ideal predictor eTto eliminate the
time ‘delay. . The first two terms-of a Taylor series expansion of the

ideal prediction

TS 1 2 s2 +

e™ =1+ 1s + 51 o o , (4.1)

are used as an approximate prediction shceme, where s denotes the deriv-
ative operator. The variable to be delayed is passed through this pre-
dictor filter for approximate delay compensation. -Specific implementa-
tion of the delay compensation is determined, to a large extent, by the
specific problem being simulated. Bekey and Karplus (8) have given as
three general approaches to time delay compensation implementation (1)
the modification of the analog computer input by the addition of a
voltage corresponding to ts¥(s). (2) the modification of the analog com-
puter output by the addition of a term tsX{s), and (3) modification of
the output of the digital computer by a term corresponding to TsY(s).
Generally, if the analog output is obtained from an integration, the
second method is simple and straightforward to use. This method is
referred to as the predistortion method since the analog output is dis-
torted with the predictor before input to the time delay of digital
computation. Monte Carlo results for the straightforward application

of the predistortion technique to the variational filter are shown in
Figure 24. Curve A depicts the time-critical operation with no frame
time compensation, and Curve B shows the results obtained by using the
predistortion technique. The increase in error variance is attributed
to the derivative term used for prediction not represenfing an average
or typically expected value across the sampling interval. This effect

is due directly to the stochastic nature of the system.. Improved error

Ve
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variance results were obtained when a weighted average was used for the
derivative term. Since the hybrid frame time was four 1ntegration in-
tervals of the non-time-critical analog side, four values of the deriv-
ative terms were used to obtain an average. The results are shown as
Curve C in Figure 24. These results show that the straightforward ap-
plication of the predistortion technique does not give the desired re- -
sults for the stochastic system used in this simulation. Furthermore,
additional considerations must be given to the derivativé term used

when white noise disturbances have not been smoothed either through the
system dynamics or other smoothing operations such as an averaging or
filtering circuit. Similar Monte Carlo results are shown for the extend-

ed filter in Figure 25.
Kalman Gain Modification

The effects of the operating environment on the dynamical system
not included in the model are designated as modeling errors. For the
purpose of this research, hybrid system and sampling noise has been in-
cluded in the simulation but not in the model of the dynamical system
and related filters. The effects of these modeling errors have been
discussed in Chapters II and ITII. One way to compensate for the unknown
noise parameter is to include a fictitious noise source in the system
model. If possible an estimate of the required statistics for the
fictitious noise source can be obtained by a direct measurement of the
operating environment. Otherwise, assumed values of the required
statistics must be made and results verified by simulation evaluation.

Essentially, what was required to include the fictitious noise

sources in the model was to determine particular values to be inserted
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in the noise coefficient matrix B(t) .and the noise input covariance
matrix’Qw(t)° These matrices were used in the calculation of B(t)Qw(t)
BT(t) 1n-(1°12) for the error covariance matrix equation. - The part%cu-
lar system used in this research had the modeled noise as input to Sub-
system 2, which resulted in a nonzero value only in the (2,2} position
of BQBT. The unmodeled noise was simulated as being added to the input
of Sybsystem 1. The requTred*expfession'for B(t) was obtained by using

(1.21)-(1.24) to yield

BQBT (1,1) = V,(t)*A(1,2)*A(1,2) . (4.2)

K

where VK(t) is the variance of the fictitious noise source. Equation
(4.2) was evaluated along the nominal trajectory XN(t) for the varia-
tional filter and about the estimate of the state g(t) for the extended
filter.

The mean and variance of the hybrid noise used in this simulation
was known and included in the initial effort for improved performance
with gain modification. The Monte Carlo results for the variational
filter are shown in Figure 26. As shown with Curve B the improvement
in error variance was minimals The variance of the fictitious error
source included in the model was increased to VK = 0.4, while the
variance of the hybrid noise in the simulation remained at QH = 0.1,
The Monte Carlo results from this operating condition are shown in
Figure 27.. An overall improved error variance of approximately five
percent was achieved. Improved results were obtained with variances of
the modeled fictitious noise source-greater than the variance of the
simulation noise source. This indicates that the effective variance of

the noise in the hybrid simulation was greater than the simulated hybrid
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noise, which results directly from the error introduced by partitioning
and frame time delay. The conclusions consistent with the results
shown in Figures 20 and 21 showing errors. introduced by partitioning

only.
Simulation Model Partitioning

The partitioning of a dynamical system between the analgg and
digital computer for time-critical operations remains one of the most
important areas in hybrid computer simulation. The overall choice 1is
influenced by the actual hardware-in-the-loop, the simulator and the
performance requirements. - With 1ittle or no guidelines other than a
knowledge of the dynamical system and a detailed understanding of the
simulator, an acceptable simulation of a complex system may be achieved
only after several partitioning efforts. However, the final choice is
determined by the sensitivity of the partitioned system to artificially
introduced error- sources and the system performance error budget.

Observing Figure 12, partitioning the Kalman filter with the high
speed dynamics (that portion with A22) on the analog computer is the
most obvious first choice. Curve B in Figure 28 shows the Monte Carlo
results of such a partitioned choice without other compensation con-
| siderations. - An approximate'partitioned choice was schieved with the
high speed dynamics on the analog side:with continuous calculations of-
Giz(t) and éiz(t) and the value of these variables being used as initial
conditions on the digital calculation for the same quantities over the
hybrid sampling interval. The improvement in error variance_isbshown,in

Curve C in Figure 28.
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Summary

A number of compensation techniques have been examined for improved
time-critical hybrid computer operation for a particular nonlinear
stochastic system. Straightforward application of frame time compensa-
tion as typically used. for deterministic system did not give the desired
results for the particular partitioned stochastic system. Results show-
ed that a smoother derivative was required for a white noise input to
the sampled digital simulation. While the Kalman gain modification Was
effective in reducing errors due to unmodeled noise sources, the esti-
mated parameters must be obtained by simulation since the hybridization
introduced apparent error sources not included in either the model or
the simulatjon. Approximate re-partitioning of the simulation model
between the analog and digita]xhbmputer did result in an improved

operating condition.



