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PREFACE 

This thesis is a description of the SLR(l) parsing algorithm. 

The advantage of using SLR(l) techniques in syntax analyzers is the 

generality and efficiency over other parsing schemes. The description 

is designed to appeal to the reader's academic as well as implementa

tion interests. 

Thanks are due to Dr. Donald Fisher and Dr. George Hedrick for 

their suggestions for improvement of this thesis and especially to 

my major adviser, Dr. James Van Doren, who, above everything else, 

asked me questions that made me think. 
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CHAPTER I 

INTRODUCTION 

This thesis is a presentation of a reasonably general method for 

parsing and gaining conceptual insight into languages described by 

context-free (CF) grammars. Included are the definition of a CF gram-

mar, a development of some of ,the characteristics of a CF grammar, and 

the definition and construction of a general parsing scheme for a sig-
,; . 

nificant subset of CF languages. The purpose is to show how to develop 

certain conceptual characteristics of any particular CF language and 

at the same time mechanically construct a table-driven syntax analyzer 

for that grammar by using the method for table construction contained 

herein, The former is particularly valuable for languages with which 

the reader is not intimately familiar. 

The main area of applicability is in writing translators for com-

puter programming languages. In particular, the parsing method applies 

to a large subset of CF languages written in Backus-Naur Form (BNF) in 

which most of the commonly used programming languages can be described 

approximately. Syntax analyzers are only part of the compiling process 

and are usually intertwined with other parts (semantic routines, r::can-

ners, code generators, etc.); however, this paper isolates the svntax 

analyzer for the purpose of examination. 

A useful side effect of the table construction method is that an 

understanding of the grammar and the language may be obtained even if 

1 



the complete table cannot be generated for a particular grammar. 

Hence, this thesis will serve as a useful guide for studying program

ming languages for which no compiler is available if the user can 

express the grammar in BNF. 
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There has always been a decision between whether to program in a 

low-level language such as assembler or machine language, which is dif

ficult, machine dependent, and fast in terms of translation time, or 

in a high-level language such as FORTRAN, which is easier to do, easier 

to train personnel for, and machine independent, but slower in trans

lation time and perhaps not applicable to a particular problem. At 

this time, the concensus seems to be that the high-level languages are 

more desirable; therefore, one goal of the computer scientist is to 

correct the deficiencies. The solution is to write several high-level 

languages for different areas of applicability and to write efficient 

translators for them. Out of this goal have come translator writing 

systems (TWS) of which one part is the syn.tax analyzer. Writing a syn

tax analyzer for a TWS should be done in such a way that the analyzer 

can be used for a large class of grammars (e.g., a large subset of CF 

grammars), and it must work efficiently. It is with this goal in mind 

that this project was undertaken. 

The basis for the method of parser construction presented in this 

thesis was developed by Knuth (10); and the first widely publicized, 

efficient implementation of the method was developed by DeRemer (3,4, 

5). An analysis of both methods (table construction and parser con

struction) and certain optimizations on the table construction method 

have been developed by Aho and Ullman (1,2). The implementation pre

sented here has similarities to all of the above plus some of the 



author's own innovations. 

In particular, DeRemer (4) has demonstrated tAat the technique is 

superior or equivalent in efficiency to other parsing methods such as 

operator precedence, simple precedence, bounded context, or McKeeman's 

mixed strategy precedence (MSP) (11) and also more general in its 

acceptance of languages. 

3 



CHAPTER II 

CONTEXT-FREE GRAMMARS 

Definitions 

In general, a context-free grammar is a set of rules specifying a 

language. The language, L, is some subset of the set of all finite 

strings of symbols from an alphabet, A. That is, (possibly) not all 

strings of elements of L's alphabet are in L. The purpose of the gram

mar is to specify which strings can legitimately occur in L. Although 

the alphabet, A, is finite, the set of strings of A, denoted by A*, may 

be countably infinite. However, depending on the grammar, L may or may 

not be infinite. A second purpose of the grammar is to give a finite 

representation of L, even though L may be infinite. 

To specify a grammar, there is a need for a set of symbols that is 

disjoint from the alphabet so that the grammar may be written in such a 

way that the rules of the grammar are not confused with strings in L. 

To accomplish this, a set of metasymbols, usually referred to as~

terminal symbols and characterized by the property that they do not 

appear in the alphabet, is used. The metasymbols represent the syn

tactic categories of the grammar. 

The union of the alphabet and the metasymbols is referred to as 

the vocabulary, V, of the grammar; and the set of all strings of sym-

bols from the vocabulary is denoted by V*. 
., I 
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Colons, commas, periods, and semicolons are punctuation symbols in 

the production rules defined below. They are not in the vocabulary. A 

comma means "is followed by"; a semicolon means "or" (exclusive); a 

colon means "may be rewritten as"; and a period is an end delimiter. 

There are many variations in punctuation. Often the commas are 

replaced by blanks, the semicolons by vertical bars, the colons by 

either arrows or double colons followed by equals, and the periods by 

either blanks or semicolons. 

Finally, the grammar is specified by a set of rules (also called 

rewriting rules or productions) of the form Ui: ui. where Ui is a 

metasymbol and u1EV*. The set {U} has the property that exactly one 

element, say Ug' appears only on the left of a colon and never on the 

right. The Ui is called the goal symbol ( also distinguished symbol). 

This definition is overrestrictive but serves the purpose of this the-

sis. Ui is called the left-hand-side (LHS), and ui is called the 

right-hand-side (RHS). 

Formally, a grammar, G, is defined as a quadruple (VT' VN' P, S) 

where VT is the set of terminal symbols, VN is the set of non-termi

nal symbols, P is the set of productions, and S is the goal symbol. 

As an example, the grammar, G, is specified by: 
l 

1. S: ?, E, ?. 

2. E:E,+,T; 

3. T. 

4. T: P, **, T; 

5. P. 

6. P: (, E, ); 

7. i. 



Here, VT•{?,+,**, (, ), i}, VN • {s, E, T, P}, Sis the goal 

symbol, and P is given. 
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The reader may ask how to represent one of the punctuation symbols 

in a production rule if it is actually in the alphabet; possible an-

swers are to use some other symbol or to enclose the symbols of the 

alphabet within some other symbol not in the alphabet. By definition 

of the action of the semicolon, E: E, +, T; T. is equivalent to the 

two rules E: E, +, T. and E: T •• The punctuation used (13) also 

allows the use of multi-character symbols. 

Since a production means that the LHS can be rewritten as the 

RHS, applications of the production rules result in the following: 

PRESENT STRING APPLIED RULE 

(1) s 
(2) ?E? 1 
(3) ?E+T? 2 
(4) ?T+T? 3 
(5) ?P+T? 5 
(6) ?i+T? 7 
(7) ?i+P? 5 
(8) ?i+i? 7 

The final result, line #8, is a terminal string, that is, a string 

of terminal symbols. Each line is a direct derivative (6) of the 

previous line. Or, more formally, X is a direct derivative of W 

(written W+X) by application of the rule U : u. if there are 

(possibly empty) strings x and y such that W = xUy and X • xuy. 

The transitive closure of +, denoted by +*, defines X as a deriv-

ative of W if there exist strings w0, w1 , •o•, Wi such that W = 

Wo + W1, w1 + W2, ••• , Wi-l + Wi a X. Line #8 is a derivative of 

line #2, for example. All derivatives of the goal symbol are called 

sentential forms. Sentences, the elements of the language, are 
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sentential forms consisting of terminal symbols only. More formally 

then, a language is defined as the set of sentences, that is, the 

strings of terminal symbols derivable from the goal symbol. 

Since the granunar specifies the language, it now should be pos-

sible to tell what strings are valid in L(G1), the language generated 

by G1 • According to rule #1, legitimate strings are enclosed by 

question marks. Rules #2-3 describe an E as a sequence of T's sep-

arated by +'s. For example, E+E + T+E + T + T+E + T + T + T+T + T + 

T + T specifies that an E can be the sum of four T's. Because E 

appears in its own definition, the length of the string that can be 

produced is arbitrary. In this case, it is left recursion. (E ap-

pears as the leftmost symbol of one of the RHS alternatives defining 

E.) If the rule were written E: T, +, E., then it would indicate 

right recursion. If there were a rule such as E: T, E, T., it 

would indicate embedtied recursion. Rules 114-5 are similar in that 

they define a T to be an arbitrarily long sequence of P's separated 

by ** 's. Finally, rules #6-7 define a P to be eithef a parenthesized 

E or an i. Recursion is a mechanism by which the finite grammar 

can describe an infinite language. For example, in L(G1), any arbi

trarily long sequence of i's separated by +'s is a legitimate 

sentence. 

A conventional way to describe pictorially the derivation of 

?i+i? presented earlier is given in Figure 1 and is called a syntax 

tree. Syntax trees are useful in that they reveal something about 

the structure of the grammar. For example, the question of precedence 

of operators and whether a particular operator is left associative or 

right associative is easily seen in a syntax tree of the string in 



question. The string io+i1+i2+i3**i4**(i5+i6) and its syntax tree 

are presented below in Figure 2. (The subscripts are only to facil-

itate correspondence of the string with the tree. 

/1~ 
? E "? 
E/1 T 

I I 
T p 

I I 
p i 

I 
i 

Figure 1. Syntax Tree for S+*?i+i? 
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If the tree is traversed in postorder (9), it is clear that pa

rentheaized expreasions have precedence (i.e., they are encountered 

first in a postorder traversal) over **, which has precedence over 

+. Also, + is left associative while ** is right associative. 

G1 specifies FORTRAN-like arithmetic expressions. The associativity 

(grouping), right or left, is determined by the recursion, right or 

left. For some syntactic units, the grouping is unimportant; for 

example, a COMMENT is usually defined as any string of symbols of the 

alphabet with particular delimiters (e.g., /* *I in PL/1), and the 

grouping of the symbols is usually unimportant. However, the group

ing is of utmost importance in syntactic units such as arithmetic 

expressions. Examination of G1 and syntax trees for different sen

tences of L(G1) reveals the 1 to 1 correspondence of left recursion 

with left associativity and right recursion with right associativity. 

9 

The reader may well ask, "Is the syntax tree for a particular 

string unique?" Or perhaps more importantly, "Are the members of a 

set of syntax trees for a given string equivalent?" This is all part 

of a larger question, namely, "Is the grammar ambiguous?" A grammar 

is said to be ambiguous if the language produced by the grammar is 

ambiguous. Formally, a grammar is unambiguous if there does not exist 

more than one canonical derivation sequence for any sentence in the 

language. A thorough discussion of grammar ambiguity is beyond the 

scope of this thesis; suffice it to say that, for the purpose of this 

thesis, if a given sentence has two or more different syntax trees, 

then the grammar is ambiguous. In particular, the method presented 

in this thesis fails if the grammar is ambiguous. However, if the 

method fails, it is not necessarily true that the grammar is ambigu-



ous. 

Parsing 

Due to the complexity and depth of moat modern high-level pro

gramnting languages, there is a need to produce syntax analyzers me

chanically to minimize costs of translator implementation, to main

tain some degree of uniformity across different machines, and to 

facilitate changes and extensions to the language. 

10 

How is a string of L analyzed? What exists at this point is a 

set of rules for generating sentences of L(G). For a small finite 

language, one method is to generate all possible sentences and save 

them and then, to check any input string for validity, simply do a 

look-up. However, even for G1, this method is not feasible if for no 

other reason than the recursion allows arbitrarily long sentences. 

There are two general methods. of analyzing (also called recog

nizing or parsing) elements of a language. The first, and possibly 

easiest to understand, is the top-down method. It is essentially a 

goal-oriented method; that is, predictions are made as to what the 

sentence is {hopefully the goal symbol), and then attempts are made 

to verify the prediction by determining if all of one of the RHS al

ternatives are present. Of course, to detect this presence leads to 

further predictions for any part of the alternative which is a non

terminal symbol. Essentially what is done is to "draw" the syntax 

tree from top to bottom {root to leaves). In parsing the sentence 

?i+i?, the first prediction is that the sentence is an s. But be

fore it can be said that it is an S, the RHS must be verified, that 

is, an E enclosed in question marks. The first question mark is 
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found in the string. Now an E must be found; that is, the presence 

of one of the RHS alternatives for E must be verified. If recogni

tion of some alternative is attempted and failure results, then it is 

necessary to "backup" and try a different alternative; if all alter

natives have been tried, then the string is not a sentence. Continu

ing with this example, a try is made to find an E; but, from the 

earlier discussion, an E is a sequence of T's separated by +'s. 

Therefore, a T must be found; but a Tis one or more P's separat

ed by **'s; therefore, a P must be found, and is found since the 

next input symbol is i, which completes a RHS alternative for P. 

Since there is no **, the longest Tis found since P is a RHS 

alternative. The + is now detected and the next T in a manner 

similar to the first and, therefore, an E has been found and, with 

the closing question mark, an S; hence, the string is a sentence in 

L(G1). Referring back to Figure 1, what has been done is to work 

down the tree, from left to right. Left recursion can cause problems 

in top-down parsing. For example, in the above discussion, left 

recursion was avoided by saying that an E was one or Rore T's 

separated by +'s; however, that conclusion was only reached after 

some analysis of the grammaro If the problem had been attacked blind

ly, an E would have been predicted, then a move made to the alterna

tive E, +, T and an E promptly predicted; and an endless loop 

would be entered. 

The second commonly used parsing method is the bottom-up method. 

With bottom-up parsing, the syntax tree is not "drawn" but rather 

assumed to exist; and the method proceeds to verify this assumed 

tree. Again, working with G1 , the sentence ?i+i?, and Figure 1, a 
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phrase of the sentence is defined to be the set of end nodes of some 

subtree of the syntax tree. That is, a phrase is a derivation of 

some non-terminal symbol. The set of phrases of Figure 1 is {i, i+i, 

?i+i?}. The handle is defined to be the leftmost phrase which con-

tains no phrases other than itself. That is, the handle is the left-

most set of end nodes forming a complete branch, which is to say it 

is the direct derivation of the leftmost, bottom-most, non-terminal 

symbol node in the treeo Hence, in the example, i is the handle. 

The following algorithm, given in (6), reflects the general philos-

ophy of bottom-up parsing: 

(0) Lets• s0 be a string to be analyzed. For i • O, 1, ... ' 
n until sn • S has been produced, do the following 

steps. 

(1) Find the handle of •i• 

(2) Replace the handle of si by the name of its father in 

the syntax tree. 

(3) Prune the handle from the tree. 

The sequence sn + sn-1 + ••• +so is now a derivation of so. 

The following demonstrates the algorithm applied on s • s0 • ?i+i?. 

PRESENT STRING HANDLE STRING AFTER STEP 2 ---
(1) ?i+i? i ?P+i? 
(2) ?P+i? p ?T+i? 
(3) ?T+i? T ?E+i? 
(4) ?E+i? i ?E+P? 
(5) ?E+P? p ?E+T? 
(6) ?E+T? E+T ?E? 
(7) ?E? ?E? s 
(8) s 

If the steps in the "present string" column are followed back-
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wards, the derivation S +*?i+i? results. In fact, a rightmost 

derivation sequence exists in that each step is of the form PAB + 

PcB where B is a terminal string, c is a terminal symbol, and 

P€V*; that is, a production whose LHS is the rightmost non-terminal 

symbol of the sentential form is used. In this paper, the rightmost 

derivation is used as the canonical derivation. A canonical parse 

is the reverse of a canonical derivation. 
., 

All parsing methods have both good and bad characteristics. 

Some are easy to implement but inefficient while others are complex 

but efficient. Perhaps it is the lack of a "best" method that has 

led to the variety of methods (6). In general, there are two prob-

lems with which all syntax analyzers must deal. 

First, the problem of backtracking must be dealt with. In both 

bottom-up and top-down parsing, a choice must be made as to which 

alternative of a production should be used in the next step of the 

parse, Input symbols are then picked up to try to fulfill that al-

ternative. If the parsing scheme picks the wrong alternative, then 

it must back up and try another. One way of alleviating this prob-

lem, at least somewhat, is with look-ahead. That is, the parser 

scans ahead in the input string to gain a clue as to which alterna-

tive to attempt to match. Some of the questions raised by look-

ahead are whether only to look ahead or to look back at what has 

been processed or both and how far to look. As a preview, the 

method presented later has implicit unrestricted look-back and one 

symbol look-ahead. 

The second problem area for syntax analyzers is error recovery. 

That is, if and when an error i.s detected, what course of action 
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should the analyzer take. "ERROR IN ABOVE PROGRAM" is not a very 

informative diagnostic message. On the other extreme, an analyzer 

which could correct every error would have the intelligence to write 

programs itself. Error recovery and error correction are not treat-

ed to any degree of sophistication in this thesis. 

One of the principal characteristics about a lar$e class of 

context-free languages for which parsing methods in,this.thesis 
,. 

apply is that the syntax analyzers for them can be formal.ized as 

deterministic push down automata (DPDA) (6). By push down, it is 

meant that, if the DPDA were modelled by a computer program, then 

that program would use·· a stack. That is, a history of the previous-

ly travelled path is recorded (remembered). The nature of this 

DPDA, which consists of a finite number of states, a push down 

mechanism, and state transitions, is to input the symbols of a 

string and to make state transitions according to what symbol is 

read and the present state. In effect, a DPDA "remembers" the pre-

vious symbols (at least the ones it needs) by the path of state 

transitions to reach the present state. The goal is to reach a 

unique state, the final state, at the same time the input string 

is depleted. A language is deterministic if every sentence of the 

language is accepted by a DPDA. That is, every sentence causes the 

DPDA to reach the final state at the same time the input string 

becomes depleted. 

Knuth's original work (the LR(k) method) is equivalent to a 

DPDA in its acceptance of languages. The author's implementation 

is somewhat less general in that a restricted form of Knuth's 

method is used, resulting in a parser which accepts a large subset 



of the languages acceptable to a DPDA. 

Relations and Closures of Relations 

In the previous discussion of look-ahead and look-back, it was 

implied that they were methods for deciding which RHS alternative to 

use in the next step of a parse. This is equivalent to saying that 

15 

the handle can be uniquely determined. Usually, when there is look

ahead, what action to take is determined not only by what the scanned 

input symbol is but also by how much of a handle has been recognizedo 

In particular, the rightmost symbol (top of the stack) of the partially 

recognized handle is of interest. That is, the relation between the 

two symbols determines the action. The need for knowing particular 

relations between symbois of a grammar has led to 11 number of important 

properties and algorithms. 

To begin with, it is necessary to review the definition and 

properties of a binary relation and describe the notation. For sets 

A and B, the Cartesian product of A and B is defined to be 

A x B • { (a,b) I ae:A and b E B}. A binary relation, R, defined on 

Ax B, is defined to be a subset of Ax B such that the relati~n holds 

between the first and second elements of the ordered pairs. The possi

bilities A • B, AcB, Bc:A, AnB + 9' or MB • 0 exist. There are four 

notations used in this paper to describe R defined on Ax B. 

Notation #1 

R • { (a,b) I a EA, b E B, and a R b} 

Notation //2 

R(a) • {b I a e: A, b E B, and a R b} 
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Notation #3 

The relation can be defined by a matrix whose entries are either 

0 (false) or l (true), that is, a Boolean matrix. Correspond the rows 

with elements of A and the columns with elements of B. If a Rb, and 

a corresponds to row i, and b corresponds to column j, then the ijth 

entry is 1. If a i b, then the ijth entry is o. 

Notation #4 

The relation can be defined by a directed graph such that nodes 

a and b are connected by an arc if and only if a Rb. That is, for 

a € A, b t:: B, and a R b, there exists an arc from node a to node b. 

The properties of a relation, R, defined on Ax B, can be stated 

symbolically as: 

Reflexive. a R a for every a € A and every a e: B 

Symmetry. a Rb if and only if b Ra 

Transitivity. a Rb A b R c if and only if a R c 

for a € A, b e: A n B, c e: B 

If all three properties exist for R, then R is said to be an 

equivalence relation; for example, the relation of equality of positive 

integers (here A• B) is an equivalence relation. 

In the following, i, j, and k are positive integers: 

Reflexive. i • i 

Symmetry. i • j if and only if j • i 

Transitivity. i • j A j • k if and only if i • k 

The relation, H, defined on V of G1 by H • {(A,b) I A e: VN, be: V, 

C E: V*, and A: b, c. e: P}, exists between all LHS's and the first 

(head) symbol of their RHS alternatives. The pairs of G1 for which H 

holds are {(S,?), (E,E), (E,T), (T,P), (P,(), (,i)}. It is more con-
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venient to represent the relation with a Boolean matrix whose rows and 

columns correspond to V. For H(G1), Figure 3 applies. Also, for rea

sons of visual clarity, it is convenient to represent a relation as a 

directed graph where nodes related to each other are connected. For 

H(G1), Figure 4 applies. In terms of the directed graph, the Boolean 

matrix is the adjacency matrix. In Figure 4, an E eventually leads to 

a(. Some way to repre•ent this in a single 1tep rather than three is 

desirable, That is to say, a relation like H, but which is transitive, 

is desired 10 that all possible head symbols of strings that are de

rivatives of a given non-terminal symbol can be discerned. If H were 

transitive (which it is not), then an application of the transitivity 

would give EH T A TH P~ EH P, and EH P A PH (~EH(. 

But (E,P) and (E,() are not in H since P 11 not the fir1t 

symbol of a RHS alternative of a production for which E is the LHS 

and likewise for (. Therefore, it is necessary to define a new rela

tion, Ir', the transitive closure of H. However before defining tt+, 

the properties of the transitive closure of a relation need to be 

developed. 

s E T p ? + ** ( ) i 

s 0 0 0 0 1 0 0 0 0 0 

E 0 l 1 0 0 0 0 0 0 0 

T 0 0 0 l 0 0 0 0 0 0 

p 0 0 0 0 0 0 0 1 0 1 

Figure 3. Boolean Matrix Representation of H(G1) 
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? 0 0 0 0 0 0 0 0 0 0 

+ 0 0 0 0 0 0 0 0 0 0 

** 0 0 0 0 0 0 0 0 0 0 

( 0 0 0 0 0 0 0 0 0 0 

) 0 0 0 0 0 0 0 0 0 0 

i 0 0 0 0 0 0 0 0 0 0 

Figure 3. (Continued) 

Figure 4. Graph Representation of H(G1) 

The product of two relations, say Ron Ax B and Pon C x D, 

is defined by a RP d if and only if there exists an e EB n C such 

that c Re A e Pd is true. If Pis a product relation, say QT, 

such that e QT d so that there does exist an f such that e Q f A 

f T d is true, then, for the relation RP, which is actually PQT, it 
I 

is true that c Re A e Q f A f T d. But A is associative and 

hence R(QT) • (RQ)T. A theorem (7) that will be used extensively 

hereafter states that the Boolean matrix representation of a product 

relation can be computed by the product of the Boolean matrices for 
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the original relation. Using the definition of product, the powers of 

a relation, R, are defined by Rn• RRn-l where n>O and Rl • R and 

the transitive closure of R by a R+ b if and only if there exists 

a c such that a Rn c for some n>O. If the identity relation is 

denoted by Ro, that is, a RO b if and only if a• b, then the 

reflexive transitive closure, R*, can be defined as a R* b if and 

only if a Rn b for n~O. For the transitive closure, if each power 

of R is considered as a separate relation, then R+ • (Rl u R2 u R3 

u ••• u Rn} where n is the number of elements in the set on which 

the relation is defined. This is proven by Gries in (7). It should 

be clear without proof that R+ is itself a transitive relation. The 

transitive closure of H(G1) is defined by a+(A) ... {b EV I A -+* ·r-c 

where C E V*L W(G1) can be represented by the Boolean matrix in 

Figure 5. 

s E T p ? + ** ( ) i 

s 0 0 0 0 1 0 0 0 0 0 

E 0 1 1 1 0 0 0 1 0 1 

T 0 0 0 1 0 0 0 1 0 1 

p 0 0 0 0 0 0 0 1 0 1 

? 0 0 0 0 0 0 0 0 0 0 

+ 0 0 0 0 0 0 0 0 0 0 

** 0 0 0 0 0 0 0 0 0 0 

( 0 0 0 0 0 0 0 0 0 0 

Figure s. Boolean Matrix Representation of W"(G1) 



) 

i 

0 0 0 0 0 

0 0 0 0 0 

0 0 

0 0 

0 0 0 

0 0 0 

Figure 5, (Continued) 

Translating Figure 5 into a graph, Figure 6 results: 

Figure 6. Graph Representation of i:t+(G1) 
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H*(G1), the reflexive transitive closure of H, would differ from 

Ir"(G1) by having an arc from each node into itself. 

