
IMPLEMEN.TATION OF A SLR(l)

PARSING ALGORITHM

By

JOSEPH LEE GRAY
!(

Bachelor of Arts

California State University at Long Beach

Long Beach, California

1971

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

May, 1973

M't'S/5

/973
C,-779..;_
6/ ·;),

IMPLEMENTATION OF A SLR(l)

PARSING ALGORITHM

Thesis Approved:

Dean of the.Graduate College

OKLAHOMA
STATE UNIVERSITY

LIBRARY

JUN 1 1973

PREFACE

This thesis is a description of the SLR(l) parsing algorithm.

The advantage of using SLR(l) techniques in syntax analyzers is the

generality and efficiency over other parsing schemes. The description

is designed to appeal to the reader's academic as well as implementa­

tion interests.

Thanks are due to Dr. Donald Fisher and Dr. George Hedrick for

their suggestions for improvement of this thesis and especially to

my major adviser, Dr. James Van Doren, who, above everything else,

asked me questions that made me think.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION • • • . . 1

II. CONTEXT-FREE GRAMMARS 4

Definitions • • • • • • • o 4
Parsing • • • • • • • • . 10
Relations and Closures of Relations • • • • • • 15
Practical Restrictions on CF Grammars • 23

III. LEFT TO RIGHT TRANSLATION OF LANGUAGES . .
The LR(k) Method ••••••••••
The SLR(l) Method • , , ••••••••••
Comparison of Table Construction Methods

IV. CONCLUSION • • • •
A SELECTED BIBLIOGRAPHY
APPENDIX A - LIST OF SYMBOLS
APPENDIX B - USER'S GUIDE •••

APPENDIX C - PROGRAM LISTING

APPENDIX D - LOGIC BLOCK DIAGRAM

iv

. . .

. . .

26

26
35
45

51

53

56

58

66

80

LIST OF TABLES

Table Page

I. Configuration Sets - LR(l) Method on G2. • • • • • 30

II. LR (1) Configuration Sets for G3 • • • • • • • • 31

III. LR(l) Table for G3 • • • • • • • • • • • • • • • • • • • 34

IV. The "Overlay" Modification of Table III ooeec,oe

V. LR(O) Configuration Sets for G1 • • • • • • ••

VI. SLR(l) Table for G1 •••••••••••••••• • • •

VII.

VIII.

IX.

SLR(!) Configuration Sets for G3

SLR(1) Configuration Sets for G4

SLR(l) Table for G4 •••••••

v

.
• • • • • • • • • • • Cl

.

37

38

39

46

48

49

LIST OF FIGURES

Figure

1. Syntax Tree for s+*?i+i? •••••••••••• . .
.

Page

8

8

3. Boolean Matrix Representation of H(G1) ••• " • • • • • • • 17

4. Graph Representation of H(G1) ••••

5.

6.

Boolean Matrix Representation of H+(G1)

Graph Representation of ~(G1) •• . .

. . .
.

.
7.

8.

Parsing ?affc? Using Table III

?i+i+i? Using Table VI

• • • • • . . .
Parsing • •

18

19

20

34

41

9. Parsing ?abc? Using Table IX • • • • • • • • • • • • • • • 49

•• -i

CHAPTER I

INTRODUCTION

This thesis is a presentation of a reasonably general method for

parsing and gaining conceptual insight into languages described by

context-free (CF) grammars. Included are the definition of a CF gram-

mar, a development of some of ,the characteristics of a CF grammar, and

the definition and construction of a general parsing scheme for a sig-
,; .

nificant subset of CF languages. The purpose is to show how to develop

certain conceptual characteristics of any particular CF language and

at the same time mechanically construct a table-driven syntax analyzer

for that grammar by using the method for table construction contained

herein, The former is particularly valuable for languages with which

the reader is not intimately familiar.

The main area of applicability is in writing translators for com-

puter programming languages. In particular, the parsing method applies

to a large subset of CF languages written in Backus-Naur Form (BNF) in

which most of the commonly used programming languages can be described

approximately. Syntax analyzers are only part of the compiling process

and are usually intertwined with other parts (semantic routines, r::can-

ners, code generators, etc.); however, this paper isolates the svntax

analyzer for the purpose of examination.

A useful side effect of the table construction method is that an

understanding of the grammar and the language may be obtained even if

1

the complete table cannot be generated for a particular grammar.

Hence, this thesis will serve as a useful guide for studying program­

ming languages for which no compiler is available if the user can

express the grammar in BNF.

2

There has always been a decision between whether to program in a

low-level language such as assembler or machine language, which is dif­

ficult, machine dependent, and fast in terms of translation time, or

in a high-level language such as FORTRAN, which is easier to do, easier

to train personnel for, and machine independent, but slower in trans­

lation time and perhaps not applicable to a particular problem. At

this time, the concensus seems to be that the high-level languages are

more desirable; therefore, one goal of the computer scientist is to

correct the deficiencies. The solution is to write several high-level

languages for different areas of applicability and to write efficient

translators for them. Out of this goal have come translator writing

systems (TWS) of which one part is the syn.tax analyzer. Writing a syn­

tax analyzer for a TWS should be done in such a way that the analyzer

can be used for a large class of grammars (e.g., a large subset of CF

grammars), and it must work efficiently. It is with this goal in mind

that this project was undertaken.

The basis for the method of parser construction presented in this

thesis was developed by Knuth (10); and the first widely publicized,

efficient implementation of the method was developed by DeRemer (3,4,

5). An analysis of both methods (table construction and parser con­

struction) and certain optimizations on the table construction method

have been developed by Aho and Ullman (1,2). The implementation pre­

sented here has similarities to all of the above plus some of the

author's own innovations.

In particular, DeRemer (4) has demonstrated tAat the technique is

superior or equivalent in efficiency to other parsing methods such as

operator precedence, simple precedence, bounded context, or McKeeman's

mixed strategy precedence (MSP) (11) and also more general in its

acceptance of languages.

3

CHAPTER II

CONTEXT-FREE GRAMMARS

Definitions

In general, a context-free grammar is a set of rules specifying a

language. The language, L, is some subset of the set of all finite

strings of symbols from an alphabet, A. That is, (possibly) not all

strings of elements of L's alphabet are in L. The purpose of the gram­

mar is to specify which strings can legitimately occur in L. Although

the alphabet, A, is finite, the set of strings of A, denoted by A*, may

be countably infinite. However, depending on the grammar, L may or may

not be infinite. A second purpose of the grammar is to give a finite

representation of L, even though L may be infinite.

To specify a grammar, there is a need for a set of symbols that is

disjoint from the alphabet so that the grammar may be written in such a

way that the rules of the grammar are not confused with strings in L.

To accomplish this, a set of metasymbols, usually referred to as~­

terminal symbols and characterized by the property that they do not

appear in the alphabet, is used. The metasymbols represent the syn­

tactic categories of the grammar.

The union of the alphabet and the metasymbols is referred to as

the vocabulary, V, of the grammar; and the set of all strings of sym-

bols from the vocabulary is denoted by V*.
., I

5

Colons, commas, periods, and semicolons are punctuation symbols in

the production rules defined below. They are not in the vocabulary. A

comma means "is followed by"; a semicolon means "or" (exclusive); a

colon means "may be rewritten as"; and a period is an end delimiter.

There are many variations in punctuation. Often the commas are

replaced by blanks, the semicolons by vertical bars, the colons by

either arrows or double colons followed by equals, and the periods by

either blanks or semicolons.

Finally, the grammar is specified by a set of rules (also called

rewriting rules or productions) of the form Ui: ui. where Ui is a

metasymbol and u1EV*. The set {U} has the property that exactly one

element, say Ug' appears only on the left of a colon and never on the

right. The Ui is called the goal symbol (also distinguished symbol).

This definition is overrestrictive but serves the purpose of this the-

sis. Ui is called the left-hand-side (LHS), and ui is called the

right-hand-side (RHS).

Formally, a grammar, G, is defined as a quadruple (VT' VN' P, S)

where VT is the set of terminal symbols, VN is the set of non-termi­

nal symbols, P is the set of productions, and S is the goal symbol.

As an example, the grammar, G, is specified by:
l

1. S: ?, E, ?.

2. E:E,+,T;

3. T.

4. T: P, **, T;

5. P.

6. P: (, E,);

7. i.

Here, VT•{?,+,**, (,), i}, VN • {s, E, T, P}, Sis the goal

symbol, and P is given.

6

The reader may ask how to represent one of the punctuation symbols

in a production rule if it is actually in the alphabet; possible an-

swers are to use some other symbol or to enclose the symbols of the

alphabet within some other symbol not in the alphabet. By definition

of the action of the semicolon, E: E, +, T; T. is equivalent to the

two rules E: E, +, T. and E: T •• The punctuation used (13) also

allows the use of multi-character symbols.

Since a production means that the LHS can be rewritten as the

RHS, applications of the production rules result in the following:

PRESENT STRING APPLIED RULE

(1) s
(2) ?E? 1
(3) ?E+T? 2
(4) ?T+T? 3
(5) ?P+T? 5
(6) ?i+T? 7
(7) ?i+P? 5
(8) ?i+i? 7

The final result, line #8, is a terminal string, that is, a string

of terminal symbols. Each line is a direct derivative (6) of the

previous line. Or, more formally, X is a direct derivative of W

(written W+X) by application of the rule U : u. if there are

(possibly empty) strings x and y such that W = xUy and X • xuy.

The transitive closure of +, denoted by +*, defines X as a deriv-

ative of W if there exist strings w0, w1 , •o•, Wi such that W =

Wo + W1, w1 + W2, ••• , Wi-l + Wi a X. Line #8 is a derivative of

line #2, for example. All derivatives of the goal symbol are called

sentential forms. Sentences, the elements of the language, are

7

sentential forms consisting of terminal symbols only. More formally

then, a language is defined as the set of sentences, that is, the

strings of terminal symbols derivable from the goal symbol.

Since the granunar specifies the language, it now should be pos-

sible to tell what strings are valid in L(G1), the language generated

by G1 • According to rule #1, legitimate strings are enclosed by

question marks. Rules #2-3 describe an E as a sequence of T's sep-

arated by +'s. For example, E+E + T+E + T + T+E + T + T + T+T + T +

T + T specifies that an E can be the sum of four T's. Because E

appears in its own definition, the length of the string that can be

produced is arbitrary. In this case, it is left recursion. (E ap-

pears as the leftmost symbol of one of the RHS alternatives defining

E.) If the rule were written E: T, +, E., then it would indicate

right recursion. If there were a rule such as E: T, E, T., it

would indicate embedtied recursion. Rules 114-5 are similar in that

they define a T to be an arbitrarily long sequence of P's separated

by ** 's. Finally, rules #6-7 define a P to be eithef a parenthesized

E or an i. Recursion is a mechanism by which the finite grammar

can describe an infinite language. For example, in L(G1), any arbi­

trarily long sequence of i's separated by +'s is a legitimate

sentence.

A conventional way to describe pictorially the derivation of

?i+i? presented earlier is given in Figure 1 and is called a syntax

tree. Syntax trees are useful in that they reveal something about

the structure of the grammar. For example, the question of precedence

of operators and whether a particular operator is left associative or

right associative is easily seen in a syntax tree of the string in

question. The string io+i1+i2+i3**i4**(i5+i6) and its syntax tree

are presented below in Figure 2. (The subscripts are only to facil-

itate correspondence of the string with the tree.

/1~
? E "?
E/1 T

I I
T p

I I
p i

I
i

Figure 1. Syntax Tree for S+*?i+i?

8

If the tree is traversed in postorder (9), it is clear that pa­

rentheaized expreasions have precedence (i.e., they are encountered

first in a postorder traversal) over **, which has precedence over

+. Also, + is left associative while ** is right associative.

G1 specifies FORTRAN-like arithmetic expressions. The associativity

(grouping), right or left, is determined by the recursion, right or

left. For some syntactic units, the grouping is unimportant; for

example, a COMMENT is usually defined as any string of symbols of the

alphabet with particular delimiters (e.g., /* *I in PL/1), and the

grouping of the symbols is usually unimportant. However, the group­

ing is of utmost importance in syntactic units such as arithmetic

expressions. Examination of G1 and syntax trees for different sen­

tences of L(G1) reveals the 1 to 1 correspondence of left recursion

with left associativity and right recursion with right associativity.

9

The reader may well ask, "Is the syntax tree for a particular

string unique?" Or perhaps more importantly, "Are the members of a

set of syntax trees for a given string equivalent?" This is all part

of a larger question, namely, "Is the grammar ambiguous?" A grammar

is said to be ambiguous if the language produced by the grammar is

ambiguous. Formally, a grammar is unambiguous if there does not exist

more than one canonical derivation sequence for any sentence in the

language. A thorough discussion of grammar ambiguity is beyond the

scope of this thesis; suffice it to say that, for the purpose of this

thesis, if a given sentence has two or more different syntax trees,

then the grammar is ambiguous. In particular, the method presented

in this thesis fails if the grammar is ambiguous. However, if the

method fails, it is not necessarily true that the grammar is ambigu-

ous.

Parsing

Due to the complexity and depth of moat modern high-level pro­

gramnting languages, there is a need to produce syntax analyzers me­

chanically to minimize costs of translator implementation, to main­

tain some degree of uniformity across different machines, and to

facilitate changes and extensions to the language.

10

How is a string of L analyzed? What exists at this point is a

set of rules for generating sentences of L(G). For a small finite

language, one method is to generate all possible sentences and save

them and then, to check any input string for validity, simply do a

look-up. However, even for G1, this method is not feasible if for no

other reason than the recursion allows arbitrarily long sentences.

There are two general methods. of analyzing (also called recog­

nizing or parsing) elements of a language. The first, and possibly

easiest to understand, is the top-down method. It is essentially a

goal-oriented method; that is, predictions are made as to what the

sentence is {hopefully the goal symbol), and then attempts are made

to verify the prediction by determining if all of one of the RHS al­

ternatives are present. Of course, to detect this presence leads to

further predictions for any part of the alternative which is a non­

terminal symbol. Essentially what is done is to "draw" the syntax

tree from top to bottom {root to leaves). In parsing the sentence

?i+i?, the first prediction is that the sentence is an s. But be­

fore it can be said that it is an S, the RHS must be verified, that

is, an E enclosed in question marks. The first question mark is

11

found in the string. Now an E must be found; that is, the presence

of one of the RHS alternatives for E must be verified. If recogni­

tion of some alternative is attempted and failure results, then it is

necessary to "backup" and try a different alternative; if all alter­

natives have been tried, then the string is not a sentence. Continu­

ing with this example, a try is made to find an E; but, from the

earlier discussion, an E is a sequence of T's separated by +'s.

Therefore, a T must be found; but a Tis one or more P's separat­

ed by **'s; therefore, a P must be found, and is found since the

next input symbol is i, which completes a RHS alternative for P.

Since there is no **, the longest Tis found since P is a RHS

alternative. The + is now detected and the next T in a manner

similar to the first and, therefore, an E has been found and, with

the closing question mark, an S; hence, the string is a sentence in

L(G1). Referring back to Figure 1, what has been done is to work

down the tree, from left to right. Left recursion can cause problems

in top-down parsing. For example, in the above discussion, left

recursion was avoided by saying that an E was one or Rore T's

separated by +'s; however, that conclusion was only reached after

some analysis of the grammaro If the problem had been attacked blind­

ly, an E would have been predicted, then a move made to the alterna­

tive E, +, T and an E promptly predicted; and an endless loop

would be entered.

The second commonly used parsing method is the bottom-up method.

With bottom-up parsing, the syntax tree is not "drawn" but rather

assumed to exist; and the method proceeds to verify this assumed

tree. Again, working with G1 , the sentence ?i+i?, and Figure 1, a

12

phrase of the sentence is defined to be the set of end nodes of some

subtree of the syntax tree. That is, a phrase is a derivation of

some non-terminal symbol. The set of phrases of Figure 1 is {i, i+i,

?i+i?}. The handle is defined to be the leftmost phrase which con-

tains no phrases other than itself. That is, the handle is the left-

most set of end nodes forming a complete branch, which is to say it

is the direct derivation of the leftmost, bottom-most, non-terminal

symbol node in the treeo Hence, in the example, i is the handle.

The following algorithm, given in (6), reflects the general philos-

ophy of bottom-up parsing:

(0) Lets• s0 be a string to be analyzed. For i • O, 1, ... '
n until sn • S has been produced, do the following

steps.

(1) Find the handle of •i•

(2) Replace the handle of si by the name of its father in

the syntax tree.

(3) Prune the handle from the tree.

The sequence sn + sn-1 + ••• +so is now a derivation of so.

The following demonstrates the algorithm applied on s • s0 • ?i+i?.

PRESENT STRING HANDLE STRING AFTER STEP 2 ---
(1) ?i+i? i ?P+i?
(2) ?P+i? p ?T+i?
(3) ?T+i? T ?E+i?
(4) ?E+i? i ?E+P?
(5) ?E+P? p ?E+T?
(6) ?E+T? E+T ?E?
(7) ?E? ?E? s
(8) s

If the steps in the "present string" column are followed back-

13

wards, the derivation S +*?i+i? results. In fact, a rightmost

derivation sequence exists in that each step is of the form PAB +

PcB where B is a terminal string, c is a terminal symbol, and

P€V*; that is, a production whose LHS is the rightmost non-terminal

symbol of the sentential form is used. In this paper, the rightmost

derivation is used as the canonical derivation. A canonical parse

is the reverse of a canonical derivation.
.,

All parsing methods have both good and bad characteristics.

Some are easy to implement but inefficient while others are complex

but efficient. Perhaps it is the lack of a "best" method that has

led to the variety of methods (6). In general, there are two prob-

lems with which all syntax analyzers must deal.

First, the problem of backtracking must be dealt with. In both

bottom-up and top-down parsing, a choice must be made as to which

alternative of a production should be used in the next step of the

parse, Input symbols are then picked up to try to fulfill that al-

ternative. If the parsing scheme picks the wrong alternative, then

it must back up and try another. One way of alleviating this prob-

lem, at least somewhat, is with look-ahead. That is, the parser

scans ahead in the input string to gain a clue as to which alterna-

tive to attempt to match. Some of the questions raised by look-

ahead are whether only to look ahead or to look back at what has

been processed or both and how far to look. As a preview, the

method presented later has implicit unrestricted look-back and one

symbol look-ahead.

The second problem area for syntax analyzers is error recovery.

That is, if and when an error i.s detected, what course of action

14

should the analyzer take. "ERROR IN ABOVE PROGRAM" is not a very

informative diagnostic message. On the other extreme, an analyzer

which could correct every error would have the intelligence to write

programs itself. Error recovery and error correction are not treat-

ed to any degree of sophistication in this thesis.

One of the principal characteristics about a lar$e class of

context-free languages for which parsing methods in,this.thesis
,.

apply is that the syntax analyzers for them can be formal.ized as

deterministic push down automata (DPDA) (6). By push down, it is

meant that, if the DPDA were modelled by a computer program, then

that program would use·· a stack. That is, a history of the previous-

ly travelled path is recorded (remembered). The nature of this

DPDA, which consists of a finite number of states, a push down

mechanism, and state transitions, is to input the symbols of a

string and to make state transitions according to what symbol is

read and the present state. In effect, a DPDA "remembers" the pre-

vious symbols (at least the ones it needs) by the path of state

transitions to reach the present state. The goal is to reach a

unique state, the final state, at the same time the input string

is depleted. A language is deterministic if every sentence of the

language is accepted by a DPDA. That is, every sentence causes the

DPDA to reach the final state at the same time the input string

becomes depleted.

Knuth's original work (the LR(k) method) is equivalent to a

DPDA in its acceptance of languages. The author's implementation

is somewhat less general in that a restricted form of Knuth's

method is used, resulting in a parser which accepts a large subset

of the languages acceptable to a DPDA.

Relations and Closures of Relations

In the previous discussion of look-ahead and look-back, it was

implied that they were methods for deciding which RHS alternative to

use in the next step of a parse. This is equivalent to saying that

15

the handle can be uniquely determined. Usually, when there is look­

ahead, what action to take is determined not only by what the scanned

input symbol is but also by how much of a handle has been recognizedo

In particular, the rightmost symbol (top of the stack) of the partially

recognized handle is of interest. That is, the relation between the

two symbols determines the action. The need for knowing particular

relations between symbois of a grammar has led to 11 number of important

properties and algorithms.

To begin with, it is necessary to review the definition and

properties of a binary relation and describe the notation. For sets

A and B, the Cartesian product of A and B is defined to be

A x B • { (a,b) I ae:A and b E B}. A binary relation, R, defined on

Ax B, is defined to be a subset of Ax B such that the relati~n holds

between the first and second elements of the ordered pairs. The possi­

bilities A • B, AcB, Bc:A, AnB + 9' or MB • 0 exist. There are four

notations used in this paper to describe R defined on Ax B.

Notation #1

R • { (a,b) I a EA, b E B, and a R b}

Notation //2

R(a) • {b I a e: A, b E B, and a R b}

16

Notation #3

The relation can be defined by a matrix whose entries are either

0 (false) or l (true), that is, a Boolean matrix. Correspond the rows

with elements of A and the columns with elements of B. If a Rb, and

a corresponds to row i, and b corresponds to column j, then the ijth

entry is 1. If a i b, then the ijth entry is o.

Notation #4

The relation can be defined by a directed graph such that nodes

a and b are connected by an arc if and only if a Rb. That is, for

a € A, b t:: B, and a R b, there exists an arc from node a to node b.

The properties of a relation, R, defined on Ax B, can be stated

symbolically as:

Reflexive. a R a for every a € A and every a e: B

Symmetry. a Rb if and only if b Ra

Transitivity. a Rb A b R c if and only if a R c

for a € A, b e: A n B, c e: B

If all three properties exist for R, then R is said to be an

equivalence relation; for example, the relation of equality of positive

integers (here A• B) is an equivalence relation.

In the following, i, j, and k are positive integers:

Reflexive. i • i

Symmetry. i • j if and only if j • i

Transitivity. i • j A j • k if and only if i • k

The relation, H, defined on V of G1 by H • {(A,b) I A e: VN, be: V,

C E: V*, and A: b, c. e: P}, exists between all LHS's and the first

(head) symbol of their RHS alternatives. The pairs of G1 for which H

holds are {(S,?), (E,E), (E,T), (T,P), (P,(), (,i)}. It is more con-

17

venient to represent the relation with a Boolean matrix whose rows and

columns correspond to V. For H(G1), Figure 3 applies. Also, for rea­

sons of visual clarity, it is convenient to represent a relation as a

directed graph where nodes related to each other are connected. For

H(G1), Figure 4 applies. In terms of the directed graph, the Boolean

matrix is the adjacency matrix. In Figure 4, an E eventually leads to

a(. Some way to repre•ent this in a single 1tep rather than three is

desirable, That is to say, a relation like H, but which is transitive,

is desired 10 that all possible head symbols of strings that are de­

rivatives of a given non-terminal symbol can be discerned. If H were

transitive (which it is not), then an application of the transitivity

would give EH T A TH P~ EH P, and EH P A PH (~EH(.

But (E,P) and (E,() are not in H since P 11 not the fir1t

symbol of a RHS alternative of a production for which E is the LHS

and likewise for (. Therefore, it is necessary to define a new rela­

tion, Ir', the transitive closure of H. However before defining tt+,

the properties of the transitive closure of a relation need to be

developed.

s E T p ? + ** () i

s 0 0 0 0 1 0 0 0 0 0

E 0 l 1 0 0 0 0 0 0 0

T 0 0 0 l 0 0 0 0 0 0

p 0 0 0 0 0 0 0 1 0 1

Figure 3. Boolean Matrix Representation of H(G1)

18

? 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0

** 0 0 0 0 0 0 0 0 0 0

(0 0 0 0 0 0 0 0 0 0

) 0 0 0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0 0 0 0

Figure 3. (Continued)

Figure 4. Graph Representation of H(G1)

The product of two relations, say Ron Ax B and Pon C x D,

is defined by a RP d if and only if there exists an e EB n C such

that c Re A e Pd is true. If Pis a product relation, say QT,

such that e QT d so that there does exist an f such that e Q f A

f T d is true, then, for the relation RP, which is actually PQT, it
I

is true that c Re A e Q f A f T d. But A is associative and

hence R(QT) • (RQ)T. A theorem (7) that will be used extensively

hereafter states that the Boolean matrix representation of a product

relation can be computed by the product of the Boolean matrices for

19

the original relation. Using the definition of product, the powers of

a relation, R, are defined by Rn• RRn-l where n>O and Rl • R and

the transitive closure of R by a R+ b if and only if there exists

a c such that a Rn c for some n>O. If the identity relation is

denoted by Ro, that is, a RO b if and only if a• b, then the

reflexive transitive closure, R*, can be defined as a R* b if and

only if a Rn b for n~O. For the transitive closure, if each power

of R is considered as a separate relation, then R+ • (Rl u R2 u R3

u ••• u Rn} where n is the number of elements in the set on which

the relation is defined. This is proven by Gries in (7). It should

be clear without proof that R+ is itself a transitive relation. The

transitive closure of H(G1) is defined by a+(A) ... {b EV I A -+* ·r-c

where C E V*L W(G1) can be represented by the Boolean matrix in

Figure 5.

s E T p ? + ** () i

s 0 0 0 0 1 0 0 0 0 0

E 0 1 1 1 0 0 0 1 0 1

T 0 0 0 1 0 0 0 1 0 1

p 0 0 0 0 0 0 0 1 0 1

? 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0

** 0 0 0 0 0 0 0 0 0 0

(0 0 0 0 0 0 0 0 0 0

Figure s. Boolean Matrix Representation of W"(G1)

)

i

0 0 0 0 0

0 0 0 0 0

0 0

0 0

0 0 0

0 0 0

Figure 5, (Continued)

Translating Figure 5 into a graph, Figure 6 results:

Figure 6. Graph Representation of i:t+(G1)

20

H*(G1), the reflexive transitive closure of H, would differ from

Ir"(G1) by having an arc from each node into itself.