CHAPTER V
CONCLUSIONS'AND'RECOMMENDATIONS
‘Conclusions

This research was accomplished by developing an all-digital com-
puter simulation of a time-critical hybrid computer operation. The
developed simulation program applied the methodology of time-critical
hybrid computer operation to a stochastic estimation problem. The total
simulation includes a linear stochastic system with the related Kalman
filter and a nonlinear system with variational and extended filters.
This research was accomplished by using continuous and continuous-
discrete models of a particular stochastic system. Results obtained
using the continuous, analog, or non-time-ciitical mode of operations
were used as references for performance comparisons with the partitioned
system operating with both modeled and unmodeled random disturbances.
The modeled random parameters were included in the dynamical system
operations while the unmodeled random noise sources were included in the
simulation operating environment.

The significance of correctly imp]ementqﬁ random disturbances was
demonstrated with the linear system and related Kalman filter. The
continuous-discrete representation of the random disturbance function
was directly related to the hybrid computer frame time. Monte Carlo re-

sults showed that the error introduced by the direct partitioning
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process was greater than the error associated with the sampling noise.
However, the combined effort of hybrid and sampling noise resulted in a
significant error increase in the time-critical operating environment.
The importance of problem partitioning and a correctly modeled.
noisy environment was demonstrated with a particular nonlinear stochas-
tic system. Monte Carlo results for non-time-critical and time-critical
operations were compared for variation in error. The cubic nonlinearity
chosen for this simulation required a small attenuation factor which
emphasized the sensitivity of this system to unmodeled random dis-
turbances. The difficdiiy in compensating for hybridization‘error in
stochastic systems was shown by the direct application of various
techniques typically used in the hybrid computer simulation of determin-
istic systems. Straightforward application of the predistortion method
for frame time compensation resulted in an increase in error variance.
This increase resulted from the direct input of white noise to the
digital computer. Monte Carlo results showed that additional processing
of the input signals to the digital computer is required for using this
technique. Improved time-critical operating conditions were achieved
by modifying the Kalman gains. This was accomplished by including in
the dynamical system model a fictitious noise source representing the
hybrid sysfem noise. Additional improvements were obtained by re-

partitioning the system model between the analog and digital computers.
Recommendations FQr Further Work

The all-digital simulation program developed for this research is
flexible and can be readily expanded to investigate more complex time-

critical hybrid computer simulations. The particular stochastic
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estimation problem chosen for this simutation included only open-loop
operation, or one-way communication between the analog and digital com-
puters. This mode of operation eliminates the effect of accumulated
phase error that exists in -any closed-l1oop hybrid computer operation.
The effect of hybrid operations on a closed-Toop stochastic estimation
problem is a logical extension of the results obtained in this research.
A particular important closed-Toop stochastic estimation problem might
include a Kalman filter in the feedback 1oop.

Particularly important in any further research in the time-critical
hybrid computer simulation of stochastic system is frame time compensa-
tion. The predistortion method used here includes the effact of a
first-order hold circuit for which the results were not satisfactory.
The results obtained with the minimal amount of sample averaging
indicates that smoothing circuits might improve the time-critical oper-
ation. Another option for improving the frame time compensation is to
increase the sampling rate. For a fixed simulation configuration, a
reduced frame time could be achieved by the use of improved programming
techniques such as an assembly or machine language. In addition,
further frame time reductions could be achieved by using more efficient
digital integration algorithms. An accuracy versus speed tradeoff for
various algorithms should give options for improved operations. Any
reduction in frame time requirements will directly rediuce the error due
to partitioning.

Precise guidelines for problem partitioning between the analog and
digital computers are not available for either deterministic or stochas-
tic systems. However, the results of this research clearly indicates

that the partitioned problem should not have wide band white noise going
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directly to the digital computer. Further research is needed to estab-
lish some basis for partitioning a stochastic system with modeled and
unmodeled random disturbances. This need is especially important for
estimation problems that include the error covariance calculation as an
on-l1ine operation.

Improved operations in the hybrid noise environmeht were obtained
by including a fictitious noise source. in the dynamical system model,
but the results from this effort were not conclusive. The partitioning
process introduces an equivalent noise source in the hybrid computer
operation that has not been included in the system model or simulation
environment. However, improved operations were obtained when the
variance of the fictitious noise was much greater than the hybrid noise.
An equivalent noise representation of the error due to partitioning
would give significant insight into the time-critical hybrid computer

simulation of stochastic systems.
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APPENDIX

COMPUTER PROGRAM FOR SIMULATING TIME-
CRITICAL HYBRID COMPUTER OPERATIONS
FOR STOCHASTIC SYSTEMS
The digital computer simulation includes seven distinct operational
modes: time-critical (ITC=1), non-time-critical (ITC=0), Monte Carlo
operation (MCR=Number of Runs), single sample function (MCR=1), linear
system and Ka1man.fi1ter (KFNRL=1); nonlinear system with variational
filter (KFNRL=2), and nonlinear system with extended filter (KFNRL=3).
Additional options may be specified for some of the major modes. In
particular, TSAMP = (hybrid computer frame time), ALPHA and VLIN are the
weighting factor for the nonlinear and linear signals.
Standard Monte Carlo techniques are used to obtain statistical
results from program operations. Pre-calculation of the Kalman gains

are automatically bypassed for the extended filter mode of operation.
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THE PROGRAM HAS SEVEN DISTINCT MODES OF OPERATION

MCR=1 SINGLE SAMPLE FUNCTIDN
MCR= NUMBER OF SIMULATION RUNS REQUIRED IN MONTE CARLO STATISTIC
ITC=1 TIME CRITICAL OR HYBRID COMPUTER MGODE

ITC=0 NON-TIME CRITICAL

KFNRL=1 LINEAR SYSTEM WITH LINEAR KALMAN FILTER

KFNRL=2 NONLINEAR SYSTEM WITH VARIATIONAL KALMAN FILTER
KFNRL=3 NONLINEAR SYSTEM WITH EXTENDED KALMAN FILTER

OTHER OPTIONS INCLUDES

ITSAMP= NUMBER OF NON-TIME CRITICAL STEP SIZES INCLUDED
IN THE HYBRID FRAME TIME

VLIN= WEIGHTING VALUE ON L INEAR SIGNAL COUPL ING
SUBSYSTEM2 AND SUBSYSTEML

ALPHA= WEIGHTING VALUE ON CUBIC NONLINEARITY COUPLING
SUBSYSTEML AND SUBSYSTEM2

SEP ERATE RANDOM NUMBER GENERATORS ARE USED FOR GENERATING
THE WHITE NOISE PROCESS FOR THE MODELED SYSTEM NJISE
AND UNMODLED HYBRID SYSTEM AND SAMPLING NOISE

WILLARD M. HOLMES

$$$S558555555555555555555555555555555555858555555585885385558555855853$

(2 X3 3akala XakakaRalaXaXakaXaxaksXakalsNakalaRaRaYsNa o X X2 X o Xa N o X s XaXa s}
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1003
1001
1013

1012
1014
1031

1018

- 1020
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1016
1021
1017
1033
1032
1034
1035

77

CCMMON INDEX3

COMMON D XM

COMMON MX

CCMMON TINIT,,TFINAL, IPRINT

CUMMON KUTTA,DT, NX,X.DX.TIME'DXA DK{(2)
COMMON XINIT

COMMON UFCT o

COMMON PAT,APC oPH PQHI yHToHKy PNy PTL

CCMMON AT

CCMMON DUMI1) 41X+ DUML s XNORM(2)

READ (5,1013) NX

READ (5,1013) IPRINT

READ (5,1041) DT

FORMAT (F10.6} .