There are two subtle but very important ideas that are used here 

and need to be brought to the surface. The first is that, when form

ing the Boolean matrix Jr", a twist on matrix algebra is used. To 

actually perform RR, the rules of matrix multiplication are used, with 

"and" replacing "times" and "or" replacing "plus." This correspon

dence is clear when the Boolean matrix is represented with 1 for 

"true" and O for "false." That is, for ordinary matrix multiplication 



(AB• C), the ijth element of C is defined by 

n 

cij • L 8 ik bkj ; 
k•l 

but, for Boolean matrix multiplication, the ijth element of C is de-

fined by 
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where A and Bare square Boolean matrices of rank n. Rewriting the 

definition of R+ as R+ •Rn+ Rn-1 + ••• + Rl, it is seen that the 

computation of R+ has similarities of evaluating a matrix polyno-

mial with all coefficients equal to the identity matrix. Clearly, in 

a mechanical computation, some efficient method for the calculation 

of R+ is needed, perhaps a method similar to the nested multiplica-

tion method of evaluating polynomials. Such a method does exist and 

is known as the Warshall algorithm. The second point is how to re

late the powers of a relation to the grammar. n+(G1) is used as an 

example. Clearly, nl(G1) is the application of one production, that 

is, H(G1). But nl u n2 is the application of one or two produc

tions. For the graph of Figure 4, this in effect is connecting the 

paths of length 2, for example, the arc T~ic Likewise, for higher 

powers, H1 u n2 ... u Hi in effect connects arcs of length 1, 2, 

••• , i. Of course, this is with respect to the original graph. With 

respect to the present updated graph at each step, paths of length 2 

are always connected. 

Warshall (14) developed an algorithm for computation of the 

closure of an n x n Boolean matrix that is superior to other methods 

(e.g., nested multiplication). For example, Warshall claims that, 



while the computation of closure matrices for other methods goes up 

with n3, his method goes up slightly faster than n2, 
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Normally, the Warshall algorithm calls for n iterations; however, 

from a practical point of view, the user can, under certain restric

tions, reduce the number of iterations in the original algorithm and 

still produce the desired closure matrix. For G1 , there are 10 rows 

in the Boolean matrix representation of H(G1). If the original algo

rithm were used, 10 iterations would be made, one for each row. How

ever, there are only seven production rules so that at most seven 

iterations are needed. There is only one node for each non-terminal 

symbol; hence, the longest possible path has length equal to the number 

of non-terminal symbols. But it is also true that three of the pro

duction rules of G1 have the same LHS, and only one of the rules with 

a common LHS can apply at any step. Hence, only four iterations are 

needed. The point is that usually a restriction (resulting in greater 

efficiency) can be imposed on the Warshall algorithm, depending on the 

relation being closed. 

As stated earlier, for G1 , four iterations are needed and the 

Warshall algorithm makes one iteration for each row of the Boolean 

matrix. Since the Boolean matrices of concern represent a relation 

(i.e., a set of ordered pairs), the rows may be swapped in any manner 

provided similar swaps are made with the columns. Again recalling 

that the relation His defined on VN x V, it should be clear that it 

is desirable and correct to arrange the Boolean matrix representation 

of H so that the non-terminal symbols occupy contiguous rows and that 

the Warshall algorithm need only iterate on those rows. (Figure 3 is 

arranged this way.) If closure of H(G1) is thought of in terms of 
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Boolean matrix multiplication, the reader will see that, at every step 

(i.e., every power of H), the rows labelled with terminal symbols re-

main all zeroes. So it must also be with iterations of the Warshall 

algorithm. 

A symbolic statement of the algorithm may be found in (14); how-

ever, the major goal of this thesis is to present concepts and methods 

that are actually used in an implementation and, therefore, a PL/1 

program segment is used to describe the working algorithm. 

Let M be a bit matrix representing a relation defined on Ax B 

whose rows corr~spond to the elements of A and whose columns corres-

pond to elements of B. It is necessary that A~ B and that, if row 

i corresponds to x £ B. (An example of such an M is the first 

four rows and all colu~ns of Figure 3.) The PL/1 program segment 

follows. 

DO K•LBOUND(M,1) TO HBOUND(M,l); /* FOR ALL ROWS */ 
DO I•LBOUND(M,l) TO HBOUND(M,1); /* FOR ALL ROWS */ 

IF M(I,K) THEN /* IF AK TH COLUMN ENTRY IS TRUE*/ 

END; 
END; 

DO J•LBOUND(M,2) TO HBOUND(M,2); /* FOR ALL COLUMNS*/ 
IF M(K,J) ~HEN M(I,J)='l'B; 

END; 

Practical Restrictions on CF Grammars 

Gries (7) discusses some practical restrictions on CF grammars so 

that mechanically generated parsers can be applied more efficiently to 

the languages generated by CF grammars. Some methods require more 

restrictions than others. The LR(k) method, to be presented later, 

requires fewer restrictions than any other known method for which 

efficient parsers can be mechanically produced (3). 



24 

Restriction Ill 

A production of the form A: A. clearly makes a grammar ambigu

ous, serves no useful purpose, and can easily be detected either me

chanically or by visual inspection. In this thesis, it is assumed no 

such production is present. 

Restriction #2 

Every non-terminal symbol must appear in some sentential form, 

that is, S ~*xAy for every A EVN and x, y EV*. This condition can 

be mechanically detected by constructing the relation WITHIN, denoted 

by W, and defined by W(A) = {B I B :f.s a non-terminal symbol that 

appears in a production whose LHS is A}, then computing w+. For any 

"O" in the goal symbol row, except the goal symbol column, the symbol 

represented by that column is not "within" the goal symbol and there

fore violates the restriction. 

Restriction 113 

Every non-terminal symbol must be able to derive a terminal 

string. Gries (7) presents an algorithm for detecting this condition, 

which basically consists of "marking" any production whose RHS is com

posed of only terminal symbols or "marked" non-terminal symbols. Sev

eral passes over the productions are usually needed; and the algorithm 

stops when, during a previous pass, no LHS was "marked." When the 

algorithm stops, any unmarked production cannot derive a terminal 

string and therefore contributes nothing to the language specified by 

the grammar. 

Restriction 114 

No production is of the form A:., that is, no RHS is empty. 

Again this restriction is easily detected by visual inspection. In 



this thesis, it is assumed no such production is present. 

Restriction #5 
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No duplicate RHS's are present in the grammar. Duplicate RHS's 

cause most bottom-up methods to fail but do not necessarily affect the 

method presented in this thesis. However, as a general rule of thumb, 

grammars with duplicate RHS tend to cause the table construction meth

od to fail to produce a complete table. 

In the author's implementation, Restrictions #1 and #4 must be 

detected visually, but #2, #3, and #5 are mechanically detected. How

ever, only warnings are issued since, if these restrictions are vio

lated, they do not necessarily cause the method presented in this 

thesis to fail but do make it less efficient. 

In this chapter, elementary topics have been investigated. For a 

theoretical basis for these concepts, the reader is referred to (8) 

and, for an application~oriented reference, to (7). 



CHAPTER III 

LEFT TQ RIGHT TRANSLATION OF LANGUAGES 

The LR(k) Method 

The reader may well ask which is better, top-down or bottom-up 

parsing. There are advantages in both. What is sought is a completely 

language-independent (assuming a CF grammar) recognizer that is effi

cient and combines the most desirable aspects of both top-down and 

bottom-up methods. This is precisely what is embodied in Knuth's (10) 

LR(k) method, which can be described generally as a parsing method that 

scans sentences from left to right, using no more thank symbol look

ahead to determine whether to input the next symbol or make a reduc

tion. LR(k) grammars (grammars that produce languages which can be 

parsed with LR(k) methods) are the largest known class of CF grammars 

for which dete~_nistic (ioe,, no backtracking), left-to-right, bottom

up parsers can be mechanically generated. In fact, this class of 

grammars is capable of describing virtually all of the commonly ui.H:d 

programming languages (3). Another way of describing a deterministic 

language is to say that the handle can always be uniquely determinedo 

That is, the parser never picks the "wrong" RHS alternative" 

The LR(k) method, given a CF grammar, produces a tabltl which is 

used by a language-independent parsing algorithm to parse sentences of 

the language generated by the grammar, In generali Knuth's original 



LR(k) method produces tables too large f?r practical use. A closely 

related method known as SLR(k) (3) (simple LR(k)), which results in 
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more practical parsers, is the method of principal concern here. How

ever, for reasons of completeness, the LR(k) method is treated briefly. 

If a is a right sentential form, that is, a is a rightmost 

derivation of the goal symbol, then FIRSTk (a) is defined to be the 

first k terminal symbols derivable from a. That is, FIRSTk (a)• 

{w E VT* a ~*wx, x E VT* and either w is k symbols long or w 

is less than k symbols long and x • 0}. If a E Vr*, then FIRSTk 

(a) is the first k symbols of a. Every right sentential form con

tains a handle. An informal definition of an LR(k) grammar, given in 

(1), is that a grammar is LR(k) if the handle, h, of a right sentential 

form, bha, is unique and the production that derived the handle is 

uniquely determined by examining bh and FIRSTk (a). 

Development of an algorithm which does this examining for all 

right sentential forms follows. In actual practice, this consists of 

constructing the aforementioned table, which tells the parsing algo

rithm whether to stack the incoming symbol or make a reduction. A 

reduction consists of popping a RHS from the stack and replacing it 

with the corresponding LHS. This parsing action is the reason for 

stating earlier that the LR(k) method of parsing corresponds to a DPDA. 

The row of the table that is used in the decision corresponds to a DPDA 

state, the "push down" to the stack; and the method is deterministic 

as described above. An LR(k) table is actually two tables in one (1). 

The table is considered to be a pair of functions (p,g) such that: 

(1) p, the parsing action function, maps the look-ahead 

strings (length k or less) into stack, error, or 
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reduce!., where i is a production number. 

(2) g, the goto function, maps V to the states (rows of 

the table). 

The process ends when the final state (a particular row of the 

table) is entered. The problem of entering the final state with unex-

pended suffix does not exist since special delimiters are placed before 

and after the text to be processed. Also, there is a start state in 

which to start the processing. The parsing algorithm is the same for 

both the LR(k) and the SLR(k) methods. Actually, the tables are quite 

similar for both methods also, but it is in the construction of the 

table where the methods differ. 

For an LR(l) grammar, that is, k • 1, only one symbol look-ahead 

is allowed. It has been proven (10) that any LR(k) grammar can be 

rewritten in an equivalent form as ·an LR(l) grammar. Here, FIRST (A)c 

H+(A), that is, it contains the terminal symbol elements, 

The LR(l) table is constructed by first constructing the configu-

ration sets. There is a 1 to 1 correspondence between these configura-

tion sets and rows of the table. Each configuration set is composed of 

items; each item is of the form (A~a.b,u) where A+ab is a production 

(represents a direct derivation); the II II . marks the dividing point in 

a partially recognized handle; and u is a valid next input symbol if 

the item is recognized. There are two important actions used to con-

struct the configuration sets. 

CLOSURE - A set begins with items specified by expansion. The first 

set begins with (S+.?E?,0). If (A+a.Bc,u) is in the set, then 

(B+.d,v) is added to the set for productions B: d. for any de V* 

and v € FIRST (cu). Here, a,c £ V* and B e: VN. What is being done is 
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to find an item with the dot to the left of a non-terminal, then to 

enter all productions for which that non-terminal is a LHS. FIRST (cu) 

indicates what terminal symbol can follow the non-terminal symbol in 

the sentential form. Duplicate entries are never made. If FIRST (cu) 

has two elements, say v1 and v2, then two set entries are required; 

however, the SLR(k) method only has one set entry since FIRST is not 

considered when forming the configuration sets. This is the essential 

difference in the LR(k) and SLR(k) methods of construction. 

EXPANSION - Once a set is closed, it may be used to form a new set. 

That is, the algorithm finds all items in A with an X to the right of 

the dot (XE V). Then the new set, A', is initialized to these items 

with the dot moved to the right of the X such that A' is a set of items 

(B+aX.b,u) and (B+a.Xb,u) is in the set A. Each item can be used only 

once for expansion. If the sets are numbered from 1 ton, then, if 

A• Ai and A'• Aj, the entry at row i, column X (i.e., the column 

corresponding to X), is set to j. If A' • A11 , then A' is not added to 

the set of configuration sets; but the table is set as if it were 

unique. 

G2 is specified by: 

1. S: E. 

2. E: A, A. 

3. A: a, A; 

4. b. 

(B+a.b,c1), ••• , (B+a.b,cm) is denoted by (B+a.b,c1/c2/ ••• /cm). 

The results of computation of the configuration sets for G3 are shown 

in Table I. 
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TABLE I 

CONFIGURATION SETS - LR(l) METHOD ON Gz 

SET 
NAME NO. ITEMS NOTES 

Ao 1. S+.E,0 initial set 
2. E-+.M,0 
3. A-+.aA,a/b a,hEH+(A) 
4. A+.b,a/b a, bdI+(A) 

A1 1. S-+E. ,0 from A0 .l 
Az 1. E-+A.A,0 from Ao.2 

2. A+.aA,0 
3. A-+. b ,0 

A3 1. A-+a.A,a/b from A0 .3 
2. A-+.aA,a/b 
3. A+.b,a/b 

A4 1. A+b. ,a/b from A0 .4 
A5 1. E-+AA. ,0 from.Az.l 
A6 1. A-+a.A,0 from A2.2 

2. A+.aA,0 
3. A+.b ,0 

A7 1. A+b. ,0 from A2.3 
Ag 1. A-+aA. ,a/b from A3.l 
A9 1. A-+aA. ,0 from A6.l 

G3 is spec if ied by: 

1. S: ? E, ? • . ' 
2. E: a, A, b· ' 

3. a, B, c; 

4. d, A, c; 

5. d, B, b. 

6. A: f, A· ' 

1. f. 

8. B: fJ B; 

9. f. 



The results of computation of the configuration sets for G3 are 

shown in Table II. 

TABLE II 

LR(l) CONFIGURATION SETS FOR G3 

SET 
NAME NO. ITEMS NOTES 

Ao 1. S ... ?E? ,{/) 
Al 1. S+?.E?,0 from A0 .1 

2. E-1o-.aAb,? 
3. E+.aBc,? 
4. E+.dAc,? 
s. E+.dBb,? 

A2 1. S+?E.?,0 from A1.l 
A3 1. E+a,Ab,? from Ai,2 

2. E+a.Bc,? from A1 .3 
3. A+.fA,h 
4. A+,f,b 
5. B+,fB,c 
6. B+.f ,c 

A4 1. E+d.Ac,? from A1 .4 
2. E+d.Bb,? from A1.s 
3. A+ofA,c 
4. A+.f,c 
5. B+.fB,b 
6. B+.f,b 

A5 1. S+?E?.,9) "final" set 
from A2.l 

A6 1. E+aA.b,? from A3.1 
A7 1. E+aB.c,? from A3.2 
As 1. A+f.A,b from A3 .3 

2. A+f. ,b from A3.4 
3. B-+f.B,c from A3.5 
4. B.+f. ,c from A3.6 
5. A+.fA,b 
6. A+.f ,b 
7. B+.fB,c 
8. B+.f,c 

A9 1. E+dA.c,? from A4.1 
A10 L E-+tlB. b,? from A4 .2 
Au 1. A+f.A,c A11 is not a 

duplicate of 
As 

31 
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TABLE II (Continued) 

SET 
NAME NO. ITEMS NOTES 

2. A+f. ,c 
3. B+f.B,b 
4. B-t-f. 'b 
5. A+.fA,c 
6. A+.£,c 
7. B+.fB,b 
8. B+.f,b 

Al2 L E+aAb.,? from A6.1 
A13 1. E+aBc.,? from A7.1 
A14 1. A+fA. ,b from A8 .1 
A15 1. B+fB. ,c from A8 .3 
Al6 1. E+dAc.,? from A9.l 
A17 1. E+dBb.,? from A10 .1 
Al8 1. A+fA. ,c from A11 .l 
A19 1. B+fB. ;b from A11 .3 

The reader who is :i.nte,..es.tP·~ h, ,, .. ~p,-qtancHn~ the structure of a 

grammar using LR(k) techniques should pay particular attention to 

computation of the configuration sets. For any given item, the dot 

delimits how much of a handle has been formed. Closure shows what the 

next input symbol can be. Although the same item may appear in more 

than one set, the history of how that set was entered is contained in 

the entries created by expansion. 

Table III contains the LR(l) table for G3 • The table is computed 

from the configuration sets by the following algorithm (2): 

(1) If (B+b.,u) is in A and Bis not the goal symbol, then 

p (u) • i where i is the number of the production B: b. 

(2) If (B+a.b,u) is in A and b ~~'then p (v) = (for stack) 



for all v~FIRST (bu), that is, for all terminal symbols 

that can legitimately follow a in this state, 

(3) If (S+?B?,0) is in A, then p (0) • accept. 

(4) p (u) • error (blank entry) otherwise. 

(5) g (X) entries are as mentioned earlier. 

(6) If more than one entry is attempted for any table position, 

then the grammar is not LR(k) for the k used in construct

ing the configuration sets. 
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The parsing algorithm is quite simple once the table is generated. 

Also, the parsing algorithm is general in that it applies to a restrict

ed form of the LR(k) method, the SLR(l) method. The table entry·is 

selected by letting STACKTOP (i.e., the top of the stack) select the 

row and the next input symbol select the column. When the table entry 

is "stack," the next input symbol is stacked along with the table entry 

which is a state name. When the table entry is reduce (Le., a pro

duction number), N symbols are popped from the stack where N is two 

times the length of the RHS of the production used in the reduction, 

and the LHS of the production is pushed onto the stack along with the 

table entry selected by the STACKTOP row and LHS column. This table 

entry is always a state name. (This creates the effect of pushing the 

LHS into the unexpended suffix and then reading it.) 

The symbols in the stack catenated with the unexpended suffix at 

any step yield a right sentential form. Working from bottom to top, 

this results in S+?E?+?aBc?+?afBc?+?affc?, which is indeed the ri~ht

most derivation sequence for ?affc?. 
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TABLE III 

LR(l) TABLE FOR G3 

SE A· .B. s 
STATE ? a b c d f 9J ·1 · a· b c d. f 

0 s 1 
1 s s 2 3 4 
2 s 5 
3 s 6 7 8 
4 s 9 10 11 
5 A 
6 s 12 
7 s 13 
8 7 9 s 14 15 8 
9 s 16 

10 s 17 
11 9 7 s 18 19 11 
12 2 
13 3 
14 6 
15 8 
16 4 
17 5 
18 6 
19 8 

UNEXPENDED 
. STACK SUFFIX ACTION 

0 ?affc? initial condition, read? 
O?l affc? read a 
O?la3 ffc? · read f 
O?la3f8 fc? read f 
O?la3f8f8 c? reduce B: f. 
O?la3f8B15 c? reduce B: f, B. 
O?la3B7 c? read c 
O?la3B7c13 ? reduce E: a, B, c. 
0?1E2 ? read? 
0?1E2?5 9J accept 

Figure 7. Parsing ?affc? Using Table Ill 
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The SLR(l) Method 

Knuth's original article (10) introducing LR(k) grammars is con

sidered a classic because of its theoretical soundness and generality" 

However, attempts at practical implementation have suggested changes 

that result in somewhat less generality but substantially greater 

practicality. 

DeRemer proposed (3) and implemented (5) an LR(k)-like method 

which he called SLR(k) for simple-LR(k). Basically, it consists of 

constructing LR(k) configuration sets fork• O; that is, the method 

assumes (at least at configuration set construction time) that the 

grammar is LR(O). Whereas Knuth's original method uses k symbol look

ahead while constructing the configuration sets, DeRemer doesn't make 

use of k symbol look-ahead until table construction time and then only 

if necessary. 

The SLR(l) method is stated initially in terms of the LR(l) method. 

The FOLLOW function, F, is defined by F(A) • {a I S +*bAc and a• 

FIRST (c) where A E VN, a E VT, b EV*, and c E VT*}. That is, F(A) 

is the set of terminal symbols which may follow A in any right 

sentential form. The following algorithm constructs the SLR(l) table 

(2): 

(1) Construct the LR(O) configuration sets of items. 

(2) Replace each item of the form (A~b.,0), b EV*, in each 

set by (A+b.,a) for all a E F(A). 

(3) Construct the LR(l) tables from the altered sets of items 

with the function g determined as though dealing with LR(O) 

sets of items. 
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It is possible to have a conflict, that is, more than one entry 

for a table position for the SLR(l) method when one does not exist for 

the LR(l) method, which occurs when an attempt to perform the SLR(l) 

method on G3 is made. 

The author has implemented changes in the SLR(l) method which make 

the implementation more efficient. First, the stack and accept entries 

are deleted, and the numbers are negated in the p portion of the 

LR(l) table. Secondly, the modified p portion is "overlaid" with the 

g portion. Here, positive entries must be considered as not only tran

sitions to a different state (row) but also as signals for stacking; 

and the row corresponding to the final state must be identified so that 

a transition to it can be detected. But these are minor points. Also, 

if it is always agreed to surround the single RHS alternative of the 

goal symbol with special delimiters, the 0 column is completely elimi

nated since the only possible entries are reduction entries and accept; 

however, there are no reduction entries in the 0 column except for the 

number of the production S: ?, E, ?., but this is detected by detect

ing a transition to the final state. Also, the final state row and 

goal symbol column is deleted since there are no entries in either. 

The effect of this "overlaying" is an approximate 33 percent saving on 

the size of the table. Table IV shows the effect of "overlaying" 

Table III. 

This change is now incorporated, and the LR(O) sets of items for 

G1 are constructed. But first, some notation should be reviewedo 

Earlier it was seen that a particular set was initialized via expansion 

of some other set. These items in the initialized set are called the 

basis entries. The other entries of a set, that isj those added via 
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closure of the basis entries, are called closure entries. It should be 

noted that all basis entries never have the dot all the way to the left 

whereas closure entries always have the dot all the way to the left. 

The reader is advised that the author's construction of the configura-

tion sets is not identical to DeRemer's (4) in order; however, it is 

identical in content. For example, the author initializes the first 

state to be the final state so that its position is known reRardless of 

the grammar being processed. 

TABLE IV 

THE "OVERLAY" MODIFICATION OF TABLE III 

STATE E A B ? a b c d f 

0 1 
1 2 3 4 
2 5 
3 6 7 8 
4 9 10 11 
6 12 
7 13 
8 14 15 -7 -9 8 
9 16 

10 17 
11 18 19 -9 -7 11 
12 -2 
13 -3 
14 -6 
15 -8 
16 -4 
17 -5 
18 -6 
19 -8 
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The SLR(l) configuration set computation and table construction 

for G1 are demonstrated in Tables V and VI. 

TABLE V 

LR(O) CONFIGURATION SETS FOR G1 

SET NO. ITEMS NOTES 

1. S-+?E?. final state 
2. S-+. ?E? initial state 
3. S+?. E? from 2 

E-+.E+T closure entries for 
E+.T the single basis 
T-+.P**T entry; closure 
T-+.P ceases when dot is 
P-+.i left of terminal 
P-+ • (E) symbols 

4. S-+?E.? from 3; expansion 
gives final state 

E-+E,+T from 3 
s. E+T. from 3 or 8; no 

expansion here 
6. T+P.**T from 3 or 8 

T+P. 
7. P+L from 3 or 8 
8. J>-1>( • E) from 3 or 8 

E+.E+T indirect recursion 
E-+. T lengthens the set of 
T-+.P**T configuration sets 
't+.P 
F-+.i 
P+. (E) 

9. E+E+.T from 4 
T+.P**T 
T+.P 
P+.i 
P-+ • (E) 

10. T+P**.T from 6 
T-+.P**T 
P-+.i 
P-+ • (E) 

11. l4(E.) from 8 
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TABLE V (Continued) 

SET NOo ITEMS NOTES 

E-+E.+T from 8 
12. E-+-E+T. from 9 
13. T+P**T. from 10 
14. P+(E). from 11 

TABLE VI 

SLR(l) TABLE FOR G1 

STATE s E T p ? + ** i ( ) 

2 3 
3 4 5 6 7 8 
4 1 9 
5 -3 -3 -3 
6 -5 -5 10 -5 
7 -6 -6 -6 -6 
8 11 s 6 7 8 
9 12 6 7 8 

10 13 6 7 8 
11 14 
12 -2 -2 -2 
13 -4 -4 -4 
14 -7 -7 

It is now shown how to understand at least part of the structure 

of L(G1) by using Tables V and VI. Set #2 shows that an S is an E 

surrounded by ?'sand that ? must be the first input symbol. The 

dot represents the state of the parse. That is, the symbols to the 



left of the dot have been recognized (in the stack in the parsing 

algorithm); and those to the right have not been recognized. 
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Set #2 has no reduction (no item with the dot to the right), hence 

a state transition to state (row) #3 is made. (See row #2 of Table 

VI.) Set #3 (i.e., the basis entries) shows that this set was entered 

after reading (stacking) a ?, and the next symbol must be an E. The 

closure entries show the possibilities of what an E can be; that is, 

since the basis entry in the present sentential form is a derivation, 

the closure entries show what sentential form can possibly exist after 

one or more direct derivations of the basis entry. This is similar 

to a top-down parse of every possible sentence. For all closure 

entries, it is necessary to read (because of the dot position) and 

make a state transition. 

