IMPLEMENTATION OF A SLR(1)

PARSING ALGORITHM

By
JOSEPH LEE GRAY
Vi
Bachelor of Arts

California State University at Long Beach
Long Beach, California

1971

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
May, 1973

Thesis
1973
G779
&y /o i

IMPLEMENTATION OF A SLR(1)

PARSING ALGORITHM

Thesis Approved:

Thesis Adviser

WQN(W&M

/m%/uﬁ

Dean of the Graduate College

i4

OKLAHOMA
STATE UNIVERSITY
LIBRARY

JUN 1 1973

PREFACE

This thesis is a description of the SLR(1l) parsing algorithm.
The advantage of using SLR(1) techniques in syntax analyzers is the
generality and efficiency over other parsing schemes. The description
is designed to appeal to the reader's academic as well as implementa-
tion interests.

Thanks are due to Dr. Donald Fisher and Dr. George Hedrick for
their suggestions for improvement of this thesis and especially to
my major adviser, Dr. James Van Doren, who, above everything else,

asked me questions that made me think.

144

Chapter
I. INIR

II. CONT

ITI. LEFT

IV. CONC
A SELECTED
APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

TABLE

ODUCTION . . « & & &
EXT~-FREE GRAMMARS ,

Definitions
Parsing . . + + o &

OF CONTENTS

. L) o 0 @ e o o e .

. . o o o e ° ¢« & @ °

Relations and Closures of Relations . . .
Practical Restrictions on CF Grammars . .

TO RIGHT TRANSLATION
The LR(k) Method .
The SLR(1) Method .,
Comparison of Table
LUSION o ¢ 8 e o o o
BIBLIOGRAPHY

LIST OF SYMBOLS .

USER'S GUIDE . . .

PROGRAM LISTING .

LOGIC BLOCK DIAGRAM

OF LANGUAGES

Construction Methods

iv

Page

10
23
26
26
35
45
51
53
56
58
66

80

Table

II.

I1I.

1v.

VI.

VII.

VIII.

IX.

LIST OF TABLES

Configuration Sets - LR(1) Method on G,
LR(1) Configuration Sets for Gy
LR(1) Table for G3 =« « ¢ « « « ¢« & o &
The '"Overlay" Modification of Table III
LR(0) Configuration Sets for Gy o o o
SLR(1) Table for Gy . « « « « « & « & &
SLR(1) Configuration Sets for G3 . . .
SLR(1) Configuration Sets for G, . . .

SLR(l)TableforG4.....-....

Page
30
31
34
37
38
39
46
48
49

LIST OF FIGURES

Figure Page
1. Syntax Tree for R 8
2, Syntax Tree for s+*?10+11+12+13**14**(15+16)? e e e e 8

3. Boolean Matrix Representation of H(Gl) e s 6 0 s o s o o s » 17
4. Graph Representation of H(G;) . « « « v v v v v ¢« ¢ v o o & 18
5. Boolean Matrix Representation of H+(G1) e o e s 6 s e s s o 19
6. Graph Representation of H+(G1) e e s e s e e e e e e e e 20
7. Parsing ?affc? Using Table III , . 4 &+ « o ¢ o o o o o o o 34
8, Parsing 7i+i+i? Using Table VI . . ¢ ¢« v ¢ « o o o o o o« o 41

9, Parsing ?abc? Using Table IX , 4+ 4 « ¢ « o o s ¢ s s & o & 49

CHAPTER I
INTRODUCTION

‘This thesis is a presentation of a reasonably general method for
parsing and gaining conceptual insight into languages described by
context-free (CF) grammars. Included are the definition of a CF gram-

mar, a development of some of the characteristics of a CF grammar, and

the definition and construction of a general parsing scheme for a sig-

g

nificaﬁt Subéet of CF languages. The purpose is to show how éb develop
certéin coﬁéeptual characteristics of any particular CF language andﬁh
at tﬁé ;éme fime mechanically construct a table~driven syntax analyzer
for that grammar by using the method for table construcfion contained
herein. The former is particularly valuable for languages with which
the reader is not intimately familiar,

The main area of applicability is in writing translétors for com-
puteflﬁrégfamming languages., In particular, the parsihg meth;d appiiés
to a.large subset of CF languages written in Backus-Naur Form (BNF) in
which ﬁost of the ¢ommonly used programming languages can be described
approximately, Syntax analyzers are only part of the compiling process
and are usually intertwined with other parts (semantié routines, scén*
ners, code generators, etc.); however, this paper isolates the syntax
analvzer for the purpose of examination.

A useful side effecé of the table construction method is that an

understanding of the grammar and the language may be obtained even if

the complete table cannot be generated for a particular grammar.
Hence, this thesis will serve as a useful guide for studying program-
ming languages for which no compiler is available if the user can
express the grammar in BNF,

There has always been a decision between whether to program in a
low-level language such as assembler or machine language, which is dif-
ficult, machine dependent, and fast in terms of translation time, or
in a high-level language such as FORTRAN, which is easier to do, easier
to train personnel for, and machine independent, but slower in trans-
lation time and perhaps not applicable to a particular problem. At
this time, the concensus seems to be that the high-level languages are
more desirable; therefore, one goal of the computer scientist is to
correct the deficiencies, The solution is to write several high-level
languages for different areas of applicability and to write efficient
translators for them., Out of this goal have come translator writing
systems (TWS) of which one part is the syntax analyzer. Writing a syn-
tax analyzer for a TWS should be done in such a way that the analyzer
can be ugsed for a large class of grammars (e.g., a large subset of CF
grammars), and it must work efficiently. It is with this goal in mind
that this project was ﬁndertaken.

The basis for the method of parser construction presented in this
thesis was developed by Knuth (10); and the first widely publicized,
efficient implementation of the method was developed‘by DeRemer (3,4,
5). An analysis of both methods (table construction and parser con-
struction) and certain optimizations on the table construction method
have been developed by Aho and Ullman (1,2). The implementation pre-

sented here has similarities to all of the above plus some of the

author's own innovations,

In particular, DeRemer (4) has demonstrated that the technique is
superior or equivalent in efficiency to other parsing methods such as
operator precedence, simple precedence, bounded context, or McKeeman's
mixed strategy precedence (MSP) (11) and also more general in its

acceptance of languages.

CHAPTER I1I
CONTEXT-FREE GRAMMARS
Definitions

In general, a context-free grammar is a set of rules specifying a
language., The language,l&, is some subset of the set of.all finite
strings of symbols from an alphabet, A. That is, (possibly) not all
strings of elements of L's alphabet are in L. The purpose of the gram-
mar is to specify which strings can legitimately occur in L, Although
the alphabet, A, is finite, the set of strings of A, denoted by A*, may
be countably infinite. However, depending on the grammar, L may or may
not be infinite. A second purpose of the grammar is to give a finite
representation of L, even though L may be infinite.

To specify a grammar, there is a need for a set of symbols that is
disjoint from the alphabet so that the grammar may be written in such a
way that the rules of the grammar are not confused ;ith strings in L.

To accomplish this, a set of metasymbols, usually referred to as non-

terminal symbols and characterized by the property that ﬁhey do not
appear in the alphébet; is used., The metasymbols répreseht the syn-
tactic categories of the grammar. |

The union of the alphabet and the metasymbols is referred to as
the vocabulary, V, of the grammar; and the set of all‘strings of sym-

bols from the vocabulary”is denoted by V%, B

Colons, commas, periods, and semicolons are punctuation symbols in
the production rules defined below. They are not in the vocabulary. A

"or' (exclusive); a

comma means ''is followed by''; a semicolon means
colon means "may be rewritten as''; and a period is an end delimiter.

There are many variations in punctuation. Often the commas are
replaced by blanks, the semicolons by vertical bars, the colons by
either arrows or double colons followed by equals, and the periods by
either blanks or semicolons.

Finally, the grammar is specified by a set of rules (also called

rewriting rules or produétions) of the form Ui: uy. where Uy is a

metasymbol and uieV*. The set {U} has the property that exactly one
element, say Ug’ appears only on the left of a colon and never on the
right., The Uy is called the goal symbol (also distinguished symbol).
This definition is ovérrestrictive but serves the purpose of this the-

sis. U, is called the left-hand-side (LHS), and uy is called the

i
right-hand-side (RHS).

Formally, a grammar, G, is defined as a quadruple (VT, VN’ P, S)
where VT is the set 6f terminal symbols, Vy is the set of non-termi-
nal symbols, P 1is the set of productions, and 8 1is the goal symbol.

As an example, the grammar, Gx’ is specified by:

1. Ss: 7?7, E, 7.

2. E: E, +, T;

4, T: P, ®*% T,

Here, Vp = {?, +, **, (,), 1}, Vy = {S, E, T, P}, S is the goal
symbol, and P 1is given,

The reader may ask how to represent one of the punctuation symbols
in a production rule if it is actually in the alphabet; possible an-
swers are to use some other symbol or to enclose the symbols of the
alphabet within some other symbol not in the alphabet. By definition
of the action of the semicolon, E: E, +, T; T. 1s equivalent to the
two rules E: E, +, T. and E: T.. The punctuation used (13) also
allows the use of multi-character symbols.

Since a production means that the LHS can be rewritten as the

RHS, applications of the production rules result in the following:

PRESENT STRING APPLIED RULE

@) s

(2) ?E? 1
(3) 7E+T? 2
(4) T+7T? 3
(5) 7P+T? S
(6) ?1+T? 7
(7) ?1+P? 5
(8) 71+1? 7

The final result, line #8, is a terminal string, that is, a string

of terminal symbols. Each line is a direct derivative (6) of the

previous line. Or, more formally, X is a direct derivative of W
(written W»X) by application of the rule U : u, 1if there are
(possibly empty) strings x and y such that W = xUy and X = xuy.

The transitive closure of +, denoted by +* defines X as a deriv-

ative of W 1if there exist strings W,, W;, ..., Wi' such that W =
Wo > Wy, Wy > Wy, ouv, Wy 4 > W, =X, Line #8 is a derivative of
line #2, for example,u All derivatives of the goal symbol are called

sentential forms. Sentences, the elements of the language, are

sentential forms consisting of terminal symbols only. More formally
then, a language is defined as the set of sentences, that is, the
strings of terminal symbols derivable from the goal symbol.

Since the grammar specifies the language, it now should be pos-
sible to tell what strings are valid in L(Gl), the language generated
by Gy According to rule #1, legitimate strings are eﬁclosed by
question marks. Rules #2-3 describe an E as a sequence of T's sep-
arated by +'s. For example, EFPE+ T*E+ T+ TPE+ T+ T + T»T + T +
T+ T specifies that an E can be the sum of four T's, Because E
appears in its own definition, the length of the string that can be

produced is arbitrary. In this case, it is left recursion. (E ap-

pears as the leftmost symbol of one of the RHS alternatives defining
E.) If the rule were writtem E: T, +, E., then it would indicate
right recursion. If there were a rule such as E: T, E; T., it

would indicate embed&éd‘recursion. Rules #4-5 are éimilér in that

they define a T to be an arbitrarily long sequence of P's separated
by **'s, Finally, rules #6-7 define a P to be/;;théfréwparenthesized
E or an i. Recursion is a mechanism by which the fihite grammar
can describe an infinite language. For example, in L(Gl), any arbi-
trarily long sequence of i's geparated by +'s 1is a legitimate
sentence. |

A conventional way to describe pictorially the derivation of
?i+i? presented earlier is given in Figure 1 and is céiiéd a syntax
tree. Syntax trees afe.useful in that they reveal something about _
the structure of the grammar. For example, the queétioﬁ of precedence

of operators and whether a particular operator is left associative or

right associative 1s easily seen in a syntax tree of the string in

question. The string ig+ij+istigh*i,**(is+ig) and its syntax tree
are presented below in Figure 2, (The subscripts are only to facil-

itate correspondence of the string with the tree,

Figure 1. Syntax Tree for S+*?i+i?

1IN i V4
E + T P P **\T
! oo L
2 4 ’
| l AN
P 1 (E)
| |
7 io E + T‘
- | |
T P
| l
P 16
|
ig

Figure 2. Syntax Tree for S+*?10+il+12+13**i4**(15+i6)?

If the tree is traversed in postorder (9), it is clear that pa-
renthesized expressions have precedence (i.e.,, they are encountergd
first in a postorder traversal) over #**, 6 which has precedence over
+, Also, + 1is left associative while #** {5 right associative.

G, specifies FORTRAN-like arithmetic expressions. The associativity
(grouping), right or left, is determined by the recursibn, right or
left. For some syntactic units, the grouping is unimportant; for
example, a COMMENT is usually defined as any stfing of symbols of the
alphabet with particular delimiters (e.g., /* */ in PL/1), and the
grouping of the symbols is usually unimportant. However, the group-
ing is of utmost impoftaﬁce in syntactic units such as arithmetic
expressions. Examination of G; and syntax trees for different sen-
tences of L(G;) reveals the 1 to 1 correspondence of left recursion
with left associativity and right recursion with right associativity.

The reader may well ask, ''Is the syntax tree for a particular
string unique?'” Or perhaps more importantly, ''Are the members of a
set of syntax trees.for a given string equivalent?" This is all part
of a larger question, namely, "Is the grammar ambiguous?' A grammar
is said to be ambiguous if the language produced by the grammar is
ambiguous. Formaliy, é grammar is unambiguous if there does not exist
more than one canonical derivation sequence for any sentence in the
language. A thorough discussion of grammar ambiguity is beyond the
scope of this thesis; suffice it to say that, for the pﬁrpose of this
thesis, if a given sentence has two or more different syntax trees,
then the grammar is ambiguous. In particular, the method presented
in this thesis fails if the grammar is ambiguous. However, if the

method fails, it is not necessarily true that the grammar is ambigu-

10
ous.
Parsing

Due to the complexity and depth of most modern high-level pro-
gramming languages, ﬁhere is a need to produce syntax analyzers me-
chanically to minimize costs of translator implementation, to main-
tain some degree of uniformity across different machines, and to
facilitate changes and extensions to the language.

How is a string of L analyzed? What exists at this point is a
set of rules for generating sentences of L(G). For a small finite
language, one method is to generate all possible sentences and save
them and then, to check any input string for validity, simply do a
look-up. However, even for G;, this method is not feasible if for no
other reason than the recursion allows arbitrarily long sentences.

There are two general methods of analyzing (also called recog-

nizing or parsing) elements of a language. The first, and possibly

easiest to understand, is the top~down method. It is eSsentially a

goal-oriented method; thét is, predictions are made as to what the
sentence is (hopefully the goal symbol), and then attempts are made
to verify the prediction by determining if all of one of the RHS al-
ternatives are present. Of course, to detect this presénce leads to
further predictions for any part of the alternative which is a non-
terminal symbol. Essentially what is done is to "draw" the syntax
tree from top to bottom (root to leaves). In parsiﬁg the sentence
?7i+1?, the first prediction is that the sentence is an 'S. But be-
fore it can be said that it is an S, the RHS must be verified, that

is, an E enclosed in question marks. The first question mark is

11

found in the string. Now an E must be found; that is, the presence
of one of the RHS alternatives for E must be verified. If recogni-
tion of some alternative is attempted and failure results, then it is
necessary to ''backup'" and try a different alternative; if all alter-
natives have been tried, then the string is not a sentence., Continu-
ing with this example, a'try is made to find an E;‘but, from the
earlier discussion, an E 1is a sequence of T's séparated by +'s.
Therefore, a T must be found; but a T is one or more‘ P's separat-
ed by **'s; therefore, a P must be found, and is found since the
next input symbol is 1, which completes a RHS alternative for P,
Since there is no **, the longest T is found sincé P 1is a RHS
alternative, The + 1is now detected and the next T 'in a manner
similar to the first and, therefore, an E has been found and, with
the closing question mark, an S; hence, the string is a sentence in
L(Gy). Referring back to Figure 1, what has been done‘is to work
down the tree, from left to right. Left recursion can cause problems
in top-down parsing. For example, in the above discﬁssion, left
recursion was avoided by saying that an E was one or mére T's
separated by +'s; however, that conclusion was only reaéhed after
some analysis of the grammar. If the problem had been attacked blind-
ly, an E would have been predicted, then a move made to the alterna-
tive E, +, T and an E promptly predicted; and an endléss loop
would be entered.

The second commonly used parsing method is the bottom-up method.

With bottom-up parsing, the syntax tree is not "drawn" but rather
assumed to exist; and the method proceeds to verify this assumed

tree. Again, working with Gl’ the sentence ?i+i?, and Figure i, a

12

phrase of the sentence is defined to be the set of end nodes of some
subtree of the syntax tree., That is, a phrase is a derivation of
gsome non-terminal symbol. The set of phrases of Figure 1 is {i, i+i,
?2i+i?}. The handle is defined to be the leftmost phrase which con-
tains no phrases other than itself. That is, the handle is the left-
most set of end nodes forming a complete branch, which is to say it
is the direct derivation of the leftmost, bottom-most, non-terminal
symbol node in the tree. Hence, in the example, i is tﬁe handle,
The following algorithm, given in (6), reflects the general philos-
ophy of bottom-up parsing:
(0) Let s = s, be a string to be analyzed. Férjiz; 0, 1, ...,
n until s, = S has been produced, do the'following
steps.
(1) Find the handle of sy.
(2) Replace the handle of s; by the name of its father in
the syntax tree.
(3) Prune the handle from the tree.
The sequence sp * s, 1 * ... * s0 1is now a derivation of sg.

The following demonstrates the algorithm applied on s = sq = 7i+i7.

PRESENT STRING HANDLE STRING AFTER STEP 2
(1) ?24+1? i 7P+17
(2) ?P+i? P PT+1?
(3) 7T+i? T 7E+1?
(4) 7E+1? i 7E+P?
(5) ?E+P? P ?7F+T?
(6) ?F+T? E+T ?E?
(7) 7E? 7E? S
8) s

If the steps in the 'present string" column are followed back-

13

wards, the derivation S +*91417 results; In fact, a rightmost
derivation sequence exists in that each step is of the form PAB ~»
PcB where B 1is a terminal string, ¢ is a terminal symbol, and
P<V*; that is, a production whose LHS is the rightmost non-terminal
symbol of the sentential form is used. In this paper, the rightmost

derivation is used as the canonical derivation. A canonical parse

is the reverse of a canonical derivation.

All parsing methods have both good and bad characteristics.
Some are easy to implemeﬁt but inefficient while otﬁers are complex
but efficient. Perhaps it is the lack of a "best" method that has
led to the variety of methods (6). In general, there are two prob-
lems with which all syntax analyzers must deal.

wFirsﬁ, the prdblem of backtracking must be dealt with. In both
bottom-up and top-down parsing, a choice must be made as to which
alternative of a production should be used in the next step of the
parse. Input symbols are then picked up to try to fulfill that al-
ternativé. If the parsing scheme picks the wrong alternative, then
it mugt Back up and try another. One way of alleviating ihis pgob—
lem,vat least somewhat, is with look-ahead. That is, the parser
scans ahead in the input string to gain a clue as to which alterna-
tive\to attempt to match. Some of the questions raised by léok—
ahead are whether only to look ahead or to look back at what has
been processed or both and how far to lock. As a preview, thé
method presented later has implicit unrestricted look-back and one
symbol look-ahead.

The second problem area for syntax analyzers is error recovery.

That is, if and when an error is detected, what course of action

14

should the analyzer take., '"ERROR IN ABOVE PROGRAM" is not a very
informative diagnostic message. On the other extreme, an analyzer
which could correct every error would have the intelligence to write
programs itself, Error recovery and error correctign érélnot treat-
ed to any degree of sophistication in this thesis.

One of the prinéiﬁQI characteristics about a large class of
context-free languagéé fér which parsing methods in this thesis

apply is that the syﬁtax analyzers for them can be formalized as

deterministic push &bén ﬁutomata (DPDA) (6). By push down, it is
meant that, if the DPDA were modelled by a computer progrém, then
that program would use a stack. That is, a history of the previous-
ly travelled path is recorded (remembered). The nature of this
DPDA, which consists of a finite number of states, é phsh down
mechanism, and state transitions, is to input the symbblé of a
string and to make state transitions according to what éymbol is
read and the presenf sfate. In effect, a DPDA "remembéf;h the pre-
vious symbols (at least the ones it needs) by the pﬁtﬁ of state
transitions to reach the present state. The goal 1s’£6‘feach a
unique state, the final state, at the same time the inbﬁt string

is depleted. A language is deterministic if every sentence of the

language is accepted by a DPDA, That is, every sentence causes the
DPDA to reach the final state at the same time the input string
becomes depleted. |

Knuth's original.ﬁdfk (the LR(k) method) is equiﬁalént to a
DPDA in its acceptance of languages., The author's impléﬁentation
is somewhat less generai‘in that a restricted form of Knuth's

method is used, resulting in a parser which accepts a large subset

15
of the languages acceptable to a DPDA.
Relations and Closures of Relations

In the previous discussion of look-ahead and look-back, it was
implied that they were methods for deciding which RHS altefnative to
use in the next step of a parse. This is equivalent to saying that
the handle can be uniquely determined. Usually, when there is look-
ahead, what action to take is determined not only by what the scanned
input symbol is but also by how much of a handle has been recognized.
In particular, the rightmost symbol (top of the stack) of the partially
recognized handle is of iﬁteresta That is, the relation between the
two symbols determines the action. The need for knowing particular
relations between symbdis‘of a grammar has led to a number of important
properties and algorithms.

To begin with, it is necessary to review the definition and
properties of a binary réiation and describe the notation. For sets
A and B, the Cartesianipro&uct of A and B is defined to be

Ax B = {(a,b) | acA and be B}, A binary relation, R, defined on

A x B, is defined to be a subset of A X B such that the relation holds
between the first and secéﬁd elements of the ordered pairs. The possi-
bilities A = B, AcB, BcA, AnB # @ or AnB =) exist. There are four
notations used in this paper to describe R defined on A X.Bo
Notation #1

R={(a,b) | a € A;.b € B, and a R b}
Notation #2

R(a) = {b | aec A, be B, and a R b}

16

Notation #3

The relation can be defined by a matrix whose entries are either
0 (false) or 1 (true), that is, a Boolean matrix. Correspond the rows
with elements of A and the columns with elements of B. If a R b, and
a corregsponds to row i, and b corresponds to column j, then the ijth
entry is 1. If a K b, then the ijtM entry is 0.
Notation #4

The relation can be defined by a directed graph such that nodes
a and b are connected by an arc if and only if a R b; That is, for
aec A, b ¢B, and a R b, there exists an arc from node a to node b.

The properties of a relation, R, defined on A X B, can be stated
symbolically as:

Reflexive. a R a for every ae A and every a e B

Symmetry. a R b if‘and only if b R a

Transitivity. a Rb A b Rc if and only if a R ¢

for a ¢ A, be An B, ce B
If all three properties exist for R, then R is said to be an
equivalence relation; for example, the relation of equality of positive
integers (here A = B) is an equivalence relation.
In the following, i, j, and k are positive integers:
Reflexive. 1 =1
Symmetry. i = § 4if and only if j = %

Transitivity., i =4 A § =k 1if and only if i = k

The relation, H, defined on V of G; by H = {@a,b) | Ac Vg, be V,
C € V¥, and A: b, C. ¢ P}, exists between all LHS's and the first
(head) symbol of their RHS alternatives. The pairs of G; for which H

holds are {(S,?), (E,E), (E,T), (T,P)}, (®,0), (i)}. It is more con-

17

venient to represent the relation with a Boolean matrix whose rows and
columns correspond to V. For‘H(Gl), Figure 3 applies. Also, for rea-
sons of visual clarity, it is convenient to represent a relation as a
directed graph where nodes related to each other are connected. For
H(G;), Figure 4 applies. In terms of the directed graph, the Boolean
matrix is the adjacency matrix. In Figure 4, an E evehtually leads to
a (. Some way to represent this in a single astep rather than three is
desirable., That is to say, a relation like H, but which is transitive,
is desired so that ail posaible head symbols of strings that are de~-
rivatives of a given non-terminal symbol can be discerned, >If H were
transitive (which it is not), then an appliqation of the transitivity
would give EHT A THP—>EHP,and EHP A PH (=>EH (.
But (E,P) and (E,() are mot in H since P is not the first
symbol of a RHS alternative of a production for which E is the LHS
and likewise for (. Therefore, it is necessary to define a new rela-
tion, H+, the transitive closure of H. However before defining ut,
the properties of the transitive closure of a relation need to be

developed.