READ (5,1012) TINIT,TFINALyXINIT{ 1)y XINIT(2)
WRITE (6,1003)

FORMAT (1H1,T5, *INITIAL CONDITIONS®)

WRITE (641001) NXoDT,TINIT,TFINAL, IPRINTyXINIT( 1)y XINIT( 2}
FORMAT (1HO s5X 912 93X yF 8.6 43X yFBe6yFl0e631343X3Fl0e64FL046)
READ {5,1013) MX

FORMAT ({12}

READ (5,1012) ((A(I4J) +1I=1,NX)Jd=1,NX)

READ (5,1012) ((PUIP+JP )9 IP=1yNX)JP=1,NX)
FCRMAT (4F10.6)

READ (5,1014)((B(IB, JB).XB 1oNX) s JB=1 4 MX) .
FORMAT ({4F10.6)

READ (5,1031) ((Q(IQQJC).XQ’l;MX’.JQ=l MX )
FORMAT (4F10.6)

WRITE (64+1018) NX,MX, IPRINT

FORMAT (1HO »SXst NX=% 512 ¢5X o MX=? ,1245X,* [PRINT=?,[2)
WRITE (6,1020)

FCRMAT (1HO +5X,'P MATRIX®)

WRITE (64,1016} ({P(JPyKP) ¢JP=]1,NX) ¢KP=]l ,NX}
FORMAT (1HO,5Xy4E16.8)

WRI TE (6,1021)

FORMAT (1HO,5X,'B MATRIX®)

WRITE (641017){(B(KByLB)yKB= 1|NX)1LB'1 MX)
FORMAT (1HO 410X ,y4F10.6)

WRITE (6,1033)

FORMAT (1HJ+5X,'Q MATRIX®*)

WRITE (6,1032) ({(Q(KQ,LQ) 4KQ=1l,4MX),LQ=1 sNX}
FORMAT (1HO,5X, 4E16, 8)

WRITE (6,1034) i :

FORMAT (1HO,5X,'Q MATRIX BY ROWS')

WRITE (691035) Q(1,1),Q(1+42),Q{251),Q(2+2)
FORMAT {(1HO,10X 4E1l6.8)

e e e e % o afe o o e e ook ok R ok ok ok ok

NX= ORDER OF SYSTEM

MX= NUMBER OF SYSTEM INPUTS

INPUT MATRIX DATA MUST BE BY COLUMNsA11,A21,A124A22,ETC

Ak ok ok g ook Rk ok
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HDT=,5%D T
H{ly1)=1.0
H{l +2)=0.0
H{2,1)=0,
H(2,42)=0.0
UFCT (1) =0.0
UFCT(2)=0.

TNOM=0.0

XNI (1) =0.0
ERROR1=0.0
ERROR2=0.0
GK1(1)=0.0
GKk2(14=0.0
GK(1ls2)=0.0

GK(2,2)=0.0 :
e ok ok o s ok koo ke ke ook ko ok ok ol ok ok ok ok ik ok k

FIRST ELEMENT IN XNL AND XN2 IS SET EQUAL TO THE
INITIAL CONDITIONS ON XN(1)AND XN{2)

Ak ek ok R RO Rk Rk Rk R Rk
ICYCLE=(TFINAL-TINIT)/DT+.5
ICAL=ICYCLE/ IPRINT

DO 28 1tL=1,20

RMEANL(ILL)=0.0

RMEAN2(ILL)=0.0

CONTINUE

- DO 29 K16=1,;10

XHSUML (K16) =0.0

XHSUM2(K16)=0.0

XHS QL (K16)=0.0

XHSQ2(K16)=0.0

EPSM1(K161=0.0

EPSSQL (K16)=0,.0

CONTINUE

DUM 1=0.

DUM2=0.

CALL TRANSA (ByNX,MX,BT)

CALL MATMUL (QyBTyMXyNXyMX,QBT)

CALL MATMUL (B,QBT,NXsNXyMX,B8Q8T)

WRITE (6,996) BQBT({1,1),8Q8T(1,2),BQBT(2,1),BQBT({2,2)
IPRT=TIPRINT

s 2o 2 Aok o o ke e e o ok e xe sk afe i e ok 2 o o sl g 3 o o ofe e ae e e o o e g ok ok

FOR APPL ICATION OF VARIQUS KALMAN FILTER CONFIGURATION TO LINEAR
AND NONLINEAR SYSTEMS ,THE VARIABLE KFNRL HAS THE VALUES
KFNRL=1 APPLICATION OFKALMAN FILTER TO LINEAR SYSTEMS

KFNRL=2 REGULAR APPLICATION OF KALMAN FILTER TO VARIATION
AROUND A NOMINAL TRAJECTCRY

KFNRL=3 APPLICATION OF THE EXTENDED KALMAN FILTER

A ol Ak R o ok o R o et o ol ok ko
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ITC=1
MCR=100
MX=2
KFNRL=2
ALPHA=,01
VLIN=.2
VK= .1l
I TSAMP=4
UINP=10,
QvV=.5
TSAM1=] TSAMP
HSAMP=TSAM1*DT
KCUNT =0
TDIG=0.
DOT= .S *¥HSAMP
QI(l,+1)=2.0"
QI(1,2)=0a
QI(2,1)=0.
QI (242) 20,
WRITE (6,1019)
1019 FORMAT (1HO,5Xy YA MATRIX')
A(l,y1)=-10.
A{1,2)=10.0%VLIN
Al{2,1)=040
A(2,2) ==50.0 :
WRITE (6,1024) A{1,105A(1,2),A02,1) 4A02,2)°
1024 FORMAT {1HO y5X»*A(Llel)='Fl046¢3Xy *A(192)='F10.693X,*A(2,1)=*F10.6
193Xy%A02,2)='F10.6)
QW=Q(1, 1)
Zw=QW/0T
IF(ITC.EQ.1) GO TO 481
Zv=QVv/DT
481 CONTINUE
IF (ITC.EQ.0) GO TO 482
e e ot o 2 o i e ok ook o e ok e o afe e ok age ok ok kR o ol ok ok o ke ok o ok o ko Rk Rk ok ok ok ok ook ok ok ok ok ok ok ok k ok
KALMAN GAIN MUDIFICATION FOR IMPROVED TIME CRIT ICAL OPERATION
BABT( 1, 1)=VK*A{1,2)%A(1,2)