From previous discussion, it is known that an E is a series of 

T's separated by +'s. This can be deduced from Tables V and VI. 

Starting at set #3, which is one time the dot appears to the left of 

an E, it is seen that the closure entries define an E to be several 

different configurations. In particular, E+.E+T and E+.T show that, 

in order to have an E, a reduction on one or the other must be made. 

E+T. will certainly pop the stack and require a return to set #3 with 

an E as the next symbol if the next input symbol is + (see row #5 

of Table VI), after which a transfer to set #4 and a try to build a 

longer E will be made. 

To see this more clearly, ?i+i+i? is now parsed by using Table 

VI and using the same parsing technique presented earlier. 



41 

UNEXPENDED 
STACK SUFFIX NOTES 

2 ?i+i+i? initial 3•T(2,?) 
2?3 i+i+i? 7•T(3,i) 
2?317 +i+i? -6•T(7 ,+) and 6•T(3,P) 
2?3P6 +i+i? -S•T(6,+) and S•T(3,T) 
2?3TS +i+i? -3•T(S,+) and 4•T(3,E) 
2?3E4 +i+i? 9•T(4,+) 
2?3E4+9 i+i? 7=T(9,i) 
2?3E4+9i7 +i? -6•T(7,+) and 6•T(9,P) 
2?3E4+9P6 +i? -S•T(6,+) and 12•T(9,T) 
2?3E4+9Tl2 +i? -2•T(l2,+) and 4mT(3,E) 
2?3E4 +i? 9=T(4,+) 
2?3E4+9 i? 7•T(9, i) 
2?3E4+9i7 ? -6•T(7,?) and 6•T(9,P) 
2?3E4+9P6 ? -5•T(6,?) and 12=T(9,T) 
2?3E4+9Tl2 ? -2=T(l2,?) and 4=T(3,E) 
2?3E4 ? l•T(4,?) 
2?3E4 ?l 0 final state-accept 

Figure 8. Parsing ?i+i+i? Using Table VI 

In the actual implementation. only states are stacked since, if 

the symbol is needed for any reason, it can be deduced because each 

canonical derivation sequence is unique and the stack and table to-

gether maintain a history of the parse. 

The reader is encouraged to visually correspond the parse with 

the configuration sets. Perhaps the greatest asset of the SLR(l) 

method is that any set of productions for a CF grammar can be input, 

and the user will be provided with the sets and tables which can help 

lead to an understanding of the language generated by the grammar. 

And, at the same time, the user is provided with a syntax analyzer 

with which he can experiment with sentences for purposes of establish-

ing validity. 

So far, everything said about SLR(l), at least with respect to 
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o1 , also applies to LR(O). What is the difference between the two 

methods? In an actual LR(O) table, rather than enter the reductions 

only under symbols in the FOLLOW set, they would be entered under 

every terminal symbolo For example, row #5 in Table VI would have a 

-3 under**, i, and ( also. It appears DeRemer (4) would do likewise 

in most cases with his SLR(l) method. This could cause reductions to 

be made after an error condition is detected; in fact, this is a 

characteristic of the SLR(k) method. 

Clearly, the above action will not work for state (row) #6 in 

Table VI. This would be an example of a conflict. In SLR(l) table 

construction, there are two kinds of conflicts. DeRemer (4) uses the 

term inadequate state for a state with conflicts. An inadequate state 

is one with either both a reduction entry and a transition entry or 

two different reduction entries. A table with no inadequate states 

is a table for an LR(O) grammar (4). A state with only a reduction 

entry is a reduce state. A state with only transitions is a read 

state. An inadequate state is said to be solvable if the one symbol 

look-ahead set (FOLLOW function) indicates which action to take for 

a given next symbol. An unsolvable inadequate state is one where, 

with one symbol look-ahead, which action to take still cannot be 

determined. 

State #6 is the only inadequate state for G1, and it is solvable. 

By inspecting set #6, it is seen that both a reduction and a transi

tion are present. Of course, the problem is caused by the right group

ing of** and the need to look ahead in the input string to see if 

the longest T has been found, which is a series of P's separated by 

**'s. The action of the parsing algorithm on right recursion is to 
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stack up all of the P's separated by **'s and then reduce from 

right to left. Two FOLLOW sets need to be computed. That is, FOLLOW 

(T) needs to be computed since it must be known what can legitimately 

be the input symbol if the reduction is madeo But FOLLOW(P) is not 

computed for the entry T+P.**T since, by definition, the one symbol 

look-ahead set for a transition entry is FIRST (symbol to right of 

dot, FOLLOW (LHS)), which in this case is FIRST(**, FOLLOW (P)). 

Therefore, the FOLLOW element can be deleted since in a transition 

entry there is always a symbol to the right of the dot; and this sym-

bol is either a terminal or a non-terminal, X, for which the terminal 

symbols in H+(x) are selected. 

In state #6, the one symbol look-ahead set for T~P.**T is 

{**}. For FOLLOW(T), the productions are inspected to see what 

terminal symbols can follow T in a sentential form. From production 

#3 or #2, it is seen that what can follow an E can also follow a T• 
' 

therefore, FOLLOW (T) • {+,),?}. Hence, G1 is SLR(l) since the only 

inadequate state has disjoint one symbol look-ahead sets. This, in 

essence, is the definition of a SLR(l) grammar (4)o A disjoint set 

implies that, by looking one symbol ahead in the input string, it can 

be determined which entry of the inadequate state to employ. In state 

#6 of Table VI, FOLLOW (T) input symbols cause a reduction; and** 

causes a transition. 

The FOLLOW function can be computed two ways. One way is direct-

ly from the productions. The method first computes the relation, F, 

defined by F(A) = {b I there exists a production C: a,A,B,c. where 

any one of c or a may not be present. 
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Now, if Fis represented as a Boolean matrix, then closure of F 

results in FOLLOW, each row corresponding to AE:VN and the "true" 

columns representing the elements of FOLLOW (A). For an operator 

grammar (6), a+(G) is not needed since every AE:VN is followed by a 

terminal symbol or is the last symbol of a RHS, 

The second way to compute FOLLOW is developed by DeRemer as a 

theorem. The proof is found in (4). This method (used in the au

thor's implementation) uses the function g part of the table and 

T*(G), the reflexive transitive closure of the inverse of the tail 

symbol matrix, T, defined by T(A) • {Be:VN I B+*aA where AEVN, aE:V*}. 

That is, the only concern is with tail symbols that are non-terminals. 

An algorithm for computing FOLLOW follows: 

(1) Compute T*(A) as above. 

(2) Start with an empty set, L. 

(3) For each transition under a symbol in T*(A) to some 

state N, add to L each symbol SE:VT such that there 

is a transition under s from N. 

(4) The resulting set is FOLLOW. 

Since FOLLOW is computed for every AE:VN in the author's imple

mentation, an algorithm is presented for this also. T, T* are the 

denotations for the Boolean matrix representation for the relations 

T, T*, respectively. 

(1) Compute T* for every Ae:VN; initialize FOLLOW to "false." 

(2) For each column, c1 , of T*; for each row, R1, of T*; if 

T (R1, C1) is true, then for each row, R2, of the table; 

if TABLE (R 2,R1) is not zero, then for each terminal 

symbol column, c2; if TABLE (TABLE (R2,R1), C2) is not 

zero, then FOLLOW (c1 ,c2) + "trueo'' 
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This algorithm is similar to the Warshall algorithm. The re-

flexive transitive closure of T is needed as shown in the following 

discussion. To compute FOLLOW (P), the pth column of T* must have 

a "true" in it. But this is so only if P is a tail symbol of some 

AE:VN, which does not occur unless it is assumed the production A: P. 

is present during construction of T* for some A€VN. But it is also 

true that the pth row must have a "true" in it, that is, P must have 

an A€VN as a tail symbol since T* is only computed for non-termi-

nals. The solution is to use a reflexive transitive closure, that 

is, all productions of the form A: A. are assumed to be present 

only during computation of FOLLOW. 

The author's implementation differs from DeRemer's original 

SLR(l) method in that every state is considered to be inadequate. It 

is not clear whether DeRemer computes FOLLOW for every A€VN, but it 

appears that he does not. The remaining question is what differences 

exist among LR(l), DeRemer's SLR(l), and the author's SLR(l). 

Comparison of Table Construction Methods 

It should be clear from Table VI that, if reduction entries are 

made for all terminal symbol columns, reductions can be made after an 

error condition is detected. For example, if ?ii? is parsed using 

Table VI and row #7 has -6 under all terminal symbols, it is necessary 

to reduce the first i to P and, in fact, P to T and T to E 

before an error is detected; however, by using FOLLOW, the error is 

detected before the first reduction. It is desirable to detect errors 

at the earliest possible time; however, it is inherent in DeRemer's 

method (3) that reductions can take place after an error condition is 
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detected, and it is also inherent (although not as extensively) in the 

author's implementation. However, neither will read another input 

symbol once an error is detected. In Knuth's original method (10), 

neither reductions nor reading can occur after an error is detected. 

The reason for this is that Knuth keeps track of what the next input 

symbol can legitimately be for each entry in every set, but the SLR(l) 

method assumes that if one symbol may follow another in any sentential 

form then it may follow it in every sentential formo 

Computation of the SLR(l) table for G3 , which was shown to be 

LR(l), but is not SLR(l), follows. (In fact, it is not SLR(k) for 

any k.) 

TABLE VII 

SLR(l) CONFIGURATION SETS FOR G3 

SET NOo ITEMS 

1 S+?E?. 
2 S+. ?E? 
3 S+?. E? 

E-+.aAb 
E-+-.aBc 
E-+.dAc 
E+.dBb 

4 S-+?E.? 
5 E+a.Ab 

E+a.Bc 
A+.fA 
A+.f 
B+. fB 
B+.f 



TABLE VII (Continued) 

SET NO. ITEMS 

6 E+d.Ac 
E-+d.Bb 
A+.fA 
A+.f 
B+.fB 
B+.f 

7 E+aA.b 
8 E+aB.c 
9 A+f .A 

A+f. 
B+f.B 
B-+f. 
A+ 0 fA 
A+.f 
B+.fB 
B-+. f 

10 E+dA.c 
11 E-+dB.b 
12 E+aAb. 
13 E+aBc. 
14 A+fA. 
15 B+fB. 
16 E-+dAc. 
17 E-+dBb. 

Comparing the LR(l) and SLR(l) tables for G3, it is seen that 

Table VII is much shorter than Table II. Also, in Table II, there 

is a note pointing out the difference between A8 and A11 • These 

two sets combine into one set in Table VII, namely set #9; and it 

is because of this combining that G3 is not SLR(l), In particular, 

b and c are both in FOLLOW (A) and FOLLOW (B) and, hence, if the 

next input symbol is b or c, it is not known which reduction to 

make. 
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A grammar has been given that is not SLR(k) (G3), and also a 

grammar has been given that is SLR(l) (G1). For completeness, a 

grammar that is SLR(2) is now presented. G4 is specified by: 

1. S: ?, E, ?. 

2. G: A; 

3. C, B; 

4. A, b, c. 

5. A: a. 

60 B: b. 

7. C: A. 

TABLE VIII 

SLR(l) CONFIGURATION SETS FOR G4 

SET NO. ITEMS 

1 S+?G?. 
2 S-+. ?G? 
3 S+? .G? 

G+.A 
G+.CB 
G+.Abc 
A+,a 
c+.A 

4 S+?Go? 
5 G+A. 

G+A.bc 
C+A. 

1 A+a. 
8 G+Ab.c 
9 G+cB. 

10 B+b. 
11 G+Abc. 
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TABLE IX 

SLR(l) TABLE FOR G4 

STATE G A B c ? b c a 

2 3 
3 4 5 6 7 
4 1 
5 -2 -7/8 
6 9 10 
7 -5 -5 
8 11 
9 -3 

10 -6 
11 -4 

The double entry in row #5 of Table IX indicates that state #5 

is unsolvably inadequate since b is in FOLLOW (G) and is to the 

right of the dot in the transition entry. The set of sentences com-

prising L(G4) is {?a?, ?ab?, ?abc?}. Figure 9 shows an attempted 

parse of ?abc?. 

STACK 

2 
2?3 
2?3a7 
2?3A5 

UNEXPENDED 
SUFFIX 

?abc? 
abc? 
be? 
be? 

NOTES 

initial condition 
3•T(2, ?) 
7•T (3 ,a) 
-5•T(7,b) and S•T(3,A) 

Figure 9. Parsing ?abc? Using Table IX 



NOTE: At this point, T(S,b) pertains, but the SLR(!) method 

has not provided enough information to decide whether 

to reduce A to a C or read the b. If the parser 

could look ahead one more symbol (i.e., two symbol 

look-ahead) and see the c, then it is clear that b 

should be read. If the sentence had been ?ab?, 

then the "pick" would be to reduce rather than read. 

pick 8=T(S,b) 
ll=T (8 ,c) 
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2?3A5b8 
2?3A5b8cll 
2?3G4 

c? 
? 
? -4=T(ll,?) and 4•T(3, 

G) 
2?3G4?1 final state 

Figure 9. (Continued) 



CHAPTER IV 

CONCLUSION 

This thesis consists of two major parts. The first presents 

many of the topics covered in a beginning course in formal language 

theory, but in a way that is meant to appeal to the reader's intu

ition. A secondary purpose is to get the reader thinking about CF 

grammars in a way pertinent to the second major part. No single 

reference covers all of the presented points. Rather, most refer

ences tend to cover specific points in a more detailed manner. 

The second part presents Knuth's LR(k) method of syntax analy

sis and, in particular, the SLR(l) method. The result of the full 

description and numerous examples is twofold. The first provides 

an efficient language-independent syntax analyzer, which may be 

used in the development of, for example, a compiler. Parsers for 

a subset of ALGOL 68, ALGOL 60, and BASIC have been produced with 

satisfactory results. The second provides a tool by which the in

put of any context-free grammar yields information which demonstrates 

the structure of the grammar and the language generated by the gram

mar. It cannot be overemphasized how useful the configuration sets 

are in helping to understand a language structure simply by inputting 

a set of BNF rules. This is especially true in grammars with in

direct recursion since visual observation of the production rules 

yields little insight into the nature of the language. 
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In conclusion, LR(k) methods are the newest and most general of 

the methods used for syntax analysis of languages produced by CF 

grammars. They are shown to be superior to most methods and are 

more general than any known method for which efficient parsers can 

be mechanically produced • 

• 
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APPENDIX A 

LIST OF SYMBOLS 

PAGE OF FIRST 
SYMBOL MEANING OCCURRENCE 

CF context-free 1 
TWS translator writing systems 2 
v vocabulary of a grammar 4 
V* all strings of elements of V 4 

is followed by 5 
exclusive "or" 5 
may be rewritten as 5 
delimit~r 5 

€ set inclusion 5 
LHS ~eft hand side 5 
RHS right hand side 5 
VT the terminal symbols of V 5 
v the non-terminal symbols of V 5 
{N} 1et delimiters 6 
+ a direct derivation 6 
+* a derivation (closure of+) 6 
DPDA deterministic push down automata 14 
A x B the Cartesian product of A and B 15 
c is a subset of 15 
n intersection 15 
a R b a is related 'to b 15 
/\ logical and 16 
~ implies 17 
u union 18 
v logical or 20 
I summation 20 
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APPENDIX B 

USER'S GUIDE 

Input/Output 

To use the routine, the user must be familiar with the input and 

output of the routine. The input comes in on two different files, 

PARMIN for parameters and PRODIN for the productions. There are 11 

input parameters, each an integer in a 4-byte field, left justified 

on an BO-byte record. 

PARAMETER 
NUMBER 

1 

2 

3 

4 

5 

6 

7 

8 

9 

DESCRIPTION 

number of productions 

maximum number of symbols in any produc
tion 

maximum number of characters in any 
symbol or at least~ number of characters 
to make every sym~ol unique 

maximum number of unique symbols in the 
grammar 

number of items in all configuration sets 
combined 

number of configuration sets 

maximum number of basis entries for any 
configuration set 

• 1 to activate the DEBUG facility 

m 1 to count and list solvable inadequate 
states 



PARAMETER 
NUMBER 

10 

11 
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DESCRIPTION 

• 1 for full printed output 

• 1 for punched output in a form to be 
read by the parsing routine 

There are defaults for O input parameters 4, 5, 6, and 7; however, 

these defaults represent only a guess based on the grammar. After an 

initial run, output statistics allow the user to set these parameters 

accurately for future runs, if needed. 

For the production rules, the format is the LHS (left-hand-side) 

immediately followed by a colon, followed by one or more blanks, then 

the RHS (right-hand-side) parts each followed by a comma and one or 

more blanks. The rightmost part of an alternative is followed by a 

semicolon and one or more blanks if it is not the last alternative; 

otherwise, it is followed by a period and one or more blanks. Column 

72 must be blank; but, other than the listed restrictions, the format 

is free form. The first LHS is considered to be the user's "pseudo" 

goal symbol. That is, it is a goal symbol which may occur in a RHS. 

All productions with a common LHS must be grouped consecutively. This 

format allows the productions to be sequenced without affecting the 

routine. 

The reason for using two different input files is that many times 

the user may wish to store the productions on secondary storage be-

cause of their length but, because of the need to change parameters 

from run to run, it is better for them to be on cards. 

The routine is serially reusable, and multiple gramm~rs may be 

input to the routine. To do this, the user simply places the param-



eter records (one for each grammar) in order in file PARMIN and 

separates each set of productions with a delimiter card that has a 

period in the first byte and blanks thereafter. Input of a grammar 

terminates on end-of-file or a delimiter record for file PRODIN, and 

the routine terminates on end-of-file for file PARMIN. 
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The output consists of several of the internal tables. The out

put of each section of the routine is clearly delimited by labelling. 

First, a copy of the productions is output followed by statistics on 

the grammar enabling the user to respecify some of the input param

eters in order to reduce the memory requirement of the routine. Next, 

the encoded form of the productions is output. During input, each 

symbol is encoded to its position in the symbol table. Next, two 

mapping arrays are output along with the symbols. The "TO" column 

maps the symbols to the columns of the SLR(l) table, and the "FROM" 

column maps the columns of the SLR(l) table to the symbols. If 

DEBUG is enabled, the next output is messages (perhaps none) reflect

ing violated restrictions on the grammar. Statistics on the config

uration sets are then output. Each of these statistics was put in 

by the user as a parameter; however, there is no way to really know 

what these parameters should be until after the routine has run at 

least once. Once the routine runs for a grammar, these output sta

tistics will allow the user to set the parameters more accuratelyo 

All parameters should be set as small as.possible since storage is 

allocated per the parameters. Next, the LR(O) conf:t,uration sets are 

output in a similar format to that presented in the body of this 

thesis. Also output is the dot position {"2" is all the way to the 

left), the upper bound of the set {all sets are in a single vector), 



and the number of basis entries. Finally, the full SLR(l) table is 

output along with the column-to-symbol relationships and results of 

the inadequate state counter. 

Restrictions 
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There are no restrictions on the input except the format and size 

of the host machine. This can be a factor for small-to-medium ma

chines. For example, ALGOL 60 takes approximately 200K bytes to 

execute. A possible remedy for this is to store the data structures 

on scratch files; however, this would greatly increase execution time 

since the structures are not processed in any set manner. That is, 

processing is highly dependent on the grammar. Also, since the SLR(!) 

table is quite sparse, a sparse matrix technique such as found in (9) 

might be employed to some advantage. 

Job Control Language Required 

The following JCL is required if the source deck is input: 

//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5),'NAME' 

//STEPl EXEC PLlLFCG 

//PLlL.SYSIN DD* 

--SOURCE DECK-

//GO.PARMIN DD* 

--PARAMETER CARDS-

//GO.PRODIN DD* 

--PRODUCTIONS-

//GO.PRINT DD SYSOUT=A 



//GO.PUNCH DD SYSOUT•B,DCB•BLKSIZE•SO 

II 

The routine is presently stored in load module form and may be 

executed with the following JCL. 

//JOB NAME JOB (XXXXX,YYY-YY-YYYY,5),'NAME' 

//STEPl EXEC PGM•SLRl 

//STEPLIB DD DSN•OSU.ACT11098.PROG,DISP•SHR 

//PARMIN DD* 

--PARAMETER CARDS-

//PRODIN DD* 

--PRODUCTIONS-

I/PRINT DD SYSOUT•A 

//PUNCH DD SYSOUT•B,DCB•BLKSIZE•80 

II 

Suggested Modifications 
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In addition to the different storage techniques mentioned ear

lier, there are other modifications the user may want to make. For 

example, in the present version, SUBSCRIPTRANGE, STRINGRANGE, and 

SIZE are enabled for the whole routine; however, the author believPs 

that only the input section needs such checks and that the other 

sections contain the logic to take care of these conditions, The. 

reader familiar with the PL/1 compiler will recognize the sanngs :in 

both compile and execution time that could be realized by turning off 

these condition checks. However, for small grammars, the difference 

in execution time is almost negligible because of the overall speed. 

For example, G1 executes in two secondso 
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The user may also want to output running statistics on the con-

figuration sets since, if the parameters are too small, the program 

fails with only a brief diagnostic whereupon the user must increase 

the parameters and retry the grammar. For grammars with a high degree 

of recursion such as ALGOL 68, the problem of setting the parameters 

large enough and still staying within the machine storage limits can 

be quite frustrating. The following table may help to serve as a 

guide. 

GRAMMAR 

Gl ALGOL 60 ALGOL 68 BASIC BASIC 
(subset) (simple 

precedence 
form) 

Number of 
productions 7 181 159 99 85 

Number of 
parts 4 6 6 5 9 

Number of 
symbols 10 141 99 102 89 

Number of 
characters 4 31 10 10 10 

Number of 
sets 15 304 310 174 148 

Combined 
length of sets 50 2191 5592 957 816 

Number of 
basis entries 3 5 10 3 3 

Reduction 
queue 0 22 0 0 0 



If the user wants a stripped-down, super-fast version, he may 

also completely remove the debug section without affecting the rou

tine. Also, he may want to output the results of the input section 

onto secondary storage so that, if the routine fails later because 
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of input parameters, he may bypass the input section (with the excep

tion of parameter input) on subsequent runs. Also, he may choose to 

write the output to secondary storage instead of punched cards since, 

for example, the BASIC grammar produces approximately 900 cards. Of 

course, one must realize that more output is produced than is actually 

needed (for example, the MAPFROM array); but, if meaningful diagnos

tics are to be produced by the parser, all of the output is necessary. 

An alternative to punching or writing out tables would be to 

actually produce the parser program (minus the scanner, of course). 

The parser is only a skeleton whose DECLARE statements could be fill

ed in with the proper data with the INITIAL attribute, which the 

routine could easily do. 

If the routine is to be used to produce a parser for the language 

generated by the input grammar, the user may want to precede all 

terminal symbols in the grammar with some special symbol, for example, 

the double quote, because the symbol table method used is a balanced 

binary tree method (12) and such a prefix on the terminal symbols 

will tend to cause all of them to be placed in the same subtree, 

slightly decreasing the average look-up time. It should be pointed 

out that only the terminal symbols along with the symbol's position 

need be output to the parser if the parser's scanner uses some other 

look-up technique (e.g., linear search); however, this is not recom

mended. 
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,. TITLE: SLRlll PARSING TAbLE GtNERATOR (J.L. GRAY, o.s.J. 197ll 

SUBJECT: GENERATION IJf SLRlll PARSINb TABLE 

AUTHOR: JOSEPH Lo GRAY 

INSTALL·ATION: OKLAHOMA STATE U~IVE~SITY lbll 3b0/65 
PL/ l LEVEL F V ERS !ON 5 .2 C 

DATE: FALL S EM EST ER 197 2 

THE: WORK HEREIN IS PARTIAL FULFILLMENT OF THE MASTER'S PROJECT 
REQUIRED FUR THE MASTER OF SCIENCE DEGREE IN ~OMPUTER SCIENCE:. 

PROJECT ADVISOR: OR. J. VAN OOREf,; 

RHERENCES: 
lo COMPILER CONSTRUCTION - GRIES 
2 • SIMPLE LRIKl GRAMMARS - DE REHE~ CACM 14 P 453-460 JULY 1971 
3. PRACTICAL TRANSLATORS FOR LR(KI LANGUAGES - OE REHEI< PH.Do THESIS 

MIT SEPT 1969 
4. SIMPLE LR(Kl GKAMMARS - DEFINITION ANO IMPLEHtNTATIDN - Ut REMER 
5. THE CARE AND FEEDING OF LRIKI GRAMMARS - AHO AND JLLMAN PROC. 