Figure 3. Boolean Matrix Representation of H(G;)

18

Figure 3. (Continued)

Figure 4. Graph Representation of H(G;)

The product of two relations, say Ron A X B and Pon C %X D,
ig defined by a RP d 1if and only if there exists an e ¢ Bn C such
that cRe A e Pd is true. If P is a product relation, say QT,
such that e QT d so that there does exist an f such that e Q f A
fTd 1is true, then, for the relation RP, which is agtually PQT, it
is true that c R e A eQf A £ Td. But A is associative and
hence R(QT) = (RQ)T. A theorem (7) that will be used extensively
hereafter states that the Boolean matrix representation of a product

relation can be computed by the product of the Boolean matrices for

19

the original relation. Using the definition of product, the powers of
a relation, R, are defined by RD = RR?™1 yhere n>0 and R! = R and

the transitive closure of R by a R* b 1f and only if there exists

a c¢ such that a RP® ¢ for some n>0, If the identity relation is

denoted by RO, that is, a RO b 1f and only if a = b, then the

reflexive transitive closure, R*, can be defined as a R* b if and

only if a R b for n20, For the transitive closure, if each power
of R is considered as a separate relation, then R* = Rl y R2 y R3
U ... U R) where n is the number of elements in thg set on which
the relation is defined. This is proven by Gries in (7). It should
be clear without proof that Rt is itself a transitive relation. The
transitive closure of H(Gl) is defined by HYA) = {b eV | A +* ¢
where C’e'V*}. H+(G1) can be represented by the Boolean matrix in

Figure 5.

*% 1 0 0 0 000 O 0 OO

(l]o o o0 00 OO0 O 0O

Figure 5. Boolean Matrix Representation of H+(G1)

20

)1 0 0 0600 0 OO 0 OO

iy 0 0 000 00 O0O0O

Figure 5. (Continued)

Translating Figure 5 into a graph, Figure 6 results:

Figure 6. Graph Representation of H'(Gy)

H*(Gl), the reflexive transitive closure of H, would differ from
H+(G1) by having an arc from each node into itself.

There are two subtle but very important ideas that are used here
and need to be brought to the surface. The first is that, when form-
ing the Boolean matrix HY, a twist on matrix algebra is used. To

actually perform RR, the rules of matrix multiplication are used, with

"and" replacing '"times" and "or" replacing '"plus.'" This correspon-

dence is clear when the Boolean matrix is represented with 1 for

t

"true'" and 0 for "false.'" That is, for ordinmary matrix multiplication

21

(AB = C), the 1jth element of C is defined by

n
c = Z a bk;
ij & ik M
but, for Boolean matrix multiplication, the ijth element of C is de-
fined by

cij = (ai1Abiy) v (a124b23) Vv ... V (ainAbnj)

where A and B are square Boolean matrices of rank n, Rewriting the
definition of R* as Rt = R0 4+ Rn-1 4+ ., + Rl, it is seen that the
computation of RY has similarities of evaluating a matrix polyno-
mial with all coefficients equal to the identity matrix. Clearly, in
a mechanical computation, some efficient method for the calculation
of R* is needed, perhaps a method similar to the nested multiplica-
tion method of evaluating polynomials., Such a method does exist and
is known as the Warshall algorithm. The second point is how to re-
late the powers of a relation to the grammar. H+(G1) igs used as an
example. Clearly, Hl(Gl) is the application of one producfion, that
is, H(Gy). But Bl uH2 1is the application of one or two produc-
tions. For the graph of Figure 4, this in effect is éonnecting the
paths of length 2, for example, the are 724, Likewise, féf higher
powers, #l y 82 ... u HL in effect connects arcs of length 1, 2,
¢eey, 1. Of course, this is with respect to the original graph. With
respect to the present updated graph at each step, paths of length 2
are always connected. .

Warshall (14) developed an algorithm for computation of the
closure of an n X n Boolean matrix that is superior to other methods

(e.g., nested muitiplication). For example, Warshall claims that,

22

while the computation of closure matrices for other methods goes up
with n3, his method goes up slightly faster than n2,

Normally, the Warshall algorithm calls for n iterations; however,
from a practical point of view, the user can, under certain restric-
tions, reduce the number of iterations in the original algorithm and
still produce the desired closure matrix. For Gy, there ére 10 rows
in the Boolean matrix representation of H(Gy). If the original algo-
rithm were used, 10 iterations would be made, one for each row. How-
ever, there are only seven production rules so that at most seven
iterations are needed. There is only one node for each non-terminal
symbol; hence, the longest péssible path has length equgl tthhe number
of non-terminal symbols. But it is also true that three of the pro-
duction rules of G; have the same LHS, and only one of the rules with
a common LHS can apply at any step. Hence, only four iterations are
needed, The point is that ﬁsually a restriction (resulting in greater
efficiency) can be imposed on the Warshall algorithm, depending on the
relation being closed.

As stated earlier, for Gy, four iterations are needed and the
Warshall algorithm makes one iteration for each row of the Boolean
matrix, Since the Boolean matrices of concern represent a relation
(i.e., a set of ordered pairs), the rows may be swapped"in éhy manner
provided similar swaps are made with the columns., Again recalling
that the relation H is defined on Vy X V, it should be clear that it
is desirable and correct to arrange the Boolean matrix representation
of H so that the non—terminéi symbols occupy contiguous'rows'and that
the Warshall algorithm need only iterate on those rows. (Figure 3 is

arranged this way.) If closure of H(Gy)} is thought of in terms of

23

Boolean matrix multiplication, the reader will see that, at every step
(i.e., every power of H), the rows labelled with terminal symbols re-
main all zeroes. So it must also be with iterations of the‘Warshall
algorithm,.

A symbolic statement of the algorithm may be found in (14); how-
ever, the major goal of this thesis is te present conceptsvan& methods
that are actually used in an implementation and, therefore, a PL/1
program segment is used to describe the working alg@rithmg‘

Let M be a bit matrix representing a relation defined on A X B
whose rows correspond to the elements of A and whose columns corres-—
pond to elements of B, It is necessary that A g B and that, if row
i corresponds to x ¢ B. (An example of ;uch an M 1is the first

four rows and all columns of Figure 3.) The PL/1 progréﬁ segment

follows.
DO K=LBOUND (M,1) TO HBOUND(M,I); /* FOR ALL ROWS */
DO I=LBOUND(M,1l) TO HBOUND(M,1); [/# FOR ALL ROWS */
IF M(I,K) THEN /* IF A X TH COLUMN ENTRY IS TRUE */
DO J=LBOUND(M,2) TO HBOUND{M,2); /* FOR ALL COLUMNS */
IF M(K,J} THEN M(I,J)="1'B;
END;
END;
END;

Practical Restrictions on CF Grammars

Gries (7) discusses some practical restrictions on CFbgrammars S0
that mechanically generated parsers can be applied more efficientiy to
the languages generated by CF grammars. Some methods require more
restrictions than others, The LR(k) method, to be presented later,
requires fewer restrictions than any other known method for which

efficient parsers can be mechanically produced (3).

24

Restriction #1

A production of the form A: A, clearly makes a grammar ambigu-
ous, serves no useful purpose, and can easily be detected either me~
chanically or by visuai inspection. In this thesis, it is assumed no
such production is present.

Restriction #2

Every non-terminal symbol must appear in some sentential form,
that is, S +*xAy for every A ¢ Vy and x, y € V¥, This condition can
be mechanically detected by constructing the relation WITHIN, denoted
by W, and defined by W(A) = {B | B is a non-terminal symbol that
appears in a production whose LHS is A}, then computing wt, For any
"0" in the goal symbol row, except the goal symbol column, the symbol
represented by that column is not "within" the goal symbol and there-
fore violates the restriction,

Restriction #3

Every non-terminal symbol must be able to derive a terminal
string. Gries (7) presents an algorithm for detecting thié condition,
which basically consists 6f "marking' any production whose RHS is com-
posed of only terminal symbols or 'marked'" non-terminal symbols. Sev-
eral passes over the productions are usually needed; and the algorithm
stops when, during a previous pass, no LHS was 'marked." When the
algorithm stops, any unmarked production cannot derive a terminal
string and therefore coﬁtributes nothing to the language épecified by
the grammar.

Restriction #4

No production is of the form A:., that is, no RHS is empty.

Again this restriction is easily detected by visual inspection. 1In

- 25

this thesis, it is assumed no such production is present.

Restriction #5

No duplicate RHS's are present in the grammar. Duplicate RHS's
cause most bottom-up methods to fail but do not necessarily affect the
method presented in this thesis., However, as a general rule of thumb,
grammars‘with duplicate RHS tend to cause the table construction meth-
od to faill to ppoduce a complete table.

In the author's implementation, Restrictions #1 and #4 must be
detected visually, but #2, #3, and #5 are mechanically detected. How-
ever, oni§‘§arniﬁgs are issued since, if these restrictions are vio; “
lated, they do ﬁot necessarily cause the method presented in this
thesis téhfaiiﬂﬁéf do make if less efficient.

In this chapter, elementary topics have been investigated., For a
theoretiéal basis for these concepts, the reader is referred to (8)

and, for an application-oriented reference, to (7).

CHAPTER IIX
LEFT TO RIGHT TRANSLATION OF LANGUAGES
The LR(k) Method

The reader may well ask which is better, top-down or bottom-up
parsing. There are advantages in both. What is sought is a completely
language-independent (assuming a CF grammar) recognizer that is effi-
cient and combines the most desirable aspects of both top-down and
bottom—up>methods. This is precisely what is embodied in Knuth's (10)
LR(k) method, which can be described generally as a parsing method that
scans senﬁences from left to right, using no more than k symbol look-
ahead to determine whether to input the next symbol or make a reduc-
tion. LR(k) grammars (grammars that produce languages which can be
parsed with LR(k) methods) are the largest known class of CF grammars

for which deterministic (i.e., no backtracking), left-to-right, bottom-

up parsers can be mechanically generated. In fact, this class of
grammars is capable of describing virtually all of the commonly used
programming languages (3). Another way of describing a deterministic
language is to say that the handle can always be uniquely determined.
That is, the parser never picks the "wrong" RHS alternative.

The LR(k) method, given a CF grammar, produces a table which is
used by a language-independent parsing algorithm to parse sentences of

the language penerated by the grammar. 1In general, Knuth's original

2h

27

LR(k) method produces tables too large for practical use. A closely
related method known as SLR(k) (3) (simple LR(k)), which results in
more practical parsers, is the method of principal concern here., How-
ever, for reasons of completeness, the LR(k) method is treated briefly.

If a 1is a right sentential form, that is, a is a rightmost

derivation of the goal symbol, then FIRSTK (a) is defined to be the
first k terminal symbols derivable from a. That is, FIRSTK (a) =
{wev*|a +*wx, x ¢ Vp* and either w is k symbols long or w

is less than k symbols long and x = @}, If a e Vo*, then FIRSTK
(a) is the first k symbols of a. Every right sentential form con-
tains a handle. An informal definition of an LR(k) grammar, given in
(1), is that a grammar is LR(k) if the handle, h, of a right sentential
form, bha, 1s unique and the production that derived the handle is
uniquely determined by examining bh and FIRSTK (a),.

Development of an algorithm which does this exaﬁining for all
right sentential forms follows. In actual practice, this consists of
constructing the aforementioned table, which tells the parsing algo-
rithm whether to stack the incoming symbol or make a reduction. A
reduction consists of popping a RHS from the stack and replacing it
with the corresponding LHS. This parsing action is the reason for
stating earlier that the LR(k) method of parsing corresponds to a DPDA.
The row of the table that is used in the decision corresponds to a DPDA
state, the 'push down' to the stack; and the method is deterministic
as described above. An LR(k) table is actually two tables in one (1).
The table is considered to be a pair of functions (p,g) such that:

(1) b, the parsing action function, maps the look-ahead

strings (length k or less) into stack, error, or

28

reduce i, where i is a production number.

(2) g, the goto function, maps V to the states (rows of

the table).

The process ends when the final state (a particular row of the
table) is entered. The problem of entering the final state with unex-
pended suffix does not exist since special delimiters are placed before
and after the text to be processed. Also, there is a start state in
which to atart the processing. The parsing algorithm is the same for
both the LR(k) and the SLR(k) methods. Actually, the tables are quite
similar for both methods also, but it is in the construction of the
table where the methods differ.

For an LR(1) grammar, that is, k » 1, only one symbol look-ahead
is allowed. It has been proven (10) that any LR(k) grammar can be
rewritten in an equivalent form as an LR(1l) grammar, Heré, FIRST (A)c
H+(A), that is, it contains the terminal symbol elements,

The LR(1) table is constructed by first constructing the configu-
ration sets. There is a 1 to 1 correspondence between these configura-
tion sets and rows of the table., Each configuration set is composed of
items; each item is of the form (A+a.b,u) where A*ab is a production
(represents a direct derivétion); the "." marks the dividing point in
a partially recognized handle; and u is a valid next input symbol if
the item is recognized. There are two important actions used to con-
struct the configuration sets.

CLOSURE - A set begins with items specified by expansion, The first
set begins with (S*.?E?,ﬁ); If (A+a.Bc,u) is in the set, then
(B+,d,v) is added to the set for productions B: d. for any d ¢ V¥

and v € FIRST (cu). Here, a,c ¢V*¥ and Be V What is being done is

NI

29

to find an item with the dot to the left of a non-terminal, then to
enter all productions for which that non-terminal is a LHS. FIRST (cu)
indicates what terminal symbol can follow the non-terminal symbol in
the sentential form. Duplicate entries are never made. If FIRST (cu)
has two elements, say vi and Vo, then two set entries are required;
however, the SLR(k) method only has one set entry since FIRST is not
considered when forming the configuration sets. This is the essential
difference in the LR(k) and SLR(k) methods of construction.

EXPANSION - Once a set is closed, it may be used to form a new set,
That is, the algorithm finds all items in A with an X to the right of
the dot (X ¢ V). Then the new set, A', is initialized to thése items
with the dot moved to the right of the X such that A' is a set of items
(B+aX.b,u) and (B+a.Xb,u) is in the set A, Each item can be used only
once for expansion, If the sets are numbered from 1 to n, then, if
A= Ajand A' = Ay, the entry at row i, column X (i.e., the column
corresponding to X), is set to j. If A' = A", then A' is not added to
the set of configuration sets; but the table is set as if it were
unique.

Gy is specified by:

1. S: E.
2. E: A, A
3. A: a, A
4, b,

(B+a.b,cl), «+., (B*a.b,c;) is denoted by (B+a.b,c1/c2/..,/cm).
The results of computation of the configuration sets for G4 are shown

in Table I.

TABLE I

CONFIGURATION SETS - LR(1) METHOD ON Gy

SET
NAME NO., ITEMS NOTES
Ag 1. S+.E,# initial set
2, F+.AA, 0
3. A+.aA,a/b a,be Ht(A)
4, A+.b,a/b a,beHt(A)
A, 1. E+*A.A,Q from Ag.2
e 2, A*>.aA,Q
3. A+.b,0
Aq 1. A+a.A,a/b from Ag.3
g 2. A*.aA,a/b
KR 3, A+,b,a/b
Ay 1. A+b,,a/b from Agy.4
As 1, E+AA.,Q from A,.1
Ag 1. A+a A0 from Ay.2
2. A+.aA,p
o 3‘ A-*'b’ﬂ
Az 1. A+, ,0 from Ap.3
Ag 1. A*aA.,a/b from Aj.1
Ag 1. A"’&A. ,ﬂ from A601
G3 is specified by:
1. S:'?, E, ?.
2. E: a, A, b;
3. a, B, c;
4, d, A, ¢
N d, B, b,
6. A: £, A;
7. f.
8. B: f, B;
9, f.

30

The results of computation of the configuration sets for Gy are

shown in Table II.

TABLE II

LR(1) CONFIGURATION SETS FOR Gq

SET
NAME NO. ITFEMS NOTES
Ag 1. S+.7E7,0
Ay 1. §+7.E?,0 from Ag.1
2, E+.aAb,?
3. . E+,aBc,?
4, E+> . dAc,?
5. E+.dBb,?
A,y 1. S+?E.?,0 from Aj.l
Ag 1, E+a,Ab,? from A;.2
2. E+a.Bc,? from A;.3
3. A>.fA,b
4, A>,f,b
5. B+.fB,c
6. B+.f,c
Ay, 1. E+d.Ac,? from A;.4
; 2. E+d.Bb,? from A;.5
3. A+.fA c
4, A>.f,c
5. B+>.fB,b
6. B+.£,b
Ag 1. S+?E?.,0 "final" set
- from A2.1
Ag 1. E+aA.b,? from A3,1
Aq 1. E+aB.c,? from A3.2
Ag 1. A+f ,A,b from A3.3
T 2, A>f, b from A3°4
3. B+f.B,c from A3°5
4, B+f.,c from Ag.6
5. A+ . fA,b
6. A».f,b
7. B+.£B,c
8. B+.f,c
Ag 1. E+dA.c,? from A,.l
Ay 1. E+dB.b,? from A402
All 1. A+rf A,c All is not a

duplicate of
Ag

32

TABLE IT (Continued)

SET _

NAME NO, ITEMS NOTES

2. A+f.,c

3. B+f.B,b

4, B+f.,b

5. A+ .fA,c

6. Ar.f,c

7. B*.£B,b

8. B+.f,b
Ao 1. E*aAb.,? from Ag.1
Ajj 1. E»aBc.,? from A5.1
A1 1. A+fA,,b from A8.1
Ars 1. B+fB, ,c from A8’3
Aqg 1. E+dAc.,? from Ag.1
Ay 1, E*dBb.,"? from Aq,.1
Ag 1, ArfA.,c from Aq5.1
A1g 1., B*+£B.,b from A11.3

The ;eader Qho is interested in wvwndaratanding the structure of a
grammar using LR(k) techniques should pay particular attention to
computation of tﬁe configuration sets. For any given item, the dot
delimits how much of a handle has been formed. Closure shows what the
next input symbol cam be. Although the same item may appear in more
than one set, the history of how that set was entered is contained in
the entries created by ekpansion.‘

Table III contains the LR(1) table for Gq. The table is computed
from the configuration sets by'the following algorithm (2):

(1) If (B+b.,u) is in A and B is not the goal symbol, then

p (u) = 1 where i is the number of the production B: b.

(2) If (B*a.b,u) is in A and b # @, then p (v) = (for stack)

33

for all ve FIRST (bu), that is, for all terminal symbols
that can legitimately follow a in this state,

(3) 1If (S*?B?,P) is in A, then p (@) = accept.

(4) p (u) = error (blank entry) otherwise.

(5) g (X) entries are as mentioned earlier.

(6) If more than one entry is attempted for any table position,
then the grammar is not LR(k) for the k used in construct-
ing the configuration sets.

The parsing algorithm is quite simple once the table is generated.
Also, the parsing algorithm is general in that it applies to a restrict-
ed form of the LR(k) method, the SLR(1l) method. The tablé entry-is
selected by letting STACKTOP (i.e., the top of the stack) select the
row and the next input symbol select the column. When the table entry
is 'stack,' the next input symbol is stacked along with the table entry
which is a state name. Wheh the table entry is reduce (i.e., a pro-
duction nﬁmber);-N symbols are popped from the stack where N 1is two
times the iength of the RHS of the production used in the reduction;
and the LHS of the production is pushed onto the stack along with the
table entry selected by the STACKTOP row and LHS column. This table
entry is always a state name, (This creates the effect of pushing the
LHS into the‘unexpended suffix and then reading it.)

The symbols in the stack catenated with the unexpendedbsﬁffix at
any step &ield»a right seﬁtential form., Working from bottom to top,
this results in S+?E?+?aBc?+?afBc?*?affc?, which is indeed the right-

most derivation. sequence for ?affe?.

TABLE III

LR(1) TABLE FOR Gs

34

P g
STATE 7?2 a b ¢ d £ % 8 E A" B 72 a b ¢ d f
0] 1
1 S S 2 3 4
2 S 5
3 S 6 7 8
4 S 9 10 11
5 A
6 S 12
7 S 13
8 7 9 5 14 15 8
9 S 16
10 S 17
11 9 7 S 18 19 11
12 2 :
13 3
14 6
15 8
16 4
17 5 ,
18 .6
19 8
UNEXPENDED :
. STACK SUFFIX ACTION
0 raffc? initial condition, read ?
0?71 affc? read a
0?1a3 ffc? read f
0?1a3f8 fc? read f
071a3£8f8 c? reduce B: f.
071a3£8B15 c? reduce B: f, B,
071a3B7 c? read c
071a3B7¢cl3 ? reduce E: a, B, c.
0?1E2 ? read ?
0?1E2?5 9 accept

Figure 7.

Parsing ?affc? Using Table III

35
The SLR(1) Method

Knuth's original article (10) introducing LR(k) grammars is con-
sidered a classic because of its theoretical soundness and generality.
However, attempts at practical implementation have suggested changes
that result in somewhat less generality but substantially greater
practicality.

DeRemer proposed (3) and implemented (5) an LR(k)-like method
which he called SLR(k) for simple-LR(k). Basically, it consists of
constructing LR(k) configuration sets for k = 0; that is, the method
assumes (at least at configuration set construction time) that the
grammar is LR(0). Whereas Knuth's original method uses k symbol look-
ahead while constructing the configuration sets, DeRemer doesn't make
use of k symbol look-ahead until table construction time and then only
if necessary.

The SLR(1) method is stated initially in terms of the LR(1) method.
The FOLLOW function, F, is defined by F(A) = {a | S **bAc and a =
FIRST (c) where A ¢ Vy, a e Vp, b € V%, and ¢ € Vp*}, That is, F(A)
is the set of terminal symbols which may follow A 1in any right
sentential form. Thebfollowing algorithm constructs the SLR(l)‘table
(2):

(1) Construct the LR(0) configuration sets of items,

(2) Replace each item of the form (A+b.,f), b ¢ V*, in each

set by (A*b.,a) for all a ¢ F(A). |

(3) Construct the LR(1) tables from the altered sets of items

with the function g determined as though dealing with LR(O)

sets of items,

36

It is possible to have a conflict, that is, more than one entry
for a table position for the SLR(1) method when one does not exist for
the LR(1) method, which occurs when an attempt to perform the SLR(1l)
method on G5 is made.

The author has implemented changes in the SLR(1) method which make
the implementation more efficient. First, the stack and accept entries
are deleted, and the numbers are negated in the p portion of the
LR(1) table. Secondly, the modified p portion is "overlaid'" with the
g portion, Here, positive entries must be considered as not only tran-
sitions to a different state (row) but also as signals for stacking;
and the row corresponding to the final state must be identifiedwso that
a transition to it can be detected. But these are minor points. Also,
if it is always agreed to surround the single RHS alternative of the
goal symbol with special delimiters, the # column is completely elimi-
nated since the only possible entries are reduction entries and accept;
however, there are no reduction entries in the @ column except for the
number of the production S: ?, E, ?., but this is detected by detect-
ing a transition to the final state. Also, the final state row and
goal symbol column is deleted since there are no entries in either.

The effect of this 'overlaying" is an approximate 33 percent saving on
the size of the table. Table IV shows the effect of "overlaying"
Table III.

This change is now incorporated, and the LR(0) sets of items for
Gy are constructed. But first, some notation should be reviewed.
Earlier it was seen that a particular set was initialized via expansion
of some other set. These items in the initialized set are called the

basis entries. The other entries of a set, that is, those added via

37

closure of the basis entries, are called closure entries. It should be

noted that all basis entries never have the dot all the way to the left
whereas closure entries always have the dot all the way toc the left.
The reader is advised that the author's construction of the configura-
tion sets is not identical to DeRemer's (4) in order; however, it is
identical in content. For example, the author initializes the first
state to be the final state so that its position is known regardless of

the grammar being processed.