There are two subtle but very important ideas that are used here

and need to be brought to the surface. The first is that, when form­

ing the Boolean matrix Jr", a twist on matrix algebra is used. To

actually perform RR, the rules of matrix multiplication are used, with

"and" replacing "times" and "or" replacing "plus." This correspon­

dence is clear when the Boolean matrix is represented with 1 for

"true" and O for "false." That is, for ordinary matrix multiplication

(AB• C), the ijth element of C is defined by

n

cij • L 8 ik bkj ;
k•l

but, for Boolean matrix multiplication, the ijth element of C is de-

fined by

21

where A and Bare square Boolean matrices of rank n. Rewriting the

definition of R+ as R+ •Rn+ Rn-1 + ••• + Rl, it is seen that the

computation of R+ has similarities of evaluating a matrix polyno-

mial with all coefficients equal to the identity matrix. Clearly, in

a mechanical computation, some efficient method for the calculation

of R+ is needed, perhaps a method similar to the nested multiplica-

tion method of evaluating polynomials. Such a method does exist and

is known as the Warshall algorithm. The second point is how to re­

late the powers of a relation to the grammar. n+(G1) is used as an

example. Clearly, nl(G1) is the application of one production, that

is, H(G1). But nl u n2 is the application of one or two produc­

tions. For the graph of Figure 4, this in effect is connecting the

paths of length 2, for example, the arc T~ic Likewise, for higher

powers, H1 u n2 ... u Hi in effect connects arcs of length 1, 2,

••• , i. Of course, this is with respect to the original graph. With

respect to the present updated graph at each step, paths of length 2

are always connected.

Warshall (14) developed an algorithm for computation of the

closure of an n x n Boolean matrix that is superior to other methods

(e.g., nested multiplication). For example, Warshall claims that,

while the computation of closure matrices for other methods goes up

with n3, his method goes up slightly faster than n2,

22

Normally, the Warshall algorithm calls for n iterations; however,

from a practical point of view, the user can, under certain restric­

tions, reduce the number of iterations in the original algorithm and

still produce the desired closure matrix. For G1 , there are 10 rows

in the Boolean matrix representation of H(G1). If the original algo­

rithm were used, 10 iterations would be made, one for each row. How­

ever, there are only seven production rules so that at most seven

iterations are needed. There is only one node for each non-terminal

symbol; hence, the longest possible path has length equal to the number

of non-terminal symbols. But it is also true that three of the pro­

duction rules of G1 have the same LHS, and only one of the rules with

a common LHS can apply at any step. Hence, only four iterations are

needed. The point is that usually a restriction (resulting in greater

efficiency) can be imposed on the Warshall algorithm, depending on the

relation being closed.

As stated earlier, for G1 , four iterations are needed and the

Warshall algorithm makes one iteration for each row of the Boolean

matrix. Since the Boolean matrices of concern represent a relation

(i.e., a set of ordered pairs), the rows may be swapped in any manner

provided similar swaps are made with the columns. Again recalling

that the relation His defined on VN x V, it should be clear that it

is desirable and correct to arrange the Boolean matrix representation

of H so that the non-terminal symbols occupy contiguous rows and that

the Warshall algorithm need only iterate on those rows. (Figure 3 is

arranged this way.) If closure of H(G1) is thought of in terms of

23

Boolean matrix multiplication, the reader will see that, at every step

(i.e., every power of H), the rows labelled with terminal symbols re-

main all zeroes. So it must also be with iterations of the Warshall

algorithm.

A symbolic statement of the algorithm may be found in (14); how-

ever, the major goal of this thesis is to present concepts and methods

that are actually used in an implementation and, therefore, a PL/1

program segment is used to describe the working algorithm.

Let M be a bit matrix representing a relation defined on Ax B

whose rows corr~spond to the elements of A and whose columns corres-

pond to elements of B. It is necessary that A~ B and that, if row

i corresponds to x £ B. (An example of such an M is the first

four rows and all colu~ns of Figure 3.) The PL/1 program segment

follows.

DO K•LBOUND(M,1) TO HBOUND(M,l); /* FOR ALL ROWS */
DO I•LBOUND(M,l) TO HBOUND(M,1); /* FOR ALL ROWS */

IF M(I,K) THEN /* IF AK TH COLUMN ENTRY IS TRUE*/

END;
END;

DO J•LBOUND(M,2) TO HBOUND(M,2); /* FOR ALL COLUMNS*/
IF M(K,J) ~HEN M(I,J)='l'B;

END;

Practical Restrictions on CF Grammars

Gries (7) discusses some practical restrictions on CF grammars so

that mechanically generated parsers can be applied more efficiently to

the languages generated by CF grammars. Some methods require more

restrictions than others. The LR(k) method, to be presented later,

requires fewer restrictions than any other known method for which

efficient parsers can be mechanically produced (3).

24

Restriction Ill

A production of the form A: A. clearly makes a grammar ambigu­

ous, serves no useful purpose, and can easily be detected either me­

chanically or by visual inspection. In this thesis, it is assumed no

such production is present.

Restriction #2

Every non-terminal symbol must appear in some sentential form,

that is, S ~*xAy for every A EVN and x, y EV*. This condition can

be mechanically detected by constructing the relation WITHIN, denoted

by W, and defined by W(A) = {B I B :f.s a non-terminal symbol that

appears in a production whose LHS is A}, then computing w+. For any

"O" in the goal symbol row, except the goal symbol column, the symbol

represented by that column is not "within" the goal symbol and there­

fore violates the restriction.

Restriction 113

Every non-terminal symbol must be able to derive a terminal

string. Gries (7) presents an algorithm for detecting this condition,

which basically consists of "marking" any production whose RHS is com­

posed of only terminal symbols or "marked" non-terminal symbols. Sev­

eral passes over the productions are usually needed; and the algorithm

stops when, during a previous pass, no LHS was "marked." When the

algorithm stops, any unmarked production cannot derive a terminal

string and therefore contributes nothing to the language specified by

the grammar.

Restriction 114

No production is of the form A:., that is, no RHS is empty.

Again this restriction is easily detected by visual inspection. In

this thesis, it is assumed no such production is present.

Restriction #5

25

No duplicate RHS's are present in the grammar. Duplicate RHS's

cause most bottom-up methods to fail but do not necessarily affect the

method presented in this thesis. However, as a general rule of thumb,

grammars with duplicate RHS tend to cause the table construction meth­

od to fail to produce a complete table.

In the author's implementation, Restrictions #1 and #4 must be

detected visually, but #2, #3, and #5 are mechanically detected. How­

ever, only warnings are issued since, if these restrictions are vio­

lated, they do not necessarily cause the method presented in this

thesis to fail but do make it less efficient.

In this chapter, elementary topics have been investigated. For a

theoretical basis for these concepts, the reader is referred to (8)

and, for an application~oriented reference, to (7).

CHAPTER III

LEFT TQ RIGHT TRANSLATION OF LANGUAGES

The LR(k) Method

The reader may well ask which is better, top-down or bottom-up

parsing. There are advantages in both. What is sought is a completely

language-independent (assuming a CF grammar) recognizer that is effi­

cient and combines the most desirable aspects of both top-down and

bottom-up methods. This is precisely what is embodied in Knuth's (10)

LR(k) method, which can be described generally as a parsing method that

scans sentences from left to right, using no more thank symbol look­

ahead to determine whether to input the next symbol or make a reduc­

tion. LR(k) grammars (grammars that produce languages which can be

parsed with LR(k) methods) are the largest known class of CF grammars

for which dete~_nistic (ioe,, no backtracking), left-to-right, bottom­

up parsers can be mechanically generated. In fact, this class of

grammars is capable of describing virtually all of the commonly ui.H:d

programming languages (3). Another way of describing a deterministic

language is to say that the handle can always be uniquely determinedo

That is, the parser never picks the "wrong" RHS alternative"

The LR(k) method, given a CF grammar, produces a tabltl which is

used by a language-independent parsing algorithm to parse sentences of

the language generated by the grammar, In generali Knuth's original

LR(k) method produces tables too large f?r practical use. A closely

related method known as SLR(k) (3) (simple LR(k)), which results in

27

more practical parsers, is the method of principal concern here. How­

ever, for reasons of completeness, the LR(k) method is treated briefly.

If a is a right sentential form, that is, a is a rightmost

derivation of the goal symbol, then FIRSTk (a) is defined to be the

first k terminal symbols derivable from a. That is, FIRSTk (a)•

{w E VT* a ~*wx, x E VT* and either w is k symbols long or w

is less than k symbols long and x • 0}. If a E Vr*, then FIRSTk

(a) is the first k symbols of a. Every right sentential form con­

tains a handle. An informal definition of an LR(k) grammar, given in

(1), is that a grammar is LR(k) if the handle, h, of a right sentential

form, bha, is unique and the production that derived the handle is

uniquely determined by examining bh and FIRSTk (a).

Development of an algorithm which does this examining for all

right sentential forms follows. In actual practice, this consists of

constructing the aforementioned table, which tells the parsing algo­

rithm whether to stack the incoming symbol or make a reduction. A

reduction consists of popping a RHS from the stack and replacing it

with the corresponding LHS. This parsing action is the reason for

stating earlier that the LR(k) method of parsing corresponds to a DPDA.

The row of the table that is used in the decision corresponds to a DPDA

state, the "push down" to the stack; and the method is deterministic

as described above. An LR(k) table is actually two tables in one (1).

The table is considered to be a pair of functions (p,g) such that:

(1) p, the parsing action function, maps the look-ahead

strings (length k or less) into stack, error, or

28

reduce!., where i is a production number.

(2) g, the goto function, maps V to the states (rows of

the table).

The process ends when the final state (a particular row of the

table) is entered. The problem of entering the final state with unex-

pended suffix does not exist since special delimiters are placed before

and after the text to be processed. Also, there is a start state in

which to start the processing. The parsing algorithm is the same for

both the LR(k) and the SLR(k) methods. Actually, the tables are quite

similar for both methods also, but it is in the construction of the

table where the methods differ.

For an LR(l) grammar, that is, k • 1, only one symbol look-ahead

is allowed. It has been proven (10) that any LR(k) grammar can be

rewritten in an equivalent form as ·an LR(l) grammar. Here, FIRST (A)c

H+(A), that is, it contains the terminal symbol elements,

The LR(l) table is constructed by first constructing the configu-

ration sets. There is a 1 to 1 correspondence between these configura-

tion sets and rows of the table. Each configuration set is composed of

items; each item is of the form (A~a.b,u) where A+ab is a production

(represents a direct derivation); the II II . marks the dividing point in

a partially recognized handle; and u is a valid next input symbol if

the item is recognized. There are two important actions used to con-

struct the configuration sets.

CLOSURE - A set begins with items specified by expansion. The first

set begins with (S+.?E?,0). If (A+a.Bc,u) is in the set, then

(B+.d,v) is added to the set for productions B: d. for any de V*

and v € FIRST (cu). Here, a,c £ V* and B e: VN. What is being done is

29

to find an item with the dot to the left of a non-terminal, then to

enter all productions for which that non-terminal is a LHS. FIRST (cu)

indicates what terminal symbol can follow the non-terminal symbol in

the sentential form. Duplicate entries are never made. If FIRST (cu)

has two elements, say v1 and v2, then two set entries are required;

however, the SLR(k) method only has one set entry since FIRST is not

considered when forming the configuration sets. This is the essential

difference in the LR(k) and SLR(k) methods of construction.

EXPANSION - Once a set is closed, it may be used to form a new set.

That is, the algorithm finds all items in A with an X to the right of

the dot (XE V). Then the new set, A', is initialized to these items

with the dot moved to the right of the X such that A' is a set of items

(B+aX.b,u) and (B+a.Xb,u) is in the set A. Each item can be used only

once for expansion. If the sets are numbered from 1 ton, then, if

A• Ai and A'• Aj, the entry at row i, column X (i.e., the column

corresponding to X), is set to j. If A' • A11 , then A' is not added to

the set of configuration sets; but the table is set as if it were

unique.

G2 is specified by:

1. S: E.

2. E: A, A.

3. A: a, A;

4. b.

(B+a.b,c1), ••• , (B+a.b,cm) is denoted by (B+a.b,c1/c2/ ••• /cm).

The results of computation of the configuration sets for G3 are shown

in Table I.

30

TABLE I

CONFIGURATION SETS - LR(l) METHOD ON Gz

SET
NAME NO. ITEMS NOTES

Ao 1. S+.E,0 initial set
2. E-+.M,0
3. A-+.aA,a/b a,hEH+(A)
4. A+.b,a/b a, bdI+(A)

A1 1. S-+E. ,0 from A0 .l
Az 1. E-+A.A,0 from Ao.2

2. A+.aA,0
3. A-+. b ,0

A3 1. A-+a.A,a/b from A0 .3
2. A-+.aA,a/b
3. A+.b,a/b

A4 1. A+b. ,a/b from A0 .4
A5 1. E-+AA. ,0 from.Az.l
A6 1. A-+a.A,0 from A2.2

2. A+.aA,0
3. A+.b ,0

A7 1. A+b. ,0 from A2.3
Ag 1. A-+aA. ,a/b from A3.l
A9 1. A-+aA. ,0 from A6.l

G3 is spec if ied by:

1. S: ? E, ? • . '
2. E: a, A, b· '

3. a, B, c;

4. d, A, c;

5. d, B, b.

6. A: f, A· '

1. f.

8. B: fJ B;

9. f.

The results of computation of the configuration sets for G3 are

shown in Table II.

TABLE II

LR(l) CONFIGURATION SETS FOR G3

SET
NAME NO. ITEMS NOTES

Ao 1. S ... ?E? ,{/)
Al 1. S+?.E?,0 from A0 .1

2. E-1o-.aAb,?
3. E+.aBc,?
4. E+.dAc,?
s. E+.dBb,?

A2 1. S+?E.?,0 from A1.l
A3 1. E+a,Ab,? from Ai,2

2. E+a.Bc,? from A1 .3
3. A+.fA,h
4. A+,f,b
5. B+,fB,c
6. B+.f ,c

A4 1. E+d.Ac,? from A1 .4
2. E+d.Bb,? from A1.s
3. A+ofA,c
4. A+.f,c
5. B+.fB,b
6. B+.f,b

A5 1. S+?E?.,9) "final" set
from A2.l

A6 1. E+aA.b,? from A3.1
A7 1. E+aB.c,? from A3.2
As 1. A+f.A,b from A3 .3

2. A+f. ,b from A3.4
3. B-+f.B,c from A3.5
4. B.+f. ,c from A3.6
5. A+.fA,b
6. A+.f ,b
7. B+.fB,c
8. B+.f,c

A9 1. E+dA.c,? from A4.1
A10 L E-+tlB. b,? from A4 .2
Au 1. A+f.A,c A11 is not a

duplicate of
As

31

32

TABLE II (Continued)

SET
NAME NO. ITEMS NOTES

2. A+f. ,c
3. B+f.B,b
4. B-t-f. 'b
5. A+.fA,c
6. A+.£,c
7. B+.fB,b
8. B+.f,b

Al2 L E+aAb.,? from A6.1
A13 1. E+aBc.,? from A7.1
A14 1. A+fA. ,b from A8 .1
A15 1. B+fB. ,c from A8 .3
Al6 1. E+dAc.,? from A9.l
A17 1. E+dBb.,? from A10 .1
Al8 1. A+fA. ,c from A11 .l
A19 1. B+fB. ;b from A11 .3

The reader who is :i.nte,..es.tP·~ h, ,, .. ~p,-qtancHn~ the structure of a

grammar using LR(k) techniques should pay particular attention to

computation of the configuration sets. For any given item, the dot

delimits how much of a handle has been formed. Closure shows what the

next input symbol can be. Although the same item may appear in more

than one set, the history of how that set was entered is contained in

the entries created by expansion.

Table III contains the LR(l) table for G3 • The table is computed

from the configuration sets by the following algorithm (2):

(1) If (B+b.,u) is in A and Bis not the goal symbol, then

p (u) • i where i is the number of the production B: b.

(2) If (B+a.b,u) is in A and b ~~'then p (v) = (for stack)

for all v~FIRST (bu), that is, for all terminal symbols

that can legitimately follow a in this state,

(3) If (S+?B?,0) is in A, then p (0) • accept.

(4) p (u) • error (blank entry) otherwise.

(5) g (X) entries are as mentioned earlier.

(6) If more than one entry is attempted for any table position,

then the grammar is not LR(k) for the k used in construct­

ing the configuration sets.

33

The parsing algorithm is quite simple once the table is generated.

Also, the parsing algorithm is general in that it applies to a restrict­

ed form of the LR(k) method, the SLR(l) method. The table entry·is

selected by letting STACKTOP (i.e., the top of the stack) select the

row and the next input symbol select the column. When the table entry

is "stack," the next input symbol is stacked along with the table entry

which is a state name. When the table entry is reduce (Le., a pro­

duction number), N symbols are popped from the stack where N is two

times the length of the RHS of the production used in the reduction,

and the LHS of the production is pushed onto the stack along with the

table entry selected by the STACKTOP row and LHS column. This table

entry is always a state name. (This creates the effect of pushing the

LHS into the unexpended suffix and then reading it.)

The symbols in the stack catenated with the unexpended suffix at

any step yield a right sentential form. Working from bottom to top,

this results in S+?E?+?aBc?+?afBc?+?affc?, which is indeed the ri~ht­

most derivation sequence for ?affc?.

34

TABLE III

LR(l) TABLE FOR G3

SE A· .B. s
STATE ? a b c d f 9J ·1 · a· b c d. f

0 s 1
1 s s 2 3 4
2 s 5
3 s 6 7 8
4 s 9 10 11
5 A
6 s 12
7 s 13
8 7 9 s 14 15 8
9 s 16

10 s 17
11 9 7 s 18 19 11
12 2
13 3
14 6
15 8
16 4
17 5
18 6
19 8

UNEXPENDED
. STACK SUFFIX ACTION

0 ?affc? initial condition, read?
O?l affc? read a
O?la3 ffc? · read f
O?la3f8 fc? read f
O?la3f8f8 c? reduce B: f.
O?la3f8B15 c? reduce B: f, B.
O?la3B7 c? read c
O?la3B7c13 ? reduce E: a, B, c.
0?1E2 ? read?
0?1E2?5 9J accept

Figure 7. Parsing ?affc? Using Table Ill

35

The SLR(l) Method

Knuth's original article (10) introducing LR(k) grammars is con­

sidered a classic because of its theoretical soundness and generality"

However, attempts at practical implementation have suggested changes

that result in somewhat less generality but substantially greater

practicality.

DeRemer proposed (3) and implemented (5) an LR(k)-like method

which he called SLR(k) for simple-LR(k). Basically, it consists of

constructing LR(k) configuration sets fork• O; that is, the method

assumes (at least at configuration set construction time) that the

grammar is LR(O). Whereas Knuth's original method uses k symbol look­

ahead while constructing the configuration sets, DeRemer doesn't make

use of k symbol look-ahead until table construction time and then only

if necessary.

The SLR(l) method is stated initially in terms of the LR(l) method.

The FOLLOW function, F, is defined by F(A) • {a I S +*bAc and a•

FIRST (c) where A E VN, a E VT, b EV*, and c E VT*}. That is, F(A)

is the set of terminal symbols which may follow A in any right

sentential form. The following algorithm constructs the SLR(l) table

(2):

(1) Construct the LR(O) configuration sets of items.

(2) Replace each item of the form (A~b.,0), b EV*, in each

set by (A+b.,a) for all a E F(A).

(3) Construct the LR(l) tables from the altered sets of items

with the function g determined as though dealing with LR(O)

sets of items.

36

It is possible to have a conflict, that is, more than one entry

for a table position for the SLR(l) method when one does not exist for

the LR(l) method, which occurs when an attempt to perform the SLR(l)

method on G3 is made.

The author has implemented changes in the SLR(l) method which make

the implementation more efficient. First, the stack and accept entries

are deleted, and the numbers are negated in the p portion of the

LR(l) table. Secondly, the modified p portion is "overlaid" with the

g portion. Here, positive entries must be considered as not only tran­

sitions to a different state (row) but also as signals for stacking;

and the row corresponding to the final state must be identified so that

a transition to it can be detected. But these are minor points. Also,

if it is always agreed to surround the single RHS alternative of the

goal symbol with special delimiters, the 0 column is completely elimi­

nated since the only possible entries are reduction entries and accept;

however, there are no reduction entries in the 0 column except for the

number of the production S: ?, E, ?., but this is detected by detect­

ing a transition to the final state. Also, the final state row and

goal symbol column is deleted since there are no entries in either.

The effect of this "overlaying" is an approximate 33 percent saving on

the size of the table. Table IV shows the effect of "overlaying"

Table III.

This change is now incorporated, and the LR(O) sets of items for

G1 are constructed. But first, some notation should be reviewedo

Earlier it was seen that a particular set was initialized via expansion

of some other set. These items in the initialized set are called the

basis entries. The other entries of a set, that isj those added via

37

closure of the basis entries, are called closure entries. It should be

noted that all basis entries never have the dot all the way to the left

whereas closure entries always have the dot all the way to the left.

The reader is advised that the author's construction of the configura-

tion sets is not identical to DeRemer's (4) in order; however, it is

identical in content. For example, the author initializes the first

state to be the final state so that its position is known reRardless of

the grammar being processed.

TABLE IV

THE "OVERLAY" MODIFICATION OF TABLE III

STATE E A B ? a b c d f

0 1
1 2 3 4
2 5
3 6 7 8
4 9 10 11
6 12
7 13
8 14 15 -7 -9 8
9 16

10 17
11 18 19 -9 -7 11
12 -2
13 -3
14 -6
15 -8
16 -4
17 -5
18 -6
19 -8

38

The SLR(l) configuration set computation and table construction

for G1 are demonstrated in Tables V and VI.

TABLE V

LR(O) CONFIGURATION SETS FOR G1

SET NO. ITEMS NOTES

1. S-+?E?. final state
2. S-+. ?E? initial state
3. S+?. E? from 2

E-+.E+T closure entries for
E+.T the single basis
T-+.P**T entry; closure
T-+.P ceases when dot is
P-+.i left of terminal
P-+ • (E) symbols

4. S-+?E.? from 3; expansion
gives final state

E-+E,+T from 3
s. E+T. from 3 or 8; no

expansion here
6. T+P.**T from 3 or 8

T+P.
7. P+L from 3 or 8
8. J>-1>(• E) from 3 or 8

E+.E+T indirect recursion
E-+. T lengthens the set of
T-+.P**T configuration sets
't+.P
F-+.i
P+. (E)

9. E+E+.T from 4
T+.P**T
T+.P
P+.i
P-+ • (E)

10. T+P**.T from 6
T-+.P**T
P-+.i
P-+ • (E)

11. l4(E.) from 8

39

TABLE V (Continued)

SET NOo ITEMS NOTES

E-+E.+T from 8
12. E-+-E+T. from 9
13. T+P**T. from 10
14. P+(E). from 11

TABLE VI

SLR(l) TABLE FOR G1

STATE s E T p ? + ** i ()

2 3
3 4 5 6 7 8
4 1 9
5 -3 -3 -3
6 -5 -5 10 -5
7 -6 -6 -6 -6
8 11 s 6 7 8
9 12 6 7 8

10 13 6 7 8
11 14
12 -2 -2 -2
13 -4 -4 -4
14 -7 -7

It is now shown how to understand at least part of the structure

of L(G1) by using Tables V and VI. Set #2 shows that an S is an E

surrounded by ?'sand that ? must be the first input symbol. The

dot represents the state of the parse. That is, the symbols to the

left of the dot have been recognized (in the stack in the parsing

algorithm); and those to the right have not been recognized.

40

Set #2 has no reduction (no item with the dot to the right), hence

a state transition to state (row) #3 is made. (See row #2 of Table

VI.) Set #3 (i.e., the basis entries) shows that this set was entered

after reading (stacking) a ?, and the next symbol must be an E. The

closure entries show the possibilities of what an E can be; that is,

since the basis entry in the present sentential form is a derivation,

the closure entries show what sentential form can possibly exist after

one or more direct derivations of the basis entry. This is similar

to a top-down parse of every possible sentence. For all closure

entries, it is necessary to read (because of the dot position) and

make a state transition.

From previous discussion, it is known that an E is a series of

T's separated by +'s. This can be deduced from Tables V and VI.

Starting at set #3, which is one time the dot appears to the left of

an E, it is seen that the closure entries define an E to be several

different configurations. In particular, E+.E+T and E+.T show that,

in order to have an E, a reduction on one or the other must be made.

E+T. will certainly pop the stack and require a return to set #3 with

an E as the next symbol if the next input symbol is + (see row #5

of Table VI), after which a transfer to set #4 and a try to build a

longer E will be made.

To see this more clearly, ?i+i+i? is now parsed by using Table

VI and using the same parsing technique presented earlier.

41

UNEXPENDED
STACK SUFFIX NOTES

2 ?i+i+i? initial 3•T(2,?)
2?3 i+i+i? 7•T(3,i)
2?317 +i+i? -6•T(7 ,+) and 6•T(3,P)
2?3P6 +i+i? -S•T(6,+) and S•T(3,T)
2?3TS +i+i? -3•T(S,+) and 4•T(3,E)
2?3E4 +i+i? 9•T(4,+)
2?3E4+9 i+i? 7=T(9,i)
2?3E4+9i7 +i? -6•T(7,+) and 6•T(9,P)
2?3E4+9P6 +i? -S•T(6,+) and 12•T(9,T)
2?3E4+9Tl2 +i? -2•T(l2,+) and 4mT(3,E)
2?3E4 +i? 9=T(4,+)
2?3E4+9 i? 7•T(9, i)
2?3E4+9i7 ? -6•T(7,?) and 6•T(9,P)
2?3E4+9P6 ? -5•T(6,?) and 12=T(9,T)
2?3E4+9Tl2 ? -2=T(l2,?) and 4=T(3,E)
2?3E4 ? l•T(4,?)
2?3E4 ?l 0 final state-accept

Figure 8. Parsing ?i+i+i? Using Table VI

In the actual implementation. only states are stacked since, if

the symbol is needed for any reason, it can be deduced because each

canonical derivation sequence is unique and the stack and table to-

gether maintain a history of the parse.

The reader is encouraged to visually correspond the parse with

the configuration sets. Perhaps the greatest asset of the SLR(l)

method is that any set of productions for a CF grammar can be input,

and the user will be provided with the sets and tables which can help

lead to an understanding of the language generated by the grammar.

And, at the same time, the user is provided with a syntax analyzer

with which he can experiment with sentences for purposes of establish-

ing validity.

So far, everything said about SLR(l), at least with respect to

42

o1 , also applies to LR(O). What is the difference between the two

methods? In an actual LR(O) table, rather than enter the reductions

only under symbols in the FOLLOW set, they would be entered under

every terminal symbolo For example, row #5 in Table VI would have a

-3 under**, i, and (also. It appears DeRemer (4) would do likewise

in most cases with his SLR(l) method. This could cause reductions to

be made after an error condition is detected; in fact, this is a

characteristic of the SLR(k) method.