THIRD ANNUAL ACM SYMPOSIUM ON THEORY IF COMPUTING HAY 1971 
6. A TECHNIIJUE FOR SPEEDING UP LRIKI PARSERS - AHO AND ULLMAN ACM 

SYMPOSIUM ON THEORY OF COMPUTING 1972 
7. ON THE TRANSLATION uF LANGUAGES FROM LEFT TO RIJHT - KNUTH 

INFORMATION Al'lD CONTROL ij 1965 
8. A THEOREM ON tlOOLEAN MATRICES - WARSHALL JACH P ll-12 1962 
9. Al'l ALGORITHM FOR MAINTAIN ING DYNAMIC AVL TREES - VAl'l DOREN ANO GRAY 

SUBMITTED TO FOURTH INTERNAT.IONAL SYMPOSIUM G'l COHPUT ING AND 
IN FOR HAT ION SC I ENCE 

THE ROUTINE CONSISTS OF 3 BASIC SECTIOl'lS, THE THIRD BEING OIWIDED INTO 
2 SUBSECTIONS, EACH OF THE FIVE CONTAINED IN A BEGIN-END BLOCK. ALSO 
2 INTERNAL PROCEDURES ARE EMPLOYED. A SCHEMATIC DIAGRAM OF THE tlLOCK 
STRUCTURE FOLLOWS. 
SLRl: 
REUSABLE: 
THE_WHOLE_THING: 
READER_SECTION: 

DEIIUG_SECT ION: 

TABLE_GENERATE_SECTION: 
LRO_GENERAT E: 

SLR l_GENEl<ATE: 

WARS HAL: 

BSTSLR: 

ERl<OR: 

PROC 
BEGIN 

BEGIN 
BEGIN 
END READER_SECTlON 
BEGIN 
END DEBUG_SECT ION 
BEGIN 

BEGIN 
END LRO_GENERAT E 
tlEGIN 
END SLRl_GENERATE 

ENO TABLE_GENERAT E_S ECT ION 
PROC 
END WARSHAL 
PROC 
ENO BSTSLR 

END THE_WHOLE_THil'lG 
GO TO REUSABLE 
ERROR MESSAGE JUTP UT 
GO TU REUS ABL t 
ENO RE USAdLE 

uu:.uocoo 

Ot.,CUOOO l 

ulJClJOC02 

Ul.,CUCC03 
DJCuCC04 

UUCU0005 

ULCUOOOo 
i.JLC.U0007 

ULCUOCOB 

iJUC U0009 
iJUCUOOlO 
UuCUOOll 
iJOC U0012 
oocuoou 
UOC U0014 
D~Cu0015 
UOCUOOlo 
uoc uoih 1 
DDCU0018 
uucuoo 19 
DuCU0020 
OOCU002 l 
UOCU0022 
OOCU0023 
OOCU0024 

UOCUD025 
DOCU002b 
U:lCUOD27 
OOCU0028 
DOCU0029 
llDCU0030 
UOCU003 l 
ouc uoo,2 
DOCU0033 
UC,CU0034 
OOCU0035 
OOCU0036 
UCICU0037 
DJCU0038 
OOCU0039 
DOC U0040 
DOCU004l 
UuCU0042 
OOCU004::I 
DUCU0044 
DUCU0045 
iJOCU004b 
WCU0047 
uGLU004d 
uoc Li0049 . 
UC.CU0050 

END SLR! 
THE RATIONALE FOR THE HEAVY USE OF BLOCK STRUCTURIN(; IS TO REDUCE TttE 
INHERENT NEED FOR LARGE AMOUNTS OF STJRAGE BY TAKING FULL ADVANTAGE Uf 
THE DYNAMIC STORAGE CAPA81TITIES OF THE SOURCE LANGUAGE. FOR SMALLER 
HOST MACHINES, SCRATCH FILES RESULTING IN SLO~ER EXECUTION TIME WOULU 
BE NEEDED FOR LARGE GRAMMARS. 

SECT ION OESCRIPTION: 

REUSABLE: THE ALL INCLUSIVE REUSABLE BLOCK IS PRESEl'lf ONLY TO ALLuii 
MULTIPLE GKAMMAR INPUT; THAT IS, T<iE PROGRAM IS SERIALLY REUSABLE. 

WHOLE: THING: PARAMETERS SETTING CERTAIN LIMITS Oli THE GRAMMAR 'ANO 
TABLE5 ARE INPUT OUTSIDE THE dLOCK ANO USED nl THIN THE BLOCK FOR 
DYNAMIC OECLARAT I ON PURPOSES. 

READER: THIS SECTION INPUTS AND ENCODES nlE PROUUCT!ONS, tlUILOING A 
SYMBOL TABLE USING BSTSLR, AND SUILDS CERTAIN MAPPING ARRAYS FOR DATA 
STRUCTLRES USEO. 

DEBUG: THE EXECUTION OF THIS SECT ION IS USER CONTR()LLED AND PERFORMS 
CERTAIN CHECKS ON THE GRAMMAR. 

TABLE GEl'lERATE: CONTAINS ONLY DECLARATIONS NEEDED FOR THE FOLLOwING 2 
SEC Tl ONS. . 

LRO GENERATE: THIS SECT ION FIRST GENERATES THE CONFIGURATION SETS 
AS IF THE GRAMMAR IS LRIOJ THEN THE TRANSIT ION ENTi<IES AKE PLACED 
IN THE SLR(ll TAtlLE. THE FILLING IN OF REDUCTION ENTRIES IS 
POSTPOl'lED UNTIL THE FOLLOWING SECTION. 

SL~l GENERATE: THIS SECTION GE:NERATES THE COMPLETE SLRlll PARSING 
TABLE AND IIF USER SELECTS! CO~NTS AND LISTS INADEQUATE STATES ANO 
PUNCHES THE TABLE, SYMBOL TABLE, AND OTHER STATISTICS NEEOl:O BY THE 
PARSER. 

PROCEDURE DESCRIPTWN: 

BSTSLR: THE INSERT SECTION OF A BINARY TREE SYMBOL TABLE 
IMPLEMENTATION C.F. REFERENCE. 

iJLCU0051 
ulJW0052 
ULCU0053 
OUCU0054 
iJLWQOj5 
:.;(;CU005b 

DUCU0057 

DLCU0058 
DuCU0059 

iluCUOOoO 
uOC\JOObl 
.;OCUOCb.2 

UOCU00b3 
UOCU0064 
UiJCU00~5 

JU:: U00b6 
uOCU0067 

DUCUOOb8 
OOCUOOt,9 

..;c...uoo10 
lJUCl.1007 l 
OOCU0072 
il0CU0073 

UO(.U0074 
i.l0C.U0075 
UOCU0076 
ou;uoon 

OOCU0078 

DOL.U0079 
UOCIJOO&O 

~ARSHAL: A PROCEDURE TO PERFORM THE WARSHALL ALGORITHM ON AN INPUT BIT ULCUOOBL 
MATRIX C.F. REFERENCE• .JuCUOJ82 

!NP UT: 

FROM FILI: PARMIN THE FOLLOWING PARAMETERS ARE READ I~ ll FIELUS uF 4. 
1. N >= NUMBER OF PRODUCTIONS TO BE ll>,PUT 
2. N >= MAXIMllM NUMBER OF PAKTS Ii'1 ANY PRODUCTION IINCLWIN~ LHSI 
3. N >= MAXIMUM NUMBER OF CHARACTERS IN ANY INPUT SYMB()L IM~Y BE 

4. N 
5. N 

"• N 
7. ~ 

8. N 
9. N 

LESS - ONLY NEED N LARGE ENOUGH TO HAKE SYMBOLS UNI..UEI 
MAXIMUM NUMBER uF DISTINCT SYHIIOLS IN THE GRAMMAR 
CON'IGURATION SET LIMIT (FOR All SETS COMBINED) 
EXPEC·TEO NUMBEK OF CONFIGURATION SETS 
MAXIMU~ ~UMBER OF bASIS ENTRIES FOR ANY SET 
1 TO ACTIVATE UEBUG SECTION 
l TO CuUNT AND LIST INADEQUATE STATES 

JUCU0Gt>3 

uOCUOCd4 
Ut,Cu0085 
DOCUOO&o 
uOCU0087 
OOCUOCb!I 
OOCU0089 
iJOCU0090 
OOCU009 l 
JC;;: UOC92 
Ul.J(.u0C93 
UiJCU0094 

OS 
~ 



10. ~ = l FUR FULL PRINTED OUTPUT 
11. N = 1 r.J PU~CH SL~( 11 TAdL: llNJ GTHcR UATA i'<EhlEJ F.Jk PARSER 
THEi<c AKE CEFAULTS FJR J INYUT PARAMHEkS 4, S, bt A~J 7; rluwEVb< 
THESt: UEcfAULTS "Ei't<E;t:r,T ONLY A GUESS B~EU ON THE GRA>ll1h~. AHErl. Al', 
lNIT lAL i<UN, uJTPUT HAT! STICS ALLU• THE USE!l TO SET THE~!: FAKAMEHR~ 
ACCUf<AT~LY FCR FUTURE RUNS, If NEEo>EI.. 
IF MORE THA~ U~c uRA~MAR IS INPUT, THE!', THE PAkAMETEkS FOK tACH 
GRAMMAR ARE Sli1?LY E~TEREil IN T11E PRuPER Ui<i.lE~. ft<ilM FILE PkuulN, Ttic 
l'kUIJUCTICl',S ARE INPUT. THE FORMAT I!. THI: L~ IUH-HAi•D-SIDU 
IMMEDIATELY FOLLuwEO ijY. A COLUN, FULLU""U &Y 1 lk MCKE ·dLAN~s. THEN 
THc RHS IRIGHT-HANO-SIUEI PARTS EA~H FOLLJwEil DY A LJ~~A A~U 1 UK MORI: 
l!LANKS. THE RIGHTMOST PART OF AN ALTERNATIVE IS FOLLOWEU.l!Y A 
~ E~ lCOLON ANJ 1 OR MJKE BLANKS IF If IS NOT THE LA:i T AL TE1<,,AT I VE; 
OTHERwlSE, IT IS FOLLC•Eu BY A PERIUC AfloO 1 Ut!. MOR!c l!LA~iKS. CULJMN 72 
MUST BE !!LANK, ilUT OTHER THAN THE LISTED RESTRICTIO .. !. THt FOkMAT IS 
fil.EE FCR"' • THE F li<ST LHS IS C:lN Slili:Rt:0 Tu SE THt: uSE.l.• ii "PSI: UOu" 
GOAL .SYMt>OL. THAT IS, IT IS A GOAL SYlellOL 11Hh.H MAY OCCUR I>, A RnS. 
ALL l'l<OUUCTIDNS wlTH A CO'IMU ... LHS MUST IIE C.ROJ.PEO ci;:,SEUJTIVELY. Fu,< 
MULTIPLE G1<AMMAR ll'lPUT, EACh Gi<AMHAi< IS OtLIHIJEO o·Y A CAil.U n.lTH A 
PERIOD IN COLUMN 1. NOTICE THIS ALLOWS THE t>RUiJULT lci>JS TO dl 
S E<IUENCEO Ii ITH(;JUT AFFEC Tl.~.; THE i<OUTI NE. 

OUTPUT: 

ALL SIGN IF !CANT INTERNAL TAtlLES ANol STATISTICS ARE PR IN TEu A,'jiJ 
LAl!ELLEO IF THE l'RIIIIT PAi<AMETER l·S EkAl:ILED. ·ALSu, All DATA NEEOED l!Y 
THE PAKSER IS PUNCHEU IF Si.I SELE1. TEO b Y TnE USEi<. HE PARSEK IS 
ENCLOSED AS A COMMENT. NOTlc.E THAT BY ALTERINI> THE OU ~TATEHENT FUK 
PUlll~H, THE OUTPUT COULD dE KDUTED TO A DATA Si:T ON SECONDARY STOKAGE. 
THI s IS MENT IONEO s l'lCt, fllR EXAMPLE, THE PUNC.hEU uUTPUT fuR TnE dA SI~ 
GRAMMAR IS APPROXIMATELY 900 CARDS. 

MAJOR DATA STRUCTURES: 

MANY ARRAYS ANi> VECTJRS ARt USEU. :-.O s.'.IRTING IS iliJNE. THc INPUT 
PRODUCTIONS ARE NOT STC.REO; HO.EVER, Tt-EIR E:.CuDEU FJRII 1s· IN PRJ(l. 
THE coot: FJR EACH SYMBOL IS ITS LINEAR POSITION IN THE l!INA~Y· TRcE 
STi<UCTUREO SYMBOL TABLE BUILT BY dSTSLI<. THE INPUT SYlldULS AKE SA\lt.G 
ANO SENT TC THE PARSER FOR tkRGR MESSAGE CA.PAi) ILIT IE~ At<lJ, I" THE C,\SE 
OF TERMINAL SYMBOLS, FOi< SC.ANNIN;, PURPCSES. THREE: NAPPINli AKl<AYS ARE 
MAINTAINED. MAPTO HAS t.N E"'TRY FOR EACH SYlldJL SUCH THU BY APPLYING. 
MAP TO TO THE COOED SYMBOL A Uld WE CCLUMi. (JR KUii OF AN AkKAY IS 
OBTAINED SUCH THAT THE ~ON-TERMINALS ARE GROIJPEO IN POSITION~ l TO 
NUMBER Of NON-TEKMINALS, ANO THE T EIU'llll:ALS A:RE GROUi'EO II', Pihl Tl .JNS 
NUMBER OF NON-TERMINALS +l TO NUMBER Of SYHBULS. MAPfkuM IS THE 
INVERSE OF MAPTO. ENOEX IS BUILT DURING INPUT SUC.H TnAT ENuEX Al'PLIEC. 
TO IIAPTO APPLIED TO A COOEU 11101'1-TERMINAL YIELDS THE FIRST 
ILEXICOGRAPHICALLYI PROiluCTiuN IN WHICH THE SYM&Cll IS THE Li:FT-HANO
SIO£:, TREE IS THE SrMSJL TAl!LE MAINJAINED BY BSTSLR ANU IS ouCUM!:iiTe.J 
ELS£:,<Hf:Ri: C.F. REFERENCt. TABLE IS THE LRIOI THEN SLRlll T/.oLE. EACH 
ROw iJEflNES A SET, ANO THE CULUMNS CilRR£:SPONol TO THi: SYHBUL~ IHAPPE:JI. 
SET IS A Vt:CTOR THAT HOLDS ALL CUNFIGURATIUN SETS. SLIM HuLDS Tlie 
LAST POSITION IN SET FOR EACH SET, A~C dASlS HOLUS THE LAST PU~ITION 
IN SET OF THE BASIS POi\TION OF EACH SET. liUT_POSITIJN IS"'' ARkAY 
WHICH HOlOS THE DOT POSITION OF EACH 6ASIS ENTkY Ot- £:ACtt St:T IA!', Ei<TF.Y 
OF 2 MEANS THE o>OT 15 TJ THE LEFT Ot- THE RHSI. MARii.Ek IS A till ~ECTUrl. 
PARALLEL TJ SET THAT IS SET TO l If THE CUkRESPJNOli,;, :,El £:Li:MENT 
EITHER CA~NCT OR HAS BEEN USED IN EXPA~SION. 

Ut •. .u. .. uC.,C95 
..UCvJ:'fo 
JL.uOC97 
iJ\JL.uOt9& 
.JLI..UOC7'1 
ulil.LIODJ 
.JLI...\JO l.01 
uLi:.UO!JZ 
LJUI.. UOlO.i 
uul.UJ!Jt, 
iJU:.. U0105 
... Ui. UO lUb 
UL.Cu:Jl07 
..IL<. UO!C8 
JUC.UO 109 
.;,t,i.UOll O 
J:Jl.UOlll 
uLCUOllZ 
.JUl.Ll0113 
JC.CUC I l't 
.,i;c.un1s 

JOCUOllo 

ili;C UC.ll 7 
uUC.UOlld 
tJL,l.lJOLL ':I 
,JUC.LI012:l 
ouc.uo ,~ l 
JGwU0122 
LIUC.U0l2:> 

uJC.uCl~4 

JL<.UOll::i 
.JC.; uOIZb 
uLCU0127 
OC.C.UOlld 
u.:.cuo1z9 
uCl1.UJl~O 
c1U~UClH 
JU(.UOdZ 
.;U<.uo1,J 
.JuCUOl3't 
OUU0i35 
11L1.UOU0 
..1.i:.uOB7 
ULrCUCl.:,o 
11C.(.UC139 
JLl.UO 1"0 
Jl,(.UO 141 
H,;; UOl42 
uLi.UO 143 
UUC.U014<t 
JUC.U0l4!> 
.;ucu~ 1 .. 1> 
uu.u:a .. 1 
JC.1.UOl<,8 

PKu<. KAM LUG IC: ali.>~ll:Jl4'19 

THc li'<PUT-e,,CUOE S£:CT ION IS STRAIGHT-FORWARD, A.Nu THE u·Sf:R. ~ILL ~VE JC:UOl:»I 
Nll TROudlE JETeCTING THE LOGIC l!Y FOLLO,,ING' THE SOUR(.£: (.UUI:.. If Ot;UIJC. UJ(.u01Sl 
15 SELECT£:~, Tlif:1, THc ~l:dUG SECTION IS ENTf:REO. THE OEdUC. ;,,ECThll\l CA" i.K.U101Sl 
SE UHETEU •ITHJUT AFHCTl!';G ThE PROGRAM. IT IS SIMPLY AN uU:.UQlS) 
l,~PLEHENTATION uf SOME OF THE GRAMMAR CHECKS Of GRIES. rHt HEART OF Jl.1.uOll> .. 
THE PROGRAM IS THE TABLE GENERATE SECT ION. IN THE LKQ ;,,Ee TION, JHE ,Ji,C.uOISS -
FIRST SET IS INITIALIZED TC PROUUCTION I wlTH ThE DOT TU THE iUiorfJ;, Jili.u0156~ 
THI;,, IS THE FINAL STATE, Ttif: SECOND S.ET IS INlTIALllEO TC THE FlilST .X:C...01-IU 
PRODUCTION (ALL SET ENTRIES ARE PRJOUCHON NUHtif:RSI wl Tt< THE DOT TO oJLCUOlSd 
THt: LEFT. THE SET IS NOW CL·OSEO. THIS CONSISTS OF ENTE1UNG INTa fHE UL1.U0159 
SET ALL PROUvCTIUNS •HUSE LHS IS fHE SYMBOL TO THf RIGHT Of THE OIIT. <Ao(.U3lrt!I 
THESE tNTRIES ARE i<NOWl'I AS CLOSURE:. ENTRiES. ThE OQT IS AS;,,U,E[, TG IIE uU.uC16l 
TO THE LEFT IN UL CLOSURE SET ENT.RI ES• EACri OF THE CLJSvkE ~NU.IES .X.C,10lo2 
HUST ALSO dE CLOSEO. THIS CIJNTINUES UNTIL THE SYHdOL TO THE ,UuHT I.F JU:Ulll-C.3 
THt UUT OF ALL UNCLOSED CLOSURE ENTKIES IS A TERHl,,AL OR A CLUSU..1: ., .. ;.UDlo~ 
WUULO UUPLICATE A SET ELEMENT. NOW EXPANSION IS USED TO INII IATE A .._...,:,&ol> 
NE,; SET. THE "CANDILiATE" fui\ EXPA:IISWN IS THE FIRST Sl:T ENTi<Y 1n,.;~ IJ\A.UDl:.6 
MARKER l!IT IS 0, FOR wHICHEVER SET IT IS IN, ALL uF THAT SET'S OliUJOlC.1' 
ENTRIES WITH THE SAME SYHdOL TO THE RIGHT 01- THE UUT ARE MAKl<eG ... o ....:,u.01:.s 
THEN USED TO FaRM THE dAS IS ENTRIES ITHE .DOT IS .. a.eo RIGHT l :h.i.uOU.9 
POSITIONI OF A NEW StT PRUVIDING SUCH .ACTION •C.ULD NOT CAUSe JLCU011'.>. 
ou·PLICATIO"l OF AN EXISTING SET. I~ BJTH CLOSUi<E ANO EXPANSIUN, " .,1,1,.l.1'.>11'1 
iJUPLICATE IS ... or ONLY THE SAME SET ELEMENT BUT ALSu THE SAME our .,.;;;uOi.1'2 
POSITION. IF, wHEN EXPANDING, THE NOV£:MENT OF THE DOT IS Tu THt .A.i.UOll~ 
RIGHT, THEN THIS IS A SET lt-UTURE STATE! WITH A REDt..cTIUN t.SSOCIATEC. JI.A.l..>ll~ 
WITH IT. THE SET ELEMENT, A PRODUCT ION NJMBER, IS NEGATED A.\iD E,,TEil.fO JJCUOUS 
INTO l<EOOCEIII PROVII.IIN!i THEIIE IS NO PREVIOUS ENTRY IN REOUCHll. It· 111.1.1,•lllb 
THE:RE IS, Tri.EN REWCEI 11 IS SET TO THE NUMBER OF SUCr1 cNTK!tS; A .. :J THE .1L:.OU11' 
E:NTRIES THEMSELVES ARE STLIRED IN A QUEUE (MULT_REOULE_QI. ANY fllt:Rlf.i, .,..i; .. ouct 
MITH THE our Til THE ~,~HT ARE HARKED I TAKEN Ol-f EXPANSION LISTI Sl'-&E, J .... ol;)lJ'~ 
If THI: OUT IS TO THE RIGHT, THEY CANr,OT BE USED FOR EXPA:IISION SIJICE· ;,l,(,.IIOl80 
THE UO T CANNOT di: MOVEU FURTHER TO THE RIGHT• KEEP IN HI Nol fHAJ JHE .lUCUClel 
DOT POSITICN fOR SAS.IS ENTRIES IS 11'.1 ThE ARRAY UOT_POSITION WHEREAS &;LC...Oldi 
THE DOT PuSITI.JN OF CLOSURE ENTRIES IS ASSUMED. TO dE 2 (TL) THE U:FJI. Li'J(;uOlb, 
THE ACTION OF CLOSING THEN ·1:XPANOING CONTINUES UNTIL ALL ENTKIES AKE IA,.:.UOle~ 
HAKKEO. OURIN,. EXPA~SIJN, THE NUMdER OF THE NEii SET GENERATED BY A ;J...;"'1185 
CERTAIN SYHdOL TO THE RIGHT OF THE I.JCT WHILE IIITHIN A CERTAIN SEf IS ulJC.uOleo 
ENTEKEO INTO TAdLE. THAT IS, TAl!LEll ,JI <-;_ K IIHERE I IS THE SET Thi: ~lil.J 
Pll.0(,RAM IS •Dkl<ING wiTH, J lS THE HAPPED ;vHbuL ro THE ll.lGt<T Of 1HE ~(.(...,188 
DOT, ANU K IS THE NEw SET GcNEKATEO. A SIMILAII ENTRY IS IIAOE If II. U, ..tA;o10189 
THE SET •t<lCri WUULO aE OUPLICATEO l!Y A'PARTICULAR EXPANSION. i:,l,(,.LJ0190 
THE SLRI_GENERATE SECTION. COMPUTES THE FOLLOw fUNCT ICIN PEit OE RE"fot•S JuCII019l 
THEUREM ANO THEI< PROCEEUS TO ENTER THE REUUCTI ONS I PREV IUU~Llf Sl,11,.EC olu1..1019.Z. 
IN REOULE ~NO/Oi< MULT_REOUCE_~I INTO All :OLUHNS REPRE~ENTIN; SY,.,,OLS vl.l.U0193 
I lj FOLLO .. IAI ar1EH A IS THE LHS (if THE PRUilUCT IOr, INVOLVE:U Iii THf: . uul.LluH~ 
kEOuCTWNISI OF A PARTICULAR kOn ISETI UF TAl!LE. MTEK SUCH ENJi<lfo IA,..u0195 
THE RO .. IS NOw, BY DEFINITION, A STATE ilF THE PARSING TAdLt:. Ttio!IT IS, j(.;.U019o 
THE RilW NOW CONTAINS BOTH IPOSSll!LYI STATE TRANSITl01'1S A'<u ii.f;JLJCTluHS, o1uLU0191 
HE,,CE A STAH:. INADEQUATE STATES AKE THCIS~ wl TH M(,~E THAN 1 i<ED.JCTIC!<i u1.CU3Hoi 
OR A REOUCTIQJ\j ANO A STATE TRANSITION UNDER J. TEkMl·•AL S.YMouL. IF ....... U0199 
MORE THAN l ENTRY IS ATTEMPTED IN ANY TA6Lt ?OSITION, THEN THE uolA .... aot LLi.UOZOO 
I~ "IDT SLRlll. ,,t.c.1.0«'Jl 

••¥ THE FLILL.JwiN(, IS A SAMPLE PAkSER WHICH USES THE SLR(ll TAdlES *** J<.LJO,Jl 

• 

~ 



•••--SAMPLE PARSER-SCANNER FCk ARITH EXPR--ffffff 
PAkSER: PROCEl:>llKc OPT!Oi\S (~1,INI; 

DECLARE 
PR! NT FI LE Pk! NT, I* OUT PUT HL c * I 
PRSIN FILE INPUI STREAM, I* INPUT FRON SLklll GEN* I 
CARO IHOI CHARACTER 111, 
(NU_PkODS,NO_PARTS,NO_SYHS,NG_CHARS,NC_SETS,NU_NONI 

FIXED BINARY 131,0J; 
GET FILE IPRSlNI EDIT 

IND_SYNS,NO_CHARS,NO_NON,ND_PARTS,NO_PkOOS,NO_SETSI 
lb Fl3 I I; 

PRSR:BEGIN; 
DECLARE 

, .. 