TABLE IV

THE "OVERLAY" MODIFICATION OF TABLE III

STATE E A B ? a b c d £

0 1

1 2 3 4

2 5

3 6 7 8
4 9 10 11
6 12

7 13

8 14 15 -7 -9 8
9 16

10 17

11 18 19 -9 -7 11
12 =2

13 -3

14 -6

15 -8
16 -4
17 -5

18 -6

ot

0
I

[*-]

The SLR(1) configuration set computation and table construction

for G, are demonstrated in Tables V and VI,

1

LR(0) CONFIGURATION SETS FOR G1

SET NO. ITEMS NOTES
1. S+7E?. final state
2, 5+,7E? initial state
3. 5»?7,E? from 2
E~+ E+T closure entries for
E>,T the single basis
T+ ,P**T entry; closure
T>.P ceases when dot is
P+, i left of terminal
P+, (E) symbols
4, S+?E,.? from 3; expansion
gives final state
E+E,+T .~ from 3
5. E+T, from 3 or 8: no
expansion here
6. TP **T from 3 or 8
T+P,
7., P+ from 3 or 8
8. P+(LE) from 3 or 8
E+, E4T indirect recursion
E+.T lengthens the set of
T P**T configuration sets
TP
P+, 1
P+, (E)
9, E+E+.T from 4
T+, PX%T
.P
P+,1
P>, (E)
10, T+Px*% T from 6
T+, P**T
P+ 1
P+, (E)
1l. P~+(E.) from 8

38

39

TABLE V (Continued)

SET NO. ITEMS NOTES
E+E . +T from 8
12, E>E+T. from 9
13. T>P*%T, from 10
14, P-+(E). from 11
TABLE VI

SLR(1) TABLE FOR Gy

STATE S E T P ? + k% i ()
2 3
3 4 5 6 7 8
4 1 9
5 -3 =3 -3
6 -5 =5 10 -5
7 -6 -6 =6 -6
8 11 5 6 7 8
9 12 6 7 8

10 13 6 7 8

11 14
12 -2 =2 =2
13 -4 -4 -4
14 -7 -7

It is now shown how to understand at least part of the structure
of L(Gy) by‘using Tables V and VI. Set #2 shows that an S 1is an E
surrounded by ?'s and that ? must be the first input symbol. The

dot represents the state of the parse. That is, the symbols to the

40

left of the dot have been recognized (in the stack in the parsing
algorithm); and those to the right have not been recognized.

Set #2 has no reduction (no item with the dot to the right), hence
a state transition to state (row) #3 is made. (See row #2 of Table
Vi.) Set #3 (i.e., the basis entries) shows that this set was entered
after reading (stacking) a ?, and the next symbol must be an E. The
closure entries show the possibilities of what an E can be; that is,
since the basis entry in the present sentential form is a derivation,
the closure entries show what sentential form can possibly exist after
one or more direct derivations of the basis entry. This is similar
to a top-down parse of every possible sentence. For all closure
entries, it is necessary to read (because of the dot position) and
make a state transition,

From previous discussion, it is known that an E 'is a series of
T's separated by +'s. This can be deduced from Tables V and VI,
Starting at set #3, which is one time the dot appears to the left of
an E, it is seen that the closure entries define an E to be several
different configurations. In particular, E+.,E+T and E+.T show that,
in order to have an E, a reduction on one or the other must be made.
E+T. will certainly pop the stack and require a return to set #3 with
an E as the next symbol if the next input symbol is + (see row #5
of Table VI), after which a transfer to set #4 and a try to build a
longer E will be made.

To see this more clearly, ?i+i+i? 1is now parsed by using Table

V1 and using the same parsing technique presented earlier.

41

UNEXPENDED

STACK SUFFIX NOTES
2 2i+1+1? initial 3=T(2,?)
273 1+i+1? 7=T(3,1)
22347 +1412? -6uT(7,+) and 6=T(3,P)
273pP6 +i+i? ~-5=T(6,+) and 5=T(3,T)
273T5 +i+1? -3=T(5,+) and 4=T(3,E)
273E4 +1i417 9uT (4 ,+)
2?3E4+49 i+1? 7=T(9,1)
2?73E4+49417 +i? -6=T(7,+) and 6=T(9,P)
273E4+9P6 +1? -5=T(6,+) and 12=T(9,T)
223E4+9T12 +1? -2=T(12,+) and 4=T(3,E)
273E4 +17 9=T (4 ,+)
273E4+9 i? 7=T(9,1)
273E44947 ? -6=T(7,?) and 6=T{9,P)
2?73E449P6 ? ~5=T(6,?) and 12=T(9,T)
2?73E4+9T12 ? -2=T(12,?) and 4=T(3,E)
273E4 ? 1=T(4,7)
273E471)] final state-accept

Figure 8, Parsing 7?7i+i+i? Using Table VI

In the actual implementation, only states are stacked since, if
the symbol is needed for any reason, it can be deduced because each
canonical derivation sequence is unique and the stack and‘table to-
gether maintain a history of the parse.

The reader is encouraged to visually correspond the parse with
the configuration sets. Perhaps the greatest asset of the SLR(1)
method is that any set of productions for a CF grammar can be input,
and the user will be provided with the sets and tables which can help
lead to an understanding of the language generated by the grammar.
And, at the same timé, the user is provided with a syntax analyzer
with which he can experiment with sentences for purposes of establish-
ing validity.

So far, everything said about SLR(1), at least with respect to

42

Gys also applies to LR(0). What is the difference between the two
methods? In an actﬁal LR(0) table, rather than enter the reductions
only under symbols in the FOLLOW set, they would be entered under
every terminal symbol. For example, row #5 in Table VI would have a
-3 under **, i, and (also. It appears DeRemer (4) would do likewise
in most cases with his SLR(1) method. This could cause reductiomns to
be made after an error condition is detected; in fact, this is a
characteristic of the SLR(k) method.

Clearly, the above action will not work for state (row) #6 in
Table VI. This would be an example of a conflict. In SLR{1) table
construction, there are two kinds of conflicts. DeRemer (4) uses the

term inadequate state for a state with conflicts. An inadequate state

is one with either both a reduction entry and a transition entry or
two different reduction entries. A table with no inadequate states
is a table for an LR(0) grammar (4). A state with only a reduction

entry is a reduce state. A state with only transitions is a read

state. An inadéquate state is said to be solvable if the one symbol
look-ahead set (FOLLOW function) indicates which action to take for
a given next symboi. An unsolvable inadequate state is one where,
with one symbol look-ahead, which action to take still cannot be
determined.

State #6 is the only inadequate state for Gj, and it is solvable.
vBy inspecting set #6, it is seen that both a reduction and a transi-
tion are present. Of course, the problem is caused by the right group-
ing of ** and the need to look ahead in the input string to see if
the longest T has been found, which is a series of P's separated by

*%'s, The action of the parsing algorithm on right recursion is to

43

stack up all of the P's separated by **'gs and then reduce from
right to left. Two FOLLOW sets need to be computed. That is, FOLLOW
(T) needs to be computed since it must be known what can legitimately
be the input symbol if the reduction is made. But FOLLOW(P) is not
computed for the entry T+P.**T since, by definition, the omne symbol
look-ahead set for a transition entry is FIRST (symbol to right of
dot, FOLLOW (LHS)), which in this case is FIRST (*%, FOLLOW (P)).
Therefore, the FOLLOW element can be deleted since in a transition
entry there is always a symbol to the right of the dot; and this sym-
bol is either a terminal or a non-terminal, X, for which the terminal
symbols in Ht(X) are selected.

In state #6, the one symbol look-ahead set for T*PO**T is
{**}, For FOLLOW(T), the productions are inspected to see what
terminal symbols can follow T in a sentential form., From production
#3 or #2, it is seen that what can follow an E can also follow a T;
therefore, FOLLOW (T) = {+,),?}. Hence, Gy is SLR(1) since the only
ihadequate state has disjoint one symbol look-ahead sets. This, in
essence, is the definition of a SLR(1) grammar (4). A disjoint set
implies that, by looking one symbol ahead in the input string, it can
be determined which entry of the inadequate state toc employ. In state
#6 of Table VI, FOLLOW (T) input symbols cause a reduction; and **
causes a transition. :

The FOLLOW function can be computed two ways. One way is direct-
ly from the pré&ﬁéiiéns. The method first computes the relation, F,
defined by F(A) = {b | there exists a production C: a,A,B,c. where
c,acV*, AcVy, BeVyp and b = B or BeVy and beVq and beHY(B)}. Here,

any one of ¢ or a may not be present.

Now, if F is represented as a Boolean matrix, then closure of
results in FOLLOW, each row corresponding to AcVy: and the "true"
columns representing the elements of FOLLOW (A). For an operator
grammar (6), HY(G) is not needed since every AeVy is followed by a
terminal symbol or is the last symbol of a RHS,

The second way to compute FOLLOW is developed by DeRemer as a
theorem. The proof is found in (4). This method (used in the au-
thor's implementation) uses the function g part of the table and

T*#(G), the reflexive transitive closure of the inverse of the tail

44

symbol matrix, T, defined by T(A) = {BeVy | B+*aA where AeVy, acVk}.

That is, the only concern is with tail symbols that are non-terminals.

An algorithm for computing FOLLOW follows:
(1) Compute T*(A) as above.
(2) Start with an empty set, L,
(3) For each transition under a symbol in T*(A) to some
state N, add to L each symbol seVy such that there
is a transition under s from N,

(4) The resulting set is FOLLOW.

Since FOLLOW is computed for every AeVy in the author's imple-

mentation, an algorithm is presented for this also, T, T* are the
denotations for the Boolean matrix representation for thé relations
T, T*, respectively,
(1) Compute T* for every AcVy; initialize FOLLOW to "false."
(2) For each column, Cl’ of T*; for each row, Ris of T*; if
T (Ry, C3) is true, then for each row, Ry, of the table;
if TABLE (R,,Ry) is not zero, then for each terminal
symbol column, C,; if TABLE (TABLE (R,,Ry), Cy) is not

zero, then FOLLOW (Cy,Cy) « "true."

45

This algorithm is similar to the Warshall algorithm. The re-~
filexive transitive closure of T 1s needed as shown in the following
discussion. To compute FOLLOW (P), the pth column of T* must have
a "true" in it, But this is so only if P is a tail symbol of some
AeVy, which does not occur unless it is assumed the production A: P,
is present during éonatruction of T* for some AsVNo But it is aiso

true that the Pth

row must have a '"true" in it, that is, P must have
an AcVy as a tail symbol since T¥* ‘is only computed for nen-termi-
nals. The solution is to use a reflexive transitive closure, that
is, all productions of the form A: A. are assumed to be present
only during computation of FOLLOW.

The author's implementation differs from DeRemer's original
SLR(1) method in that every state is considered to be inadequate. It
is not clear whether DeRemer computes FOLLOW for every AEVN, but it

appears that he does not. The remaining question is what differences

exist among LR(1), DeRemer's SLR(1), and the author's SLR(1).
Comparison of Table Construction Methods

It should be ciear from Table VI that, if reduction ehtries are
made for all terminal symbol columns, reductions can be made after an
error condition is detected. For example, if ?i{i? is paréed using
Table VI and row #7 has -6 under all terminal symbols, it is necessary
to reduce the first 1 to P and, in fact, P to T and T to E
before an error is detected; however, by using FOLLOW, the érror is
detected before the first reduction. It is desirable to detect errors
at the eariiest possible time; however, it is inherent in DeRemer's

method (3) that reductions can take place after an error condition is

46

detected, and it is also inherent (although not as extensively) in the
author's implementation. However, neither will read another input
symbol once an error is detected. In Knuth's original method (10),
neither reductions nor reading can occur after an error is detected.
The reason for this is that Knuth keeps track of what the next input
symbol can legitimately be for each entry in every set, but the SLR(1)
method assumes that if one symbol may follow another in any sentential
form then it may follow it in every sentential form.

AComputation of the SLR(1) table for G4, which was shown to be
LR(1), but is not SLR(1), follows. (In fact, it is not SLR(k) for

any k.)

TABLE VII

SLR(1) CONFIGURATION SETS FOR G3

SET NO. ITEMS

S+7E?.
S+, ?E7
3 S+?.E?
E+>,aAb
E+».aBc
E+.dAc
E+.dBb
S+?E.?
E+a.Ab
Era.Be
A+, fA
A».f

B+,fB
Br.f

N

wt &

TABLE VII (Continued)

SET NO,

ITEMS

O 00 ~d

10
11
12
13
14
15
16
17

E»d.Ac
E~+d.Bb
A+ .fA
A, £
B+.fB
B>.f
E+aA.b
E+aB.c
A+f A
AE,
B+f.B
B+f,
A fA
A+ . f
B+ . fB
B>. £
E+dA.c
F»dB.b
E+aAb,
E+aBc.
A>fA.
B+fB,
E+dAc.
E+dBb,

Comparing the LR(1) and SLR(1) tables for Gj, it is seen that

Table VII is much shorter than Table 1II, Also, in Table I1I, there

is a note pointing out the difference between A8 and All' These

two sets combine into one set in Table VII, namely set #9; and it

is because of this combining that G3 is not SLR(1). In particular,

b and ¢ are both in FOLLOW {A) and FOLLOW (B) and, hence, if the

nexc

make.

input symbol is

b

or

C,

it is not known which reduction to

47

A grammar has been given that is not SLR(k) (G3), and also a
grammar has been given that is SLR(1) (GI)' For completeness, a
grammar that is SLR(2) is now presented. G, is specified by:

1. s: 7, E, 7.

2, G: A;

3. C, B;

4. A, b, c.
5. A: a.

6. B: b,

7. C: A,
TABLE VIII

SLR(1) CONFIGURATION SETS FOR G,

SET NO. ITEMS

S+7G?.,
S+,7G?
$+7.G?
G+.A
G+.CB
G+.Abc
Ar.a
cr A
4 S+7G.?
G*A.
G*A.bc
C+A,
A*a,
G*Ab.c
G—+cB.
B+b.
G*Abc.

W N =

= O O 00~

=

49

TABLE IX

SLR(1) TABLE FOR Gﬁ

STATE G A B C ? b c a

2 3

3 4 5 6 7
4 1

5 -2 -7/8

6 9 10

7 -5 =5

8 11

9 -3

10 -6

11 —4

The doublé entry in row #5 of Table IX indicates that state #5
is unsolvably inadequate since b 1is in FOLLOW (G) and is to the
right of the dot in the transition entry. The set of sentences com-
prising L(G,;) is {?a?, ?ab?, ?abc?}. TFigure 9 shows an attempted

parse of ?abc?.

UNEXPENDED
STACK SUFFIX NOTES
2 ?abc? initial condition
273 abc? 3=T(2,7)
2?3a7 be? 7=T(3,a)
273AS5 be? -5=T(7,b) and 5=T(3,A)

Figure 9. Parsing ?abc? Using Table IX

NOTE:

At this point, T(5,b) pertains, but the SLR(1) method
has not provided enough information to decide whether
to reduce A toa C or read the b. If the parser
could look ahead one more symbol (i.e., two symbol
look-ahead) and see the ¢, then it is clear that b
should be read. If the sentence had been ?ab?,

then the "pick" would be to reduce rather than read.

50

273A5b8 c? pick 8=T(5,b)

273A5b8cll ? 11=T(8,c)

273G4 ? -4=T(11,?) and 4=T(3,
G)

273G471 final state

Figure 9. (Continued)

CHAPTER IV

CONCLUSION

This thesis consists of two major parts. The first presents
many of the topics covered in a beginning course in formal language
theory, but in a way that is meant to appeal to the reader's intu-
ition. A secondary purpose is to get the reader thinking about CF
grammars in a way pertinent to the second major part. No single
reference covers all of the presented points. Rather, most refer-
ences tend to cover specific points in a more detailed manmer.

The second part presents Knuth's LR(k) method of syntax analy-
sis and, in particular, the SLR(1) method. The result of the full
description and numerous examples is twofold. The first provides
an efficient language-independent syntax analyzer, which may be
used in the development of, for example, a compiler. Parsers for
a subset of ALGOL 68, ALGOL 60, and BASIC have been produced with
satisfactory results. The second provides a tool by which the in-
put of any context-free grammar yields information which demonstrates
the structure of the grammar and the language generated by the gram-
mar. It cannot be overemphasized how useful the configuration sets
are in helping to understand a language structure simply by inputting
a set of BNF rules. This is especially true in grammars with in-
direct recursicn since visual observation of the production rules

yields little insight into the nature of the language.

51

52

In conclusion, LR(k) methods are the newest and most general of
the methéds used for syntax analysis of languages produced by CF
grammars. They are shown to be superior to most methods and are
more general than any known method for which efficient parsers can

be mechanically produced.

A SELECTED BIBLIOGRAPHY

(1) Aho, A, and J, Ullman., 'The Care and Feeding of LR(k) Gram-
mars.' Proceedings of the Third Annual ACM Symposium
on Theory of Computing, (May, 1971), 159-170.

(2) Aho, A. and J. Ullman. "A Technique for Speeding Up LR(k)
Parsers.'" Proceedings of the Fourth Annual ACM Symposium
on Theory of Computing, (May, 1972). (to be published)

(3) DeRemer, F. L. "Practical Translation for LR(k) Languages.'
Ph.D. thesis, MIT, Cambridge, Massachusetts, (September,
1969).

(4) DeRemer, F, L. "Simple LR(k) Grammars." Communications of
the ACM, 14, 7, (July, 1971), 453-460.

(5) DeRemer, F, L. "Simple LR(k) Grammars - Definition and Imple-
mentation.'" Computer Evolution Report, 2, 4, (September,
1970), University of California, Santa Cruz.

(6) Feldman, J. and D, Gries. 'Translator Writing Systems."
Communications of the ACM, 11, 2, (February, 1968), 77-91.

(7) Gries, David., Compiler Construction for Digital Computers,
New York: John Wiley & Sons, 1971,

(8) Hoperoft, J. and J. Ullman. Formal Languages and their Rela-
tion to Automata, New York: Addison-Wesley, 1969.

(9) Knuth, D. E, The Art of Computer Programming, Reading: Addi-
son-Wesley, 1969.

(10) Knuth, D. E. "On the Translation of Languages from Left to
Right." Information and Control, 8, (October, 1965),
607-639,

(11) McKeeman, W., J. Horning, and D. Wortman. A Compiler Generator,
Englewood Cliffs: Prentice-Hall, Inc., 1970.

(12) Van Doren, J. and J, Gray. "An Algorithm for Maintaining
Dynamic AVL Trees.'" Proceedings of the Fourth Interna-

tional Symposium on Computing and Information Sciences,
(1972). (to be published)

54

(13) van Wijngaarden, A, (ed.), B. J, Mailloux, J. E. L. Peck, and
C. H. A, Koster. Report on the Algorithmic Language
ALGOL 68, Offprint from Numerishe Mathematic 14: 79-
218, Berlin: Springer-Verlag, 1969,

(14) Warshall, S, "A Theorem on Boolean Matrices." Journal of the
ACM, 9, (January, 1962), 11-12,

APPENDIXES

(=9~

APPENDIX A

LIST OF SYMBOLS

56

SYMBOL

CF
TWS

APPENDIX A

LIST OF SYMBOLS

MEANING

context-free

translator writing systems
vocabulary of a grammar

all strings of elements of V
is followed by

exclusive "or"

may be rewritten as
delimiter

set inclusion

left hand side

right hand side

the terminal symbols of V
the non-terminal symbols of V
set delimiters

a direct derivation

‘a derivation (closure of =)

deterministic push down automata
the Cartesian product of A and B
is a subset of

- intersection

a is related 'to b
logical and
implies

union

logical or
summation

PAGE OF FIRST
OCCURRENCE

57

[.
Eo N - W NV RV RO RV, RC, NV, RV, R R R U)

[
W

b e
N oL

NN =
OO ®

APPENDIX B

USER'S GUIDE

&R

59

APPENDIX B

USER'S GUIDE

Input/Output

To use the routine, the user must be familiar with the input and

output of the routine,

The input comes in on two different files,

PARMIN for parameters and PRODIN for the productions. There are 1l

input parameters, each an integer in a 4~byte field, left justified

on an 80-byte record.

PARAMETER
NUMBER

1

2

DESCRIPTION
number of productions

maximum number of symbols in any produc-
tion

maximum number of characters in any
symbol or at least = number of characters
to make every symbol unique

maximum number of unique symbols in the
grammar

number of items in all configuration sets
combined

number of configuration sets

maximum number of basis entries for any
configuration set

= 1 to activate the DEBUG facility

=] to count and list solvable inadequate
states

60

PARAMETER
NUMBER DESCRIPTION
10 =] for full printed output
11 = 1 for punched output in a form to be

read by the parsing routine

There are defaults for 9 input parameters 4, 5, 6, and 7; however,
these defaults represent only a guess based on the grammar, After an
initial run, output statistics allow the user to set these parameters
accurately for future runs, if needed.

For the production rules, the format is the LHS (left-hand-side)
immediately followed.by a colon, followed by one or more blanks, then
the RHS (right-hand-side) parts each followed by a comma and ohe or
more blanks. The rightmost bart of an alternative is followed by a
semicolon and one or more blanks if it is not the last alternative;
otherwise, it is followed by avperiod and one or more blanks, Column
72 must be blank; but, other than the listed restrictions, the format
is free form. The first LHS is considered to be the user's "pseudo"
goal symbol. That is, it is a goal symbol which may occur in ; RHS,
All productions withca common LHS must be grouped consecutively. This
format allows the producfions to be sequenced without affecting the
routine.

The reason for using two different input files is that many times
the user may wish to store the productions on secondary storage be-
caugse of their léngth‘but, because of the need to change parémeters
from run to run, it is better for them to be on cards.

The routine is serially reusable, and multiple grammars may be

input to the routine. To do this, the user simply places the param-

61

eter records (one for each grammar) in order in file PARMIN and
separates each set of productions with a delimiter card thaﬁ has a
period in the first byte and blanks thereafter. Input of a grammar
terminates on end-of-file or a delimiter record for file PRODIN, and
the routine terminates on end-of-~file for file PARMIN,

The output consists of several of the internal tables. The out-
put of each section of the routine is clearly delimited by labelling.
First, a copy of the productions is output followed by statistics on
the grammar enabling the user to respecify some of the input param-
eters in order to reduce the memory requirement of the routine. Next,
the encoded form of the productions is output. During input, each
symbol is encoded to its position in the symbol table. Next, two
mapping arrays are output along with the symbols., The "TO" coiumn
maps the symbols to the columns of the SLR(1) table, and the "FROM"
column maps the columns of the SLR(1) table to the symbols., If
DEBUG is enabled, the next output is messages (perhaps none) feflect-
ing violated restrictions on the grammar. Statistics on the config-
uration sets are then output. Each of these statistics was put in
by the user as a parameter; however, there is no way to reélly know
what these parameters should bé until after thé routine has run at
least once. Once the routine runs for a grammar, these output sta-
tistics will allow the user to set the parameters more accurately.
All parameters should be set as small as possible since storagé is
allocated per the parameters. Next, the LR(0) configuration sets are
output in a similar format to that presented in the body of this
thesis., Also output is the dot position ("2" is all the way to the

left), the upper bound of the set (all sets are in a single vector),

62

and the number of basis entries. Finally, the full SLR(1l) table is
output along with the column-to-symbol relationships and results of

the inadequate state counter,
‘Restrictions

There are no resfrictions on the input except the format and size
of the host machine. This can be a factor for small-to-medium ma-
chines. For exampie, ALGOL 60 takes approximately 200K bytes to
execute, A possible remedy for this is to store the data structures
on scratch files; however, this would greatly increase execution time
since the structures are not processed in any set manner, That is,
processing is highly dependent on the grammar. Also, since the SLR(1)
table is quite sparse, a sparse matrix technique such as found in (9)

might be employed to some advantage.
Job Control Language Required

The following JCL is required if the source deck is input:

//3JOB NAME JOB {(XXXXX,YYY-YY-YYYY,5), NAME'
//STEP1 EXEC PL1LFCG
//PL1L.SYSIN DD #*

~=SOURCE DECK~-
//GO .PARMIN DD *

—-PARAMETER CARDS—-
//GO.PRODIN DD *

~-~PRODUCTLONS~-

//GO.PRINT DD SYSOUT=A

63

//GO.PUNCH DD SYSOUT=B,DCB=BLKSIZE=80
//
The routine is presently stored in load module form and may be

executed with the following JCL.
//JOB NAME JOB (xXxxx,YYY-Yi-YYYY,S),'NAME'
//STEPL EXEC PGM=SLR1
//STEPLIB DD DSN=0SU.ACT11098.PROG,DISP=SHR
//PARMIN DD *

--PARAMETER CARDS--
//PRODIN DD *

—-PRODUCTIONS~~
//PRINT DD SYSOUT=A

//PUNCH DD SYSOUT=B,DCB=BLKSIZE=80

/1
Suggested Modifications

In addition to the different storage techniques mentioned ear-
lier, there are other modifications the user may want to make, For
example, in the present version, SUBSCRIPTRANGE, STRINGRANGE, and
SIZE are enabled for the whole routine; however, the author believes
that only the input section ﬂeeds such checks and that the octher
sections contain the logic to take care of these conditions. The
reader familiar with the PL/1 compiler will recognize the savings in
both comﬁile and execution time that could be realized b# turning off
these condition checks. However, for small grammars, the difference
in execution tiﬁe is almost negligible because of the overall speed.