Clearly, the above action will not work for state (row) #6 in

Table VI. This would be an example of a conflict. In SLR(l) table

construction, there are two kinds of conflicts. DeRemer (4) uses the

term inadequate state for a state with conflicts. An inadequate state

is one with either both a reduction entry and a transition entry or

two different reduction entries. A table with no inadequate states

is a table for an LR(O) grammar (4). A state with only a reduction

entry is a reduce state. A state with only transitions is a read

state. An inadequate state is said to be solvable if the one symbol

look-ahead set (FOLLOW function) indicates which action to take for

a given next symbol. An unsolvable inadequate state is one where,

with one symbol look-ahead, which action to take still cannot be

determined.

State #6 is the only inadequate state for G1, and it is solvable.

By inspecting set #6, it is seen that both a reduction and a transi­

tion are present. Of course, the problem is caused by the right group­

ing of** and the need to look ahead in the input string to see if

the longest T has been found, which is a series of P's separated by

**'s. The action of the parsing algorithm on right recursion is to

43

stack up all of the P's separated by **'s and then reduce from

right to left. Two FOLLOW sets need to be computed. That is, FOLLOW

(T) needs to be computed since it must be known what can legitimately

be the input symbol if the reduction is madeo But FOLLOW(P) is not

computed for the entry T+P.**T since, by definition, the one symbol

look-ahead set for a transition entry is FIRST (symbol to right of

dot, FOLLOW (LHS)), which in this case is FIRST(**, FOLLOW (P)).

Therefore, the FOLLOW element can be deleted since in a transition

entry there is always a symbol to the right of the dot; and this sym-

bol is either a terminal or a non-terminal, X, for which the terminal

symbols in H+(x) are selected.

In state #6, the one symbol look-ahead set for T~P.**T is

{**}. For FOLLOW(T), the productions are inspected to see what

terminal symbols can follow T in a sentential form. From production

#3 or #2, it is seen that what can follow an E can also follow a T•
'

therefore, FOLLOW (T) • {+,),?}. Hence, G1 is SLR(l) since the only

inadequate state has disjoint one symbol look-ahead sets. This, in

essence, is the definition of a SLR(l) grammar (4)o A disjoint set

implies that, by looking one symbol ahead in the input string, it can

be determined which entry of the inadequate state to employ. In state

#6 of Table VI, FOLLOW (T) input symbols cause a reduction; and**

causes a transition.

The FOLLOW function can be computed two ways. One way is direct-

ly from the productions. The method first computes the relation, F,

defined by F(A) = {b I there exists a production C: a,A,B,c. where

any one of c or a may not be present.

44

Now, if Fis represented as a Boolean matrix, then closure of F

results in FOLLOW, each row corresponding to AE:VN and the "true"

columns representing the elements of FOLLOW (A). For an operator

grammar (6), a+(G) is not needed since every AE:VN is followed by a

terminal symbol or is the last symbol of a RHS,

The second way to compute FOLLOW is developed by DeRemer as a

theorem. The proof is found in (4). This method (used in the au­

thor's implementation) uses the function g part of the table and

T*(G), the reflexive transitive closure of the inverse of the tail

symbol matrix, T, defined by T(A) • {Be:VN I B+*aA where AEVN, aE:V*}.

That is, the only concern is with tail symbols that are non-terminals.

An algorithm for computing FOLLOW follows:

(1) Compute T*(A) as above.

(2) Start with an empty set, L.

(3) For each transition under a symbol in T*(A) to some

state N, add to L each symbol SE:VT such that there

is a transition under s from N.

(4) The resulting set is FOLLOW.

Since FOLLOW is computed for every AE:VN in the author's imple­

mentation, an algorithm is presented for this also. T, T* are the

denotations for the Boolean matrix representation for the relations

T, T*, respectively.

(1) Compute T* for every Ae:VN; initialize FOLLOW to "false."

(2) For each column, c1 , of T*; for each row, R1, of T*; if

T (R1, C1) is true, then for each row, R2, of the table;

if TABLE (R 2,R1) is not zero, then for each terminal

symbol column, c2; if TABLE (TABLE (R2,R1), C2) is not

zero, then FOLLOW (c1 ,c2) + "trueo''

45

This algorithm is similar to the Warshall algorithm. The re-

flexive transitive closure of T is needed as shown in the following

discussion. To compute FOLLOW (P), the pth column of T* must have

a "true" in it. But this is so only if P is a tail symbol of some

AE:VN, which does not occur unless it is assumed the production A: P.

is present during construction of T* for some A€VN. But it is also

true that the pth row must have a "true" in it, that is, P must have

an A€VN as a tail symbol since T* is only computed for non-termi-

nals. The solution is to use a reflexive transitive closure, that

is, all productions of the form A: A. are assumed to be present

only during computation of FOLLOW.

The author's implementation differs from DeRemer's original

SLR(l) method in that every state is considered to be inadequate. It

is not clear whether DeRemer computes FOLLOW for every A€VN, but it

appears that he does not. The remaining question is what differences

exist among LR(l), DeRemer's SLR(l), and the author's SLR(l).

Comparison of Table Construction Methods

It should be clear from Table VI that, if reduction entries are

made for all terminal symbol columns, reductions can be made after an

error condition is detected. For example, if ?ii? is parsed using

Table VI and row #7 has -6 under all terminal symbols, it is necessary

to reduce the first i to P and, in fact, P to T and T to E

before an error is detected; however, by using FOLLOW, the error is

detected before the first reduction. It is desirable to detect errors

at the earliest possible time; however, it is inherent in DeRemer's

method (3) that reductions can take place after an error condition is

46

detected, and it is also inherent (although not as extensively) in the

author's implementation. However, neither will read another input

symbol once an error is detected. In Knuth's original method (10),

neither reductions nor reading can occur after an error is detected.

The reason for this is that Knuth keeps track of what the next input

symbol can legitimately be for each entry in every set, but the SLR(l)

method assumes that if one symbol may follow another in any sentential

form then it may follow it in every sentential formo

Computation of the SLR(l) table for G3 , which was shown to be

LR(l), but is not SLR(l), follows. (In fact, it is not SLR(k) for

any k.)

TABLE VII

SLR(l) CONFIGURATION SETS FOR G3

SET NOo ITEMS

1 S+?E?.
2 S+. ?E?
3 S+?. E?

E-+.aAb
E-+-.aBc
E-+.dAc
E+.dBb

4 S-+?E.?
5 E+a.Ab

E+a.Bc
A+.fA
A+.f
B+. fB
B+.f

TABLE VII (Continued)

SET NO. ITEMS

6 E+d.Ac
E-+d.Bb
A+.fA
A+.f
B+.fB
B+.f

7 E+aA.b
8 E+aB.c
9 A+f .A

A+f.
B+f.B
B-+f.
A+ 0 fA
A+.f
B+.fB
B-+. f

10 E+dA.c
11 E-+dB.b
12 E+aAb.
13 E+aBc.
14 A+fA.
15 B+fB.
16 E-+dAc.
17 E-+dBb.

Comparing the LR(l) and SLR(l) tables for G3, it is seen that

Table VII is much shorter than Table II. Also, in Table II, there

is a note pointing out the difference between A8 and A11 • These

two sets combine into one set in Table VII, namely set #9; and it

is because of this combining that G3 is not SLR(l), In particular,

b and c are both in FOLLOW (A) and FOLLOW (B) and, hence, if the

next input symbol is b or c, it is not known which reduction to

make.

47

A grammar has been given that is not SLR(k) (G3), and also a

grammar has been given that is SLR(l) (G1). For completeness, a

grammar that is SLR(2) is now presented. G4 is specified by:

1. S: ?, E, ?.

2. G: A;

3. C, B;

4. A, b, c.

5. A: a.

60 B: b.

7. C: A.

TABLE VIII

SLR(l) CONFIGURATION SETS FOR G4

SET NO. ITEMS

1 S+?G?.
2 S-+. ?G?
3 S+? .G?

G+.A
G+.CB
G+.Abc
A+,a
c+.A

4 S+?Go?
5 G+A.

G+A.bc
C+A.

1 A+a.
8 G+Ab.c
9 G+cB.

10 B+b.
11 G+Abc.

48

49

TABLE IX

SLR(l) TABLE FOR G4

STATE G A B c ? b c a

2 3
3 4 5 6 7
4 1
5 -2 -7/8
6 9 10
7 -5 -5
8 11
9 -3

10 -6
11 -4

The double entry in row #5 of Table IX indicates that state #5

is unsolvably inadequate since b is in FOLLOW (G) and is to the

right of the dot in the transition entry. The set of sentences com-

prising L(G4) is {?a?, ?ab?, ?abc?}. Figure 9 shows an attempted

parse of ?abc?.

STACK

2
2?3
2?3a7
2?3A5

UNEXPENDED
SUFFIX

?abc?
abc?
be?
be?

NOTES

initial condition
3•T(2, ?)
7•T (3 ,a)
-5•T(7,b) and S•T(3,A)

Figure 9. Parsing ?abc? Using Table IX

NOTE: At this point, T(S,b) pertains, but the SLR(!) method

has not provided enough information to decide whether

to reduce A to a C or read the b. If the parser

could look ahead one more symbol (i.e., two symbol

look-ahead) and see the c, then it is clear that b

should be read. If the sentence had been ?ab?,

then the "pick" would be to reduce rather than read.

pick 8=T(S,b)
ll=T (8 ,c)

50

2?3A5b8
2?3A5b8cll
2?3G4

c?
?
? -4=T(ll,?) and 4•T(3,

G)
2?3G4?1 final state

Figure 9. (Continued)

CHAPTER IV

CONCLUSION

This thesis consists of two major parts. The first presents

many of the topics covered in a beginning course in formal language

theory, but in a way that is meant to appeal to the reader's intu­

ition. A secondary purpose is to get the reader thinking about CF

grammars in a way pertinent to the second major part. No single

reference covers all of the presented points. Rather, most refer­

ences tend to cover specific points in a more detailed manner.

The second part presents Knuth's LR(k) method of syntax analy­

sis and, in particular, the SLR(l) method. The result of the full

description and numerous examples is twofold. The first provides

an efficient language-independent syntax analyzer, which may be

used in the development of, for example, a compiler. Parsers for

a subset of ALGOL 68, ALGOL 60, and BASIC have been produced with

satisfactory results. The second provides a tool by which the in­

put of any context-free grammar yields information which demonstrates

the structure of the grammar and the language generated by the gram­

mar. It cannot be overemphasized how useful the configuration sets

are in helping to understand a language structure simply by inputting

a set of BNF rules. This is especially true in grammars with in­

direct recursion since visual observation of the production rules

yields little insight into the nature of the language.

51

52

In conclusion, LR(k) methods are the newest and most general of

the methods used for syntax analysis of languages produced by CF

grammars. They are shown to be superior to most methods and are

more general than any known method for which efficient parsers can

be mechanically produced •

•

A SELECTED BIBLIOGRAPHY

(1) Aho, A. and .J. Ullman. "The Care and Feeding of LR(k) Gram­
mars." Proceedings of the Third Annual ACM Symposium
on Theory of Computing, (May, 1971), 159-1700

(2) Aho, A. and J. Ullman. "A Technique for Speeding Up LR(k)
Parsers." Proceedings of the Fourth Annual ACM Symposium
on Theory of Computing, (May, 1972). (to be published)

(3) DeRemer, F. L. "Practical Translation for LR(k) Languages."
Ph.D. thesis, MIT, Cambridge, Massachusetts, (September,
1969).

(4) DeRemer, F. L. "Simple LR(k) Grammars." Communications of
the ACM, 14, 7, (July, 1971), 453-460.

(5) DeRemer, F. L. "Simple LR(k) Grammars - Definition and Imple­
mentation." fo~Euter Evolution ReEort, 2, 4, (September,
1970), University of California, Santa Cruz.

(6) Feldman, J. and D. Gries. "Translator Writing Systems."

(7)

Communications of the ACM, 11, 2, (February, 1968), 77-91.

Gries, David.
New York:

Colll,I!.i~!_~ Construction for Di&i~~~ Computers,
John Wiley & Sons, 1971.

(8) Hopcroft, J. and J. Ullman. Formal Languages and their Rela­
tion~ Automata, New York: Addison-Wesley, 1969:- --

(9) Knuth, D. E. The Art of Computer Programming, Reading: Addi­
son-Wesley, 1969.

(10) Knuth, D. E.
Right."
607-639.

"On the Translation of Languages from Left to
Information and Control, 8, (October, 1965),

(11) McKeeman, W., J. Horning, and D. Wortman. ! Compiler Generato~,
Englewood Cliffs: Prentice-Hall, Inc., 1970.

(12) Van Doren, J. and J. Gray. "An Algorithm for Maintaining
Dynamic AVL Trees." Proceedings of the Fourth Interna­
tional Symposium on Computing and Information Sciences,
(1972). (to be published)

(13) van Wijngaarden, A. (ed.), B. J. Mailloux, J.E. L. Peck, and
c. H. A. Koster. Report .2!!.!!!!. Algorithmic Language
ALGOL 68, Offprint from Numerishe Mathematic 14: 79-
218. Berlin: Springer-Verlag, 1969.

(14) Journal of the

54

Warshall, s. "A Theorem on Boolean Matriceso"
~, 9, (January, 1962), 11-12. -----

APPENDIXES

APPENDIX A

LIST OF SYMBOLS

56

57

APPENDIX A

LIST OF SYMBOLS

PAGE OF FIRST
SYMBOL MEANING OCCURRENCE

CF context-free 1
TWS translator writing systems 2
v vocabulary of a grammar 4
V* all strings of elements of V 4

is followed by 5
exclusive "or" 5
may be rewritten as 5
delimit~r 5

€ set inclusion 5
LHS ~eft hand side 5
RHS right hand side 5
VT the terminal symbols of V 5
v the non-terminal symbols of V 5
{N} 1et delimiters 6
+ a direct derivation 6
+* a derivation (closure of+) 6
DPDA deterministic push down automata 14
A x B the Cartesian product of A and B 15
c is a subset of 15
n intersection 15
a R b a is related 'to b 15
/\ logical and 16
~ implies 17
u union 18
v logical or 20
I summation 20

APPENDIX B

USER'S GUIDE

59

APPENDIX B

USER'S GUIDE

Input/Output

To use the routine, the user must be familiar with the input and

output of the routine. The input comes in on two different files,

PARMIN for parameters and PRODIN for the productions. There are 11

input parameters, each an integer in a 4-byte field, left justified

on an BO-byte record.

PARAMETER
NUMBER

1

2

3

4

5

6

7

8

9

DESCRIPTION

number of productions

maximum number of symbols in any produc­
tion

maximum number of characters in any
symbol or at least~ number of characters
to make every sym~ol unique

maximum number of unique symbols in the
grammar

number of items in all configuration sets
combined

number of configuration sets

maximum number of basis entries for any
configuration set

• 1 to activate the DEBUG facility

m 1 to count and list solvable inadequate
states

PARAMETER
NUMBER

10

11

60

DESCRIPTION

• 1 for full printed output

• 1 for punched output in a form to be
read by the parsing routine

There are defaults for O input parameters 4, 5, 6, and 7; however,

these defaults represent only a guess based on the grammar. After an

initial run, output statistics allow the user to set these parameters

accurately for future runs, if needed.

For the production rules, the format is the LHS (left-hand-side)

immediately followed by a colon, followed by one or more blanks, then

the RHS (right-hand-side) parts each followed by a comma and one or

more blanks. The rightmost part of an alternative is followed by a

semicolon and one or more blanks if it is not the last alternative;

otherwise, it is followed by a period and one or more blanks. Column

72 must be blank; but, other than the listed restrictions, the format

is free form. The first LHS is considered to be the user's "pseudo"

goal symbol. That is, it is a goal symbol which may occur in a RHS.

All productions with a common LHS must be grouped consecutively. This

format allows the productions to be sequenced without affecting the

routine.

The reason for using two different input files is that many times

the user may wish to store the productions on secondary storage be-

cause of their length but, because of the need to change parameters

from run to run, it is better for them to be on cards.

The routine is serially reusable, and multiple gramm~rs may be

input to the routine. To do this, the user simply places the param-

eter records (one for each grammar) in order in file PARMIN and

separates each set of productions with a delimiter card that has a

period in the first byte and blanks thereafter. Input of a grammar

terminates on end-of-file or a delimiter record for file PRODIN, and

the routine terminates on end-of-file for file PARMIN.

61

The output consists of several of the internal tables. The out­

put of each section of the routine is clearly delimited by labelling.

First, a copy of the productions is output followed by statistics on

the grammar enabling the user to respecify some of the input param­

eters in order to reduce the memory requirement of the routine. Next,

the encoded form of the productions is output. During input, each

symbol is encoded to its position in the symbol table. Next, two

mapping arrays are output along with the symbols. The "TO" column

maps the symbols to the columns of the SLR(l) table, and the "FROM"

column maps the columns of the SLR(l) table to the symbols. If

DEBUG is enabled, the next output is messages (perhaps none) reflect­

ing violated restrictions on the grammar. Statistics on the config­

uration sets are then output. Each of these statistics was put in

by the user as a parameter; however, there is no way to really know

what these parameters should be until after the routine has run at

least once. Once the routine runs for a grammar, these output sta­

tistics will allow the user to set the parameters more accuratelyo

All parameters should be set as small as.possible since storage is

allocated per the parameters. Next, the LR(O) conf:t,uration sets are

output in a similar format to that presented in the body of this

thesis. Also output is the dot position {"2" is all the way to the

left), the upper bound of the set {all sets are in a single vector),

and the number of basis entries. Finally, the full SLR(l) table is

output along with the column-to-symbol relationships and results of

the inadequate state counter.

Restrictions

62

There are no restrictions on the input except the format and size

of the host machine. This can be a factor for small-to-medium ma­

chines. For example, ALGOL 60 takes approximately 200K bytes to

execute. A possible remedy for this is to store the data structures

on scratch files; however, this would greatly increase execution time

since the structures are not processed in any set manner. That is,

processing is highly dependent on the grammar. Also, since the SLR(!)

table is quite sparse, a sparse matrix technique such as found in (9)

might be employed to some advantage.

Job Control Language Required

The following JCL is required if the source deck is input:

//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5),'NAME'

//STEPl EXEC PLlLFCG

//PLlL.SYSIN DD*

--SOURCE DECK-­

//GO.PARMIN DD*

--PARAMETER CARDS-­

//GO.PRODIN DD*

--PRODUCTIONS-­

//GO.PRINT DD SYSOUT=A

//GO.PUNCH DD SYSOUT•B,DCB•BLKSIZE•SO

II

The routine is presently stored in load module form and may be

executed with the following JCL.

//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5),'NAME'

//STEPl EXEC PGM•SLRl

//STEPLIB DD DSN•OSU.ACT11098.PROG,DISP•SHR

//PARMIN DD*

--PARAMETER CARDS-­

//PRODIN DD*

--PRODUCTIONS-­

I/PRINT DD SYSOUT•A

//PUNCH DD SYSOUT•B,DCB•BLKSIZE•80

II

Suggested Modifications

63

In addition to the different storage techniques mentioned ear­

lier, there are other modifications the user may want to make. For

example, in the present version, SUBSCRIPTRANGE, STRINGRANGE, and

SIZE are enabled for the whole routine; however, the author believPs

that only the input section needs such checks and that the other

sections contain the logic to take care of these conditions, The.

reader familiar with the PL/1 compiler will recognize the sanngs :in

both compile and execution time that could be realized by turning off

these condition checks. However, for small grammars, the difference

in execution time is almost negligible because of the overall speed.

For example, G1 executes in two secondso

64

The user may also want to output running statistics on the con-

figuration sets since, if the parameters are too small, the program

fails with only a brief diagnostic whereupon the user must increase

the parameters and retry the grammar. For grammars with a high degree

of recursion such as ALGOL 68, the problem of setting the parameters

large enough and still staying within the machine storage limits can

be quite frustrating. The following table may help to serve as a

guide.

GRAMMAR

Gl ALGOL 60 ALGOL 68 BASIC BASIC
(subset) (simple

precedence
form)

Number of
productions 7 181 159 99 85

Number of
parts 4 6 6 5 9

Number of
symbols 10 141 99 102 89

Number of
characters 4 31 10 10 10

Number of
sets 15 304 310 174 148

Combined
length of sets 50 2191 5592 957 816

Number of
basis entries 3 5 10 3 3

Reduction
queue 0 22 0 0 0

If the user wants a stripped-down, super-fast version, he may

also completely remove the debug section without affecting the rou­

tine. Also, he may want to output the results of the input section

onto secondary storage so that, if the routine fails later because

65

of input parameters, he may bypass the input section (with the excep­

tion of parameter input) on subsequent runs. Also, he may choose to

write the output to secondary storage instead of punched cards since,

for example, the BASIC grammar produces approximately 900 cards. Of

course, one must realize that more output is produced than is actually

needed (for example, the MAPFROM array); but, if meaningful diagnos­

tics are to be produced by the parser, all of the output is necessary.

An alternative to punching or writing out tables would be to

actually produce the parser program (minus the scanner, of course).

The parser is only a skeleton whose DECLARE statements could be fill­

ed in with the proper data with the INITIAL attribute, which the

routine could easily do.

If the routine is to be used to produce a parser for the language

generated by the input grammar, the user may want to precede all

terminal symbols in the grammar with some special symbol, for example,

the double quote, because the symbol table method used is a balanced

binary tree method (12) and such a prefix on the terminal symbols

will tend to cause all of them to be placed in the same subtree,

slightly decreasing the average look-up time. It should be pointed

out that only the terminal symbols along with the symbol's position

need be output to the parser if the parser's scanner uses some other

look-up technique (e.g., linear search); however, this is not recom­

mended.

APPENDIX C

PROGRAM LISTING

,. TITLE: SLRlll PARSING TAbLE GtNERATOR (J.L. GRAY, o.s.J. 197ll

SUBJECT: GENERATION IJf SLRlll PARSINb TABLE

AUTHOR: JOSEPH Lo GRAY

INSTALL·ATION: OKLAHOMA STATE U~IVE~SITY lbll 3b0/65
PL/ l LEVEL F V ERS !ON 5 .2 C

DATE: FALL S EM EST ER 197 2

THE: WORK HEREIN IS PARTIAL FULFILLMENT OF THE MASTER'S PROJECT
REQUIRED FUR THE MASTER OF SCIENCE DEGREE IN ~OMPUTER SCIENCE:.

PROJECT ADVISOR: OR. J. VAN OOREf,;

RHERENCES:
lo COMPILER CONSTRUCTION - GRIES
2 • SIMPLE LRIKl GRAMMARS - DE REHE~ CACM 14 P 453-460 JULY 1971
3. PRACTICAL TRANSLATORS FOR LR(KI LANGUAGES - OE REHEI< PH.Do THESIS

MIT SEPT 1969
4. SIMPLE LR(Kl GKAMMARS - DEFINITION ANO IMPLEHtNTATIDN - Ut REMER
5. THE CARE AND FEEDING OF LRIKI GRAMMARS - AHO AND JLLMAN PROC.

THIRD ANNUAL ACM SYMPOSIUM ON THEORY IF COMPUTING HAY 1971
6. A TECHNIIJUE FOR SPEEDING UP LRIKI PARSERS - AHO AND ULLMAN ACM

SYMPOSIUM ON THEORY OF COMPUTING 1972
7. ON THE TRANSLATION uF LANGUAGES FROM LEFT TO RIJHT - KNUTH

INFORMATION Al'lD CONTROL ij 1965
8. A THEOREM ON tlOOLEAN MATRICES - WARSHALL JACH P ll-12 1962
9. Al'l ALGORITHM FOR MAINTAIN ING DYNAMIC AVL TREES - VAl'l DOREN ANO GRAY

SUBMITTED TO FOURTH INTERNAT.IONAL SYMPOSIUM G'l COHPUT ING AND
IN FOR HAT ION SC I ENCE

THE ROUTINE CONSISTS OF 3 BASIC SECTIOl'lS, THE THIRD BEING OIWIDED INTO
2 SUBSECTIONS, EACH OF THE FIVE CONTAINED IN A BEGIN-END BLOCK. ALSO
2 INTERNAL PROCEDURES ARE EMPLOYED. A SCHEMATIC DIAGRAM OF THE tlLOCK
STRUCTURE FOLLOWS.
SLRl:
REUSABLE:
THE_WHOLE_THING:
READER_SECTION:

DEIIUG_SECT ION:

TABLE_GENERATE_SECTION:
LRO_GENERAT E:

SLR l_GENEl<ATE:

WARS HAL:

BSTSLR:

ERl<OR:

PROC
BEGIN

BEGIN
BEGIN
END READER_SECTlON
BEGIN
END DEBUG_SECT ION
BEGIN

BEGIN
END LRO_GENERAT E
tlEGIN
END SLRl_GENERATE

ENO TABLE_GENERAT E_S ECT ION
PROC
END WARSHAL
PROC
ENO BSTSLR

END THE_WHOLE_THil'lG
GO TO REUSABLE
ERROR MESSAGE JUTP UT
GO TU REUS ABL t
ENO RE USAdLE

uu:.uocoo

Ot.,CUOOO l

ulJClJOC02

Ul.,CUCC03
DJCuCC04

UUCU0005

ULCUOOOo
i.JLC.U0007

ULCUOCOB

iJUC U0009
iJUCUOOlO
UuCUOOll
iJOC U0012
oocuoou
UOC U0014
D~Cu0015
UOCUOOlo
uoc uoih 1
DDCU0018
uucuoo 19
DuCU0020
OOCU002 l
UOCU0022
OOCU0023
OOCU0024

UOCUD025
DOCU002b
U:lCUOD27
OOCU0028
DOCU0029
llDCU0030
UOCU003 l
ouc uoo,2
DOCU0033
UC,CU0034
OOCU0035
OOCU0036
UCICU0037
DJCU0038
OOCU0039
DOC U0040
DOCU004l
UuCU0042
OOCU004::I
DUCU0044
DUCU0045
iJOCU004b
WCU0047
uGLU004d
uoc Li0049 .
UC.CU0050

END SLR!
THE RATIONALE FOR THE HEAVY USE OF BLOCK STRUCTURIN(; IS TO REDUCE TttE
INHERENT NEED FOR LARGE AMOUNTS OF STJRAGE BY TAKING FULL ADVANTAGE Uf
THE DYNAMIC STORAGE CAPA81TITIES OF THE SOURCE LANGUAGE. FOR SMALLER
HOST MACHINES, SCRATCH FILES RESULTING IN SLO~ER EXECUTION TIME WOULU
BE NEEDED FOR LARGE GRAMMARS.