e o0 e ek ke o e 3ok 2 ok gk e o ai o e ol o ke ek o o o ok 2o ok ook o o o ok ol e ok ok ake o ok e ok ok o ook g ofe o ok ok
QH=.1
ZV=QV/ (TS AM1 *0T)
ZH=QH/( TSAM1%DT)
SIGH=SQRT(ZH)
482 CONTINUE
SIGV=SQRT(ZV)
SIGW=SQRT(ZW)
DFT=0.0
RHYBN=0,
RSAMPN=0, :
WRITE (6+775) KFNRLyMCR,QW,QV,QH
775 FORMAT (1HOySXe " KFNRL="T) 43 X" MCR=?12,3X y* QW="F10.6,3X9'QV="F10 469
12Xy "QH=*'F10.6)
WRITE (69776} ALPHA,VLIN, ITSAMP, ITC, HSAMP
776 FORMAT (1HO,5Xy *ALPHAZ*F10,6¢2X9* VLIN='F10.6¢2X y* ITSAMP=12,
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177

770

22
12

701
700

1113

1027
14

445

12Xy *ITC="11,2X, "HSAMP=*F10.6)

WRITE (64777) IWs1Ve1lH

FORMAT (1HU ¢SX ' ZW="FLO 642X 9y?ZV="F10 62Xy *ZH="'F10.6)
A o ok ok ook ok ok ok XK ok Rk kR Aok ek K

CALCULATICN CF AQOMINAL SYSTEM TRAJECTORY

ok o ook K ok o o o ok o R okok Aok Rk

INDEX1=1

INDEX4=0

XN(1)=XINIT (1)

XN(2)=XINIT(2)

XN1(1)¥=XINIT{1)

XN2 {1 )=XINIT(2)

WRITE (6,770) - : o
FORMAT (1H1,10X, 'NOMINAL SYSTEM RESPONSE?)
DO 790 INOM=1,ICAL :

WRITE (651113) TNOM, XN(1) yXN(2)

DO 701 INOUT=1, IPRT

DO 8 KUTTAN=] ,4

GO TO (12,22,12,22) +KUTTAN

CONT INUE

TNCM=TNOM+HDT

CONTINUE

XNORM(1)=0.

CALL SYSEQ (UINPXNORM,VLIN,ALPHA,DX ¢XN)}
CALL RUNK (KUTTAN DT sDUM2,NX,D Xy XN)

CONT INUE

INDEX1=INDE X141

XNLICINDEXY)=XN(1)

XN2 (I NDEX1)=XN(2)

CONTINUE

CONT INUE

WRITE (641113) TNOMyXN{1l)},XN(2)

FORMAT (1HOy5Xy *TNOM=2F10e6 93X * XNL{INDEX1) ='£16,8 43X,
1*XN2{INDEX1 }='El6 .8)

IF(KFNRL.GT.1} GO TO 14

WRITE (64,1027}

FORMAT (1HO 10X o * #%x%LINEAR SYSTEM APPL ICATION OF KALMAN FILTER*?)
CONTINUE

o ool o e ok ke ol o o ok o o oK e ko Rk KRRk

PRE-CALCULATION Oﬁ CCVARIANCE AND KALMAN GAIN

2 2 v e e e e o ok 3k e e o o e ok o s o ke ol ol ke o e o e e e ok afe g s ke o e ade o o ok ok
IF(KFNRL.EQ.3) GO TO 469

TCOV=0.

CC 445 K18=1,10

PDVEC(K18)=0.0

PVEC (K18)=0.0

CCNT INUE

DO 446 K19=1,NX

DO 446 K20=1,NX

PIK19,K20) =040

80
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446

23
13

442

CCNTINUE

INDEX1=1

DO 440 IPK=1, ICAL

DO 441 I1POUT=1,IPRT

DO 442 KUTTAP=1,4 :
GC TO (13,23,13,23),KUTTAP
CONTINUE

TCOV=TCOV +HOT

CONTINUE

GG TO (4,5) yKENRL

CONT INUE

XN (1) =XN1 ( INDEX1)
XNI(2)=XN2( INDEX1)

CALL AA(XN2, INDEX14ALPHA,VL IN,A)

A st s s ok ok ool o ol ek st o el o e Qe ot o e oot ok ol o of e o o ool ook e ol ko ek sk el ool
KALMAN GAIN MODIFICATION FOR IMPROVED VIME CRITICAL CPERATION

BQBTIl +1)=VK*A(1,2)%A(1,2)

e e Ak e ok ¥ e o e e ol o ol o o e ke o ofe e o e ol e o st o ool ool 2 ok o o ok ok e o o ke i ok ok ook ok ok Kok R ok ok

CONTINUE

CALL TRANSA (A NXyNX,AT) .
CALL COVPD (PyA,QIyByHyNXyMXyBIBT,,AT,PD)}
POVEC(1)=PD(1,1)

PDVEC(2)=PD(1,2)

POVEC(3)=PD(2,2)

LP=3

CALL RUNK (KUTTAP,DT,DUM1l,LP,PDVEC,PVEC)
P(l,1)=PVEC(1) :

P(1,2)=PVEC(2)

P(2,1)=PVEC(2)

P(2,2)=PVECI(3)

CONTINUE

INDEX 1= INDEX1+]

441

443

444

440
469

CALL MATMUL (PHK QI ¢ NXyMXeMXGK)

GK1 (INDEX1)=GK(1,1)

GK2 {INDEX1)=GK(2,1)

CONTINUE

WRITE (6,443) TCOV,GK1(INDEX1),GK2(INDEXY)

FCRMAT (LHO»SX ' TCOV="F1046+3X,'GKLIINDEX1)="E16.8,3X,
1'GK2{ INDEX1)='E16.8)