For examﬁle, Gy executes in two seconds.

64

The user may also want to output running statistics on the con-
figuration sets since, if the parameters are too small, the program
fails with only a brief diagnostic whereupon the user must increase
the parameters and retry the grammar. For grammars with a high degree
of recursion such as ALGOL 68, the problem of setting the parameters
large enough and still staying within the machine storage limits can

be quite frustrating. The following table may help to serve as a

guide.
GRAMMAR
Gl ALGOL 60 ALGOL 68 BASIC BASIC
(subset) (simple
precedence
form)

Number of
productions 7 181 159 99 85
Number of
parts 4 6 6 5 9
Number of
symbols 10 141 99 102 89
Number of
characters 4 31 10 10 10
Number of
sets 15 304 310 174 148
Combined
length of sets 50 2191 5592 957 816
Number of
basis entries 3 5 10 3 3
Reduction

queue 0 22 0 0 0

65

If the user wants a stripped-down, super-fast version, he may
also completely remove the debug section without affecting the rou-
tine. Also, he may want to output the results of the input section
onto secondary storage so that, if the routine fails later because
of input parameters, he may b&péss the input section (with the excep-
tion of parameter input) on subsequent runs. Also, he may choose to
write the output to secondary storage instead of punched cards since,
for example, the BASIC gramﬁar produces approximately 900 cards. Of
course, one must realize that more output is produced than is actually
needed (for example, the MAPFROM array); but, if meaningful diagnos-
tics are to be produced by the parser, all of the output is necessary.

An alternative to punching or writing out tables would be to
actually produce the parser program (minus the scanner, of coﬁrse).
The parser is only a skeleton whose DECLARE statements could be fill-
ed in with the properidata with the INITIAL attribute, whiéh the
routine could easily do.

If the routine is to be used to produce a parser for the language
generated by the input grammar, the user may want to precede all
terminal symbols in the grammar with some special symbol, fér example,
the double quote, because the symbol table method used is a“baianced
binary tree method (12) and such a prefix on the terminal symbols
will tend to cause all of them to be placed in the same subtree,
slightly decreasing the average look-up time. It should be pointed
out that only the terminal symbols along with the symbol's position
need be output to the parser if the parser's scanner uses some other
look-up techhique (e.g., linear search); however, this is not recom-

mended.

APPENDIX C

PROGRAM LISTING

AR

/% YITLE: SLR(1} PARSING TApLE GENERATGR (J.L e GRAY, J.5.J. 1972}
SUBJECY: GENERATION GF SLR{1) PAKSING TABLE
AUTHOR: JOSEPH L. GRAY

INSTALLATION: OKLAHOMA STATE UNIVERSITY
PL/1 LEVEL F VERSION 5.2C

IbM 360/65

DATE: FALL SEMESTER 1972

THE WOKK HEREIN IS PARTIAL FULFILLMENT OF THE MASTER'S PKOJECT
REQUIRED FUR THE MASTER OF SCIENCE DEGREE IN JGMPUTER SCIENCE.

PROJECT ADVISOR: DR. J. VAN DOREN

REFERENCES :

l. COMPILER CONSTRUCTIGN - GRIES

2+ SIMPLE LRI{K) GRAMMARS - DE REMER CACM l4 P 453-460

3. PRACTICAL TRANSLATORS FOR LR{K} LANGUAGES -~ DE REMER
MIT SEPT 196%

4o SLMPLE LR(K) GRAMMARS = DEFINITION AND IMPLEMENTATION - DE REMEK

5, THE CARE AND FEEDING OF LR{K) GRAMMARS = AHO AND JLLMAN PRGC.
THIRD ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING. MAY 1971

6. A TECHNIQUE FOR SPEEDING UP LR(K) PARSERS - AHO AND ULLMAN ACM
SYMPOSIUM ON THEORY OF COMPUTING 1972

7. ON THE TRANSLATION OF LANGUAGES FROM LEFT TO RIGHT - KNJUTH
INFORMATION AND CONTROL 8 1965

8. A THEOREM ON BOOLEAN MATRICES - WARSHALL JACH P 11-12 1962

9. AN ALGORITHM FOR MAINTAINING OYNAMLC AVL TREES - VAN DOREN ANO GRAY
SUBMI TTED TO FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND
INFORMATION SCIENCE ’

JULY 1971
PH.De THESIS

THE ROUTINE CONSISTS GF 3 BASIC SECTIONSs THE THIRO BEING DIVIDED INTO
2 SUBSECTIONS, EACH OF THE FIVE CONTAINED IN A BEGIN-END BLOCK. ALSO
2 INTERNAL PROCEDURES ARE EMPLOYED. A SCHEMAT IC DIAGRAM Of THE BLOCK
STRUCTURE FOLLOWS.

SLR1: PROC
REUSABLE : BEGIN
THE_WHOLE_THING: BEGLN

READER_SECTION: BEGIN

END READER_SECTION
DEBUG_SECT IONz BEGIN :

END OEBUG_SECTION
TABLE_GENERATE_SECTIUN: BEGIN
LRO_GENERATE: BEGIN

END LRDO_GENERATE

SLR1_GENERATE: BEGIN

ENO SLR1_GENERATE

END TABLE_GENERATE_SECTION

PROC

END WARSHAL

PROC

END BSTSLR

END THE_WHOLE_THING

GO TU REUSABLE
ERROR MESSAGE JUTPUT
GO Tu REUSABLE
END REUSABLE

WARSHAL:

BSTSLR :

ERROR:

YLL Lod00
0LCu0001
wlbCuoco2

ULCUGCO3
DOCUCCOo4

LOCU00D5

uGCuocos
ouCuoo07

voLuoCos

ULC U009
LLLU0010
UGCLOGL1
VOC U012
DUCUODL3
UL UOOL4
DUCULOOLS
LUCLODLo
UOCuUOO17
DOCUO018
DLCUOC19
DUCU0020
DoCud021
LGCUD022
DOCUOC23
0OCU0024

00Cu0025
D0UCU0026
03Cu0027
0oCu0028
DOCU0029
DOCU0030
0OCU0031
DUC V0052
0OCuL0033
DOCU0034
0oL U0035
DUCUO036
yoCuoe3az?
UGLu0038
DGCU0039
DOC V0040
DOCV0041
LOCUN042
DOCU0043
DULCUOG44
0UCU0045
V0L V0046
UGCU004T
DULU004a

UGLu0049

DLCUOD50

END SLR1
THE RATIUNALE FOR THE HEAVY USE OF BLOCK STRUCTURING IS TO REDUCE THE
INHERENT NEED FUR LARGE AMOUNTS OF STORAGE BY TAKING FULL ADVANTAGE OF
THE ODYNAMIC STORAGE CAPABITITIES OF THE SOURCE LANGUAGE. FOR SMALLER
HOST MACHINES, SCRATCH FILES RESULTING IN SLOWER EXECUTION TIME WOULGL
BE NEEDED FOR LARGE GRAMMARS.

SECTION DESCRIPTION:

REUSABLE: THE ‘ALL INCLUSIVE REUSABLE BLOCK IS PRESENT ONLY TO ALLOwW
MULTIPLE GRAMMAR INPUT; THAT IS, THE PROGRAM IS SERIALLY REUSABLE.

WHOLE THING: PARAMETERS SETTING CERTAIN LIMITS ON THE GRAMMAR "AND
TABLES ARE INPUT QUTSIDE THE 3L0OCK AND USED wiTHIN THE BLOCK FOR
OYNAMIC DECLARATION PURPOSES.

READER: THIS SECTION INPUTS AND ENCODES THE PRODUCTIONS, BUILDING A
SYMBOL TABLE USING BSTSLR, AND BUILDS CERTAIN MAPPLING ARRAYS FOR DATA
STRUCTURES USED.

DEBUG: THE EXECUT ION OF THIS SECTION IS USER CONTROLLED AND PERFURMS
CERTAIN CHECKS ON THE GRAMMAR.

TABLE GENERATE: CONTAINS ONLY DECLARATIONS NEEDED FOR THE FOLLOWING 2
SEC TIONS.

LRO GENERATE: THIS SECTION FIRST GENERATES THE CONFLGURATION SETS
AS IF THE GRAMMAR IS LR{O) THEN THE TRANSITION ENTRIES ARE PLACED
IN THE SLR(1) TABLE. THE FILLING IN OF REDUCTION ENTRIES IS
POSTPONED UNTIL THE FOLLOWING SECTION.

SLK1 GENERATE: THIS SECTION GENERATES THE COMPLETE SLR(L) PARSING

TABLE AND (IF USER SELECTS) COUNTS AND LISTS INADEQUATE STATES AND
PUNCHES THE TABLE, SYMBOL TABLE, ANO OTHER STATISTICS NEEDED 8Y THE
PARSER .

PROCEDURE DESCRIPTION:

BSTSLR: THE INSERT SECTION OF A BINARY TREE SYMBOL TABLE
IMPLEMENTATION C.F. REFERENCE.

WARSHAL: A PROCEDURE TO PERFORM THE WARSHALL ALGORITHM ON AN INPUT BIV
MATRIX CoF. REFERENCE. ’

INPUT:

FRUOM FILE PARMIN THE FOLLOWING PARAMETERS ARE READ IN 11 FIELDS UF 4.

l. N >= NUMBER OF PRODUCTIONS TO BE INPUT

2. N >= MAXIMUM NUMBER OF PARTS IN ANY PRODUCTION (INLLUDINSG LHS)

3. N >= MAXIMUM NUMBER OF CHARACTERS IN ANY INPUT SYMBOL {(MAY BE
LESS - ONLY NEED N LARGE ENOUGH TO MAKE SYMBOLS UNIWE)

4 N = MAXIMUM NUMBER UF DISTINCT SYMBOLS IN THE GRAMMAR

5. N = CONFIGURATION SET LIMIT (FOR ALL SETS COMBINED)

6. N = EXPECTED NUMBEXR OF CONFIGURATION SETS

T« N = MAXIMUM NUMBER OF BASIS ENTRIES FOR ANY SET

8 N =1 TO ACTIVATE DEBUG SECTION

9. N = 1 TO COUNT AND LIST INADEQUATE STATES

sLCu0051
w0052
LLCU0053
LuCU0054
VLLUONs5
LGCUo056

oLCu0057

DLCu0058
DLCUI059

JGCU0060
vCu0osl
“O8CU0Co2

LOCUDD5 3
H0C U0 64
DLCU006S

JULU0066
viCu00067

DL UV0CsHE
OOCUOCoe9

LG UCa70
LGCU0G71
GOLLUD072
20CU0073

DOLLODT 4
0L U0GCT5
DUCUOCT76
DGCUoL77

uucuoo7s

0DOLLOCT79
DOCL00aE0

uLL Lol
JOCU0J8 2

MiCuNGu3

vOC U0Cas
osLCu0dssS
DGCUOCEL
vOCLOCs7
udCuoCuy
00CU0083
vOCU0090
00CU0091
L uoCs2
oLLLoCcY 3
duLU009e

=&

10 N = 1 FUR FULL PRINTED GuTePuT
lle.N = 1 T3 PUNCH SLR{L} TASLZ AN) STHZR CATA NEEUED Fuk PARSER
THERE ARE CEFAULTS F3R 3 INPUT PARAMETEKS 4y 5, b0y AND T; dunEVER

THESE DEFAULTS wEPRESENT ONLY A GUESS BASEU ON THE GHKAM#AR. AFTER AN
INITIAL &UNy UJTPUT STATISTICS ALLUW THE USER TG SET THESE FARAMETERS
ACCURATELY FCR FUTURE RUNS, If NEEVEC.

IF MORE THAN UNc GRAMMAK IS INPUT, THEN THE PAKAMETEKS FOx EACH
GRAMMAR ARE SIM4PLY ENTERED IN THE PRUPER UKUER. FMOM FILE PROGUIN,
PRUDUCTICNS ARE INPUT. THE FORMAT IS Thk LHS (LEFT-HAND-3ILE}
IMMEOIATELY FOLLOWED 8Y A COLUN, FOLLUWED bY 1 C(k MCKE dLANKS s THEN
THE RHS (RIGHT-HAND-SIDE) PARTS EACH FGLLIOWED BY A CIMMA AYD 1 uUR MORE
BLANKS. TAE RIGHTMOST PART GF AN ALTEKRNATIVE IS FOLLOWED BY A
SEMICOLON AN 1 OR MORe BLANKS LF IT 1S NGT THE LAST ALTERNATIVE;
OTHERWISEs IT IS FOLLCWED BY A PERIUL AND 1 UR MORE BLANKS. CULUMN 72
MUST BE BLANK, 8UT OTHER TdAN THE LISTED RESTRICTIONS TH: FOkMAT IS
FREE FCRM. ~THE FIRST LHS 1S CONSIDEREDR TO BE THE USER®'S “PSEUDU®
GOAL 3YMbOLe. THAT IS, IT IS A GUAL SYMBOL WHILH MAY OCCuUR [N A RAS.
ALL PRODUCTIONS wITH A JCMMUN CHS MUST BE GROJPED CUNSECUTIVELY. Fuk
MULT IPLE GRAMMAR [INPUT, EACH GKAMMAR IS DELIMITED oY A CARU wlITH 4
PERIOD IN COLUMN 1. NOTICE THIS ALLOWS THE PROLULTIUNS TOU BE
SEJUENCED WITHQUT AFFECTING THE ROUTINE.

The

DUTPUT 3

ALL SIGNIFICANT INTERNAL TABLES ANU STATISTICS ARE PRINTEL anD
LABELLED IF THE PRINT PARAMETEH IS ENABLED. -ALSG, ALL DATA NEEOED BY
THE PARSER IS PUNCHEU IF SJ SELELTED bY Trik USExe TdE PARSER IS
ENCLOSED A5 A COMMENT. NOTICE ThAT &Y ALTERINL THE DU STATEMENT FUR
PUNCH, THE OUTPUT COULD BE ROUTED TU A DATA StET GN SECGNDARY STORAGE.
THIS IS MENTIONED SINCEy FUR EXAMPLE, THE PUNLHEL QUTPUT FUR ThE Bas3id
GRAMMAR IS APPROXIMATELY 900 CARDS.

MAJOR DATA STKUCTURES:

MANY ARRAYS ANO VECTORS ARE USEU. NOU SORTING 1S DUNE. Tre INPUT
PRODUCTIONS AKE NOT STGRED; HOWEVERs THEIR ENCUDED FIRM LS IN PRJUD.
THE COOt FOR EACH SYMBOL IS ITS LINEAR PUSITION IN THE BINARY TREE
STRUCTURED SYMBOL TABLE 8UILT BY 8STSLk. THE INPUT SYMIULS ARE SAVECD
AND SENT TG THE PARSER FOR £KRGR MESSAGE CAPAB ILITIES AnND, IN THE CASE
OF TERMINAL SYM3OLS, FOR SCANNING PURPCSES. THREE MAPPING ARKAYS ARE
MAINTAINED. MAPTO HAS AN EnTRY FOR EACH SYMBJL SUCH THAT BY APPLYING
MAPTO TO THE CODED SYMBOL A UNIWE CCLUMN GR RUW OF AN AKKAY IS
OBTAINED SUCH THAT THE NON-TERMINALS ARE GROUPED IN POSITIONS I T9
NUMBER OF NON-TERMINALS, AND THE TERMINALS ARE GROUPEU IN PUSITIOINS
NUMBER OF NON-TERMINALS #1 TO NUMBER UF SYMBULS. MAPFRUM IS ThHE
INVERSE OF MAPTO. ENDEX {S BUILT DURING INPUT SWH THAT ENUEX APPLIED
TO MAPTO APPLIEO TO A CODED NUN-TERMINAL .YIELDS THE FIRST
{LEXICOGRAPHICALLY} PRUODUCTIUN IN WHICH Tht SYMBGL IS THE LEFT-HAND-
SIDE. TREE IS THE SYMBJL TABLE MAINTAINED BY BSTSLR ANU IS DUCUMENTEY
ELSEWHERE Cofe REFERENCt. TABLE IS THE LR(O) THEN SLR(1) TiaolLE. EACH
ROA OEFINES A SET, AND THE CULUMNS CORRESPOND TU THE SYMBULS (MAPPED).
SET IS A VECTOR THAT HOLDS ALL CUNFIGJIRATIUN SETS. SLIM HuLUS THe
LAST POSITION IN SET FUR EACH SET, ANC BASIS HOLUS THE LAST PUSITIGN
IN SET UF THE BASIS PORTION OF EACH SET. LUT_POUSITIUN (S ah ARKAY
WHICH HOLDS THE DGT PCSITION OF EACH BASIS ENTRY OF EACH SET (AN ENTRY
OF 2 MEANS THE UOT I3 T3 THE LEFT OF THE RAS). MARKEk LIS A sIT vECTUR
PARALLEL TJ SET THAT s SET T3 1 IF THE CUGKRESPUNDIIG >ET ELEMENT
EITHER CANNCT QR HAS BEEN USED IN EXPARNSION.

VoL ull9s
ALludlie
wlouoCy 7
vuiludl9s
JLLUDT»9
vl LUU1D0
sLLud il
FIRWVe) B P4
uul L2105
witudlde
JULLTLOS
wUL LD LCE
uLLu21d7
JLLuOlss
Wulugl1o9
JbLiLuoll
BAIRILINRE
vbludlle
Jol Loll3
JLCUOLle
ulCulll5

JOCUOlle

oLlucl1l?
wuCuOlle
uwullUdliy
JULUDL2D
oueuolcl
vl uol2z
Julu0les

wlluClice

ULLbdles
JOLull2e
wuiu0l27
DoLLCL2 B
uuiuQley
JiLudls0
wLLUCL3]L
JbLuti32
2llulls3
JuCULO13%
JLLUQi3s
vltLudli3e
Juludl3r
wulLilse
wiluCl3ig
wLlu0l40
JLLUdl4d
JLiL0L42
wludlae3
ULLLOL e
VUL U014y
JCUTleo
HAUCLeT
JLLUOL«8

PR RAM LUGIC:

THE INPUT-ENCODE SECTION IS STRAIGHT-FORWARD,
NO TROUBLE OETECTING THE LOGIC BY FOLLGWING THE SOURCE (ULUE. 1F Dcouts
I3 SELECTED, THEN THe UEodUG SECTION IS ENTERED. THE DEBUG SECTIUN CAN
BE UELETED wITHJUT AFFECTING THE PROGRAM. IT 1S SIAPLY AN
IMPLEMENTATION OF SUME CF THE GRAMMAR CHECKS OF GRIES. THE HEART GF
THE PROGRAM 15 THE TABLE GENERATE SECTION. N THE LRO SECTIUN, THE
FIRST SET 135 INITIALIZED TC PROUUCTION 1 wWwITH THE DUT TU THE RIGHT.
THIS IS THE FINAL STATE. THE SECOND SET IS INITIALIZED TC ThE FIRST
PRODUCTION (ALL SET ENTRIES ARE PRIDUCTION NUMBERS) wlTH THE DOT TD
THE LEFT. THE SET IS NOW CLGSED. THIS CONSISTS OF ENTERING INTO THE
SET ALL PRUOUCTIUNS wHUSE LHS 1S THE SYMBOL TO THE RIGHT UF THE D0LT.
THESE ENTRIES ARE XNOWN AS CLOSURE ENTRIES. THE 0OT IS ASSUMEL TU BE
TO THE LEFT IN ALL CLOSURE SET ENTRIES. EACH OF THE CLuSukE ENTRIES
MUST ALSU dE CLOSED. THIS CUNTINUES UNTIL THE SYMIUL TO THE KluHT GF
THE UOT OF ALL UNCLOSED CLUSURE ENTRIES IS A TERMINAL OR A CLUSURE
WOULD DUPLICATE A SET ELEMENT. NOW EXPANSION IS USED TU INIT1ATE A
NEw SET. THE "CANDIUATE® FOR EXPANSIUN IS THE FIRST SET ENTRY wmHUSE
MARKER BIT IS O. FOR wHICHEVER SEl IT IS IN, ALL UF THAT SET*S
ENTRIES WITH THE SAME SYMSOL TO THE RIGHT OF THE UUT ARE MAKKEC aND
THEN USED TO FORM THE SASIS ENTRIES (THE UOT IS HOVED RIGHT 1
POSITION} OF A NEw SET PROVIDING SUCH ACTION wGULD NOT CAUSE

DUPL [CAT 1ON OF AN EXISTING SET. IN BITH CLOSURE AND EXPANSIUN, a
UUPLICATE 1S NOT GONLY THE SAME SET ELEMENT BUT ALSU THE SAME LOT
POSITION., [IF, #HEN EXPANDING, THE MOVEMENT OF THE DOT 1S Tu THt
RIGHTs THEN THIS IS A SET {FUTURE STATE) WKITH A REDWTIUN ASSOCLATEG
WITH [T. THE SET ELEMENT, A PRODUCT IGN NUMBER, IS NEGATED AND EwTERED
INTO REDUCE({[} PROVIUDING THERE {5 NO PREVIOUS ENTRY [N REDUCE(1). 1I#
THERE §Sy THAEN REDUCE(I) 15 SET TO THE NUMBER OF Suin cNTRIES; AN) ¥HE
ENTRIES THEMSELVES ARE STORED IN A QUEUE (MULT_REDULE_Q). ANY ENTRIES
WITH THE DUT T3 THE RIGHT ARE MARKED (TAKEN OUFF EXPANSION LIST) SINCE,
iF THE DUT 15 TO THE RIGHT, THEY CANNOT BE USED FOR EXPANSION SINCE
THE DOT CANNOT Bt MOVEU FURTHER TO THE RIGHT. KEEP IN MINU THAT THE
DOT POSITICN FOR BASIS ENTRIES IS IN ThE ARRAY UOT_POSL TIUN wHEREAS
THE DOT POSITIUN OF CLOSURE ENTRIES IS ASSUMED TO BE 2 (TQ ITHE LEFT).
THE ACTION OF CLOSING THEN £ XPANDING CCNTINUES UNTIL ALL ENTRIES ARE
MARKEUs DURING EXPANSION, THE NUMBER OF THE NEW SET GENERATED BY A
CERTAIN SYMBOL TU THE RIGHT OF THE UCT WHILE WITHIN A CERTAIN SEF IS
ENTEXED INTD TABLE. THAT IS, TABLE([sJi <-— K WiERE I 1S THE SEV Thi
PROGRAM IS WOKKING wlTHy J IS THE MAPPED 3YMBIL TO THE RIGAT OF THE
00T, AND K I3 THE NEw SET GENERATEU. A SIMILAKR ENTRY IS MADE IF K 15
THE SET wHICH WOULD BE DUPLICATED BY A 'PARTICULAR E XPANSION.
THE SLR1_GENERATE SECTIUN COMPUTES THE FOLLOW FUNCTION PER DE
THEUREM AND THEN PROCEEDS TO ENTER THE REUUCTIONS {PREVIWSLY
LN REDULE AND/OR MULT_REDUCE_w) INTO ALL COLUMNS REPRESENTINS
IN FOLLOW{A}) wdERE A IS THE LHS OF THE PRUQUCT IOUn INVOLVEUL Iiv THE
REVUCTIONES) OF A PARTICULAR ROW {SET) UF TABLE. AFTER SUCH ENTAY,
THE ROw IS NORy BY DEFINITION, A STATE OF THE PARSING TAdLL. THAY {3,
THE ROwW NOW CONTAINS BOTH (POSSI6LY) STATE TKANSITIONS ANO REMCTIGAS,
HENCE A STATE. INADEQUATE STATES ARE THOSE Wl TH MURE THAN 1 xEOUCTICH
DR A REDUCTION AND A STATE TRANSITION UNDER A TERMIwAL SYMouLe IF
MORE THAN 1 ENTRY IS ATTEMPTED IN ANY TA3Lt POSITIUN, THEKR THE GRAMMan
IS NOT SLR{l).