SECT ION OESCRIPTION:

REUSABLE: THE ALL INCLUSIVE REUSABLE BLOCK IS PRESEl'lf ONLY TO ALLuii
MULTIPLE GKAMMAR INPUT; THAT IS, T<iE PROGRAM IS SERIALLY REUSABLE.

WHOLE: THING: PARAMETERS SETTING CERTAIN LIMITS Oli THE GRAMMAR 'ANO
TABLE5 ARE INPUT OUTSIDE THE dLOCK ANO USED nl THIN THE BLOCK FOR
DYNAMIC OECLARAT I ON PURPOSES.

READER: THIS SECTION INPUTS AND ENCODES nlE PROUUCT!ONS, tlUILOING A
SYMBOL TABLE USING BSTSLR, AND SUILDS CERTAIN MAPPING ARRAYS FOR DATA
STRUCTLRES USEO.

DEBUG: THE EXECUTION OF THIS SECT ION IS USER CONTR()LLED AND PERFORMS
CERTAIN CHECKS ON THE GRAMMAR.

TABLE GEl'lERATE: CONTAINS ONLY DECLARATIONS NEEDED FOR THE FOLLOwING 2
SEC Tl ONS. .

LRO GENERATE: THIS SECT ION FIRST GENERATES THE CONFIGURATION SETS
AS IF THE GRAMMAR IS LRIOJ THEN THE TRANSIT ION ENTi<IES AKE PLACED
IN THE SLR(ll TAtlLE. THE FILLING IN OF REDUCTION ENTRIES IS
POSTPOl'lED UNTIL THE FOLLOWING SECTION.

SL~l GENERATE: THIS SECTION GE:NERATES THE COMPLETE SLRlll PARSING
TABLE AND IIF USER SELECTS! CO~NTS AND LISTS INADEQUATE STATES ANO
PUNCHES THE TABLE, SYMBOL TABLE, AND OTHER STATISTICS NEEOl:O BY THE
PARSER.

PROCEDURE DESCRIPTWN:

BSTSLR: THE INSERT SECTION OF A BINARY TREE SYMBOL TABLE
IMPLEMENTATION C.F. REFERENCE.

iJLCU0051
ulJW0052
ULCU0053
OUCU0054
iJLWQOj5
:.;(;CU005b

DUCU0057

DLCU0058
DuCU0059

iluCUOOoO
uOC\JOObl
.;OCUOCb.2

UOCU00b3
UOCU0064
UiJCU00~5

JU:: U00b6
uOCU0067

DUCUOOb8
OOCUOOt,9

..;c...uoo10
lJUCl.1007 l
OOCU0072
il0CU0073

UO(.U0074
i.l0C.U0075
UOCU0076
ou;uoon

OOCU0078

DOL.U0079
UOCIJOO&O

~ARSHAL: A PROCEDURE TO PERFORM THE WARSHALL ALGORITHM ON AN INPUT BIT ULCUOOBL
MATRIX C.F. REFERENCE• .JuCUOJ82

!NP UT:

FROM FILI: PARMIN THE FOLLOWING PARAMETERS ARE READ I~ ll FIELUS uF 4.
1. N >= NUMBER OF PRODUCTIONS TO BE ll>,PUT
2. N >= MAXIMllM NUMBER OF PAKTS Ii'1 ANY PRODUCTION IINCLWIN~ LHSI
3. N >= MAXIMUM NUMBER OF CHARACTERS IN ANY INPUT SYMB()L IM~Y BE

4. N
5. N

"• N
7. ~

8. N
9. N

LESS - ONLY NEED N LARGE ENOUGH TO HAKE SYMBOLS UNI..UEI
MAXIMUM NUMBER uF DISTINCT SYHIIOLS IN THE GRAMMAR
CON'IGURATION SET LIMIT (FOR All SETS COMBINED)
EXPEC·TEO NUMBEK OF CONFIGURATION SETS
MAXIMU~ ~UMBER OF bASIS ENTRIES FOR ANY SET
1 TO ACTIVATE UEBUG SECTION
l TO CuUNT AND LIST INADEQUATE STATES

JUCU0Gt>3

uOCUOCd4
Ut,Cu0085
DOCUOO&o
uOCU0087
OOCUOCb!I
OOCU0089
iJOCU0090
OOCU009 l
JC;;: UOC92
Ul.J(.u0C93
UiJCU0094

OS
~

10. ~ = l FUR FULL PRINTED OUTPUT
11. N = 1 r.J PU~CH SL~(11 TAdL: llNJ GTHcR UATA i'<EhlEJ F.Jk PARSER
THEi<c AKE CEFAULTS FJR J INYUT PARAMHEkS 4, S, bt A~J 7; rluwEVb<
THESt: UEcfAULTS "Ei't<E;t:r,T ONLY A GUESS B~EU ON THE GRA>ll1h~. AHErl. Al',
lNIT lAL i<UN, uJTPUT HAT! STICS ALLU• THE USE!l TO SET THE~!: FAKAMEHR~
ACCUf<AT~LY FCR FUTURE RUNS, If NEEo>EI..
IF MORE THA~ U~c uRA~MAR IS INPUT, THE!', THE PAkAMETEkS FOK tACH
GRAMMAR ARE Sli1?LY E~TEREil IN T11E PRuPER Ui<i.lE~. ft<ilM FILE PkuulN, Ttic
l'kUIJUCTICl',S ARE INPUT. THE FORMAT I!. THI: L~ IUH-HAi•D-SIDU
IMMEDIATELY FOLLuwEO ijY. A COLUN, FULLU""U &Y 1 lk MCKE ·dLAN~s. THEN
THc RHS IRIGHT-HANO-SIUEI PARTS EA~H FOLLJwEil DY A LJ~~A A~U 1 UK MORI:
l!LANKS. THE RIGHTMOST PART OF AN ALTERNATIVE IS FOLLOWEU.l!Y A
~ E~ lCOLON ANJ 1 OR MJKE BLANKS IF If IS NOT THE LA:i T AL TE1<,,AT I VE;
OTHERwlSE, IT IS FOLLC•Eu BY A PERIUC AfloO 1 Ut!. MOR!c l!LA~iKS. CULJMN 72
MUST BE !!LANK, ilUT OTHER THAN THE LISTED RESTRICTIO .. !. THt FOkMAT IS
fil.EE FCR"' • THE F li<ST LHS IS C:lN Slili:Rt:0 Tu SE THt: uSE.l.• ii "PSI: UOu"
GOAL .SYMt>OL. THAT IS, IT IS A GOAL SYlellOL 11Hh.H MAY OCCUR I>, A RnS.
ALL l'l<OUUCTIDNS wlTH A CO'IMU ... LHS MUST IIE C.ROJ.PEO ci;:,SEUJTIVELY. Fu,<
MULTIPLE G1<AMMAR ll'lPUT, EACh Gi<AMHAi< IS OtLIHIJEO o·Y A CAil.U n.lTH A
PERIOD IN COLUMN 1. NOTICE THIS ALLOWS THE t>RUiJULT lci>JS TO dl
S E<IUENCEO Ii ITH(;JUT AFFEC Tl.~.; THE i<OUTI NE.

OUTPUT:

ALL SIGN IF !CANT INTERNAL TAtlLES ANol STATISTICS ARE PR IN TEu A,'jiJ
LAl!ELLEO IF THE l'RIIIIT PAi<AMETER l·S EkAl:ILED. ·ALSu, All DATA NEEOED l!Y
THE PAKSER IS PUNCHEU IF Si.I SELE1. TEO b Y TnE USEi<. HE PARSEK IS
ENCLOSED AS A COMMENT. NOTlc.E THAT BY ALTERINI> THE OU ~TATEHENT FUK
PUlll~H, THE OUTPUT COULD dE KDUTED TO A DATA Si:T ON SECONDARY STOKAGE.
THI s IS MENT IONEO s l'lCt, fllR EXAMPLE, THE PUNC.hEU uUTPUT fuR TnE dA SI~
GRAMMAR IS APPROXIMATELY 900 CARDS.

MAJOR DATA STRUCTURES:

MANY ARRAYS ANi> VECTJRS ARt USEU. :-.O s.'.IRTING IS iliJNE. THc INPUT
PRODUCTIONS ARE NOT STC.REO; HO.EVER, Tt-EIR E:.CuDEU FJRII 1s· IN PRJ(l.
THE coot: FJR EACH SYMBOL IS ITS LINEAR POSITION IN THE l!INA~Y· TRcE
STi<UCTUREO SYMBOL TABLE BUILT BY dSTSLI<. THE INPUT SYlldULS AKE SA\lt.G
ANO SENT TC THE PARSER FOR tkRGR MESSAGE CA.PAi) ILIT IE~ At<lJ, I" THE C,\SE
OF TERMINAL SYMBOLS, FOi< SC.ANNIN;, PURPCSES. THREE: NAPPINli AKl<AYS ARE
MAINTAINED. MAPTO HAS t.N E"'TRY FOR EACH SYlldJL SUCH THU BY APPLYING.
MAP TO TO THE COOED SYMBOL A Uld WE CCLUMi. (JR KUii OF AN AkKAY IS
OBTAINED SUCH THAT THE ~ON-TERMINALS ARE GROIJPEO IN POSITION~ l TO
NUMBER Of NON-TEKMINALS, ANO THE T EIU'llll:ALS A:RE GROUi'EO II', Pihl Tl .JNS
NUMBER OF NON-TERMINALS +l TO NUMBER Of SYHBULS. MAPfkuM IS THE
INVERSE OF MAPTO. ENOEX IS BUILT DURING INPUT SUC.H TnAT ENuEX Al'PLIEC.
TO IIAPTO APPLIED TO A COOEU 11101'1-TERMINAL YIELDS THE FIRST
ILEXICOGRAPHICALLYI PROiluCTiuN IN WHICH THE SYM&Cll IS THE Li:FT-HANO­
SIO£:, TREE IS THE SrMSJL TAl!LE MAINJAINED BY BSTSLR ANU IS ouCUM!:iiTe.J
ELS£:,<Hf:Ri: C.F. REFERENCt. TABLE IS THE LRIOI THEN SLRlll T/.oLE. EACH
ROw iJEflNES A SET, ANO THE CULUMNS CilRR£:SPONol TO THi: SYHBUL~ IHAPPE:JI.
SET IS A Vt:CTOR THAT HOLDS ALL CUNFIGURATIUN SETS. SLIM HuLDS Tlie
LAST POSITION IN SET FOR EACH SET, A~C dASlS HOLUS THE LAST PU~ITION
IN SET OF THE BASIS POi\TION OF EACH SET. liUT_POSITIJN IS"'' ARkAY
WHICH HOlOS THE DOT POSITION OF EACH 6ASIS ENTkY Ot- £:ACtt St:T IA!', Ei<TF.Y
OF 2 MEANS THE o>OT 15 TJ THE LEFT Ot- THE RHSI. MARii.Ek IS A till ~ECTUrl.
PARALLEL TJ SET THAT IS SET TO l If THE CUkRESPJNOli,;, :,El £:Li:MENT
EITHER CA~NCT OR HAS BEEN USED IN EXPA~SION.

Ut •. .u. .. uC.,C95
..UCvJ:'fo
JL.uOC97
iJ\JL.uOt9&
.JLI..UOC7'1
ulil.LIODJ
.JLI...\JO l.01
uLi:.UO!JZ
LJUI.. UOlO.i
uul.UJ!Jt,
iJU:.. U0105
... Ui. UO lUb
UL.Cu:Jl07
..IL<. UO!C8
JUC.UO 109
.;,t,i.UOll O
J:Jl.UOlll
uLCUOllZ
.JUl.Ll0113
JC.CUC I l't
.,i;c.un1s

JOCUOllo

ili;C UC.ll 7
uUC.UOlld
tJL,l.lJOLL ':I
,JUC.LI012:l
ouc.uo ,~ l
JGwU0122
LIUC.U0l2:>

uJC.uCl~4

JL<.UOll::i
.JC.; uOIZb
uLCU0127
OC.C.UOlld
u.:.cuo1z9
uCl1.UJl~O
c1U~UClH
JU(.UOdZ
.;U<.uo1,J
.JuCUOl3't
OUU0i35
11L1.UOU0
..1.i:.uOB7
ULrCUCl.:,o
11C.(.UC139
JLl.UO 1"0
Jl,(.UO 141
H,;; UOl42
uLi.UO 143
UUC.U014<t
JUC.U0l4!>
.;ucu~ 1 .. 1>
uu.u:a .. 1
JC.1.UOl<,8

PKu<. KAM LUG IC: ali.>~ll:Jl4'19

THc li'<PUT-e,,CUOE S£:CT ION IS STRAIGHT-FORWARD, A.Nu THE u·Sf:R. ~ILL ~VE JC:UOl:»I
Nll TROudlE JETeCTING THE LOGIC l!Y FOLLO,,ING' THE SOUR(.£: (.UUI:.. If Ot;UIJC. UJ(.u01Sl
15 SELECT£:~, Tlif:1, THc ~l:dUG SECTION IS ENTf:REO. THE OEdUC. ;,,ECThll\l CA" i.K.U101Sl
SE UHETEU •ITHJUT AFHCTl!';G ThE PROGRAM. IT IS SIMPLY AN uU:.UQlS)
l,~PLEHENTATION uf SOME OF THE GRAMMAR CHECKS Of GRIES. rHt HEART OF Jl.1.uOll> ..
THE PROGRAM IS THE TABLE GENERATE SECT ION. IN THE LKQ ;,,Ee TION, JHE ,Ji,C.uOISS -
FIRST SET IS INITIALIZED TC PROUUCTION I wlTH ThE DOT TU THE iUiorfJ;, Jili.u0156~
THI;,, IS THE FINAL STATE, Ttif: SECOND S.ET IS INlTIALllEO TC THE FlilST .X:C...01-IU
PRODUCTION (ALL SET ENTRIES ARE PRJOUCHON NUHtif:RSI wl Tt< THE DOT TO oJLCUOlSd
THt: LEFT. THE SET IS NOW CL·OSEO. THIS CONSISTS OF ENTE1UNG INTa fHE UL1.U0159
SET ALL PROUvCTIUNS •HUSE LHS IS fHE SYMBOL TO THf RIGHT Of THE OIIT. <Ao(.U3lrt!I
THESE tNTRIES ARE i<NOWl'I AS CLOSURE:. ENTRiES. ThE OQT IS AS;,,U,E[, TG IIE uU.uC16l
TO THE LEFT IN UL CLOSURE SET ENT.RI ES• EACri OF THE CLJSvkE ~NU.IES .X.C,10lo2
HUST ALSO dE CLOSEO. THIS CIJNTINUES UNTIL THE SYHdOL TO THE ,UuHT I.F JU:Ulll-C.3
THt UUT OF ALL UNCLOSED CLOSURE ENTKIES IS A TERHl,,AL OR A CLUSU..1: ., .. ;.UDlo~
WUULO UUPLICATE A SET ELEMENT. NOW EXPANSION IS USED TO INII IATE A .._...,:,&ol>
NE,; SET. THE "CANDILiATE" fui\ EXPA:IISWN IS THE FIRST Sl:T ENTi<Y 1n,.;~ IJ\A.UDl:.6
MARKER l!IT IS 0, FOR wHICHEVER SET IT IS IN, ALL uF THAT SET'S OliUJOlC.1'
ENTRIES WITH THE SAME SYHdOL TO THE RIGHT 01- THE UUT ARE MAKl<eG ... o:,u.01:.s
THEN USED TO FaRM THE dAS IS ENTRIES ITHE .DOT IS .. a.eo RIGHT l :h.i.uOU.9
POSITIONI OF A NEW StT PRUVIDING SUCH .ACTION •C.ULD NOT CAUSe JLCU011'.>.
ou·PLICATIO"l OF AN EXISTING SET. I~ BJTH CLOSUi<E ANO EXPANSIUN, " .,1,1,.l.1'.>11'1
iJUPLICATE IS ... or ONLY THE SAME SET ELEMENT BUT ALSu THE SAME our .,.;;;uOi.1'2
POSITION. IF, wHEN EXPANDING, THE NOV£:MENT OF THE DOT IS Tu THt .A.i.UOll~
RIGHT, THEN THIS IS A SET lt-UTURE STATE! WITH A REDt..cTIUN t.SSOCIATEC. JI.A.l..>ll~
WITH IT. THE SET ELEMENT, A PRODUCT ION NJMBER, IS NEGATED A.\iD E,,TEil.fO JJCUOUS
INTO l<EOOCEIII PROVII.IIN!i THEIIE IS NO PREVIOUS ENTRY IN REOUCHll. It· 111.1.1,•lllb
THE:RE IS, Tri.EN REWCEI 11 IS SET TO THE NUMBER OF SUCr1 cNTK!tS; A .. :J THE .1L:.OU11'
E:NTRIES THEMSELVES ARE STLIRED IN A QUEUE (MULT_REOULE_QI. ANY fllt:Rlf.i, .,..i; .. ouct
MITH THE our Til THE ~,~HT ARE HARKED I TAKEN Ol-f EXPANSION LISTI Sl'-&E, J ol;)lJ'~
If THI: OUT IS TO THE RIGHT, THEY CANr,OT BE USED FOR EXPA:IISION SIJICE· ;,l,(,.IIOl80
THE UO T CANNOT di: MOVEU FURTHER TO THE RIGHT• KEEP IN HI Nol fHAJ JHE .lUCUClel
DOT POSITICN fOR SAS.IS ENTRIES IS 11'.1 ThE ARRAY UOT_POSITION WHEREAS &;LC...Oldi
THE DOT PuSITI.JN OF CLOSURE ENTRIES IS ASSUMED. TO dE 2 (TL) THE U:FJI. Li'J(;uOlb,
THE ACTION OF CLOSING THEN ·1:XPANOING CONTINUES UNTIL ALL ENTKIES AKE IA,.:.UOle~
HAKKEO. OURIN,. EXPA~SIJN, THE NUMdER OF THE NEii SET GENERATED BY A ;J...;"'1185
CERTAIN SYHdOL TO THE RIGHT OF THE I.JCT WHILE IIITHIN A CERTAIN SEf IS ulJC.uOleo
ENTEKEO INTO TAdLE. THAT IS, TAl!LEll ,JI <-;_ K IIHERE I IS THE SET Thi: ~lil.J
Pll.0(,RAM IS •Dkl<ING wiTH, J lS THE HAPPED ;vHbuL ro THE ll.lGt<T Of 1HE ~(.(...,188
DOT, ANU K IS THE NEw SET GcNEKATEO. A SIMILAII ENTRY IS IIAOE If II. U, ..tA;o10189
THE SET •t<lCri WUULO aE OUPLICATEO l!Y A'PARTICULAR EXPANSION. i:,l,(,.LJ0190
THE SLRI_GENERATE SECTION. COMPUTES THE FOLLOw fUNCT ICIN PEit OE RE"fot•S JuCII019l
THEUREM ANO THEI< PROCEEUS TO ENTER THE REUUCTI ONS I PREV IUU~Llf Sl,11,.EC olu1..1019.Z.
IN REOULE ~NO/Oi< MULT_REOUCE_~I INTO All :OLUHNS REPRE~ENTIN; SY,.,,OLS vl.l.U0193
I lj FOLLO .. IAI ar1EH A IS THE LHS (if THE PRUilUCT IOr, INVOLVE:U Iii THf: . uul.LluH~
kEOuCTWNISI OF A PARTICULAR kOn ISETI UF TAl!LE. MTEK SUCH ENJi<lfo IA,..u0195
THE RO .. IS NOw, BY DEFINITION, A STATE ilF THE PARSING TAdLt:. Ttio!IT IS, j(.;.U019o
THE RilW NOW CONTAINS BOTH IPOSSll!LYI STATE TRANSITl01'1S A'<u ii.f;JLJCTluHS, o1uLU0191
HE,,CE A STAH:. INADEQUATE STATES AKE THCIS~ wl TH M(,~E THAN 1 i<ED.JCTIC!<i u1.CU3Hoi
OR A REOUCTIQJ\j ANO A STATE TRANSITION UNDER J. TEkMl·•AL S.YMouL. IF U0199
MORE THAN l ENTRY IS ATTEMPTED IN ANY TA6Lt ?OSITION, THEN THE uolA aot LLi.UOZOO
I~ "IDT SLRlll. ,,t.c.1.0«'Jl

••¥ THE FLILL.JwiN(, IS A SAMPLE PAkSER WHICH USES THE SLR(ll TAdlES *** J<.LJO,Jl

•

~

•••--SAMPLE PARSER-SCANNER FCk ARITH EXPR--ffffff
PAkSER: PROCEl:>llKc OPT!Oi\S (~1,INI;

DECLARE
PR! NT FI LE Pk! NT, I* OUT PUT HL c * I
PRSIN FILE INPUI STREAM, I* INPUT FRON SLklll GEN* I
CARO IHOI CHARACTER 111,
(NU_PkODS,NO_PARTS,NO_SYHS,NG_CHARS,NC_SETS,NU_NONI

FIXED BINARY 131,0J;
GET FILE IPRSlNI EDIT

IND_SYNS,NO_CHARS,NO_NON,ND_PARTS,NO_PkOOS,NO_SETSI
lb Fl3 I I;

PRSR:BEGIN;
DECLARE

, ..

IFLUSH,GETNEXTI EIIITRY RETURNS (FIXED 1HIIIARY 13i,<ill,
POINT ENTRY,
l TREE,

2 NOOE (0: NO_SYMS I CHAR ACT l:R INO_Ci1Ai<S I,
2 LL 10:1,IO_SYMSI FIXED lilNARY,
2 RL 10:NO_SYMSI FIXED Bl1'1AkY,
2 TAG INU_SYMSl BIT 121 ALIGNED,
2 AVAIL FIXED tllNARY 131,0l,
2 COUNT FIX ED ~!NARY I 31,01,

(FLAG,POSI FIXED tllNARY (Jl,Cl,
PROU (NO_PRODS,NO_PAkTSJ FIXED tllNA~Y,
TABLE 12:NO_SETS,2:NO_SYMSl FIXED BINARY,
(MAPTO,HAPFROHJ lillu_SYHSl FIXED BINARY,
STACK 1201 FIXED BINARY INITIAL 12,31,
TOP FIX~O BINARY 131,01 INITIAL 121,
(SYHBOL,TEHPSYHl FIXED BINARY 131,0l,
BSTSRC ENTRY ICHARACTERINO_ChARSl,,,1,
11,J,L_RHS,TSCI FIXEU BINARY (31,0li

GET FILE IPRSINI EDIT
I AVAi L ,COUNT, RLCO l, 1.NOOEI 11,lL I I l, RLI 11,HAPTOI 11,HAPfROHI 11,
TAG(11 DO I =l TO NO_SYMSl ,
I IPRODll,JI OD J=l TO Nt:l_PAR TSI DO l=l TO NO_PRUUSI,
(ITABLEII,JI 00 J=2 TO NO_SYMSI 00 1=2 TO NO_SETSII
(3 F131,INO_SYMSIIA(NO_CHAkSI,'+ f131,Bl211,
IND_PAkTS *NO_PRODS I fl 31, I NO_SYMS*NO_Sc TSI FI 411;

NOTE: TA&, MAPFROM, AVAIL ANu COUNT ARE NOT NEEDED FOR THIS PARSER.
ONLY STATES ARE STACKED, SYMBOL HOLDS NEXT INPUT SYMBOL TJ
BE PROCESSED, TE~PSYM HOLDS SAME EXCEPT AFTER REDUCTION AT •HICH
TIMc IT HOLDS A LHS.

* I
GET_SYM:

SYMBOL=GETNEXT;
RETURN_F ROM_ERROR:

PUT FILE IPRINTI SKIP cOI T
('CURRENT INPUT SYMBOL--> ',NODEISYMBULlll2 A);

BACKUP:
TEMP SYM= SYMBOL;

ORl~E: TSC=TABLE(STACK(TOPl,MAPTOITEMPSYMIJ;
If TSC > l THEN

DO;
TOP=T OP+l;
IF TOP > HBOUl,1HSTACK,ll ThEfli GO TU UVER;
STACKITOP l=TSC;
PUT FILE (PRINTI SKIP EDIT

(•STATE STACKED·--> ',TSCI IA,fllll;
IF TEMPSYM = SVMt1GL THEN GU TlJ GET_SYM;

aJi...CuOiOJ
~1,...UOl}c,
<.JU:.U:U35
1..JL.,1..UO.i:.Ob
.;1,.;uo2n
O..:.CU02:l B
UUCU0209
i.iUCU02l0
uGC.UOZll
olul.UD,ll
JL...U02L:>
iJU(.U0214·
aucuo.a;
uOCUOZlb
OUCUOZl 7
ULCUOaa
i,L,(.00219
i)l,1.1,02..t:J
uCLU0221
iJOCU0222
uLCU0223
.:,u.uo22 ..
UUCU0225
OlCU0227
UlJCU0228
LIUW0229
ll0CU0230
UOl.U023l
UOCUD232
iJOC.U0233
UOCU0234
uCiC.U023S
uGI.U023b
wCU0.237
uot.U02311
iJ:JCU0239
...uwo2 .. o
Ul.CUOZH
LIIJCU0,42
U0CU0243
tlOCU0244
l)(JU,0245
DOCU024&
D0Cil02 .. 7
OC.CU024B
OOCU02 .. 'I
Dt..CU0250
uc;cuo,s 1
oi,.;.uo,;z
IJOCU0253
UUCU0254
uocuo2;s
IJUCUOZ!'>b
IJLl.U0257
UC.CU0258
OLCU0259
OUCU02b:l
uGCIJ02bl
WCU02b2
(;LC.U02&3

ELSE GO TO BAC.KUP;
!::NC;

IF TSC < 0 THEN
JJ;

PUT FILE (PRINT) SKIP EUIT
('ATTEMPTING RcOUCTION - PRESENT STACK-->•,
(5TACK(II DO l=l TO TUPIIIA,ITOPI f·(41J;

TEMPSYM=PRUD(-TSC,11;
DO L_RHS=l TO r..o_PARTS-2 WHILE (PRUO(-TSC,L_RHS+21 --= 'JI;
ENiJ;
T UP=T OP-L_Ri1S;
IF TOP < 2 THEN GO TO UNDER;
PUT FILE (PRINTI SKIP EDIT

I' RED UC Tl ON ON PRODUCT ION --> ',-TS C, '.• 1 ,

INODE(PRODI-TSC,JII DO J=l TO NO_PARTS
WHILE (PROD(-TSC,JI ~= OllllA,F(31,A,1~:J_PAiHSI Al;

GO TO LlRI VE; .
~NO;

IF TSC = 1 THEN GU TO ACCEPT;
CALL_POINT:

OVEil.:

UNUEi<:

ACCEPT:

STACK(ll=Z;
STACKl2 I =3;
TOP=2;
PUT flLE(PRINTI SKIP EUlTI'** ERROR'l(AJ;
CALL POINT;
SYrldOL=FLUSH;
GO TO RETURN_FROH_ERRLIR.;

PUT FILE IPR.INTI SKIP EDIT I'** STACK OVERFLOd - PRullABlE ',
• CAUSE --> NEST ING LEVEL GREATER THAN •,
HtlOUNO(STACK,11-NO_PARTS,' **'112 A,F13l,A);

GO TO CALL_POlr..T;

PUT l'ILE (PRINTI SKIP EDIT I'** STACK UNOEkFLa.1 **'IIAI;
GO TO CALL_PO INT; .

