IMPLEMENTATION OF A SLR(1)

PARSING ALGORITHM

By
JOSEPH LEE GRAY 11
Bachelor of Arts California State University at Long Beach Long Beach, California 1971

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
        for the Degree of
        MASTER OF SCIENCE
            May, 1973
```

$$
\begin{aligned}
& \text { Thesis } \\
& 1973 \\
& G 79 \text { i. } \\
& \text { Cop. }
\end{aligned}
$$

IMPLEMENTATION OF A SLR (1)

PARSING ALGORITHM

Thesis Approved:

PREFACE

This thesis is a description of the SLR(1) parsing algorithm. The advantage of using SLR(1) techniques in syntax analyzers is the generality and efficiency over other parsing schemes. The description is designed to appeal to the reader's academic as well as implementation interests.

Thanks are due to Dr . Donald Fisher and Dr. George Hedrick for their suggestions for improvement of this thesis and especially to my major adviser, Dr. James Van Doren, who, above everything else, asked me questions that made me think.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. CONTEXT-FREE GRAMMARS 4
Definitions 4
Parsing 10
Relations and Closures of Relations 15
Practical Restrictions on CF Grammars 23
III. LEFT TO RIGHT TRANSLATION OF LANGUAGES 26
The LR (k) Method 26
The SLR (1) Method 35
Comparison of Table Construction Methods 45
IV . CONCLUSION 51
A SELECTED BIBLIOGRAPHY 53
APPENDIX A - LIST OF SYMBOLS 56
APPENDIX B - USER'S GUIDE 58
APPENDIX C - PROGRAM LISTING 66
APPENDIX D - LOGIC BLOCK DIAGRAM 80

LIST OF TABLES

Table Page
I. Configuration Sets - LR (1) Method on \mathbf{G}_{2} 30
II. LR(1) Configuration Sets for G_{3} 31
III. LR(1) Table for G_{3} 34
IV. The "Overlay" Modification of Table III 37
V. LR(0) Configuration Sets for G_{1} 38
VI. SLR(I) Table for G_{1} 39
VII. SLR(1) Configuration Sets for G_{3} 46
VIII. SLR(1) Configuration Sets for G_{4} 48
IX. SLR(1) Table for G_{4} 49

LIST OF FIGURES

Figure Page

1. Syntax Tree for $S^{+*} ? 1+1$? 8
2. Syntax Tree for $S^{* *}$? $1_{0}+1_{1}+1_{2}+1_{3}{ }^{* *} 1_{4}{ }^{* *}\left(1_{5}+1_{6}\right)$? 8
3. Boolean Matrix Representation of $H\left(G_{1}\right)$ 17
4. Graph Representation of $H\left(\mathrm{G}_{1}\right)$ 18
5. Boolean Matrix Representation of $\mathrm{H}^{+}\left(\mathrm{G}_{1}\right)$ 19
6. Graph Representation of $\mathrm{H}^{+}\left(\mathrm{G}_{1}\right)$ 20
7. Parsing ?affc? Using Table III 34
8. Parsing ?i+1+1? Using Table VI 41
9. Parsing ?abc? Using Table IX 49

CHAPTER I

INTRODUCTION

This thesis is a presentation of a reasonably general method for parsing and gaining conceptual insight into languages described by context-free (CF) grammars. Included are the definition of a CF grammar, a development of some of the characteristics of a CF grammar, and the definition and construction of a general parsing scheme for a sig5 nificant subset of CF languages. The purpose is to show how to develop certain conceptual characteristics of any particular CF language and at the same time mechanically construct a table-driven syntax analyzer for that grammar by using the method for table construction contained herein. The former is particularly valuable for languages with which the reader is not intimately familiar. The main area of applicability is in writing translators for computer programming languages. In particular, the parsing method applies to a large subset of CF languages written in Backus-Naur Form (BNF) in which most of the commonly used programming languages can be described approximately. Syntax analyzers are only part of the compiling process and are usually intertwined with other parts (semantic routines, scanners, code generators, etc.); however, this paper isolates the syntax analyzer for the purpose of examination.

A useful side effect of the table construction method is that an understanding of the grammar and the language may be obtained even if
the complete table cannot be generated for a particular grammar. Hence, this thesis will serve as a useful guide for studying programming languages for which no compiler is available if the user can express the grammar in BNF.

There has always been a decision between whether to program in a low-level language such as assembler or machine language, which is difficult, machine dependent, and fast in terms of translation time, or in a high-level language such as FORTRAN, which is easier to do, easier to train personnel for, and machine independent, but slower in translation time and perhaps not applicable to a particular problem. At this time, the concensus seems to be that the high-level languages are more desirable; therefore, one goal of the computer scientist is to correct the deficiencies. The solution is to write several high-level languages for different areas of applicability and to write efficient translators for them. Out of this goal have come translator writing systems (TWS) of which one part is the syntax analyzer. Writing a syntax analyzer for a TWS should be done in such a way that the analyzer can be used for a large class of grammars (e.g., a large subset of CF grammars), and it must work efficiently. It is with this goal in mind that this project was undertaken.

The basis for the method of parser construction presented in this thesis was developed by Knuth (10); and the first widely publicized, efficient implementation of the method was developed by DeRemer $(3,4$, 5). An analysis of both methods (table construction and parser construction) and certain optimizations on the table construction method have been developed by Aho and Ullman (1,2). The implementation presented here has similarities to all of the above plus some of the
author's own innovations.
In particular, DeRemer (4) has demonstrated that the technique is superior or equivalent in efficiency to other parsing methods such as operator precedence, simple precedence, bounded context, or McKeeman's mixed strategy precedence (MSP) (11) and also more general in its acceptance of languages.

CHAPTER II

CONTEXT-FREE GRAMMARS

Definitions

In general, a context-free grammar is a set of rules specifying a language. The language, L, is some subset of the set of all finite strings of symbols from an alphabet, A. That is, (possibly) not all strings of elements of L's alphabet are in L. The purpose of the grammar is to specify which strings can legitimately occur in L. Although the alphabet, A, is finite, the set of strings of A, denoted by A, may be countably infinite. However, depending on the grammar, L may or may not be infinite. A second purpose of the grammar is to give a finite representation of L, even though L may be infinite.

To specify a grammar, there is a need for a set of symbols that is disjoint from the alphabet so that the grammar may be written in such a way that the rules of the grammar are not confused with strings in L. To accomplish this, a set of metasymbols, usually referred to as nonterminal symbols and characterized by the property that they do not appear in the alphabet, is used. The metasymbols represent the syntactic categories of the grammar.

The union of the alphabet and the metasymbols is referred to as the vocabulary, V, of the grammar; and the set of all strings of symbols from the vocabulary is denoted by $V *$.

Colons, commas, periods, and semicolons are punctuation symbols in the production rules defined below. They are not in the vocabulary. A comma means "is followed by"; a semicolon means "or" (exclusive); a colon means "may be rewritten as"; and a period is an end delimiter.

There are many variations in punctuation. Often the commas are replaced by blanks, the semicolons by vertical bars, the colons by either arrows or double colons followed by equals, and the periods by either blanks or semicolons.

Finally, the grammar is specified by a set of rules (also called rewriting rules or productions) of the form $U_{i}: u_{i}$. where U_{i} is a metasymbol and $u_{i} \in V^{*}$. The set $\{U\}$ has the property that exactly one element, say U_{g}, appears only on the left of a colon and never on the right. The U_{i} is called the goal symbol (also distinguished symbol). This definition is overrestrictive but serves the purpose of this thesis. U_{i} is called the left-hand-side (LHS), and u_{i} is called the right-hand-side (RHS).

Formally, a grammar, G, is defined as a quadruple $\left(V_{T}, V_{N}, P, S\right)$ where V_{T} is the set of terminal symbols, V_{N} is the set of non-terminal symbols, P is the set of productions, and S is the goal symbol. As an example, the grammar, G_{1}, is specified by:

1. $S: ?, E$, ?.
2. $\mathrm{E}: \mathrm{E},+\mathrm{T}$;
3. T.
4. $T: P, * *, T ;$
5. P.
6. P: (, E,) ;
7. 8.

Here, $\mathrm{V}_{\mathrm{T}}=\{?,+, * *,(), 1\},, \mathrm{V}_{\mathrm{N}}=\{\mathrm{S}, \mathrm{E}, \mathrm{T}, \mathrm{P}\}, \mathrm{S}$ is the goal symbol, and P is given.

The reader may ask how to represent one of the punctuation symbols in a production rule if it is actually in the alphabet; possible answers are to use some other symbol or to enclose the symbols of the alphabet within some other symbol not in the alphabet. By definition of the action of the semicolon, $E: E,+, T ; T$. is equivalent to the two rules E: E, +, T. and E: T.. The punctuation used (13) also allows the use of multi-character symbols.

Since a production means that the LHS can be rewritten as the RHS, applications of the production rules result in the following:

PRESENT STRING APPLIED RULE
(1) S
(2) ?E? 1
(3) ? $\mathrm{E}+\mathrm{T}$? 2
(4) ?T+T? 3
(5) $? P+T ? \quad 5$
(6) $? 1+T ?$
(7) ? $1+P$? 5
(8) ? $1+1 ?$

The final result, line $\# 8$, is a terminal string, that is, a string of terminal symbols. Each line is a direct derivative (6) of the previous line. Or, more formally, X is a direct derivative of W (written $W+X$) by application of the rule U : u. if there are (possibly empty) strings x and y such that $W=x U y$ and $x=x u y$. The transitive closure of \rightarrow, denoted by \rightarrow^{*}, defines X as a derivative of W if there exist strings $W_{0}, W_{1}, \ldots, W_{1}$ such that $W=$ $W_{0} \rightarrow W_{1}, W_{1} \rightarrow W_{2}, \ldots, W_{i-1} \rightarrow W_{i}=X$. Line $\# 8$ is a derivative of line \#2, for example. All derivatives of the goal symbol are called sentential forms. Sentences, the elements of the language, are
sentential forms consisting of terminal symbols only. More formally then, a language is defined as the set of sentences, that is, the strings of terminal symbols derivable from the goal symbol.

Since the grammar specifies the language, it now should be possible to tell what strings are valid in $L\left(G_{1}\right)$, the language generated by G_{1}. According to rule $\# 1$, legitimate strings are enclosed by question marks. Rules \#2-3 describe an E as a sequence of T^{\prime} s separated by +'s. For example, $E \rightarrow E+T \rightarrow E+T+T \rightarrow E+T+T+T \rightarrow T+T+$ $T+T$ specifies that an E can be the sum of four T 's. Because E appears in its own definition, the length of the string that can be produced is arbitrary. In this case, it is left recursion. (E appears as the leftmost symbol of one of the RHS alternatives defining E.) If the rule were written $E: T,+$, E, then it would indicate right recursion. If there were a rule such as $E: T, E, T .$, it would indicate embedded recursion. Rules \#4-5 are similar in that they define a T to be an arbitrarily long sequence of $\mathrm{P}^{\prime} \mathrm{s}$ separated by $* *$'s. Finally, rules \#6-7 define a P to be either a parenthesized E or an i. Recursion is a mechanism by which the finite grammar can describe an infinite language. For example, in $L\left(G_{1}\right)$, any arbitrarily long sequence of $i^{\prime} s$ separated by t's is a legitimate sentence.

A conventional way to describe pictorially the derivation of ?i+i? presented earlier is given in Figure 1 and is called a syntax tree. Syntax trees are useful in that they reveal something about the structure of the grammar. For example, the question of precedence of operators and whether a particular operator is left associative or right associative is easily seen in a syntax tree of the string in
question. The string $i_{0}+i_{1}+i_{2}+i_{3} * i_{4}{ }^{* *}\left(i_{5}+i_{6}\right)$ and its syntax tree are presented below in Figure 2. (The subscripts are only to facilitate correspondence of the string with the tree.

Figure 1. Syntax Tree for $S \rightarrow^{*} ? 1+1$?

Figure 2. Syntax Tree for $S \rightarrow^{*} ?_{1} i_{0}+i_{1}+i_{2}+i_{3} * i_{4} * *\left(i_{5}+i_{6}\right)$?

If the tree is traversed in postorder (9), it is clear that parenthesized expressions have precedence ($1,0$. , they are encountered first in a postorder traversal) over **, which has precedence over +. Also, + is left associative while ** is right associative. G_{1} specifies FORTRAN-1ike arithmetic expressions. The associativity (grouping), right or left, is determined by the recursion, right or left. For some syntactic units, the grouping is unimportant; for example, a COMMENT is usually defined as any string of symbols of the alphabet with particular delimiters (e.g., /**/ in PL/1), and the grouping of the symbols is usually unimportant. However, the grouping is of utmost importance in syntactic units such as arithmetic expressions. Examination of G_{1} and syntax trees for different sentences of $L\left(G_{1}\right)$ reveals the 1 to 1 correspondence of left recursion with left associativity and right recursion with right associativity. The reader may well ask, "Is the syntax tree for a particular string unique?" Or perhaps more importantly, "Are the members of a set of syntax trees for a given string equivalent?" This is all part of a larger question, namely, "Is the grammar ambiguous?" A grammar is said to be ambiguous if the language produced by the grammar is ambiguous. Formally, a grammar is unambiguous if there does not exist more than one canonical derivation sequence for any sentence in the language. A thorough discussion of grammar ambiguity is beyond the scope of this thesis; suffice it to say that, for the purpose of this thesis, if a given sentence has two or more different syntax trees, then the grammar is ambiguous. In particular, the method presented in this thesis fails if the grammar is ambiguous. However, if the method fails, it is not necessarily true that the grammar is ambigu-
ous.

Parsing

Due to the complexity and depth of most modern high-level programming languages, there is a need to produce syntax analyzers mechanicaily to minimize costs of translator implementation, to maintain some degree of uniformity across different machines, and to facilitate changes and extensions to the language.

How is a string of L analyzed? What exists at this point is a set of rules for generating sentences of $L(G)$. For a smail finite language, one method is to generate all possible sentences and save them and then, to check any input string for validity, simply do a look-up. However, even for G_{1}, this method is not feasible if for no other reason than the recursion allows arbitrarily long sentences.

There are two general methods of analyzing (also called recognizing or parsing) elements of a language. The first, and possibly easiest to understand, is the top-down method. It is essentially a goal-oriented method; that is, predictions are made as to what the sentence is (hopefully the goal symbol), and then attempts are made to verify the prediction by determining if all of one of the RHS alternarives are present. Of course, to detect this presence leads to further predictions for any part of the alternative which is a nonterminal symbol. Essentially what is done is to "draw" the syntax tree from top to bottom (root to leaves). In parsing the sentence ?i+1?, the first prediction is that the sentence is an S. But before it can be said that it is an S, the RHS must be verified, that is, an E enclosed in question marks. The first question mark is
found in the string. Now an E must be found; that is, the presence of one of the RHS alternatives for E must be verified. If recognition of some alternative is attempted and failure results, then it is necessary to "backup" and try a different alternative; if all alternatives have been tried, then the string is not a sentence. Continuing with this example, a try is made to find an E but, from the earlier discussion, an E is a sequence of $T^{\prime} s$ separated by +'s. Therefore, a T must be found; but a T is one or more P^{\prime} s separated by $* *$'s; therefore, $a \quad P$ must be found, and is found since the next input symbol is i, which completes a RHS alternative for P. Since there is no **, the longest T is found since P is a RHS alternative. The + is now detected and the next T in a manner similar to the first and, therefore, an E has been found and, with the closing question mark, an S; hence, the string is a sentence in $L\left(G_{1}\right)$. Referring back to Figure 1 , what has been done is to work down the tree, from left to right. Left recursion can cause problems in top-down parsing. For example, in the above discussion, left recursion was avoided by saying that an E was one or more T 's separated by + 's; however, that conclusion was only reached after some analysis of the grammar. If the problem had been attacked blind$1 y$, an E would have been predicted, then a move made to the alternative $E,+, T$ and an E promptly predicted; and an endless loop would be entered.

The second commonly used parsing method is the bottom-up method. With bottom-up parsing, the syntax tree is not "drawn" but rather assumed to exist; and the method proceeds to verify this assumed tree. Again, working with G_{1}, the sentence ?iti?, and Figure 1 , a
phrase of the sentence is defined to be the set of end nodes of some subtree of the syntax tree. That is, a phrase is a derivation of some non-terminal symbol. The set of phrases of Figure 1 is $\{1,1+1$, ?i+i?\}. The handle is defined to be the leftmost phrase which contains no phrases other than itself. That is, the handle is the leftmost set of end nodes forming a complete branch, which is to say it is the direct derivation of the leftmost, bottom-most, non-terminal symbol node in the tree. Hence, in the example, i is the handle. The following algorithm, given in (6), reflects the general philosophy of bottom-up parsing:
(0) Let $s=s_{0}$ be a string to be analyzed. For $1=0,1, \ldots$, n until $\mathrm{s}_{\mathrm{n}}=\mathrm{S}$ has been produced, do the following steps.
(1) Find the handle of s_{1}.
(2) Replace the handle of s_{i} by the name of its father in the syntax tree.
(3) Prune the handle from the tree.

The sequence $s_{n} \rightarrow s_{n-1} \rightarrow \ldots \rightarrow s_{0}$ is now a derivation of s_{0}. The following demonstrates the algorithm applied on $s=s_{0}=? 1+1$?.

PRESENT	STRING	HANDLE	STRING AFTER	STEP 2
(1)	? i+i?	1	? $\mathrm{P}+\mathrm{+}$?	
(2)	? $\mathrm{P}+\mathrm{i}$?	P	? $\mathrm{T}+1$?	
(3)	? $\mathrm{T}+1$?	T	? $\mathrm{E}+1$?	
(4)	? $\mathrm{E}+\mathrm{i}$?	1	? $\mathrm{E}+\mathrm{P}$?	
(5)	? $\mathrm{E}+\mathrm{P}$?	P	? $\mathrm{E}+\mathrm{T}$?	
(6)	? $\mathrm{E}+\mathrm{T}$?	E+T	? E ?	
(7)	? E ?	? E ?	S	
(8)	S			

If the steps in the "present string" column are followed back-
wards, the derivation $S \rightarrow^{*}$? $1+1$? results. In fact, a rightmost derivation sequence exists in that each step is of the form $P A B \rightarrow$ PcB where B is a terminal string, c is a terminal symbol, and $\mathrm{P} \in \mathrm{V}^{*}$; that is, a production whose LHS is the rightmost non-terminal symbol of the sentential form is used. In this paper, the rightmost derivation is used as the canonical derivation. A canonical parse is the reverse of a canonical derivation.

All parsing methods have both good and bad characteristics. Some are easy to implement but inefficient while others are complex but efficient. Perhaps it is the lack of a "best" method that has led to the variety of methods (6). In general, there are two problems with which all syntax analyzers must deal.

First, the problem of backtracking must be dealt with. In both bottom-up and top-down parsing, a choice must be made as to which alternative of a production should be used in the next step of the parse. Input symbols are then picked up to try to fulfill that alternative. If the parsing scheme picks the wrong alternative, then it must back up and try another. One way of alleviating this problem, at least somewhat, is with look-ahead. That is, the parser scans ahead in the input string to gain a clue as to which alternative to attempt to match. Some of the questions raised by lookahead are whether only to look ahead or to look back at what has been processed or both and how far to look. As a preview, the method presented later has implicit unrestricted look-back and one symbol look-ahead.

The second problem area for syntax analyzers is error recovery. That is, if and when an error is detected, what course of action
should the analyzer take. "ERROR IN ABOVE PROGRAM" is not a very informative diagnostic message. On the other excreme, an analyzer which could correct every error would have the inteliigence to write programs itself. Error recovery and error correction are not treated to any degree of sophistication in this thesis.

One of the principal characteristics about a large class of context-free languages for which parsing methods in this thesis apply is that the syntax analyzers for them can be formalized as deterministic push down automata (DPDA) (6)。 By push down, it is meant that, if the DPDA were modelled by a computer program, then that program would use a stack. That is, a history of the previously travelled path is recorded (remembered). The nature of this DPDA, which consists of a finite number of states, a push down mechanism, and state transitions, is to input the symbols of a string and to make state transitions according to what symbol is read and the present state. In effect, a DPDA "remembers" the previous symbols (at least the ones it needs) by the path of state transitions to reach the present state. The goal is to reach a unique state, the final state, at the same time the input string is depleted. A language is deterministic if every sentence of the language is accepted by a DPDA. That is, every sentence causes the DPDA to reach the final state at the same time the input string becomes depleted.

Knuth's original work (the LR(k) method) is equivalent to a DPDA in its acceptance of languages. The author's implementation is somewhat less general in that a restricted form of Knuth's method is used, resulting in a parser which accepts a large subset
of the languages acceptable to a DPDA.

Relations and Closures of Relations

In the previous discussion of look-ahead and look-back, it was implied that they were methods for deciding which RHS alternative to use in the next step of a parse. This is equivalent to saying that the handle can be uniquely determined. Usually, when there is lookahead, what action to take is determined not only by what the scanned input symbol is but also by how much of a handle has been recognized. In particular, the rightmost symbol (top of the stack) of the partially recognized handle is of interest. That is, the relation between the two symbols determines the action. The need for knowing particular relations between symbols of a gramar has led to a number of important properties and algorithms.

To begin with, it is necessary to review the definition and properties of a binary relation and describe the notation. For sets A and B, the Cartesian product of A and B is defined to be $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$ 。 A binary relation, R, defined on $A \times B$, is defined to be a subset of $A \times B$ such that the relation holds between the first and second elements of the ordered pairs. The possibilities $A=B, A \subset B, B C A, A \cap B \neq 0$ or $A B=\emptyset$ exist. There are four notations used in this paper to describe R defined on $A \times B$ 。 Notation \#1
$R=\{(a, b) \mid a \in A, b \in B$, and $a R b\}$
Notation \#2

$$
R(a)=\{b \mid a \in A, b \in B, \text { and } a R b\}
$$

Notation \#3

The relation can be defined by a matrix whose entries are either O (false) or 1 (true), that is, a Boolean matrix. Correspond the rows with elements of A and the columns with elements of B. If $a R b$, and a corresponds to row 1 , and b corresponds to column j, then the ifth entry is 1 . If $a k$, then the if th entry is 0 . Notation \#4

The relation can be defined by a directed graph such that nodes a and b are connected by an arc if and only if $a R b$. That is, for $a \in A, b \in B$, and $a R b$, there exists an arc from node a to node b.

The properties of a relation, R, defined on $A \times B$, can be stated symbolically as:

Reflexive. $a R$ a for every $a \in A$ and every $a \in B$
Symmetry. $a R b$ if and only if $b R a$
Transitivity, a R b $\wedge b \operatorname{c} c$ if and only if $a R c$ for $a \in A, b \in A \cap B, c \in B$

If all three properties exist for R, then R is said to be an equivalence relation; for example, the relation of equality of positive integers (here $A=B$) is an equivalence relation.

In the following, i, j, and k are positive integers:
Reflexive. $i=i$
Symmetry. i = j if and only if $j=i$
Transitivity. $i=j \wedge j=k$ if and oniy if $i=k$
The relation, H, defined on V of G_{1} by $H=\left\{(A, b) \mid A \in V_{N}, b \in V\right.$, $C \in V *$, and $A: b, C . \epsilon P\}$, exists between all LHS's and the first (head) symbol of their RHS alternatives. The pairs of G_{1} for which H holds are $\{(\mathrm{S}, \mathrm{?}),(\mathrm{E}, \mathrm{E}),(\mathrm{E}, \mathrm{T}),(\mathrm{T}, \mathrm{P}),(\mathrm{P},(\mathrm{O},(, \mathrm{i})\}$. It is more con-
venient to represent the relation with a Boolean matrix whose rows and columns correspond to V. For $H\left(G_{1}\right)$, Figure 3 applies. Also, for reasons of visual clarity, it is convenient to represent a relation as a directed graph where nodes related to each other are connected. For $H\left(G_{1}\right)$, Figure 4 applies. In terms of the directed graph, the Boolean matrix is the adjacency matrix. In Figure 4 , an E eventually leada to (. Some way to represent this in a single step rather than three is desirable. That is to asy, a relation like H, but which is transitive, 1s desired so that all posaible head symbols of atrings that are dem rivatives of given non-tarminal symbol can be discerned. If H were transitive (which it is not), then an application of the transitivity would give $E H T \wedge T H P \Longrightarrow E H P$, and $E H P \wedge P H(\Rightarrow E H$ (. But (E, P) and ($E,($) are not in H since P is not the first symbol of a RHS alternative of a production for which E is the LHS and likewise for (. Therefore, it is necessary to define a new relation, H^{+}, the transitive closure of H . However before defining H^{+}, the properties of the transitive closure of a relation need to be developed.

	S	E	T	P	?	$+$	**	(i
S	0	0	0	0	1	0	0	0	0	0
E	0	1	1	0	0	0	0	0	0	0
T	0	0	0	1	0	0	0	0	0	0
P	0	0	0	0	0	0	0	1	0	1

Figure 3. Boolean Matrix Representation of $H\left(G_{1}\right)$

$?$										
+	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

Figure 3. (Continued)

Figure 4. Graph Representation of $H\left(G_{1}\right)$

The product of two relations, say R on $A \times B$ and P on $C \times D$, is defined by a RP d if and only if there exists an $e \in B \cap C$ such that $c R e \wedge$ e $P d$ is true. If P is a product relation, say $Q T$, such that e QT d so that there does exist an f such that $e q \in \wedge$ $f T \mathrm{~d}$ is true, then, for the relation $R P$, which is actually $P Q T$, it is true that $c R e \wedge$ e $Q f \wedge f T \mathrm{~d}$. But \wedge is associative and hence $R(Q T)=(R Q) T$. A theorem (7) that will be used extensively hereafter states that the Boolean matrix representation of a product relation can be computed by the product of the Boolean matrices for
the original relation. Using the definition of product, the powers of a relation, R, are defined by $R^{n}=R^{n-1}$ where $n>0$ and $R^{1}=R$ and the transitive closure of R by $a R^{+} b$ if and only if there exists $a \quad c$ such that $a R^{n} c$ for some $n>0$. If the identity relation is denoted by R^{0}, that is, $a R^{0} b$ if and only if $a=b$, then the reflexive transitive closure, R^{*}, can be defined as $a R^{*} b$ if and only if $a R^{n} b$ for $n \geq 0$. For the transitive closure, if each power of R is considered as a separate relation, then $R^{+}=\left(R^{1} \cup R^{2} \cup R^{3}\right.$ $\cup \ldots \cup R^{n}$) where n is the number of elements in the set on which the relation is defined. This is proven by Gries in (7). It should be clear without proof that R^{+}is itself a transitive relation. The transitive closure of $H\left(G_{1}\right)$ is defined by $H^{+}(A)=\{b \in V \mid A \rightarrow *, C$ where $\left.C \in V^{*}\right\}$. $H^{+}\left(G_{1}\right)$ can be represented by the Boolean matrix in Figure 5.

Figure 5. Boolean Matrix Representation of $H^{+}\left(G_{1}\right)$

	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0

Figure 5. (Continued)

Translating Figure 5 into a graph, Figure 6 results:

Figure 6. Graph Representation of $\mathrm{H}^{+}\left(\mathrm{G}_{1}\right)$
$H^{*}\left(G_{1}\right)$, the reflexive transitive closure of H, would differ from $H^{+}\left(G_{1}\right)$ by having an arc from each node into itself.

There are two subtle but very important ideas that are used here and need to be brought to the surface. The first is that, when forming the Boolean matrix H^{+}, a twist on matrix algebra is used. To actually perform R, the rules of matrix multiplication are used, with "and" replacing "times" and "or" replacing "plus." This correspondence is clear when the Boolean matrix is represented with 1 for "true" and 0 for "false." That is, for ordinary matrix multiplication
$(A B=C)$, the ifth element of C is defined by

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} ;
$$

but, for Boolean matrix multiplication, the ifth element of C is defined by

$$
c_{1 j}=\left(a_{11} \wedge b_{1 j}\right) \vee\left(a_{12} \wedge b_{2 j}\right) \vee \ldots v\left(a_{1 n^{\wedge}} b_{n j}\right)
$$

where A and B are square Boolean matrices of rank n. Rewriting the definition of R^{+}as $R^{+}=R^{n}+R^{n-1}+\ldots+R^{1}$, it is seen that the computation of R^{+}has similarities of evaluating a matrix polynomial with all coefficients equal to the identity matrix. Cleariy, in a mechanical computation, some efficient method for the calculation of R^{+}is needed, perhaps a method similar to the nested multiplication method of evaluating polynomials. Such a method does exist and is known as the Warshall algorithm. The second point is how to relate the powers of a relation to the grammar. $H^{+}\left(G_{1}\right)$ is used as an example. Clearly, $H^{l}\left(G_{1}\right)$ is the application of one production, that is, $H\left(G_{1}\right)$. But $H^{1} \cup H^{2}$ is the application of one or two productions. For the graph of Figure 4, this in effect is connecting the paths of length 2 , for example, the arc T_{1}. Likewise, for higher powers, $H^{1} \cup H^{2} \ldots \cup H^{i}$ in effect connects ares of length 1,2 , ..., i. Of course, this is with respect to the original graph. With respect to the present updated graph at each step, paths of length 2 are always connected.

Warshall (14) developed an algorithm for computation of the closure of an $n \times n$ Boolean matrix that is superior to other methods (e.g., nested multiplication). For example, Warshall claims that,
while the computation of closure matrices for other methods goes up with n^{3}, his method goes up silghtly faster than n^{2}.

Normally, the Warshail algorithm calls for n iterations; however, from a practical point of view, the user can, under certain restrictions, reduce the number of iterations in the original algorithm and still produce the desired closure matrix. For G_{1}, there are 10 rows In the Boolean matrix representation of $H\left(G_{1}\right)$. If the original algorithm were used, 10 iterations would be made, one for each row. However, there are only seven production rules so that at most seven iterations are needed. There is only one node for each non-terminal symbol; hence, the longest possible path has length equal to the number of non-terminal symbols. But it is aiso true that three of the production rules of G_{1} have the same LHS, and only one of the rules with a common LHS can apply at any step. Hence, only four fiterations are needed. The point is that usually a restriction (resulting in greater efficiency) can be imposed on the Warshall algorithm, depending on the relation being closed.

As stated eariler, for G_{1}, four iterations are needed and the Warshall algorithm makes one iteration for each row of the Boolean matrix. Since the Boolean matrices of concern represent a relation (i.e., a set of ordered pairs), the rows may be swapped in any manner provided similar swaps are made with the columns. Again recaliing that the relation H is defined on $V_{N} \times V$, it should be clear that it is desirable and correct to arrange the Boolean matrix representation of H so that the non-terminal symbols occupy contiguous rows and that the Warshall algorithm need only iterate on those rows. (Figure 3 is arranged this way.) If closure of $H\left(G_{1}\right)$ is thought of in terms of

Boolean matrix multiplication, the reader will see that, at every step (i.e., every power of H), the rows labelled with terminal symbols remain all zeroes. So it must also be with iterations of the Warshall algorithm.

A symbolic statement of the algorithm may be found in (14); however, the major goal of this thesis is to present concepts and methods that are actually used in an implementation and, therefore, a PL/1 program segment is used to describe the working algorithm。

Let M be a bit matrix representing a relation defined on $A \times B$ whose rows correspond to the elements of A and whose columns correspond to elements of B. It is necessary that $A \subseteq B$ and that, if row i corresponds to $x \in B$. (An example of such an M is the first four rows and all columns of Figure 3.) The PL/1 program segment follows.