ANU THE USER wlLL HAVE

REMER®S
STOREC
SYMBAS

¥wx THE FOLLUWING IS A SAMPLE PAKSEK WhICH USES THE SLR(li TABLES ==

JoLUIley

JCZ U050
vulLull51
uLCLo1s52
Uil U153
U015
JLLUO0L5S5 -
JUL L0156~
w: o157
HLCU0L5d
UL Uull59
L uI 162
uiiLuCleld
SO0 lel
JCu9les
wuiUGlos
MLudied
LDLLUOLSS
IGLUD16T
Juludlss
Yl ulls9
JCuol1?d
wLLUILTL
JSTU0LT2
JLu0lis
S LOLlTe
JUTUOLITS
vLLuItTe
JLLUILTT
ULlutl?a
JLiuolT?
w0180
JLitullsl
vLCudlas
VUl UCLlbs
wudlos
Jii LOL6S
wiCullso
Ludle?
v uolés
vl w0189
ILLyol90
JULULD19L
Dutu0l92.
~LLUOL193
wul UClI%
wL w0195
{5 V0190
wGLU0L97
uLCuIlI3
v U199
wilvo29n
WU

JiluTcI2

89

#hw——SAMPLE PARSER-SCANNER FCk ARITH EXPR-—am#
PAKSER: PROCEUURE OPTLIUNS {(MAIN)
DECLARE
PRINT FILE PKINT,
PRSIN FILE INPUT STREAM,
CARD {80) LHARACTER (11},
{NU_PROD SyNO_PARTS yNO_SYMS ¢ NC_CHARS y NC_S ETS y NU_NON}
FIXED BINARY (31,0);
GET FILE {PRSIN) EDIT
(NU_SYMS,NO_CHAR SyNO_NUN ¢ NG_PART S ,NO_PRUOUSyNO_SETS)
6 F(3)1);
PRSR3IBEGIN;
DECLARE
(FLUSH,GETNEXT} ENTRY RETURNS (FIXED BINARY {3i,0)),
POINT ENTRY,
1 TREE,
NODE (0:NO_SYMS) CHARACTER (NU_CHARS 3y
LL €O:NO_SYMS} FIXED BINARY,
RL {03NO_SYMS} FIXED BINARY,
TAG (NU_SYMS} BIT (2} ALIGNEU,
AVAIL FIXED BINARY {31,0),
COUNT FIXED WINARY (31,0),
(FLAG,POS) FIXED BINARY {31,0},
PROD (NO_PRODS,NO_PAKRTS} FIXED BINAXY,
TABLE (2:NO_SETS,2:NO_SYMS) FIXED BINARY,
{MAPTO MAPFROM) (NUG_SYMS) FIXED BINARY,
STACK {20} FIXED BINARY INITIAL (2,3},
TOP FIXED BINARY (31,00 INITIAL (23},
(SYMBDL, TEMPSYM} FIXED BINARY (31,0},
BSTSRC ENTRY (CHARACTER(NO_CHARS)yrsdy
(1+JsL_RHS,TSC} FIXED BINARY {31,0i;
GET FILE (PRSIN) EDIT

/% QUTPUT FILc * /
/% INPUT FROM SLk(l) GEN =

NN NN

{AVAIL yCOUNT RLEO Dy {NODECT Iy LL UL }oRLETI+MAPTOUI) 4MAPFROM(I),

TAG(I} DO I=1 TG NO_SYMSI,
((PROD(Isd) DO J=1 TO NO_PARTS}) DO I=1 TG NO_PRULSH,
((TABLE(I,J} DO J4=2 TO NO_SYMS} DO I=2 TG NU_SETS)}
(3 F(3),(NO_SYMSI{A(NO_CHAKS a4 F(3) 4B(2)),
(NO_PARTS*NO_PRODS) F(3),{NO_SYMS*NO_SETS} F(4));

1%

NGTE: TAG, MAPFROM, AVAIL AND COUNT ARE NOT NEEDED FOR THIS PARSER.

ONLY STATES ARE STACKED, SYMBOL HOLDS NEXT INPUT SYMBOL TJ
BE PROCESSED, TEMPSYM HOLDS SAME EXCEPT AFTER REDUCTIUN AT wHICH
TIME IT HOLDS A LHS.
* /
GET_SYM:
SYMBOL=GETNEXT ;
RETURN_F ROM_ERROR:
PUT FILE (PRINT} SKIP EDIT
(¢* CURRENT INPUT SYMBOL ~-=> #,NODE(SYMBUL})I{2 A};
BACKUP 2
TEMP SYM=SYMBOL ;
DRIVE: TSC=TABLE(STACK(TOP},MAPTO(TEMNPSYM}};
IF TSC > 1 THEN
0o
TOP=TUP+1;
IF TUP > HBOUND(STACK,s1l} THEN GO TU GVER;
STACK(TOP=TSC;
PUT FLLE (PRINT) SKIP EDIT
(*STATE STACKED --> ¢,TS5CI(A.F{3}};
IF TEMPSYM = SYMsGL THEN Gu TU GET_SYM;

ULLLGZD3
I Ve P 1
2Ll ud223
JurU0eDo
wLeud2lT
DL w2zl 8
DuLuU0209
il U020
ublutzlil
aulutele
JleU02ls
Jululzle
auCulzls
s0luo2te
oLCu0217
vLluGzl s
uelu0219
COLL0ec2?
uLudezt
Q0Cu0222
ulCuo223
DL u0224
vLCU0225
ulCuce2?
uli voezs
wLy0229
DBCU0230
ViLU0231
uoCu0232
DOCUDZ33
voCu0234
0GLu0235
QL U0z306
wW:Culz37
ubLuezZ3s
WiCuoz39g
wLu0240
vl uoZsel
uLCUO0 42
vlCu0Z43
a0 uoz44
puCuC245
0UCU02406
DOCUB247
BLLLUO248
DOCUOZ 4+
DuCu0g50
DGCUCL5]
DLL U052
LOCU0Z53
uLCu0Z54
vOCU0Z55
DLCU0250
LLLUO0ZST
L U258
JLCUCZ5S
uilu0263
uGCuOZol
LCu0zb 2
LLL U063

_ ELSE GO TU BAUKUP;
ENCS
IF T5C < 0 THEN
Jds :
PUT FILE {PRINT) SKIP EUVIT
{*ATTEMPTING REDUCTION — PRESENT STACK --> %,
{STACK{I) DO 1=1 TGO TUPI}(A,(TOP} Fl4});
TEMPSYM=PRUD(-TSCy1l}3;
D0 L_RHS=1 TO NO_PARTS-2 WHILE (PRUD{-TSCyL_RHS42) ~=
END
TGP=TGP-L_RHS;
IF TOP < 2 THEN G TO UNDER;
PUT FILE (PRINT} SKIP EQIT
{*REDUCTION ON PRGODUCTION =—> #,-TSCs*s ?»
{NODE(PROD(-TSC,J}} DO J=1 TO NO_PARTS
WHILE (PROD{-TSCyd} == 033I{ASF(3)sA, {NI_PARTS} A}
GO TO ORIVE;
END
IF TSC = 1 THEN GU TOC ACCEPT;
CALL_PUINT:
STACK{11=2;
STACK(2})=3;
ToP=2;
PUT FILE(PRINTI SKIP EDIT{*%* ERROR*}{A};
CALL POINT;
SYM3OL=FLUSH;
GG TO RETURN_FRUM_ERKRUK ;

OveRr: .
PUT FILE (PRINT) SKIP EDIT {%** STACK UVERFLOW ~ PRUBABLE *,
*CAUSE --> NESTING LEVEL GREATER THAN ¢, :
HBOUND(STACK 1} —NO_PARTS,? **t) (2 A,F(3),A);
GO TQ CALL_PGINT;
UNDER:
PUT FILE (PRINT)} SKIP EDIT (**% STACK UNDEKFLOW ***)(A);
GO TO CALL_PJINT;
ACCEPT:

PUT FILE (PRINT) SKIP EDIT (*** PROGRAM ACCEPTED *x¢)(A);
GO TO ENUMAIN;
/* GETNEXT IS THE PERTINENT SCANNER. * /
GETNEXT: PROC RETURNS (FIXED BINARY(31,00):
LECLAKE
IP FIXED BINARY {31,0) INITIAL (0OB) STATIC,
I FIXED BINARY (31,0)3
FLSHSYM:
iP=IpP+1;
CALL BSTSRC (CARD{IPI4FLAG,POS,TREE};
IF POS == 0 THEN RETURN (POSI};
ELSE RETURN {(2); /% %28 [S THE TRAILING DELIMITER. * /
/* PRINT PRESENT RECIRD AND CURRENT SYMBOL. * /
POINT: ENTRY;
PUT FILE(PRINT} SKIP EDIT
((CARD(I) DO I=1 TO 803+*$%2(80 A(L)sSKIPX(IP}sA};
RE TDRN;
/* FLUSH TJ NEXT STATEMENT ON ERKOR, * /
FLUSH?: ENTRY KETURNS (FIXEL BINARY (31,00}
1P=0;
PUT FLILE(PRINT} LIST (**%FLUSHING TO NEXT CARu®%');
GET EDIT(CARD} (80 A(l}};
GO TO FLSHSYMS
ENC GETNEXT;

uulu0ze4
ULCu0205
OLLLCebO
Luiudze?
LOT LOzo6o
OLLUCZ69

T oOLu0s70

ULl uoe7l
vGLucz72
uLLU0273
oUlu0eT4
a:CudzZis
vLCUDZT6
wGCuozt?
uLCu02738
DL U0eTS
DLLUD269
UCECuNesl
Vil U b
w.lugess
CLlyG2es4
Lol Y0285
oLLugiEe
ulCu02er
[vawiters..]
LOCUGe8 ¥
JLLUSZ90
uulu0csl
ALLU0 S 2
VLT U093
oLCu02se
ullUQ293
vul UGZSe
0CCudz97
LLLU0298

JULUCZIY |

Luilud 322
ulCUuds0l
JLCUNSC2
oCGCu533
JULU0304
oLCUC:D5
uviludisde
QLCU03a7
wLiud3cs
OLCUD30Y
JLZU03i0
Lulu23il
oGl U0312
DOTU0313
JLLUO3l4e
JGL L0315
viCu03ie
Jdliu03s17
PICAVIE Y]
vuluozle
IGLU0320
uhLuts2l
DGLudsee
vocueszs

pSTSRC s PRICESURE (1 TEM,FLAG POS,TREL S
/%
PRUCEUURE BSTSRC 1S THE SEAR(LH SELTION UF BST C.F. REECRENLES
PARAMETERS:
ITEM - KEY FOR RETRIEVALs INSERTIGK UR DELETION
FLAG - STATUS CODE FOR ATTEMPTED FUNCTIUN
POS -~ LINEAR INDEX JF NGUE INSEKTED OR RETRIEVEU
TREE - STRUCTURE LOUNTAINING BINARY SEARCH TREE,
AVATLABLE SPACE LIST AND ANODE COUNT
* /
VECLARE
{FLAG,POS} FIXcD BIN (31,0},
ITEM CHAR (%),
1 TREE,
2 NO2E (*} CHaAR (#*),
2 LL (*) FIXED BIN,
RL (*} FIXED BIN,
TAG (*) BIT (%} ALIGNED,
AVAIL FIXED BIN (31,01,
COUNT FIXED BIN (31,0);

M~ o N

S EARCH:
BEGIN ;
/%
SEARCH FOR NODE wITH KEY VALUE LONTAINEU IN [TEM.
* /
DECLARE CUKR FIXED oIN (31,0} ;
CURR=RL{Q} 3
DC wWHILE (CURR == 01} ;
IF ITEM = NODE{CURR} THEN
/* RETURN SUCCESS * /
00 3
FLAG=4 ;
POS=CURK 3
RETURN 3
END
IF ITEM > NOCE{CURK) THEN CURR=RL{CUKR} ;3
ELSE CURK=LL(CURK)} ;
END 3
/% RETURN FAILURE * /
PBsS=0 ;
FLAG=5 ;
RETURN ;
END SEARCH ;
END BSTSRC;
END PRSR;
ENOMAIN:
END PARSER;
R#R-—-END UF SAMPLE PAKSER--s##
VAR IABLE DESCRIPTION (ALL SECTIONSI:

8AD - WORKING VARIABLE = 0 FOR ANY SYMBOL NOT “WlTHIN™ THE USER'S
PSEUDD GUAL SYMBOL

BAS IS - A VECTOUR HOLODING THE PUSITION OF EXTENT OF EACH BASLS SET
IN THE VECTGR HOLUING ALt CONFIGURAT 1UN SETS

BUF - INPUT BUFFER FOR PRUUDUCTIONS

BUFI - VECTOR UVERLAID UN BUF

CANDIDATE - A PRODUCTION NUMBER IN SCME SET TJ BE uSED FiR PUSSIBLE
EXPANSION

CONFIG_SET_LIMIT - INPUT PARAMETER, GIMENSIUN UF VELTOR ¥HAT HOLDS
ALL CONFIGURATIUN >ETS

COUNT_INADEQUATE_STATES - INPUT PARAMETER, 1 [F USER WwANTS ACTION

UUCUZ 24
uCuCazs
vuL U326
DOCUCas27
uwlit 0328
DLeuD329
oLLuG330
VGl u0331
QULuD 32
0Lcun3is
VL UD334
DULU0335
oCLU0330
UL UD337
olCud 233
voCut339
uLLUd340
viCu0341
JL U0342
viLUD343
uliLUD 344
QUL U0345
D0lu0346
00CUB347
vul U348
U349
BOCW0350
OLCU0351
DOLU0z52
VG U0353
JUCUO0354
DOCUN355
UL UB356
viCuo03s57
DOLU0358
voC Ud359
VLLU0360
DCLU0301
uioCL V0362
0LLu0363
uGLU0364
oLt UN365
OLCU0320
DUL U367
wOLUD308
DGCU0 369
DL LC370
wuCu0371
viCu0372
ulLCU0373
wGlud3Ta
VLGCUR3TS
vuCud3Ts
uGCU0277
wOLU0578
oLCU0ET9
oUCU038690
J0L U038l

DOCUD382

uLlyo3s3

VARIABLE REPRESENTS

DESUG_GRAMMAR - INPUT PARAMETEK, 1 If USER WANTS ACTION VARIAadLE
REPRES ENTS

DOUT_POSITION - A MATRIX HOLDING THE OGT POSITIOUNS OF BASIS SETS?
ELEMENTS

DOT_SWITCH - FALSE WHEN SCANNING NON BASIS ELEMENTS, TRUE .OTHERWISE

ELEMENT - THE FIRST TRANSITIUN IN THE &KOW OF T ABLE BEING SCANNED

ENDEX ~ A VECTOR 5SUCH THAT ENDEX (MAPTO(ANY SYMBOL}} 1S THE FIRST
PRUDUCTION NUMBER OF WHICH SYMBOL IS THE LHS

ERR - ERROR SWITCH

FENCE - THE "FENCE™ OF A BINARY SEARCH

FOLLOW - A BIT MATRIX OF NONTERMINALS VS NONTERMINALS (SEE ABOVE)

IsJyK,L = LOOP INDICES AND LOCAL WORKING VARLABLES

LIMIT_BASIS - INPUT PARAMETEx, LIMIT OF ANY BASIS SET

LNAME = LENGTH OF INPUT PRCOUCTION SYMBOL

MAPTU = A VECTUR 35UCH THAT MAPTO (ANY SYMBOL) MAPS THE SvM3ULS Tu
COLUMNS UF A MATRIX SUCH THAT THE NONTERMINALS ARE GROUPEU
AS ARE THE TERMINALS

MAPFROM - THE INVERSE UF MAPTY

MARKER = A BIT VECTUR WHOSE 1 TH ENTRY IS 1 iF THE I TH
CONFIGURATION SET ELEMENT CANNUT BE USED FOR EXPANSIGN (OR
HAS BEEN USEL)

MASTER ERRGK — ERROR SWITCH, ThUE IF UNABLE TU GENERATE SLK (1) TABLE

MULT_REDUCE_@ - A WUEUE USED TO HULD REDUCTIUNS FOR A GIVEN STATE IF
MORE THAN 1

NAME - AN INPUT PRODUCTION SYMBOL
NUSASIS - COUNTER OF BASIS ELEMENTS
NCHARS = COUNTER OF NGN BLANKS IN NAME

NO_BASIS = INPUT PARAMETER, MAXIMUM NUMBER OF BASIS ELEMENTS FOUR ANY
SET .

NO_CHARS - INPUT PARAMETER, NAXIMUM NUMBER OF CHARACIERS N ANY INPUT
PRODUCTION SYMBOL

NG_INAD - INACEQUATE STATE COUNTER

NU_NON - NUNTERMINAL COUNTER

MAKK - A 8IT VECTOR WHOSE I TH ENTRY IS 1 If THE I TH PRODUCTION
CAN DERIVE A TERMINAL STRING

NO_PARKTS = INPUT PARAMETER, NMAXIMUM NUMBER OF PARTS PER PRUDUCT ION

NO_PRODS - INPUT PARAMETER, MAXIMUM NUMBER OF INPUT PRUOUCTIUNS

NU_SETS - LNPUT PARAMETER, MAXIMUM NUMBER OF CONFIGURATIUN 5ETS

NO_SYMS - INPUT PARAMETER, MAXIMUM NUMBER UF INPUT SYMsCLS

NO_TERM -~ MJMBER OF TERMINAL SYMBOLS

NPARTS ~ PARTS COUNTER

NSETS - CONFIGURATION SETS COUNTER

PARMIN - INPUT FILE FUR PAKAMETERS

PLACE - THE FIRST PROGUCTICON OF A GRCUP WITH THE SAME LHS

PRINT - QUTPUT PRINT FILE

PRULIN = INPUT FILE FUOR PRODULT 1ONS (BLOCKSILE = 8C}

PUNCH — QUTPUT PUNCH FILE

PRUD = AN ARRAY OF ENCOOED PRODUCTION - THE CGDE FOx A SYMBLL IS
R ITS POSITION IN THE SYMBOL TABLE

PT - PUINTER TO UNRECOGNIZED PORTION OF BUF

RED ~ TRUE AS SOON AS A REDJUCTION IS DETECTED IN PRESENT STATE

REDUCE - A VECTOR THAT HOLDS THE NEGATIVE REDUCT ION, IF AnY, FOK A

STATE--1IF MORE THAN DNE THEN IT HOLDS HUW MANY ANC THEY ARFE
STORED IN MULT_REDUCE_w

SET - THE VECTOR HOLDING ALL CONFIGURATION 3&TS

SET_LIMIT — THE ®TuP™ JF SET

SIG - TRUE IF ANY PRUDUCTIUON BECAME "MARKED" DURING LAST PASS
SLIM -~ A VECTOR HOLOING THE EXTENT IN SET OF cACH CUNFIGURAT Iuw

SET

ubL UO3064
ULLUD 385
DOLU0386
oLL U0 387
vGLUD 388
200 u0389
DLCUO0390
DICUN391
UGL UO3Se
{OCu0393
DGCUO334
DOCUD395
00Cu0396
UL U397
LDLLUO 39
LLluD 399
ulLUude3d
JuCUY4a
OCCud4r2
Ul U04C3
DLCUI«D4
L UD4CS
wOL W ado
oLLu2ad?
wlL Ul 4ds
uCuU0409
olludeld
20l UGall
LuLudels
DLLUD%13
uuL L0414
DOCUO4i5
JUL U041
DLl uC4l17
JCCU0418
DLl uCsl9
DuCu0&2n
utLUg4Zl
aululs22
DLCUOsZ3
DUl uQ424
DUCUG425
LulUDae26
oLl L0427
uiluCact
ulCula2%
vile UC43C
VuCUC4sl
Ublule3e
uOCUC453
LLLuCa34
IGO0 U059
JULuCa36
LOLUCe3T7
SOl uDase
bLLUCG439
0OLLUD440
JUL UD4al
wituCaac
VL UC443

DECLARE
SSTINT ENTRY,
B5TSLR ENTRY (CHAKACTER(NG_CFARS)rosr)y
AARSHAL ENTRY,

1 TREE,
2 NODE (2:NJ_SYMS) (HARACTER (NU_CHARS) INITIAL (¢
2 LL (GiNO_3YMS) FIXED BINARY (15,00,
2 RL {0:NO_SYMS) FiXcD BINARY (15,01,
2 TAG {NO_SYMS) BIT {2) AalLIGNED,
2 AVAIL FIXED dINARY (31400,
2 COUNT FIXED BINARY (31,0),

PROD {(NO_PRUDS+2¢NQ_PARTS) FIXED BINARY (15,0}
INITIAL (192+3,2+((NO_PRODS+2)*ND_PARTS) 0},

ENDEX (NO_PRODS+1} FIXED BINARY (15,0) INITIAL (1),

MAPTO (ND_SYMS) FIXED BINARY (15,0)
INITIAL (1,(NU_SYMS) D),

MAPFRUM (NU_SYMS) FIXED BINAEY (15,23 INITIAL (1},

NU_NON FIXED BINAFY (31,0} INITIAL {11},
NO_TERM FIXED BINARY (31,04 INITIAL (01}
/% THIS IS THE INPUT SECTIUN. %=/
READER_S ECTIGN:
BEGIN;

DECLARE
PRUDIN FILE INPUT RECIKG,
BUF CHARACTER (80,
BUFI (80) CHARACTER (1) DEFLINED BUF,
NAME CHARACTER (80) VARYING)
{1,4) FIXED BINARY (31,0) INITIAL {11},
(NCHARS NPARTS) FIXED BINARY {3140} ENITIAL (4).
(FLAGy POS s PT,LNAME) FIXEU BINARY (31,0),
SWITCH LABEL {GETCARDyNEXTSYHMsSEMI);

ON ENDFILE (PRODIN} GO TO ENUDINPUT:

Ch SIZE SNAP SIGNAL ERRUK;

UN SUBRG SNAP SIGNAL ERROR;

OGN STRG SNAP SIGNAL ERRUR;

CN ERROR SNAP GO TC ERRDZ:

PUT FILE (PRINT) EDIT

(* «esBEGIN QUTPJT FJR INPUT—-ENCOUE SECTIGN...*}(SKIP{3),A);

/%

INITIALIZE TREE USED AS SYMBOL TABLE AND INSERT GENERATED
GUOAL SYMBGL ANU SPECIAL DELIMITERS.