PUT FILE IPRINTI SKIP ED IT I'"* PROGRAM ACCEPTED **' I CAI;
GO TO ENllHAIN;

I* GE TNE XT l S THE PERTINENT SCANNER. * I
GET NEXT: PROC RETURNS If I XEO iii NARY(31,011;

UECLAkE

FLSHSYM:

IP FIXED BINARY 131,01 INITIAL (OBI STATIC,
I FIXED BINARY 131,0J;

IP=IP+l;
CALL BSTSRC ICARO(!Pl,fLAG,POS,TREEI;
IF POS ~= 0 THEN RETURN IPOSI;
EL SE RETURN I 21; I* nz" JS THE: TkAI LI NG DELIMITER. * I

I* PRINT PREStlH RECORD ANO CU~KENT SYMBOL. * I
POINT: EIIITRY;

PUT FILEIPRINTI SKIP EDIT
IICAROIII DU l=l TO 801,'$'1(80 Alll,SKIP,XIIPl,AI;

RE TURN;
I• FLUSH TO NEXT STATEMENT ON ERkOR. * I
FLUSH: ENHV RETURNS (FIXEt, blNARYl31,0II;

IP =O;
PUT ftLEIPRINTl Ll>T ('**FLUSHING TO NEXT CARu**'l;
GET EO!TICARUI 180 AUii;
GO TU FLSHSYM;
ENC GETI\IEXT;

uuUJ0£c.4
UCt:.IJ02u5
01..C.liC.:bb
Cl.iCU02b 1
UOCIJO,t,"
LlU.U0.2b9
DOCUO.i:70
ULC.U0<.71
UIJCUC272
.;LC.U0273
u;:.cuo,-,,. "
<kCU0275
UIJCU0.276
LiDCU0.277
OCCU027c3
Jt.t~LIOL79
DC.LUOZbO
Ui,CU0.261
aii.CU0,02
ULC.U0.2il3
OLLU0.264
i;UCIJ02o5
OC.C.UO.i:8b
ulCi,0287
u:.J.;U02bfs
llOCU-0.c8 'i
JLCU0290
UUCU0.:91
JLCU0~92
,11..cuo .. 93
ilUCU0294
uU:ULl.2'15
iJUCU0.2%
OCCUQ291
OLCU02C,8
LlOC.00299 .
w(.ut:l~)J
uL'C u:J~O l
llLCu~~JC2
ut-cuo.;03
JOC U0304
DuCUO~O~
1,ccuo::.1&
OC.CU0)07
UL.:uo:;cs
ilUC<JO::>O"i
.Ju::uo:;10
&.;uLU!Hil
LlOCUOHZ
illJCU0313
JJLC.U0314
JLCIJ0315
IJDCU03lb
uC...110317.
ilU:.uO,io
1Ju(.UIJ3l9
Jli<.UOl.:O
u~;..uQ;ll
00LU0~"2
<JOCUO.i2.i

&> ,.o

tiSTSkC: Pt<.JCtJlJ,{i:: (I TE:i-,,fLAu ,PiJS,TrtEd;
I*

P~~CEOURE USTS~C IS THf SEARLH SELTIO~ U~ dST C.f. ~c~iMiNLt.
PARAMETERS:

ITEM - KEY FOR RETklEVAL, INSE?.TIGi, uR UELETION
FLAG - STATUS CODE FOR ATTEMPTED FUNCT llJN
PUS - LINEAR INDEX JF NGJE INSERTED OR RETRIEVEU
TREE - STRUCTURE LDNTAININ, d!NARY SEARCh TREE,

AVAILABLE SPACE LIST ANO ~ODE CGUNT

* I
UECLARE

SEAR CH:

IFLAG,POS) Fl XcO BIN !31,0l,
ITEM CHAK l*l,
l TREE,

2 NOUC (*) CHAR ("1-),

2 LL (*l FIXED d[N,
2 RL l*I FIXED BIN,
2 TA., I * l d I T I * l A Ll li NE lJ ,
2 AVAIL FIXEU Iii~ {31,01,
2 COUNT FIXED Bl N (31,01;

BEG!~

'* SEARCH FOR NODE wlTH KEY VALUE cONTAINEu IN ITcM.

* I
DECLARE CUkR FIXED ~IN 131,0l
CU RR= RLIO I ;
DC WHILE {CURR,= 01 ;

IF ITEM = NODE{CUMR) THEN
I* RETURN SUCCESS* I
00;

FLAG=4 ;
POS=CURk ;
RE TURN ;

!:ND ;
IF ITEM> NODEICURkl THEN CURR=RL{CURRl
ELSE CURR=LLIC.URRI ;

ENu ;
I* RETURN FAILURE* I
POS=O ;
FLAG=5 ;
RE TURN ;

ENO SEARCH
END BSTSRC;
END PRSR;

ENOMA IN:
ENU PARSER;
•11#--END OF SAMPLE PARSER--~#<
VARIABLE DE:iCRIHION (ALL SEC.TlJNSI:
BAD - oGRKING VAR!AtlLE - 0 FOR ANY '.,YMbOL NOT "•ITH!N• TH~ USER'S

PSEUDO GUAL SYMBOL
tlASIS - A VECTOR HOi.lllNG THE PUSITluN OF EXTENT OF ~ACH tlASIS :,ET

Pl THE VECTOR HOLUING ALL CONFIGURAT IUl'a SETS
BUF - INPUT bUFFEK f-OR PRUUUCTIONS
BUFI - VECTJR UVERLAllJ UN liUF
CANDIDATE·- A PR.OOIJCTION NUMBER IN SGME StT Tu BE uSEO FUR l'US!;!6LE

E XPAN S !ON
CUNFIG_SET_Ll~IT - INPUT PAP.Al'1ETER, LIMENSION Uf VEI..TOR THAT HOLDS

ALL CONFIGURATIUN ~ETS
COUi'IT_INAOEi.lUATE_STAH:S - ll\;PUT PARAMETER, l IF USER "ANTS ACTIO:•

ul.JCU0 .:>2.4
OLiCU032 5
llul. U032:b
oocuo~.2 1
ui.JCU032tl
OJ~ U032 9
,)(;(.U0330
.JGL U033l
JU...;.u()-'32
OLCU0333
.JGLU03.H
ilULU0335
UCt.\J0336
tJULU9j37
.JLJ~v~333
uUCU0339
UL:... U0340
uC.CU034l
J(,;;U0342
.J0(.U0343
UU...U0.344
uliC U0345
00CU0346
llC.CU034 7
utJ: U0348
~CU0349
IJGC.U0350
.JuCU0351
DCLU0~52
uoc U0353
.JUCU0354
:iGCU0355
.JU. U0356
IJUCU0357
l)GLU0358
tJOC U0359
IJUCU0~60
llCLU03t>l
tJOl.U0362
tX,CUfJ'>6 3
uGCU0364
uLi:U!l3b5
OtrClJ03~0
llUC U03& 7
iJOCU03o8
ODCU0369
DL::U0370
wW037l
UUCU0372
uUC U037 3
u(J(.IJ0374
iJiJCU0375
llUCU()3 76
LllJCU0377
uOCU0378
lluCU0379
JUCU03B)
,HLU03tll·
oocu<na2
UUCU0363

VAkIABLc REPRESE~TS
DEdUG_GRAMMAR - INPUT PARAMcTEN, 1 If USER WANT> ACTION VANIAdLf

REPRESENTS
DOT_PDS!TION - A MATRIX HOLDING THE DOT POSITlllNS Of BASIS ~ETS'

ELEMENTS
UOT_SwITCH - FALSE WHEN SCANNING NON tiASIS ELEMENTS, TRUE .OTH::RW!SE
ELEMENT - THE FIRST TRANSITICN IN THE kOW UF TAELE dEING SCANNED
ENDEX - A VECTOR SUCH THAT ENDEX !MAPTOIANY SYMBOLI I IS THE FIRST

PR[JOUCTION NUMBER OF WHICH SYMBOL IS THE LHS
ERR - ERRON SW! TCH
FENCE - THE "f.tNCE• OF A BINARY HARCH
FOLLOW - A 61 T MATRIX OF NONTERMINALS VS NONTERMINALS {SEE ABOVE)
1,J,K,L - LOOP INDICES AND LOCAL WORKING VAR!AtiLES
LlMIT_dASIS - INPUT PARAMl£TE1<, LIMIT OF ANY BASIS SET
LNAME - LENGTrl OF INPUT PKCDUCTI.LJN SYMll[JL
MAPTLl - A VECTlJK SUCH TrlAT MAPTO {ANY SYMBOL! MAPS THE SY~oULS TG

COLUMNS llF A MATRIX SUCH THAT THE NONTERMINALS AkE uKOUPtcU
AS ARE THE TERMINALS

MAPfkUM - THE INVERSE UF MAPTU
MARKER - A d!T VECTOR WHOSE I TH ENTKY IS 1 IF THE ! TH

CaNF!GURATION SET ELEMENT tANNUT HE USED FUR EXPANSION {OR
HAS oEcN USEtll

MASTER_E~RGK - ERROR SWITCH, TkUc If UI\ABLE TO GENERATE SLk(l I UaLE
MULT_REDUCE_~ - A ~UEUE USEO TO HOLD REDUCTIONS FOR A ~IVE~ ~TATE IF

Mu KE THAN l
NAME - AN INPuT PkODUCTION SYMBOL
N tiAS 1 S - COUNTER OF BA~ l S t;LtMENT S
NCHARS - COUNTER OF NON BLANKS IN NAME
NO_BAS IS - l NPUT PARA ME TE R, MAXI MUM NUMB ER Of dAS IS ELEMENTS FOK Ai'IY

SET
NO_(.HARS - l NPUT PARAMETER, ~AX !MUM NUMBER Of ChARACl tt{S II, ANY INPUT

P1sODJC TJQt,, SYMBOL
NO_!NAD - INAGE~UATE STATE CJUNTER
NU_NON - NuNTERMI NAL COUNTER
MAKK - A dIT VECTUK WHOSE l TH ENTRY IS l If- THf I TH PROuUCT!ON

CAN DERIVE A TERMINAL STRING
NO_PAil.TS - INPUT PARAMETER, ~AX I MUM NU~bER OF PARTS PER PRuDuCT ION
NO_PROOS - INPJT PARAMETER, MAXIMUM NUMBER OF INPUT PROOUCT!ONS
NO_SETS - INPUT PARAMETER, MAXIMUM NUMBER OF CONFIGURATION SETS
NO_SYMS - INPUT PARAMETER, MAXIMUM NUMbER uF INPUT SYMoCLS
,..O_TERM - NUMBER Of TERMINAL SYMBOLS
NPARTS - PARTS COUNTER
NSETS - CONHGURATION SETS COUNTER
PARMIN - INPUT FILE FOR PARAMl:TERS
PLACE - TrlE FIRST PRODUCTION OF A GR[UP •!TH THE SAM!: LHS
PRINT - DUTPUT PK!NT FILE
Pi\LiUIN - INPUT FILE FLlR PRODUCT IONS llllOCKSILE = SCI
PJl\;CH - OUTPUT PUNCH FILE
PROO - AN ARRAY OF eNCOilEO PKOUUC HON - THI: CODE FOt< A SYMBl•L IS

PT
RED
REDUCE

ITS POSITION IN THE SYM80L TABLE
- PJINTER TO UNRECOGNIZED PORTION OF BUF
- TRUE AS SOON AS A REDJCTIDN IS OcTECTEO IN P,ESEiH STATE
- A VECTOR THAT HOLUS THE NEGATIVE REDUCT ION, IF ANY, F[Jt< A

STATE--!F MORE THAN ONE THEN IT HOLDS HD• MANY ANU THEY ARf
STOt<EO IN MULT_REDUCE_~

SU - THE VECTOR HLlLDI NG ALL CO~F!GuRAT ION SETS
SET _LIM IT - THE "TiJPH elf SET
SIG - TKUE If ANY PRODUCT ION BECAME •MARKED" DURING LAST PASS
SLIM - A VECTllli, HOLIJING THI: EXTENT IN SET OF cACH LUNFluURAT!Llr;

SET

l.JLl.U03t:>4
UU1.,lJG3b5
UOL U03ilb
JL,L U0387
UOCUOJt,6
JOCU0389
DDCU0::>90
OOCU039l
Ui;(.U03~,:
OOCU039J
OOCU0394
OllCU0395
OOCU0396
uLiC U0397
0Ll.-U-039(j
-UGCU03C,9
JLL lJ04::W
LJLCU'l40J.
OOCU04('2
uui.U0403
ot.;(.U.).c.,.1)4

JL.:. I.J0405
uDLU04uo
UUCU()4)7
UU.U04'.lt>
OUCU040'l
.JUCU'.l4i '.l
JUC.U04ll
liuCtJJ4li.
t)UCU04l 3
uUl. U0414
OOCU0415
,.;l,j~_lJQ4l~

OU(.UC417
.JCCU04l6
DCC UCt,19
OUCU04Z'I
.JG~U042l
DLll. u0422
DuCU0423
Du~ U0424
DIJCU042,
UU(.U0426
OU. U042 7
LH,l.lJC4<'.b
uLlCU04L9
UL ... UC4JC'
L.(JCU04, l
i.iU .. U0432
u0L.U04:,3
ULlLU0434
JG ... UO<t..>?
JUl.u043b
~c. ... uc,,37
[.i(A: l.J043C
UULJ0439
0LLU04<,0
JUC U044l
i.Jl.J(.UCC:.4£

iJO(.U04<o3

-·~c1
0

OEC:LARE
tlST!NT c~TRY,
i>STSLR ENTKY ICHAKACTtR{NG_Ct-ARSl.,,1,
114.k SHAL 1::N T!-t Y,
l TREE,

2 NODE ()!NJ_SYMSI CHARACTER (NU_CHA1<SI INITIAL{' 'I,
2 LL (0;~0_5YMSI FlXtD tllNARY 115,01,
2 RL 10:NO_SYMSI F!Xd; Bl~ARY 115,01,
2 TAG I NO_SY"ISI Bl T (21 ALIGNED,
2 AVAIL FIXED ol:.A'\Y 131,01,
2 COUNT FIXtD BINARY Ul,O 1,

PROD INO_PKLlDS+2,NO_PAt<TSI FIXEU tllNAi<Y ll~,01
INITIAL {l,2d,2,((NO_PROOS+21*NO_PARTSI 01,

ENDEX INO_PRODS+ll FIXEll rllNARY {l'>,01 l'<lTIAL (11,
MAPTO INJ_SYMSI FIXED 8INA~Y (15,QI

INITIAL {l,!Nu_SYMSI JI,
~APfRUM {Nu_SYMSI FIXED blNA~Y <l'>,Jl i'<ITIAL 111,
NLI_NON FL<ED BINAF~ 131,0l lr-.1 TIAL { 11,
NO_TERM FIXED BINARY 131,01 INITIAL {OJ;

I* THIS. IS THE INPUT SECThJN. *I
READER_S ECT ION:

BEG!~;

~

DECLARi'
PRUDIN FILE INPUT RECJkO,
rlUF CHARACTER 1801,
BUfl 1801 CHARACTER Ill OEfll',ED BUF,
NAME CHARACTER 180 I VARYING,
11,JI FIXED tllNARY 131,01 INITIAL Ill,
INCHAii.S,NPARTSJ FlXcD BINARY 131,0i tNITl4L 141,
lfLAG,POS,PT,LNAMEI flXEll BINARY IJl,01,
SWITCH LABEL {GETCARD,NEXTSYl<,StHIJ;

ON ENDFILE IPRODINI GO TO EN..>INPUT;
c~ SIZE SNAP SIGNAL ERRuR;
UN 5lJdRG SNAP SIGNAL ERROR;
UN STRG ~NAP SIGNAL ERi<.JR;
CN ERROR SNAP GO TC ERROZ;
PUT flLE (PRINT) rnn

(' ••• dEGIN OUTP<JT FJR INPUT-E,~COiJE SECTION ... • II SKIP! 31,AI;

INITIALILE TREE USEJ AS SYMBJL TAoLE ANO INSERT GENERATED
GOAL SYMBOL ANJ SPECIAL DELIMITERS.
*I

GET CARO:

PUT FILE IPRINTI SKIP EDIT i'lhPUT PROOUCTllJNS' ,1171 •-•,
l. GOAL : "? 11 t USER' 1 5 GOAL SYHBUL , •1•• I

(2 ICOL!ll ,Al ,SKIP,Al;
CALL BST INT I TREE I;
CA.LL BSTSLR (1 GOAL 1 ,fLA!J.,PJ:),TREf:.J;
CALL B~TSLR (• 11 ? 411 ,fLAG,POS,TREEli

REAll FILE lPRUD!Nl INTO (BUF);
PT= l;

I* CtiECK FJR "EDF-" IALLJwS MULTIPLE GRAMMAR INPUT!. *I
If BUfl{ll ~ '•' TrlEN GO TO ENC!NPUT;

I* CARlJ MUST ENil wlTH NON-BLANK TO PRE~ENT STRl~Gi!A"GE .• *I
SudSTR{tiUf,Bl=(ol ·~·.

NEXTSYM:
DO ~T=PT BY l ~rllLE luUFIIPTI =' 'I;
E~O;
NAMl:=SUBSTR<BUF ,PT ,I NlJEX{SUBSTRlilUF,PT I,' 'IJ;
LNAME=LENGTHINAMEI;

iJl\~M05)4
Ut,AN05J,
uNAM0!>06
Ul'IIAM05J7
.;M M05J8
uNAM0509
iJ!\l~MO~ l 'J
J1'"MO!>ll
ui,Ar-10512
Ll1'AM0513
llNA,~0514
DNAM0515
OMM051<>
J1',AH0517
Jl',AMOSl~
JMM0519
!)1',AMO 520
Jt.AM05d
J~AH0522
R E:A00023
~£A00524
KtA0052 5
REA0052b
RE:AD0527
KE:AD0528
t<EA005Z~
Rt~00530
Kt:All053l
KE:A00532
Rt:A00533
Rt:A00534
REA00535
REA0053b
iUAD0537
t<tAD0538
RtAD0539
Rt:AD05't0
Rt:AOO 5-.l
Ri:AD0!>-.2
RE.AOOS-.3
Rt:400544
«tAD0545
i<EAW54b
REAU054 7
RE:ADl)5-.8
kEAD0549
READ0550
i<t:AD055l
KtcAD0552
KLAU0!>53
R tA00554
Rt:A00555
REA0055b
REAlJ0557
r(t.~uo,s 8
REAi.,0559
RE:Ail0560
REAU05bl
KE Au0562
READ05b3

Sril TCH
:>YM ijl.lL

TAuLE:

TAIL
TEM POOT
TERM

TOP
TKE E
TRY
TKYl)uT
TKYKNT
u
Wl Tt-tl N

- LA~LL ~"ITCH ~cT PER INPUT PU~CTUATIUN
- THE SYMouL TJ THE KIGHT Llf THE OUT IN THE Pkt:SENT SET

ELE~!:t,.;T
- THE SLRlll TAtlLE, EALH ROW IS A STATE, THE COLUMf<S Kt:PREScNT

THE $YMdOLS, A POSITl~E ENTRY IS A STATE TRA"'SITJLr. ANO A
~EGATIVE ENTRY IS A REllUCTIO~

- THE: TRANSITIVE: CLOSUkE OF THE TAIL SYMBOL MATRIX
- THt ULlT PGS IT !UN LF THE PRESENT SET ELEMENT
- T~UE •HfN. TkANSITIUN UNDER A TE:RMINAL SYM"OL IS I"' TrlE

PKESENT '>TATE
- TOP Of THE ~UEUE
- A STRUCTURE REPRESENTING THE SYMBOL TAdLE
- VALUE OF "GOTO" I-UNCTION
- DOT POSlTIDhS Of ELEMENTS OF TRY
- NUMBER OF ELEMENT; 11', TRY
- UPPER UOUND IN BINARY SEARCH
- BIT riATRIX OF "WITHlt," F,ELATIOI\ {AND CLOSURtl

*I
ISIZE,SUBRG,STRGl:
SLt<l: PkOCEOURE OPTIONS I MAI NI;
i<EUSArlLE:

BEG IN;
DECLARE

PARM!N flLE INPUT STREAM,
luT ,TMI CHAR 161,
PRINT FILE PRINT,
INU_CHARS, ~O_PRODS, NO_PAR TS, CONF IG_SE T_Ll Ml T, NLI_SET S,

NO_BASI S, NO_SY l<S, DEBUG_GRAl<MAR, NO_PRINT ,NlJ_PUNCh
COUNT_!NADi'QUATE_STATESI FIXED BINARY 131,0l;

CN ENDF!LE (PARM!Nl GO TO ENOMAIN;
tJN SUBRG SNAP SIGNAL EkROR;
ON SILE SNAP SIGNAL tkROR;
ON STRG SNAP SIGNAL ERROR;
ON ERRLIR SNAP GO TO ERROl;
OPEN FILE IPRINTI PAGESIZE 1661 LINESIZE 11321;
OT=OATE;
TM=Tl ME;
GET FILE IPARMINI EDIT

l NO_PRODS, NO_PARTS ,NO_CHARS, NO_SY MS, CO"'f IG_S ET _LIM IT,
NO_SETS,NO_BASIS,OEBUG_GRAMHAR,COUNT_INAOE~UATE_STATES,
NtJ_PR!NT ,NO_PUNCHl{COLI 11, ll F (41 I;

PLT FILE (PRINT) EDIT
{'SLRlll TABLE GENERATOR OuTPUT','OATE: •,SUtlSTR{iJT,3,ll,
':• ,SUBSTRIOT,5,21, •: ',SJBSTR<DT, 1,21.
'IJ.L. GRAY, COMPUTING ANU l~fORMATION SCIENCES DEPT., '•
•o.s .u.) •, 'TIME: 1 , 5UBSTR(TM ,1,2) ,, : • ,SUB STR(TM,3,21 ,• :.•,
SUBSTRITM,5,ZIIILINElll,COLl511,A,COLlll51,o A,CuLl351,2 A,
COLI 1151,b Al;

I* SET uEfAULTS, IF NECESSARY. *I
IF ~O_P~UDS O THE"' NO_PROOS=50;
IF NO_CrlARS > 78 T~EN NO_CrlARS=78;
IF NO_CHARS < 4 THEN NU_CHARS=4;
If NO_PARTS < 4 THEN NO_PARTS=4;
If CUNc!G_SET_LIHIT = 0 THEN CDNFIG_SET_L!M!T=5*NJ_PKOOS;
If ~C_SETS = 0 THEN t..J_SETS=L*(i'W_PRC,OS+21;
IF NO_dASIS = 0 THEI', NO_BA~!S=NO_PRODS/10;
IF NU_SYMS = 0 THEN NJ_SYMS=2*NO_PRODS;

I* THIS dEGI~ BLOCK IS FOR UYNAMIC DECLARATION PURPUSES. *I
T HE_w HOLE_ Tri ING:

BEGIN;

uOCUv444
vGCU0'>45
ulJC lJC446
uucU0447
uLcU0448
uGCU0449
.JUCU04',('
uLL. lJ0451
uL1,,.UC4:i2
l)(;(.IJ045 3
lJuC U0454
UCCU0455
U0t.UO"t5o
uGCUG4:,7
LlCCU045 8
:.JL,C U04::, 9
l,uLU0460
JuCU04b l
MAI NOOo2
MA!N04oj
MAi N0404
MAI ~0405
MAif'..0460
MAI N04~ 1
MAINC4o8
MA Hl0469
MA! r.0470
MA IN047l
HAHl047Z
MAI N047::>
i1AlN0474
MA! N04'15
MA! N047o
i<A!N0477
;1Al N047&
MAIN0479
MA!N0480
MAIN0481
,1AIN048l
MA! N04o3
MAl N043 4
,1AIN04~5
MAl N048b
MAI N0487
MAIN0-.88
MAi N04d9
r1AIN0490
MA!N049 l
MAI N0492
MAIN049J
MAI r.0494
MAI 11,0495
MA!N0496
MAIN0-.97
MAI N0498
rlAIN0499
MAIN05))
0,-.AMO:IO l
Ui'<AM05J2
c,"'41'0503

-1
ii<-<

IF LNAME < 3 THEN
00;

IF LNAME = 0 THEN GJ TO GETCARU;
ELSE GO TO ERROJ;

END;
NCHARS=MAX(NCHARS,LNAME-2l;
P T=P T+LNAME;

I* INStRT IF NOT PRESENT ELSE EfFECTIVt:LY A ScARCli. *I

ENT ER:

CALL BSTSLR (SUBSTR(NAME,1,LNAME-21,FLAG,PO,,T~i~l;
IF SUBSTR(NAME,LNAME-1,11 = ',• THEN

DO;
S•I TCH=NEX TSY M;

J=J +l;
NPARTS=MAX(NPARlS,Jl;
PROD(1,Jl=~OS;
PlJT FILE (PRINT> EIJ!T (NAMEHAI;
GO TO Sh! TCH;

ENO;
IF SUBSTR(NAME,LNA~E-1,ll = •:' THEN

l)Q;