```
    DO I=LBOUND (M,1) TO HBOUND (M,1); / F FOR ALL ROWS */
            IF M(I,K) THEN /* IF A K TH COLUMN ENTRY IS TRUF */
                DO J=LBOUND (M,2) TO HBOUND (M,2); /* FOR ALL COLUMNS */
                        IF M(K,J) THEN M(I,J)='1'B;
            END;
        END;
END;
```

Practical Restrictions on CF Grammars

Gries (7) discusses some practical restrictions on CF grammars so that mechanically generated parsers can be applied more efficientiy to the languages generated by CF grammars. Some methods require more restrictions than others. The $L R(k)$ method, to be presented later, requires fewer restrictions than any other known method for which efficient parsers can be mechanically produced (3).

Restriction \＃1

A production of the form A：A．clearly makes a grammar ambigum ous，serves no useful purpose，and can easily be detected either me－ chanically or by visual inspection．In this thesis，it is assumed no such production is present．

Restriction \＃2

Every non－terminal symbol must appear in some sentential form， that is，$S \rightarrow^{*} x A y$ for every $A \in V_{N}$ and $x, y \in V^{*}$ ．This condition can be mechanically detected by constructing the relation WITHIN，denoted by W ，and defined by $W(A)=\{B \mid B$ is a non－terminal symbol that appears in a production whose LHS is $A\}$ ，then computing W^{+}．For any ＂0＂in the goal symbol row，except the goal symbol column，the symbol represented by that column is not＂within＂the goal symbol and there－ fore violates the restriction．

Restriction $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 3

Every non－terminal symbol must be able to derive a terminal string．Gries（7）presents an algorithm for detecting this condition， which basically consists of＂marking＂any production whose RHS is com－ posed of only terminal symbols or＂marked＂non－terminal symbols．Sev－ eral passes over the productions are usually needed；and the algorithm stops when，during a previous pass，no LHS was＂marked．＂When the algorithm stops，any unmarked production cannot derive a terminal string and therefore contributes nothing to the language specified by the grammar．

Restriction $\# 4$

No production is of the form A：．，that is，no RHS is empty． Again this restriction is easily detected by visual inspection．In
this thesis，it is assumed no such production is present．

Restriction \＃5

No duplicate RHS＇s are present in the grammar．Duplicate RHS＇s cause most bottom－up methods to fail but do not necessarily affect the method presented in this thesis．However，as a general rule of thumb， grammars with duplicate RHS tend to cause the table construction meth－ od to fail to produce a complete table．
 detected visually，but $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ ，非3，and $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ ，are mechanically detected How－ ever，only warnings are issued since，if these restrictions are vio－ lated，they do not necessarily cause the method presented in this thesis to fail but do make it less efficient．

In this chapter，elementary topics have been investigated．For a theoretical basis for these concepts，the reader is referred to（8） and，for an application－oriented reference，to（7）．

CHAPTER III

LEFT TO RIGHT TRANSLATION OF LANGUAGES

The LR(k) Method

The reader may well ask which is better, top-down or bottom-up parsing. There are advantages in both. What is sought is a completely language-independent (assuming a CF grammar) recognizer that is efficient and combines the most desirable aspects of both top-down and bottom-up methods. This is precisely what is embodied in Knuth's (10) LR(k) method, which can be described generally as a parsing method that scans sentences from left to right, using no more than k symbol lookahead to determine whether to input the next symbol or make a reduction. LR(k) gramars (grammars that produce languages which can be parsed with $L R(k)$ methods) are the largest known class of CF grammars for which deterministic (ioe., no backtracking), left-to-right, bottomup parsers can be mechanically generated. In fact, this class of grammars is capable of describing virtually all of the commoniy used programming languages (3). Another way of describing a deterministic language is to say that the hande can always be uniquely determined. That is, the parser never picks the "wrong" RHS alternative.

The LR(k) method, given a CF grammar, produces a table which is used by a language-independent parsing algorithm to parse sentences of the language generated by the grammar. In general, Knuth's original

LR (k) method produces tables too large for practical use. A closely related method known as $\operatorname{SLR}(k)$ (3) (simple LR(k)), which results in more practical parsers, is the method of principal concern here. However, for reasons of completeness, the $L R(k)$ method is treated briefly.

If a is a right sentential form, that is, a is a rightmost derivation of the goal symbol, then FIRST ${ }^{k}$ (a) is defined to be the first k terminal symbols derivable from a. That is, FIRST $^{k}(a)=$ $\left\{w \in V_{T}{ }^{*} \mid a \rightarrow^{*} w x, x \in V_{T} *\right.$ and either w is k symbols long or w is less than k symbols long and $x=\emptyset\}$. If $a \in V_{T} *$, then FIRST k (a) is the first k symbols of a. Every right sentential form contains a handle. An informal definition of an $L R(k)$ grammar, given in (1), is that a grammar is $L R(k)$ if the handle, h, of a right sentential form, bha, is unique and the production that derived the handle is uniquely determined by examining $b h$ and FIRSTk (a). Development of an algorithm which does this examining for all right sentential forms follows. In actual practice, this consists of constructing the aforementioned table, which tells the parsing algorithm whether to stack the incoming symbol or make a reduction. A reduction consists of popping a RHS from the stack and replacing it with the corresponding LHS. This parsing action is the reason for stating earlier that the $L R(k)$ method of parsing corresponds to a DPDA. The row of the table that is used in the decision corresponds to a DPDA state, the "push down" to the stack; and the method is deterministic as described above. An $L R(k)$ table is actually two tables in one (1). The table is considered to be a pair of functions (p, g) such that:
(1) p, the parsing action function, maps the look-ahead strings (length k or less) into stack, error, or
reduce 1 , where i is a production number.
(2) g, the goto function, maps V to the states (rows of the table).

The process ends when the final state (a particular row of the table) is entered. The problem of entering the final state with unexpended suffix does not exist since special delimiters are placed before and after the text to be processed. Also, there is a start state in which to start the processing. The parsing algorithm is the aame for both the $\operatorname{LR}(k)$ and the $\operatorname{SLR}(k)$ methods. Actually, the tables are quite similar for both methods also, but it in in the construction of the table where the methods differ.

For an LR(1) grammar, that 1s, $k=1$, only one symbol look-ahead is allowed. It has been proven (10) that any LR(k) grammar can be rewritten in an equivalent form as an LR(1) grammar. Here, FIRST (A)e $\mathrm{H}^{+}(\mathrm{A})$, that is, it contains the terminal symbol elements.

The $L R(1)$ table is constructed by first constructing the configuration sets. There is a 1 to 1 correspondence between these configuration sets and rows of the table. Each configuration set is composed of items; each item is of the form ($A+a, b, u$) where $A \rightarrow a b$ is a production (represents a direct derivation); the "." marks the dividing point in a partially recognized handle; and u is a valid next input symbol if the item is recognized. There are two important actions used to construct the configuration sets. CLOSURE - A set begins with items specified by expansion. The first set begins with ($S \rightarrow$. ? E ?,\emptyset). If ($A+a . B C, U$) is in the set, then ($B \rightarrow 0 d, v$) is added to the set for productions B : d. for any $d \in V *$ and $v \in \operatorname{FIRST}(c u)$. Here, $a, c \in V^{*}$ and $B \in V_{N}$. What is being done is
to find an item with the dot to the left of a non-terminal, then to enter all productions for which that non-terminal is a LHS. FIRST (cu) indicates what terminal symbol can follow the non-terminal symbol in the sentential form. Duplicate entries are never made. If FIRST (cu) has two elements, say v_{1} and v_{2}, then two set entries are required; however, the SLR(k) method only has one set entry since FIRST is not considered when forming the configuration sets. This is the essential difference in the $L R(k)$ and SLR (k) methods of construction. EXPANSION - Once a set is closed, it may be used to form a new set. That is, the algorithm finds all items in A with an X to the right of the $\operatorname{dot}(X \in V)$. Then the new set, A^{\prime}, is initialized to these items with the dot moved to the right of the X such that A^{\prime} is a set of items $(B+a X . b, u)$ and $(B+a . X b, u)$ is in the set A. Each item can be used only once for expansion. If the sets are numbered from 1 to n, then, if $A=A_{i}$ and $A^{\prime}=A_{j}$, the entry at row i, column X (i.e., the column corresponding to X), is set to j. If $A^{\prime}=A^{\prime \prime}$, then A^{\prime} is not added to the set of configuration sets; but the table is set as if it were unique.
G_{2} is specified by:

$$
\begin{gathered}
1, \mathrm{~S}: \mathrm{E}, \\
\text { 2. E:A,A. } \\
3 . A: a, A ; \\
4 . \quad \text { b. } \\
\left(B+a \cdot b, c_{1}\right), \ldots,\left(B \rightarrow a \cdot b, c_{m}\right) \text { is denoted } b y\left(B \rightarrow a \cdot b, c_{1} / c_{2} / \ldots / c_{m}\right) .
\end{gathered}
$$

The results of computation of the configuration sets for G_{3} are shown in Table I.

TABLE I

CONFIGURATION SETS - LR (1) METHOD ON G2

SET		ITEMS	NOTES
NAME	NO.		
A_{0}	1.	$S \rightarrow . E, \theta$	initial set
	2.	$E \rightarrow, A A, \emptyset$	
	3.	$A \rightarrow . a A, a / b$	a, $b \in \mathrm{H}^{+}(\mathrm{A})$
	4.	$A \rightarrow$ b, a / b	$a, b \in H^{+}(A)$
A_{1}	1.	$S \rightarrow E ., \emptyset$	from $\mathrm{A}_{0} .1$
A_{2}	1.	$E \rightarrow A . A, \emptyset$	from $A_{0} .2$
	2.	$A^{\rightarrow}, a A, \emptyset$	
	3.	$A \rightarrow, b, \emptyset$	
A_{3}	1.	$A+a, A, a / b$	from $\mathrm{A}_{0} .3$
	2.	$A \rightarrow . a A, a / b$	
\%	3.	$A \rightarrow . b, a / b$	
A_{4}	1.	$A \rightarrow b, a / b$	from $\mathrm{A}_{0} .4$
A_{5}	1.	$E \rightarrow A A, 0$	from $A_{2} .1$
${ }^{\text {A } 6}$	1.	$A \rightarrow a, A, \emptyset$	from $A_{2} .2$
	2.	$A \rightarrow . a A, \emptyset$	
\cdot	3.	$A+. b, \emptyset$	
A 7	1.	$A+b, \square$	from $\mathrm{A}_{2} .3$
A_{8}	1.	$A+a A ., a / b$	from $A_{3} .1$
Ag_{9}	1.	$A \rightarrow a A ., D$	from $A_{6} \cdot 1$

G_{3} is specified by:

$$
\begin{aligned}
& \text { 1. } S: ?, E, \text { ?. } \\
& \text { 2. E: a, A, b; } \\
& \text { 3. } a, B, c \text {; } \\
& \text { 4. d, A, e; } \\
& \text { 5. d, B, b. } \\
& \text { 6. } A: f, A ; \\
& \text { 7. } \quad \text {. } \\
& \text { 8. } \mathrm{B}: ~ \mathrm{f}, \mathrm{~B} \text {; } \\
& \text { 9. f. }
\end{aligned}
$$

The results of computation of the configuration sets for G_{3} are shown in Table II.

TABLE II
LR (1) CONFIGURATION SETS FOR G_{3}

SET		ITEMS	NOTES
NAME	NO.		
A_{0}	1.	$S \rightarrow$? E ?, \emptyset	
A_{1}	1.	$S \rightarrow$?.E?, \emptyset	from $\mathrm{A}_{0} .1$
	2.	$\mathrm{E} \rightarrow$. AAb ,?	
	3.	$\mathrm{E} \rightarrow$, ABC ,?	
	4.	$\mathrm{E} \rightarrow$.dAc,?	
	5.	$\mathrm{E}+. \mathrm{dBb}$, ?	
A_{2}	1.	$S \rightarrow$? E ? ? \varnothing	from $\mathrm{A}_{1} .1$
A_{3}	1.	$\mathrm{E}+\mathrm{a}, \mathrm{Ab}, ?$	from $A_{1} .2$
	2.	$\mathrm{E} \rightarrow \mathrm{a}, \mathrm{Bc}$,?	from $\mathrm{A}_{1} \cdot 3$
	3.	$A \rightarrow . f A, b$	
	4.	$A \rightarrow, f, b$	
	5.	$\mathrm{B} \rightarrow . \mathrm{fB}, \mathrm{C}$	
	6.	$\mathrm{B}+\mathrm{f}, \mathrm{C}$	
A_{4}	1.	$\mathrm{E}+\mathrm{d}, \mathrm{Ac}, ?$	from $\mathrm{A}_{1} .4$
	2.	$\mathrm{E}+\mathrm{d}, \mathrm{Bb}$,?	from $\mathrm{A}_{1} .5$
	3.	$A \rightarrow$ f f, c	
	4.	$A \rightarrow, f, C$	
	5.	$\mathrm{B} \rightarrow$. fB, b	
	6.	$\mathrm{B}+\mathrm{f}, \mathrm{b}$	
A_{5}	1.	$S \rightarrow$? E ? , ¢	"final" set from Ag. 1
${ }^{\text {A }} 6$	1.	$\mathrm{E} \rightarrow \mathrm{aA}, \mathrm{b}, ?$	from $\mathrm{A}_{3} .1$
A_{7}	1.	$\mathrm{E} \rightarrow \mathrm{aB} . \mathrm{c}$,?	from $\mathrm{A}_{3} .2$
${ }^{\text {8 }} 8$	1.	$A \rightarrow f, A, b$	from $A_{3} \cdot 3$
	2 。	$A \rightarrow f ., b$	from $\mathrm{A}_{3} \cdot 4$
	3.	$B \rightarrow f, B, C$	from $\mathrm{A}_{3} \cdot 5$
4	4.	$B \rightarrow f ., C$	from $A_{3} .6$
	5.	$A \rightarrow . f A, b$	
	6.	$A \rightarrow . f, b$	
	7.	$\mathrm{B} \rightarrow . f \mathrm{~B}, \mathrm{C}$	
	8.	$\mathrm{B} \rightarrow$, f, C	
A_{9}	1.	$\mathrm{E} \rightarrow \mathrm{dA}, \mathrm{c}$,?	from $\mathrm{A}_{4} \cdot 1$
A_{10}	1.	$E \rightarrow d B, b$, ?	from $A_{4}{ }^{2}$
A_{11}	1.	$\mathrm{A} \rightarrow \mathrm{f}, \mathrm{A}, \mathrm{C}$	A_{11} is not a duplicate of
			A_{8}

TABLE II (Continued)

SET		ITEMS	NOTES
NAME	NO.		
	2.	$\mathrm{A}+\mathrm{f} ., \mathrm{c}$	
	3.	$\mathrm{B}+\mathrm{f} . \mathrm{B}, \mathrm{b}$	
	4.	$\mathrm{B} \rightarrow \mathrm{f}_{\mathrm{o}}, \mathrm{b}$	
	5.	$\mathrm{A}^{+} . \mathrm{fA}, \mathrm{c}$	
	6.	$A^{+} . f, \mathrm{c}$	
	7.	$\mathrm{B} \rightarrow \mathrm{fB}, \mathrm{b}$	
	8.	$\mathrm{B} \rightarrow$.f, b	
A_{12}	1.	$\mathrm{E}+\mathrm{aAb} .$, ?	from A_{6}. 1
A_{13}	1.	$\mathrm{E} \rightarrow \mathrm{abc} .$, ?	from A9.1
A_{14}	1.	$\mathrm{A} \rightarrow$ fA., b	from $\mathrm{A}_{8} .1$
A_{15}	1.	$\mathrm{B} \rightarrow \mathrm{fB}, \mathrm{c}$	from $A_{8}, 3$
${ }^{\text {A }} 16$	1.	$\mathrm{E} \rightarrow \mathrm{dAc}$., ?	from $\mathrm{A}_{9} .1$
A_{17}	1.	$\mathrm{E} \rightarrow \mathrm{dBb}$, , ?	
A_{18}	1.	$A \rightarrow f A ., c$	from $\mathrm{A}_{11} .1$
${ }^{\text {A }} 19$	1.	$\mathrm{B} \rightarrow \mathrm{fB}$, b	from $\mathrm{A}_{11} \cdot 3$

The reader who is interested in imdoratanding the structure of a grammar using $L R(k)$ techniques should pay particular attention to computation of the configuration sets. For any given item, the dot delimits how much of a handle has been formed. Closure shows what the next input symbol can be. Although the same item may appear in more than one set, the history of how that set was entered is contained in the entries created by expansion.

Table III contains the LR(1) table for G_{3}. The table is computed from the configuration sets by the following algorithm (2):
(1) If $(B \rightarrow b, u)$ is in A and B is not the goal symbol, then
$p(u)=i$ where i is the number of the production $B: b$.
(2) If $(B \rightarrow a, b, u)$ is in A and $b \neq \emptyset$, then $p(v)=$ (for stack)
for all veFIRST (bu), that is, for all terminal symbols that can legitimately follow a in this state.
(3) If $(S \rightarrow$? B ?,$\emptyset)$ is in A, then $p(\emptyset)=$ accept.
(4) p (u) = error (blank entry) otherwise.
(5) g (X) entries are as mentioned earlier.
(6) If more than one entry is attempted for any table position, then the grammar is not $L R(k)$ for the k used in constructing the configuration sets.

The parsing algorithm is quite simple once the table is generated. Also, the parsing algorithm is general in that it applies to a restricted form of the LR(k) method, the SLR (1) method. The table entry is selected by letting STACKTOP (i.e., the top of the stack) select the row and the next inpur symbol select the column. When the table entry is "stack," the next input symbol is stacked along with the table entry which is a state name. When the table entry is reduce (i.e., a production number), N symbols are popped from the stack where N is two times the length of the RHS of the production used in the reduction, and the LHS of the production is pushed onto the stack along with the table entry selected by the STACKTOP row and LHS column. This table entry is always a state name. (This creates the effect of pushing the LHS into the unexpended suffix and then reading it.)

The symbols in the stack catenated with the unexpended suffix at any step yield a right sentential form. Working from bottom to top, this results in $S \rightarrow$? $E ? \rightarrow$? $a B c ? \rightarrow$?afBc? \rightarrow ?affc?, which is indeed the rightmost derivation sequence for ?affe?.

TABLE III

LR(1) TABLE FOR G_{3}

STATE	?	a	b	$\frac{p}{c}$	d	f	0	S	E	A	B	?	a	b	c	d
0	S											1				
1		S			S				2				3			4
2	S											5				
						S				6	7					
4						S					10					
5							A									
6	*		S											12		
7				S											13	
8			7	9		S				14	15					
9				S											16	
10	*		S											17		
11			9	7		S				18	19					
12	2															
13	3															
14			6													
15				8												
16	4															
17	5															
18				6												
19			8													

STACK	UNEXPENDED SUFFIX	ACTION
0	? affe?	initial condition, read ?
0 ? 1	affe?	read a
0 01a3	ffe?	read f
0?la3f8	fc?	read f
0?la3f8f8	c?	reduce B : $f_{\text {a }}$
0?1a3f8B15	c?	reduce B : f, B.
0?1a3B7	c?	read c
0 ? 1a3B7cl3	?	reduce E : a, B, C.
0?1E2	?	read ?
0?1E2?5	0	accept

Figure 7. Parsing ?affc? Using Table III

The SLR (1) Method

Knuth's original article (10) introducing LR(k) grammars is considered a classic because of its theoretical soundness and generality. However, attempts at practical implementation have suggested changes that result in somewhat less generality but substantially greater practicality.

DeRemer proposed (3) and implemented (5) an LR(k)-like method which he called SLR (k) for simple-LR(k). Basically, it consists of constructing $L R(k)$ configuration sets for $k=0$; that is, the method assumes (at least at configuration set construction time) that the grammar is LR(0). Whereas Knuth's original method uses k symbol lookahead while constructing the configuration sets, DeRemer doesn't make use of k symbol look-ahead until table construction time and then only if necessary.

The SLR(1) method is stated inftially in terms of the $L R(1)$ method. The FOLLOW function, F, is defined by $F(A)=\left\{a \mid S \rightarrow{ }^{*} b A c\right.$ and $a=$ FIRST (c) where $A \in V_{N}$, $a \in V_{T}, b \in V^{*}$, and $\left.c \in V_{T}{ }^{*}\right\}$. That is, $F(A)$ is the set of terminal symbols which may follow A in any right sentential form. The following algorithm constructs the SLR(1) table (2) :
(1) Construct the $L R(0)$ configuration sets of items.
(2) Replace each item of the form $(A \rightarrow b, \emptyset), b \in V^{*}$, in each set by ($A \rightarrow b$. ,a) for all $a \in F(A)$.
(3) Construct the LR(1) tables from the altered sets of items with the function g determined as though dealing with LR(0) sets of items.

It is possible to have a conflict, that is, more than one entry for a table position for the SLR(1) method when one does not exist for the LR(1) method, which occurs when an attempt to perform the SLR(1) method on G_{3} is made.