WRITE (64444) P(1,1),P(1,2)sP(2+1),P(2,2)

FORMAT (1HO ¢5X4'P(1,1)="E1l6.842Xy*P(1,2)=2E16.8,2X,
2'P(2,1)="E16.8,2Xy 'P(2,2)="E16.8)

CCNTINUE

CONTINUE
e oo o e e o ok e o oo Ao ook o o ke R e ek o

INITILIZATION OF RANDOM NUMBER GENERATORS
OUTS IDE OF MONTE CARLO LOOP

ool ot e e ootk o o e e ke o ol ok ok ok ok ok okl
XNORM (1 )=0.
XNORM({2) =0.0

81
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1x=31571

JX=31571

DUM (1)=0.1

DUN(11=.1

DO 100 MC=1,MCR
##*##****#*####tttt*#tttt*t*t#*#tttttttt#tt

INITIAL CONDITIONS FOR MONTEdARLO kb kkkkkk ek hkk

***tt*#*#####*t#t*##t***#*####t***
DO 665 KP1l=1,NX

DO 665 KP2=1,NX

PIKP1,KP2)=0.0

DELZ(KP1,KP2}=0.0

665 CONT INUE

***##**####**##****#*#*#*#*##**##*###*i#**###

FIRST ELEMENT IN XN1 AND XN2 ARRAY CONTAINS I C ON X NOMINAL

10

27

882

o 20 o o o o ol e ok e o ok ok ak ode ol o ke ol 2 o a0 o o o e e ake Ak
GK(1,1)=0.0

GK({ 2y 1)=0.0

INDEX3=0

DO 10 JK=s1,NX
X{JK)=XINIT{JIK)

CONT INUE

DO 27 K17=1,10
DVSKF(K17)=0.0
VVSKF({K17)=0.0

CONTINUE

XNM{L1)=XINIT(1)
XNM{2)=XINIT(2)
AX2(1)=XINIT(2})
AX2(2)=XINIT(1)
DxM(2)=0.0

CXEM(1)=0.0

DXEM(2)=0.0

HVEC(4)=0.0

HVEC(5)=0.0

HVEC(6)=0.0

TIME=TINIT

T=TINIT

INDEX2=1

XHAT1I=XINIT(1)
XHAT2=XINIT (2) ,
o s e o 2k 2 ok 2x o a ke de e ok ok ofe s e ol e ook o e ofode ofe s ok e

NCNLINEAR SYSTEM VARIATION ABOUT A NOMINAL TRAJECTORY

ook RO oo J0OR oK kK ok ok b Rk ko ko ok

IFIMCR.GT.1) GO TO 1111

WRITE(6,882)

FORMAT {1HL+5Xs*SYSTEM RESPONSE AND KALMAN GAIN CALCULATION FOR
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2SINGLE RUN')

1111 CONTINUE

561

OO0

40

OO0

00

39

38
41

21
11

447

DO 50 IPL=1,ICAL

IF{MCR.GT.1) GO TO 561

WRITE (64989) T,XHATL,XHAT2,GK1 (INDEX2),GK2 { INDEX2}
WRITE(6+950) ERROR1, ERROR2

WRITE(6+4991) XNM(1),0ELZI(1,1),XNM(2)

WRITE{6,995) DXEM(2) ,XNORM(1) 4XNORM(2) (DXDEM(1) ,DXDEM(2)
WRITE(69993) XN1{ INDEX2),DXEMU1),RHYBNsRSAMPN

wRITE (6,996) BQBT(1,1),BQ8T(1,2),BQBT(2,1),BQBT(2,2)
CONT INUE ’

0O 25 I=1, IPRT

B 22 ok ok 3 dfe e e Ak e o ok e e ke o dolr o e e g e ok ok ek ok

INITIAL CONDITION GENERATES FIRST ELEMENT IN GK1 AND GK2

e e afe e e e e afe s s i e o o 2k e ok ofe aic e afe s ok o ofe ok afe ok X e e ae
GO TO (38,39,40) ,KFNRL

CONT INUE

XNI (1) =XHAT1

XNI(2)=XHAT2

AEKF (2 )=XHAT2

CALL AA(AEKF,2,ALPHA,VLIN,A)

CALL TRANSA {ASNX,NX,AT) :
i s e e o ok e ok sk ok ol o e ol b oo sfodeoe oo o o ke o o ol e ok e e e ot o ok e ol ol ook ek ok

KALMAN GAIN MODIFICATION FOR IMPROVED TIME CRITICAL CPERATION
BUBT (1,41 )=VK*A(1,42)%A(1,2)

sl e ol o oo o e ek o ot oot Rl o e ol o s o ok e Ko e e o o ok e oK koK ke
GO T0 41 i

CONTINUE

CALL AA(XN2,INDEX24ALPHA,VLIN,A)

CONT INUE

CONTINUE

CALL RANDCOM {(DUM, IXy XNORM}
XNORM(1)=XNORM(1)*SIGHW
XNORM{ 2) = XNORM{ 2)*SIGV

IF(ITC.EQ.1) GO TO 456

DO 2 KUTTA=! ,4

GO T0 (11,21,11,21),KUTTA

TIME=T [ ME4+HDT

CONTINUE

CALL SYSEQ (UINP 4 XNORM; VLINsALPHA oD XDMy XNM)
DELZ(1 41 )=XNM(1)+XNORM{2)=XNL1{INDEX2)

CALL KALMAN (DELZ,GKoyHAyNXyMXyDXEMyDXDEM)
IF{KFNRL.LT.3) GO TO 447

CALL COVPD (PyA,Q14ByHyNX,MX,BQBT 4AT,PD)
CONTINUE

CALL ARTOVE (CXDM,DXDEM,PD¢yXNM,DXEM,P ,DVSKF4 VVSKF)

C % 2k ok o e e o e e e e o s o ofe ol o e oo o e e e el ool e de o e o o ol e e

C
c
c

LX IS EQUAL TO THE NUMBER OF ELEMENTS IN VECTOR DVSKF

C a3tk o e e sgef e el e e o e ae 36 2 e e X6 o o ke 2 e e e e e e e e e o e

IF {KFNRL.LT.3)} GO TO 778
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459
458

457

‘453
452

84

Lx=T

CONTINUE

IF (KFNRL .EQ.3) GO TO 779

LX=4 .