£/

PUT FILE (PRINT} SKIP EOIT (*INPUT PRIDUCTICNS® #{17)

' l. GOAL : #?2% , USER®''S GOAL SYMBOUL , "2""})
{2 (COLIL1) A} 4SKIP,A);
CALL BSTINT (TREE};
CALL BSTSLR {'GOAL',FLAG:PI>»TREE};
CALL BSTSLR (¢124¢ ,fLAG+PUS,TREE);
GETCARD:
REAU FILE (PRUDIN} INTU {(BUF);
PT=1;
/% CHECK FUR WEJF® (ALLOWS MULTIPLE GRAMMAR INPUT). */
If BUFI(L} = *+* THEN GO TO ENCINPUT;
/% CARC MUST END wlTH NON-BLANK TO PREVENT STRINGRANGE. */
SUBSTR(BUF,73}=(8}) ta";
NEXTSYM:
DO PT=PT B8Y 1 wdllE (SUFL(PTY = *);
END3
NAME=SUB STR{BUF 4PT I NDEX{SUBSTR{BUF,PT},* *));
LNAME=LENGTH{NAME) ;

L

UNAMOSO 4
ONAMOSDY
UNAM35906
UNAMO537
wNANCSD8
UNAMOS09
ONAMOS519
uhaMd511
uNnAMO 512
JUNAMOS513
UNAMOS5SL 4
CNAMOS515
OhAMOSlo
JUNAMOS17
ONAMDS 1Y
INAMOS19
IONAMO 52D
JNAMO5E1
JNAMOS22
READCOZ3
READOS24
READDS25
READOS26
READOS27
READOS28
READOSZY
READO530
READOS3]
KEADOS532
READO533
READOS34
READO535
READQOS536
READDS3T
KEADOS538
READO539
READOS540
READO5%1
READOS42
READOS543
READOS 44
READDS45
REALQS46
REAUO 54T
READDNS548
KEADOS49
READO550
KEADOSS51

© KEAD0552

REAL05S53
READOS54
READOS55
READDSS56
READOSSHT
nEAWDE58
REALOS59
REAUD560Q
REAUDS6]
REAUQS62
READDIS563

SWITCH -
SYMBuL -
TAbLE -
TAlL -
TEMPCOT -
TERM -
ToP -
TREE -
TRY -
TRYDLT -
TRYRKNT -
U -
Wil -
*/
(SIZE,SUER
SLR1: PHOC
KEUSABLE:
BEGIN
DE
CN
ON
ON
ON
OoN
ae
o7
™
GE
[4Y
/* SET EF
IF
iF
IF
IF
IF
IF
IF
IF
/* THIS BE
THE_#HOLE_
BEGIN

LABEL >wITCH >cT PER INPUT PUNCTUATIUN
THE SYMoul TJ THE RIGHT UF THE DOT IN THE PRESENT SET
ELEMENT

THE SLR({l) TABLE, EZALH ROW IS A STATE, THE COLUMNS KEPRESENT

THE SYMBOLSs A POSITIVE ENTRY IS A STATE TRANSITION AND A
NEGATIVE ENTRY IS A KEOUCTION

THE TRANSITIVE CLGSUKE OF THE TAIL SYMBOL MATkIX

THE OUT PUSITICN LF THE PRESENT SET ELEMENT

TRUE wWHEN A TRANSITIUN UNDER A TERMINAL SYMbOL IS IN THE
PRESENT STATE

TGP OF THE QUEUE

A STRUCTURE REPRESENTING THE SYMBOL TABLE

VALUE OF "GUTU" FUNCTIGN

DOT PUSITIONS OF ELEMENTS OF TRY

NUMBER OF ELEMENTS IN TRY

UPPER BOUND IN BINARY SEARCH

BIT MATRIX OF “WITHIN" RELATION (AND CLOSURE)

G,STRGI:
EDURE OPTLONS (MAIN);

H

CLARE

PARMIN FLLE INPUT STREAM,

(DT 4TM) CHAR (61,

PRINT FILE PRINT,

(NU_CHARS ¢ NO_PRODS,NO_PARTSy CONFIG_SE T_LIMI T,NU_SETS,
NO_BASISsNO_SYMS yDEBUG_GRAMMAR s NG_PRINT ¢ NU_PUNC o
COUNT_INADEQUATE_STATES) FIXED BINARY {31,0);

ENDFILE (PARMIN} GO TO ENDMAIN;
SUBRG SNAP SIGNAL ERROR;

SIZE SNAP SIGNAL ERROR;

STRG SNAP SIGNAL ERROR;

ERRUR SNAP GO TG ERROL;

EN FILE (PRINT) PAGESIZE (66} LINESIZE {132);

=DATE; -

=TIME;

T FILE (PARMIN} EDIT

(NO_PRODS yNO_PARTS yNO_CHARS » NO_SYMS s CONF 1G_SET_L IMIT,

NO_SETS,;NO_BASI S,DEBUG_GRAMMAK ,COUNT I NADEJUATE _STATES,

NO_PRINT yNO_PUNCHI(COL{1), 11 Fal));

T FILE (PRINT} EDIT

(*SLR{1) TABLE GENERATUR QUTPUT',*DATE: *,SUBSTR{DT 4320,

t20 ,SUBSTRIDT 45,2053 %4SUBSTR(DTy1y2),

t(JoLle GRAY, COMPUTING AND INFORMATION SCIENCES DEPT., *,

TS Ued?y "TIMES *ySUBSTRITM,192) 47 2% ,SUBSTRETM,3,2) 4% 20,

SUBSTRITM5 420 JLINE(L)4COL(5115A,COLLLL5090 AsCOLE350,2 A,

COL(LL5),6 A);

AULTSs 1F NECESSARY. %/

NO_PRODS = 0 THEN NO_PRODS=50;

NO_CHARS > 78 THEN NO_CHARS=78;

NO_CHARS < & THEN NU_CHARS=4;

NO_PARTS < 4 THEN NO_PARTS=4;

CONFIG_SET_LIMIT = 0 THEN CONFIG_SET_LIMIT=5%NJ_PRODS;
NG_SETS = O THEN NO_SETS=2%(NO_PRGDS +2);

NCO_BASIS = O THEN NO_BASIS=NO_PRODS/10;

NU_SYMS = 0 THEN NJ_SYMS=2%NO_PRODS;

GIN BLOCK [S FOR DYNAMIC DECLARATION PURPUSES. %/

THING:

UGCUG4es
ULCUOW4S
ULLLC446
LU0 44T
uliL U448
UGLUD449
oL CU0450
UL U0451
vLLuCese
vLLUN 453
DULUD4S4
W Cub4s55
DOLUO450
ULC UG4S T
CLLUC458
DL UOab 9
LLLUD460
VUCUO46 1
Ma1NOCO62
MAINO %o 3
MAINO4b4
ML1 NC465
MAINO466
MAING4o7
MAINC408
MAINO&bY
MAINO4T0
MAIND4TL
HALNG4T 2
MAINO4T3
MAINDGT4
MALNO4T5
MAl NO4To
MAINO4TT
HALNO>S
MAIND4TY
MAINO480
MAINO4B1
HAINO482
MAINO483
MAL NO4B «
MAIND4s5
MaiNO4B6
MALNO48T
MAINO488
MAINO439
HAIND49D
MAINDG9 L
MALNO492
MAINO4Y 3
MAINO 494
MAINO49S
MAINO4S 6
MAINO4ST

MAIN(O498

MAIND 499
MAINCS53D
OiNAMO501
UNAMOS5D2
UNA MOS0 3

IF LNAME < 3 THEN RCAUS S04 VNUMBER OF PARTS',NO_PAKTSNPAK TS, 'NUMGER OF PROLUC TILNSY , READCLZ4G

03 RLAUR D65 WC_PRUDS, [=14" TUTAL SYMBOLS® NC_SYMS s COUNT, REabCe2s

IF LNAME = O THEN 6O TO GETCARD; Hrau0b66 *NUMBER OF CHARACTERS* yNO_CHARS ¢NCHARS) KEAUCL20

ELSE GO TO ERRD3; KEAUD967 (SKIPy LOUL{30) s AySKIPyCULL30)eAs4 (LOLIBIoAsLLL(34)4FL &), neAuCEZLT

END; KEAUTSD0 X(15) yFl4)) s . KREAUO628
NCHARS=MAX {(NCHARS y LNAME=-2); wLaud569y NO_CHAR S=NCHARS; wbEADDG29
PT=PT+LNAME; <LADOSTQ NU_PARTS=NPARTS ; REALCO30

/* INSERT IF NUT PRESENT ELSE EFFECTIVELY A SEARCH. %/ RLADO571 NU_PROUS=I; KEADDG3L
CALL BSTSLR (SUBSTRUNAME,1,LNAME~2)¢ FLAGyPG3,TREED } xtAuC>T2 /% FIXUP LOOP TO SET MAP ARKAYS. FOR TERMINAL SYMBOLS. */ READOGLS2

IF SUBSTR(NAME yLNAME~Ls1) = %,¢ THEN READOST 3 DG I=2 TC CGuNT; - KEAU (633

Co; . RLAVOST4 LF MAPTO(I} = O THEN KEADGO34

Swl TCH=NEXTSY M; READOSTS 00; KEADOE3S

ENTER:) KEALDSTo NG_TERM=NO_TERM+I ; REALOG30
J=J+l; REALODT7 NO_SYMS=NO_NON+NO_TERM; READCEST

NPARTS=MAX (NPARTS ,J) 3 REAUOSTE MAPTU{1)=NO_SYMS; REALCL3B
PROD(I4+4)=P0S; KEAQUSTY MAPFROM{NO_SYMS)=13; KEADOG63S

PUT FILE (PRINT) EDIT (NAME)}(A}; KEALOSBD END; . READCE4D

GO TO SAITCH; KEADOSB1 ENG3 KLAUGE4L

END; KEADOSB2 PUT FILE (PRINT} EDIT {*NUMBEK OF NON-TERMINALS 1S *, NC_NGN, REAUCG42

IF SUBSTRUNAME,LNAME-141) = *:¢ THEN READOS583 *NUMBER OF TERMINALS IS *,NJ_TERMIISKIP,2 (SKIPyAsF{3))); READOG43

PIvH REAUOS584 IF NG_PRINT ~= 1 THEN GO TO BYPASSI1; REALDOO4

I=1+13 REALOS8S PUT FILE (PRINT) SKIP {2) EDIT ("PROD# LHS®*,(* RHS®' DG =] TC keALC64>

J=1; xEADOSBE NO_PARTS—1),(30) *~*}{{NOJ_PARTS}) A,SKIP,A); READDL4S
PROD(1,1)=P0S; wEADOS87 PUT "FILE (PRINT)} EDIT {((I,*« *o(PROD{I,4) DO J=1 TU NO_PARTS) KEalOu&7?

PUT FILE (PRINT)} EDIT (le*e *,NAMEN(CGLII),F(3),2 A)} KEADOSBS DO I=1 TO NO_PRODSII{ SKIPF(4) yAL2) 3 (NG_PARTS}) Fi4)); KEALDO4G

IF PROD{I,1) ~= PROD{I-1,1) THEN READOS58Y PUT FILE (PRINT) SKIP (23 EDIT ’ REAUC649

/% SET MAP ARRAYS FOR NON-TERMINAL. */ KEADO590 (Y NUDE# TO FROM NODE® (18) %=1y (1, MAPTOUI)oMAPFROM (1) NODEL 1) READCESD
DC; REAVO0591 DO I=1 TO COUNT})(A¢SKIPsA2(COUNTI{SKIP ,3 F(4) 9X12), READCGS L
NU_NUN=NO_NUN+13; READDS592 A(NO_CHARS))) REALCOD2
ENDEX{NO_NJN)=1; READO593 BYPASSLS . REALOGY3

MAPTO{POS } =NO_NON; kEADOS594 IF NO_SYMS ~= COUNT THEN GO TO ERRO5; KEADDO5 4

MAPFRUM{NO_NON} =P0S; REAUQS95 PUT FILE (PRINT) EDIT READCES5

END ; READOS596 (*v..END OUTPUT FGR INPUT~ENCODE SECTIONe««*} (SKIPyA); READOGS6

GO TG NEXTSYM; READO597 END READER_SECTION; . KEADO65T

END . READOS598 If DEBUG_GRAMMAR ~= 1 THEN GO TO TABLE_GENERATE_SECTION; ONAMCEDS B

IF SUBSTR{NAMEsLNAME=1,1) = ', ¢ THEN READOS9Y /% uby 60659

pISH READO6OO DEBUG DETECTS .UEBUG PRODUCTIONS BY CONSTRUCTING THE RELATION uBUGGED D

/% ReADOGDL WITHLIN+ AND ALGORITHM 2.8.3 P.42 —-- COMPILER CONSTRUCTION - GRIES. YBUG0661
OPTIONALLY COULD SET SwITCH TO GETCARD IF IT IS KNOWN THAT £ACH REALD602 */ : GBUGD6S 2
INPUT LHS STARTS A NEW CARD. READO603 DEBUG_SECTION: JBUGCE63
*/ RrAD0604 BEGIN; UBUGCO64
SHITCH=NEXTSYM; READOGOS DECLARE DBUGDbOLS

GG TG ENTER; KEADOOCEH WITHIN{2:NG_NGN,2: NO_NON) BIT (1) QuGCE6E

END; KEADOOGDT INITIAL C(INC_NON®XNO_NON) {1} *0°8) ALIGNED, UbuGO6oT

IF SUBSTK(NAME,LNAME-1,1) = *3* THEN REAUO6OY MARK (NO_PRODS) oIT (1) INITIAL {{NO_PRODSI{1)*O*E) ALIGNED, ULUGOEOLY

PRH ’ KEAUOO6O9 SIG BIT (L) ALIGNED, UBUGR669
SWITCH=SEMI ; REALOELO (I,49KeL) FIXED BINARY (31,013 Loy GOLTO

GO TC ENTER; KEADOELL CN SUBRG SNAP SIGNAL ERROR; PETTY §Y

SEMI s REALOEL1Z CN STRG SNAP SIGNAL ERRDR; OBUG0ET2
PKROO(L1+1, 1}=PRODI(I, 1) KEADD®BL3 ON SIZE SNAP SIGNAL ERRGR; UBUGD6T 3

I=1+1; neALOOL 4 CN ERROR SNAP GU TO ERROG; DbULDET4

PUT FILE {PRINT) SKIP EUIT {* " 3(COL(9}+A); KEAUOGLS PUT FILE {PRINT) EDIT uELGDETS

J=1; READOGLD (*.+«BEGIN QUTPUT FOR DEBUG SECTION.«+*) {SKIP,A)}; uBU GeT6

GG TL NEXTSYM; ntavdel 7 /% ObUuGIET7

END 3 KiaDOol8 WITHIN®'S ROWS CORRESPOND TG NON-TERMINALS AND HAVE A == UbyL06TH

GO TO ERRO4; KEADOELLY FOK EACH RFS PART "WITHIN™ A LA GRIES. ‘obyed6T?
ENDINPUT 3 REAUCH20 */ LELG0680
/% QUTPUT STATISTICS UN INPUT GRAMMAR, %/ REALOO2L 0G 1=2 TO NO_PRODS; DBU G643 1
PUT FILE (PRINT) SKIP EDIT ntAs0622 O3 y=2 TO NO_PARTS WHILE {PRODII.+J) ~= 0); UBUGOLB2

(*USER REQUESTED ACTUALLY NEEUED' »{34) %=1, KEADOQ®Z3 IF MAPTO{PROU(LsJ)) <= NO_NON THEN UBUGD6HS

3l

WITHIN(MAPTO{PRUD(1,1} 1}y MAPTO(PKUDIT ydd) 2 ="183
H
END;
/% CLOSURE VIA WARSHALL ALGORITHM, */
CALL WARSHAL {(WITHIN);
/*
ANY ZERO IN USER'S GJOAL ROW {(COL 3 FORWARDI MEANS SOME SYMBuL 1S
NOT "WITHIN® THE USER'S GOAL.

*/
CO J=3 TC NC_NCN;
if ~WITHIN{2,4} THEN
PUT FILE (PRINT) EDIT (NODE(MAPFROMIJ}),
¢ CANNOT "APPEAR IN ANY SENTENTIAL FURM<*){SKIP,2 A);
END;
/*

ALGORITHM FOR DETECTING PRODUCT IONS THAT CANNGT bE USEu TO
UDERIVE A SENTENCE, CeF. REFERENCE.,
*/
TW0o83:
SIG=*0'3;
DO [=1 TO NO_PRODS;
IF MARK({I) THEN GO TO ENDL1s
DU J=2 TO NU_PARTS WHILE (PROD{I+d) ~= Ods:
IF MAPTO(PROD(I,d)) > NO_NON THEN GO TU END2;
/% LINEAR LOOK-UP FOKR NON-TERMINAL AS A LHS. */
00 L=2 T3 NO_PRUDS WHILE (PROD{L,1) -~= PRGU{I.4));
END;
IF L <= NO_PRODS THEN
00s
D0 K=L TO NOU_PRGDS wHILE(PRODUK,L} = PRUD(L,1)3;:
IF MARKIK} THEN GU TO ENDZ;
END;
GO TO ENOL;
END 3
ELSE
0o;
PUT FILE (PRINT) EDIT
{NODE(PROD{I+J)}y * IS NUT A LHS.*)(SKIP,2 A);
END;
END2:
ENC;
MARK(I)=*1"'B;
SIG='1'8;

END;
D0 J=1 TO NO_PRODS;
IF ~MARK(J) THEN
003
IF SIG THEN GO TU Twu83;
00 I=2 TO NO_PRODS-1;
iF =MARKI(I) THEN PUT FILE (PRINT) EGIT
(Is* TH PRODUCTION USELESS.*){SKIPsFI31,A);
END;
G0 TO DUPTEST;
END;
END;
DUPTEST:
/* NOw CHECK FOR DUPLICATE RHS. */
DO I=1 TU NO_PRODS;
DO J=1+1 TO NO_PRUDS;

UBUGQLdS
UL UG I6ES
LBULOBB O
PINVIThL Y NS
Obus 0688
DbJGOLBS
DBEUG0690
Ubu0691
Dovudos2
O6ULG693
VB G069%
UbUGDeI5
dbuLGC696
LbUGo6ST
ubuGO69a
UbU 0699
Des GO T00
J8UG0T701
JbUG0702
LvbULDT03
uBULCT04
DBUGOTO5
ubJGO706
VBUGOTOT7
DU GOT708
LBUGOT0
ObuUGOT10
DBUGOTLL
DBUGOT1Z
VBUGOT713
OBUGOT714
QBUGO71S5
Ubu GO716
JBUGOTL7
0obuUGO718
DBUGOT719
uBUGO720
JbULOT21
Jod65T22
LBUGOT723
JBUe0724
LouLL725
0obuGOT26
JBUG0T27
db0 60728
vBdG0729
dbUG0730
wBJGOT31
DBUGDT32
JBuUG0T3s
BbUGOT34
UBUGCT735
DBUGOT36
uBUGCTAT
J6UG0T738
LBJGOT3S
DBUGOT40
UBUG0T41
DBUGCT42
Ubu 60743

IF PRCD{Js2) = PRUD(I,2) TEEN
H
LD K=3 TQ NO_PARTS;
IF PROD{I+K) ~= PRCO(J,K) THEN GU TO NUTOUP;
END 3
PUT FILE (PRINT} EDIT (NODE{PROD(I,2)),
* STARTS A UUPLICATE RHS FOR PROOUCT IONS °,
Je? AND 'y 1") (SKIPyA(NO_CHARS) ¢3 (A,FI3))12;
/%
NOTICE NO ERRUR ON DUPLICATE RHS SINCE THE SLR({1l) METHOC IS
UNAFFECTED BY SUCH THINGS, HOWEVER A MESSAGE IS PRINTED 8ECAUSE
UFTEN THIS CONOITION LEADS TO UNSOLVABLE INADEQUATE STATES.
*/
END;
NOTOUP 2
END
END;
PUT FILE (PRINT) EOIT
{*eesEND OUTPUT FUR DEBUG SECTION.«o®) ISKIP,A);
END DEBUG_SECT IUN;
/* DECLARE GLUBAL STORAGE FOR LRO AND SLRL. */
TABLE_GENERATE_SECTION:
BEGIN;
DECLARE
REDUCE (2:NO_SETS) FIXED BINARY (15,0Q)
INITIAL (INO_SETS) 0),
MULT_REDUCE_Q (NO_TERM) FIXED BINARY {15.C),
TABLE (23NO_SETS,2:NO_SYMS) FIXED BINARY (15,0);
TABLE=0;
/* CONFIGURATION SET AND GOTO FUNCTION GENERATQOR. */
LRO_GENERATE:
BEGIN;
DECLARE
(NSETS,SET_LIMIT) FIXED BINARY (31,0) INITIAL (2},
TOP FIXED BINARY {31,0) INITIAL (O},
{UANDIDATE,NBASIS) FIXED BINARY (31,0) INITIAL (1},
(U sSYMBOLsPLACE, FENCE sTRYKNT , LIMIT_BASISy I dyK,
Ly TEMPDOT) FIXED BINARY (31,0),
SET (CONFIG_SET_LIMIT)} FIXED BINARY {15,0) INITIAL ({(2)
SLIM (D:NO_SETS) FIXED BINARY (15,0) INITIAL {(D.11);
BASIS (NU_SETS) FIXcO BINARY (15,00 INITiAL ((2) 1),
TRY (NO_BASIS} FIXED BINARY (15,01,
TRYOUT (NO_BASIS) FIXED BINARY (15,401,
O0T_PASITION (NU_SETS,ND_BASIS) FIXED BINAKY (13,.0)
INITIAL (5, (NG_BASIS-1} *,21},
DAT_SWITCH BIT (1) ALIGNED,
MARKER (CONFIG_SET_LIMIT) BIT (1)
INITIAL ((CONFIG_SET_LIMIT){1) *D*B) ALIGNEU;
UN SIZE SNAP SIGLNAL ERROR;
ON SUBRG SNAP S IGNAL ctRRUR;
ON STRG SNAP SIGNAL ERKCR;j
ON ERROR SNAP GO Tu ERRO7;
PUT FILE (PRINT) EODIT

1),

(T.esBEGIN OQUTPUT FOR LR{O) GENERATE SECTIUN...*2{SKIP,A);

CLUSE:
LIMIT_BASIS=BASIS (NSETS}+SLIMINSETS~11}3
DU J=SLEIMINSETS-1)+1 BY 1 WHILE (J <= SET_LiMiT};
/% TRJE IF SET(J) IS AN ELEMENT OF A BASIS SET. */
IF 4 <= LIMIT_BASIS THEN
DG;

20UGCT4s
LBJGO7s5
Gbub 0746
ObLGOT47
LEUGDT 43
D6UG074S
UbJ4GG75C
ey 62751
el 752
cbu 60753

uiGOT754 -

DBUGCT55
Lew L7506
VEUGOTS57
ubGGCTSE
LEJGOT5Y

-ouG076C

JdbuGGTel

DEJIGLTOZ |

VEUG0T63
TapGOT64
TabGOT65
TABL G706
TaB6GT767
TasGG758
TasG 0769
T4BOGGTTG
TasL 0771
TaBGLG772
Le266T73
LHOGCTT4
LKOGG775
LROGOT76
LROGOT77
LKCGC7T0
LECLOTTY
LKGGO730
LROLCTBL
LkO6C782
LROGCT763
LKOGCTE4S
LEOGOT85
LKGGO7bo
kiG0737
18 C6CTbE
LhCGCT09
LkCGD790
LROLO791
LRIGOT92
1LkOLOT79 3
Lk36CTv4
LRDIGL 795
L0796
LRCGOT97
LRIGO798
LkOLGT99
LKOGDLIG
Lrd6Co21
LRCGCaOZ
LnI6060s

€L

TEMPUOT =U0T _PUSITIUN(NSE TSy U~ SLIM{NSETS~1)4;
/% CHECK FCR wiT TC RioHT OF RuS. %/
IF TEMPDOT > NL_PARTS ThEN SYMnUL=0:
ELSE SYMoUL=¢xOU{SET(J), TEMPUGTE
ENU;
ELSE SYMBOL=PHOO{OET{J} 2}
/%

SyMBuL IS 3YMBOL TU RIGHT CF uOT - {F AT SYMBOL THEiw SET CUT_KIGHT ANu

TAKE GFF EXPANSIUN ELIGIBELITY LIST, ENTERING PKGDUCTIOn NUMBEK
IN REDUCE IF EMPTY (NEGATIVE VALUE ENTEKEU} ELSE PUT IN JUEUE
AND SET REDUCE .TU NUMBER Of ELEMENTS OF THIS SET IN QUEUE.
“/
If SYMBOL = O THEN
DO}
IF REDUCE(NSETS) = 0 THEN REDUCE(NSETSI=—SET(J) 3
ELSE
Lo;
IF REDUCE(NSETS) > O THEN
203
REDUCE (NSETS) =REUUCE (NSE TSI ¢1;
TOP=TUP+1;
If TOP > HOOUND(NULT_REDUCE_YsL} THEN
60 TO ERR1D:
MULT_REDUCE_QUTUPI==SET{J};
END;
ELSE
ng;
TUP=ToP+2;
IF TOP > HBOUND{MULT_REDUCE_Js1} THEN
GD TC ERRLO;
MUL T_REDUCE_Q{ TUP-1} =REDUCE(NSETS);
MULT_REDUCE_U(TOPI==SETIJ);
REDUCE{NSETS) =2;
END 3
END;
MARKER{ J}=*1'8;
. G0 TU PRODCLUSED;
END;
/% NU CLUSURE FOR TERMINAL SYMBOLS. */
IF MAPTO(SYMBOL) > NO_NON THEN GO TO PRUDCLUSED;
PLACE=ENDEX {MAPTUTSYMBCL})3
’%* :
CHECK IF DUPLICATE WITHIN THIS SET - L INEAK LLUKUP - NO NEEu
Tu LOUK THROUGH BASIS ENTRIES AS THEY LG NUT HAVE OOT
TO LEFT LIKE PLACE DJES (NUT TRUE FOR GUDAL BUT ITS UNIGUE L.E.
IF ®GOAL®™ 1S A RHS THEN TROUSBLE - NGTICE THAT THIS LUUP 1S NOT
EXECUTED FOR FIRST LEVEL CLGSURES — I[.E. THE FIRST 3TEP
UF THE CLCSURE FUR A BASIS SET ELEMENT.