The author has implemented changes in the SLR(1) method which make the implementation more efficient. First, the stack and accept entries are deleted, and the numbers are negated in the p portion of the LR(1) table. Secondly, the modified p portion is "overlaid" with the g portion. Here, positive entries must be considered as not only transitions to a different state (row) but also as signals for stacking; and the row corresponding to the final state must be identified so that a transition to it can be detected. But these are minor points. Also, if it is always agreed to surround the single RHS alternative of the goal symbol with special delimiters, the column is completely eliminated since the only possible entries are reduction entries and accept; however, there are no reduction entries in the ϕ column except for the number of the production $S: ~ ?, ~ E, ? .$, but this is detected by detecting a transition to the final state. Also, the final state row and goal symbol column is deleted since there are no entries in either. The effect of this "overlaying" is an approximate 33 percent saving on the size of the table. Table IV shows the effect of "overlaying" Table III.

This change is now incorporated, and the $L R(0)$ sets of items for G_{1} are constructed. But first, some notation should be reviewed. Earlier it was seen that a particular set was initialized via expansion of some other set. These items in the initialized set are called the basis entries. The other entries of a set, that is, those added via
closure of the basis entries, are called closure entries. It should be noted that all basis entries never have the dot all the way to the left whereas closure entries always have the dot all the way to the 1 eft. The reader is advised that the author's construction of the configuration sets is not identical to DeRemer's (4) in order; however, it is identical in content. For example, the author initializes the first state to be the final state so that its position is known regardless of the grammar being processed.

TABLE IV
THE "OVERLAY" MODIFICATION OF TABLE III

STATE	E	A	B	$?$	a		b	c	d	
0				1						
1	2				3				4	
2				5						
3		6	7							
4		9	10							1
6						1	2			
7								13		
8		14	15				7			
9								16		
10						1				
11		18	19				9 -			1
1.2				-2						
13				-3						
14						-	6			
15								-8		
16				-4						
17				-5						
18								-6		
19						-	8			

The SLR（1）configuration set computation and table construction for G_{1} are demonstrated in Tables V and $V I$.

TABLE V
LR（0）CONFIGURATION SETS FOR G_{1}

SET NO．	ITEMS	NOTES
1.	$S \rightarrow$ ？${ }^{\text {？}}$ ．	final state
2.	$\mathrm{S} \rightarrow$ ．？ E ？	initial state
3.	$\mathrm{S} \rightarrow$ ？． E ？	from 2
	$\mathrm{E} \rightarrow$ ． $\mathrm{E}+\mathrm{T}$	closure entries for
	$\mathrm{E} \rightarrow$ ． T	the single basis
	$T \rightarrow . \mathrm{P} *$ T	entry；closure
	$T \rightarrow$ P	ceases when dot is
	$\mathrm{P} \rightarrow$ ． 1	left of terminal
	$\mathrm{P} \rightarrow$ ．（E）	symbols
4.	$S \rightarrow$ ？ ，？	from 3；expansion gives final state
	$\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}$	from 3
5.	$\mathrm{E}+\mathrm{T}$ ．	from 3 or 8；no expansion here
6.	$\mathrm{T} \rightarrow \mathrm{P} . * * \mathrm{~T}$	from 3 or 8
	$T \rightarrow P$ ，	
7.	$\mathrm{P} \rightarrow 1$ 。	from 3 or 8
8.	$\mathrm{p} \rightarrow$（ E ）	from 3 or 8
	$\mathrm{E} \rightarrow$ 。 $\mathrm{E}+\mathrm{T}$	indirect recursion
	$\mathrm{E} \rightarrow$ 。 T	lengthens the set of
	$T \rightarrow . \mathrm{P} * * \mathrm{~T}$	configuration sets
	$t \rightarrow$ P	
	$\mathrm{P} \rightarrow$ ． 1	
	$\mathrm{P} \rightarrow$ ．（E）	
9.	$\mathrm{E} \rightarrow \mathrm{E}+$ 。T	from 4
	$T \rightarrow$ P＊＊T	
	$\mathrm{T} \rightarrow \mathrm{P}$	
	$\mathrm{P} \rightarrow$ ． 1	
	$\mathrm{P} \rightarrow$ 。（E）	
10.	$\mathrm{T} \rightarrow \mathrm{P} * *$ 。 T	from 6
	$\mathrm{T} \rightarrow$ 。 $\mathrm{P} * * \mathrm{~T}$	
	$\mathrm{P} \rightarrow$ ． 1	
	$\mathrm{P} \rightarrow$ ．（E）	
11.	$\mathrm{P} \rightarrow(\mathrm{E}$ ，$)$	from 8

TABLE V (Continued)

SET NO.	ITEMS	NOTES
	$\mathrm{E} \rightarrow$ E. +T	from 8
12.	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$ 。	from 9
13.	$\mathrm{T} \rightarrow \mathrm{P} * * \mathrm{~T}$ 。	from 10
14.	$\mathrm{P} \rightarrow$ (E).	from 11

TABLE VI
SLR(1) TABLE FOR G_{1}

STATE	S	E	T	P	?	+	**	1	()
2					3					
3		4	5	6				7	8	
4					1	9				
5					-3	-3				-3
6					-5	-5	10			-5
7					-6	-6	-6			-6
8		11	5	6				7	8	
9			12	6				7	8	
10			13	6				7	8	
11										14
12						-2	-2			-2
13						-4	-4			-4
14						-7	-7			

It is now shown how to understand at least part of the structure of $L\left(G_{1}\right)$ by using Tables V and VI. Set \#2 shows that an S is an E surrounded by ?'s and that ? must be the first input symbol. The dot represents the state of the parse. That is, the symbols to the
left of the dot have been recognized（in the stack in the parsing algorithm）；and those to the right have not been recognized．

Set $\# 2$ has no reduction（no item with the dot to the right），hence a state transition to state（row）\＃3 is made。（See row \＃2 of Table VI．）Set \＃3（i．e．，the basis entries）shows that this set was entered after reading（stacking）a ？，and the next symbol must be an E ．The closure entries show the possibilities of what an E can be；that is， since the basis entry in the present sentential form is a derivation， the closure entries show what sentential form can possibly exist after one or more direct derivations of the basis entry．This is similar to a top－down parse of every possible sentence．For all closure entries，it is necessary to read（because of the dot position）and make a state transition．

From previous discussion，it is known that an E is a series of T＇s separated by＋＇s．This can be deduced from Tables V and VI． Starting at set $\# 3$ ，which is one time the dot appears to the left of an E ，it is seen that the closure entries define an E to be several different configurations．In particular， $\mathrm{E}+\mathrm{E}+\mathrm{T}$ and $\mathrm{E}+\mathrm{T}$ show that， in order to have an E ，a reduction on one or the other must be made． $E \rightarrow T$ ．will certainly pop the stack and require a return to set \＃3 with an E as the next symbol if the next input symbol is + （see row $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 5 of Table VI），after which a transfer to set \＃4 and a try to build a longer E will be made．

To see this more clearly，？ $1+1+i$ ？is now parsed by using Table VI and using the same parsing technique presented earlier．

STACK	UNEXPENDED SUFFIX	NOTES
2	? $1+1+1$?	initial 3=T (2,?)
$2 ? 3$	i+i+i?	7=T (3, i)
2?317	+1+1?	$-6 \sim T(7,+)$ and $6=T(3, P)$
2?3P6	+i+i?	$-5=T(6,+)$ and $5=T(3, T)$
2?3T5	+i+i?	$-3=T(5,+)$ and $4=T(3, E)$
2?3E4	+i+1?	9=T ($4,+$)
2?3E4+9	i+1?	$7=T(9,1)$
2?3E4+917	+i?	$-6=T(7,+)$ and $6=T(9, P)$
2?3E4+9P6	+1?	$-5=\mathrm{T}(6,+)$ and $12=\mathrm{T}(9, \mathrm{~T})$
2?3E4+9T12	+i?	$-2=\mathrm{T}(12,+)$ and $4=\mathrm{T}(3, \mathrm{E})$
2?3E4	+i?	9=T (4,4)
2? $3 \mathrm{E} 4+9$	i?	$7 \times T(9,1)$
2?3E4+917	?	$-6=T(7, ?)$ and $6=T(9, P)$
2?3E4+9P6	?	$-5=T(6, ?)$ and $12=\mathrm{T}(9, \mathrm{~T})$
2?3E4+9T12	?	$-2=T(12, ?)$ and $4=T(3, E)$
2?3E4	?	$1=\mathrm{T}(4, ?)$
2?3E4?1	\emptyset	final state-accept

Figure 8. Parsing ?i+i+i? Using Table VI

In the actual implementation, only states are stacked since, if the symbol is needed for any reason, it can be deduced because each canonical derivation sequence is unique and the stack and table together maintain a history of the parse.

The reader is encouraged to visually correspond the parse with the configuration sets. Perhaps the greatest asset of the SLR(1) method is that any set of productions for a CF grammar can be input, and the user will be provided with the sets and tables which can help lead to an understanding of the language generated by the grammar. And, at the same time, the user is provided with a syntax analyzer with which he can experiment with sentences for purposes of establishing validity.

So far, everything said about SLR(1), at least with respect to
G_{1} ，also applies to $L R(0)$ ．What is the difference between the two methods？In an actual $L R(0)$ table，rather than enter the reductions only under symbols in the FOLLOW set，they would be entered under every terminal symbol．For example，row $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ in in Table VI would have a -3 under＊＊，i，and（ also．It appears DeRemer（4）would do likewise in most cases with his SLR（1）method．This could cause reductions to be made after an error condition is detected；in fact，this is a characteristic of the SLR（k）method．

Clearly，the above action will not work for state（row）\＃6 in Table VI．This would be an example of a conflict．In SLR（1）table construction，there are two kinds of conflicts．DeRemer（4）uses the term inadequate state for a state with conflicts．An inadequate state is one with either both a reduction entry and a transition entry or two different reduction entries．A table with no inadequate states is a table for an $L R(0)$ grammar（4）．A state with only a reduction entry is a reduce state．A state with only transitions is a read state．An inadequate state is said to be solvable if the one symbol look－ahead set（FOLLOW function）indicates which action to take for a given next symbol．An unsolvable inadequate state is one where， with one symbol look－ahead，which action to take still cannot be determined．

State $\# 6$ is the only inadequate state for G_{1} ，and it is solvable． By inspecting set $\# 6$ ，it is seen that both a reduction and a transi－ tion are present．Of course，the problem is caused by the right group－ ing of $* *$ and the need to look ahead in the input string to see if the longest T has been found，which is a series of P^{\prime} s separated by ＊＊＇s．The action of the parsing algorithm on right recursion is to
stack up all of the $\mathrm{P}^{\prime} \mathrm{s}$ separated by $* *$ ' s and then reduce from right to left. Two FOLLOW sets need to be computed. That is, FOLLOW (T) needs to be compured since it must be known what can legitimately be the input symbol if the reduction is made. But FOLLOW(P) is not computed for the entry $T \rightarrow P . * * T$ since, by definition, the one symbol look-ahead set for a transition entry is FIRST (symbol to right of dot, FOLLOW (LHS)), which in this case is FIRST (**, FOLLOW (P)). Therefore, the FOLLOW element can be deleted since in a transition entry there is always a symbol to the right of the dot; and this symbol is either a terminal or a non-terminal, X, for which the terminal symbols in $H^{+}(X)$ are selected.

In state \#6, the one symbol look-ahead set for $T \rightarrow P . * * T$ is $\{* *\}$. For $\operatorname{FOLLOW}(T)$, the productions are inspected to see what terminal symbols can follow T in a sentential form. From production \#3 or \#2, it is seen that what can follow an E can also follow a T ; therefore, FOLLOW $(T)=\{+), ?$,$\} . Hence, G_{1}$ is $\operatorname{SLR}(1)$ since the only inadequate state has disjoint one symbol look-ahead sets. This, in essence, is the definition of a SLR (1) grammar (4). A disjoint set implies that, by looking one symbol ahead in the input string, it can be determined which entry of the inadequate state to employ. In state \#6 of Table VI, FOLLOW (T) input symbols cause a reduction; and ** causes a transition.

The FOLLOW function can be computed two ways. One way is directly from the productions. The method first computes the relation, F, defined by $F(A)=\{b \mid$ there exists a production $C: a, A, B, c$. where $c, a \in V^{*}, A \in V_{N}, B \in V_{T}$ and $b=B$ or $B \in V_{N}$ and $b \in V_{T}$ and $\left.b \in H^{+}(B)\right\}$. Here, any one of c or a may not be present.

Now, if F is represented as a Boolean matrix, then closure of F results in FOLLOW, each row corresponding to $A \in V_{N}$ and the "true" columns representing the elements of FOLLOW (A). For an operator grammar (6), $H^{+}(G)$ is not needed since every $A \in V_{N}$ is followed by a terminal symbol or is the last symbol of a RHS.

The second way to compute FOLLOW is developed by DeRemer as a theorem. The proof is found in (4). This method (used in the author's implementation) uses the function g part of the table and $T *(G)$, the reflexive transitive closure of the inverse of the tail symbol matrix, T, defined by $T(A)=\left\{B \in V_{N} \mid B \rightarrow^{*} a A\right.$ where $\left.A \in V_{N}, a \in V^{*}\right\}$. That is, the only concern is with tail symbols that are non-terminals. An algorithm for computing FOLLOW follows:
(1) Compute $T^{*}(\mathrm{~A})$ as above.
(2) Start with an empty set, L.
(3) For each transition under a symbol in $T *$ (A) to some state N, add to L each symbol $s \in V_{T}$ such that there is a transition under s from N.
(4) The resulting set is FOLLOW.

Since FOLLOW is computed for every $A \in V_{N}$ in the author's implementation, an algorithm is presented for this also, T, T^{*} are the denotations for the Boolean matrix representation for the relations T, T*, respectively。
(1) Compute T^{*} for every $A \in \mathrm{~V}_{\mathrm{N}}$; initialize FOLLOW to "false."
(2) For each column, C_{1}, of $T *$; for each row, R_{1}, of $T *$; if $T\left(R_{1}, C_{1}\right)$ is true, then for each row, R_{2}, of the table; If TABLE $\left(R_{2}, R_{1}\right)$ is not zero, then for each terminal symbol column, C_{2}; if TABLE (TABLE $\left.\left(\mathrm{R}_{2}, \mathrm{R}_{1}\right), \mathrm{C}_{2}\right)$ is not zero, then FOLLOW $\left(C_{1}, C_{2}\right) \leftarrow$ "true。"

This algorithm is similar to the Warshall algorithm. The reflexive transitive closure of T is needed as shown in the following discussion. To compute FOLLOW (P), the $\mathrm{p}^{\text {th }}$ column of T^{*} must have a "true" in it. But this is so only if P is a tail symbol of some $A \in V_{N}$, which does not occur unless it is assumed the production $A: P$. is present during construction of T^{*} for some $A \in V_{N}$. But it is also true that the $P^{\text {th }}$ row must have a "true" in it, that is, P must have an $A \in V_{N}$ as a tail symbol since $T *$ is only computed for non-terminals. The solution is to use a reflexive transitive closure, that is, all productions of the form A: A. are assumed to be present only during computation of FOLLOW。

The author's implementation differs from DeRemer's original SLR (1) method in that every state is considered to be inadequate. It is not clear whether DeRemer computes FOLLOW for every $A \in V_{N}$, but it appears that he does not. The remaining question is what differences exist among $L R(1)$, DeRemer's SLR(1), and the author's SLR(1).

Comparison of Table Construction Methods

It should be clear from Table VI that, if reduction entries are made for all terminal symbol columns, reductions can be made after an error condition is detected. For example, if ?il? is parsed using Table VI and row $\# 7$ has -6 under all terminal symbois, it is necessary to reduce the first i to P and, in fact, P to T and T to E before an error is detected; however, by using FOLLOW, the error is detected before the first reduction. It is desirable to detect errors at the earliest possible time; however, it is inherent in DeRemer's method (3) that reductions can take place after an error condition is
detected，and it is also inherent（although not as extensively）in the author＇s implementation．However，neither will read another input symbol once an error is detected．In Knuth＇s original method（10）， neither reductions nor reading can occur after an error is detected． The reason for this is that Knuth keeps track of what the next input symbol can legitimately be for each entry in every set，but the SLR（1） method assumes that if one symbol may follow another in any sentential form then it may follow it in every sentential form． Computation of the $\operatorname{SLR}(1)$ table for G_{3} ，which was shown to be LR（1），but is not $\operatorname{SLR}(1)$ ，follows．（In fact，it is not SLR（k）for any k_{0} ）

TABLE VII

SLR（1）CONFIGURATION SETS FOR G_{3}

SET NO。	ITEMS
1	$S \rightarrow$ ？ E ？
2	$\mathrm{S} \rightarrow$ ．？ E ？
3	$\mathrm{S} \rightarrow$ ？． E ？
	$\mathrm{E} \rightarrow . \mathrm{aAb}$
	$\mathrm{E} \rightarrow$ ， aBC
	$\mathrm{E} \rightarrow$ ．dAc
	$\mathrm{E} \rightarrow$ 。 dBb
4	$\mathrm{S} \rightarrow$ ？ E ，？
5	$\mathrm{E} \rightarrow \mathrm{a}$ 。Ab
	$\mathrm{E} \rightarrow \mathrm{a} \cdot \mathrm{Bc}$
	$A \rightarrow .14$
	$\mathrm{A} \rightarrow$ ． f
	$\mathrm{B} \rightarrow . f \mathrm{~B}$
	$\mathrm{B} \rightarrow$ ．f

TABLE VII (Continued)

SET NO.	ITEMS
6	Erd. Ac
	$\mathrm{E} \rightarrow \mathrm{d} \cdot \mathrm{Bb}$
	$A \rightarrow . f A$
	$A \rightarrow . f$
	$B \rightarrow, f B$
	$\mathrm{B} \rightarrow$. f
7	$\mathrm{E}+\mathrm{aA} . \mathrm{b}$
8	$E \rightarrow a B, c$
9	$\mathrm{A} \rightarrow \mathrm{f} . \mathrm{A}$
	$\mathrm{A} \rightarrow \mathrm{f}$.
	$B \rightarrow f, B$
	$\mathrm{B} \rightarrow \mathrm{f}$.
	$\mathrm{A} \rightarrow . \mathrm{fA}$
	$A^{+} .{ }^{\text {F }}$
	$B \rightarrow . f B$
	$B \rightarrow$, f
10	$\mathrm{E} \rightarrow \mathrm{dA}, \mathrm{c}$
11	$\mathrm{F} \rightarrow \mathrm{dB} . \mathrm{b}$
12	$\mathrm{E} \rightarrow \mathrm{aAb}$,
13	$\mathrm{E}+\mathrm{aBc}$.
14	$A \rightarrow f$ A.
15	$B \rightarrow f B$.
16	$\mathrm{E} \rightarrow \mathrm{dAc}$.
17	$\mathrm{E} \rightarrow \mathrm{dBb}$.

Comparing the $L R(1)$ and $S L R(1)$ tables for G_{3}, it is seen that Table VII is much shorter than Table II. Also, in Table II, there is a note pointing out the difference between A_{8} and A_{11}. These two sets combine into one set in Table VII, namely set $\# 9$; and it is because of this combining that G_{3} is not SLR(1) In particular, b and c are both in FOLLOW (A) and FOLLOW (B) and, hence, if the next input symbol is b or c, it is not known which reduction to make.

A grammar has been given that is not $\operatorname{SLR}(k)\left(G_{3}\right)$ ，and also a grammar has been given that is $\operatorname{SLR}(1)\left(\mathrm{G}_{1}\right)$ ．For completeness，a grammar that is $\operatorname{SLR}(2)$ is now presented．G_{4} is specified by：

1．$S:$ ？， E, ？．
2．G：A；
3． C, B ；
4．A，b，c．

5．A：a．

6．B：b．

7．C：A．

TABLE VIII

SLR（1）CONFIGURATION SETS FOR G_{4}
SET NO．ITEMS

1
2
3

5

7
8
9
10
11
$\mathrm{S} \rightarrow$ ？ G ？
$\mathrm{S}+$ ．？G？
$S \rightarrow$ ？G ？
$G \rightarrow$ ．A
$\mathrm{G} \rightarrow . \mathrm{CB}$
$G \rightarrow$ ．Abc
$A \rightarrow . a$
$c \rightarrow A$
$\mathrm{S} \rightarrow$ ？ G 。？
$\mathrm{G}+\mathrm{A}$ 。
$\mathrm{G} \rightarrow \mathrm{A} . \mathrm{bc}$
$C \rightarrow A$ ．
$A+a$ ．
$\mathrm{G}+\mathrm{Ab}$ 。C
$G+c B$ ．
$B \rightarrow b$ ．
$\mathrm{G} \rightarrow \mathrm{Abc}$ 。

TABLE IX
SLR (1) TABLE FOR G_{4}

STATE	G	A	B	C	$?$	b	C	a
2					3			
3	4	5		6				7
4					1			
5					-2	$-7 / 8$		
6			9			10		
7					-5	-5		
8					-3		11	
9					-6			
10				-4				
11								

The double entry in row \#5 of Table IX indicates that state \#5 is unsolvably inadequate since b is in FOLLOW (G) and is to the right of the dot in the transition entry. The set of sentences comprising $L\left(G_{4}\right)$ is $\{? a ?$, ?ab?, ?abc?\}. Figure 9 shows an attempted parse of ?abc?.

STACK	UNEXPENDED SUFFIX	NOTES
2	?abc?	initial condition
2?3	abc ?	$3=T$ (2, ?)
2?3a7	be?	7=T (3, a)
2?3A5	$b c$?	$-5=T(7, b)$ and $5=T(3, A)$
Figure	ing ?abc?	Table IX

NOTE: At this point, $T(5, b)$ pertains, but the SLR(1) method has not provided enough information to decide whether to reduce A to a or read the b. If the parser could look ahead one more symbol (i.e., two symbol look-ahead) and see the c, then it is clear that b should be read. If the sentence had been ?ab?, then the "pick" would be to reduce rather than read.