IFLUSH,GETNEXTI EIIITRY RETURNS (FIXED 1HIIIARY 13i,<ill, 
POINT ENTRY, 
l TREE, 

2 NOOE (0: NO_SYMS I CHAR ACT l:R INO_Ci1Ai<S I, 
2 LL 10:1,IO_SYMSI FIXED lilNARY, 
2 RL 10:NO_SYMSI FIXED Bl1'1AkY, 
2 TAG INU_SYMSl BIT 121 ALIGNED, 
2 AVAIL FIXED tllNARY 131,0l, 
2 COUNT FIX ED ~!NARY I 31,01, 

(FLAG,POSI FIXED tllNARY (Jl,Cl, 
PROU (NO_PRODS,NO_PAkTSJ FIXED tllNA~Y, 
TABLE 12:NO_SETS,2:NO_SYMSl FIXED BINARY, 
(MAPTO,HAPFROHJ lillu_SYHSl FIXED BINARY, 
STACK 1201 FIXED BINARY INITIAL 12,31, 
TOP FIX~O BINARY 131,01 INITIAL 121, 
(SYHBOL,TEHPSYHl FIXED BINARY 131,0l, 
BSTSRC ENTRY ICHARACTERINO_ChARSl,,,1, 
11,J,L_RHS,TSCI FIXEU BINARY (31,0li 

GET FILE IPRSINI EDIT 
I AVAi L ,COUNT, RLCO l, 1.NOOEI 11,lL I I l, RLI 11,HAPTOI 11,HAPfROHI 11, 
TAG( 11 DO I =l TO NO_SYMSl , 
I IPRODll,JI OD J=l TO Nt:l_PAR TSI DO l=l TO NO_PRUUSI, 
(ITABLEII,JI 00 J=2 TO NO_SYMSI 00 1=2 TO NO_SETSII 
(3 F131,INO_SYMSIIA(NO_CHAkSI,'+ f131,Bl211, 
IND_PAkTS *NO_PRODS I fl 31, I NO_SYMS*NO_Sc TSI FI 411; 

NOTE: TA&, MAPFROM, AVAIL ANu COUNT ARE NOT NEEDED FOR THIS PARSER. 
ONLY STATES ARE STACKED, SYMBOL HOLDS NEXT INPUT SYMBOL TJ 
BE PROCESSED, TE~PSYM HOLDS SAME EXCEPT AFTER REDUCTION AT •HICH 
TIMc IT HOLDS A LHS. 

* I 
GET_SYM: 

SYMBOL=GETNEXT; 
RETURN_F ROM_ERROR: 

PUT FILE IPRINTI SKIP cOI T 
('CURRENT INPUT SYMBOL--> ',NODEISYMBULlll2 A); 

BACKUP: 
TEMP SYM= SYMBOL; 

ORl~E: TSC=TABLE(STACK(TOPl,MAPTOITEMPSYMIJ; 
If TSC > l THEN 

DO; 
TOP=T OP+l; 
IF TOP > HBOUl,1HSTACK,ll ThEfli GO TU UVER; 
STACKITOP l=TSC; 
PUT FILE (PRINTI SKIP EDIT 

( •STATE STACKED·--> ',TSCI IA,fllll; 
IF TEMPSYM = SVMt1GL THEN GU TlJ GET_SYM; 

aJi...CuOiOJ 
~1,...UOl}c, 
<.JU:.U:U35 
1..JL.,1..UO.i:.Ob 
.;1,.;uo2n 
O..:.CU02:l B 
UUCU0209 
i.iUCU02l0 
uGC.UOZll 
olul.UD,ll 
JL...U02L:> 
iJU(.U0214· 
aucuo.a; 
uOCUOZlb 
OUCUOZl 7 
ULCUOaa 
i,L,(.00219 
i)l,1.1,02..t:J 
uCLU0221 
iJOCU0222 
uLCU0223 
.:,u.uo22 .. 
UUCU0225 
OlCU0227 
UlJCU0228 
LIUW0229 
ll0CU0230 
UOl.U023l 
UOCUD232 
iJOC.U0233 
UOCU0234 
uCiC.U023S 
uGI.U023b 
wCU0.237 
uot.U02311 
iJ:JCU0239 
...uwo2 .. o 
Ul.CUOZH 
LIIJCU0,42 
U0CU0243 
tlOCU0244 
l)(JU,0245 
DOCU024& 
D0Cil02 .. 7 
OC.CU024B 
OOCU02 .. 'I 
Dt..CU0250 
uc;cuo,s 1 
oi,.;.uo,;z 
IJOCU0253 
UUCU0254 
uocuo2;s 
IJUCUOZ!'>b 
IJLl.U0257 
UC.CU0258 
OLCU0259 
OUCU02b:l 
uGCIJ02bl 
WCU02b2 
(;LC.U02&3 

ELSE GO TO BAC.KUP; 
!::NC; 

IF TSC < 0 THEN 
JJ; 

PUT FILE (PRINT) SKIP EUIT 
('ATTEMPTING RcOUCTION - PRESENT STACK-->•, 
(5TACK(II DO l=l TO TUPIIIA,ITOPI f·(41J; 

TEMPSYM=PRUD(-TSC,11; 
DO L_RHS=l TO r..o_PARTS-2 WHILE (PRUO(-TSC,L_RHS+21 --= 'JI; 
ENiJ; 
T UP=T OP-L_Ri1S; 
IF TOP < 2 THEN GO TO UNDER; 
PUT FILE (PRINTI SKIP EDIT 

I' RED UC Tl ON ON PRODUCT ION --> ',-TS C, '.• 1 , 

INODE(PRODI-TSC,JII DO J=l TO NO_PARTS 
WHILE (PROD(-TSC,JI ~= OllllA,F(31,A,1~:J_PAiHSI Al; 

GO TO LlRI VE; . 
~NO; 

IF TSC = 1 THEN GU TO ACCEPT; 
CALL_POINT: 

OVEil.: 

UNUEi<: 

ACCEPT: 

STACK( ll=Z; 
STACKl2 I =3; 
TOP=2; 
PUT flLE(PRINTI SKIP EUlTI'** ERROR'l(AJ; 
CALL POINT; 
SYrldOL=FLUSH; 
GO TO RETURN_FROH_ERRLIR.; 

PUT FILE IPR.INTI SKIP EDIT I'** STACK OVERFLOd - PRullABlE ', 
• CAUSE --> NEST ING LEVEL GREATER THAN •, 
HtlOUNO(STACK,11-NO_PARTS,' **'112 A,F13l,A); 

GO TO CALL_POlr..T; 

PUT l'ILE (PRINTI SKIP EDIT I'** STACK UNOEkFLa.1 **'IIAI; 
GO TO CALL_PO INT; . 

PUT FILE IPRINTI SKIP ED IT I'"* PROGRAM ACCEPTED **' I CAI; 
GO TO ENllHAIN; 

I* GE TNE XT l S THE PERTINENT SCANNER. * I 
GET NEXT: PROC RETURNS If I XEO iii NARY( 31,011; 

UECLAkE 

FLSHSYM: 

IP FIXED BINARY 131,01 INITIAL (OBI STATIC, 
I FIXED BINARY 131,0J; 

IP=IP+l; 
CALL BSTSRC ICARO(!Pl,fLAG,POS,TREEI; 
IF POS ~= 0 THEN RETURN IPOSI; 
EL SE RETURN I 21; I* nz" JS THE: TkAI LI NG DELIMITER. * I 

I* PRINT PREStlH RECORD ANO CU~KENT SYMBOL. * I 
POINT: EIIITRY; 

PUT FILEIPRINTI SKIP EDIT 
IICAROIII DU l=l TO 801,'$'1(80 Alll,SKIP,XIIPl,AI; 

RE TURN; 
I• FLUSH TO NEXT STATEMENT ON ERkOR. * I 
FLUSH: ENHV RETURNS (FIXEt, blNARYl31,0II; 

IP =O; 
PUT ftLEIPRINTl Ll>T ('**FLUSHING TO NEXT CARu**'l; 
GET EO!TICARUI 180 AUii; 
GO TU FLSHSYM; 
ENC GETI\IEXT; 

uuUJ0£c.4 
UCt:.IJ02u5 
01..C.liC.:bb 
Cl.iCU02b 1 
UOCIJO,t," 
LlU.U0.2b9 
DOCUO.i:70 
ULC.U0<.71 
UIJCUC272 
.;LC.U0273 
u;:.cuo,-,,. " 
<kCU0275 
UIJCU0.276 
LiDCU0.277 
OCCU027c3 
Jt.t~LIOL79 
DC.LUOZbO 
Ui,CU0.261 
aii.CU0,02 
ULC.U0.2il3 
OLLU0.264 
i;UCIJ02o5 
OC.C.UO.i:8b 
ulCi,0287 
u:.J.;U02bfs 
llOCU-0.c8 'i 
JLCU0290 
UUCU0.:91 
JLCU0~92 
,11..cuo .. 93 
ilUCU0294 
uU:ULl.2'15 
iJUCU0.2% 
OCCUQ291 
OLCU02C,8 
LlOC.00299 . 
w(.ut:l~)J 
uL'C u:J~O l 
llLCu~~JC2 
ut-cuo.;03 
JOC U0304 
DuCUO~O~ 
1,ccuo::.1& 
OC.CU0)07 
UL.:uo:;cs 
ilUC<JO::>O"i 
.Ju::uo:;10 
&.;uLU!Hil 
LlOCUOHZ 
illJCU0313 
JJLC.U0314 
JLCIJ0315 
IJDCU03lb 
uC...110317. 
ilU:.uO,io 
1Ju(.UIJ3l9 
Jli<.UOl.:O 
u~;..uQ;ll 
00LU0~"2 
<JOCUO.i2.i 

&> ,.o 



tiSTSkC: Pt<.JCtJlJ,{i:: ( I TE:i-,,fLAu ,PiJS,TrtEd; 
I* 

P~~CEOURE USTS~C IS THf SEARLH SELTIO~ U~ dST C.f. ~c~iMiNLt. 
PARAMETERS: 

ITEM - KEY FOR RETklEVAL, INSE?.TIGi, uR UELETION 
FLAG - STATUS CODE FOR ATTEMPTED FUNCT llJN 
PUS - LINEAR INDEX JF NGJE INSERTED OR RETRIEVEU 
TREE - STRUCTURE LDNTAININ, d!NARY SEARCh TREE, 

AVAILABLE SPACE LIST ANO ~ODE CGUNT 

* I 
UECLARE 

SEAR CH: 

IFLAG,POS) Fl XcO BIN !31,0l, 
ITEM CHAK l*l, 
l TREE, 

2 NOUC (*) CHAR ("1-), 

2 LL (*l FIXED d[N, 
2 RL l*I FIXED BIN, 
2 TA., I * l d I T I * l A Ll li NE lJ , 
2 AVAIL FIXEU Iii~ {31,01, 
2 COUNT FIXED Bl N (31,01; 

BEG!~ 

'* SEARCH FOR NODE wlTH KEY VALUE cONTAINEu IN ITcM. 

* I 
DECLARE CUkR FIXED ~IN 131,0l 
CU RR= RLIO I ; 
DC WHILE {CURR,= 01 ; 

IF ITEM = NODE{CUMR) THEN 
I* RETURN SUCCESS* I 
00; 

FLAG=4 ; 
POS=CURk ; 
RE TURN ; 

!:ND ; 
IF ITEM> NODEICURkl THEN CURR=RL{CURRl 
ELSE CURR=LLIC.URRI ; 

ENu ; 
I* RETURN FAILURE* I 
POS=O ; 
FLAG=5 ; 
RE TURN ; 

ENO SEARCH 
END BSTSRC; 
END PRSR; 

ENOMA IN: 
ENU PARSER; 
•11#--END OF SAMPLE PARSER--~#< 
VARIABLE DE:iCRIHION (ALL SEC.TlJNSI: 
BAD - oGRKING VAR!AtlLE - 0 FOR ANY '.,YMbOL NOT "•ITH!N• TH~ USER'S 

PSEUDO GUAL SYMBOL 
tlASIS - A VECTOR HOi.lllNG THE PUSITluN OF EXTENT OF ~ACH tlASIS :,ET 

Pl THE VECTOR HOLUING ALL CONFIGURAT IUl'a SETS 
BUF - INPUT bUFFEK f-OR PRUUUCTIONS 
BUFI - VECTJR UVERLAllJ UN liUF 
CANDIDATE·- A PR.OOIJCTION NUMBER IN SGME StT Tu BE uSEO FUR l'US!;!6LE 

E XPAN S !ON 
CUNFIG_SET_Ll~IT - INPUT PAP.Al'1ETER, LIMENSION Uf VEI..TOR THAT HOLDS 

ALL CONFIGURATIUN ~ETS 
COUi'IT_INAOEi.lUATE_STAH:S - ll\;PUT PARAMETER, l IF USER "ANTS ACTIO:• 

ul.JCU0 .:>2.4 
OLiCU032 5 
llul. U032:b 
oocuo~.2 1 
ui.JCU032tl 
OJ~ U032 9 
,)(;(.U0330 
.JGL U033l 
JU...;.u()-'32 
OLCU0333 
.JGLU03.H 
ilULU0335 
UCt.\J0336 
tJULU9j37 
.JLJ~v~333 
uUCU0339 
UL:... U0340 
uC.CU034l 
J(,;;U0342 
.J0(.U0343 
UU...U0.344 
uliC U0345 
00CU0346 
llC.CU034 7 
utJ: U0348 
~CU0349 
IJGC.U0350 
.JuCU0351 
DCLU0~52 
uoc U0353 
.JUCU0354 
:iGCU0355 
.JU. U0356 
IJUCU0357 
l)GLU0358 
tJOC U0359 
IJUCU0~60 
llCLU03t>l 
tJOl.U0362 
tX,CUfJ'>6 3 
uGCU0364 
uLi:U!l3b5 
OtrClJ03~0 
llUC U03& 7 
iJOCU03o8 
ODCU0369 
DL::U0370 
wW037l 
UUCU0372 
uUC U037 3 
u(J(.IJ0374 
iJiJCU0375 
llUCU()3 76 
LllJCU0377 
uOCU0378 
lluCU0379 
JUCU03B) 
,HLU03tll· 
oocu<na2 
UUCU0363 

VAkIABLc REPRESE~TS 
DEdUG_GRAMMAR - INPUT PARAMcTEN, 1 If USER WANT> ACTION VANIAdLf 

REPRESENTS 
DOT_PDS!TION - A MATRIX HOLDING THE DOT POSITlllNS Of BASIS ~ETS' 

ELEMENTS 
UOT_SwITCH - FALSE WHEN SCANNING NON tiASIS ELEMENTS, TRUE .OTH::RW!SE 
ELEMENT - THE FIRST TRANSITICN IN THE kOW UF TAELE dEING SCANNED 
ENDEX - A VECTOR SUCH THAT ENDEX !MAPTOIANY SYMBOLI I IS THE FIRST 

PR[JOUCTION NUMBER OF WHICH SYMBOL IS THE LHS 
ERR - ERRON SW! TCH 
FENCE - THE "f.tNCE• OF A BINARY HARCH 
FOLLOW - A 61 T MATRIX OF NONTERMINALS VS NONTERMINALS {SEE ABOVE) 
1,J,K,L - LOOP INDICES AND LOCAL WORKING VAR!AtiLES 
LlMIT_dASIS - INPUT PARAMl£TE1<, LIMIT OF ANY BASIS SET 
LNAME - LENGTrl OF INPUT PKCDUCTI.LJN SYMll[JL 
MAPTLl - A VECTlJK SUCH TrlAT MAPTO {ANY SYMBOL! MAPS THE SY~oULS TG 

COLUMNS llF A MATRIX SUCH THAT THE NONTERMINALS AkE uKOUPtcU 
AS ARE THE TERMINALS 

MAPfkUM - THE INVERSE UF MAPTU 
MARKER - A d!T VECTOR WHOSE I TH ENTKY IS 1 IF THE ! TH 

CaNF!GURATION SET ELEMENT tANNUT HE USED FUR EXPANSION {OR 
HAS oEcN USEtll 

MASTER_E~RGK - ERROR SWITCH, TkUc If UI\ABLE TO GENERATE SLk(l I UaLE 
MULT_REDUCE_~ - A ~UEUE USEO TO HOLD REDUCTIONS FOR A ~IVE~ ~TATE IF 

Mu KE THAN l 
NAME - AN INPuT PkODUCTION SYMBOL 
N tiAS 1 S - COUNTER OF BA~ l S t;LtMENT S 
NCHARS - COUNTER OF NON BLANKS IN NAME 
NO_BAS IS - l NPUT PARA ME TE R, MAXI MUM NUMB ER Of dAS IS ELEMENTS FOK Ai'IY 

SET 
NO_(.HARS - l NPUT PARAMETER, ~AX !MUM NUMBER Of ChARACl tt{S II, ANY INPUT 

P1sODJC TJQt,, SYMBOL 
NO_!NAD - INAGE~UATE STATE CJUNTER 
NU_NON - NuNTERMI NAL COUNTER 
MAKK - A dIT VECTUK WHOSE l TH ENTRY IS l If- THf I TH PROuUCT!ON 

CAN DERIVE A TERMINAL STRING 
NO_PAil.TS - INPUT PARAMETER, ~AX I MUM NU~bER OF PARTS PER PRuDuCT ION 
NO_PROOS - INPJT PARAMETER, MAXIMUM NUMBER OF INPUT PROOUCT!ONS 
NO_SETS - INPUT PARAMETER, MAXIMUM NUMBER OF CONFIGURATION SETS 
NO_SYMS - INPUT PARAMETER, MAXIMUM NUMbER uF INPUT SYMoCLS 
,..O_TERM - NUMBER Of TERMINAL SYMBOLS 
NPARTS - PARTS COUNTER 
NSETS - CONHGURATION SETS COUNTER 
PARMIN - INPUT FILE FOR PARAMl:TERS 
PLACE - TrlE FIRST PRODUCTION OF A GR[UP •!TH THE SAM!: LHS 
PRINT - DUTPUT PK!NT FILE 
Pi\LiUIN - INPUT FILE FLlR PRODUCT IONS llllOCKSILE = SCI 
PJl\;CH - OUTPUT PUNCH FILE 
PROO - AN ARRAY OF eNCOilEO PKOUUC HON - THI: CODE FOt< A SYMBl•L IS 

PT 
RED 
REDUCE 

ITS POSITION IN THE SYM80L TABLE 
- PJINTER TO UNRECOGNIZED PORTION OF BUF 
- TRUE AS SOON AS A REDJCTIDN IS OcTECTEO IN P,ESEiH STATE 
- A VECTOR THAT HOLUS THE NEGATIVE REDUCT ION, IF ANY, F[Jt< A 

STATE--!F MORE THAN ONE THEN IT HOLDS HD• MANY ANU THEY ARf 
STOt<EO IN MULT_REDUCE_~ 

SU - THE VECTOR HLlLDI NG ALL CO~F!GuRAT ION SETS 
SET _LIM IT - THE "TiJPH elf SET 
SIG - TKUE If ANY PRODUCT ION BECAME •MARKED" DURING LAST PASS 
SLIM - A VECTllli, HOLIJING THI: EXTENT IN SET OF cACH LUNFluURAT!Llr; 

SET 

l.JLl.U03t:>4 
UU1.,lJG3b5 
UOL U03ilb 
JL,L U0387 
UOCUOJt,6 
JOCU0389 
DDCU0::>90 
OOCU039l 
Ui;(.U03~,: 
OOCU039J 
OOCU0394 
OllCU0395 
OOCU0396 
uLiC U0397 
0Ll.-U-039(j 
-UGCU03C,9 
JLL lJ04::W 
LJLCU'l40J. 
OOCU04('2 
uui.U0403 
ot.;(.U.).c.,.1)4 

JL.:. I.J0405 
uDLU04uo 
UUCU()4)7 
UU.U04'.lt> 
OUCU040'l 
.JUCU'.l4i '.l 
JUC.U04ll 
liuCtJJ4li. 
t)UCU04l 3 
uUl. U0414 
OOCU0415 
,.;l,j~_lJQ4l~ 

OU(.UC417 
.JCCU04l6 
DCC UCt,19 
OUCU04Z'I 
.JG~U042l 
DLll. u0422 
DuCU0423 
Du~ U0424 
DIJCU042, 
UU(.U0426 
OU. U042 7 
LH,l.lJC4<'.b 
uLlCU04L9 
UL ... UC4JC' 
L.(JCU04, l 
i.iU .. U0432 
u0L.U04:,3 
ULlLU0434 
JG ... UO<t..>? 
JUl.u043b 
~c. ... uc,,37 
[.i(A: l.J043C 
UULJ0439 
0LLU04<,0 
JUC U044l 
i.Jl.J(.UCC:.4£ 

iJO(.U04<o3 

-·~c1 
0 



OEC:LARE 
tlST!NT c~TRY, 
i>STSLR ENTKY ICHAKACTtR{NG_Ct-ARSl.,,1, 
114.k SHAL 1::N T!-t Y, 
l TREE, 

2 NODE ()!NJ_SYMSI CHARACTER (NU_CHA1<SI INITIAL{' 'I, 
2 LL (0;~0_5YMSI FlXtD tllNARY 115,01, 
2 RL 10:NO_SYMSI F!Xd; Bl~ARY 115,01, 
2 TAG I NO_SY"ISI Bl T (21 ALIGNED, 
2 AVAIL FIXED ol:.A'\Y 131,01, 
2 COUNT FIXtD BINARY Ul,O 1, 

PROD INO_PKLlDS+2,NO_PAt<TSI FIXEU tllNAi<Y ll~,01 
INITIAL {l,2d,2,((NO_PROOS+21*NO_PARTSI 01, 

ENDEX INO_PRODS+ll FIXEll rllNARY {l'>,01 l'<lTIAL (11, 
MAPTO INJ_SYMSI FIXED 8INA~Y (15,QI 

INITIAL {l,!Nu_SYMSI JI, 
~APfRUM {Nu_SYMSI FIXED blNA~Y <l'>,Jl i'<ITIAL 111, 
NLI_NON FL<ED BINAF~ 131,0l lr-.1 TIAL { 11, 
NO_TERM FIXED BINARY 131,01 INITIAL {OJ; 

I* THIS. IS THE INPUT SECThJN. *I 
READER_S ECT ION: 

BEG!~; 

~ 

DECLARi' 
PRUDIN FILE INPUT RECJkO, 
rlUF CHARACTER 1801, 
BUfl 1801 CHARACTER Ill OEfll',ED BUF, 
NAME CHARACTER 180 I VARYING, 
11,JI FIXED tllNARY 131,01 INITIAL Ill, 
INCHAii.S,NPARTSJ FlXcD BINARY 131,0i tNITl4L 141, 
lfLAG,POS,PT,LNAMEI flXEll BINARY IJl,01, 
SWITCH LABEL {GETCARD,NEXTSYl<,StHIJ; 

ON ENDFILE IPRODINI GO TO EN..>INPUT; 
c~ SIZE SNAP SIGNAL ERRuR; 
UN 5lJdRG SNAP SIGNAL ERROR; 
UN STRG ~NAP SIGNAL ERi<.JR; 
CN ERROR SNAP GO TC ERROZ; 
PUT flLE (PRINT) rnn 

(' ••• dEGIN OUTP<JT FJR INPUT-E,~COiJE SECTION ... • II SKIP! 31,AI; 

INITIALILE TREE USEJ AS SYMBJL TAoLE ANO INSERT GENERATED 
GOAL SYMBOL ANJ SPECIAL DELIMITERS. 
*I 

GET CARO: 

PUT FILE IPRINTI SKIP EDIT i'lhPUT PROOUCTllJNS' ,1171 •-•, 
l. GOAL : "? 11 t USER' 1 5 GOAL SYHBUL , •1•• I 

(2 ICOL!ll ,Al ,SKIP,Al; 
CALL BST INT I TREE I; 
CA.LL BSTSLR ( 1 GOAL 1 ,fLA!J.,PJ:),TREf:.J; 
CALL B~TSLR (• 11 ? 411 ,fLAG,POS,TREEli 

REAll FILE lPRUD!Nl INTO (BUF); 
PT= l; 

I* CtiECK FJR "EDF-" IALLJwS MULTIPLE GRAMMAR INPUT!. *I 
If BUfl{ll ~ '•' TrlEN GO TO ENC!NPUT; 

I* CARlJ MUST ENil wlTH NON-BLANK TO PRE~ENT STRl~Gi!A"GE .• *I 
SudSTR{tiUf,Bl=(ol ·~·. 