*/

JO K=LIMIT_BASIs+1l TO SET_LIMIT;

IF PLACE = SET(K)} THEN G0 Tu PRUILLOSEUL;

END3
/%
NUT OUPLICATE - THEREFDKE ENTER PLALE (AU OTHEKS w{TH SAME LhS)
THIS SET.
*/

CO SET_LIMIT=SET_LIMIT +1 BY 1:
IF SET_LIMIT > HOOUNLISET,1) THEN &L TL ExRLli;
SET(SET_L IMIT}=PLACE;

IF PROD(PLACE +13 ~= PROU(PLACE+],l} THEN 5L TO PRTOCLASEL;

Lelbl e e
LhiuCoud
LrnZulefo
L 260807
LrdGCs24
LEUGIB29
LkOulol0
LRiJuD811
LI LOol2
LkOG0B13
LKCGOBl4
LROGOBLS
LhOGO8le
LKCGOBLY
LkOGOBL S
L&kGGOa19
LrIGDE2D
Lx0G08e1
LROGOBZ2
LRIGCa823
LhUGObZ4
L&kGGOB2S
LKOGoBZ6
LKOGGB2T
ihGouCo2a
LRkOGOB29
LkC60830
LkOGO831
LkOG 0832
LROGOG33
LKOGDB34%
LROGO®35
LK0OGO836
LkSGCu37
LKkOGC838
LKGGOB839
LRGLOBSD
LkOGOESL
LkD ulB42
Lk0GL0G43
LkOLIB4 4
LhkdGD545
LROGOB4L
LKkOGOB4T
LRCGDBS3
LikCL0O849
LiCu0e50
LrGG0531
La360e52
Lr0G0853
LrZuCEDS
Lrntwled5
LkuGds5e
LeoL5a57
LrOG0658
LRIGIB59
LR{GOBOC
LrlGOoul

360092

PLACE=PLACE+];
=V
PRULUCLLS EL:
ENU;
SLIMENSCESI=SET LI MIT;

FING FIRST *0¢ IN MARKER (PARALLEL TU EXISTING SET3) ANC UETzsMing

VIA oiNARY SEARCH anICH SET IT BELONGS TU.

*/
CO CANUIDATE=CANUIVDATE+1 TU CONFIG_SET_LIMIT
WHILE (MARKER(CANDIDATE}};
END;
IF CANUILDATE > SLIM{NSETS} THEN GU TG LRO_FINIS;
U=NSETS;
L=1;
CKLUs:
IF U < L THEN
ENH
FENCE=L3
GO TG EXIT_BINAKY_SEARLH;
END;
FENCE={L+ui3/2;
IF CANUIDATE = SLIM(FENCE} THEN GO TO eXIT_BINARY_SEARCH;
IF CANUIDATE < SULIMIFENCE} THEMN U=FENCE-L;
ELSE L=FENCE+1;
GO TU CKLU;
/¥

END OF BINARY SEARCH — AT THIS POINT FENCE IS TrHE SET THE CANLIDATE

FOR EXPANSIUN (CANDIDATE} IS IN.
SELECT ALL ENTRIES OF THIS SET wITH THE SAME SYMBOL TO RIGAT Uf
UUT. ENTER ELEMENTS IN TRY ANO DGT PCSITIUNS +1 IN TKYODOT.
*/
EXIT_BINARY_SEARCH:
TRYKNT=1;
TRY(1)=SET{CANDIDATE};
MARKER{CANODIDATE)=11'B;

/¢ TRUE 1f CANDIDATE NOT IN BASIS SET,THEREFORE COT IS LEFT GF kHS.

IF CANDIDATE-SLIM(FENCE-1} > BASIS(FENCE)} THEN
oc:
OUT_SWl TCH=*0*8;
Lek=2;
TRYOOT (13 =3;
ENO S
ELSE
943
VOT_SwITCH=*1t3;
R=DOT_PUSITIGN(FENCEyCANOIDATE-SLIM(FENCE-131}3
TRYDGT{1} =Kel3
END 3
SYMBUL=PRCL{SET{CANDIDATE},K);
O3 J=CANDIOATE+l TO SLIM(FENCE);
IF DOT_SwITCH THEN
2G;
IF MARKER{J} THEN GO TG NOT_SAME;
/7* TURN LFF COT_SWITCH AS SGUN AS QUT UF BASIS 3€ET. *x/
IF J-SLIM{FENCE~1) > BASIS{FENCE) THER
* L33 :
DOT_SwiITCH=tD %83
L=2;

LeS0bCdos
LKOLCaS Y
LkGGAETD
LA25TcTl
LrCL b2
LRIGIBTS
Ll w87

LkUG 0BT S
el 60Ty
LRCGGadD
Lk3G 58381
Laloulng2
LkCu0683
LAlGOERS
Lh1Qoad
LAJGOBSL
Lr 30087
Lx252863
LrOGCod S
LhOG2EY0
LRCGOBYL
Lk CLIBY2
Lirdudb93
LRO50E54
LRDIGGHIS
LkG G096
LE 36897
LrSGOev38
LRI GCor9

LKGG 0900 -

LrOG0Y01
LAIGOYD2
Lh3GDS03
LkGOINNRA
LrCLOY05
LhIL Y00
Lri 60507
LEu0I938
LrOL090y
LrJIuA9iD
LRioCSI
(R 1% 9
irlBOSLS
LASLCGL+
LeSGUYlS
LRCGNGio
LnOLOsl?7
Lnd30S1a
LrJIuGSlY
L 350920
L0 GOScl
LFCLOS2e
LkCG0Yes

W!-

END;
ELSE L=UQT_PLSITION(FENCE, J-SLIM(FENCE-LD)
. END&
IF PROC(SET (I, = SYMBOL THEN

I 'H
TRYKNT=TRYKNT+];
/% BASIS SET UVERFLUW??2? %/
IF TRYKNT > Nu_BASLS THEM (C TC ERRLZ;
TRYUTRYKNTI=SET{J};
TRYDUT{TRYKNT) =L+l ;
MARKER(J) =% iy,
END;
NUT_SAME:
END;
/¥

NOW ScE IF TRY wCULU START A NEw SET GrR JUST DUPLICATE AN EXISTING
SET. METHOU IS TU CHECK ALL EXISTING SETS (1 TL NSETSH WHUSE BASIS
ENTRY ECUALS TRYKNT AND CHELK BOTH ENTRIES ANO VUT POSITIUNS.

IF INEWUALITY EXISTS WITH ALL BASIS ELEMENTS OF EACH SET THEN TRY ANL
TRYDOT AND TRYKNT ARE USED TU INITIACIZE A NEw SET (NSETS<K-NSETS+l)

AND TC SET TABLE.

*/
CC J=1 TGO NSETS;
IF bASIS(J4) = TRYKNT THEN
Do; ’
BO K=1 TO TRYKNT;
DG L=1 TO TRYKNT;
IF TRY(K} = SET{SLIM{u-1I+L) &
TRYDUT (K} = UOT_POUSITIUN(S L)} THEN GO TG IN_SETS
END .

- G0~Tu NEW_SET;
IN_SET:

END;
/%
SET TRANSITIUN UNDER THIS SYMBGL IN TABLE- TRY IS LUPLICATED by (J) Tn
BASIS SET.
*/ .

TABLE(FENCE ¢MAPTD{SYMBCL }i=J;

G0 TO EXPAND

END; -
NEW_SET:
END F

NSETS=NSETS*l;
- If NSETS > NU_SETS THEN GO TC ERK1 35
/% SET TRANSITION TO THIS NEw STATE (SET, THAT I[S). 7/
TABLE {FENCE ¢ MAPTULSYMBOL } }=NSETS;
NBASIS=MAX{NBASI S, TRYKNT);
CO J=1 TU TRYKNT;
SET_LIMIT=SET_LIMIT+1;
IF SET_LIMIT > HBUGUND(SET,i} THEN GO TG ERkIL;
SETISET_LIMIT)=TRY{4);
DOT_PUSITIUN(NSETS » 4 =TRYLLT (J);
ENDG
SLIMINSETS)=SET_LIMIT;
GASISINSETS) =TRYKNT;
GO TO CLUSE;
LRO_FINLS:
PUT FILE (PRINT} SKI¥ EDIT
{'USER REQUESTEU ACTUALLY NcEuwEBED ol 340 -0

CNUMBER OF SETS® NG _SETS¢NSETS,fLENGTH GF SETS',

LEkUGGS24
LrIGOGLS
LKIGTS20
LKGGO927
LROGCY28
L&G GD929
LKOLUS 3D
LKOGOS3L
LRI GDG32
LkCLDS33
LKGCGL934
LROGO935
LKkOGODY36
LRI GI937
LkOGOY38
LkCu0939
LK) 60940
LRIGC94)
LhOGOS42
CRGLO943
CLhOG0944
LKkQ L0945
LkOGOS40
LkOGOS4T
LROGLS4E
LROG0949
LROGO950
LRKOGOS5 1
LROGIS52
LROGCS53
Lk G095 4
LROGOGHS
LKk 50956
LKOGOS57
LRJ0958
LEIL0959
LkCG0960
LROGOY61
LROGOSL 2
LROGO953
LkOGO964
LKIGIYSS
LkOGCSo0
LRCG0967
LROGD968
LKOG0969
LKCGLCYT0
LRUGO9T]
LKkOGO9T e
LRIGO9T3
LROGOST4
LRGGOYTS
LRUGISTS
LhCG 0577
LROLCGT8
LRIW0S79
LKkSLO580
LK260981

LrCu0982”

Lr060983

CORFIG_SET_LIMIT,SET_LIMIT,*NUMBER TH BASES SETY 36l _s-iss

ABAS LS} (SKIPyCUL(:
Flal e X(13)yF{4)1);
IF NJ_PRINT ~= 1 TheN GO .TQ B8YPAS323

/% CUNFIGURATION SET CuTPUT. */

PUT FILE (PRINT) SKIP (5) EUIT
{* CONFIGURAT ION 3ETS ...y
*PUSITIUN ELEMENT OUT
(44) *=1){A,2 (SKIP.AD)-

DE I=1 TC NSETS;
J=5LIM{I=-1)+1;

PUT FILE (PKINT) EVLIT
(JySET(J) y DUT_POSITIONCTI»1 3oSLIMUT) BASLS (K)y Iy
NODZ(PROD(SET(J} 410) ,* ==> ¢,

BLUND BASIS SET w¢,

D)eApSKIPy COLLST JoAys (LIl 1UdpmsloLt 36t,

(NUOE(PRUUISET(J}sL) UG L=2 TO DUT_PUSITIONITI »L1=1) %",
{NUDE{PRODISET(JIsL)) 00 L=DCT_POSITIONCIy1) TO NHU_PAKTS))
(SKIP+F U4} o X{O)sF14) o XU5) oF (21 3 X{3) +F 1419 AL3) 4F (3}

X(5)9F{3),C0LI53)+ (NO_PARTS#2} (AsXI{1)31);
PUT FILE (PRINT) EDIT

((KySET{K), LOT_PUSITIUNC(LyK-J*1},

NODE(PRODUSET(KI 1)) 4% ==> ¢,

{NODE({PROD(SETIK) L)) DO L=2 TU OOT_PCSITIOGNUI yh=~Jei}~i),
¥ ., (NDDE(PROD(SET(K),L)} DO L=DOT_PUSITIONLIk-J+1) TG

NO_PARTS) 00 x=J¢1 TL BASISUII+I-1))
USKIPF{4) s X(0hoFLa) g XU D) 4FL2) s
COLI53) s (NO_PARTS+2} (A, X(L))3

<PUT FILE (PRINT) EDIT
(CKySETIR), * 2, NODE(PRODESETIK) 1)3,4* —=> .7,
(NODE(PRODISET(K}oL2) DO L=2 TG NG_PAKTS)
DO K=8ASIS{I)¢J TO SLIMCI)I)
{SKIPy Fla)yX(6)y Flade XL 6)sAl L),
CLLI53) »{NO_PARTS+1} (AX(L)))}

END;

BY PASS2:

NU_SETS=NSETS;
PUT FILE (PRINT) EDIT

(*...END OUTPUT FUR LR{(O) GENERATE SECTION..."J(SKIPA);

END LRO_GENERATE;

/% SLR(1} TABLE GENERATOR. #/
SLR1_GENERATE:

/%

BEGING
UECLARE
PUNCH FILE CUTPUT STREAM, L
{ELEMENT,NO_INAD) FIXED BINARY (31,00 TRITIAL (C),
TOP FIXED BINARY {31,0) INIVIAL (1),
(1,d)KyL) FIXED LINAKY (31400,
TAIL {2:NO_NON,2:NO_NGN) BIT (1)
INITIAL ((NO_NUN=2)(*1%8,{NO_NON=1){1}*0%B1,"1'b)
FOLLOw (2 :NOG_NON,NUG_NUN+1:NC_SYMS) BIT¥ (1)
INITIAL { (NO_NON*NG_TERM) (1) €0'bl ALIGNEU,
MASTER_ERROR BIT (1) INIT-IAL (*0'B) AL IGNED,
(REDs TERM) BIT (1) ALIGNED;
ON SI1ZE SNAP SIGNAL ERROK;
CN SUBRG SNAP SIGNAL ERRGR;
UN STKG SNAP SIGNAL ERROR;
LN ExRUR SNAP GU TO EKROG;
PUT FiiLc (PRINT) ECIT

ALIGNE U,

(95eeBEGIN SLRIL) GENERATE SECTIUN DUTPUT..o®) ISKRIFsalk;

FURM TAIL SYMBOL (NONTERMINAL ONLY) THANSITIVE CLUSURE MaTxlx

et LUSaS
ernluGlY33
Lrultusy
LR OuNGz T
LxQu%es
i ulras
LDy
Lh_ouls9,y
L) wiyye

LECL TGS

Lo w63
LFESu0Y»5>
Lrnd363956
LVSWOwr7
LRULT%9d
LaZ6I55%
[N) R 5 1)
LhCu 1001
Le2LlaCse
LeGGLLDS
L 0Lili4
LhOLLTTS
LhOu1CJe
LRACHLICHT
LhZ0L13T34
LellCoy
LrRCGAGLY)

wkuLICLY

LR icCl2
LhCLLCLS

LROGLCL S

LKkTL13S1S
ROLLClo
LROGLCET
LkOG1C14d
LKIGLIC LY

- LikOu 1520

LnCLiCei
SLRLLC2
SLAGLGe3
SLr610z4
SLRGICZD
SLG1CG26
ALRG1C2T
JLKLLE28
SLRLICGZ »
SLRL1IT3D
ALRG1031
SLRGICH2Z
SLaGl03s
SLKku il
SLRLLCsD
SLRGLSaE
SLKGLCST

LR LIS -
YA N i

SL*G1C40
aLihLLTe]
SLRul{&Z
SLKulC«3

L

(TAIL INITIALIZel TG Aw JudNTITY MATRIX OF LEMENSTICN NO_NGN) S
%/
DC I=2 TL NUG_PKIDS;
QU J=2 TJ NC_PARTo-) wWitiLE {(PRGDUI 4J+1} ~= 2}
ENC; .
IF MAPTO(PRODII sd)) <= NLU_NCN THEN
TAIL{MAPTO(PROU(T, 1)} ,MAPTULPKODII ,ul))="1"56;
ENO;
CALL wARSHAL (Tall);
/%
CUMPUTE FCLLUOW PER DEKEMEK'S THEUREM AND BUGLEAN MATKIX TECHNIUES
SIMILAR TO wARSHALL®S ALGOKITHM. NOUTICE THAT FOULLOw CF EVERY NON-TERM

IS CCMPUTEC RATHER THAN JUST UNES UK INADEQUATE STATES ANL
THAT THE "TRANSPUSE®™ CF THb TAIL MATRIX I> USED.
*/
€U J=2 TG NC_NGN;
00 I=2 TOU NOU_NCN;
IF TAIL(Ls0) THEN
/%

IF THE FOLLOWING ™DO" W#AS UNLY EXECUTED FUR K=TAt IKADEGUATE STATE
THEN THIS ROUTINE WOULO DUPL ICATE DE REMER'S METHuD. TAAT IS, FGx
A REOUCE STATE THE REDUCTICN WwOULD BE ENTEKEL IN ALL TERMINAL

CULUMNS OF THE TAoLE.
*/
DO K=2 TO NO_SETS;
IF TABLE(K,I) == O THEN
00 L=NO_NOW+I TO NG-_SYMS;
IF TABLE(TABLE(K,1},L) ~= O THEN FOLLOW(JsL)="1"B;
END ;
ENU3
END;
ENC;
Ve

NOW4 PROCESS ALL REDUCE STATES, THAT ISy FOR ALL STATES REWIKING
A REDUCT ION, ENTER THE APPRGPRIATE NEGATIVE PRODUC TIGh HUMeER

IN THE TERMINAL SYMBOL COLUMNS (FOR TERMINALS IN FOLLOUW(STATE,*)).
*/
CO I=2 TG NG_SETS;
IF REDUCE(I) = 0 THEN GO TC SKIP_REUDUCE;
IF REDUCELI) < O THEN
OC J=NC_NGN+1 TO NO_SYMS; -
IF FOLLUW(MAPTC{PRGD(-KEDUCE(I) 1 }) 49} THEN
00;
IF TABLE(I+J) ~= C TFEN
vos;
PUT FILE (PRINT) SKIP EDIT
(PSTATE *sI4* IS INAOGEGJATE AND THE SIAPLE 9,
'*1-LJ0K AHEAD SETS ARE NuT JDISJCINT.®,
*TRANSITIUN IS UNDER *NDUE{MAPFRGHLI)D
»? = Y HyMAPFRCM{J) +* "IN CCLUMN *,J-1,
'y TRYING TO KEPLACE *,TABLE(L yJ)e® wlTn *,
REQUCECI) I (AsF(3) 92 ArSKIPy As AING_CHARS)14,
FL31 0AWFL3) yAsF(4) sA4F (4D ;
MASTER_ERRUR=*1'B;
ENJ;
EL3E TAoLE(l,d) =REDUCE(I);
ENUS)
=NJ;
/% MURE THAN 1 REDUCTIUN FOR THIS SET. =/
CLSE

SLrLlIaT
SirelTas
SikG1l049
>LrG1050
SLkuelC5]
SLKGLCS52
SLKRGLE53
SLiwlCGo54
SLrLi03S>
SLRGL1GS6
SLKGICS7
SLRGLTS8
3LRG1CS9
SLRGLC6O
>LRGLC6L
SLrG1C62
SLkil063
SLhGLCS4
SLrGACES
SLRGLO66
SLRGLIG6T
SLRGLCOB
SLRGLCS9
SLtku LCTO
SLki1071
SLRWlIGT2
SLXGL073
SLrLlO74
SLRGLGTS
AKGLCTE
SLROGLLICTT
SLKGlC78
SiruL1CT9
SLRGLOBND
SLRG1OBL
SLRG1CH
SLkGLGE3
SLRG1ICB4
SLRuiCBS
SLrGlOBo
SLRL1087
SLRGLCB3
SLkolC8y
simullan
EYRATIEA D]
StaulICye
2inRULLTYS
JLKbLLCYS
ScekGlIvYs
>irGlLSI6
SLRLLIGYT
2iabivYe
SLRGLOGI
SLRuL110C

SLRGLIOL

Sikelild2
SLXe1103

Qu TupP=Tup TU TUP+RzuUCELL)-1;
L0 J=RU_NUN+1 TU nO_SYMS;
It FOLLOW{MAPTUIPRUOD{-MILT_REDULE_wf{TUP)1)09 d) THEN
DO
IF TABLE(lyJ) ~»= O THEN
PIvH)
PUT FiLE (PRINT} SKIP EDIT
("STATE *,1," IS INADEQUATE AND Tht >I4PLE
27 1-L00K AHEAD SETS ARE NOF UISJGINT.e,
*TRANSITION [S UNDER *yNOUE{MAPFRLMIJH)
¥ = 1 ZMAPFRCMIJI* IN CULUMN *,J-1,
" TRYLNG TG REPLACE *,TABLE(I 2J}+* WITH ¢,
MULT_REDUCE_QITOPII(A»F(3),2 AySKIP A,
AIND_CHARS) s AsF(3) 2A9F(3) sAsF () sAsFil4dd;
MASTER_ERRIR="'1'4;
END; .
ELSE TAGLe(] »u) =MULT_REDUCE _w(TULPI
END;
END;
END;

SKIP_REUUCE:
ENOS
IF CUUNT_INADEWUATE_STATES =~= 1 THEN GO TQ PRTUT;
/%
Nuw COUNT THE INADEQUATE STATES, IF FOK ANY REASLN THE STATE I>
FOUND TO- 8E . INADEQUATE THEN IT IS NGCTEU ANUD NI FURTHER CHEUARING
IS OCNE FCR THAT STATE. .
=/
PUT FILE (PRINT) SKIP (4) EDIT
{(VRESULTS OF INADEQUATE STATE COUNTER (NOT INCLUUDING '
CUNSOLVABLE STATES) FULLOWe.at) (2 Al
CC I=2 Tu NU_SETS;
ELEMENT=03
TERMyRED=1'043
Cu J=2 TC NC_SYMS;
IF TadLE(l,J) = C THEN GC TG eNGELCK;
IF TaoLE(Isd) < 0 THEN
DGs
If ReD THEN
033
/* CHECK FTR SAME REUUCTION IN THIS SET. */
If TABLE(I+J) ~= ELEMENT THEN
003 .
PUT FILE (PKINT) EOIT
{9STATE *414* I> INAODEGUATE otvAUSE Jr
s "MULTIPLE REDUCTIUNS o* ISKIP A0k ()2 AN
NO_I NAL=NU_IAAL#L;
GO TO ENUSTLKS
eND;
ENDS
cLSE
bis
RED="1"'3
LF TERM THEN GU Tu MIXED;
BELEMENT=TABLE(] o) 3
END
END}
ELSE
09;
LF J > NUG_WNGN THEN

aLsolits
sinulivo
slroa 17
SlruliCe
SLKGLLI0Y
SLGLILO
seduvliad
sLrulilz
SLKLLELLS
Sinuliie
sirulals
SLkLlile
SLnulil?
Stavillio
a-olliiy
Sthuired
Slrolici
stnuwlize
Strulich
strolle
aixuollls
2LRGllén
Strulle?
strulies
SLrGia29
SLFuiial
LMGilal
SLRGpli32
SLaGilss
>Lkulls4
SIKG1135
Sunkuline
SLnGlls?
SLnullie
Stnbil3s
Sirvilal
Sl~olial
SLxbiiel
SLkGlla3
Suxiliaes
se<ulled
olaullen
SunGal=?
SLkGLI%B
SLhu'ilay

Sinuilsl

dLroulibs

S5irGling
SirLiino
sLrLLl5S
anuiib?
SLrullds
Sl=uildy
Slrwalod
SLrullel
SLrGL B2
JLrRuling

9L

Da;
TERR=*]"a;
LF RED THEN
MIXED:
00;
PUT FlLE (PkInT) EDIT
(*STATE "o 0n" IS INALEGUAIE SECAGIE OF *
o COMTAENIAG SCTH A RELOCT LN AN A ",
CTRANSI VIO "D (SRIPANF (4] o3 235
AO_LWAL=N3_INGTe1s
G0 TC cApSTIKS
=ND
{21 H
END;
EMUELCK:
chD;
ENDSTCK:
ENC3:
PUT FILE (PRIXT) EDIT
{°THeRE IS A TOTAL OF " N0_IMNAD " InAOEQUATE STATES.”
(SKIP, A, FI3 Ded)5
PRYOT:
IF 4L_PRINT ~= 1 THEd SO TJ SYPASS3;
PUT FILE (PRINTR 3KI1P (50 EDAT -
(COLUNNS REPRESEMT..o” o (°COLE" o 10") = ", MODDEINAPFRONC NI}
00 I=2 TO NO_SYNS) HSKIPALIND_SWSEICLLILS »
(1327015+80_CHARS)) (A FU3 Do An AL _CHARS e XA S D R :
PUT FILE (PRINT) SKIPES) LIST ("CIMESATED SLRILF TAME..-");
CC 1=2 TO MG_SETS; -
PUT FILE (PRIATI ECIT
(Ie® i TASLELL o) DL J=2 T NO_SYNSE)D
(SKIPeFi33.4,99 (32 Fl4),COLI5NN)3

BYPASS3:
IF MASTER_ERRDK ThEa G0 TOD EMRO9S
IF NO_pPUl(H =1 THEN
-PUT FILE IPUNCH) EDIT
{ND_SYRS , AO_CHAKS ¢ R)_NiN» WD_PART S, MG_PRIUS »D_SET S,
AVAIL JCOUMT AL £O0 »ENCDES XD LU L XD »ik& XD » PAPTCLI) pMAPFIONT]}
+TACIID) LG I=1 TS WD_SUNSH,
(IPRCDEIJ2 BC J=1 TO NG PLAATSH 8D B1 TO Nd_PRODSH.
(UTABLE(] 3} DO =2 TC NO_SYMS) 00 [=2 TO Nl _SETSHE
(00U M1 3+9 FE3Dp Nl SYNS MAIWG CintkSle 4 FEI3) 002
(0, PARTS*NG_PROOSE FU3) o AN _SUNS*NE SETS) Fled)ds
PUT FILE (PRINT) EQET
("cu .EMD SLRI1} GENCRATE SELT IOV GUTMUT eau” M SKiPeialds
END SLRL_CEMERATE:
END TAGLE_GEMERATE_SECT Liwg
/7% MARSHALL ALGORITHA FuR COMUT Eue OLCSGRE MOTRILES. *7
WARSHAL = PKJICEDURE (md3
I*
WAKSHALL ALGCRITHN (C.F. JACM 190 P 11N
1. (1310 = N{1.J)
2. Plle dIK#l = MU 00K | €iMd Fok# K & MUKeZpJNKD
3. MII.,)5TA% = M1 000
MHERE D = M. OF il OF A (& Soidesf BOCoFAN mOT=IXD .
*/

DECLARE
H (*y*) BIT (1) AL IGNEDe
1 odeK) FILTD SIMARY (3L.CU3

SLebliow
Lkislios
w=G1l166
aiseils?
SLRG1LL0E
aLxGllo3
MxGL170
SaxG1i71
SwkGl172
MRGilT3
Stawll74
SLullT5
SiGll76
WxCl177
SLKGi1T8
SLiell79
Sik»lldd
SLkwll8l
salGl1e2
aLRGL1B3
SLRCl13%

MRGLLES .