```
2?3A5b8
2?3A5b8cll
2?3G4 ?
2?3G4?1
```


c?

?
?

2?3G4?1
pick $8=T(5, b)$
$11=T(8, c)$
$-4=T(11, ?)$ and $4=T(3$, G)
final state
Figure 9. (Continued)

This thesis consists of two major parts. The first presents many of the topics covered in a beginning course in formal language theory, but in a way that is meant to appeal to the reader's intuition. A secondary purpose is to get the reader thinking about CF grammars in a way pertinent to the second major part. No single reference covers all of the presented points. Rather, most references tend to cover specific points in a more detailed manner.

The second part presents Knuth's LR(k) method of syntax analysis and, in particular, the $\operatorname{SLR}(1)$ method. The result of the full description and numerous examples is twofold. The first provides an efficient language-independent syntax analyzer, which may be used in the development of, for example, a compiler. Parsers for a subset of ALGOL 68, ALGOL 60, and BASIC have been produced with satisfactory results. The second provides a tool by which the input of any context-free grammar yields information which demonstrates the structure of the grammar and the language generated by the grammar. It cannot be overemphasized how useful the configuration sets are in helping to understand a language structure simply by inputting a set of $B N F$ rules. This is especially true in grammars with indirect recursion since visual observation of the production rules yields little insight into the nature of the language.

In conclusion, $L R(k)$ methods are the newest and most general of the methods used for syntax analysis of languages produced by CF grammars. They are shown to be superior to most methods and are more general than any known method for which efficient parsers can be mechanically produced.

A SELECTED BIBLIOGRAPHY

(1) Aho, A. and J. U1lman. "The Care and Feeding of LR(k) Grammars." Proceedings of the Third Annual ACM Symposium on Theory of Computing, (May, 1971), 159-170.
(2) Aho, A. and J. Ullman. "A Technique for Speeding Up LR (k) Parsers." Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, (May, 1972). (to be published)
(3) DeRemer, F. L. "Practical Translation for LR(k) Languages." Ph.D. thesis, MIT, Cambridge, Massachusetts, (September, 1969) 。
(4) DeRemer, F. L. "Simple LR(k) Grammars." Communications of the ACM, 14, 7, (July, 1971), 453-460.
(5) DeRemer, F. L. "Simple LR(k) Grammars - Definition and Implementation." Computer Evolution Report, 2, 4, (September, 1970), University of California, Santa Cruz.
(6) Feldman, J. and D. Gries. "Translator Writing Systems." Communications of the ACM, 11, 2, (February, 1968), 77-91.
(7) Gries, David. Compiler Construction for Digital Computers, New York: John Wiley \& Sons, 1971.
(8) Hopcroft, J. and J. U11man. Formal Languages and their Relation to Automata, New York: Addison-Wesley, 1969.
(9) Knuth, D. E. The Art of Computer Programming, Reading: Addi-son-Wesley, $1 \overline{969}$.
(10) Knuth, D. E. "On the Translation of Languages from Left to Right." Information and Control, 8, (October, 1965), 607-639.
(11) McKeeman, W., J. Horning, and D. Wortman. A Compiler Generator, Englewood Cliffs: Prentice-Hall, Inc., 1970.
(12) Van Doren, J。 and J. Gray. "An Algorithm for Maintaining Dynamic AVL Trees." Proceedings of the Fourth International Symposium on Computing and Information Sciences, (1972). (to be published)
(13) van Wijngaarden, A. (ed.), B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster. Report on the Algorithmic Language ALGOL 68, Offprint from Numerishe Mathematic 14: 79218. Berlin: Springer-Verlag, 1969.
(14) Warshall, S. "A Theorem on Boolean Matrices." Journal of the ACM, 9, (January, 1962), 11-12.

APPENDIXES

APPENDIX A
LIST OF SYMBOLS

APPENDIX A

LIST OF SYMBOLS

SYMBOL	MEANING	PAGE OF FIRST OCCURRENCE
CF	context-free	1
TWS	translator writing systems	2
V	vocabulary of a grammar	4
V*	all strings of elements of V	4
	is followed by	5
;	exclusive "or"	5
:	may be rewritten as	5
-	delimiter	5
ϵ	set inclusion	5
LHS	1eft hand side	5
RHS	right hand side	5
V_{T}	the terminal symbols of V	5
V_{N}	the non-terminal symbols of V	5
\{ \}	set delimitars	6
*	a direct derivation	6
\rightarrow *	a derivation (closure of \rightarrow)	6
DPDA	deterministic push down automata	14
$\mathrm{A} \times \mathrm{B}$	the Cartesian product of A and B	15
c	is a subset of	15
ก	Intersection	15
a R b	a is related 'to b	15
\wedge	logical and	16
\Rightarrow	implies	17
\cup	union	18
v^{v}	logical or	20
Σ	summation	20

APPENDIX B
USER'S GUIDE

APPENDIX B

USER'S GUIDE

Input/Output

To use the routine, the user must be familiar with the input and output of the routine. The input comes in on two different files, PARMIN for parameters and PRODIN for the productions. There are 11 input parameters, each an integer in a 4-byte field, left justified on an 80 -byte record.

PARAMETER
NUMBER
DESCRIPTION

1
2

3

4

5

6

8
9

7 maximum number of basis entries for any configuration set
number of productions
maximum number of symbols in any production
maximum number of characters in any symbol or at least \geq number of characters to make every symbol unique
maximum number of unique symbols in the grammar
number of items in all configuration sets combined
number of configuration sets
$=1$ to activate the DEBUG facility
= 1 to count and list solvable inadequate states

PARAMETER
NUMBER

DESCRIPTION

- 1 for full printed output
- 1 for punched output in a form to be read by the parsing routine

There are defaults for 0 input parameters 4, 5, 6, and 7; however, these defaults represent only a guess based on the grammar. After an initial run, output statistics allow the user to set these parameters accurately for future runs, if needed.

For the production rules, the format is the LHS (1eft-hand-side) immediately followed by a colon, followed by one or more blanks, then the RHS (right-hand-side) parts each followed by a comma and one or more blanks. The rightmost part of an alternative is followed by a semicolon and one or more blanks if it is not the last alternative; otherwise, it is followed by a period and one or more blanks. Column 72 must be blank; but, other than the listed restrictions, the format is free form. The first LHS is considered to be the user's "pseudo" goal symbol. That is, it is a goal symbol which may occur in a RHS. All productions with a common LHS must be grouped consecutively. This format allows the productions to be sequenced without affecting the routine.

The reason for using two different input files is that many times the user may wish to store the productions on secondary storage because of their length but, because of the need to change parameters from run to run, it is better for them to be on cards.

The routine is serially reusable, and multiple grammars may be input to the routine. To do this, the user simply places the param-
eter records (one for each grammar) in order in file PARMIN and separates each set of productions with a delimiter card that has a period in the first byte and blanks thereafter. Input of a grammar terminates on end-of-file or a delimiter record for file PRODIN, and the routine terminates on end-of-file for file PARMIN.

The output consists of several of the internal tables. The output of each section of the routine is clearly delimited by labeling. First, a copy of the productions is output followed by statistics on the grammar enabling the user to respecify some of the input parameters in order to reduce the memory requirement of the routine. Next, the encoded form of the productions is output. During input, each symbol is encoded to its position in the symbol table. Next, two mapping arrays are output along with the symbols. The "T0" column maps the symbols to the columns of the SLR (1) table, and the "FROM" column maps the columns of the SLR (1) table to the symbols. If DEBUG is enabled, the next output is messages (perhaps none) reflecting violated restrictions on the grammar. Statistics on the configuration sets are then output. Each of these statistics was put in by the user as a parameter; however, there is no way to really know what these parameters should be until after the routine has run at least once. Once the routine runs for a grammar, these output statistics will allow the user to set the parameters more accurately。 A11 parameters should be set as small as possible since storage is allocated per the parameters. Next, the LR (0) configuration sets are output in a similar format to that presented in the body of this thesis. Also output is the dot position (" 2 " is all the way to the left), the upper bound of the set (all sets are in a single vector),
and the number of basis entries. Finally, the full SLR(1) table is output along with the column-to-symbol relationships and results of the inadequate state councer.

Restrictions

There are no restrictions on the input except the format and size of the host machine. This can be a factor for smali-to-medium machines. For example, ALGOL 60 takes approximately 200 K bytes to execute. A possible remedy for this is to store the data structures on scratch files; however, this would greatly increase execution time since the structures are not processed in any set manner. That is, processing is highly dependent on the grammar. Also, since the SLR (1) table is quite sparse, a sparse matrix technique such as found in (9) might be employed to some advantage.

Job Control Language Required

The following JCL is required if the source deck is input:
//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5), 'NAME'
//STEP1 EXEC PLILFCG
//PLIL.SYSIN DD*
--SOURCE DECK--
//GO.PARMIN DD *
--PARAMETER CARDS--
//GO.PRODIN DD *
--PRODUCTIONS--
//GO.PRINT DD SYSOUT=A
//GO.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80
//
The routine is presently stored in load module form and may be executed with the following JCL.
//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5), 'NAME'
//STEP1 EXEC PGM=SLR1
//STEPLIB DD DSN=OSU.ACT11098.PROG,DISP=SHR
//PARMIN DD *
--PARAMETER CARDS--
//PRODIN DD *
--PRODUCTIONS--
//PRINT DD SYSOUT=A
//PUNCH DD SYSOUT=B,DCB=BLKSIZE=80
11

Suggested Modifications

In addition to the different storage techniques mentioned earlier, there are other modiffeations the user may want to make. For example, in the present version, SUBSCRIPTRANGE, STRINGRANGE, and SIZE are enabled for the whole routine; however, the author believes that only the input section needs such checks and that the other sections contain the logic to take care of these conditions. The reader familiar with the $P L / 1$ compiler will recognize the savings in both compile and execution time that could be realized by turning of f these condition checks. However, for small grammars, the difference in execution time is almost negligible because of the overall speed. For example, G_{1} executes in two seconds.

The user may also want to output running statistics on the configuration sets since, if the parameters are too small, the program fails with only a brief diagnostic whereupon the user must increase the parameters and retry the grammar. For grammars with a high degree of recursion such as ALGOL 68, the problem of setting the parameters large enough and still staying within the machine storage limits can be quite frustrating. The following table may help to serve as a guide.

	GRAMMAR				
	G_{1}	ALGOL 60	ALGOL 68 (subset)	BASIC (simple precedence form)	BASIC
Number of productions	7	181	159	99	85
Number of parts	4	6	6	5	9
Number of symbols	10	141	99	102	89
Number of characters	4	31	10	10	10
Number of sets	15	304	310	174	148
Combined length of sets	50	2191	5592	957	816
Number of basis entries	3	5	10	3	3
Reduction queue	0	22	0	0	0

If the user wants a stripped-down, super-fast version, he may also completely remove the debug section without affecting the routine. Also, he may want to output the results of the input section onto secondary storage so that, if the routine fails later because of input parameters, he may bypass the input section (with the exception of parameter input) on subsequent runs. Also, he may choose to write the output to secondary storage instead of punched cards since, for example, the BASIC grammar produces approximately 900 cards. Of course, one must realize that more output is produced than is actually needed (for example, the MAPFROM array); but, if meaningful diagnostics are to be produced by the parser, all of the output is necessary.

An alternative to punching or writing out tables would be to actually produce the parser program (minus the scanner, of course). The parser is only a skeleton whose DECLARE statements could be filled in with the proper data with the INITIAL attribute, which the routine could easily do.

If the routine is to be used to produce a parser for the language generated by the input grammar, the user may want to precede all terminal symbols in the grammar with some special symbol, for example, the double quote, because the symbol table method used is a balanced binary tree method (12) and such a prefix on the terminal symbols will tend to cause all of them to be placed in the same subtree, slightly decreasing the average look-up time. It should be pointed out that only the terminal symbols along with the symbol's position need be output to the parser if the parser's scanner uses some other look-up technique (e.g., linear search); however, this is not recommended.

APPENDIX C
PROGRAM LISTING

subject: generation of Slrill parsing table
AUTHOR: JOSEPH L. GRAY
installation: OKlahoma state uviversity ibm $300 / 65$

$$
\begin{aligned}
& \text { OKLAHOMA STATE UUIVERSITY } \\
& \text { PL/I LEVEL F VERSION } 5.2 C
\end{aligned}
$$

date: fall semester 1972
the work herein is partial fulfillment of the masteres pkoject REDUIRED FUR THE MASTER OF SCIENCE DEGREE IN ECMPUTER SCIENCE.

PROJECT ADVISOR: DR. J. VAN DOREN
REFERENCES:

1. COMPILER CONSTRUCTION - GRIES
2. STMPLE LRIKI GRAMHARS - DE REMER CACM 14 p 453-460 JULY 1971 MIT SEPT 1969 LATORS FOR LR(K) Languáges - de reher phed. thesis
3. SLAPLE LRCKI GRAMMARS - DEFINITIUN AND IMPLEHENTATION - DE REMER
4. THE CARE AND FEEDING OF LR(K) GRAMMARS - AHO AND JLLMAN PRRGC.

THIRD ANNUAL ACM SYMPOSIUM ON THEORY DF COMPUTING MAY 1971
SYMPOSIUM ON THEORY OF COMPUTING 1972
7. on the translation uf languages from left to riuht - knuth I NF ORMATION AND CONT ROL y 1965
8. A THE OREM ON BOOLE AN MA TRICES - WAKSHALL JACM P 11-12 1962 AN ALGORITHM FOR HAINTAIN ING OYNAMIC AVL TREES - VAN DOREN ANO
SUBMITTED TO FOURTH INTERNATIONAL SYMPOSIUM ON COMPUT ING AND INFORMATION SCIENCE

WLUVOCOO
oucu0001
uUC UOCO2
ulcueco3
-ucco
duCu0005
uccuncos
C6v0007
DCuOCOs
ucc 00009 ULCU0010 uCC vo012 oucuorl u u vool DJCuOO15
UUCUDO1 VUCUOOIO DOCu0018 ccuool9 Dis voor 20 DOCuOO21 DOCUVO22 DOCVUOO23

The routine consists of 3 basic sections, the third being oivioed into 2 SUBSECTIONS, EACH OF THE FIVE CONTAINED IN A BEGIN-END BLOCK. ALSO STRUCTURE fOLLOWS.
SLRI:
REUSABLE:
THE WHOLE-THING:
debug_sect ion:
TABLE_GENERATE_SECTICN:
LRO_GENERATE:
SLR l_Generate:

WARSHAL:

BSTSLR:

ERROR:

PROC
BEGIN
EGIN
BEGIN READER SECTION
END READER_SECTION
BEGIN
ENE DEBU SECTION
END OE
BEGIN
END LRO_GENERATE
begin sir l_generate
END TABLE_GENERAT E_SECTION
END WARSHAL
PROC
END THE_WHOLE_THING
GO TO REUSABLE
ERROR MESAGE JUTPUT
GU TU REUSABLE
enu reusable

the ratiunale for the heavy ulri of block structuring is to reduce the	ELGU0051 uLU0052
INHERENT NEED FOR LARGE AMOUNTS OF STJRAGE BY TAKING FULL ADVANTAGE OF	ULCU0053
the dynamic sidrage capabitities of the source language. for smaller	4
host machines, scratch files resulting in slower execution time woule	MLuonss
be needed for lafge grammars.	\%Cu0056
SECTION DESCRIPTION:	OLCu0057
reusable : the all inclusive reusable block is present only to allowi	ULC 40058
multiple gramhar input; that is, the program is serially reusable.	DLCU0059
whole thing: parame ters setting certain limits on the grammar ano	aGcu0060
tables are input outside the block and useo within the black for	nutcuoss 1
dymamic declaration purposes.	uSC uocoz
reader: this section inputs and encodes the prouuctions, building	uncuoos 3
SYMbol table using bststr, and buildos certain mapping arrays for data	00600064
Structures used.	UuCU0065
debug: the execution of this section is user controlled and perfirms	Jtivoos6
Certain Checks on the grammar.	U0Cu0067
table generate: contains only declarations needed for the following	ulu voess
SECTIONS.	LGC U0C69
lro generate: this section first generates the conflguration seis	LGuN0070
as if the grammar is lriol then the transition entiries are placed	LuCu0071
in the slr (i) table. the filling in of reduction entiles is	uacuoot2
POSTPONED UNTIL The following section.	jCC 00073
Slal generate: this section generates the complete slrill parsing	00600074
table and (if uSer selects) Counts and lists inadequate states and	uOC U0075
punches the table, symbol table, ano other statistics needeo by the	uucu0076
PARSER.	UGCU0077
Procedure description:	DCCU007
bstsle : the insert section of a binary tree symbol table IMPLEMENTATION C.F. REFERENCE.	00L voc 79 nCCuOOAO
warshal: a proceoure to perform the wars hall algorithm on an input bit	usichocal
MATRIX C.F. REFERENCE.	Jucuoja 2
INPUT:	ncluoces
	wac uocas
1. N > $=$ NUMBER UF PRODUCTIONS TO BE INPUT	lucuoor 5
2. $n \gg$ maximum number of parts in any production (incluoins lhs)	DLCuOces
3. N > $=$ maximum number of characters in any input symbol [may be	udC vocs 7
less - only need n large endugh to make symbols unidues	wocuocby
4. $\mathrm{N}=$ MAXIMUM NUMBER UF distinct s mmbols in the grammar	accuoory
5. $N=$ Configuration SEt limit (for all sets combined)	WUC 00090
8. $\mathrm{N}=$ EXPECTED NUMBEN OF CONFIGURATI ON SETS	N0Cu0091
7. $n=$ maximuia numater of bas is entries for any Set	上E6 uocg
8. $n=1$ to activate uebug section	UL6u0093
$\text { 9. } N=1 \text { TO CUUNT A }$	Ducu0094

NHERENT NEED FOR LARGE AMOUNTS OF STJRAGE BY TAKING FULL ADVANTAGE OF THE OYNAMIC SIJRAGE CAPABITITIES OF THE SOURCE LANGUAGE. FOR SMALLER BE NEEDED FOR LARGE GRAMMARS.

ECTION DESCRIPTION:
olcu005
ULC u005s
uacu0000 UOC vocoz
uocuoos 3 UOC NOCO4
ULCU0065 JCKVV0066

n＝ 1 fUR full printeu cutput ． $\mathrm{N}=\mathrm{I}$ t］huych sla（1）tadl anj gTher data heejed fuj parser	む $\begin{aligned} & \text { ¢ }\end{aligned}$		
theke are cefaults for 3 inhut parameteks 4， 5 ，o，ayj 7；hunever	むしいうごo U．UOC：7		
hese uefaul ts meprestent only a guess basel on the ghamitan．after an	vucuocs	Prideram lugic：	Uwi60169
initial run，Lujput statistics allun the user tc set these farameters	小luacis		
accuiately for future runs，if neevel．	ull uija		
，MORE THAY UVE UKAMMAK IS INPUT，THEA The Pakameters fok tach	ulugiol	is selegteu，then the jedug section is entered．the deuug jectiun can	ulcuol 25
grammak are siaply evtered in the pruper indier．frum file prguin，the	，	be deleteu withuiut affecting the program．it is siaply an	
pruducticas afe input．the fúmat is the lhs ileft－haing－siles 	uilunios	iaplemeivtatidn of sume if the grammar checks of gries．the heart of	
He rhs（right－hand－S ide）parts eain follomej oy a cJyya avu i uk mone		the progiray is the table generate section．in the lko section，the	
blanks．tide rightmost pari cf an alternat ive is followeu gy a	uuluolo	h the dut tu the miont．	
semicolon and 1 or make blanks if it is mgt the last alternative；	ULCuTior	is the final state．the secono iet	u－cu0157
	ULUVO10	Proouction dall set entries are prjouc tion numieks）mita the dot to	
eit be blank，but uther than the listed restrictions the fokmat		the left．the set is now clegeo．this cons ists uf entering inta the	ULlus159
free firm．the first lhs is cansiderto to ae the useres mpstudi＂	ulcuolio	ll projuctiuns mhuse lhs is the symbol to the right of the du	cuiulis？
gual symbul．that is，it is a gual symbol whilih may ucciur int a ras	Jucuoil	THESE ENTRIES ARE KNOWN AS CLOSURE．ENTKIES．The DUT IS A SSUNEL TL BE	
all productions mith a ccumle ghs must be grinped cliasecin		dosure set entries．each of the clusuke en	
multiple grammar input，eaih giammar is uelimited or a caru mith a	Uultholl	T ALSU de Clojeu．This Cuntinues UniIl the SYMdul To The right	Jucuolits
period in column i．notice this allows the prujuctijens to	Jucuot	UUT OF ALL UNCLUSED CLUSURE ENTRIES IS A TERMINAL OR A CLusume	
I		NSION	
		he hcandiuat Em für expaivsion is the first set entir	
		MARKER BIT IS O．FOR MHICHEVER SET IT IS IN，ALL UF THAT SET＇S	DCL 40167
OUTPut	\sim	entries hith the same smmdil to the right dot the uut are manke	
		then used to form the das is entries tihe dot is moved right i poSitions of a new set providing such action wculd not caust	3
all significant internal tables anu statistics are printei anis	ucíucil7		
labelled if the print parameter is emabled．alsg，all data neeued by	uncually	ICAT U I F AN EXISTING SET．IV BJTH CLISURE AND EXPANSIUN，	
the parser is purichev if su selelted or trie usek．the parser is	ulcudily	OUPLITION．IS NOT ONLY THE SAME SE MOUEMEMT BUT THE DOT IS TL DUE	
enclosed as a comment．notice that by altering the du statement fuk	－ucuol20	RIGHT，THEN THIS IS A SET IHUTURE STAIEI WITH A REDUCTIUN ASSJUCIA	
PUNCH．The dutput couid de rouied to a data set ci seconiary storage．	Dicuol＜1	WITH IT．THE SET ELEMENT，A PRODUCTICN MUMER，IS NEGATED AVO E：VIERED	Jucuoils
this is mentioned since，fir example，the punchel dutput fik the	jü vol22	INTO REDUCEIII PROVIUING THERE IS NO PREVIOUS ENTRY IN REDUCESI\％．It	K
GRAMMAR IS APPROXIMATELY 900 CARDS．	UuCUO12＇s	there is，Then rewuceill is set to the number of sürt eintiles；and	
		entries themselves are stored in a quele（mult＿reduce＿ol．any eatries	
MAJOR UATA S		WITH The dut to the rioht are marked itaken uff expansion listy simce，	
		if the dut is to the right，they canivat be used for expansion simee	
many arrays anj vectjrs are useu．no sorting is dune．the input		THE UOT CANNOT HE MOVEL FURTHER TO THE RIGHT，KEEP IN MINU THAI THE	1
proulctions are mot stcredi homever，thelí enciuded fjim is in prio．	Uus 00126	（	
the code for each symbol is its linear pusition in the dinary tree		THE DOT POSITIUN OF CLOSURE ENIRIES IS ASSUMED TU de 2 （TO THE LEFTI．	
structured symbol table built or astsla．the infut symolls are savec	DCLuO128	The ACTION Of Closing then teranding continues until all entries are	Uuciolot
and sent tc the parsek for erigir message capaidilities andu，iv the case	Nïu0129	MARKEU．DURING EXPAVSIJN，THE NUMDER OF THE NEN SET GENERATED	
of terminal symaols，for scanninio purpeses．three mapping arkays are	Uulusiso	CERTAIN SYMBOL tu the right of the uct while within a Certala set is	促
maintained．mapto has in entay for each sradjl suith that or applying．	ulivei31	ED INTO TABLE．THAT IS，TABLEGI，JH＜－－K WERE I IS THE SET The	LL
mapto to the coded symbol a uni wue cclumn gr rum of an ahkay is	Jucustiz		
odtained such that the non－terminals are grauped in positions it to	uficuols 3		triv0189
number of non－tíkminals，and the terminals are grojped in pisitituns	Jucluol34	hich huuld ae duplicatej by a particular expansion．	
number of non－terminals＋1 TO number of Symbils e mapfriim is the	alugis		
INVERSE OF Mapto．Endex is guil d during input suin that enuiex applie	ucuja		BuLiol92． －LLCOI93
TO MAPTO APPLIEO TO A CODEU NUN－TERMINAL YIELDS THE FIRST	Juvol37		
	uccuolso		
side．tree is the symbjl table maintained by bstsle anu is ducumentej ELSE WHERE C．F．REFERENCT．TABLE IS THE LR（O）THEN SLR（1）Tiole．EACH	UCiLUC139		－cu0190
el Se where c．f．referenct．table is the lrion then slrint tiole．each	ulcuol40	the row now Contains both（possibly）state tkansitlons avo reductions，	
KON DEFINES A SET，AND THE CULUMNS CDRRESPOND TU THE SYMBULS \MAPPE	JCuO141	heicie a state．inadequate states are thase wi th mune ihaig l kedicitica	uccuolyd
	ULCLOL＊4	mofe than lentry is attempted in any taiale position，then the gramama	
which molos the dot poisition of each gas is entey of each Sei fan eintir	ULCLU0143		
uf 2 means the dot is to the left of trie rhsi．markek is a dit vectur	山CUS 140		
parallel tu set that is set to i if the cokrespunolíú det element either cannct or has been used in expansion．	u	＊＊＊the folluining is a sample paksek which uses the slrcii tables	203c）2

Uとし0
UL vojoj
UL vazoo
LLLvociob
DLC UO2כ 9
Ducu0209
ucunozio
uncuer 12
jucuer12
Ducuez14
OUCuOz15
JOCUO216

DLCUOZ18
Licu0219
Cucuozzo
ULC VO221
aUC u0 222
uncuo 223
ULC No224
ulicuo 225
uccuraz
UCC U0228
NLLU0229
DECVOO230
LaCuO23
N0． 40233
uacu0234 ucicuog 235
uccu voz36 uccu0236
ucu0 UGCUO238
j OCv0239 jごC voz39 WLuO240 ulcuox 42 uncuortis UGE vo244 yucuaz45 DUCVO240
OLC UO247 LUCLUO248 00choz4－ DLC VO2̃50 UCCUC 51
0 Li VOE52 dunvors2 uncuoz54 UEC vozs 5 ELCUO250 ULCUO257 －LCuCE5s ulicuozoo ubcuozol becuozs 2

IF ENESE GU TU bAckuf：
LuluOze
actuozas
IF TSC＜O THEN
PUT FILE（PRINT）SKIP EUIT
（IATTEMPIING REDUCTION－PRESENT STACK－－＞•
（STACKII）UO $I=1$ TO TUP）（ACA，（TOP）FA41）：
DOL L－RHS $=1$ TO NO＿PARTS－2 WHILE（PRUOS－TSC，L＿RHS +2 ） END：
TCP $=$ TGP－L＿RHS；
IF TOP <2 THEN GU TO UNDER；
PUT FPE
PUT FILE（PRINT）SKIP COLT
（ REOOUCTION ON PRCOUCTION－－＞\cdot, TSC，：，
WHILE（PROD（－TSC，J）DO $=0$＝1 THA，NO＿PARTS Go to vRIVE；
END：
CALL＿POINT：
STACK（1）＝2
STACK $(2)=3 ;$
TOP＝ 2 ；

CALL POINT：
SYMDOL $=F L U S H: ~$
GC TO RETURN＿FRUM＿ERRUR；
OVER：
put file tpkint skip edit（1＊＊stack overflon－pribable－， CCAUSE \rightarrow NESTING LEVEL GREATER THAN 4
GU TO CALL＿PGINT：
UNOEK：
PUT FILE（PRINT）SKIP EDIT（＇＊＊STACK UNDEkflow＊＊：）（al；
GC to Call＿puint：
PUT FILE（PRINT）SKIP EDIT（＊＊＊PROGRAM ACCEPTED＊＊：）（A）
1＊GETNEXT IS THE PERTIMENT SCANNER．＊
GETINEXT：PROC RETURNS（FIXED BINARYI 31,011
ECLAKE
IP FIXED GINARY（ 31,0 I INITIAL（OB）STATIC，
FLSHSYM：
I $P=1 P+1$ ；
CALL ESTSRC（CARD（IP），FLAG，PQS，TREE）
IF POS $=0$ THEN RETURN（POS I；
（＊PAINT PRESEYT RECDRD
POINT：ENTRY：
PUT FILE（PRINT）SKIP EDIT

＇＊flush to next statement un erkor．＊＇́，
FLUSH：ENIRY KETURNS IFIXEL GINARY（ 3 K，OII；
$1 \rho=0$ ；
PUT FILE（PRINT）LIST（：＊＊FLUSHING TO NEXT CAKU＊＊＇）；
GET EDIT（CARD）（BO A（1））
GO TO FLSHSYM
ENL GETNEXT：