CONTINUE

CALL RUNK (KUTTA,DT,DUM1,4LX)DVSKF,VVSKF)
CALL VETOAR (VVSKFXNMyDXEMyP ) '
CONTINUE :

CCNT INUE

TF{ITC.EQ.0) GD TO 460

Aok e dete e e g e e e st ol o ool o e e o e o

BEGIN TIME CRITICAL OPERATIONAL LCOP

ITC=1,TIME~CRIT ICAL OR HYBRID OPERATIONS

ITC=0, NON-TIME CRITICAL OR TOTAL ANALOG

[TSAMP= NUMBER OF NON-TIME CRITICAL TIME STEPS IN THE
DIGITAL COMPUTER FRAME TIME FOR HYBRID OPERATION
ALPHA= WEIGHTING ON NCNLINEAR EFFECTS

VL IN= WEIGHTING FACTOR OF SUB2 OUTPUT TO SUB1 INPUT

DO 457 KUTTAA=L,4

GO TO (458,459,458,459) ,KUTTAA
TIME=TIME+HDT

CONT INUE

DXA2=50, 0% (~=XNM(2) +UINP+XNORM(1))
DX2(1)=DXA2

LA=1

CALL RUNK(KUTTAA,DT,DUML,LA,DX2,AX2)
XNM{2)=AX2(1)

DXEM(2) =AX2(2)

CONTINUE .

KOUNT=KOUNT +1

IF(KOUNT.LTL.ITSAMP) GC TO 460

‘KOUNT=0

HYBRID SYSTEM AND SAMPLING NOISE FOR TC OPERATION
IRN=2

CALL RNGEN (DUNyJXs 1+ IRN,RNU2)

RSAMPN=RNU2(1)%0DT

IRN=3

CALL RNGEN(DUN,JXs1, [RN, RNGU)

RHYBN=RNGU( 1) *SIGH )

XNM{2)=XNM {2 ) +RHYBN +RSAMPN

DFT=0.

DO 451 KUTTAD=1,4

GO TO (452,453,452,453),KUTTAD

TOIG=TDIG+DDT

CONT INUE

DHX1=10 0% {~XNM{1)+VLINSXNM(2)+ALPHA®XNM(2)%xXNM{ 2) =XNM{ 2]}
HX1=XNM( 1) :

DELZ{ 1y 1)=XNM(1)+XNORM(2)-XN1{INDE X2)

KX=1

CALL KALMAN (DELZ,GKyH ApNXyKXyDXEM,DXDEM)
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IF (KFNRL.LT.3) GC TC 780

CALL COVPD (P,A,QI,B,HyNXyMX,BQBT ,AT,PD)
DRVEC({4)=PD(1,1)

DHVEC(5)=PD (1 ,2)

DHVEC(6)=PD(2,2)

HVEC {4 ) =P(1,1)

HVEC(5)=P(1,2)

HVEC(6)=P (2,2}

LH=6

CONTINUE .

IF(KFNRL +EQ+3) GO TO 782

LH=3

CONT INUE

DHVEC(Y )=DXDEM(1)

HVEC(2)=DXEM(2)

DHVEC(3)=DHX1

HVEC(1)=DXEM(1)

DHVEC( 2)=DXDEM(2)

HVEC( 3 )=HX1

CALL RUNK({KUTTAD,HSAMP, DUM] yLHy DHVEC, HVEC)
DXEM(1)=HVEC(1)

CXEM(2)=HVEC(2)

HX1=HVEC(2)

XNM{ 1}=HVEC(3)

P(lyl)=HVEC(4)

P(l,2)=HVEC(5)

Pl2y 1I=HVEC(5)

P(242)=HVEC(6)

CONTINUE

XNM(2)=AX2(1)

CONTINUE :

e 2 v 2 e 2% o 2k Ak e 3 o o ade ke o ke 2k o s adc o ofe ok e ok 3k o 2 e ofe e e o ke afe ok e ok
END OF TIME CRITICAL OPERATIONAL LOOP

ok gk Aok ok o R ok ok ok ol ok b Rk ok Rk Rk Aok
ATI=(IPL~1)*IPRT+]

T=TINIT+ATI*DT

TIME=T

INDEX 2= INDEX2+1

e gk R ook R gk ok Ak ok Aok kR R Xk ok
CALCULATION OF GAIN K=PHQI

e ok o o ok Xk o e otk ok ok ok ok ok ok bk
[F(KFNRL.LT.3) GO TO 448

CALL MATMUL (P sHyNXyMXyNXyPHK)
CALL MATMUL (PHK,QI,NX,MXyMXyGK)
GKI({INDEX2)=GK(1l 1)

GK2 { INDEX2)=GK( 2,41)

CONTINUE

IF(KFNRL.EQe3) GO TO 449
GK{1ly1)=GK1{INDEX2)

GK{2 1) =GK2({INDEX2)

CONTINUE

(o s e o o o o o e e ok oo o e d ol o e e o ok s e o NOR K s e ke o sk o ok o ok ook

c
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25

49
50
100

989

990

991

995

993

996

48

883

99

86

XHATL=DXEM(1) +XN1 (INDEX2)
XHAT2=DXEM( 2) +XN2( INDEX2)

CONT INUE

ERROR1=XNM(1)=XHAT1

ERROR 2= XNM( 2) = XHA T2

TF(MCR.EQ.1) GO TQ 49

ek ek koo ke ok ke kkkkkEk

INDEX3= IPRT %[PL+1

XHATL =DXEM(1) +XN1 (INCEX3)

XHA T2=D XEM( 2) +XN2 (I NDEX3)

EPS 1=XNM (1) -XHAT 1

TSAMP(IPL) =TI ME

RMEANLLIPL) =RMEANL (I PL)+XNM(1)

RMEAN2 ( IPL)=RMEAN2( IPL )+XNM( 1} #XNM( 1)

XHSUML (IPL) =XHSUML (1PL)+XHAT1

EPSML(IPL)=EP SM1(IPL)+EPSI]

XHSQL (IPL )=XHSQL ( IPL ) +XHAT 1 #XHAT 1
EPSSQL(IPL) =EPSSQL (IPL)+EPS1*EPS]

CONT INUE

CONT INUE

CONTINUE

IF(MCR.GT.1) GO TO 48

WRITE (6,989) T ,XHAT1,XHAT2,GK1 ( INDEX2), GK2( INDEX2)

FOURMAT (1HO 43X, " T="F8.6,2Xy? XHATL=? E15.7 42X 4" XHAT2 = F15,7, 2X,
1PGKL(INDEX2)="E15.7, 2X, *GK2( INDEX2) ='E15.7)