I= l+l;
J=l;
PRODCl,ll=PUS;
PUT FILE (PRINT> EUIT (I,'• ',NAMEl(COLl11,Fl3l,2 Al;
IF PRGD(l,11 ,= PROD(!-1,11 THEN

I* SET MAP ARRAYS FOR NON-TEtl.MINAL. *I

l'I

DO;
NU_NON=NO_l'.UN+l;
cNDEXCNO_NJNl=l;
MA~TD(POSl=NO_NON;
MA PF RUM(NO_NONl =POS;

END;
GO TC NEXTSYM;

END;
IF SUBSTR(NAME,Ll';AME-1, ll = THEN

DO;

OPT!Ol<ALLY COlJLll SET Sw!TCH TO GETCARD I·F IT IS KNOWN THAT EACH
INPUT LHS STARTS A NEW CARO.
*I

SEMI:

,n lTCH=NEXTSYM;
GG TC ENTEH;

END;
lF SUBSTK(NAME,LNAME-1, ll

OJ;
SwlTCH=SEMI;
GG TC ENTER;

PROD(l+l, ll=PRODII, 11;
l=l+l;

I; I THEN

PUT FILE (PRINT! 5KIP ED IT I' 'I (COL(9l ,Al;
J= l;
GG TL NEXTSYM;

ENO;
GO TO ERR04;

END! NPUT:
I* OUTPUT STATISTICS UN INPUT

PUT HL E CPR INT l SK IP
('USER REIJUt5TeiJ

GRAMMAR. *I
l:O IT

ACTUALLY ~EEUEO', '341 •-•,

~C.AJ'.J:>o'1-
r<..lAt.l:l?bS
!-l't.AvO?bb
:<.c...1.U0!>b7
kl:..,HYJ?oo
t<.f..AU05b'I
'"<.t.AUO:i70
Kt.A00:>71
"t.AUC:,72
«cA00:,7 ~
o<l.\UQ:,74
o(cAD0575
Ki.Ai.J057o
K(Au0:>77
k.E:ALh):i7o
KtAl)u5 7'J
~E:AUO~t:iO
KtAD058l
KEAD0582
itcAU0583
KtA00584
i<!:AU0585
KEAll058b
"EAIX!587
KcA00588
REAll058'>
kcA00590
REA0059l

.RtA00592
READ059.3
RtA00594
RcAU0595
KcAD059b
RtAU0597
R EAIJ0598
REA00599
RcADObOO
RtAOObO l
i<EAD0b02
REAUOb03
KcAllOb04
RtAOOo05
KtAUObOb
ktA00b07
il.cA00608
RcAU0609
REAUOolO
k.li..UOtl l
l<.tAWtl2
ktAUOol:,
,..tA&Ot.il4
f< tAU06l5
f<EAUOblb
"b,vOtl 7
klADfJbl 8
K[AOOtl 9
t'.i:AI.H)t..20
1H.A1,,N,21
"'t.Ai...Ob22
R tAOOoL 3

1 ;-iuMdl:1' Ut- PAi:.'TS 1 ,NO_PAKTS.,'\iPAi,.TS,'NUl'bER i.JF PROt.LJCTICNS',
,,._..:_p;:wJS,1-1,' TUTAL SYMl::lOLS' ,f..lC_SVlti,COUNT,
'~lJMBER Of CHAKACTERS' ,NO_CHARS,NLHARSI
(.:ii\ IP, L.CJL {30), A, SK IP,CDL, 301,A,4 (COL (dJ .A.t:. ... L (34) ,f, 4),
Xll51,Fl41l l;

NO_CHARS=NCHARS;
NU_PARTS=NPARlS;
NLl_PROtJS=l;

I* FIXUP LOOP TO SET M"P ARi<AYS FDR TERMINAL SYMBOLS. •I
UC l =2 TG CC\JNT;

IF MAPTOIII = 0 THEN

El';G;

DO;
NC_TERM=NO_TERM+l;
~O_SYMS=NO_NuN+NO_TERM;
MAPTU(ll=NO_SYMS;
MAPFROM(NO_SYMSl=I;

ENO;

PUT FILE (PRINT! EDIT !'NUMBER OF NON-TERHINAI.S IS ',NO_NON,
'NUMdER JF TERMINALS IS ',N3_TcRMl(SKIP,2 (SKIP,A,f(3lll;

l F NO_PRl NT ,= l THEN GU TO BYPASS l;
PUT FILE (PRINTI SKIP (21 EDIT ('PROO• LHS•,1• RHS' OU l=l re

i~u_PARTS-11,1301 •-•J((NQ_PARTSI A,SKIP,AI;
PUT FILE (PRINTl EDIT 1<1,•. •,(PRODll,.JI 00 .J=l Tu r.o_PARTS)

00 l=l TO ND]RODSlllSKIP,F(41,Al21,ll'<G_PARTSI fl4ll;
PUT flLE lP.RINT I SKIP (21 EDIT

('NODE• TO FROM NOOE• ,ua1•-•,t1,HAPTOIIJ,IIAPFROMlll,i,;}DEI II
DO l=l TO COUNTll<A,SKIP,A,ICOUhTIISK!P,3 Fl41,X(21,
Al NO_CHARSI l l;

BYPASS!:

'*

IF NO_SYMS ,= COUNT THEN GO TO ERR05;
PUT fl LE I PR I NT I EDIT

(• ••• ENO OUTPUT FOR INPUT-ENCOUE SECTION ••• •l(SK!P,AJ;
END REAOER_S ECT ION;

IF DEBUG_GRAMMAR ,= l THEN GO TO TABLE_GENERATE_SECTION;

DEBUG DETECTS -DEBUG PRODUCT!ONS BY Cl)!,ISTRULTING THE RELATION
WITnlN+ AND ALGORITHM 2.a., P.42 -- CO~PILER CONSTRUCTION - GRIES.

*' .
OEBUG_SECT ION:

'*

6EGIN;
DECLARE

wlTHIN(2:NO_NON,2:NO_NONI BIT Ill
INITIAL (INO_NON*NO_NONllll '0'81 ALIGNED,

MARK (NO_PROOSI d!T (11 INITIAL l(l'j(J_PROOSllll'O'el ALIGNED,
SIG diT Ul ALIGNED,
(I , .I, K , LI F I XE D 8 I &';ARY (31 ,0 I;

CN SU8RG SNAP SIGNAL ERROR;
CN STRG SNAP SIGNAL ERROR;
ON SIZE SNAP SIGNAL ERROR;
CN ERROR SNAP GO TO ERROb;
PLT FILE (PRINTI EDIT

l' ••• dEGIN OUTPUT FOR DEdUG secnor. ••• 'ICSKIP,AJ;

WI Tti!N' S RJWS CuRRE SPOND TG NON-TERMINJLS ANO HAVE A •1•
FOK EACH K~S PART "WITtilN" A LA GRIES.
*I

DO 1=2 TO NO_PKODS;
JL) J•2 TO NO_PART~ WHILE IPiWOll,.JI ,= 01;

l~ MAPTO(PRUli(l,Jll <= NO_NON THEN

rd::ADGc2.4
n.lfii.JCt:.2~
k.t.:.i.0Gu2a
r,,t.AuC't2.7
KcAOOt>2c,
«tAOOt,2~
RC:.Au0630
K CAOOb::S l
KtADOt.~l
i<t4U06j3
f< tADG634
REA 00635
RE:MU063-b
KtADOt.H
RtAlJCt.38
kEAOOb.'>S
HAllCc40
KLAUGt4l
r;EAuC<,42
RtAD0643
R[AU0o44
Kt.AL.0645
RE:AD0b'1-&
t<t'"'UOt..47
K lAt;0b4d
RtA00649
REAUOt.50
KtAD065 l
REAIJ06:>2
REAL06~3
kEADQb54-
ol.EADOoS5
RtADOb5b
KtAD0657
Jl\iAMCt:58
LibJ G0b59
ubli(,06b0
tlbUG06ol
DtlUG06!>2
:JbUGCb63
LlbUGC664
!lBUGOou~
JuuGOto6
UbuG06o7
ubUGOcbt>
JbUGOo69
Ct>V C:,Ot... 70
OtlUuOoH
JbUG06 72
UbUGObl3
iJbui,0674
ubUG0675
UllUG0b70
DbuG'J677
ubJ(,067i>

. UbJbOb7~
uoUGOb<IO
OBU G06dl
UbUG0682
uBuGOob:>

-.J
N

~!TH!N(MAPTO(PRJD(l,111,MAPTO(PkUUll,Jlll•'l'B;
END;

ENU;
I* CLO;uKE VIA riAkSHALl ALuOR!THM. *'

CALL WARSHAL l~lTH!NI;
I*
ANY ZERO I~ USEK'S GQAL ROW (COL 3 FOR•ARDI MEAN~ SOHc SY'1t!.JL IS
NUT "WITHIN" THE USER'S GOAL.
*I

CO J•3 TC NC_NON;
IF ~,HTHIN12,Jl THEN

~UT FILE IPRINTI EDIT (NODt(MAPFROMIJII,
' CANNOT ·APPEAR IN ANY SENTE:NTIAL FUR'1.'IISKIP,2 AJ;

ENO;
I*
ALGORITHM FUR JETECTING PRODUCT IONS THAT CAl'<NuT t>E USELJ TO
llERIVE A SENTENCE, C.F. REFERENCc.
*I
Tw083:

SIG=•o•a;
00 l•l TO NO_PROOS;

IF MARK(II THEN GO TO ENUI;
OU J•2 TO NU_PARTS ~HILE (PROD(l,Jl -· OJ;

If MAPTOIPROOll,JII > NO_NON THEN GO TU E"D2;
I* LINEAR LOOK-UP FOK NON-TERMINAL AS A LHS. *I

END2:

ENDl:

DUPT EST:

DO L•2 TO NO_PRODS WHILE lPROD(L,11 -• PROtJll,Jll;
ENIJ;
IF L <• NO_PROIJS THEN

oo;
00 K•L TO NO_PRODS WHILE(PROD(K,11 • PRUOIL,111;

IF MARK(Kl THEN GO TO ENDZ;
END;
GO TD ENIJl;

END;
ELSE

DO;
PUT FILE (PRINT! i:D IT

(NODE(PROO(l,Jll,' IS NUT A LHS.'IISKIP,2 Al;
END;

END;
MARK(ll•'l'B;
SIG='l'B;

END;
DO J•l TO NO_PRDDS;

IF ,MARK(JI THEN
DO;

ENU;

l F SIG THEN GO TO HnJ 8 3;
00 1•2 TO ND_PRODS-1;

If ,MARKlll THEN PUT FILE IPRINTI EDIT
(l,' TH PKODUCTION uSELESS.•JISKIP,FI 31,AI;

END;
GO TO OUPTEST;

E~J;

I* ND• CHECK FOR DUPLICATE RHS. *I
DO I•l TO NO_PMODS;

DO J•l+l TO NJ_PRUOS;

Lil:1Ub0bd4
IJO·Jb:.1685
(;bU C0b86
uot.Ju06d7
DbuUObb8
DbU G0b89
UBuGOb90
ubuGOOQ l
DouU0092
DiHJ<,0693
llb~G0694
[JbU(,()695
ubui,0696
LJbJ G0697
lJbUG0690
LlbU.;0699
OW G0700
JdUG0701
Jb~G0702
Ubu .;()703
U8Uu0704
UBJG070,
vbJG0706
llbUG0707
IJbUuD708
UbUG0709
D6uG0710
OtiUG07ll
D6UG0712
i)tlUii0713
D!IUG0714
DdUG07l 5
Obll G0716
UtlUG07l 7
JIJUG 0718
DBUG0719
UBUG0720
.JbUG0721
:loJ&G722
01>UG072 3
JtlUu0724
UtruU!J725
obuu072b
.JBUi,072 7
ObJ G0728
UbUG07<9
.JbU(,0730
u&IG0731
OOUG0732
:JbUG073~
UbJb073<t
UBUGCB5
<JllUGOB6
OBUG0737
ObUG.0738
U&IG0739
DilUG0740
UbU(;074l
G&J GG742
ub.J G07'<3

~

If PRGDIJ,<I • PPUU(l,2l TrEN
oo;

00 K•3 TO NO_PARTS;
IF PROD(l,Kl ~· PRCO(J,KI THEN GU TO NuTOUP;

ENU;
PUT FILE (Pt<li'ff I EDIT (NODE(PROD(I ,211,

' STARTS A :JUPLICATE RHS FOR PRODUCT ILlNS '•
J,' ANU ',I, 1 .'J(SKIP,A(NO_CHARS),3 (A,Ft3)));

NOTICE NO ERRUR ON DUPLICATE RHS SINCE THE SLK(ll METHOC IS
UNAFFECTED BY SUCH THINGS, HOWEVER A MESSAGE IS PKINT~U dECAUSE
OFTcN THIS CONOITION LEADS TO UNSOLVABLE INADE~UATE STATES.
~

END;
"OTilUP:

ENiJ;
ENO;
PLT flLE (PRINT) cill T

(' ••• ENU OUTPUT FUR uEbUG SECTION ••• ' J ISKIP,Al;
El',D DEBUG_S ECT luN;

I* DECLARE GLOBAL STORAGE FOR LRO AND SLRl. *I
TABL E_GENEiUTE_SECT ION:

BEG! N;
DECLARE

REDUCE 12:NO_SETSl FIXED BINARY 115,0l
INITIAL (INO_SETSI O I,

MULT_REDUCE_Q (NO_TERMI FIXED BINARY (15,Cl,
TABLE 12:NO_SETS,2:NO_SYMSI FIXED BINARY 115,01;

TABLE•O;
I* CONFIGURATION SET AND GOTO FUNCTION GENERATOR. *I
LRO_GENERATE:

BEGIN;

CLUS E:

OECLAKE
(NSETS,SET_LIMITI FIXED BINARY (31,0l INITIAL 121,
TOP FlXEll BINARY 131,01 INITIAL lOl,
(<.ANDIUATE,NBASISl FIXED BINARY (31,01 INillAL Ill,
(U,SYMBOL,PLACE,FENCE,TRYKNT,LIMIT_BASIS,I,J,K,

L,TEMPDOTI FIXEU B!NAKY 131,0l,
Si:T (CONFIG_SET_LIMIT I F!XEU BINARY (15,0l INITIAL ((21 11,
SLIM (0:NO_SETSI FIXElJ Blf.AKY 115,01 llslTIAL IO,ll;
dASlS INU_SETSI FIXEU BINARY (15,01 INITIAL 1121 11,
TRY (NO_BASISI FIXED ti!f;ARY (15,01,
TRYOUT (NO_BASISl FIXED "I~A~Y (15,0l,
JOT_PJSITION (NU_SETS,NO_BASISI f!XEU dlNAKY ll,,Ol

INITIAL 15,INO_bASIS-ll *,21,
DuT_SwlTCH til T (ll All GNEO.
MARKER lCONFIG_SET_LlM Ill 81 T 111

l~IT!AL ((CONFIG_StT_LIMITl(ll '0'81 AL!GNEu;
UN SILE SNAP SlbNAL ERROR;
ON SUbt<G SNAP SIGNAL iRRQK;
U~ STk~ SNAP SIGNAL ERRCR;
ON ERROR SNAP GO T0 ERR07;
PUT FILE IPRlNTI EDIT

(• ••• BEGIN OUTPUT FOR LR(Ol GENERATE SECT!ON ••• •IISKIP,AI;

LlMIT_dASIS•BASISINSETSl+SLIMINSETS-11;
DO J•SLIMINSETS-11+1 BY l •HILE (J <• SET_LHl!TI;

I* TRUE IF SETIJI IS AN ELEMENT OF A rlASIS SET. *I
If J <• LlMIT_rlASl5 THEN

UC;

.JoULoC. 744
.:.&Hi07.,.5
..ibUC.0741,
.Jbl,(,0747
IJWG07'<d
ilb"60749
UbJG075:l
~c.ub,7:il
Jtl,t.07?2
.:;EioG075.l
utiliG0754
DbuG0755
utiuGC756
UbUC.0757
UbuGC7jb
UWG0759

.UouG.07bG
.Jfn1GC76l
i.11:,JG!:7b2 .
Lioi!uG0763
J MoC..0764
TAob07o5
TAtU,0766
l "-iil,0767
I At>G.G7:.6
TAuG0769
T ,.Bi,0770
TA!H,0771
T,>.iH,0772
Lk:!G077 3
LHlGC77'o
U,060775
Lk0G0776
LkGG0777
Lk0GC77o
Ll<Ou077'1
LkGG.07dll
Lk0C.U78 l
Li<:X..076l
Li<.OG07d3
LkiJ(;(;764
Li'<l)G0785
Lk~b078o
t..~GG07d7
LK(li,C7bi:i
U,CliC7ts9
Lk0G0790
LROt,0791
LR'lGi)7~2
LkDl,079~
Lk0GC7'i4
Lk\)1,1,)79:,
Lk0b079o
LkC<,0797
LR0t,07'id
Lk0..079'l
LK(H,Ot,00
LK~002l
LK(L.CoO.l
Ll\.:}L.(icjQ~

""" w

Ti;MP!JDT=uOT_PUSlTIU;,c~SE IS,J-!:,Ll:S(f\!>t[S-1 JI i
I* CHcCK FCR u(;T TC Rl~HT OF KHS. *I

'*

It' li:MPDOT > NL_P~HS [11tN SYMoUL=O;
CLSE SYMoUL=t"r<.UU(SET<J),TCMPvOT! i

ENU;
ELS,E SYM80L=PKOiJI ,tTI JI ,21;

SYNBLlL IS .>YMB:JL TU RIGHT CF uDT - IF ~G SYMBUL IHci, SH ~UT_Kl6HT Al\iu
TAKE OFF EXPANSION ELIGllllLI TY LIST, ENTERIN~ PkllDUCTlui, NUMbi:k
IN REDUCE IF EMPTY (NEGATIVE VALUE EfllT"EREUI cLSE PUT IN aUEUt
ANO SET REDUCE .TO NUMBER Of- ELtMEl',TS D~ THIS SE:T 11'1 QUEUE,
*I

If SYMBOL= 0 THEJ\i
DO;

IF Ri:DUCEINSETSI = 0 THEN RcDUCEINSETSl=-SHIJI;
ELSE

uo;
IF REOUCECN!>ETSI > 0 THEJ\i

oo;
KE DUCE C NSE TSI =REuUU I NSE TSI +l;
TUP=TUP+l;
IF TOP> HDOUNOC~ULT_REOUCE_l.l,ll THEN

GO TO Ei<R 10;
MULt_REUUCE_QIHJPl=-Si:TIJ);

ENO;
ELSE

DO;
TOP=TOP+2;
IF TOP> HbOJNDIMULT_REOUCE_~,11 THEN

GO TC ERRIO;
HULT_REDUCE_QI TlJP-11 =REDUCE I r.SETSl;
MULT_REDUCE_I.IITOP-1=-SETIJ I;
RED·ucE (Mi ETSI =2;

tNU;
END;

'!AR.KERI Jl=1 l'fl;
GO TU PRODCLOSEiJ;

ENO;
I* NU CLOSURE FOR TERMINAL SYMBOLS. *I

'*
IF MAPTOISYHBOL I > ND_NON THErl GO TD PKUilCLLISi:I);
PLACE=ENOEXIMAPT!JlSYHBCLII;

CHECK IF DUPLICATE WITHIN THIS ;'er. -'._LliliEAR Ll.uKUP - 'JO NEE:u
Tu LOUK TH~OUGH BASIS ENTRIES AS THEY c;o NlJT HAVt: ilOT
TO L.EFT LIKE PLACE DOES INUT TRUE FOR· GOAL BUT ITS UNl~UE 1,E.
If "GOAL" IS A RHS THE!', TROODLE - NOTlc'E THAT -THIS LCJilP IS r,QT
EXECUTED FOK Fl~ST LEVEL CLOSURH - I.E. THE FIRST STEP
OF ThE CLCSURE FOR A BASIS SET ELEME~T.

*' JO K=LIMIT_BASl~+l TD SET_Ll~IT;
IF PLACE = SHIK I THEN Gu Tu hUJ~LUSEu;

END;
I*
l'otlT LIUPLICHE - THERf:FOi<I:: rnTER PLACE IAf<U OTHt:kS •!TH SAMt LH!>l lt,TC
THIS SET,

*' DO $ET_LIMIT=.SET_LIMIT +-J.. BY I;
IF SET_LIMIT > HDOUt,G(SET,11 THEN Gl.. TC E«Rll;
SETlSET_LIMITl=PLACE;
IF PROOIPLACE,11 ,= PROOIPLACE+l,11 THE~ GL T~ PRCuCLuStc;

Lr;,u!".e;,)<t­

i..kf,i..,Cb;j!;»

L"-'juCo~~
Lt-')C,Ot.~)1
Lr-,.0(;t;.c;:HI
Lt<Ut..Oi,'J9
L.f,OuOol.0
u .. :,u'l&l l
Lt<..'; UCidl.2
LkOG,0813
LkCb0814
LR0G()bl5
Lk0G08lb
LkOGOlll 7
LkOGOi>lB
LkOGOcU9
LkJ (;()il2:J
Lk0G06.H
Lf\0G0fl22
LkJG082J
LkuuOb2'<
L~OC.0112!>
LROC.On26
Lk0G0&27
Lkvb0d28
LkvG01129
LKCC.0630
Lk0G08.H
Lk0u0832
LROGD833
LROG0i13"
Lf\OG0b35
Lk0G0b3b
Lk:bCn37
LkOGC1B8
Lk0G0839
Lk0C,0i1'>0.
Lk01,0b'ol
LkO .Oa .. 2
LkOU00,.3
LK01,0br,4
LkJG.."a'>5
LKOC.Ol!-.6

-LkOGOfl'ol
Lk0G0&48
Ll,01,0849
Li<CbOe:,0·
LN-ObQdjl
Li<..•}(:,0~~.2
uOGOb::i3
L"::,.,cc!'.14
Lt\(uOo:i~
Ll<Uli085f>
LKVIJ0d57
Lr.OG0c5ii
Ll<'JG')S59
Lr..~GOobO
LkCGQaol
Lrt.~H.i.Jo::>l
Lt".}G-Jeo.:,

PLACt=PLACE+l;
~~J:

PR .. u.:u,s E~=

cXPAl\iU: ,.
E~;

5LlMl~!>fl5J=StT_Ll~IT;

Flt.D FIRST '0' II', MARKEt< l~ARALLEL TO EXISTING SEhl Ahl) Ui:k«•H·•E
VIA alNARY !>EARCh "HICH SET IT llELiJNGS TU.
*I

CKLU:

I*

CO CANlllDAT·E=CANlllUATE+l TL! CONflG_SET_LIHI T
HHllf IMARKER(CANOIOATEJ I;

tNLI;
IF CAhLIIDATE > SLIM(;,SE·TSI THEI, Gu TO L,<O__FINIS;
U=NSETS;
L=l;

IF U < L THEN
DJ;

FENCE=L;
GO TO EXIT_dlNAkf_SEARCH;

E'lO;
FcNCE= IL +u 112;
IF CAMJIOATE = SLl"lfElliCEI THE~ GO TO t:XIT_lllhARY_ScARCH;
IF CANLlluATi: < SLlMll'EhCEI THE!'. U=FENCE-t;
El:SE L=FEl!CE+l;
GO HJ CKLU;

EKI OF BINARY SEAi<CH - AT THIS POINT FENCE IS T t,1: SET THi C.Ar.ulOATE
FOR EXPANSIUN ICANJl~ATEI IS IN.
SELECT All t:NTi<IES OF THIS SET WITH Tl:IE SAME SYMBOL TO RIGHT UF
IJuT. ENTER ELEMEl;TS IN TRY AN.:> OOT PuS IT lur.s +-1 IN TRYOOT. .,
EX IT _BINARY_SEARCH:

TRY·K(l;T=l;
TK YI ll=SETICANOIDATE I;
MARKERICANLIIDAT EI=' 1 16;

,. TRUE IF CANDIDATE NOT IN BASIS SET,THEREFOilE .;or IS LEFT OF itHS. *I
IF CANOIOATE-SLIM(FENCE-11 > BASISIFENCE-1 THi:N

ilC;
i>Ul_Siiil TCH=' 0 1 IH
l,K.a:;:2;
TRYilOT 111 =3;

ENo>;
ELSE

OG;
L>UT_Swl TCH=' 1 1 tt;
11.=DOT_Pu~ITIONCFENLE,CAlliulOATE-SLIM!rthCE-111;
TkYLIOTlll=K+l;

tl\i;);
SYMltCL=PRGIJIS ET IC ANO IOAT EI, 1< l;
DO J=CANOl;)ATE+l TO 5LIM(rENCEI;

IF OOT~S .. ITCH THEN
OG;

IF >1ARl<ERIJI TriEN GO TO 1',0T_SAME;
I• TuRr. Lf+ ..:OT_SwlTCt1 AS SOUN A~.OlJT Uf DASl:S SET. *I

ff J-SLIMIFEN·CE-11 > bASISI-FE"CEI THEN
[;0;

DOT _SW lTt.:H:: '') 1 6 i
L-=2i

Ll"I\AJ(.co4

L"':.;t,.:'tb!>
Li'\·)u!>t:t..b
Li'\(•bUo::./
Lr.•.:;(/~dO.:::li

l.kObOc:i~'i
Lk0G:lb70
.i...ri.JJ~c71
LKC1,()b12
L;....:e,.Cb73
Lr«:.bQ81'"t
LKC..U'Jt,7!)
1..F-.0;(;.Jb7b
L"':)U-0ti77
Lk0i.iQb7ts
Lr • ..:"G0ts7'i
Lk(.;G,!)cul')

1..k.lib~tidl
Lk.Ct;.'.)adl
Li<.Cil,j0&d3
Lkl.GOE&4
U,...)~od~

Lkili,01'>8!>
1,..r.:iUIJbt11
.LN.iJ&'h,bd
LkO..Ood~
LkU&Ot=':10
LkC~Oa~l
&..i-.0u0b9.2
lic:l.;()<193
t...f..'l~Ob<;4
L~.JG0695
1..kGuOo-,10
Lt-.JG0ts97
Lil~G:Jb'itl
Lk.;)bC0~9
Lic0G0900 ·
L"Oi,0901
Lf\().GOC,.,Z
LkOGO'iO.:i
LkGG0'7~4
u·.CL.O~O=>
Lk;;(i.0'l0b
L,..\Ha0'i'l7
L•-v~o~oa
Lt-.ObOSO".f
L;.Cilill91'.l
Lt-.::,..,Qc;ll
Lk{..GOS.1£
Lt<CGOSl.-'
Lk.~'bG'i,i-t
Lto:~GU'll5
i.kCl;tl9i.o
LkOl,iJC,.l 7
Lt'\0\:i0'7ld
LtcJ,..O'iol'I
Li-.-3G0'6.l0
L«(f l,O<;d
Li-Oi,O<;c!~
LROG09c!.i