```
OTSNC: PRJCEOURE (ITEM, FLAG,PUS,TREEA;
prucedure #STSkC IS the searin seltion uf bst C.f. iefireinle.
    PARAMETERS:
        ITEm - KEY for retrieval, insertigiv ur ueletion
        FLAG - STATUS CDOE FOR ATTEMPTED FUNCTIUN
        tree - Strugture lonfaiming binary Search trem,
        , available space list ano ndoe count
    * feclare
        (FLAG,POS) fixEO EIN (3:,O!
        ITEM CHAR (*),
            1 TreE,
                2 NOJC (*) CHAR (*),
            2 LL (*) FIXED BIN,
            2 TAG (*) BIT (*) ALIGNEU
            2 AVAIL FIXEU BIN (31,0);
SEARCH:
    BEGIN ;
    /*
        * (feclare cukr fixed din (31,0) ;
            CURR=RLIOI ;
            DC WHILE (CURR T= O); THEN
                ITEM = NODE(CURR) TH
                    %* RETUR
                    FLAG=4;
                    PE TURN :
            END:
            IF ITEM > NUDE(CURK) THEN CURR=RL(CURR) ;
            elSE CUR⿸=ll(CURg) ;
            end réturn failure */
            POS=0;
            RETURN:
        END SEARCH;
        END BSTSRC:
ENOMAIN:
ENE PARSER: SMMPLE PAKSER--a##
Variable dejcription (all sections)
bad - wORking variable - o for any symbol not milthin" the useris
dASIS - PSEuDUGGUAL SYMBGL
in the vectcr holuing all configuratiun sets
BUF - INPUT GUFFER FIR PRUUUCTIONS
GANDIDATE- - A prgouctign Number in scme set tu be ujev for pusSible
CONFIG EXPGNSION
cunfig_Set_limit - input paf.ametek, limensiuly uf veltor triát holds
count_inadequate_states - input parameter, i if user wants actioiv
```