WRITE(6,990) ERRORL, ERROR2

FORMAT (1HO,13Xs*ERROR1='E15.8,2X,"ERROR2='E15,.8)
WRITE(6,991) XNM(1),DELZ( 1, 1),XNM(2)

FORMAT (L1HO 13X ," XNM(1)="E15.8,2X, "DELZ(1,1)="E15.8,2X,y
1*XNM(2)='E15.8)

WRITE(64995) DXEM(2)yXNORM( 1)y XNORM( 2) ¢ DXDEM{ 1)4DXDEM( 2)
FORMAT(LHO3X ¢* DXEM{2) ='F15.7 42X, * XNORM (1 )= F15.7, 22X, 2X s F15 .74 2X,s
1'DXDEM(1)=1F15,7,3X,F15,7)

WRITE(6 4993) XNL(INDEX2)yDXEM(1),RHYBN,R SAMPN

FORMATELHO, 3X ¢ XNLUINDEX2) =0 F15.7 12X, ! DXEML D=1 F15 .7 2X,
LTRHYBN='F10.6,2X, "RSAMPN='F10.6)

WRITE (6,996) BQBT(L,1),BQST (1,21,BQBT(2,1),BQ8T (2,2)

FORMAT (1HOy10Xy'BUBT(1,1)=2E16.8,2X " BUBT(1+2) =" EL64842X,
19 BQBT (2,11="E16.8,2X, 'BQBT(2,2)="E16,8)

CONTINUE

3 2 e 3 % o e o XK o 2 ok a2k o o ok e ok o 3k e A ol o e ek

IF(MCR.EQ.1) GO TO 149

STATISTICS ONLY AT SAMFLE PCINTS OBTAINED FROM

LAST VALUE IN PRINT LOOP

WRITE (6,883)

FORMAT(IH1,5X,*'MONTE CARLO RESULTS FOR NONLINEAR SYSTEM RESPONSE
3WITH EXTENDED KALMAN FILTER')

WRL TE (6,99)

FORMAT (1H1,3X, ' TSAMPY,T22, SRXLAVG® T36 49 VARXL® , T50,0 XHVARL ¥ 7634 .
1EPMENL®, T80, EPVARL',T93, *XHMENL")
XCR=MCR

BETA=XCR/(XCR~1.0)

DO 150 IMC=1,ICAL
RXLAVG=RMEANL (I MC)/XCR
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RX2AVG=RMEAN2 (IMC )/ (XCR-1,0}
EPMEN1=EPSM1{IMC) /XCR
VARX1=RX2 AV G-RX 1 AVG#RX 1 AVG*BET A
XHMEN1=XHSUML {1 MC) /XCR
EPMSQL=EPSSQL{IMC)/(XCR=1.0)
XHMSQL=XHSQL {IMC)/ (XCR-1.0)
XHVAR 1= XHM SQ 1= XHMEN 1% XHME N1 *BE TA
EPVAR1=EPMSQL-EPMENL#EPMENL #BE TA
WRITE (6,830) TSAMP{INC) RXLAVG,VARXL,XHVARL,EPMEN 1, EPVARL, XHMEN1
880 FORMAT (1HO,3XsFB8u6 92XsEL154T92XsEL150 T12XoEL154T 42X 9EL54T y2X 4EL5 4T s
42X, E15.7)
150 CONTINUE
149 CONTINUE
STOP
END
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SYSTEM EQUATIONS, EXPRESSED IN N FIRST ORDER DIFFERENTIAL
EQUATIONS. NX=NUMBER OF EQUATIONS OR THE ORDER OF SYSTEM

SUBROUTINE SYSEQUUINP ¢ XNORMy VLIN,JALPHA yDX +X)
DIMENS ION DX (2)4X{10 )y XNORM( 2)
DXt1)=10.0%{=X[1)+VLINMX{2) +ALPHA*X (2)*X (2)%X(2))
DX(2)=50.0%(-X{ 2)+UINP+XNORM{ 1))

RETURN

END

SUBROUTINE AA (XsI1,ALPHA,VLIN,A)

DIMENSION X{201),A{3,3)

THIS ROUT INE IS USED TO REPLACE VALUES IN A MATRIX
FOR NONLINEAR SYSTEM '

All, 1)=-10.0

Al ,2)=10.0%(VLIN+3.0 #ALPHA*XLT)*X(1))

A(2,1)=0.0
A(2,2)=-50.0
RETURN

END

SUBROUTINE RANDOM (DUM,IX,XNQORM)
DIMENSION DUM( 1), XNORM{( 2}
A e ook e 2ok ok ook ol ol o e kol ol Aok ok Kk ek

MULTIPLICATIVE DIGITAL NUMBER GENERATOR WITH M=2 TO THE 20TH POWER
THIS RANDOM NUMBER GENERATOR ASSUMES A UNITY VARIANCE AND ZEROD
MEAN, REQUIREMENTS CTHER THAN UNITY VARIANCE AND ZERO PEAN 1S
APPLIED TO THE VARIABLE XNORM IN MAIN PROGRAM

3 2 e e o 2 e e 3ok o e gk o ol o o oo ok ook el ok kR Kk

1Y=19971 *1X
IPY=1Y/1048576
IX=1Y-1PY*1048576
AXx=1X
U=AX/1048576,
IF(U)I5,546

=~U
CONTINUE

1X=1Y

TRANSFORM TO NORMAL

Z=SQRT(-2.0%ALOG(DUM(1)))
XNORM{1)=Z*COS{ 6.28318%*U)
XNORM(2 )=Z%SINt6.28318*U)
DLM(1)=U

RETURN

END
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SWBROUTINE RUNK (KUTTA,0T,»DUML oL X DX ¢X)
DIMENS ION XA{10),DXA(10)
DIMENSION DK(3,3)
DIMENSION X(10)

DIMENSION DOX(10)

HDT=.5%DT

GO 1O (10+30,50,70)4+KUTTA
DO 20 I=1,LX

XA{LI)=X(1)

OXA(IN)=DX(1)
X(I)=X{I)+HOT*DX(I)
DUMI=X{1)

CONTINUE

RETURN

DO 40 .I=1,LX :
DXA{ I)=DXALL)+DX{1)+DX( 1)
X{I)=XA{T)+HOT*DX (1)
CONTINUE

RETURN

00 60 I=l,LX
DXA(I)=DXA(1)+DX(1)+DX(])
XCI)=XA(L)+DT*DX(1)