NEXTSYM: 
DO ~T=PT BY l ~rllLE luUFIIPTI =' 'I; 
E~O; 
NAMl:=SUBSTR<BUF ,PT ,I NlJEX{SUBSTRlilUF,PT I,' 'IJ; 
LNAME=LENGTHINAMEI; 

iJl\~M05)4 
Ut,AN05J, 
uNAM0!>06 
Ul'IIAM05J7 
.;M M05J8 
uNAM0509 
iJ!\l~MO~ l 'J 
J1'"MO!>ll 
ui,Ar-10512 
Ll1'AM0513 
llNA,~0514 
DNAM0515 
OMM051<> 
J1',AH0517 
Jl',AMOSl~ 
JMM0519 
!)1',AMO 520 
Jt.AM05d 
J~AH0522 
R E:A00023 
~£A00524 
KtA0052 5 
REA0052b 
RE:AD0527 
KE:AD0528 
t<EA005Z~ 
Rt~00530 
Kt:All053l 
KE:A00532 
Rt:A00533 
Rt:A00534 
REA00535 
REA0053b 
iUAD0537 
t<tAD0538 
RtAD0539 
Rt:AD05't0 
Rt:AOO 5-.l 
Ri:AD0!>-.2 
RE.AOOS-.3 
Rt:400544 
«tAD0545 
i<EAW54b 
REAU054 7 
RE:ADl)5-.8 
kEAD0549 
READ0550 
i<t:AD055l 
KtcAD0552 
KLAU0!>53 
R tA00554 
Rt:A00555 
REA0055b 
REAlJ0557 
r(t.~uo,s 8 
REAi.,0559 
RE:Ail0560 
REAU05bl 
KE Au0562 
READ05b3 

Sril TCH 
:>YM ijl.lL 

TAuLE: 

TAIL 
TEM POOT 
TERM 

TOP 
TKE E 
TRY 
TKYl)uT 
TKYKNT 
u 
Wl Tt-tl N 

- LA~LL ~"ITCH ~cT PER INPUT PU~CTUATIUN 
- THE SYMouL TJ THE KIGHT Llf THE OUT IN THE Pkt:SENT SET 

ELE~!:t,.;T 
- THE SLRlll TAtlLE, EALH ROW IS A STATE, THE COLUMf<S Kt:PREScNT 

THE $YMdOLS, A POSITl~E ENTRY IS A STATE TRA"'SITJLr. ANO A 
~EGATIVE ENTRY IS A REllUCTIO~ 

- THE: TRANSITIVE: CLOSUkE OF THE TAIL SYMBOL MATRIX 
- THt ULlT PGS IT !UN LF THE PRESENT SET ELEMENT 
- T~UE •HfN. TkANSITIUN UNDER A TE:RMINAL SYM"OL IS I"' TrlE 

PKESENT '>TATE 
- TOP Of THE ~UEUE 
- A STRUCTURE REPRESENTING THE SYMBOL TAdLE 
- VALUE OF "GOTO" I-UNCTION 
- DOT POSlTIDhS Of ELEMENTS OF TRY 
- NUMBER OF ELEMENT; 11', TRY 
- UPPER UOUND IN BINARY SEARCH 
- BIT riATRIX OF "WITHlt," F,ELATIOI\ {AND CLOSURtl 

*I 
ISIZE,SUBRG,STRGl: 
SLt<l: PkOCEOURE OPTIONS I MAI NI; 
i<EUSArlLE: 

BEG IN; 
DECLARE 

PARM!N flLE INPUT STREAM, 
luT ,TMI CHAR 161, 
PRINT FILE PRINT, 
INU_CHARS, ~O_PRODS, NO_PAR TS, CONF IG_SE T_Ll Ml T, NLI_SET S, 

NO_BASI S, NO_SY l<S, DEBUG_GRAl<MAR, NO_PRINT ,NlJ_PUNCh 
COUNT_!NADi'QUATE_STATESI FIXED BINARY 131,0l; 

CN ENDF!LE (PARM!Nl GO TO ENOMAIN; 
tJN SUBRG SNAP SIGNAL EkROR; 
ON SILE SNAP SIGNAL tkROR; 
ON STRG SNAP SIGNAL ERROR; 
ON ERRLIR SNAP GO TO ERROl; 
OPEN FILE IPRINTI PAGESIZE 1661 LINESIZE 11321; 
OT=OATE; 
TM=Tl ME; 
GET FILE IPARMINI EDIT 

l NO_PRODS, NO_PARTS ,NO_CHARS, NO_SY MS, CO"'f IG_S ET _LIM IT, 
NO_SETS,NO_BASIS,OEBUG_GRAMHAR,COUNT_INAOE~UATE_STATES, 
NtJ_PR!NT ,NO_PUNCHl{COLI 11, ll F (41 I; 

PLT FILE (PRINT) EDIT 
{'SLRlll TABLE GENERATOR OuTPUT','OATE: •,SUtlSTR{iJT,3,ll, 
':• ,SUBSTRIOT,5,21, •: ',SJBSTR<DT, 1,21. 
'IJ.L. GRAY, COMPUTING ANU l~fORMATION SCIENCES DEPT., '• 
•o.s .u.) •, 'TIME: 1 , 5UBSTR( TM ,1,2) ,, : • ,SUB STR( TM,3,21 ,• :.•, 
SUBSTRITM,5,ZIIILINElll,COLl511,A,COLlll51,o A,CuLl351,2 A, 
COLI 1151,b Al; 

I* SET uEfAULTS, IF NECESSARY. *I 
IF ~O_P~UDS O THE"' NO_PROOS=50; 
IF NO_CrlARS > 78 T~EN NO_CrlARS=78; 
IF NO_CHARS < 4 THEN NU_CHARS=4; 
If NO_PARTS < 4 THEN NO_PARTS=4; 
If CUNc!G_SET_LIHIT = 0 THEN CDNFIG_SET_L!M!T=5*NJ_PKOOS; 
If ~C_SETS = 0 THEN t..J_SETS=L*(i'W_PRC,OS+21; 
IF NO_dASIS = 0 THEI', NO_BA~!S=NO_PRODS/10; 
IF NU_SYMS = 0 THEN NJ_SYMS=2*NO_PRODS; 

I* THIS dEGI~ BLOCK IS FOR UYNAMIC DECLARATION PURPUSES. *I 
T HE_w HOLE_ Tri ING: 

BEGIN; 

uOCUv444 
vGCU0'>45 
ulJC lJC446 
uucU0447 
uLcU0448 
uGCU0449 
.JUCU04',(' 
uLL. lJ0451 
uL1,,.UC4:i2 
l)(;(.IJ045 3 
lJuC U0454 
UCCU0455 
U0t.UO"t5o 
uGCUG4:,7 
LlCCU045 8 
:.JL,C U04::, 9 
l,uLU0460 
JuCU04b l 
MAI NOOo2 
MA!N04oj 
MAi N0404 
MAI ~0405 
MAif'..0460 
MAI N04~ 1 
MAINC4o8 
MA Hl0469 
MA! r.0470 
MA IN047l 
HAHl047Z 
MAI N047::> 
i1AlN0474 
MA! N04'15 
MA! N047o 
i<A!N0477 
;1Al N047& 
MAIN0479 
MA!N0480 
MAIN0481 
,1AIN048l 
MA! N04o3 
MAl N043 4 
,1AIN04~5 
MAl N048b 
MAI N0487 
MAIN0-.88 
MAi N04d9 
r1AIN0490 
MA!N049 l 
MAI N0492 
MAIN049J 
MAI r.0494 
MAI 11,0495 
MA!N0496 
MAIN0-.97 
MAI N0498 
rlAIN0499 
MAIN05)) 
0,-.AMO:IO l 
Ui'<AM05J2 
c,"'41'0503 

-1 
ii<-< 



IF LNAME < 3 THEN 
00; 

IF LNAME = 0 THEN GJ TO GETCARU; 
ELSE GO TO ERROJ; 

END; 
NCHARS=MAX(NCHARS,LNAME-2l; 
P T=P T+LNAME; 

I* INStRT IF NOT PRESENT ELSE EfFECTIVt:LY A ScARCli. *I 

ENT ER: 

CALL BSTSLR (SUBSTR(NAME,1,LNAME-21,FLAG,PO,,T~i~l; 
IF SUBSTR(NAME,LNAME-1,11 = ',• THEN 

DO; 
S•I TCH=NEX TSY M; 

J=J +l; 
NPARTS=MAX(NPARlS,Jl; 
PROD( 1,Jl=~OS; 
PlJT FILE (PRINT> EIJ!T (NAMEHAI; 
GO TO Sh! TCH; 

ENO; 
IF SUBSTR(NAME,LNA~E-1,ll = •:' THEN 

l)Q; 

I= l+l; 
J=l; 
PRODCl,ll=PUS; 
PUT FILE (PRINT> EUIT (I,'• ',NAMEl(COLl11,Fl3l,2 Al; 
IF PRGD(l,11 ,= PROD(!-1,11 THEN 

I* SET MAP ARRAYS FOR NON-TEtl.MINAL. *I 

l'I 

DO; 
NU_NON=NO_l'.UN+l; 
cNDEXCNO_NJNl=l; 
MA~TD(POSl=NO_NON; 
MA PF RUM( NO_NONl =POS; 

END; 
GO TC NEXTSYM; 

END; 
IF SUBSTR(NAME,Ll';AME-1, ll = THEN 

DO; 

OPT!Ol<ALLY COlJLll SET Sw!TCH TO GETCARD I·F IT IS KNOWN THAT EACH 
INPUT LHS STARTS A NEW CARO. 
*I 

SEMI: 

,n lTCH=NEXTSYM; 
GG TC ENTEH; 

END; 
lF SUBSTK(NAME,LNAME-1, ll 

OJ; 
SwlTCH=SEMI; 
GG TC ENTER; 

PROD( l+l, ll=PRODII, 11; 
l=l+l; 

I; I THEN 

PUT FILE (PRINT! 5KIP ED IT I' 'I (COL(9l ,Al; 
J= l; 
GG TL NEXTSYM; 

ENO; 
GO TO ERR04; 

END! NPUT: 
I* OUTPUT STATISTICS UN INPUT 

PUT HL E CPR INT l SK IP 
('USER REIJUt5TeiJ 

GRAMMAR. *I 
l:O IT 

ACTUALLY ~EEUEO', '341 •-•, 

~C.AJ'.J:>o'1-
r<..lAt.l:l?bS 
!-l't.AvO?bb 
:<.c...1.U0!>b7 
kl:..,HYJ?oo 
t<.f..AU05b'I 
'"<.t.AUO:i70 
Kt.A00:>71 
"t.AUC:,72 
«cA00:,7 ~ 
o<l.\UQ:,74 
o(cAD0575 
Ki.Ai.J057o 
K(Au0:>77 
k.E:ALh):i7o 
KtAl)u5 7'J 
~E:AUO~t:iO 
KtAD058l 
KEAD0582 
itcAU0583 
KtA00584 
i<!:AU0585 
KEAll058b 
"EAIX!587 
KcA00588 
REAll058'> 
kcA00590 
REA0059l 

.RtA00592 
READ059.3 
RtA00594 
RcAU0595 
KcAD059b 
RtAU0597 
R EAIJ0598 
REA00599 
RcADObOO 
RtAOObO l 
i<EAD0b02 
REAUOb03 
KcAllOb04 
RtAOOo05 
KtAUObOb 
ktA00b07 
il.cA00608 
RcAU0609 
REAUOolO 
k.li..UOtl l 
l<.tAWtl2 
ktAUOol:, 
,..tA&Ot.il4 
f< tAU06l5 
f<EAUOblb 
"b,vOtl 7 
klADfJbl 8 
K[AOOtl 9 
t'.i:AI.H)t..20 
1H.A1,,N,21 
"'t.Ai...Ob22 
R tAOOoL 3 

1 ;-iuMdl:1' Ut- PAi:.'TS 1 ,NO_PAKTS.,'\iPAi,.TS,'NUl'bER i.JF PROt.LJCTICNS', 
,,._..:_p;:wJS,1-1,' TUTAL SYMl::lOLS' ,f..lC_SVlti,COUNT, 
'~lJMBER Of CHAKACTERS' ,NO_CHARS,NLHARSI 
(.:ii\ IP, L.CJL {30), A, SK IP,CDL, 301,A,4 (COL ( dJ .A.t:. ... L ( 34) ,f, 4), 
Xll51,Fl41l l; 

NO_CHARS=NCHARS; 
NU_PARTS=NPARlS; 
NLl_PROtJS=l; 

I* FIXUP LOOP TO SET M"P ARi<AYS FDR TERMINAL SYMBOLS. •I 
UC l =2 TG CC\JNT; 

IF MAPTOIII = 0 THEN 

El';G; 

DO; 
NC_TERM=NO_TERM+l; 
~O_SYMS=NO_NuN+NO_TERM; 
MAPTU(ll=NO_SYMS; 
MAPFROM(NO_SYMSl=I; 

ENO; 

PUT FILE (PRINT! EDIT !'NUMBER OF NON-TERHINAI.S IS ',NO_NON, 
'NUMdER JF TERMINALS IS ',N3_TcRMl(SKIP,2 (SKIP,A,f(3lll; 

l F NO_PRl NT ,= l THEN GU TO BYPASS l; 
PUT FILE (PRINTI SKIP (21 EDIT ('PROO• LHS•,1• RHS' OU l=l re 

i~u_PARTS-11,1301 •-•J((NQ_PARTSI A,SKIP,AI; 
PUT FILE (PRINTl EDIT 1<1,•. •,(PRODll,.JI 00 .J=l Tu r.o_PARTS) 

00 l=l TO ND]RODSlllSKIP,F(41,Al21,ll'<G_PARTSI fl4ll; 
PUT flLE lP.RINT I SKIP (21 EDIT 

('NODE• TO FROM NOOE• ,ua1•-•,t1,HAPTOIIJ,IIAPFROMlll,i,;}DEI II 
DO l=l TO COUNTll<A,SKIP,A,ICOUhTIISK!P,3 Fl41,X(21, 
Al NO_CHARSI l l; 

BYPASS!: 

'* 

IF NO_SYMS ,= COUNT THEN GO TO ERR05; 
PUT fl LE I PR I NT I EDIT 

(• ••• ENO OUTPUT FOR INPUT-ENCOUE SECTION ••• •l(SK!P,AJ; 
END REAOER_S ECT ION; 

IF DEBUG_GRAMMAR ,= l THEN GO TO TABLE_GENERATE_SECTION; 

DEBUG DETECTS -DEBUG PRODUCT!ONS BY Cl)!,ISTRULTING THE RELATION 
WITnlN+ AND ALGORITHM 2.a., P.42 -- CO~PILER CONSTRUCTION - GRIES. 

*' . 
OEBUG_SECT ION: 

'* 

6EGIN; 
DECLARE 

wlTHIN(2:NO_NON,2:NO_NONI BIT Ill 
INITIAL (INO_NON*NO_NONllll '0'81 ALIGNED, 

MARK (NO_PROOSI d!T (11 INITIAL l(l'j(J_PROOSllll'O'el ALIGNED, 
SIG diT Ul ALIGNED, 
( I , .I, K , LI F I XE D 8 I &';ARY (31 ,0 I; 

CN SU8RG SNAP SIGNAL ERROR; 
CN STRG SNAP SIGNAL ERROR; 
ON SIZE SNAP SIGNAL ERROR; 
CN ERROR SNAP GO TO ERROb; 
PLT FILE (PRINTI EDIT 

l' ••• dEGIN OUTPUT FOR DEdUG secnor. ••• 'ICSKIP,AJ; 

WI Tti!N' S RJWS CuRRE SPOND TG NON-TERMINJLS ANO HAVE A •1• 
FOK EACH K~S PART "WITtilN" A LA GRIES. 
*I 

DO 1=2 TO NO_PKODS; 
JL) J•2 TO NO_PART~ WHILE IPiWOll,.JI ,= 01; 

l~ MAPTO(PRUli(l,Jll <= NO_NON THEN 

rd::ADGc2.4 
n.lfii.JCt:.2~ 
k.t.:.i.0Gu2a 
r,,t.AuC't2.7 
KcAOOt>2c, 
«tAOOt,2~ 
RC:.Au0630 
K CAOOb::S l 
KtADOt.~l 
i<t4U06j3 
f< tADG634 
REA 00635 
RE:MU063-b 
KtADOt.H 
RtAlJCt.38 
kEAOOb.'>S 
HAllCc40 
KLAUGt4l 
r;EAuC<,42 
RtAD0643 
R[AU0o44 
Kt.AL.0645 
RE:AD0b'1-& 
t<t'"'UOt..47 
K lAt;0b4d 
RtA00649 
REAUOt.50 
KtAD065 l 
REAIJ06:>2 
REAL06~3 
kEADQb54-
ol.EADOoS5 
RtADOb5b 
KtAD0657 
Jl\iAMCt:58 
LibJ G0b59 
ubli(,06b0 
tlbUG06ol 
DtlUG06!>2 
:JbUGCb63 
LlbUGC664 
!lBUGOou~ 
JuuGOto6 
UbuG06o7 
ubUGOcbt> 
JbUGOo69 
Ct>V C:,Ot... 70 
OtlUuOoH 
JbUG06 72 
UbUGObl3 
iJbui,0674 
ubUG0675 
UllUG0b70 
DbuG'J677 
ubJ(,067i> 

. UbJbOb7~ 
uoUGOb<IO 
OBU G06dl 
UbUG0682 
uBuGOob:> 

-.J 
N 



~!TH!N(MAPTO(PRJD(l,111,MAPTO(PkUUll,Jlll•'l'B; 
END; 

ENU; 
I* CLO;uKE VIA riAkSHALl ALuOR!THM. *' 

CALL WARSHAL l~lTH!NI; 
I* 
ANY ZERO I~ USEK'S GQAL ROW (COL 3 FOR•ARDI MEAN~ SOHc SY'1t!.JL IS 
NUT "WITHIN" THE USER'S GOAL. 
*I 

CO J•3 TC NC_NON; 
IF ~,HTHIN12,Jl THEN 

~UT FILE IPRINTI EDIT (NODt(MAPFROMIJII, 
' CANNOT ·APPEAR IN ANY SENTE:NTIAL FUR'1.'IISKIP,2 AJ; 

ENO; 
I* 
ALGORITHM FUR JETECTING PRODUCT IONS THAT CAl'<NuT t>E USELJ TO 
llERIVE A SENTENCE, C.F. REFERENCc. 
*I 
Tw083: 

SIG=•o•a; 
00 l•l TO NO_PROOS; 

IF MARK(II THEN GO TO ENUI; 
OU J•2 TO NU_PARTS ~HILE (PROD(l,Jl -· OJ; 

If MAPTOIPROOll,JII > NO_NON THEN GO TU E"D2; 
I* LINEAR LOOK-UP FOK NON-TERMINAL AS A LHS. *I 

END2: 

ENDl: 

DUPT EST: 

DO L•2 TO NO_PRODS WHILE lPROD(L,11 -• PROtJll,Jll; 
ENIJ; 
IF L <• NO_PROIJS THEN 

oo; 
00 K•L TO NO_PRODS WHILE(PROD(K,11 • PRUOIL,111; 

IF MARK( Kl THEN GO TO ENDZ; 
END; 
GO TD ENIJl; 

END; 
ELSE 

DO; 
PUT FILE ( PRINT! i:D IT 

(NODE(PROO(l,Jll,' IS NUT A LHS.'IISKIP,2 Al; 
END; 

END; 
MARK(ll•'l'B; 
SIG='l'B; 

END; 
DO J•l TO NO_PRDDS; 

IF ,MARK(JI THEN 
DO; 

ENU; 

l F SIG THEN GO TO HnJ 8 3; 
00 1•2 TO ND_PRODS-1; 

If ,MARKlll THEN PUT FILE IPRINTI EDIT 
( l,' TH PKODUCTION uSELESS.•JISKIP,FI 31,AI; 

END; 
GO TO OUPTEST; 

E~J; 

I* ND• CHECK FOR DUPLICATE RHS. *I 
DO I•l TO NO_PMODS; 

DO J•l+l TO NJ_PRUOS; 

Lil:1Ub0bd4 
IJO·Jb:.1685 
(;bU C0b86 
uot.Ju06d7 
DbuUObb8 
DbU G0b89 
UBuGOb90 
ubuGOOQ l 
DouU0092 
DiHJ<,0693 
llb~G0694 
[JbU(,()695 
ubui,0696 
LJbJ G0697 
lJbUG0690 
LlbU.;0699 
OW G0700 
JdUG0701 
Jb~G0702 
Ubu .;()703 
U8Uu0704 
UBJG070, 
vbJG0706 
llbUG0707 
IJbUuD708 
UbUG0709 
D6uG0710 
OtiUG07ll 
D6UG0712 
i)tlUii0713 
D!IUG0714 
DdUG07l 5 
Obll G0716 
UtlUG07l 7 
JIJUG 0718 
DBUG0719 
UBUG0720 
.JbUG0721 
:loJ&G722 
01>UG072 3 
JtlUu0724 
UtruU!J725 
obuu072b 
.JBUi,072 7 
ObJ G0728 
UbUG07<9 
.JbU(,0730 
u&IG0731 
OOUG0732 
:JbUG073~ 
UbJb073<t 
UBUGCB5 
<JllUGOB6 
OBUG0737 
ObUG.0738 
U&IG0739 
DilUG0740 
UbU(;074l 
G&J GG742 
ub.J G07'<3 

~ 

If PRGDIJ,<I • PPUU(l,2l TrEN 
oo; 

00 K•3 TO NO_PARTS; 
IF PROD(l,Kl ~· PRCO(J,KI THEN GU TO NuTOUP; 

ENU; 
PUT FILE (Pt<li'ff I EDIT (NODE(PROD(I ,211, 

' STARTS A :JUPLICATE RHS FOR PRODUCT ILlNS '• 
J,' ANU ',I, 1 .'J(SKIP,A(NO_CHARS),3 (A,Ft3))); 

NOTICE NO ERRUR ON DUPLICATE RHS SINCE THE SLK(ll METHOC IS 
UNAFFECTED BY SUCH THINGS, HOWEVER A MESSAGE IS PKINT~U dECAUSE 
OFTcN THIS CONOITION LEADS TO UNSOLVABLE INADE~UATE STATES. 
~ 

END; 
"OTilUP: 

ENiJ; 
ENO; 
PLT flLE (PRINT) cill T 

( ' ••• ENU OUTPUT FUR uEbUG SECTION ••• ' J ISKIP,Al; 
El',D DEBUG_S ECT luN; 

I* DECLARE GLOBAL STORAGE FOR LRO AND SLRl. *I 
TABL E_GENEiUTE_SECT ION: 

BEG! N; 
DECLARE 

REDUCE 12:NO_SETSl FIXED BINARY 115,0l 
INITIAL ( INO_SETSI O I, 

MULT_REDUCE_Q (NO_TERMI FIXED BINARY (15,Cl, 
TABLE 12:NO_SETS,2:NO_SYMSI FIXED BINARY 115,01; 

TABLE•O; 
I* CONFIGURATION SET AND GOTO FUNCTION GENERATOR. *I 
LRO_GENERATE: 

BEGIN; 

CLUS E: 

OECLAKE 
(NSETS,SET_LIMITI FIXED BINARY (31,0l INITIAL 121, 
TOP FlXEll BINARY 131,01 INITIAL lOl, 
(<.ANDIUATE,NBASISl FIXED BINARY (31,01 INillAL Ill, 
(U,SYMBOL,PLACE,FENCE,TRYKNT,LIMIT_BASIS,I,J,K, 

L,TEMPDOTI FIXEU B!NAKY 131,0l, 
Si:T (CONFIG_SET_LIMIT I F!XEU BINARY ( 15,0l INITIAL (( 21 11, 
SLIM (0:NO_SETSI FIXElJ Blf.AKY 115,01 llslTIAL IO,ll; 
dASlS INU_SETSI FIXEU BINARY (15,01 INITIAL 1121 11, 
TRY (NO_BASISI FIXED ti!f;ARY (15,01, 
TRYOUT (NO_BASISl FIXED "I~A~Y (15,0l, 
JOT_PJSITION (NU_SETS,NO_BASISI f!XEU dlNAKY ll,,Ol 

INITIAL 15,INO_bASIS-ll *,21, 
DuT_SwlTCH til T ( ll All GNEO. 
MARKER lCONFIG_SET_LlM Ill 81 T 111 

l~IT!AL ((CONFIG_StT_LIMITl(ll '0'81 AL!GNEu; 
UN SILE SNAP SlbNAL ERROR; 
ON SUbt<G SNAP SIGNAL iRRQK; 
U~ STk~ SNAP SIGNAL ERRCR; 
ON ERROR SNAP GO T0 ERR07; 
PUT FILE IPRlNTI EDIT 

( • ••• BEGIN OUTPUT FOR LR(Ol GENERATE SECT!ON ••• •IISKIP,AI; 