- .. +

ENO;
EL!>t: l=UUT _PLS IT I ON(Ft.NL E, J-S L IMC fd,CC-.l I Ji

ENiJ;.
Ir P~Oc(SET(Jl,LI = SYMoOL lHEN

i.JUi
TrlYK.i\JT=Tr<.YK.NT+lt '* BASIS. SET uvErtFLUl'i??'! *I
IF TkYKNT > Nu_BAS!S Tr-ff~ ..;c TC HRl,:;
TKY(TRYKl',ll=SEHJI;
TRYDuT(TRYKNTl=L+l;
MAKKCR(JJ=•i•d;

END;
NUT _SAME:

ENJ;
I*
NOw SEE IF TRY wCuLO START A Nfo.SET GR JU'.,T OuPL!CATE AN eXISTll<G
SET, METk.lLJ IS Tu CHtCK ALL E,lSTlillG SET'S ll TL 1',SETSI wHUSE bA!>IS
ENTRY E~U~LS TRYKNT ANC CHELK i!OTH tillTRHS AN.J LlLlT PO,IT!UNS,
IF INE<.,uALlTV EA!STS wlTH ALL BASIS HtMENTS JF tACH SET THEN TRY Al,~
TRYDQT Al,0 T~YKNT ARE USED TO INITIAL!lt A NEW SET (N>ETS<-NSETS•ll
AND TO SET TAbLE,
*I

lN_SET:

'*

CU J=l TC NSETS;
If bASISIJI = TRYKNT THEN

DO;
DO K=l TO TKYKNT;

00 L=l TO TRYKNT;
IF TKYIKI = SETISLIMIJ-ll+LI ~

TRYDuT(K) = OOT_POSIT!ul'l(J,LI THEI, .;o TO IN_SET;
ENO;

• GO-T ..i NEW_Se T;

CNO;

SET TRANSITION UMJE11 THIS SYM80L 11' TAELE- T,n IS vvPL!"CATED [>Y (JI Td
~AolS SET,
*I

NEW_SET:

TAaLE(FENCE,MAPTO(SYMBCLll=J;
.;o TO EXPAND;

END;

HolO; ,;:
NSET,=N~ETS+l; ..
IF t><SETS > NO_SETS THEN GO TC ERl<l;,;

I* SET TRANSITION TO THIS NEW STATE· ·ISET, THAT ISi, *I
TABLE I FENCE, MAPT OISYM~OL I l=NS~lS;
NBASIS=MAX!NHASIS,TRYKNTli
CO J=l TU TRYK~T;

SET_LIMIT=SET_LIMIT+l;
IF SET_Ll,~IT > H~GUN~l~ET,ll ThEN GO TG Ei<kll;
SETISET_LIMITl=TRYIJI;
DUT_PuSI Tl UN(NSE r,. J) =TRY ij(T (JI;

END;
SLIMINStTSl=SET_LIMIT;
BA SI SIN SE TSI = Tk nNT;
GO TD CLUSE;

LRO_flNIS: .
PUT f!Lt IPRINTI SKI~ bJIT

(1 VSCK l".E:QUESTE:u ALTUALLY l'llc::(uC:W',(341 •-•,
'NUMdEk Qf .'.:>tTS' ,t>iu_Sf:T~,N'.:>f:TS,'LENGTH Lf- SET:'.J 1 t

U•u00924
L"-::·0,0.<iL5
LKOGOS-20
Lt<OG0927
Ll'.0<,c<;,2d
LkO G092'l
Lk0GL9J'i
Lt<Ou0S.3l
Ll'.Ou0932
L kCG09.>3
Lk(, l,C93't
LROG0935
U,OG0936
Li<:! 17:)937
LkDG0'>38
Ll<0.,0939
Lk3G.0940
Lk(i<,1:',41
Li,.Ol,'l',42
t.:k0u09~3
Lr,·OG0944
Lk0.;()945
LkOG094o
LkOG0947
Li<UbC946
Lk0G094'l
Lk0G0950
Li\0~0Ci5 l
Lk0G?9,2
Li-.OG0953
LkJG095r.
LRO<,O'i~5
Lk0G0956
Lk0G0957
Lk0G0958
LK0.;0959
LKCG0960
Li<OGOYbl
LROGIJ9b2
Li<OG09t.3
Lk0!,0964
u,;,GD<,!>5
Ll<0£,Q<;bo
LkC£,09t>7
LR:>G0968
L-.%0969
LkCl,0970
Lliv[,0971
Lt<0G097 t.
Li,.:J (.0973
L~OG0<;74
LRC.[,0~15
LkCJ(i/):Y70
LhCG0977
LR0u0Y7cl
l.i<)b(i',79

LkCGOYilO
Lk0G09dl
Lt<Ou-09dl.
1.k0t,D9d3

CtH,;r ,u_~t T _L l 1"'1 I r' ~i: T_L lMI T' '1-.UMtH:k I r.i bA SI~ :)t T' thJ_~,i.;' ._,c.UU0'7d4
-,11:'iiSl~) (5Kll-',C.UL(ilJJ,:..,~i<..1P, (.UL(;:":) 1 A,., (... JL(lt•J,.:.,~.:,L, ~4J, ._,-.~vOt,,:,j
i=(4 • .,X(l5J ,F(4)JJ; u·.1)\j'_"~-'O

IF NJ_Pil.H<T ,= l THl:N Gu TO dYPASS2;
I* CUNHbURAT!Qr, SET CUTPUT, *I

U·.!Ju'J",C 7
!.r1,.0u~',,dtl

PUT FILE CPRH,TI SKIP 151 EUIT
I' CU~FIWRAT luN SETS .. ,,,
'POSITION CLEMENT UUT HCU~D Bh~l~ ~Er•',
(.-.41 '-'IIA,2 (SKIP,All;

UC l=l TC NSt:TS;
J=SLIM(1-ll•l;
PciT FILE !Pk!NTI EUIT

CJ, SET(JI, u·ur_POSIT IONI 1,1 l,SLIHI 11, tlAS IS. (11, !,
NODi:IPKOO(Sl:TIJl,111,' --> '•

Lf'l.;,,.u[--:,,.:-
._a,.1 .. H,')"J"9·:'
t.f-._·bG~S.a.
Lt'Ju{;":,..,,i

Lt-.. ,)b!')C..',j

LK~ut)~q ..

Lf..JuO'.t,.::,
LJuJc;,c;o
Lt•:: t..0~'1'7

INUtJE(PROtJ(SET(Jl,LII Uu L=2 TC, OUT_PUS!TIO!',ll,11-11,','• Ltw<,~~9d
INOOEIPROO(SEHJl,LII 00 L=DCT_POS!TltitHl,11 TO i•U_P~klSII L~:o.09<;,
(SKIP,Fl41,1((61,fl41,Xl51,H21,A(31,H'+l,A131,~L>I, u,::Gll:'.IQ
1((51,F(31,COLl531, INO_PA~TS+21 IA,Xllllli

PUT FILE lPRINTI EUIT
(lK, SET (KI, UOT_PGS!TluN(I ,K-J•ll,
NOUE!PROD(SET!Kl,111,' --> '•

LkG~ !':Ci
L";..!uli"!C.l
LrlH;ltQ:,
L~Pbl(•04

{NuUE(PRODISl:TlKl,LII DO L=Z TU oor_POSITlON(i,K-J~i)-11, L~n .. ~O,j
',',(NOUE(PROO(SETIKl,Lll 00 L=OOT_PUSITIONll,K-J+ll TO LkO..lC·Ob
NO_PARTSI 00 K=J+l TC dASISlll•J-1)1
I SK IP ,H 41, X(bl, F('ti , XI ~I ,F (2) ,
COL 153), I NO_PARTS+2 I IA,XI 1111 i

PUT FI LE I PRI Nil EUIT
IIK,5ETIKI, '2',NJOEIPROOISE·TIKl,111 ,• --> ,,,
INOOEIPROLllSETIKl,LII 00 l=2 TO Nu_PARTSI
DO K=dASI SI I l+J TLI SL! HI II II
ISK IP, Fl41, XI b I, Fl 41, XI 61,AI 11,
C.CU531,INO_PARTS•ll IA,Xllflli

Lf.c.~i,i(-;) l
...... :.u1-:.'Jd
Lt< .. !1Ul(.l),-

Litl.:-G.1.Gl'.J
i..h~biCi !.,
L"~iCl.2
LI\.Cl.itl3
Lh.0\ii01'1"

ENtJ;
BYPASSZ:

U·0uL:as
Li<O Glvlc,
Lk0GiCi1
Li<OGlC'ld
LkJGlCl-1

Nu_ SETS= N SE TS;
PUT FILE (PRINTl EUIT

I' ,.,END OUTPUT FOR LR(OI GENERATE SECTION.,,'l(SKIP,AJ;
ENO LKO_GENERATE;

I* SLRlll TABLE GENERATOR, *I
SLRl_GENEIIATE:

BEGIN;
UECLARi::

PUNCH FILE CUTPUT STR~AH,
IELEMENT,NO_INAOI FIXED BINARY 131,01 li..&IT!r.L ICJ,
TOP FIXED HINARY (31,01 1;.i1TIAL 111,
ll ,J,K,U FIXED bl NARY 131,0 I,

· Lh.~lC20
LI\C<.lC2l
:>LRbl0.<2
:O.Lli.Gl0.<3
SLKbl0.2.•
5l.C.blC2~
:O.L.tGlC,26
c.LkGlC:2 7
~LKbi(~28
:iL~biC-2-,

TAIL (2.:NO_NON,2:NO_NONI BIT Ill :O.LKbi'.bJ
INITIAL l(NO_NUN-211'l'B,INO_NOl,-1J(ll'0'81,'l'bl ALIGNciJ, ~Ll<Gl03l

I*

FULLJ• 12:Nu_NON,Nu_NuN+l:~O_SYMSI BIT Ill
INITIAL I INl.l_NON*t;O_TERMI 111 'O'i,I ALIGNEU,

MASTER_ERROR BIT 111 !NIT 1111. I '0 1 81 AL lul'ltU,
(RED, Tl: kMI BIT (ll ALI .;NED;

ON SIZE SNAP SIGNAL ERROR;
L~ S.UBRG SNAP SIGl'IAL ERROR;
Ul'I ST~G SNAP SIGNAL ERkOk;
L;-; EKRuR SNAP G(J TO EKRO&;
PUT FILo IPRINTI ECIT

,.; •• tH:~lN SLk(lJ GEr ... E;{Afc SECTlutla OlJTf'lJT ••• •J(SI\U·,o1i);

rURM TAIL ;,YM81JL INilNTt~MIML GNLYI Ti<ANSITIVE U.US.<Jii.~ M"falJ.

.>i..kblC3'2

.loLfl.C:,ll~3)
Slkb iC.:)4
.:,L"'--bl(.. Y>
::.LK.bl:::~t
::.LKbl(·.>7
:::.i..kbl~3c
.:>lrc.b1f!~
.S.L;,.(.1('4~

.:u .. l'\blC41
=>LKvlf4L
~Lkul 1l'"t3

-:i
v;

{Til.lL l'dTIALlLC:U TO ~J>.j li.Jt.i\TlTY MAlKlX rn- UlME="~llt\i r-.t-_t,:ijfrl;J.
•I

I•

DC I =2 TL, :H.J_Pk.,JD.:i;
JU J=2 T'.J 'i!G_PA~T.)-1 Wr1ILI:. (PkOi..HI ,J•lJ .,: ~J;
ENC;
IF M~PTOI PRUDI! ,Jl J <= M,_~C~ THl:N

1 A IL I MAP TU I PR Ou I I, lJ I , MAP Tu I Pk OD 11 , JI 11 =· l';;;
Ef\O;
CALL wAK>HAL ITAILI;

CUMPuTE f(LLUw PeR OEkEMEk'S lHEUKEM A~G BOOLEAN MATklX TElh~I.UES
SlMILAk TO •ARSHALL'> ALGORITHM. NUTICE THAT FOLLOW OF EVERY NON-TERM
IS CCMPUTEC RATHER THAO, JU:,T ur,c:s 1-Uf< INADEl)LIATE STATES uu,
THAT THE "TKANSPCSE" CF THt TAIL MAT RIX I> U5EO.
*I

I*

CU J=2 TC ~(_l'<GN;
UO I =2 TO NU_NLlN;

IF TA!Lll,JJ TH[~

IF THE FOLLOwlNG "00" •A·s U/',LY EXECUTEU FUI'. K=Trlt. l"AuE.U4TE: STATc
THEN THIS ROUTINE ~OULU DUPLICATE OE R~MtK'S MtTHuO. TrtAT IS, FD~
A RE~UCE STATE THE REDLICTICN wGULD BE ENTtkEL I~ ALL TEKMINAL
COLUMNS OF THE TAoLE.
*I

END;
END;

I*

DO K=Z TO NO_SEIS;
IF TAbLEIK,ll ~= 0 THE~

E~(J;

DO L=l',O_~DIHl TO NG_SYMS;
IF TABLEITA~LEIK,11,LI ,=~THEN FOLLOwlJ,Ll='l'B;

END;

NOii PROCESS ALL REDUCE STAH:S, THAT IS, FC.K ALL STATES Rb.iUlli.lNG
A REDUCT ION, E~TER THE APPROt'RIATE Nl:GATl~E PRODUCTIUI, i..UMcE"
IN THE TE.R~IML SYM~OL COLuMNS IFOR TERMINALS IN FOLL.Jo(STATE,*I I.
*I

CO 1=2 TC NO_SETS;
IF REDUCEIIJ = 0 THEN GO TC SKIP_Rl:UUCt;
If REDUCEIII < 0 THEN

DC J=~C_NGN+l TO NO_SYMS;
IF FOLLDWIMAPTGIPRODl-t<EOUCEII J ,111 ,JI THEN

00;

i:::NJ;

IF TA8LEll,Jl ,= C T~EN
oo;

PUT flLE IPRINTI SKIP EU!T
('STATE:•,[,• [:i I/\ADEloiVAT.E AND THE 51:1.1-"LE
'l-LJ0K AHEAD ~EIS ARt NUT Jl~JClNT.',
•TRANSITIUN IS UNDER ',NDuflMAP~RUMIJII
,• = 1 ,MAPFRCM{J) ,• IN CGLUMN '.J-1 1

•, TKY1,~G TO kE:Pt.4.CE. ',TABU:tl,Jls' 11llti 1 1

RE-UUCC:(l J) (A,f(j I ,.2: A,SKIP,A,A(:'iG_Cl-!AkSJ,A,
Ft3J ,A,F{3l ,A,fl4) ,A,F(4JJ;

MAST~K_ER~UK= 1 11 B;
~NJ;

EL SE TAoU 11,Jl =Ri::OUCE I 11;
tNiJi

I* MUKI: THAfi l REDUCT ILlN FD~ TM! S SU. *I
cLSE:

~LKGh.44
~L"i.i,1'>95
:tLkGl04b
~LKUl:O<t-f
.:iLi-'.;,lC48
~i..Kb10.,,_9
J LrtG-1050
~LKulOSl
SLkC.lC52
>LkGlC,53
~L~blG54
:,LKbi075
!aLk.UlGSi6
>Lt<C.1(57
S LRGlC58
>LRG1C~9
H~GlCbO
'>LRC.l.Obl
jL~GlC·b2
SLkt..l.Ob3
:fLk.t.lC•!J't
SL"C.1Cb5
SLo>.GlObb
SLRGlC'67
SLi<GlObo
Sli<.GlC~9
SLkL.lC70
SL"lilG71
>Lt<ulC72
SL><Gl073
SLKU07-.
.::.Li<Gl075
::.L«lilC76
5ltHal077
!.L"bl 078
5LKlilC79
~Li<.bl~tjO
!.LKt..lliijj
!,Li<C.lC82
S LKG1Ci13
~Li<i,1(8 ..
SLl'(U~Cts5
5L"'-Gl08o
>L~l,1087
.:,LrC..Gl[03
.iLKul(8'1
..>L"-UlC-i-O
..> L...._viC.:., 1
M"\t.lC"il
.>LrtUlC-Y3

JLKUlC>~ ..
::.Lrtt.10~5
.:.i..n.Gl:~b
Jli<ul.&':17
,;,i.')bi\.<Jt>
.> l.~bl(·~~
~LK~UOC
~L'-GllO l
£LKuoil.J2
:»L~GllDl

Du Ti.Jt>=-Tuf=- TU T[;r"+k::.uUC.f:.(l)-li
UCi J=f't(;_;'tGf\l+l Tu r.o_~YMS;

It- F OlLGw (MAPTU(PRUU (-,..ULT _N.ElJu L.c_.dTUP), l J J, J J T 1-1!::h.
00;

IF T Ai::IL E:. (1, J) ,= 0 T Ht:t-~
UG;

PUT FILE IPRINTI SKIP ELll T
!•STATE •,I,• IS INADEQUATE: AND Tht ~I.1?LE
,• 1-LOOK AHEAil StTS ARE NOi UISJLINT.•,
•TRANSITION IS UNDER ',1',0vtlMAPFR~MIJII
,, -= • ,MAPfR[M(JJ,' 111. CULUMN 1 ,J-1,
I TRYING TO REPLACE •,TAnLE:(l,JJ, 1 WITri 1 ,

MULT _REDUCE_I.IITOP I II A, fl 31, 2 ~, SK 11' ,A,
A(NO_ChARSJ ,A,f-(3) ,A,f(3) ,A,F(-,.J,A;f-(411;

MASTER_ERRGk=' l'b;
ENO;

EL~E TA~Lcll ,JJ=MULT_~ED~Cl_~(TuP,;
!:ND;

ENu;
ENU;

SKI P_REuUCE:
ENJ;
IF CJUNT _1,,ALlEwUA Tt:_S T4 TE: S ~= l THEN Gu TO PR Li T;

I*
Nuw ~DUNT THE INAUEQUATE STATES, IF FD~ ANY REASLN THE STAIE I~
FOUND TO .. BE .. INADE~UATE THEN IT IS NtJTEO AND N.:J FlJRTrltR CHELI\INu
IS LJLNE FCR THAT STAT!:.
*I

PUT FILE IPRINTI SK P 141 EDIT
I' RESULTS OF !NAU ~LIAH STATE cour.TtR (NOT l,,CLLIUl'<G
•uN50LVA~L~ STATE I FOLLU~ ••• •Jl2 Al;

CC 1=2 Tu NU_S ET S;
ELEMENT=O;
TERM,~E0= 1 0 1 dt
Cu J=Z TC NC_SYMS;

IF TAdLEll ,JI = C THEN GC TU ehOtLCK;
IF TAuLEI I,JJ < 0 THEN

DG;
IF RcD THEN

Ou;
I* CHECK FCR 5AMt NEUUCTIGN IN THIS SET. *I

If TAB Le 11, JI ,= ELEMtNT THE/\a
DO;

I'\!...,;
CL E

L;

PUT FILE IPklNTI EJJT
(1 STA TC ',I, 1 I!> I NAU£1,,rUATE Ut:\...AU:.l. .Jt- '
,'.MULTIPlt ru:ouCTIUf'4S.•HSr<.lt-',A,1-l"tJ,2 :u;

NJ_! ~Au=Nu_ I M~•l;
GO TD Et~i.JSTL.K;

~i\iD;

r<.t:O= • l •o;
IF TErtM TrlE:~ &~ T~ MIXED;
E:LEM~NT=TAUL[{l,JJ;

!:.N.J;
E:ND;

ELSE
Del;

! f J > 1\d.:.._i"'4LiN T tti:N

~ L'" .II. i:-~
-•L!<v i l_.. ~
.>l ·-u l ~·--t,

.>Ll'\.~J. l "11
:i>Lt<ullGo
'.)LK\Joll07
::,L"'blllO

I . .:u ... ;(l,ll.a. i
..>L;{Llil~

SLkt..llb
.>LI\Ull.i.4
:)LroJlLlS
;Lk.Ulll6
.>LKul:17
5i.l'l.ol. ii O
.>L"' ;, l !. i..,
!>Lr<.uiL.:..J
~LKu,lL.i:::i
!>L uJ.1£2
.:ilKul iL .J
_;LKull£-.
.>Lr<ull.l~
.> L.._t,l l.c::.r,
5L"-blli7
.>Ll'\UlL.C::.b

.)LrtGl a.l.9
::.t.riuii..JO
.">Lf.(li,lL,l
!>L;...~1132
!>L~G&.1.j3,
.:,Lh.;,;i,ll.~4
:lLkL, i i35
~LK_;l :i.:>b
.>LrlGll.:J7
·:>L"'-ull.io
::,L.,,bl 13·.;
;)Lr\u.1. l'tC
.)L..,vll4l
:>Lrdii.i-..£"
~LkG!.141
:>-L~ Gl .;,_r+4
->l..~uii'1'j

..>Ln.u!.!4o
;)L"\J.1.l"'t 7
:,l.1-.~.il4-d
)i..ku.il4-0:,
::,L"',,-11-.,c·
:,Ll'\.-,l .. :. l
.)e."\Ui! :12
:.:.!..r u!.i.')j
~Lr G-1.i:>4.
::,i_,- '7 i l::>:i
JL .. t,llja
::,U,u~i5: 1
~L:-,.ull:»O
::,L~ulJ.j~
.iLN.t...1.lo!>
.:,LN.ul lt>l
5L"Ul iol
.>Lr"-ul it>J

.....;:i
O'\

ihJ;
T Ekfl:: • i • d;
lF l<i:iJ TlltElfii

M Ix t:D:

HU;
EM);

oo;
PUT FILE IP•lr.JI IEDIJ

1 •STATt •.1. • IS llllu&i ... lE lli:Ull::sii. illf •
o•Lil!MAJr.ia..; IIIQ"II <I RBIIUia Mi,i, A "•
•liUYISlfilllilll. •11~PoA.FC4'1 0 ~ ..»;;

l:O_l_r-.ill_llfli.r.11:•l;
I.Ill TC iEl!MIJSl"C&;

;lliQ;

BUIB.Ck:
Cflll;

ENDSJCK:
a.c;
PUT FILE 1ra1 .. JI IEwlIT

I •Tttcli IS A TOTAL !IF •olll/llliJ-.;0 • lldillE .. .U-c STAH:S.• J
ISKIPoAoFDloAH

PRJOJ:
IF ,.._J'tll•T ._ l JlfilEIQI .0 TiiJ lil'l'NSS:ll;;
PUT FILE IPRINTI Sil.IP 15il IElialf

1 •COLC-S ilEl'liESDIIJ ••• • .1•ca.1• .1-1.• 1 =. • 0 MJIIIEIIIUPRO!II Ill
00 1=2 TO lllii_Slll'ISHUIC.IPoAolllWII_S'IIISIULLlllo
1132/IIS•IID_CIIAllSIIIAoFl31wAoAClllii_ClhlllllSlollC4'1111;

PUT FILE 1rar•n S.UPISI · UST l•c.EIIEUTlfo SLRIU T-..E ••• • J;
cc 1=2 TO IID_Sas; .

NT FILE ll'lll"'TJ ElilT
11.•.• 0 CTAilt.EllwJI a~ ~2 1U illll_S'l'IIISII
IS11.IP.F131oAo99 132 ff4'1.Cllll.CSUI;

EM>;
BYPASS3:

IF NASTER_Ellil(Jlli. T- ;oil) Tilll EimtCll'III;
IF ... _,.INJI st TIIIEl!ii

·PUT FILE ll'UIIIClfl EDIT
l"'LSYIIS 0 MI_Cllllli.So~•IMID.J'M.TS.~0 -_SlETS.
A-AIL.CIIIUMTo.._lOlolllUIEllloLLIIJ,...LllJo"111'1ClllollllAl'F .. III
0 T6'olll lilli lzal m iilill_SIIIIISlo
lll'lilatUo,H ii6 J=l Tllll lllli,l_lP.llil!TSI ilO 1-ol TO lllll_NllliDSlo
II T.._EII oJJ N ~ Tilll IIIID_Sl'IISI IIIO l..Z IO llliJJiETSJI
ICOLl1Jo9 Fl31oll!IIJI_.SYll!611AIIUlil_Clltllllr.Slo4'Fl31o~l211o
IIIO.J'AllI5"'1D_PlliiilllPil F131 olil<IDJ'l'-llllii...SETSI Fl4>U;

PUT FILE 11'11.ll!iiTI Ell»IJ
1• ••• EIID SUIU aMIUlrE SR.ll"lliil!II wiJll'ill'IIIT ••• •U!ilUP01&J;

EHiJ SUll_;.EIIIE:UIE;
END TAoLE_Q.UT!f_SIEULIJ";

I* IIARSHALL AL:.oJRIT- FIA a::«MIIIUlflU11., IDL-IE MT!ii.lL!ES. *I
IIARSHAL: i'KJCE:JUII.E 11111; ,.

.,

11.\RSHALL ,l,L..C: .. ITIHIII! IC.IF. ~fl'! D.'ll<*>c. II'. ll.U
l. Nll,JIO = ~lloJJ
2. 11110 JIK•I = 11111 0 .IIINli. i 111111 ilolll.•~».K .; :.,«,,.•!o.llllli.1
3. Nll,JJjl.\il. = llllo.1111!»
llhfkE O = W. Ur "'lilLerli cillF ''II II<\ $.;IIW.l,lloi.lE IIIilltll.Rilll ll!lll>TiiCilll.