RETURN

VDT=D T*. 1666667

DO 80 I=1,LX
X(I)=XA(I)+VDT* (DXA(I)+DX(I1))
RETURN -

END

SUBROUT INE TRANSA (A, IAV,KAV,Al)
DIMENSION A(3,3),A1(3,3)

DO 775 Jv=1,1AV

DO 775 KV=1,KAV
ATUKVJV)I=A{JV,KV)

CONT INUE

RETURN

END

SLBROUTINE MATADD (A,B,MyN,C)
DIMENSION A(3,3),8(3,3),C(3,3)
D0 20 I=1l,M

DO 20 J=1,4N

Cll d)=A(1,J)+B(I,d)

CONTINUE

RETURN

END
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SWBROUTINE MATSUB (A,ByMyN,C)
DIMENS ION A(3,3),8(3,3),C(3,3)
DO 20 I=14M

DO 20 J=14N
ClLsJ)=A(I4J1-B(1yJ)

CONTINUE

RETURN

END

SUBROUT INE MATMUL (AyPysI1sJJKK4C)
DIMENSION A(3,3),P(3,3),C(3,3)

S e o e e ot o e ol o ok o ok o o ke o
11=NO. ROWS IN MATRIX A

JJ=NC, COLUMNS IN MATRIX P

" KK=NOLCOLUMNS IN A AND ROWS IN P

RESULTS MATRIX C HAS II ROWS AND JJ COLUMNS
3 o 3 sk ok o 3K s o ok ofe 3k e ok s o ok ok o ofe e ok ale o ok ko

DO 10 I=1,11

DO 10 J=1,JJ

Cl1,J1=0.0

DO 10 K=1,KK

CUL I =ClI,U)+ACT,K)*P(K,J)

CONTINUE

RETURN

END

SUBROUTINE COVPD (P,AyQI,ByHyNXyMX,BQBT,AT,PD)
DIMENSION P{3,3) ,A{3,3),QI{3,3)+B(3,3),H(3,3),80BT(3,+3),PD{(3,3)
DIMENS ION AT (3, 3)

DIMENSION PHQI(343),HT(3,3),HK(3,3),PN(3,3),PT1(3,3)
DIMENSION PAT(3,3),AP{3,3),C(3,3),PH(3,3)

CALL MATMUL (P4 AT o NXy NXy NXy PAT)

CALL MATMUL (A,P,NXsNX,NXyAP)

CALL MATADD (AP 4PAT,NX,NX,C)

CALL MATMUL (PyH,NXyMXs NXyPH)

CALL MATMUL (PH,QI 4NX4NMX4MX,PHQI)

CALL TRANSA (HyNXyMXy,HT)

CALL MATMUL {(PHQI,HT ¢ NXyNXy MXyHK)

CALL MATMUL (HK P sNXoNXyNX,y PN)

CALL MATADD (C,BQBT,NXsNX,PT1)

CALL MATSUB (PT1,PNy¢NX,NX,PD)

RETURN

END
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SUBRQUTINE ARTOVE (DXDMyCXDEM;PDyXNM,DXEM,P,DVSKF,VVSKF)
DIMENSION OXDM(10) yDXDEM(10) 4PD(3,43) oXNM(10) 4DXEM(10),P(3,3)
DIMENS ION DVSKF(10),VVSKF(1Dd)

DVSKF(1)=DXDM(1)

DVSKF(2)=DXDM(2)

DVSKF(3)=DXDEM(1)

DVSKF({ 4)=DXDEM(2)

DVSKF(5}=PD(1,1)

DVSKF(6)=PDI(1,2)

DVSKF(T)=PD(2,2)

VVSKF{1)=XNM(1)

VVSKF (2) =XNM(2)

VVSKF({3)=DXEM(1)

VVSKF (4 )=DXEM(2)

VVSKF(5)=P(1,41)

VVSKF(6)=P(1,2)

VVSKF{T)I=P(2,2)

RETURN

END

SUBROUTINE VETDAR (VVSKF s XNM¢DXEM,P)
DIMENS ION VVSKF(10)yXNM(10),DXEM(10),P(3,3)
XNM(1)=VVSKF (1)

XNM{2)=VVSKF(2)

DXEM(1) =VVSKF(3)

DXEM{ 2)=VVSKF (&)

P(1,1)=VVSKF(5)

P(142) =VVSKF{6)

P2y 1)=VVSKF( 6)

P(292)=VVSKF(T)

RETURN

END

SWBROUTINE KALMAN (DELZ,GKyHyAyNXy MX s XHAT X HATD)

DIMENS TON HXHAT (3,3),ZINOV(3,3)CORRE(3,3),PRED(3,3)
DIMENSION DELZ(343),GK(3,3),H(3,3),A(3,3),XHAT(10)4,XHATD(10)}
CALL MATMUL (HyXHATsNX,PXsNXHXHAT)

CALL MATSUB (DELZyHXFAT,NXyMXsZINOV)

CALL MATMUL (GK,ZINOVNXyMX4NX,CORRE)

CALL MATMUL (A, XHAT,NXy4MXyNX,PRED)

CALL MATADD {PREDyCORREJNXyMXyXHATD)

RETURN

END
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SUBROUTINE RNGEN({DUMyJX¢NUM, IRNyRNUM}
DIMENSION RNUM(NUM) ,DUM(1)
o o ot oo o Xl ok ok ok Ok kK K

MULTIPLICATIVE DIGITAL NUMBER GENERATOR WITH M=2 TO THE 20TH POWER
DISTRIBUTION ARE GENERATED CONDITIONED ON INTEGER IRN

IRN=1, UNIFORMLY DISTRIBUTEC ON THE INTERVAL (0,1}

IRN=2, UNIFORMLY DISTRIBUTED ON THE INTERVAL (-1,1}

IRN=3,NORMAL DISTRIBUT ION,ZERD MEAN,UNITY VAR,

3 s o e ok e ol s o e o dbcade s o o ok o e ol g ok ke e ok ok ok ok ok

DO 7 I=1,NUM

1Y=1366853%4X

JX=1Y o

IF(IYo LT 0)1Y=1Y+2147483647+1
U=1Y*.4656613E-9

TRANSFORM TC NORMAL

2=SQRT (=2 .0 *ALOG(DUM(1}))
XNORM=Z*C0S{6.28318%U)
ouM(ll=U .

GC TO (14243} IRN
RNUM(T)}=U

GO 70 10
RNUM(T)=2.0%Y~1.0

GO T0 10

RNUM (T )=XNORM

CCONTINUE

-CONTINUE

RETURN
END
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