```
VARIAGLE REPRESENTS
```



```
ogt_pOSitidn - a matrix holotag the dgt positiunS of basis sets'
dut_SWitch - falSE when scanning non basis elements, true otherwis
element - the first transiticin in the kom of taele deing scanned
ENDEX - a VEGTOR SUCH THAT ENDEX (MAPTOIANY SYMBOLII IS THE FIRS
prufuction number of which 5ymbol is the lhS
fENGE - THE "FENCEm of a binary Search
FOLLOH - a bit matrix of nONTERMINalS vS Nonterminals (SEe above)
IMIT
LMAMEBASIS - INPUT PARAMETEK, LIMIT OF ANM
maptu - a vectuk jucin that mapto (ahy symadl) maps tme ormajols tlu
    COLumNS uF a matrix such that the nonterminalS are groupeu
    AS AKE THE TERMINALS
MAPFRGM - A BIT VECTUR WHOSE I TH ENTKY IS I IF IHE I TH
        configuration Set element camnut be used for expanjign gor
        Has been useu)
```



```
MULT_KEDUCE-\alpha - A UUEVE USEO TO HOLD REDUCTIUNS FOR A GIVER STATE IF
NAME - AN input productian symbol
NBASIS - COUNTER OF BASIS ELEMENTS
```



```
NO lHARS SETT LNPUT PARAMETER, WAXIMUM NUMBER OF CHARACIEXS IN ANY INPUT
NO_lhars - input parameter, max imum numbek of characiexis in any input
n__inac - inaliequate state counter
NU_NON - NUNTERMINAL COUNTER
maḱk - a bit vectok huose i thentry is l if the i th prgouction
NO paKTS - CAN DERIVE A TERMINAL STRING
NN-PRODS - INPJT PARAMETER, MAXIMUM NUNEER OF PARTS PER PRUDUCTION
NO_PRODS - INPUT PARAMETER, MAXIMUM NUMBER OF INPUT PROOUSTIONS
NOUSETS - INPUT PARAMETER, MAXIMUM NUMBER OF CUNFIGURATIUN SEIS
NO-SYMS - INPUT PARAMETER, MAXIMUM NUMGER UF I INPUT SYMOGLS
NO-TERM - NUMBER OF TERMINAL SYMBOLS
-parts colnte
NSEIS - CONHIGURAIION SETS COUNTER
input file fur pakameters
print - The first procuction of a grcup with the same lhs
PRINT - OUTPUT PRINT FILE
PRUUIN - INPUI FILE FJR PRUDUCT lUNS (ELOCKSILE = 80)
mprch - uutput punch file - an array of encoued productiun - the code fok a symbcli is
ITS POSITION IN THE SYMBOL TABL
pt - PJINTER to UNRECOGNIzED PORTION of buf
RED - TRUE AS SOUN AS A REDUCTION IS DETECTED IN PMESENT STATE 
    STATE--IF MDRE THAN DNE THEN IT HOLOS HGH MANY ANU TMEY ARE
            SIATE--IF MIRE THAN DNE
sET - THE vEcIIGR huLDIMG aLL configuration Sets
SET_LIMIT
- the wtapn jf SET all configuration sets
```



```
    A vECTGK HOLUING THE EXTENT IN SET OF EACH LUNFIGURATIUN
    S SET
```

LuLU5304 しuivi3as UL vo387 CCUD38 CK 40389 CCuO390 CCu039 LOCNOO393 acuo394 06 C 0395
 Licu0390 UCLuO390 いしu9430 しくいう4J1 UCC NOUCC2 UCU．Cu 4024 －i 00405 Uに（100406
 CiC 10430 jecuj415 0¢ UC411 Ducu0412
 Jucuo414 DUCUO4is juctcal7 CCUO418 ce UC419 Uucuort vivole 22 ucuo423 しL゙ $v 0424$ JuLUG425 Licu0426 jucuctab ucuoras Lu UC4SO
 icicuers3 LCuO43 jGu vors JUL UO436
declare
ÓSTSLR ENTKY（ChAKACTER（NG＿CHARS），，．，$)$ ，
aARSHAL ENTYY．
TKEE，
node（Jinjoyrms）character（nu＿chars）difit lal（．．1，

TAG（NO＿SYMS）BIT（2）ALIGNED，
AVAIL FIXED DINARY 131，01，
2 COUNT FIXED BINARY（31，0），
PROD（NO＿PRCDS +2 ．NO＿PAKTS）FIXEU OINAAKY（1ち，0）

ENDEX（NO－PRODS＋1）FIXEO BINARY（15，0）INITIAL（1）
INITIAL（I，（NU＿SYMS） 3 ）．

＊EADER SECTHE INPUT SECTIUN．＊／
BERSECTI
BEGIN；
declare
pridin file input recjeco．
BUF GHARACTER（80），
NAME CHARACTER（80）VARYIN
I，J）FIXED
NCHARS，
（FLAG，POS，PT，LNAMEI FIXED P 31 ，OI INITIAL（4），
FLAG，POS，PT，LNAME）FIXEO BINARY（31，C\％，
on Endifile（prodin）go to enuinput：
CA Size snap signal erref；
UN SUZKG SNAP SIGNAL ERROR
CN STRG SNAP SIGNAL ERRJR；
CN ERROR SNAP GO TC ERKO2；
CN ERROR SNAP GO TC ERKO
PUT FILE（PRINT）EDIT
（．．．．BEGIN OUTPJT FUR INPJT－ENCOUE SECTIUN．．．．＇）（SKIP（3），A）：
initialile tree used as symbil table ano insert generateo goal symbil anu special delimiters．
 12 GOAL ：＂？＂，USER＇IS GOAL SYMBUL ，＂${ }^{10}$＂il
ALL BJILMT，AI，SKIP，A）：
CALL BSTINI（TKEE）；
GETCARD：

eal file（prudin）intu（buf）：

$\mathrm{P} \mathrm{T}=1$ ；
＊Creck fur＂éron lallows multiple grammak inputi．＊／ IF BUFII1＝＇，THEN GO IO ENCINPUT；
＊CARd must mith now iank preyent steingrange．＊／
nextsrm： SUBSTR（BUF，73）＝（8）＇ぁ＇：

END： LNAME＝LENGIH（NAME）：

```
Sinitch - labill suItchi set peringput punctuatiun the predent det
table - the slril) table, each roh is a state, the columis kepresent
        THE SYMBOLS, A pOSITIVE ENTRY IS A STATE TRANSITICN aND A
        NEGATIVE ENTRY IS A REOUCTION
TAlL - THE TRANSITIVE GLGSUHE OF THE TAIL SYMBOL MATkIX
TEmpoot - THE DUT PMSITIUN CF THE PRESENT SET ELEmENT
term - rave mien a tikansitiun unoer a terminal symbol is in in
pRESENT STATE
thee - a structure representing the symbol tadie
```



```
TKYKNT - NUMGER OF ELEMENTSLEMENTS OF TRY
u - UPPER BOUND IN BINARY SEARCH
WlTHIN - bit matrix of "WIthin" kelation (and closure)
*/'SILE,SuERG,StRGI:
SLRI: PKOCEDMRE OPTIONS (MALNI,
    USABLE:
        DEC
        parmin file input stream,
            (DT,TM) CHAR (6),
            ONU_CHARS,NO_PRODS,NO_PARTS,CONFIG_SET_LIMIT,NU_SETS,
            NO_BASIS,NO_SYMS,DEBUG_GRAMMAK,NG_PRINT,NU_PUNGF,
            COUNT_INADEQUATE STATES) FIXED GINARY (31,01;
    ON ENDFILE (PARMIN) GO TO ENDMAIN:
    ON SUBRG SNAP SIGNAL ERROR;
    ON STRG SNAP SIGNAL ERROR;
    ON ERRUR SNAP GO TC ERROI;
    OPEN FILE (PRINT) PAGESIZE (66) LINESIZE (132):
    OT=DATE;
    GET FILE (PARMIN) EDIT
        (NO_PRODS,NG_PARTS,NO_CHARS,NO_SYMS,CONFIG_SET_LIMIT,
        No_SETS,NO_basi S,debug_Grammar,count_inadequate_states.
        NO_PRINT,NO_PUNGH)(COL(1),11 F(4)1;
    OTFILE (PRINT) EDIT
        genera tur olutput','da te: , ,Suastriut,3,<l,
        J.L. GRAY,5,21,':',SuBSTR(DT,1,21,
        J.L. GRAY, COMPGTING ANO INFDRMATION SCIENCES DEPI.,
        S.S.U.','TIME: ',SUBSTRITM,1,21,':',SUB STR(TM,3,21,":",
        SUBSTR(TM,5,21)ILINE{1),COL(51),A,CDL(1151,O A,CUL(351,2 A,
* SET UEFAULT, IF NECESSARY. *%
    IF NO_PRODS = 0 THEN NO_PROOS=50;
    IF NO_CHARS > 78 THEN NO_CHARS=78
    IF NO_CHARS < 4 THEN NO_CHARS=4
    IF CONHIG_SET_LIMIT = D THEN CONFIG_SET_LIMIT=5#ND_PRCOS;
    IF NC_SETS = O THEN NO_SETS =2*(NO_PRCOS +2 );
    IF NO_BASIS = O THENN NÖ_BASIS=NO_PRODS/10
/* THIS BEGIN-block IS FJR UYNAMIC DECLAKATION PURPUSES. */
wHOLE_THING
    BEGIN;
```

50 CuO 444 UCCUO445
UUCUC446 ULしい0447 UCLU0443 uCcu0449 0 ucu0450 ull vo451 ullucts UuT 10454 UCUOO 45 UOL 10450
 ulivorsy Lilvo 460 ucuos 46 MAI NOCG2 MAINO 403 MAL NO465 mailvo460 MAINO 407
HalNC408 MAINC408 MAINO470 Maint 0471 HAING472 MAINO475 CAINO 474
MAINO 475 MAINO 475
MAINO 470 MAIN0477 HA1NO478
MainO479 Maino479 MAINO481 4AINO4B2 MALNO 483 Maij $\mathrm{NO}_{4}{ }^{4}$ HA IND4as
MAIND480
MAINO487
MAINO488
maino4ag
MAINO490
MA1NO491
MAlNO4Y，
MAI NO 494
MALNO495
MAINO496
MAINO497
MAINO49B
MAINO 499
MAL NOS 33
Uivamosol
unamosoz