SLRGLLEG
SixG1187
Sixcllse
SLkGE189
SLis 1190
SLkGE191
SLRGL192
SIRG1193
SLRGL194
SLRL1195
SLRG1196
SLRCL1PT
StRG1198
SLRC1199
3461290
M xc1201
SLkG1202
SLRGI203
p T T8 P
SLR&1ZD5
SLkiz1226
SL&G 1207
SLREC1208
SIkG1209
3Lablcld
ThowlZll
wa<3lel2
whxSlels
whxS1214&
wktSleds
akn3lcio
wAKS1cLT
afk3lzls
whk$S1219
wLRS1Z20
am3lezl
s mSlz22
w—t3le2 3

INSERT:
BEGIN;

O6 K=L33UNO(My 1) TU HBUUNUDIM,1);
D6 [=L5UUND(M, 1) TC RBUUNU(M,L);
IF M{I,K) THEN
DU J=LBOUNDI(M, 2) TUL ABUUNUIM,2);
1F M{K,J) ThcN MUI,Ji=7173;
ENC3
ENC:
END;

END W ARSHAL ;

/% DBALANCEC BINAKY SEAKRCH TREE SYMBOL TAGLE MAINTEWANCE. */
BSTSLR: PRICEDURE (ITCM,FLAG+POS,TREE);

1%

PROCECURE BSTSLR IS THE IMPLEMENTATION OF AN ALGURITHM FGKR
PROCESSING AND MAINTAINING A DYNAMIC INFURMAT 1ON

STRUCTURE IN THE FORM UF A PARTICULAR TYPE OF BLNARY
SEARCH TRCE, AN AVL TREE.

PARAME TERS *

ITEM - KiY FGR RETKIEVAL, INSEKTIUN GR DELETIUN
FLAG - STATUS CGDE FOR ATTEMPTED FUNCT LGN
POS - LINEAK INDEX OF NOGE INSERTED OR RETRIEVED
TREE - STRUCTURE CONTAINING BINARY SEARCH TREE.
AVAILABLE SPACE LIST ANLC NCDE COUNT
*/ -
CECL ARE
(FLAG ,PUSE FIXED BINARY (31,04,
ITEM- CHAR (%),
1" TREE,
NOGE {¥) CHARALTER (*),
LL (*) FIXED BINARY {154C),
RL (%) FIXED BINARY (1540,
TAG (%) BIT {*) ALIGNED,
AVAIL F1XED BINARY (31,0},
COUNT FLIXED BINARY (31,0),
L1 (0:32767) FIXED BINARY (15,00 BASEU (L1PNT),
L2 19:32767) FIXED BINARY (15,0} BASED (L2Z2PNT)

NN

/%

ATTEMPT TO INSERT THE SPECIFIED NODE .IN THE TREE.
RETRACE THE SEARCH PATH TO PERFDRM BALANCE TAS
FAINTENANCE AND AT MOST CNE RESTRUCTURING .

THREE BALANCE TAG CONDITIONS wWHICH REQULRE SEPARATE
ACT ION MAY OCCuk AT A NJDE DURING PATH RETRACING:

1) TAG='00"8 - SET BALANCE TAG IN THE GIRECTION GF
INSERTION AND RETRACE FURTHER (LONGER PATH);

2} TAG 1S UNBALANCED IN THE OPPUGSITE GIRECTIUN -
FROM INSERTION = SET TAG TO *0OC'B AND EX1T;

3) TAG I35 UNBALANCED IN THE SAME UIRECTION AS
INSEKTION - NOUE IS "CKIT ICAL®; RESTRULTURE THE
SUBTKEE IT HEALS At EXIT;

RESTRAUCTUR ING CONSISTS OF TwWu BASIC CLASES wITnlh
LEFT-RIGhT SYMMETRY:

1) CRITICAL NJUE IS5 LEFT(RIGHT} HEAVY ANu ITS LEFTY
(RIGHT) CESCENDANT IS LEFT(RIGHT} +EAVY -
FUTATE SUBTREE CUMPONENTS;

2) CRITICAL NOGE 1S LEFTIRIGHT) HEAVY AND ITS LEFT
(RIGHT) SUBTREE IS RIGHT(LEPT) HEAVY - SPLIT
RJATATE SUBTREE COMPUNENTS.

*/

DECLARE

‘ainSleee

aixSileecd
narSicls
whkdlez?
wA{5l226
#AKDLL29
ahnS1Z3%
nakS1e31
nahdls32
oeSiless
BebTIzas
bLsTlesd
BcSTlc3o
oLST1e3?
ebSTlcie
op>T11239
otST1l.4)
vealidel
ecd>ilial
vo>TIcse3
pssTlees
wosTlew5
ocaTlcad
ce5>Tles?
o>l ledts
ceaTlcas
or3lle3d
wesTledl
oo5T1252
wuSTleds
oe>Tlese
o55T1¢55
bESTL256
pbaTle>?
sealless
ot> i 159
65712569
665T1ze6l
ab3Tlzb2
obSTlz53
#o5Tlzos
565Tlen5
pb>TiZoo
obsTIco?
so>Tizob
b >Tleb9
25T 170
ob>11271
obs3TleTe
bESTIZT:
b STicTe
besile?s
oexilele
bu>Tic??

oba¥1lz78 "’

pEsT1ce?9
6b5T1leo0

bo3Ticol,

BuSTlca2
ob>Tiz83

LL

{CURK g STACLKTUP y 5 FACKTP Ly STALK TP 2, TLPH

FIXEO BINARY (31,71},

/% STACK Adu STKELL ARE Pudtt vilail STalk vELTURS .
TREE SidF >=46367 REJUIRES LARGzr STaun ¥/
STACK {0:21}) FIXEU olNARY (lu,3) IwiTIlAL

STRFLu {6221y ol T £1) INITIAL (*1l*g)
80dL olT (L} ALIGRED

/% SEARCH FOK THz NCUE wHICh Alel BE THE FATHER UF
THE NJui TL BE IinSeRTED, frALE THE PATH FOR LATER

UsSE */
Curk ¢ STACK{L) =kLIZ) 3
03 TgP=1 BY 1 wHILE (LUKR =~= O3 ;
STACK(TQP}=CURR 3
IF I TE4=NODE{CURR} THEN
/* DUPLICATE KEY */
[*I"
FLAG=4 3
POS=CURR 3§
RETURN 3
ENU 3
STKFLGITIPI=ITEM > NODE(CURRI 3
IF STRFLGETOUPY THEN CURR=RL{CUKR} ;
ELSE CURR=LLICURR} 3
ZAD 3
IF AVAIL = C THEN
/* RETUKRN SPACE JVERFLOwW COUE */
00
FLAG=6 3
POS=0
RETURN 3
END 3
/* GET SPACE FRUM AVAILABILITY LIST =/
STACK{ TOP) =AVAIL 3
TIP=TOP-1 ;

IF STKFLGITUPY THEN RL{STACKA{TOPII=AVAIL

ELSE LL{STACK(TOP))=AVAIL ;

NODE{AVAILI=ITEM ;

COUNT=CCUNT+1 ;

FLAG=2 ;

POS=AVAIL ;

AVAIL=RL{AVAIL) 3

RLESTACK{TOP+1))=G ;

/* ROOT NODE? */

IF TOP = 0 THEN RETURN ;

/% RETRACING */

DO WHILE (TAG{STACKITOP)} = *00'B) ;
/% CONDITION 1 */

I STKFLG{TOP) THEN TAGUSTACK{TOP})I="01'3d

ELSE TAGI(STACK{(TUP})=210*8 ;
TGP=TuP-1 3 .
IF TOP = O THEN RETURN 3

END 3

BUCL=TAG(STACK(TLP)) = *:10%8 3

IF (SOULESTKFLG(TUP 1) | ~(BUOLISTKFLLGITLP)}

/% CUNDITIUN 2 %/
20 3
TAG{STACK{TOP}}=40C1's ;
RE TURN ;
ENU 3
/% CONVITION 3 - ReSTrRUCTURE %/

vralledsa
cu>Tieds
vbdT lebn
Biesllec?
ooS5tlesa
BosTlez3
oe5Tle90
sE3T 191
poolled2
0053T1e93
suSTled4
B8oT1295
vo3Tle96
oudT1297
ob5T1298
beSTlz99
wbST153G
ve $STL201
os$T1502
oo>T1303
vp5T1304
oiST 1505
boall3%6
sb53TL307
obST1308
uBsTL309
ob3Tlsl0
boST1311
BESTL312

‘sbST1313

aBSTl3l4
obS5T1315
ot5T1316
BbaT1317
v55T1318
BoST1319
8BST1320
gt STl321
8bST 1322
bEST1323
sbS5T1l324
56571325
B55TL 326
8BST1327
565T1328
ob5Tl329
Bb571i230
pbsTL331
B STlzes2
ob3T13533
bbaTl33«
86571335
bo>T1l336
ow3T1337
dp3Tl338
bb5T1333
oo 3T1340
bbaTlsal
ob3TLie2
ob3T1l543

L1 PNT =A00R(RL}
L2PNT=A0D{LL}

IF STKFLG(TOP)
/% (ASE 1 RESTRUCTURING */
LF STKFLG(TOP-1)
ELSE LL{STALK{TOP-1)1=STACKTF1
LL{STALKTOP) =L2 {STACKTPL}
L2(STALKTPL)=STACKTUP ;

IF STKFLG{TOP}
ELSE TAG(STALKTOP}I=¢01'8

LZ(STACKTPLI=LL{STACKTP21}
L1{STACKTPc) =L1 { STACKTUP)
L1(STACKTOP)=L2{STACKTP2)
L2 {STACKTP2)=STACKTQF ;

BSTInTIENTIRY (TREE};

STACKTOP=STALKI TUP)

STACKIPL=STACK{TOP +1} ;
STACKTPZ=STALKITUP+2) 3
TAGCSTACKTUP) y TAGE STACKTP L} =000 5
/% PUINTERS FUR KIGLHT CR LEFT SYMMuTHY #/
STRFLL{TUPY THEN

LIPNT=ADDRILL) 3
L2 PNT=ADOKR{RL} 3

/% CASE 2 HRESTRUCTURING */
IF STKFLG(TOP=1} THEN RL{STACK{TUP-1))=5TALKTP2
ELSE LL{STACK{TUP=1))=STACKTP2
/¥ BAUANCE TAG VARIATIGNS %/
IF L2{STACKTOGP} -~= 0 THEN

TAGISTACKTP 2)=1¢00%y ;
IF STKFLG(TOQP+z) THEN

IF STRELG({TUP} THEN TAG(STACKTIGP)=*10°y
ELSE TAG{(STACKTPl)}=*10+8

AVAILABILETY LIST BY USINL RIGHT LINK
FIELUS OF EALH AVAILAsLE NUDE PUSITION.
CUMPCNENTS TG NULL VALUES.

DECLARE I FIXED BINARY (31,0);

Cu 1=2 TG HBOUNDIRLs 1} 3

~= STKFLGUTUuP+1) THEN Gu TQ CaASEZ

THEN RL{STACK{TUP-11)1}=5TACKT Pl

THEN TAG{STACKTPL}I=t*0l*B

H
;
H

YRR
Tioe

dusicive
ocaTlzal
oLaTloes
St lawy
26311350
abd>Tizol
soyllicse
06371353
suaTlsd%
okdT1lzuo
Lo Tiado
ouSTlon7
se3ilond
oealiabs
woolTizod
sc3Tlial
23511322
acdTises
EEER FCETY
wc$T1l365
aualisec
ccuiiabl
>u>71524d
5a3T 1369
oCailall
ocaliz?l
05T 172
353T1lals
co3TisTa
co3T1z275
o6sTl370
o ST1577
ardilsTo
v o Tl 279
oedTL3aC
o03T1531
vb3Tl582
3o5Tlze3
205Tl304
ve>Tlzds
so>T1386
855T1387
st>F1303
so>T1389
o 5T139¢C
voxTl:vi
bo>Ti332
scSTlays
webT 1z94
peSTLlsys
s>11336
2e3T1av7
665T1l596
ob3T1s99
ousT1l4a2)
ot STled1
vL3Tiede
ausllaly

QL

RLIHBUUNULRL 1))y hL(CE=0 3
LL=C 3

TAG=*00*B ;

CCUNT=C;

'RETURN

END INITIAL;
END BSTSLR:
END THE_WAOLE_THIANG

ERxOL:
ERRO2:
EkR 032
EQBO«:

ERRO5:

ERKC62
ERROT:
ERRO8:
ERRO9:
ERR10:
ERRL1:
EKR1Z23

ERRL13:

GC TC REUSABLES
PUT FILE(PRINT} SKIP ECIT
(f~~=ERRJIR — IN INPUT PAKMAMETERS--=-*)}{A4);
GU TC REUSABLE;
PUT FILE(PRINT} SKIP EDIT
(*~~=ERROR ~ IN INPUT ENCODE SECTIUN~=--1%){A};
GC TL REUSASBLE;
PUT FILE(PRINT} SKIP EDIT
{¢==<ERRUR - INPUT PROOUCTION PART TUO SHURT=--=1*){a};
GO TO REUSABLE;
PUT FILE(PRINT) SKIP EDIT
{t-—=ERROR ~ MISSING PROUULT ION PUNCTUAT IuN~===%)(A);
GO TO REUSABLE;
PUT FILELPRINT) SKIP EDIT
{*==—ERROR - INPUT PROCUCT IUN ERRURy PROBABLY LHS NGT
CONTIGUOUS (2 A);
GO TO REUSABLE;
PUT FILE(PRINT) SKIP EDIT
{*==-ERRUR = .IN BUBUG SECTIUN--=7){A);
GC TC REUSABLE;
PUT FILE{PRINT} SKIP EDIT
(*==-EKROR — IN LR{O) SECTION--—-%}{A};
GC TC REUSABLE; . .
PUT FILE(PRINT} SKIP EDIT
{*=--ERROR — IN SLR{1l} SECTION--=-%)(A};
6L TC REUSABLE;
PUT FILEL(PRINT) SKIP EDIT
{* ———EKRROR - -UNSOLVABLE INADEQUATE STATE—-")(A)»
GO Tu REUSABLE;

PUT FILE(PRINTS SKIP EDIT

('——-ERROR - OVERFLOW OF KEDUCTIGN QUEUE--—')(AD.-
60U TO REUSABLE;
PUT FILE(PRINT} SKIP EDIT
{*-——ERKOR - CONFIGURATION SET UVERFLUH—--')(A);
60 TO AEUSABLE;
PUT FILE(PRINT} SKIP EDIT
{#———ERROR - BASLS SET OVEKFLOW===%)(A);
GU TO REUSABLE;
PUT FILE(PRINT} SKIP EDIT
(*——-EKKOR - NUMBER OF SETS EXCEEDED--~*}(A);
GU TO REUSAGLE;

END REUSABLE;

ENDMAING

ENU SLRL;

uu>TL40e

B> 71405 -

vb $T14006
dB5STi407
SpBaTlals
ot $T1a03
BBST 141G
UNAML411
MAINL4L2
MAINL4L3
MATNl&al4
MAfNlelS
MAINL&l6
MAINL4L?
MAINi14LlB
MAINL4L9
Maltila2d
malbhlezl
MATNL422
MAINL1423
MalNlazae
MAINL«25
MalNl4206
MAINL=2T
MAINLa25
MAINL429
MulNLl430
MaINl«31
MAINLla32
MAINI«33
MAINL434
MAINL43D
MAINL4«36
MAIN1437
MAINL458
MAIN1439
MaiNlasD
MALNl4%]
MAIN1442
MialNlaa3
MAINl444
MAlNLla4ss
MAINLlagS
MAINL464T
MAIN144B
MEINL4«9
MLl @50
MaIN145]
MAINL452
MELF 1453
MAIN1454
MAiNl45>

6L

APPENDIX D

LOGIC BLOCK DIAGRAM

an

REUSABLE .

START

D INPUT
PARAMETERS
FROM FILE

PARMIN

EXIT ON FOF

OUTPUT
HEADING

SET DEFAULT

PARAMETERS
IF NECESSARY

BEGIN INPUT
SECTION

/’/go BYTﬁ

RECORD FROM
FILE PRODIN

S

[y

1

SET BYTES
#73-80 TO
NON-BLANKS

SPIN THROUGH
CONSECUTIVE
BLANKS

END

1
O
=

RECORD

N

81

NAME @
CONSECUTIVE
NON-BLANKS

INSERT (SEARCH)
NAME IN SYMBOL TABLE

5653

FILL NEXT COLUMN OF
PRESENT ROW OF PROD

COPY COL 1 OF THIS ROW TO
COL 1 OF NEXT ROW; ENTER
NEXT COLUMN OF THIS ROW;
RESET COLUMN POINTER TO 1
AND INCREMENT ROW POINTER

ENTER NEXT COLUMN, NOTE:
COULD OPTIONALLY BRANCH TO
READ NEXT RECORD IF IT IS
KNOWN THAT, IF A RECORD
CONTAINS A PERIOD, THEN IT
IS THE LAST SYMBOL

NEXTSYM

RESET COLUMN POINTER TO 1;
INCREMENT ROW POINTER AND ENTER

FIXUP LOOP TO SET MAPTO AND
MAPFROM FOR TERMINAL SYMBOLS

SET THE MAPPING VECTORS: COUNT THE
NON-TERMINAL; ENDEX (COUNT) <—ROW
POINTER; MAPTO (SYMBOL TABLE
POSITION) «—COUNT; MAPFROM (COUNT)
«—SYMBOL TABLE POSITION

OUTPUT STATISTICS
ON PRODUCTIONS

BEGIN DEBUG
SECTION

FORM "WITHIN" RELATION,
THEN TRANSITIVE CLOSURE

ANY '0' IN 299 ROW EXCEPT
FOR FIRST TWO COLUMNS MEANS
CORRESPONDING SYMBOL NOT
WYITHIN" - OUTPUT DIAGNOSTIC
IF ANY

82

DECTECTION OF USELESS PRODUCTIONS
C.F. REFERENCE ~ OUTPUT DIAGNOSTIC
IF ANY

DETECTION OF DUPLICATE
RIGHT-HAND-SIDES - OUTPUT
DIAGNOSTIC IF ANY

BEGIN
CONFIGURATION
SET COMPUTATION

INITIALIZE FIRST SET TO FIRST
PRODUCTION WITH DOT TO THE
RIGHT (FINAL STATE), SECOND

SET TO FIRST PRODUCTION WITH

DOT TO THE LEFT (INITIAL STATE)

- CLOSURE

GET NEXT ITEM OF
SET BEING CLOSED

YES BASIS
ENTRY

NO

SYMBOL @

83

SYMBOL «==0

SYMBOL <#~wPROD
| (ITEM, DOT

POSITION)

PROD (ITEM, 2)

DOT TO N_ NO

M

o’ SYMBOL N
=0

ITEM IS A REDUCTION ENTRY,
ENTER THIS ITEM IN REDUCE
(SET NUMBER) IF EMPTY -
ELSE SET TO NUMBER OF ENTRIES
AND PUT ITEM IN QUEUE

RIGHT

YES

SET MARKER (ITEM
NUMBER) TO 1

AT PRODCLOSED
BRANCH TO CLOSE
IF ALL ITEMS NOT
PROCESSED ELSE
BRANCH TO EXPAND

PRODCLOSED

AS A LHS IN THIS SET WITH DOT TO
LEFT PROVIDING DUPLICATION OF
PREVIOUS SET ENTRIES AVOIDED

ENTER ALL PRODUCTIONS WITH SYMBOL

PRODCLOSED

SET SLIM (SET NUMBER) TO
LATEST ENTERED ITEM'S POSITION

EXPANSION

TABLE (SET, SYMBOL) = FOUND

DUPLICATE SET NUMBER

ENTER BUFFERED ITEMS AS THE
BASIS SET OF A NEW SET,
ENTER DOT POSITIONS + 1
INTO DOT POSITION ARRAY

GET SET NUMBER CONTAINING AN
ITEM WHOSE MARKER IS NOT SET TO 1

BUFFER UP THIS ITEM AND ALL OTHER
ENTRIES OF THIS SET THAT HAVE A
COMMON SYMBOL TO RIGHT OF DOT,

SET MARKER FOR EACH

FOR ALL BASIS SETS WITH THE SAME
NUMBER OF ENTRIES, CHECK BUFFER
AGAINST SUCH SETS TO DETERMINE
DUPLICATION (BOTH ITEMS AND DOT

POSITIONS MATCHED)

TABLE (SET, SYMBOL)
= NEW SET NUMBER

LRO_FINIS
OUTPUT
CONFIGURATION
SETS

SIR(1) TABLE
GENERATION
(TRANSITION
ENTRIES HAVE
BEEN MADE)

84

COMPUTE "INVERSE" REFLEXIVE

TRANSITIVE CLOSURE OF TAIL
SYMBOL MATRIX FOR
NON-TERMINALS

COMPUTE FOLLOW MATRIX PER
ALGORITHM IN THESIS

FILL IN
REDUCTION
ENTRIES

THE POLLOWING LOGIC IS

AFTER EVERY ROW PROCESSED,
DO THE FOLLOWING

COUNT AND LIST INADEQUATE
STATES BY DETECTING TWO
DIFFERENT TRANSITIONS OR A
REDUCTION AND A TRANSITION

IN THE SAME STATE - ROWS OF

TABLE ARE PROCESSED LEFT

TO RIGHT AND FIRST INADEQUATE

CONDITION ENDS PROCESSING OF
THAT STATE

APPLIED TO EACH ROW OF
THE TABLE

FOR ALL TERMINAL SYMBOL COLUMNS
CORRESPONDING TO SYMBOLS IN
FOLLOW OF THE LHS OF THE
INDICATED REDUCTION, ENTER
~REDUCE(I) IN THOSE COLUMNS

PROVIDING A PREVIOUS ENTRY HAS
NOT BEEN MADE IN THAT TABLE
POSITION - IF SO THEN STATE

IS UNSOLVABLY INADEQUATE - SET

MASTER ERROR SWLTCH

REDUCE(I) HOLDS NUMBER OF
ELEMENTS IN QUEUE TO PROCESS

AS REDUCTIONS, DISCARD FACH

AFTER PROCESSING

OUTPUT SLR(1)
TABLE AND
OTHER DATA

END

VITA
Joseph Lee Gray
Candidate for the Degree of

Magter of Science

Thesis: IMPLEMENTATION OF A SLR(1) PARSING ALGORITHM
Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Poplar Bluff, Missouri, April 24, 1944,
the son of Mr, and Mrs. Howard Gray.

Education: Graduated from Poplar Bluff High School, Poplar
Biuff, Missouri, in May, 1962; received Bachelor of Arts
degree from California State University at Long Beach,
Long Beach, California, in January, 1971, with a major
in Mathematics; completed requirements for the Master of
Science degree at Oklahoma State University in May, 1973,

Professional Experience: Graduate assistant, Oklahoma State
University, Computing and Information Sciences Department,
Stillwater, Oklahoma, August, 1971, to December, 1972;
computer repairman and instructor, United States Army,
May, 1966, to May, 1969,