OECLARE
H l•o•I BIT IU -.1<Qloicllii,
11,J,KJ Flllicc,ll di,- UD.w<r »;;

~ L«i.l.lbq.
..>LHullo5
.iL'""llbb
.iLol.1;11:.1
!ol.lllGllbB
,.LKGllbY
!>LKG1170
SL,tl.1171
5Lii.ld.172
x!U;il73
SL,u.1174
:,L..;;.1175
§Llol.1176
x.kl.1177
.iLict.ll7d
SL'-1179
>LilUll8il
Sl.kblllll
SL•GllB2
!>LllG.lliB
SI.Al.lli14
iUlC.1185_
SLilW.li16
SUll.11117
S.Lii.C.11811
!>LkGlli19
SUc;i,1190
SLltG.1191
SLllC.1192
SLRG1193
SLllGll94
SU-1195
SLllC.1196
SLAQHl
SUl&oll911
SLRC.1199
>Ull.12:JO
Sl.i.&.1201
SLii"1202
suu.1203
SLit .. 12!l4'
;oLllC.12):0
!>Ul;;l2:J6
SLli.C.1207
;o~IZ08
SUll.1209
>L"'l.l,dl)
J4a<.ILl1
Mll."C.>J..:.12
"'Aii.Sl..:I~
.... l,.Sl214
-...s1.c15
.£1l.>l,lb
....... Sl,'17
.. Ait.~1~18
•"'51.cl9
"'llSluO
..... >li2l
...... :si,22

-"'-~·"~

~0 ~=LdOUll,iJl~,11 TL rldiJUll.iJIM,11;
JG l=LtHA.111.DIM,11 TC hlllJU~LIM,lJ;

If Ml I ,Kl THEN

EN!.ii

Ou J=L8UU~D(M,2J T~ rl60UNU(~,2l;
lf M(K,JJ ThCN M(l,Jj=•l•d;

i:ND;

C:NO;
ENO •AKSHAL;
I* dALAII.CEC dlNAkY SEAkCH TRcf SYMBOL TAbLE MAINJENANCc, *I
IISTSLR: PRXEiJuRE IITEM,f-LAG,POS,TREEI;

I*
PROCECui'.E llSTSLR IS THE IMPLEMEr,TATIUII. Of AN ALuURITHM f-GI.
PROCi:SSliw; AND MAIIHAINING A DYNAMIC INFORMATION
STRUCTuRE IN THE f-ORM Of A P4RTICULAR TYPE Of- BINARY
SEA~CH TREE, AN AVL TREE,
PARA Mi: TERS:

*'

INSERT:

ITEM - Ker FGR RETRIEVAL, 111.~Ei<TIUf'< (,!{ ilELcTIL,,
FLAG - STAJUS CC.DE FOR-ATTEMPTED fUNCT !Gr.
PUS - LINEAR INOEX OF NOOE INSERTED OR RETRIEVcD
TREE - STRUCTURE CONTAININI> BINARY SEARCtt TREE,

AVAILABLE SPACE LIST A"C II.COE COUi,T

CECLARE
IFLA!>,i'OSI FIXEO lilNARY 131,01,
HEii CHAR I *I,
1 TREE,

2 NOllE I* I CHARAI. TE R I * I ,
2 LL l*I FIXED blNARY 115,01,
2 RL l*I FIXED BINARY 115,01,
2 TAG l'*I Iii T I *I ALIGNED,
2 AVAIL FIXED BINARY 131,01,
l. COUNJ FIXED BINARY 131,0l,

Ll 10:327671 FIXED BINARY.115,01 bASEIJ lllPNTI,
L2 (1):327671 FIXED BINARY 115,0I BASED IL2PNTJ;

B~G IN;

'* ATTEIIPT TO INSERT JHE SPECIFIEO NOQE IN THE T.REE.
RETRACE THE SEARCH PATH TO PERFORM BALANCE TA:i
l'All\TENANCE AND AT MOST CNE RESTRUCTURING,
THREE BALANCE JAG CONOITIONS wHICH REQUIRE SEPAKATE
ACTION MAY OCCuk AT A NJDE DURING PATH RETRAClf'<G:

11 JAG=• oo• B - . SET BALAt.CE J.AG IN TH~ lilR"El.l ION (JF
INSERTION ANO RETRACE FURTHER ILUII.GER PAJHI;

21 JAG IS Ul\~ALANCED Ir. THE OPPOSITE OIRECTIUN
FROM INSERTION - SET TAG TO •oc•B #ID ~IT;

31 TAC, 15 UiitlALANCED IN THE SAME UIRECTION AS
INSERTION - NOUE IS "CRITICAL•; RESTRUCTJR~ THE
SUiHREE IT HEAIJ S Ar.o EX IT,

RESJRUCTURIII.G CONSISTS Of Twu tlASIC I.ASi:S nlTHIN
LEFT-RIGhT SYMMETRY:

*'

ll CRITltAL WJ~E IS LeFTIRIGHTI HEAVY AhU ITS LEFl
lol.lGHTI GESCENDANT IS LEFTIRIGHT I 1-EAVY -
l',JTATE SUBTREE c.:JMPONE,,TS;

21 C~ITICAL NODE IS LEFTIRIGHTI HtAVY AND ITS LEfT
IRl(;HTI SUBTREE IS RJGttTILEPTJ 1-EAVY - SPLIJ
RJTATE SutlTREE COMPuNENTS.

DtCLAKE

·,,..;."~1£..::.4
o15;.,<.!;.l,~!>

l'Hf.r<.Si,lb
.... k::i.1;:.2 7
..,A{ !,l~2.6
olfAk.!>1£2':i
•hn.Sl2.J')
11AK5li31
..... i..i.l,:32
01:'~112.,,
De!,. r l~.;J'+
bbJl lLj~
tiCST1£~b
01.:S T 1,.:t7
.!O~ Tl,;.c,
DUJ1li39
Dt:.~Tl,41)
IH.'"-=ao l .i24 !
C..c..!>ll.i42
ull=>11~43
.,,_,:, Tl,'+1.t
uo-> T 1, s
oc.~11£4~
Lt...>Tl,47
t,1,,!>ll,4b
l!I:.> l }~4;,
Ut: :.011,'.:)(;
or::: Tl~:> l
Do:» Tl252
1.,;u!)Jl,:t.2'
D~i,ll~5"t
oD~Tl,55'
t>bS T 1256
ub.,Tl~)7
:ct.>Tli"58
oo:>Jl,:>9
btSTl.:f>'J
bbSJl<.bl

""'" 11,1>2
"bSTl.:~3
lit.o!ii Tlio4
Ub5 T l"'o5
DD:» Tl2bb
ob~T 1Lo7
::U>) 1-.i. ,.,~
bC:,Tl~b9
:>tlST1£70
bU~ll27l
->b:illL7.i
bb.>fl£7.;;
OLS.TlL74
i>~=a.11£75
oc.;..11,7u
t,&.,:,Ji,77
i>b.>ll,7d .
bb$11,79
Ob5.Tl,o0
bb:iT i·'°l
ilt>51l.:i12
Ub:).fi283

-..J
-..J

((..Ur\k, STACK T(U', Jo f A.Ct<. TP l, ~ TAC.r<.. Ttl L, T•jiJ J
f!XeD BINARY Ul,01,

I* STACI\ ,\,\iu STKf-L~ t...kE: ?u~n uL;~i\i ~TA(.1'. vi:.CTe~~.
TrtE[SILf >='t-036.7 KE.11.Jl!\C:::> LAr-..G::r1. ~T.:.1....1'\ t'r/

S.TA.Ct<.. (0:21) flAl:U t>lt'tA~Y tl:.i,::. J L'<li.T lAL (~J,
STr<..fLG (G:LlJ olT (l) lf'>.ITL).L <'l'tH ALlGNcJ,
dOiJL ,HT Ill ALIG,,E!l;

I* SEARLH fOK THa ~.:DEc ·•ilCh w!LL 8E THE FATH::~ uf
Ttif N.Ju[TU BE li.,ScRH:O. Tr<.At...E THE r>ti.Ttl fQr{ t.ATC.lk
USE *I
C1,Kk,STACKlll=i<LlCI;
iJD TOP=l 8Y 1 wHILE l~UKR ~= 01

STACKITOPl=CU~K;
IF I TE'1=NODEclCUkKI Thi:N

I* DUPLICATE KEY *I
DG •

fLAG=4 ;
POS=CUi<P. ;
RETURN ;

El'ili •
STKFLGITJPl=ITEM > :.ODEICUkRI ;
IF STl<.FLGITOPI Ttii:N CURR=i>.LlCUkRI
EU,E CUR~=LL.l CUkRI ;

';l\C, ;

IF A VA I L = 0 Tt1 EN
I* RETURN SPACE iJVEK~LOW COiJE *I
DO ;

FLAG=6 ;
PD~=O ;
RETURN ;

ENJ ;
I* GET SPACE FROM AVAILABILITY LIST*/
STACKITOPl=AVAIL;
TuP=TOP-1 ;
IF STKFLGIT(;PI T11El', KLIS TACK ITOPI l=AVAIL
ELSE LLlSTAC~ITOPll=AVAIL
NOUEl'AVA IL I= IHM
COU!>lT=CCUNT+l ;
FLAG=2;
i>OS=AVA IL ;
AVAIL=RllAVAILI
RLISTACKITOP+lll=O
I* ROOT NOUE? *I
If TOP= 0 THEN RETU~N
I* i<E TRAC ING * I
DO .. HILE (TAG(STACKITOPII = •oo•BI ;

I* CONUI TION l */
If STKFLGITOPI TrlEN TAGISTACKITOPll='O•'d
ELSE TAGIST~LK(TUPll=•lO'~
TuP=TLIP-1 ;
If TOP= 0 THEN RtTURN ;

:'~O ;
dUOL=TAO(SlA(.K(TGi'J) = '10 1 8
If lilULl6STKFLGITLIPJJ I ~18UOLISTKfL(;(TUPII Tt1cr,

I* CLNUITIJN 2 •I
00 ;

TAC.IST4CK I TOP 11= •OC· ·~
RE TURN ;

ENU ;
I* CJ~~ITIO~ J - ~iOTMvCTUR~ *I

c.,r.,.) 1 Lc:::d4
Ut:.)Tl.C:H5
c.ib~ 1 1.cb'3
Ub::dlt'.d7
ooSlL .. ~d
bc/)Tl,,j9
01::» Tl.t..'lO
utJjllL9l
t)l)J I l,~2
Ob.:> T lL'7)
1.HJ!>T 1L94
C)t).)fl£g5
oOSTl,Y6
<>o!>Tl297
obS TlZ98
t>bSTl~99
ot>STl,JO
oeSTUOl
ooSTD02
ou,Tl.:,03
ooS Tl304
obSTl,05
t)(l~ f 13'Jb
onSTl307
obST uoa
iillSTB09
ob5Tl::>10
otiS T DU
t>BST1312

'tibHDD
d8STU14
obST1315
dbST Bio
B·b, Tl317
1>BST1318
bt>STBl9
ass Tl32D
dbS TUll
obSTU22
ob5Tl323
o·cSTl324
ou5T l325
o6>Tl32o
66 S Tl32 7
,11,sTu2a
oo5ll329
obSTlHO
ub!)Tl33l
Ui,STl;a2
obST t:,JJ
Ob.) Tl 3~'t
oo'.::iil:H5
boo Tl 3Jo.
.:>o:ill.:>37
ilo5Tl.H8
ob,Tl339
dDS Tl340
ob, T l:>41
.>US 1 "'jlf,2
ob .:d 1::,4,;

CA Sc 2:

STACK TOP=HACKI TOPI ;
5TACKTPl•STACKITiJP+ll
STACKTPZ•STACKlTUP+21 ;
T.\l.(5TACKTUPI ,TA,;I STACKTPll•'O~'h ;
I* PUINTER!> ~UR R1~11T UR LEfT SYMMcT~Y *I
IF STKFL~(TUPJ Tt1[~

DO ;
Ll Pl\,T =AODR(RLI
L2Pl',T=AuDKI LLI

H.1U ;
EL St

DO i
L lPNT=ADURI LLI
L2 PNT =ADDK-(RL I

CND ;
IF STKFLGITOPI ~· iTKFLGITuP+ll THtN Gu TD CASEl
I* CASE 1 RtSTRUCTURINC', *I
If ST«f'LGITOP-11 TrlEI< RLISTACKlTUP-lll=STALKT~l
i:LS E LL IS TAC" IT0~-111= HA~KT ~ 1
LllSTACl<.TO~l=L21STACKTPll
LZISTALKTPll=STACKTOP
~ETURN ;

I* CASE 2 RESTRUCTURING *I
!f STKFL.;(TOP-11 THEN RLIS:rACKITuP-lll=,TAL"TP2
ELSE LLI STACKlTUP-111 =STACKT P2
I• llA(A:NCE .-TAG VAR!ATiCJNs *I
IF L2(STACKTGPI ,= o· T11EN

DU;
TAGISTACKTP21='00'8;
IF STKFLGITOP+il THEN

uo i
If STKFLGI TUPI THEN TAu(STACK TOPI=' 10'8
ELSE TAGISTACKTPll='l0'8;

'END ;
ELSE

DO;
IF STKfli.;(TOPI TrlEN TAGISTACKTP11='01'6
ELSE TAGIS TACK TOP I=' 01 '6

!:NO ;
ENil ;

L.2 (STACKTPll=Ll ISTAC1<.TP2 I
LllSTACKTP,l=Ll(STACKTOPI
L l IS TACK TOP l=L 21 STACK TP 21
L21STACKTP21=STACKTOP
RETURN ;

1:NU l!\ISEt<.T;
B5Tl1.T:El"lllri.Y l TRE:E:I;
IN IT !At:

~tGIN;
I*
CD~oTkuCT AVAILABILITY LIST BY US[Nb KIG11T Lll',K
FIELU, OF EA~H A~AILADL~ NODE POSITION. Ser uTME~
CUMPDl<ENTS TO NULL VALUES •
•I

UECLAKt I fi11tU 6INARY 131,0 I;
AVAIL=! ;
Cu 1=2 TC HDJUNU(~L,11

KLI 1-11 =I
El~O ;

uc:. r .. .:.
.. >.: .. T: _:)")
.luJ i -..;"l'U

.l,:.:, T :.:ft."1
a;_, ,;i T l.;.<t-:)
.,,_., i l .;-.'7

,'.)(;..> r 1,;,,:;
,H;::,Ji;:>l
:>=,:) I !..,;5..:,
!:.IC::,fl3,3
.>b:::.IL:,54
ol:.~Tl.:,~,
r..b.) T .i..,~c,

OL!i.Jl,:.:,]
Jt::i-1 l..;.:,1
.a:,.:,l ,ljSc;
.;.~ :> Tl;.LJO
.:,c.~ T l.!::>l
~:,:>f~3::>Z
<>c.>T J..,jo.J.
C::>.:J T i.;.1'1'

.... ~~il.Jo;

.:,=,.:, Ti~tJO
oc.;; i !,,:c, I
.;;,: . ..:> r!..:,:,d
""'c..:iTL~cd
OCJii.17.J
oo.:,Ti~71
.'.le.~ T l_,,7 t,
:,~;Tl.J,7J
oo::.Ti.l7 ...
oo.5Tl~75
oc..>Tl~7o
~a,Tl:071
.>c.5Tl~7o
:,:.. ~ Tl i, 79
..Jt:!:» i ljaO
~us T lj:31
obST1.;:s2
~<>> T l;d.l
.,..,5 Tl3oil't­
u~.:, T },jdij

o:;,::,ll:2,86
<icS TlJ87
cH:.:,fl~o8
.;;u,::. T 1.,oq
Ot.ST:.:h1C
tJo~ l l..;., l
ab=:.Ti3-J.2
ocSli_..,.,
os=.:t l l .:)'14
~e~ Tl J.t5
~t.~11.;,~c,
-:10:, T l..1":f7
Oll;J Tl.:,9b
ou.:, Tl .:)'J-i
Di>~ T 14~~
ob S fl'+Ol
OL.:iT l'r0.:::
~v.::,.1 l'r~..>

~

RLIHdGUNUIRL,1 I 1,hL(Cl=O
LL=C;
TAG=' 00' B
CCLtH=C-;

.RETUKN ;
ENO IN[TUL;

Ei'<J BSTSLR;
END TrE_WHOLE_THl~G;

GC TC REUSAdLI:;
ER~Ol: PUT FILEIPRINTl SKIP EDIT

l'---ERkJR - IN INPUT PARM AM ETl:K S--- 'I (AI ;
Gl TC REU~ ABLE;

Et\ROZ: PUT FILE(PRINTI SKIP EDIT
1 1 ---ERROR - IN INPUT ENCODE SECTILl'<---•l{AJ;

GC TC RE USABLE;
Ei<K03: PUT flLEIPRINTJ SKIP EOIT

l'-:..-1::RKUR - INPUT Pi<ODUCTIDN PART TCJO ~rtuRT---'1141;
GO TO RE uSABLE;

EKR04: PUT flLEIPRINTI SKIP EDIT
. (•--,-ERROR - MISSING PROUUCTION PUM:.ruATliJN---•IIAI;

GO TO REUSABLF;
EkR05: PUT flll::IPRINTI SK IP EDIT

!•---ERROR - INPUT PRODUCT ID~ ERROR, PROBABLY LHS NUT
'CONTIGUOUS'll2 Al;

GO TO REUSAtlL E;
ERROb: PUT flLEIPRINTI SKIP EDIT

(,_.;_ERROR - . IN ilUdUG SEC nor..---'I I Al ;
GC TC REUSABLI::; .

ERR07: PUT flLEIPRINTI SKIP EDIT
I' ---ERROR - IN LR IO I SE:C TION---' 11 A I ;

GC ·TC REUSABLE;·
ERROS: PUT flLEIPRINTI SKIP EDIT

t•---ERROR - IN SLRI 1.1 SECT ION--- 1 11 A I;
GC TC REUSAIILE;

ERR09: PUT flLEIPRINTI SKIP EDIT
1•~-ERROR - ·UNSOLVABLE INADEUUATE STATE---'IIAI;

GO Tu RE USABLE;
ERRlO: PUT fJLelPRlN!I SKIP EQIT

(•---ERROR.- OVEl!fLOW Of REUUUluN .. QUEUE-.,:-'IIAI;.
GU TO REUSABLE;

ERRll: PUT FiLEIPRINTI SKIP EDIT
(•---El<f<DR - CONFIGURATION SET OVEkfLO.---'IIAII

GO TO li.EUSABLE;
ERK12: PUT flLE(PKINTI SKIP EDIT

(•---ERROR - BA~lS SET OVEkfLOw-'IIAI.;
GU TO REUSAIILE;

ERR13: PUT FILEIPRINTI So<IP EDIT
I •---{kkLIR - NUMSEcR OF SETS EXCEEDED---• 1 IAI ;'

GO TO REUSABLE;
E t.D REUSA~LI:;

ENDMAIN:
END SLR l;

""~ Tl404
"~ n4a5
<>t>ST140b
~tiS Tl407
d~.:,Tl't08
ci:; ~ Tl409
llt>Sl 1410
ilt.AMl4l l

. HAll\11"12
,1AlNV,13.
MA1Nl4H
MA !1"1415
MAIN14lo
HAl"1417
HA it.1418
MAINl4l9
MAI t~l£t20
>,.Alt, 1421
.,,Ai t,l<,Z.Z
MAIN11f2l
~1#4.lr-..142:4
MAl"1'-25
H,.ll',l42b
HAlhl4Z.7
MA!r.h26
MA!Nl,.29·
M~!Nl43!l
MAINl't:il
MA 11'<1•'32
MAll\il433
"Alt.l ... j4
MAlt.1435
MA I Nl'+36
MAlt,1"37
MAltll438
HAI Nl439
,.,..,,...,4.40
l!Al·Nl.!•"l
rlAlNl.442
Midt..14'>3
MAll''1444
MA IN 1445
IIA!Nh4b
MA I Nl44 7
MAIN1448
MA!Nl4'+9
111.11'1450
1<AlN14~1
MAI llil't5Z
M.t!NH.53
MAll'<l454
MAIM.,5~

-.J
\.0

APPENDIX D

LOGIC BLOCK DIAGRAM

START

INPUT
PARAMETERS EXIT ON EOF
FROM FILE

PARMIN

SET DEFAULT
PARAMETERS

IF NECESSARY

BEGIN INPUT
SECTION

80BYTE 8 RECORD FROM EO ENDINPUT .
FILE PRODIN

SET BYTES
#73-80 TO

NON-BLANKS

SPIN THROUGH
CONSECUTIVE

BLANKS

END
OF

RECORD

NAME­
CONSECUTIVE
NON-BLANKS

INSERT (SEARCH)
NAME IN SYMBOL TABLE

FILL NEXT COLUMN OF
PRESENT ROW OF PROD

81

COPY COL 1 OF THIS ROW TO
COL 1 OF NEXT ROW; ENTER
NEXT COLUMN OF THIS ROW;
RESET COLUMN POINTER TO 1
AND INCREMENT ROW POINTER

RESET COLUMN POINTER TO 1;
INCREMENT ROW POINTER AND ENTER

SET THE MAPPING VECTORS: COUNT THE
NON-TERMINAL; ENDEX (COUNT) -aow

POINTER; MAPTO (SYMBOL TABLE
POSITION)-COUNT; MAPFROM (COUNT)

..__SYMBOL TABLE POSITION

ENTER NEXT COLUMN. NOTE:
COULD OPTIONALLY BRANCH TO

READ NEXT RECORD IF IT IS
KNOWN THAT, IF A RECORD

CONTAINS A PERIOD, THEN IT
IS THE LAST SYMBOL

FIXUP LOOP TO SET MAPTO AND
MAPFROM FOR TERMINAL SYMBOLS

OUTPUT STATISTICS
ON PRODUCTIONS

BEGIN DEBUG
SECTION

FORM "WITHIN" RELATION,
THEN TRANSITIVE CLOSURE

ANY 10 1 IN 2nd ROW EXCEPT
FOR FIRST '!WO COLUMNS MEANS

CORRESPONDING SYMBOL NOT
11WITHIN11 - OUTPUT DIAGNOSTIC

IF ANY

DECTECTION OF USELESS PRODUCTIONS
C,F, REFERENCE - OUTPUT DIAGNOSTIC

IF ANY

DETECTION OF DUPLICATE
RIGHT-HAND-SIDES - OUTPUT

DIAGNOSTIC IF ANY

BEGIN
CONFIGURA.TION

SET COMPUTATION

INITIALIZE FIRST SET TO FIRST
PRODUCTION WITH DOT TO THE
RIGHT (FINAL STATE), SECOND

SET TO FIRST PRODUCTION WITH
DOT TO THE LEFT (INITIAL STATE)

CLOSURE

GET NEXT ITEM OF
SET BEING CLOSED

YES

SYMBOL-
PROD (ITEM, 2) I-----"""

NO

SYMBOL-0

SYMBOL -PROD
(ITEM, DOT
POSITION)

ITEM IS A REDUCTION ENTRY,
ENTER THIS ITEM IN REDUCE

(SET NUMBER) IF EMPTY -
ELSE SET TO NUMBER OF ENTRIES

AND PUT ITEM IN QUEUE

SET MARKER (ITEM
NUMBER) TO 1

AT PRODCLOSED
BRANCH TO CLOSE
IF ALL ITEMS NOT
PROCESSED ELSE
BRANCH TO EXPAND

YES

ENTER ALL PRODUCTIONS WITH SYMBOL
AS A LHS IN THIS SET WITH DOT TO

LEFT PROVIDING DUPLICATION OF
PREVIOUS SET ENTRIES AVOIDED

SET SLIM (SET NUMBER) TO
LATEST ENTERED ITEM'S POSITION

EXPANSION

GET SET NUMBER CONTAINING AN
ITEM WHOSE MARKER IS NOT SET TO 1

BUFFER UP THIS ITEM AND ALL OTHER
ENTRIES OF THIS SET THAT HAVE A
COMMON SYMBOL TO RIGHT OF DOT,

SET MARKE.R FOR EACH

FOR ALL BASIS SETS WITH THE SAME
NUMBER OF ENTRIES, CHECK BUFFER
AGAINST SUCH SETS TO DETERMINE
DUPLICATION (BOTH ITEMS AND DOT

POSITIONS MATCHED)

YES

TABLE (SET, SYMBOL)= FOUND
DUPLICATE SET NUMBER

ENTER BUFFERED ITEMS AS THE
BASIS SET OF A NEW SET,·

ENTER DOT POSITIONS+ 1
INTO DOT POSITION ARRAY

TABLE (SET, SYMBOL)
= NEW SET NUMBER

OUTPUT
CONFIGURATION

SETS

1

SLR(1) TABLE
GENERATION
(TRANSITION
ENTRIES HAVE
BEEN MADE)

COMPUTE 11 INVERSE11 REFLEXIVE
TRANSITIVE CLOSURE OF TAIL

SYMBOL MATRIX FOR
NON-TERMINALS

COMPUTE FOLLOW MATRIX PER
ALGORITHM IN THESIS

FILL IN
REDUCTION
ENTRIES

THE FOLLOWING LOGIC IS
APPLIED TO EACH ROW OF i.----.---,

THE TABLE

>

FOR ALL TERMINAL SYMBOL COLUMNS
CORRESPONDING TO SYMBOLS IN
FOLLOW OF THE LHS OF THE

INDICATED REDUCTION, ENTER
-REDUCE(I) IN THOSE COLUMNS

PROVIDING A PREVIOUS ENTRY H(I.S
NOT BEEN MADE IN THAT TABLE
POSITION - IF SO THEN STATE

IS UNSOLVABLY INADEQUATE - SET
MASTER ERROR SWITCH

REDUCE(I) HOLDS NUMBER OF
ELEMENTS IN QUEUE TO PROCESS __
AS REDUCTIONS, DISCARD EACH

AFTER PROCESSING

AFTER EVERY ROW PROCESSED,
DO THE FOLLOWING

COUNT AND LIST INADEQUATE
STATES BY DETECTING TWO

DIFFERENT TRANSITIONS OR A
REDUCTION AND A TRANSITION

IN THE SAME STATE - ROWS OF
TABLE ARE PROCESSED LEFT

TO RIGHT AND FIRST INADEQUATE
CONDITION ENDS PROCESSING OF

THAT STATE

OUTPUT SLR(1)
TABLE AND

OTHER DATA

END

VITA

Joseph Lee Gray

Candidate for the Degree of

Master of Science

Thesis: IMPLEMENTATION OF A SLR(l) PARSING ALGORITHM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Poplar Bluff, Missouri, April 24, 1944,
the son of Mr. and Mrs. Howard Gray.

Education:. Graduated from Poplar Bluff High School, Poplar
Bluff, Missouri, in May, 1962; received Bachelor of Arts
degree from California State University at Long Beach,
Long Beach, California, in January, 1971, with a major
in Mathematics; completed requirements for the Master of
Science degree at Oklahoma State University in May, 1973.

Professional Experience: Graduate assistant, Oklahoma State
University, Computing and Information Sciences Department,
Stillwater, Oklahoma, August, 1971, to December, 1972;
computer repairman and instructor, United States Army,
May, 1966, to May, 1969.