```
    If lname < 3 then
            if lname = 0 then go to getcafu:
            ELLSE GO TO ERRO3;
        END;
        NCHARS=MAX (NCHARS,LNAME-2):
* INS LRT LF LUTAME;
sent else effectively a séarch. #;
    CALL ESTSLR (SUBSTRINAME,I,LNAME-Z I),FLAG,PGO,TKĖ:)
    If SuBSTR(NAME,LNAME-1,1)= =,' THEN
        cO;
            SWITCH=NEXTSYM:
ENTER:
            J=j+1;
            PKOD(I,J)=POS:
            PLT FILE (PRINT) EDIT (NAMEI(A):
            GO TO Sml TCH:
    IF SUB
    LF SOBSTR(NAME,LNANE-1;1) = :%' THEN
        i=1+1;
            J=1;
            RDO(1,1)=POS;
            PUT FILE (PRINT) EDIT (I,'; ,NAME|(CGLT1),F(3),2 A);
/* SET map arkars for NON-TERMINAL. */
            DO:
                NU_NON=NO_NUN+1;
                ENDEX(NO_NUN)=I
                    MAPFRUMINO_NON: = POS:
            e_ND;
    ENO;
    lF SuBSTk(name,lname-1,1) = '.' then
/*
DO;
OPTionally could set sinitch to getcard if it is known that each I NPUT LH＇S STARTS A NEW CARD．
SHITCHENEXTSYM：
\[
\begin{aligned}
& \text { GE TOENTEK; } \\
& \text { END: }
\end{aligned}
\]
if substriname，lname－1， \(11=; \cdot{ }^{\prime}\) then DU：SWI TCH＝SEMI
SEMI：
```



```
I＝I＋1； PUT FILE（PRINT）SKIP EUIT（＂＇，ICCL（9），A）：
\(J=1 ;\)
UG \(i(C)\)
NEXTSYM：
GO TO ERRO4
endinput：
＊output statistics un infut grammak．＊！
（ file（print）Skip edit
（＇user requested actually neeued．，（34）！－．
```

Nくムニコラ
KEALS205
HLALOSOO
Keaveso 7
KEAVOSOO
rif Aunsso

KLALD 7
KCAUC 7
neaices
REALOS
RES
REALOS74
KLAODS75
kiAinOS7o
REALOS77
KEADNST？
KEALLOSBO
KEADO581
KEADOSB2
REAUO584
REAVO584
KEANO585
KEADO 5 B
$\times \mathrm{EACO} 587$
KEACO587
KEADOSB
KEADOSBB
READOSBG kEADOS90 KEALOS91 READOS92 READOS9．3
KEAOOS94 KEADOS94
REAUOS95 KEADO596
REALO597
REAVO598 READOS99 READOOO REACO602 KEAVO603 KEADO6O KEAOOOOS KEADO607 KEAVOGOD KEALODO9 realiggio heanderil
REALOELZ ktadobl 3 nealoci4 ktavoels kEAjOOLO KiANOEI 7
KEADNOL keadocis keajuczo REALOG21 KEALOB22
KEADOOL3


```
            Mkavcezs
```



```
            NO_CHARS=NCHARS
            NO_PARTS=NPARTS
            ; 
** fixup loop to set map arkays for terminal symgols. *
            DC I=2 IC CCUNT
            F MAP
                NC_TERM=NO_TERM+I;
            NO-SYMS=NO_NUN+NO_TERM;
            MAPTU(1)=NO-SYMS;
            END:
        ENC;
        PUTFile (Print) EDIT ('NUMBER OF mON-t ERMINALS IS ', NO_NGN,
```



```
        NOPPARTS-1),(30) --1((NO_PARTS) A,SKIP,A);
        PUT-FILE (PRINT) EDIT (I,O-PARTSROD,SKIP,A); J=1 IO NO_PAKIS)
        DO I=1 TO NO_PRODSIHSKIP,F(4),A(2),(NG_PARTS) F(4)1;
```



```
            DO I=1 TO COUNT)I(A,SKIP,A,(COUNTI(SKIP,3 F(4),XI2),
            a(NO_GHARSII)
BYPASSI: IF NO_SYMS T= COUNT THEN GO TO ERR 05:
            PUT FILE (PRINT) EDIT
        ND REAOEEND OUTPUT FGR INPUT-ENCONE SECTION...'I(SKIP,A)
            IF READER_SECTION: 
&* debug detects uegug príductions by constructing the relation
WITHIN+ AND ALGORITHM 2.8.S P.42 -- COMPILER CONSTRUCTION - GRIES
*'
    EEGIN:
        OECLARE
            W1THINI2:NO_NCN, 2: NO_NONI BIT (1)
            MARK (NO_PROOS) dIT (I) INITIAL (GNO_PRODSIIIJOUEI ALIGNEO
            SIG dit (1) ALIGNED,
            (I,J,K,L) FIXED GINARY (31,0)
            CN SUBRG SNAP SIGNAL ERRER;
            LN STRG SNAP SIGNAL ERRDR;
            CN ertior snap ga to errog:
            CN ERAOR SNAP GO TO ERROG;
/*
hithin's rijws corre spono ti non-terminals and have a me
fok each krs part "hithin" a la gries.
OO I=2 TO NO_PROOS;
    JUJ=2 TO NOPPARTS WHILE (PROD(I,J) = = 0):
KEAUO62%
KEALOC29
KEAUNOS1
** fixup leop to SEt map arkays fur terminal symgols. */, ritadolig
ikEavots3
READCG34
READCG35
REALOO36
kEACOES7
REALCl3B
MEALOGSS
MEAUCE41
REANOE41
RtA00643
REALOO444
MEALO645
KEHEOC47
KLALO640
REAUC649
READOESO
REANO651
REALO6S3
READO654
READO654
REAOOOS5
READOLSD
KEADOES7
MNAMCES%
LEVGC60D
UBUG0661
OBUGO6S2
UBUGC064
DEUGO6O5
JUNG0t60
DEUG0607
皀UGOEG5
UBUG0669
@BugüOII
0 UG0672
UEUG0613
MSv00674
LEvGO675
LBUGOO76
佂6067%
LDJG0677
LEUGOGBO
UEUG0582
UBuG0083
```



```
    END
1* CLOSURE VIA WAHSHALL ALGORITHM. *'
CALL wARSHAL IwITHIN);
ANY LERO IN USER'S GJal RON ICOL 3 FORMARDI mEANS SGmE SYmaul is
Nut "WITHIN" THE USER'S GOAL.
    CO J=3 TC NC_NEN; THEN
        MUUT FILE (PRINT) EDIT (NODEIMAPFROMIJH),
        PUT FILE (PRINT) EDIT (NGDEIMAPFROM(JH/,
AqGgrithm fur uetecting productiuns that cannut de useu to
derive a sentence, c.f. reference.
TwOB3:
    SIG=1003:
        If MARK(I) THEN GO TO ENDI;
            DU J=2 TD NU-PARTS HHILE (PROD(I;J) = = 01:
    1* LINEAR LOOK-UP FOR NON-TERMINAL AS A LHS. *,
            LOOK-UP FOK NON-TERMINAL AS A LHS.*/' = PROU(I,J));
            END; <= NO_PROOS THEN
                    00:
                    OO K=L TO NO_PRODS WHLLE(PROD(K,1)= PKOO(L,1));
                    enf. mark(k) then go to enoz:
                    END;
                ELSE
                ELSE;
                        PUT FILE {PRINT) EDIT
                    INODE(PROD(I,J),'15 NOT A LHS.'MSKIP,z A)
ENU2:
            *
            MARK(I)='1'B
            MARK(I)='1'B
END1:
        END; =1 TO NO_PREDS;
        IF THA
            if sig then go to tmub3:
                UO I=2 TO NO_PRODS-1;
                    (I,O MARKI) then Put file (PRImt) egit
                    F MMARK(I) THENPUUT FILE (PRING) EGIT
            ENO;
            ENO:
DUPTEST:
1* NOM CHECK FOR DUPLICATE RHS. */
    DO I=1 TO NO_PRODS;
*/
    END;
*/\
                    END;
            ENC;
        END;
```



```
        IF PRCD(N,2) = PRUD(I,2) TREN
    OO K=3 TO NO_PARTS;
        IF PROD(I,k) = = PRCO(J,K) THEN GU TI NGTDUP:
        ENU;
        PuT FILE (PKINTI EOIT (NGOEIPRODII,2)I,
        STARTS A UUPLICATE RHS FOR PROOUCTIUNS ',
N*
UNAFFEGTED GY SUCH THINGS, HOWEVER A MESSAGE IS PRINTE; BECAUSE
OFTEN THIS CONDITION LEAUS TO UNSOLVABLE INADEQUATE SIAIES.
END
NUTDUP: ENU
    ENU
    PLTfILE (PRINT) EOLT
    ('...enu dutput fuk deaus secticN...")(skip,a):
    END OEBUGSECT ZUN:
* declare glgal storage for lro and Slkl. */
tabl e_generate_SECtion:
    BEGIN:
        oECLARE
            REDUCE (2:NO SETSI FIXED BINARY (15,0)
            initial (iNO_SETS) O)
```



```
            TABLE=0
** configuration SEt and goto function generator. *
    GENERATE
        begin;
            (NSETS,SET_LIMIT) FIXED BINARY (3I,0) INITIAL (Z),
            TOP FIXEO BINAHY (31,O) INITIAL IOI,
            CMNO
            (U,SYMEOL,PLACE, FENCE,TRYNNT,IMIT BASIS,I, SK 
            L,TEMPDOT) FIXED BINARY (31,01,_BASIS,I,J,K,
            SET (CONFIG_SET_LIMIT I FIXEO BINARY {15,0) INITIAL (12) ll,
            SLIM (D:NO_SETSI FIXEU EINARY (15,0) INITIAL (0,1);
            BASIS (NUSSETS) FIXEO BINAFY (15,01 INITIAL (Iz) l)
            TRY (NO_BASIS) FIXED BINARY (15,01,
            OOT PUSITION (NU_SETSNO_BASIS) FIXEU'BINAKY (15,0)
            INITIAL [5,(NO_GASIS-1) *21,
            DUT_SWITCH BIT (I) ALIGNED,
            MARKER (CONFIG_SEI_LIMIT) BIT (1)
                INTIAL ((CONFIG_SET_LIMIT)(1)'0.B) ALIGNEU;
            UN SILE SNAP SIGNAL ERROR;
            UN SILE SNAP SIGNAL ERROR;
            ON SUGKG SNAP SIGNAL ERROK;
            ON STRO SNAP SIGNAL ERKGR;
            ONEERRUR SNAP GO TL ERR
CLUSE:
            ('...BEÖIN OUTPUT FOR LR(O) GENERATE SECTION....)(SKIP,A);
            LIMIT_BASIS=BASIS(NSETS) +SLIM(NSETS-1):
** TRUE IF SETLIM(NSETS-1)+1 BY IS IN WLEMENT UFALLE IJ SASIS SET. SET_LIMIT);
            F SET(J) IS AN ELEMENT UF
        MoUGC744
-3bル0746
Job60747
LEUGO74D
OBLG0749
OBJGG75%
~Eu69751
je660752
Zbu60753
LELGO754
LELG0754,
ObUGC755
utuG0757
UELGC7SE
UEUGO759
ULUGO754
-LouG076G
JbuGC761
UE.GO762
UEUG0763
ThoG0764
TADG0705
TABGG70S
TABGG7\DeltaG
lálGG767
TABG0769
TABG077i
TABL0771
Labgg772
Lnogg773
LHOGC774
L&GGG775
LKOGG775
LEGOGO776
LkGG0777
LKOGC77a
LkGGO7dO
LK0LO781
LK2GC78L
LkNGC703
LF.0GO785
LKGGO700
ikEG07a7
LKCGC76O
LinClig7ag
LKCGD790
LFO60791
LKOGN7Y2
LKO6079a,
Ln06C7%4
LKNGET95
injoGaOs
```


／＊
Symbul is symbiol turight cf vot－ff ac symbul theit Set Lit kight ana TAKE GFF EXPANSIGN ELIGIBILITY LIST，ENTERING PRLDUCTIDIV NUREGE and set reduce to number of element or this SET ily queue．

$$
\text { If SYMBOL }=0 \text { THEN }
$$

$\stackrel{\text { if }}{0} \mathrm{SO}$
 ELSE：

IF REUUCE（NSETS）＞ 0 then
00
REDUCE（NSETS）$=$ REUUCE（NSETS）+1 ；
 GU TO ERR10；
（TUP）＝－SET（J）：

END ELSE DO；

DOP $\mathrm{TUP}=\mathrm{TUP}+2$
IF TOP＞HBUUND（MULT＿REDUCE＿H：1）THEN GO TC ERRLO；
MULT REDUCE－Q（TUP－1）＝REDUCE（NSETS）： REDUCE（NSETS）$=2$ ； ENU： END：

1＊Nu ClUSURE FOK TERMINAL SYMBOLS．＊）
 PLACE＝ENDEXIMAPTCTSYMBCLI：

tu louk through basis eintries as ther cic nut have out
ta left bike place daes inut true fur goal but its univue lee
if mgali is a rhs then troude－notice that this loup is nat EXECUTED for first level closures－i．e．the first jtep
Gf the clcsure fü a gasis set element．

$$
\begin{aligned}
& \text { JO K=LIMIT_BASIST1 TO SET_LI ITI; } \\
& \text { IF PLACE }=\text { SET(K) THEN GU TU } \\
& \text { EN: }
\end{aligned}
$$

 NHIS SET．
＊／

$\left(\operatorname{tr} v^{\prime}(v)_{4}\right.$ Lhi,iotoub
Lncureno
Ln 260201
Lnderava
Lituoos
LRO60010
Lkdoge 11
－nj60012
LR060813
LKE60814
LROGObl 5
LhOG0816
Lhegosi 7
Lnciojols
LkJGOál 9
Lк0心08z1
Lfog08z2
Lhogob23
LkGuObz4
－ K 060825
Lkoganco
Lk0G0827
incuobza
LEGG0at9
LxCg0830
LkO G0831
LKOCOB32
LROG0833
LROCOB34
LEGG0035
Lkagob30
LKこ心Co37
LHOGCa38
LkOG0839
LRG6004．
LKOG0e41
LKOL0042
LK060843
LKO6064
ikJ60845
LKDG9840
LkOG0847
Lfiegobea
LhCG0849
Laciooeso
2nciosil
Lajoues 2
L－00083
Lnjucest
incu0ajj
Lhucioss
LKúboas 7
Litigacsa
LkJ 69859
inisoroc
Lkegoanl
20．03032
－

```
        PLACE=FLGCE+1;
            EL:
```



```
Expand:
/*
Fino flrst do: in markėk (rarallel tu existing sets) anu vet=rimine
vIA binary search ahich SET IT beLONGS IU.
        co canuidate=Canuiuaie+1 tu config_SET_limit
        No;
        If CANuIOATE > SLIminSEtSI THEN gu to Lro_finis;
        \=MSETS:
CxLU:
        FU< L THEN
            FENCE=L;
            FENCE=L;
        ENO;
        FNCE={L+U1/2:
        IF CANUIOATE = SLIM(FENCE) THEA GO TO EXIT_-INARY_SEARCCH;
        IF CANUIDATE < SLIM(FENCE) THEA U=FENCE-I;
        ELSE L=FENCE
I* 隹 EINARY SEAKCH - AT This point fence is tre Set the canligate
SelECT alL ENT&IES OF THIS SET HITH THE SAME Symgol to rigit of
SELECT ALL ENTKIES OF THIS SEI HITH THE SAME SYMBOL TO RIGIT
*/. ENTER Elements in try and degt pésitiúnS +l in tkydat.
EXIT_bINARY_SEARCH:
    TRYKNT=1;
    TRY(l)=SETICANDIDATE);
/* TRUE IA CANOIDATE NOT IN BASIS SET,THEREFGRE COT IS LEFT OF KHS.
    If CANDIDATE-SLIM(FENCE-11 > BASIS(fence) TheN
            OC;
            OUT_SNITCH=10*日;
            TryagT(1)=3;
        ENSU;
            ELSE
            MUT_SWITCH=&1:8;
            M=DOT-PUSITHUN(FENLE,CANOIDATE-SLIM(FENCE-1H:
            Th YuÓT(1)= K+1;
    SYMOLLL=PRCLISET(CANDIDATE),K):
        A.J=CANLIJATE+1 TO SLIM(FENCE);
            J=CANDISAIE+1 THEN
            OC;
* tura let if markerij) then go tC not_same;
```



```
            - L3;
            OOT_SWITCH=?OBB;
* TurN let wor_SimITCHAS SUGN &S OUT UF BASISS SET. *',
            J-SLIM(FENCE-1) >
            OOT_SWITCH=:2-8;
* Tharigricanuldatejollog
        END:
```

meocras
niju0tero
ajojool
Lrabido LkGG2e79

Lacoctiz

46000070
4njũa7
Kuidobly
Lnciciond
LK2Gjs81
Lne ujoal
ncicosid
ancooss
L2060880
r．j0908 7
2kOjうとb
Linou ood
kicgoeyi

LKJ60093
LK960t94

Lr． 262897
LiたGOayo
Lhainory

LK0G0400
Ln000

060503
LkCionsof
Lrcuabos

ingocs 1
nijungio
hicocesil
incgosis
unguesit
ecocisls
Licengio
Lnowaslo
Lkijugsty
i．igaseu

Lifegoszzis

LRUOGG924
LnEGOG25
LKOGES26
LKCGOY27
LKCGOY2
LKOGOY20
Lho co9 29
LkOGOS3i
LKOGOS32
LKCGOS3
kGGC934
ROGOS35
LK0G0436

LkOGOY38
LkCOOG39
 LhOGOS42
CKG 60943 Ch. 060944
LKO60945 LKOGOS40 KOG0547
 Líg GO950 LKGGOS52 LigOGOS53
LKOGOY54 RKOGO95 LkоG0957
SEt transitiun unúer this symbol in table- tiky is luplicated our (j) ith GASIS SET.

نO TO EXPAND:

-

TRANSITION TO THIS NEW STATE (SET, THAT IS). */
TABLEIFENCE, MAPTUISYMBOL))=NSETS.
CO $J=1$ TU TRYKNT
IF SET_LIMIT > HBGUNDiSET,il then go te ERkil;
DUT_PUSITIUON(NSETS;J)=TRYUCT(J);
SLIMINSETS)=SET_LIMIT;
S: TO CLUSE:
10 FiLE (PRINT) SKIH EUIT


```
            F(4),\times(15),F(4)1):
```



```
    GURATION SET CUTPUT, *'(5) EUIT
```



```
            -PUSITION ELEMENT OUT' BCUND BASIS SET *',
            (44) '-H)1A,2 (SKIP,A));
        I=1 TC NSETS;
            pojt FILE (PKINT) EulT
                J,SET(A),DUT,POSITIONGI,1),SLIM(II,BASIS(I),I,
                NODE{PKOD(SET(J),1|),: -->:
                =2'tu DuT_PGSITIOM(I,11-1),'.',
```