LlMIT_dASIS•BASISINSETSl+SLIMINSETS-11; 
DO J•SLIMINSETS-11+1 BY l •HILE (J <• SET_LHl!TI; 

I* TRUE IF SETIJI IS AN ELEMENT OF A rlASIS SET. *I 
If J <• LlMIT_rlASl5 THEN 

UC; 

.JoULoC. 744 
.:.&Hi07.,.5 
..ibUC.0741, 
.Jbl,(,0747 
IJWG07'<d 
ilb"60749 
UbJG075:l 
~c.ub,7:il 
Jtl,t.07?2 
.:;EioG075.l 
utiliG0754 
DbuG0755 
utiuGC756 
UbUC.0757 
UbuGC7jb 
UWG0759 

.UouG.07bG 
.Jfn1GC76l 
i.11:,JG!:7b2 . 
Lioi!uG0763 
J MoC..0764 
TAob07o5 
TAtU,0766 
l "-iil,0767 
I At>G.G7:.6 
TAuG0769 
T ,.Bi,0770 
TA!H,0771 
T,>.iH,0772 
Lk:!G077 3 
LHlGC77'o 
U,060775 
Lk0G0776 
LkGG0777 
Lk0GC77o 
Ll<Ou077'1 
LkGG.07dll 
Lk0C.U78 l 
Li<:X..076l 
Li<.OG07d3 
LkiJ(;(;764 
Li'<l)G0785 
Lk~b078o 
t..~GG07d7 
LK(li,C7bi:i 
U,CliC7ts9 
Lk0G0790 
LROt,0791 
LR'lGi)7~2 
LkDl,079~ 
Lk0GC7'i4 
Lk\)1,1,)79:, 
Lk0b079o 
LkC<,0797 
LR0t,07'id 
Lk0..079'l 
LK(H,Ot,00 
LK~002l 
LK(L.CoO.l 
Ll\.:}L.(icjQ~ 

""" w 



Ti;MP!JDT=uOT_PUSlTIU;,c~SE IS,J-!:,Ll:S(f\!>t[S-1 JI i 
I* CHcCK FCR u(;T TC Rl~HT OF KHS. *I 

'* 

It' li:MPDOT > NL_P~HS [11tN SYMoUL=O; 
CLSE SYMoUL=t"r<.UU(SET<J ),TCMPvOT! i 

ENU; 
ELS,E SYM80L=PKOiJI ,tTI JI ,21; 

SYNBLlL IS .>YMB:JL TU RIGHT CF uDT - IF ~G SYMBUL IHci, SH ~UT_Kl6HT Al\iu 
TAKE OFF EXPANSION ELIGllllLI TY LIST, ENTERIN~ PkllDUCTlui, NUMbi:k 
IN REDUCE IF EMPTY (NEGATIVE VALUE EfllT"EREUI cLSE PUT IN aUEUt 
ANO SET REDUCE .TO NUMBER Of- ELtMEl',TS D~ THIS SE:T 11'1 QUEUE, 
*I 

If SYMBOL= 0 THEJ\i 
DO; 

IF Ri:DUCEINSETSI = 0 THEN RcDUCEINSETSl=-SHIJI; 
ELSE 

uo; 
IF REOUCECN!>ETSI > 0 THEJ\i 

oo; 
KE DUCE C NSE TSI =REuUU I NSE TSI +l; 
TUP=TUP+l; 
IF TOP> HDOUNOC~ULT_REOUCE_l.l,ll THEN 

GO TO Ei<R 10; 
MULt_REUUCE_QIHJPl=-Si:TIJ ); 

ENO; 
ELSE 

DO; 
TOP=TOP+2; 
IF TOP> HbOJNDIMULT_REOUCE_~,11 THEN 

GO TC ERRIO; 
HULT_REDUCE_QI TlJP-11 =REDUCE I r.SETSl; 
MULT_REDUCE_I.IITOP-1=-SETIJ I; 
RED·ucE (Mi ETSI =2; 

tNU; 
END; 

'!AR.KERI Jl=1 l'fl; 
GO TU PRODCLOSEiJ; 

ENO; 
I* NU CLOSURE FOR TERMINAL SYMBOLS. *I 

'* 
IF MAPTOISYHBOL I > ND_NON THErl GO TD PKUilCLLISi:I); 
PLACE=ENOEXIMAPT!JlSYHBCLII; 

CHECK IF DUPLICATE WITHIN THIS ;'er. -'._LliliEAR Ll.uKUP - 'JO NEE:u 
Tu LOUK TH~OUGH BASIS ENTRIES AS THEY c;o NlJT HAVt: ilOT 
TO L.EFT LIKE PLACE DOES INUT TRUE FOR· GOAL BUT ITS UNl~UE 1,E. 
If "GOAL" IS A RHS THE!', TROODLE - NOTlc'E THAT -THIS LCJilP IS r,QT 
EXECUTED FOK Fl~ST LEVEL CLOSURH - I.E. THE FIRST STEP 
OF ThE CLCSURE FOR A BASIS SET ELEME~T. 

*' JO K=LIMIT_BASl~+l TD SET_Ll~IT; 
IF PLACE = SHIK I THEN Gu Tu hUJ~LUSEu; 

END; 
I* 
l'otlT LIUPLICHE - THERf:FOi<I:: rnTER PLACE IAf<U OTHt:kS •!TH SAMt LH!>l lt,TC 
THIS SET, 

*' DO $ET_LIMIT=.SET_LIMIT +-J.. BY I; 
IF SET_LIMIT > HDOUt,G(SET,11 THEN Gl.. TC E«Rll; 
SETlSET_LIMITl=PLACE; 
IF PROOIPLACE,11 ,= PROOIPLACE+l,11 THE~ GL T~ PRCuCLuStc; 

Lr;,u!".e;,)<t

i..kf,i..,Cb;j!;» 

L"-'juCo~~ 
Lt-')C,Ot.~)1 
Lr-,.0(;t;.c;:HI 
Lt<Ut..Oi,'J9 
L.f,OuOol.0 
u .. :,u'l&l l 
Lt<..'; UCidl.2 
LkOG,0813 
LkCb0814 
LR0G()bl5 
Lk0G08lb 
LkOGOlll 7 
LkOGOi>lB 
LkOGOcU9 
LkJ (;()il2:J 
Lk0G06.H 
Lf\0G0fl22 
LkJG082J 
LkuuOb2'< 
L~OC.0112!> 
LROC.On26 
Lk0G0&27 
Lkvb0d28 
LkvG01129 
LKCC.0630 
Lk0G08.H 
Lk0u0832 
LROGD833 
LROG0i13" 
Lf\OG0b35 
Lk0G0b3b 
Lk:bCn37 
LkOGC1B8 
Lk0G0839 
Lk0C,0i1'>0. 
Lk01,0b'ol 
LkO .Oa .. 2 
LkOU00,.3 
LK01,0br,4 
LkJG.."a'>5 
LKOC.Ol!-.6 

-LkOGOfl'ol 
Lk0G0&48 
Ll,01,0849 
Li<CbOe:,0· 
LN-ObQdjl 
Li<..•}(:,0~~.2 
uOGOb::i3 
L"::,.,cc!'.14 
Lt\(uOo:i~ 
Ll<Uli085f> 
LKVIJ0d57 
Lr.OG0c5ii 
Ll<'JG')S59 
Lr..~GOobO 
LkCGQaol 
Lrt.~H.i.Jo::>l 
Lt".}G-Jeo.:, 

PLACt=PLACE+l; 
~~J: 

PR .. u.:u,s E~= 

cXPAl\iU: ,. 
E~; 

5LlMl~!>fl5J=StT_Ll~IT; 

Flt.D FIRST '0' II', MARKEt< l~ARALLEL TO EXISTING SEhl Ahl) Ui:k«•H·•E 
VIA alNARY !>EARCh "HICH SET IT llELiJNGS TU. 
*I 

CKLU: 

I* 

CO CANlllDAT·E=CANlllUATE+l TL! CONflG_SET_LIHI T 
HHllf IMARKER(CANOIOATEJ I; 

tNLI; 
IF CAhLIIDATE > SLIM(;,SE·TSI THEI, Gu TO L,<O__FINIS; 
U=NSETS; 
L=l; 

IF U < L THEN 
DJ; 

FENCE=L; 
GO TO EXIT_dlNAkf_SEARCH; 

E'lO; 
FcNCE= IL +u 112; 
IF CAMJIOATE = SLl"lfElliCEI THE~ GO TO t:XIT_lllhARY_ScARCH; 
IF CANLlluATi: < SLlMll'EhCEI THE!'. U=FENCE-t; 
El:SE L=FEl!CE+l; 
GO HJ CKLU; 

EKI OF BINARY SEAi<CH - AT THIS POINT FENCE IS T t,1: SET THi C.Ar.ulOATE 
FOR EXPANSIUN ICANJl~ATEI IS IN. 
SELECT All t:NTi<IES OF THIS SET WITH Tl:IE SAME SYMBOL TO RIGHT UF 
IJuT. ENTER ELEMEl;TS IN TRY AN.:> OOT PuS IT lur.s +-1 IN TRYOOT. ., 
EX IT _BINARY_SEARCH: 

TRY·K(l;T=l; 
TK YI ll=SETICANOIDATE I; 
MARKERICANLIIDAT EI=' 1 16; 

,. TRUE IF CANDIDATE NOT IN BASIS SET,THEREFOilE .;or IS LEFT OF itHS. *I 
IF CANOIOATE-SLIM(FENCE-11 > BASISIFENCE-1 THi:N 

ilC; 
i>Ul_Siiil TCH=' 0 1 IH 
l,K.a:;:2; 
TRYilOT 111 =3; 

ENo>; 
ELSE 

OG; 
L>UT_Swl TCH=' 1 1 tt; 
11.=DOT_Pu~ITIONCFENLE,CAlliulOATE-SLIM!rthCE-111; 
TkYLIOTlll=K+l; 

tl\i;); 
SYMltCL=PRGIJIS ET IC ANO IOAT EI, 1< l; 
DO J=CANOl;)ATE+l TO 5LIM(rENCEI; 

IF OOT~S .. ITCH THEN 
OG; 

IF >1ARl<ERIJI TriEN GO TO 1',0T_SAME; 
I• TuRr. Lf+ ..:OT_SwlTCt1 AS SOUN A~.OlJT Uf DASl:S SET. *I 

ff J-SLIMIFEN·CE-11 > bASISI-FE"CEI THEN 
[;0; 

DOT _SW lTt.:H:: '') 1 6 i 
L-=2i 

Ll"I\AJ(.co4 

L"':.;t,.:'tb!> 
Li'\·)u!>t:t..b 
Li'\(•bUo::./ 
Lr.•.:;(/~dO.:::li 

l.kObOc:i~'i 
Lk0G:lb70 
.i...ri.JJ~c71 
LKC1,()b12 
L;....:e,.Cb73 
Lr«:.bQ81'"t 
LKC..U'Jt,7!) 
1..F-.0;(;.Jb7b 
L"':)U-0ti77 
Lk0i.iQb7ts 
Lr • ..:"G0ts7'i 
Lk(.;G,!)cul') 

1..k.lib~tidl 
Lk.Ct;.'.)adl 
Li<.Cil,j0&d3 
Lkl.GOE&4 
U,...)~od~ 

Lkili,01'>8!> 
1,..r.:iUIJbt11 
.LN.iJ&'h,bd 
LkO..Ood~ 
LkU&Ot=':10 
LkC~Oa~l 
&..i-.0u0b9.2 
lic:l.;()<193 
t...f..'l~Ob<;4 
L~.JG0695 
1..kGuOo-,10 
Lt-.JG0ts97 
Lil~G:Jb'itl 
Lk.;)bC0~9 
Lic0G0900 · 
L"Oi,0901 
Lf\().GOC,.,Z 
LkOGO'iO.:i 
LkGG0'7~4 
u·.CL.O~O=> 
Lk;;(i.0'l0b 
L,..\Ha0'i'l7 
L•-v~o~oa 
Lt-.ObOSO".f 
L;.Cilill91'.l 
Lt-.::,..,Qc;ll 
Lk{..GOS.1£ 
Lt<CGOSl.-' 
Lk.~'bG'i,i-t 
Lto:~GU'll5 
i.kCl;tl9i.o 
LkOl,iJC,.l 7 
Lt'\0\:i0'7ld 
LtcJ,..O'iol'I 
Li-.-3G0'6.l0 
L«(f l,O<;d 
Li-Oi,O<;c!~ 
LROG09c!.i 

- .. + 



ENO; 
EL!>t: l=UUT _PLS IT I ON( Ft.NL E, J-S L IMC fd,CC-.l I Ji 

ENiJ;. 
Ir P~Oc(SET(Jl,LI = SYMoOL lHEN 

i.JUi 
TrlYK.i\JT=Tr<.YK.NT+lt '* BASIS. SET uvErtFLUl'i??'! *I 
IF TkYKNT > Nu_BAS!S Tr-ff~ ..;c TC HRl,:; 
TKY(TRYKl',ll=SEHJI; 
TRYDuT(TRYKNTl=L+l; 
MAKKCR(JJ=•i•d; 

END; 
NUT _SAME: 

ENJ; 
I* 
NOw SEE IF TRY wCuLO START A Nfo.SET GR JU'.,T OuPL!CATE AN eXISTll<G 
SET, METk.lLJ IS Tu CHtCK ALL E,lSTlillG SET'S ll TL 1',SETSI wHUSE bA!>IS 
ENTRY E~U~LS TRYKNT ANC CHELK i!OTH tillTRHS AN.J LlLlT PO,IT!UNS, 
IF INE<.,uALlTV EA!STS wlTH ALL BASIS HtMENTS JF tACH SET THEN TRY Al,~ 
TRYDQT Al,0 T~YKNT ARE USED TO INITIAL!lt A NEW SET (N>ETS<-NSETS•ll 
AND TO SET TAbLE, 
*I 

lN_SET: 

'* 

CU J=l TC NSETS; 
If bASISIJI = TRYKNT THEN 

DO; 
DO K=l TO TKYKNT; 

00 L=l TO TRYKNT; 
IF TKYIKI = SETISLIMIJ-ll+LI ~ 

TRYDuT(K) = OOT_POSIT!ul'l(J,LI THEI, .;o TO IN_SET; 
ENO; 

• GO-T ..i NEW_Se T; 

CNO; 

SET TRANSITION UMJE11 THIS SYM80L 11' TAELE- T,n IS vvPL!"CATED [>Y (JI Td 
~AolS SET, 
*I 

NEW_SET: 

TAaLE(FENCE,MAPTO(SYMBCLll=J; 
.;o TO EXPAND; 

END; 

HolO; ,;: 
NSET,=N~ETS+l; .. 
IF t><SETS > NO_SETS THEN GO TC ERl<l;,; 

I* SET TRANSITION TO THIS NEW STATE· ·ISET, THAT ISi, *I 
TABLE I FENCE, MAPT OISYM~OL I l=NS~lS; 
NBASIS=MAX!NHASIS,TRYKNTli 
CO J=l TU TRYK~T; 

SET_LIMIT=SET_LIMIT+l; 
IF SET_Ll,~IT > H~GUN~l~ET,ll ThEN GO TG Ei<kll; 
SETISET_LIMITl=TRYIJI; 
DUT_PuSI Tl UN( NSE r,. J) =TRY ij(T (JI; 

END; 
SLIMINStTSl=SET_LIMIT; 
BA SI SIN SE TSI = Tk nNT; 
GO TD CLUSE; 

LRO_flNIS: . 
PUT f!Lt IPRINTI SKI~ bJIT 

( 1 VSCK l".E:QUESTE:u ALTUALLY l'llc::(uC:W',(341 •-•, 
'NUMdEk Qf .'.:>tTS' ,t>iu_Sf:T~,N'.:>f:TS,'LENGTH Lf- SET:'.J 1 t 

U•u00924 
L"-::·0,0.<iL5 
LKOGOS-20 
Lt<OG0927 
Ll'.0<,c<;,2d 
LkO G092'l 
Lk0GL9J'i 
Lt<Ou0S.3l 
Ll'.Ou0932 
L kCG09.>3 
Lk(, l,C93't 
LROG0935 
U,OG0936 
Li<:! 17:)937 
LkDG0'>38 
Ll<0.,0939 
Lk3G.0940 
Lk(i<,1:',41 
Li,.Ol,'l',42 
t.:k0u09~3 
Lr,·OG0944 
Lk0.;()945 
LkOG094o 
LkOG0947 
Li<UbC946 
Lk0G094'l 
Lk0G0950 
Li\0~0Ci5 l 
Lk0G?9,2 
Li-.OG0953 
LkJG095r. 
LRO<,O'i~5 
Lk0G0956 
Lk0G0957 
Lk0G0958 
LK0.;0959 
LKCG0960 
Li<OGOYbl 
LROGIJ9b2 
Li<OG09t.3 
Lk0!,0964 
u,;,GD<,!>5 
Ll<0£,Q<;bo 
LkC£,09t>7 
LR:>G0968 
L-.%0969 
LkCl,0970 
Lliv[,0971 
Lt<0G097 t. 
Li,.:J (.0973 
L~OG0<;74 
LRC.[,0~15 
LkCJ(i/):Y70 
LhCG0977 
LR0u0Y7cl 
l.i<)b(i',79 

LkCGOYilO 
Lk0G09dl 
Lt<Ou-09dl. 
1.k0t,D9d3 

CtH,;r ,u_~t T _L l 1"'1 I r' ~i: T_L lMI T' '1-.UMtH:k I r.i bA SI~ :)t T' thJ_~ ... .,i.;' ._,c.UU0'7d4 
-,11:'iiSl~) (5Kll-',C.UL(ilJJ,:..,~i<..1P, (.UL(;:": ) 1 A,., ( ... JL( lt•J,.:.,~.:,L, ~4J, ._,-.~vOt,,:,j 
i=( 4 • .,X( l5J ,F(4)JJ; u·.1)\j'_"~-'O 

IF NJ_Pil.H<T ,= l THl:N Gu TO dYPASS2; 
I* CUNHbURAT!Qr, SET CUTPUT, *I 

U·.!Ju'J",C 7 
!.r1,.0u~',,dtl 

PUT FILE CPRH,TI SKIP 151 EUIT 
I' CU~FIWRAT luN SETS .. ,,, 
'POSITION CLEMENT UUT HCU~D Bh~l~ ~Er•', 
(.-.41 '-'IIA,2 (SKIP,All; 

UC l=l TC NSt:TS; 
J=SLIM( 1-ll•l; 
PciT FILE !Pk!NTI EUIT 

CJ, SET( JI, u·ur_POSIT IONI 1,1 l,SLIHI 11, tlAS IS. (11, !, 
NODi:IPKOO(Sl:TIJl,111,' --> '• 

Lf'l.;,,.u[--:,,.:-
._a,.1 .. H,')"J"9·:' 
t.f-._·bG~S.a. 
Lt'Ju{;":,..,,i 

Lt-.. ,)b!')C..',j 

LK~ut)~q .. 

Lf..JuO'.t,.::, 
L ... .JuJc;,c;o 
Lt•:: t..0~'1'7 

INUtJE(PROtJ(SET(Jl,LII Uu L=2 TC, OUT_PUS!TIO!',ll,11-11,','• Ltw<,~~9d 
INOOEIPROO(SEHJl,LII 00 L=DCT_POS!TltitHl,11 TO i•U_P~klSII L~:o.09<;, 
(SKIP,Fl41,1((61,fl41,Xl51,H21,A(31,H'+l,A131,~L>I, u,::Gll:'.IQ 
1((51,F(31,COLl531, INO_PA~TS+21 IA,Xllllli 

PUT FILE lPRINTI EUIT 
( lK, SET (KI, UOT_PGS!TluN( I ,K-J•ll, 
NOUE!PROD(SET!Kl,111,' --> '• 

LkG~ !':Ci 
L";..!uli"!C.l 
LrlH;ltQ:, 
L~Pbl(•04 

{NuUE(PRODISl:TlKl,LII DO L=Z TU oor_POSITlON(i,K-J~i)-11, L~n .. ~O,j 
',',(NOUE(PROO(SETIKl,Lll 00 L=OOT_PUSITIONll,K-J+ll TO LkO..lC·Ob 
NO_PARTSI 00 K=J+l TC dASISlll•J-1)1 
I SK IP ,H 41, X( bl, F( 'ti , XI ~I ,F ( 2) , 
COL 153), I NO_PARTS+2 I IA,XI 1111 i 

PUT FI LE I PRI Nil EUIT 
IIK,5ETIKI, '2',NJOEIPROOISE·TIKl,111 ,• --> ,,, 
INOOEIPROLllSETIKl,LII 00 l=2 TO Nu_PARTSI 
DO K=dASI SI I l+J TLI SL! HI II II 
ISK IP, Fl41, XI b I, Fl 41, XI 61,AI 11, 
C.CU531,INO_PARTS•ll IA,Xllflli 

Lf.c.~i,i(-;) l 
...... :.u1-:.'Jd 
Lt< .. !1Ul(.l),-

Litl.:-G.1.Gl'.J 
i..h~biCi !., 
L"~iCl.2 
LI\.Cl.itl3 
Lh.0\ii01'1" 

ENtJ; 
BYPASSZ: 

U·0uL:as 
Li<O Glvlc, 
Lk0GiCi1 
Li<OGlC'ld 
LkJGlCl-1 

Nu_ SETS= N SE TS; 
PUT FILE (PRINTl EUIT 

I' ,.,END OUTPUT FOR LR(OI GENERATE SECTION.,,'l(SKIP,AJ; 
ENO LKO_GENERATE; 

I* SLRlll TABLE GENERATOR, *I 
SLRl_GENEIIATE: 

BEGIN; 
UECLARi:: 

PUNCH FILE CUTPUT STR~AH, 
IELEMENT,NO_INAOI FIXED BINARY 131,01 li..&IT!r.L ICJ, 
TOP FIXED HINARY ( 31,01 1;.i1TIAL 111, 
ll ,J,K,U FIXED bl NARY 131,0 I, 

· Lh.~lC20 
LI\C<.lC2l 
:>LRbl0.<2 
:O.Lli.Gl0.<3 
SLKbl0.2.• 
5l.C.blC2~ 
:O.L.tGlC,26 
c.LkGlC:2 7 
~LKbi(~28 
:iL~biC-2-, 

TAIL (2.:NO_NON,2:NO_NONI BIT Ill :O.LKbi'.bJ 
INITIAL l(NO_NUN-211'l'B,INO_NOl,-1J(ll'0'81,'l'bl ALIGNciJ, ~Ll<Gl03l 

I* 

FULLJ• 12:Nu_NON,Nu_NuN+l:~O_SYMSI BIT Ill 
INITIAL I INl.l_NON*t;O_TERMI 111 'O'i,I ALIGNEU, 

MASTER_ERROR BIT 111 !NIT 1111. I '0 1 81 AL lul'ltU, 
(RED, Tl: kMI BIT ( ll ALI .;NED; 

ON SIZE SNAP SIGNAL ERROR; 
L~ S.UBRG SNAP SIGl'IAL ERROR; 
Ul'I ST~G SNAP SIGNAL ERkOk; 
L;-; EKRuR SNAP G(J TO EKRO&; 
PUT FILo IPRINTI ECIT 

,.; •• tH:~lN SLk(lJ GEr ... E;{Afc SECTlutla OlJTf'lJT ••• •J(SI\U·,o1i); 

rURM TAIL ;,YM81JL INilNTt~MIML GNLYI Ti<ANSITIVE U.US.<Jii.~ M"falJ. 