```
                (SKIP,F(4),X(6),F(4),X(5),F(2), X(3),F141,X(3),F(3),
                X(5),F(3),CGL(53),(NO_PARTS+2), (A,X(1)1):
            PUT FILE (PRINT) EUIT
                HK,SET(K), LOT PGSITIUNIL,K-1+1)
                ODE(PROOISETGN,NH)," -> "
                NGDE(PRODOSET(K),LJ) dO L=2 TG DOT_PGSiTIGAII,N-J+il-i)
                O'(NOUEIPROOLSET(K),LI) DO L=DUT_PGSITIONII,K-J+1) TO
                NO_PAKTSI OO K=J+1 TC HASIS(II+J-11)
            (SKIP,F(4), X(0),F(4), x(b),F(2),
            MUTFILE (PRINT) EDIT
            I(K,SET(K),'2',N:JDEIPRODISETLK),1H!,' --> .',
            NODE(PROD(SET (KI,LI) DO L=2 TC NG̈_PAKTS)
            DO K=bASIS(1)+J TO SLIM(1)|)
            SK(P,F(4),X(6),F(4), X(6),A(1)
        END;
BYPASS2:
            NU_SETS=NSETS;
        PUT FILE (PRINT) EUIT
    ('...END OUTPUT FUR LR(O) GENERATE SECTION....')(SMIP,A):
    END LNO_GENERATE;
* SLRIl| TABLE GENERATOR. */
    M-GENERAT
        GIN:
            PuNCH FILE CUTPUT STkEAM
            ELEMENT,NO INADI FIXED BIMARY (31,0) IGITIGL IC:0
            TOP FIXED BINARY (31,0) INITIAL (11,
            II,J,K,L) FIXED GINARY (31,0),
            M,
            FULLUW (2:NO_NON,NL_NUN+1:NCSYMS) BIT II)
            MASTER-ERROR GIT (1) INIIIAL ('OIB) ALIGNEU,
            (KED,TERM) BIT IH) ALIGNED;
        ONSIZE SNAP SIGNAL ERROR;
        LN SUBRG SNAP SIGNAL ERRCR
        UN SIKG SNAP SIGNAL ERRDR;
        CA EKR゙UR SNAP GU TO EE
    fgrm tail jymgiol (nonfekminal only) tigansitive culubfie matrix
                    mucusa4
                    2r.u0435
                                    Lr.eveysu
in0u5400
Mnv6%=0,
-nu0}
F-6\hat{<s5}
LF-6\hat{c}<51
tricongis
LK-6059%
njuzsso
2N-NOM%
Lnu6n5Sd
nnこ6055%
Ln:glcog
LkGolged
Lmubleg
acoic:4
LkNolcoo
anilgos
Lancicos
LkeblGO%
LicGaGiM
Lnjuicl2
LncGicis
LncGiclis
HiOGIGIO
LKGGicit
LKGGICIT
LkJG1E19
LinOu1g20
Lneliczi
SLRGIG&2
SLEG1G\angle3
Surglezj
SNG1C26
sLkg1C27
SLktiocz8
SLRGiEa,
SLr61031
Likgiesz
SLn6l03;
SLKGiGSt
SLKivive
kGilcs7
Lin61%je
4%6164
SLCGle4,
LRW1C42
```

```
Mtatl mitialilel to an lugiotity matmix of bimensicm ful nijo.g.
    DC I=c TL, vis_Pkjos:
```



```
            (F MapTOLPádo(I,j)) <= mg_nca then
```



```
        END; makShal (TAIL);
l**
```



```
SIMILAK TO WAKSHALL'S ALGOKITHM. NUTICE THAT FGLLUNN OF EVERY
that the "transpcse" cf the tail matkix is useu.
```

```
\[
\begin{aligned}
& 0 \begin{array}{l}
I=2 \\
\text { IF } \\
\text { TO NU NUN: } \\
\text { NL }
\end{array}
\end{aligned}
\]
I* the following mod" was unly executed fur k=ite inaje witit stat THEN THIS ROUTINE WOULO DUPLICATE DE REMER 'S ME THUD. THAT IS, F ER A REUUCE STATE THE REOUCTICN WOULD BE EATEKEL IA ALL TEKMINAL cilumns of the tade
```

```
DO \(\begin{gathered}K=2 \text { TO NO_SETS: } \\ \text { IF }\end{gathered}\)
da L=molit \(=0\) then
DO L=NO_NDN+I TO NC SYMS: end;
```

```
END;
```

\qquad

``` U;
```


END ENC

```
'** process all reduce states, that is, fok all states requifing NO REOUCTION, ENTER THE APPRGPRIATE NEGATIVE PRODUCTIGU REQUIK IN THE TERMI MAL SYMBOL COLUMNS IFOR TERMINALS IN FGLLUM(STATE,*),
CO \(I=2\) TG NG_SETS;
IF REDUCE(I) \(=0\) THEN GO TC SKIP_REUUCE IF REDUCEEII < O THEN
```



```
DO: \({ }^{\text {If TA }}\)
FTAB
UO:
UT file (PRINT) SKIP EUI
```



``` -TRANSIT AHEAD SETS ARE NUT JISJCINTT.
-
```



``` F(3),A,F(3),A,F(4),A,F(41):
```


ENu;

```
ELjE TAOLE(i,w)=氏EDUCE(I):
```

\qquad

```
1* muke thain likeductiun fon this Set. */
ELSE
```



```
OU TLP=TUP TU TUH*KEUUCEIIJ-1
```



```
            DO;
            If TAULE(I,j) = = THEN
            PuT FILE (PRINT) SKIP EOI
                ('STATE 4,I,' IS INADEGUATE AIND IHL JiMPLE
                    :'I-LOOK AHEAD SETS ARE NOT DISNGINT.A:
                    'TRANSITION IS UNDER ',NUUEIMAPFREMIJHI
                    "' = ',MAPFRCM(J),' IN CULIMNN ',J-1,
                    MULT REDUCE U(TOP)\(A,F(3),2 A,SKIP,A,
                    A(NO_CHARS),A,F(3),A,F(3),Ȧ,F(4),A;F(4)1;
                    AASTER_ERROK='1'm
                END:
                END;
            END:
SKIF_REUUCE:
            IF CJunt_inAuE&uate_states q= 1 then gu to prtijt;
%*um count the inadequate states, if fok any reajlin the state is
FOUND TO. BE. INADEGUATE THEN IT IS NUTEUU ANO NU FURTHER CHEGINING
IS UCNE FCR THAT STATE.
            PUT FILE (PRINT) SKIP (4) ED[T
            /results of inavequate state coumtek inot lincluuing ',
            -unsulvable States) fullon...'|(2 al:
            CC I=2 TUNU_SETS:
            ELEMENT=O
            RED=1043:
            Cu J=2 TCCNC_SYMS; (f) TABLE(I,J)=0 THEN GC TG enCELCK;
            IF TAULE(I,J) < O Then
            DG; R REO THEN
                rio then
/* check fer same Réuuction in this set. */
                    IF TABLEII,JI = ELEMENT THEN
                            00; Put FILE (PRINT) EUIT
                    'STATE ',1,'1S INADEGUATE dELAUSE ir.
                    (2)
                    NJ_INAL=NU_INALLI;
                cNO;
            ENu;
            ELSE
            REO=11:O;
            lf TENM THEN gu tu hixed;
            ELEMENT=TABLEい!,J;
            ENO:
ELSN;
ELSE;
IF J > NC_MUN THEN
```


PUI FILEE TPRIMTH EDIT iSk If，An Fis ineal：

PRIDT：

PUT FILE（PRTMI SKIP \＆ 51 EiORT

CC $I=2$ ta ma＿sers：

eypass3：

 TRAGII FG $\mathrm{E}=1 \mathrm{TE}$ ITMCLECII

 PUT FILE（PAIMTI EUIT
 ENO SLR1 GEMEATE：

```
/* mARSHALL ALGLQITHMA FO
```


1．M（1，J）$=\mathrm{MCInH}$

＊）

$$
\begin{aligned}
& \text { declare }
\end{aligned}
$$

```
    NC K=LdOLNUSM, 1) TG HDOUNU(M,i);
        IF M(I,K) THEN,
            J=LBOUND(M,2) TL HEUUNUM,
                ENE:
            EN:i
END AMRSND;
* dalancei binaky seakch ifie symbil table ma intenancé. */
OSTSRE: PRMEEDURE (ITEA,FLAG,POS,TREE):
    procecufe bstSla is the implementation of an al GJRIthm fog
    PROCESSING ANO MAIHTAINING A OYNAMIC INFURHATION
    TKucture in the form uF a particular type of ginary
    garch tree, an avl tree.
        parameters:
        item - Kír flr ketkIEVal,ginsertiun lr ueleticin
        LAG - STATUS CGDE FDR ATTEMPT ED FUNCTIGM
        POS - LINEAK INDEX OF NODE INSERTED OG RETRIEVCD
        tree - Structlre containing binary Search tree,
    */
    ceclare
        (FLAG,puS) fixEd Hinaky 131,0)
            ITEM CHAR (*),
            TKEE,
                2 NOGE (*) CHARACTER (*),
                2 LL (*) FIXED GINAKY (15,0),
                2 RL (*) FIXED BINARY (15,0),
                2 TAG (*) BIT (*) ALIGNED,
                2 AVAIL FIXED BINARY (31,0),
            1 (0:32767) FIXED BINARY (15,0) BASED (LIPNI),
            L2 10:32767) FIXED BINARY (15,0) BASED (LIPNTI:
NSERT:
    BEGIN:
        Attempt ta insert ine specified node in the tree.
        revrace the Search path to perform balance tag
        MEIATENANCE ANO AT MOST CNE RESTRUCTURING.
        THREE GALANCE TAG CONDITIONS WHICH REUUIRE SEPARAT
        ACTION AAY OCCUK AT A NOOE DURING PATH RETRACING:
            CTION HAY OCCUK AT A NODE DUR ING PATH RETRACING:
            INSERTION AND fETRACE FURTHER (LONGER PATH):
            2) TAG IS UNBALANCED IN THE OPPOSITE GIRECTIUN
            FKJM INSEKTION - SET TAG TO DOC'B MND EXIT:
            3) TAGG IS yiNGALANCEO IN THE SAME UIRECTIGN AS 
                INSEKIION - NOUE IS NCKITICAL*; RESTRUCTUKE TH
            estructuking consists of Twu basic lases aitmifu
    EfI-RIGRT SYMMETRY:
            1) Criticical njue is left(kighti heavy anu its left
                (RIGHT) CESCENOANT IS LEFT(RIGHI) HEAVY -
                FUTATE SUGTREE CUMPONENTS;
            2) ciritical noge is left(right) heavy and itS left
                GRIGHTI SUSTREE IS RIGHTILEPT, HEAVY - SPLIT
                KHIGTE SUBTREE COMPLNENTS.
    */
    DEClare
```



```
    Fixcu blNaRy ($1.j)
```



```
    HGaL vit (I) Aligvej
```



```
USE*I
Cukk,SIACK(1)=alNor
og tap=1 by l mhile iluŃr = = m
    STACK|TOP!=CUR\alpha,
    IF ITE:4=NODE(CUKR) TME:
        1* DUPLICATENKEY *;
        OL:
        FLAGG4;
        PES=CURE:
    ENU ;
    STKFLGGTOP:=ITEM > NODEICUKR:
    IF STKFLG(TUP) THEN CURK=RL(CUKE):
ELSE CURR=LLICUKRI
IF A VAIL = O THE
    /* RETURN SPACE JVERHLOW COUE */
    DO;
        FLAG=6;
        PET=OR';
* Get; space frum avallabilitr list */
sack(tor)=avall:
TJP=TOP-1 ;
IF STKFLGGTGP! THEN KL&STACK(TOP|)=AVAIL
ELSE LL(STACK(TOP))=AVAIL ;
NODE(AVAILI=1TEM;
COUNT=CCUNT+1
FLAG=2 ;
PMV=AVAIL :
RL(STACK(TOP+1))=0
/* ROOT NUUE? */
IF TOP = O THEN RETURN;
%* EETRACING *'
    /* conuition 1 *
    /* CONUIION: */
```



```
    TLPP=TUP-1;
    If T
*N0:
```



```
    clndITIUN 2**
    00;
        TAGISTACK(TOP!)=roc*b
        re turn;
f* Cunvition a - mistmuctues #f
```

LLS $11<04$
ELS $T 1<35$ LEST1く85
CESI $1<00$ UESTleco oostlcsa sosilecs
oejilcho OESTl＜40
SESTl Dualk vosTle93 SLST1＜74 sus Ti＜ 95 WDST1296
QEST1297 0 OES 12298 BEST1299 UEST1SJO OEST1201 08571902
0.051303 U0ST1304 OEST $1=05$ 00211326
05511307 －6ST1308 OBSTI309 20ST1j10 Bos T1311
$065 T 1312$ $06 S T 1312$
OUST1313 － 6 T1 1514 $06 S T 1315$ ots T1516 86511317
$06 S T 1318$ BOSTiJ19 BEST1320 －$t 5$ ST1321 SEST1322
BEST1323 8 EST 12323
$805 T 1924$ sebstise4
siss 1325 －65T1320 BBST1327 ois 71328
0.511329 oes
óstili329 DOSTIシ3i uestias obs 11333
oostij34 D02TI 334
00511335 00211335 ousilas 7 BEST1338 0 ot 11339
00512340
 ULS $\mathrm{T}_{1} 542$
0.JT1343

```
    STACKTOP=STACK{TUN}, 音;
    STACKTPZ=STACK(TUP+2);
```



```
    %* PUINTERS FUR KIGHT UK LEFT SYMMETKY */
    if SThFLG{TUP! then
        DO ;
            LiP(NT=AOUR(RL)
            ZPNT=A\nuOK(LL);
        ENoD:
        ELSE
            00 ;
        L1PNT=AODR(LL);
        L2PNT =A0DR(RL)
    IFND:
    IF STKFLGG(TOP) = STKFLGGTUP+1) THEN Gu ta CASEz 
    /* CASE I RESIRUCIURING *'
    1F STKFLGGTOP-1) THENRRLSTACKITGP-1) =STACKTP1 ;
    ELSELLLSTACKiTJP-1HI=STACKTHL;
    LI(STACKTUH)=L2(STACKTP1:
    RETURN :
    I* CASE 2 RESTRUCTHRNNG(STACK(TLP-1))=STALKTP2 ;
    IF STKFLGITOP-1) LL(STACKITP-1)I=STACKTP2
    ELSE LL(STACK(TUP-1)I=STACKTP2
    %* GALANCETAG VARIATIGNS
        OU :
            TAGG(STACKTP2)=000%0;
            TAGG(STACKTP 2)= +00'G;
                v0:
                    IF STKFLGITUN) THEN TAU(STACXTGP)='10'E;
                    ELSE TAG(STACKTPI)=110*B;
            ELSE ;
            ELSE
                DO; (F STKFLLGITOP: THEN TAG(STACKTP1)=001:B;
                ELSE TAG(STACKTUP)=&O1:B;
            NO END:
        L2(STACKTP1)=L1(STACKTP2);
        LI(STACKIPC)=L1(STACKTOP):
        LI(STACKIPC)=L1(STACKTOP):
        LL(STACKTOP)=LL(STACKTP
        LZISTACK
    END RWSEKT;
ENNU INSEKT;
ITIAL:
GEGIN
COVSTKUCT AVAILABILITY LIST GY LSING RIGHT LINK
fielus of ealh available ngide pusitiun. Set gitmen
FlELUS DF EALH AVAILABLENNT
*/
declare l fixeu binary (31,0);
AVAIL=I ;' hbounv(EL,L);
KL!I-1!=1;
Evo ;
001:%4
```



```
3..ili=n%
x.stljs
4usi=32
5051:j5z
Murij5%
```



```
omsl13, 
vesitsbs
0csillos7
m6311-3y
<0.1:255
OEOT1=00
scit1<sl
~sडfisoz
O=STi=02
*)
~=5T1305
CASE2:
* CASE 2 hESTRUCTURING *
```



```
        RETURN:
HEGIN
马डTiدOC
```

```
Rl{HBCUNU(x́,H)!,kl(C)=0 ;
            LL=0:'0. S
            CCLNT=C;
    ENO BSTSLR
    ENU TrE_WNOLE_THING
    gC TC reusable;
ER_OL: PUT FILEIMRINT) SkIP ELIT
(1---ERkjR - in input pafmameters---()(a)
ERRO2:
PUT fILE(PAINT) SKIP EDIT
    (:---ERROR - IN INPUT ENCODE SECTIGN---I)(A):
    gC TL reusable;
EKRO3:
    (،-ILE(PRINT) SKIP EUIT
ExRQO4:
    GO TO REUSABLE;
    PUT FILE(PRINT) SKIP EOIT 
    GO TO REUSABLE;
    Pu,FILE(PRINT) SKIP EOIT
        -CONTIGUOUS'I(Z A);
    GOTO REUSABLE;
ERfog:
        PUT FILE(PRINTI SKIP EDIT
        (:--ERRUR -.IN OUJNG SECTIUN---')(A);
    gctic reusable:
    PUT fILE(PRINT) SKIP EDIT
    (:---ERROR - IN LRIO) SECTIÜN---')(A)
    GC TO REUSABLE;
    R08:
        PUT FILE(PRINT: SKIP EOIT
ERR09:
    PUT FILEIPRINT) SKIP EDIT
    ("---EkRor - unSOlvable inadequate state---')(a);
ERR10:
    GO TU REUSABLE;
    ('---ERROK, - OVERFLUH OF REDUCTIÜN QUEUE----')(A):
        gu to reusable:
    ERRIl:
        PUT FILEIPKINT) SKIP EDIT
```



```
    EkRI2:
        GO TO XEUSABLE; SKIP EDIT
        (0--ERROK - BASIS SET OVEKFLOw---')(A);
        Gu to keusable;
        PUT FILEIPRINT) SXIP EDIT
        PUT FILEIPRINT) SKIP EDIT 
        gu to Reusagle:
    end reusable;
ENDMAIN:
```

LUST1404
Qas 1405
BUST1405
SOST1407
SBT1408
DEST1409
BUST1410
DNAM1411
MAINLSIZ
MADN1413
Mat N1414
MAINLIC16
MAINL416
MAINL 417
MAINL417
MAINi418
NAIN1419
 malnl421
MAINL 422
MAIN1423
mainlem
MAIML425
MAINL426
MaIN1420
MAIN1420
MalN1430
malnlali
MAIN1432
NAIN1433
NAIN
maini434
MAIN1435
mainlis36
MAIN1437
MALH1438
MAI R1438
MGI N1439
MAIN1440
MAIN1441
HAIN1442
MAIN1443
MAIN1444
MAIN1445
MAIN1445
MAIN1440
MAIN1447
MAIN1447
MAIN144B
MA1/N1450
MAIN14bl
MA1 Ni 452
MLItit553
mainlast

APPENDIX D

LOGIC BLOCK DIAGRAM

VITA

Joseph Lee Gray

Candidate for the Degree of

Master of Science

Thesis: TMPLEMENTATION OF A SLR(1) PARSING ALGORITHM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Poplar Bluff, Missouri, April 24, 1944, the son of Mr. and Mrs. Howard Gray.

Education: Graduated from Poplar Bluff High School, Poplar Bluff, Missouri, in May, 1962; received Bachelor of Arts degree from California State University at Long Beach, Long Beach, California, in January, 1971, with a major in Mathematics; completed requirements for the Master of Science degree at Oklahoma State University in May, 1973.

Professional Experience: Graduate assistant, Oklahoma State University, Computing and Information Sciences Department, Stillwater, Oklahoma, August, 1971, to December, 1972; computer repairman and instructor, United States Army, May, 1966, to May, 1969.