.>i..kblC3'2 

.loLfl.C:,ll~3) 
Slkb iC.:)4 
.:,L"'--bl( .. Y> 
::.LK.bl:::~t 
::.LKbl(·.>7 
:::.i..kbl~3c 
.:>lrc.b1f!~ 
.S.L;,.(.1('4~ 

.:u .. l'\blC41 
=>LKvlf4L 
~Lkul 1l'"t3 

-:i 
v; 



{Til.lL l'dTIALlLC:U TO ~J>.j li.Jt.i\TlTY MAlKlX rn- UlME="~llt\i r-.t-_t,:ijfrl;J. 
•I 

I• 

DC I =2 TL, :H.J_Pk.,JD.:i; 
JU J=2 T'.J 'i!G_PA~T.)-1 Wr1ILI:. ( PkOi..HI ,J•lJ .,: ~J; 
ENC; 
IF M~PTOI PRUDI! ,Jl J <= M,_~C~ THl:N 

1 A IL I MAP TU I PR Ou I I, lJ I , MAP Tu I Pk OD 11 , JI 11 =· l';;; 
Ef\O; 
CALL wAK>HAL ITAILI; 

CUMPuTE f(LLUw PeR OEkEMEk'S lHEUKEM A~G BOOLEAN MATklX TElh~I.UES 
SlMILAk TO •ARSHALL'> ALGORITHM. NUTICE THAT FOLLOW OF EVERY NON-TERM 
IS CCMPUTEC RATHER THAO, JU:,T ur,c:s 1-Uf< INADEl)LIATE STATES uu, 
THAT THE "TKANSPCSE" CF THt TAIL MAT RIX I> U5EO. 
*I 

I* 

CU J=2 TC ~(_l'<GN; 
UO I =2 TO NU_NLlN; 

IF TA!Lll,JJ TH[~ 

IF THE FOLLOwlNG "00" •A·s U/',LY EXECUTEU FUI'. K=Trlt. l"AuE.U4TE: STATc 
THEN THIS ROUTINE ~OULU DUPLICATE OE R~MtK'S MtTHuO. TrtAT IS, FD~ 
A RE~UCE STATE THE REDLICTICN wGULD BE ENTtkEL I~ ALL TEKMINAL 
COLUMNS OF THE TAoLE. 
*I 

END; 
END; 

I* 

DO K=Z TO NO_SEIS; 
IF TAbLEIK,ll ~= 0 THE~ 

E~(J; 

DO L=l',O_~DIHl TO NG_SYMS; 
IF TABLEITA~LEIK,11,LI ,=~THEN FOLLOwlJ,Ll='l'B; 

END; 

NOii PROCESS ALL REDUCE STAH:S, THAT IS, FC.K ALL STATES Rb.iUlli.lNG 
A REDUCT ION, E~TER THE APPROt'RIATE Nl:GATl~E PRODUCTIUI, i..UMcE" 
IN THE TE.R~IML SYM~OL COLuMNS IFOR TERMINALS IN FOLL.Jo(STATE,*I I. 
*I 

CO 1=2 TC NO_SETS; 
IF REDUCEIIJ = 0 THEN GO TC SKIP_Rl:UUCt; 
If REDUCEIII < 0 THEN 

DC J=~C_NGN+l TO NO_SYMS; 
IF FOLLDWIMAPTGIPRODl-t<EOUCEII J ,111 ,JI THEN 

00; 

i:::NJ; 

IF TA8LEll,Jl ,= C T~EN 
oo; 

PUT flLE IPRINTI SKIP EU!T 
('STATE:•,[,• [:i I/\ADEloiVAT.E AND THE 51:1.1-"LE 
'l-LJ0K AHEAD ~EIS ARt NUT Jl~JClNT.', 
•TRANSITIUN IS UNDER ',NDuflMAP~RUMIJII 
,• = 1 ,MAPFRCM{J) ,• IN CGLUMN '.J-1 1 

•, TKY1,~G TO kE:Pt.4.CE. ',TABU:tl,Jls' 11llti 1 1 

RE-UUCC:( l J) (A,f(j I ,.2: A,SKIP,A,A(:'iG_Cl-!AkSJ,A, 
Ft3J ,A,F{3l ,A,fl4) ,A,F(4JJ; 

MAST~K_ER~UK= 1 11 B; 
~NJ; 

EL SE TAoU 11,Jl =Ri::OUCE I 11; 
tNiJi 

I* MUKI: THAfi l REDUCT ILlN FD~ TM! S SU. *I 
cLSE: 

~LKGh.44 
~L"i.i,1'>95 
:tLkGl04b 
~LKUl:O<t-f 
.:iLi-'.;,lC48 
~i..Kb10.,,_9 
J LrtG-1050 
~LKulOSl 
SLkC.lC52 
>LkGlC,53 
~L~blG54 
:,LKbi075 
!aLk.UlGSi6 
>Lt<C.1(57 
S LRGlC58 
>LRG1C~9 
H~GlCbO 
'>LRC.l.Obl 
jL~GlC·b2 
SLkt..l.Ob3 
:fLk.t.lC•!J't 
SL"C.1Cb5 
SLo>.GlObb 
SLRGlC'67 
SLi<GlObo 
Sli<.GlC~9 
SLkL.lC70 
SL"lilG71 
>Lt<ulC72 
SL><Gl073 
SLKU07-. 
.::.Li<Gl075 
::.L«lilC76 
5ltHal077 
!.L"bl 078 
5LKlilC79 
~Li<.bl~tjO 
!.LKt..lliijj 
!,Li<C.lC82 
S LKG1Ci13 
~Li<i,1(8 .. 
SLl'(U~Cts5 
5L"'-Gl08o 
>L~l,1087 
.:,LrC..Gl[03 
.iLKul(8'1 
..>L"-UlC-i-O 
..> L...._viC.:., 1 
M"\t.lC"il 
.>LrtUlC-Y3 

JLKUlC>~ .. 
::.Lrtt.10~5 
.:.i..n.Gl:~b 
Jli<ul.&':17 
,;,i.')bi\.<Jt> 
.> l.~bl(·~~ 
~LK~UOC 
~L'-GllO l 
£LKuoil.J2 
:»L~GllDl 

Du Ti.Jt>=-Tuf=- TU T[;r"+k::.uUC.f:.( l )-li 
UCi J=f't(;_;'tGf\l+l Tu r.o_~YMS; 

It- F OlLGw ( MAPTU( PRUU (-,..ULT _N.ElJu L.c_.dTUP), l J J, J J T 1-1!::h. 
00; 

IF T Ai::IL E:. ( 1, J) ,= 0 T Ht:t-~ 
UG; 

PUT FILE IPRINTI SKIP ELll T 
!•STATE •,I,• IS INADEQUATE: AND Tht ~I.1?LE 
,• 1-LOOK AHEAil StTS ARE NOi UISJLINT.•, 
•TRANSITION IS UNDER ',1',0vtlMAPFR~MIJII 
,, -= • ,MAPfR[M(JJ,' 111. CULUMN 1 ,J-1, 
I TRYING TO REPLACE •,TAnLE:(l,JJ, 1 WITri 1 , 

MULT _REDUCE_I.IITOP I II A, fl 31, 2 ~, SK 11' ,A, 
A(NO_ChARSJ ,A,f-(3) ,A,f(3) ,A,F(-,.J,A;f-(411; 

MASTER_ERRGk=' l'b; 
ENO; 

EL~E TA~Lcll ,JJ=MULT_~ED~Cl_~(TuP,; 
!:ND; 

ENu; 
ENU; 

SKI P_REuUCE: 
ENJ; 
IF CJUNT _1,,ALlEwUA Tt:_S T4 TE: S ~= l THEN Gu TO PR Li T; 

I* 
Nuw ~DUNT THE INAUEQUATE STATES, IF FD~ ANY REASLN THE STAIE I~ 
FOUND TO .. BE .. INADE~UATE THEN IT IS NtJTEO AND N.:J FlJRTrltR CHELI\INu 
IS LJLNE FCR THAT STAT!:. 
*I 

PUT FILE IPRINTI SK P 141 EDIT 
I' RESULTS OF !NAU ~LIAH STATE cour.TtR (NOT l,,CLLIUl'<G 
•uN50LVA~L~ STATE I FOLLU~ ••• •Jl2 Al; 

CC 1=2 Tu NU_S ET S; 
ELEMENT=O; 
TERM,~E0= 1 0 1 dt 
Cu J=Z TC NC_SYMS; 

IF TAdLEll ,JI = C THEN GC TU ehOtLCK; 
IF TAuLEI I,JJ < 0 THEN 

DG; 
IF RcD THEN 

Ou; 
I* CHECK FCR 5AMt NEUUCTIGN IN THIS SET. *I 

If TAB Le 11, JI ,= ELEMtNT THE/\a 
DO; 

I'\!...,; 
CL E 

L; 

PUT FILE IPklNTI EJJT 
( 1 STA TC ',I, 1 I!> I NAU£1,,rUATE Ut:\...AU:.l. .Jt- ' 
,'.MULTIPlt ru:ouCTIUf'4S.•HSr<.lt-',A,1-l"tJ,2 :u; 

NJ_! ~Au=Nu_ I M~•l; 
GO TD Et~i.JSTL.K; 

~i\iD; 

r<.t:O= • l •o; 
IF TErtM TrlE:~ &~ T~ MIXED; 
E:LEM~NT=TAUL[{l,JJ; 

!:.N.J; 
E:ND; 

ELSE 
Del; 

! f J > 1\d.:.._i"'4LiN T tti:N 

~ L'" .II. i:-~ 
-•L!<v i l_.. ~ 
.>l ·-u l ~·--t, 

.>Ll'\.~J. l "11 
:i>Lt<ullGo 
'.)LK\Joll07 
::,L"'blllO 

I . .:u ... ;(l,ll.a. i 
..>L;{Llil~ 

SLkt..llb 
.>LI\Ull.i.4 
:)LroJlLlS 
;Lk.Ulll6 
.>LKul:17 
5i.l'l.ol. ii O 
.>L"' ;, l !. i.., 
!>Lr<.uiL.:..J 
~LKu,lL.i:::i 
!>L .... uJ.1£2 
.:ilKul iL .J 
_;LKull£-. 
.>Lr<ull.l~ 
.> L.._t,l l.c::.r, 
5L"-blli7 
.>Ll'\UlL.C::.b 

.)LrtGl a.l.9 
::.t.riuii..JO 
.">Lf.(li,lL,l 
!>L;...~1132 
!>L~G&.1.j3, 
.:,Lh.;,;i,ll.~4 
:lLkL, i i35 
~LK_;l :i.:>b 
.>LrlGll.:J7 
·:>L"'-ull.io 
::,L.,,bl 13·.; 
;)Lr\u.1. l'tC 
.)L..,vll4l 
:>Lrdii.i-..£" 
~LkG!.141 
:>-L~ Gl .;,_r+4 
->l..~uii'1'j 

..>Ln.u!.!4o 
;)L"\J.1.l"'t 7 
:,l.1-.~.il4-d 
)i..ku.il4-0:, 
::,L"',,-11-.,c· 
:,Ll'\.-,l .. :. l 
.)e."\Ui! :12 
:.:.!..r u!.i.')j 
~Lr G-1.i:>4. 
::,i_,- '7 i l::>:i 
JL .. t,llja 
::,U,u~i5: 1 
~L:-,.ull:»O 
::,L~ulJ.j~ 
.iLN.t...1.lo!> 
.:,LN.ul lt>l 
5L"Ul iol 
.>Lr"-ul it>J 

.....;:i 
O'\ 



ihJ; 
T Ekfl:: • i • d; 
lF l<i:iJ TlltElfii 

M Ix t:D: 

HU; 
EM); 

oo; 
PUT FILE IP•lr.JI IEDIJ 

1 •STATt •.1. • IS llllu&i ... lE lli:Ull::sii. illf • 
o•Lil!MAJr.ia..; IIIQ"II <I RBIIUia Mi,i, A "• 
•liUYISlfilllilll. •11~PoA.FC4'1 0 ~ ..»;; 

l:O_l_r-.ill_llfli.r.11:•l; 
I.Ill TC iEl!MIJSl"C&; 

;lliQ; 

BUIB.Ck: 
Cflll; 

ENDSJCK: 
a.c; 
PUT FILE 1ra1 .. JI IEwlIT 

I •Tttcli IS A TOTAL !IF •olll/llliJ-.;0 • lldillE .. .U-c STAH:S.• J 
ISKIPoAoFDloAH 

PRJOJ: 
IF ,.._J'tll•T ._ l JlfilEIQI .0 TiiJ lil'l'NSS:ll;; 
PUT FILE IPRINTI Sil.IP 15il IElialf 

1 •COLC-S ilEl'liESDIIJ ••• • .1•ca.1• .1-1.• 1 =. • 0 MJIIIEIIIUPRO!II Ill 
00 1=2 TO lllii_Slll'ISHUIC.IPoAolllWII_S'IIISIULLlllo 
1132/IIS•IID_CIIAllSIIIAoFl31wAoAClllii_ClhlllllSlollC4'1111; 

PUT FILE 1rar•n S.UPISI · UST l•c.EIIEUTlfo SLRIU T-..E ••• • J; 
cc 1=2 TO IID_Sas; . 

NT FILE ll'lll"'TJ ElilT 
11.•.• 0 CTAilt.EllwJI a~ ~2 1U illll_S'l'IIISII 
IS11.IP.F131oAo99 132 ff4'1.Cllll.CSUI; 

EM>; 
BYPASS3: 

IF NASTER_Ellil(Jlli. T- ;oil) Tilll EimtCll'III; 
IF ... _,.INJI st TIIIEl!ii 

·PUT FILE ll'UIIIClfl EDIT 
l"'LSYIIS 0 MI_Cllllli.So~•IMID.J'M.TS.~0 -_SlETS. 
A-AIL.CIIIUMTo.._lOlolllUIEllloLLIIJ,...LllJo"111'1ClllollllAl'F .. III 
0 T6'olll lilli lzal m iilill_SIIIIISlo 
lll'lilatUo,H ii6 J=l Tllll lllli,l_lP.llil!TSI ilO 1-ol TO lllll_NllliDSlo 
II T.._EII oJJ N ~ Tilll IIIID_Sl'IISI IIIO l..Z IO llliJJiETSJI 
ICOLl1Jo9 Fl31oll!IIJI_.SYll!611AIIUlil_Clltllllr.Slo4'Fl31o~l211o 
IIIO.J'AllI5"'1D_PlliiilllPil F131 olil<IDJ'l'-llllii...SETSI Fl4>U; 

PUT FILE 11'11.ll!iiTI Ell»IJ 
1• ••• EIID SUIU aMIUlrE SR.ll"lliil!II wiJll'ill'IIIT ••• •U!ilUP01&J; 

EHiJ SUll_;.EIIIE:UIE; 
END TAoLE_Q.UT!f_SIEULIJ"; 

I* IIARSHALL AL:.oJRIT- FIA a::«MIIIUlflU11., IDL-IE MT!ii.lL!ES. *I 
IIARSHAL: i'KJCE:JUII.E 11111; ,. 

., 

11.\RSHALL ,l,L..C: .. ITIHIII! IC.IF. ~fl'! D.'ll<*>c. II'. ll.U 
l. Nll,JIO = ~lloJJ 
2. 11110 JIK•I = 11111 0 .IIINli. i 111111 ilolll.•~».K .; :.,«,,.•!o.llllli.1 
3. Nll,JJjl.\il. = llllo.1111!» 
llhfkE O = W. Ur "'lilLerli cillF ''II II<\ $.;IIW.l,lloi.lE IIIilltll.Rilll ll!lll>TiiCilll. 

OECLARE 
H l•o•I BIT IU -.1<Qloicllii, 
11,J,KJ Flllicc,ll di,- UD.w<r »;; 

~ L«i.l.lbq. 
..>LHullo5 
.iL'""llbb 
.iLol.1;11:.1 
!ol.lllGllbB 
,.LKGllbY 
!>LKG1170 
SL,tl.1171 
5Lii.ld.172 
x!U;il73 
SL,u.1174 
:,L..;;.1175 
§Llol.1176 
x.kl.1177 
.iLict.ll7d 
SL'-1179 
>LilUll8il 
Sl.kblllll 
SL•GllB2 
!>LllG.lliB 
SI.Al.lli14 
iUlC.1185_ 
SLilW.li16 
SUll.11117 
S.Lii.C.11811 
!>LkGlli19 
SUc;i,1190 
SLltG.1191 
SLllC.1192 
SLRG1193 
SLllGll94 
SU-1195 
SLllC.1196 
SLAQHl 
SUl&oll911 
SLRC.1199 
>Ull.12:JO 
Sl.i.&.1201 
SLii"1202 
suu.1203 
SLit .. 12!l4' 
;oLllC.12):0 
!>Ul;;l2:J6 
SLli.C.1207 
;o~IZ08 
SUll.1209 
>L"'l.l,dl) 
J4a<.ILl1 
Mll."C.>J..:.12 
"'Aii.Sl..:I~ 
.... l,.Sl214 
-...s1.c15 
.£1l.>l,lb 
....... Sl,'17 
.. Ait.~1~18 
•"'51.cl9 
"'llSluO 
..... >li2l 
...... :si,22 

-"'-~·"~ 

~0 ~=LdOUll,iJl~,11 TL rldiJUll.iJIM,11; 
JG l=LtHA.111.DIM,11 TC hlllJU~LIM,lJ; 

If Ml I ,Kl THEN 

EN!.ii 

Ou J=L8UU~D(M,2J T~ rl60UNU(~,2l; 
lf M(K,JJ ThCN M(l,Jj=•l•d; 

i:ND; 

C:NO; 
ENO •AKSHAL; 
I* dALAII.CEC dlNAkY SEAkCH TRcf SYMBOL TAbLE MAINJENANCc, *I 
IISTSLR: PRXEiJuRE IITEM,f-LAG,POS,TREEI; 

I* 
PROCECui'.E llSTSLR IS THE IMPLEMEr,TATIUII. Of AN ALuURITHM f-GI. 
PROCi:SSliw; AND MAIIHAINING A DYNAMIC INFORMATION 
STRUCTuRE IN THE f-ORM Of A P4RTICULAR TYPE Of- BINARY 
SEA~CH TREE, AN AVL TREE, 
PARA Mi: TERS: 

*' 

INSERT: 

ITEM - Ker FGR RETRIEVAL, 111.~Ei<TIUf'< (,!{ ilELcTIL,, 
FLAG - STAJUS CC.DE FOR-ATTEMPTED fUNCT !Gr. 
PUS - LINEAR INOEX OF NOOE INSERTED OR RETRIEVcD 
TREE - STRUCTURE CONTAININI> BINARY SEARCtt TREE, 

AVAILABLE SPACE LIST A"C II.COE COUi,T 

CECLARE 
IFLA!>,i'OSI FIXEO lilNARY 131,01, 
HEii CHAR I *I, 
1 TREE, 

2 NOllE I* I CHARAI. TE R I * I , 
2 LL l*I FIXED blNARY 115,01, 
2 RL l*I FIXED BINARY 115,01, 
2 TAG l'*I Iii T I *I ALIGNED, 
2 AVAIL FIXED BINARY 131,01, 
l. COUNJ FIXED BINARY 131,0l, 

Ll 10:327671 FIXED BINARY.115,01 bASEIJ lllPNTI, 
L2 (1):327671 FIXED BINARY 115,0I BASED IL2PNTJ; 

B~G IN; 

'* ATTEIIPT TO INSERT JHE SPECIFIEO NOQE IN THE T.REE. 
RETRACE THE SEARCH PATH TO PERFORM BALANCE TA:i 
l'All\TENANCE AND AT MOST CNE RESTRUCTURING, 
THREE BALANCE JAG CONOITIONS wHICH REQUIRE SEPAKATE 
ACTION MAY OCCuk AT A NJDE DURING PATH RETRAClf'<G: 

11 JAG=• oo• B - . SET BALAt.CE J.AG IN TH~ lilR"El.l ION (JF 
INSERTION ANO RETRACE FURTHER ILUII.GER PAJHI; 

21 JAG IS Ul\~ALANCED Ir. THE OPPOSITE OIRECTIUN 
FROM INSERTION - SET TAG TO •oc•B #ID ~IT; 

31 TAC, 15 UiitlALANCED IN THE SAME UIRECTION AS 
INSERTION - NOUE IS "CRITICAL•; RESTRUCTJR~ THE 
SUiHREE IT HEAIJ S Ar.o EX IT, 

RESJRUCTURIII.G CONSISTS Of Twu tlASIC I.ASi:S nlTHIN 
LEFT-RIGhT SYMMETRY: 

*' 

ll CRITltAL WJ~E IS LeFTIRIGHTI HEAVY AhU ITS LEFl 
lol.lGHTI GESCENDANT IS LEFTIRIGHT I 1-EAVY -
l',JTATE SUBTREE c.:JMPONE,,TS; 

21 C~ITICAL NODE IS LEFTIRIGHTI HtAVY AND ITS LEfT 
IRl(;HTI SUBTREE IS RJGttTILEPTJ 1-EAVY - SPLIJ 
RJTATE SutlTREE COMPuNENTS. 

DtCLAKE 

·,,..;."~1£..::.4 
o15;.,<.!;.l,~!> 

l'Hf.r<.Si,lb 
.... k::i.1;:.2 7 
..,A{ !,l~2.6 
olfAk.!>1£2':i 
•hn.Sl2.J') 
11AK5li31 
..... i..i.l,:32 
01:'~112.,, 
De!,. r l~.;J'+ 
bbJl lLj~ 
tiCST1£~b 
01.:S T 1,.:t7 
.!O~ Tl,;.c, 
DUJ1li39 
Dt:.~Tl,41) 
IH.'"-=ao l .i24 ! 
C..c..!>ll.i42 
ull=>11~43 
.,,_,:, Tl,'+1.t 
uo-> T 1, .... s 
oc.~11£4~ 
Lt...>Tl,47 
t,1,,!>ll,4b 
l!I:.> l }~4;, 
Ut: :.011,'.:)(; 
or::: Tl~:> l 
Do:» Tl252 
1.,;u!)Jl,:t.2' 
D~i,ll~5"t 
oD~Tl,55' 
t>bS T 1256 
ub.,Tl~)7 
:ct.>Tli"58 
oo:>Jl,:>9 
btSTl.:f>'J 
bbSJl<.bl 

""'" 11,1>2 
"bSTl.:~3 
lit.o!ii Tlio4 
Ub5 T l"'o5 
DD:» Tl2bb 
ob~T 1Lo7 
::U>) 1-.i. ,.,~ 
bC:,Tl~b9 
:>tlST1£70 
bU~ll27l 
->b:illL7.i 
bb.>fl£7.;; 
OLS.TlL74 
i>~=a.11£75 
oc.;..11,7u 
t,&.,:,Ji,77 
i>b.>ll,7d . 
bb$11,79 
Ob5.Tl,o0 
bb:iT i·'°l 
ilt>51l.:i12 
Ub:).fi283 

-..J 
-..J 



( (..Ur\k, STACK T(U', Jo f A.Ct<. TP l, ~ TAC.r<.. Ttl L, T•jiJ J 
f!XeD BINARY Ul,01, 

I* STACI\ ,\,\iu STKf-L~ t...kE: ?u~n uL;~i\i ~TA(.1'. vi:.CTe~~. 
TrtE[ SILf >='t-036.7 KE.11.Jl!\C:::> LAr-..G::r1. ~T.:.1....1'\ t'r/ 

S.TA.Ct<.. (0:21) flAl:U t>lt'tA~Y tl:.i,::. J L'<li.T lAL (~J, 
STr<..fLG (G:LlJ olT (l) lf'>.ITL).L <'l'tH ALlGNcJ, 
dOiJL ,HT Ill ALIG,,E!l; 

I* SEARLH fOK THa ~.:DEc ·•ilCh w!LL 8E THE FATH::~ uf 
Ttif N.Ju[ TU BE li.,ScRH:O. Tr<.At...E THE r>ti.Ttl fQr{ t.ATC.lk 
USE *I 
C1,Kk,STACKlll=i<LlCI; 
iJD TOP=l 8Y 1 wHILE l~UKR ~= 01 

STACKITOPl=CU~K; 
IF I TE'1=NODEclCUkKI Thi:N 

I* DUPLICATE KEY *I 
DG • 

fLAG=4 ; 
POS=CUi<P. ; 
RETURN ; 

El'ili • 
STKFLGITJPl=ITEM > :.ODEICUkRI ; 
IF STl<.FLGITOPI Ttii:N CURR=i>.LlCUkRI 
EU,E CUR~=LL.l CUkRI ; 

';l\C, ; 

IF A VA I L = 0 Tt1 EN 
I* RETURN SPACE iJVEK~LOW COiJE *I 
DO ; 

FLAG=6 ; 
PD~=O ; 
RETURN ; 

ENJ ; 
I* GET SPACE FROM AVAILABILITY LIST*/ 
STACKITOPl=AVAIL; 
TuP=TOP-1 ; 
IF STKFLGIT(;PI T11El', KLIS TACK ITOPI l=AVAIL 
ELSE LLlSTAC~ITOPll=AVAIL 
NOUEl'AVA IL I= IHM 
COU!>lT=CCUNT+l ; 
FLAG=2; 
i>OS=AVA IL ; 
AVAIL=RllAVAILI 
RLISTACKITOP+lll=O 
I* ROOT NOUE? *I 
If TOP= 0 THEN RETU~N 
I* i<E TRAC ING * I 
DO .. HILE (TAG(STACKITOPII = •oo•BI ; 

I* CONUI TION l */ 
If STKFLGITOPI TrlEN TAGISTACKITOPll='O•'d 
ELSE TAGIST~LK(TUPll=•lO'~ 
TuP=TLIP-1 ; 
If TOP= 0 THEN RtTURN ; 

:'~O ; 
dUOL=TAO(SlA(.K(TGi'J) = '10 1 8 
If lilULl6STKFLGITLIPJJ I ~18UOLISTKfL(;(TUPII Tt1cr, 

I* CLNUITIJN 2 •I 
00 ; 

TAC.IST4CK I TOP 11= •OC· ·~ 
RE TURN ; 

ENU ; 
I* CJ~~ITIO~ J - ~iOTMvCTUR~ *I 

c.,r.,.) 1 Lc:::d4 
Ut:.)Tl.C:H5 
c.ib~ 1 1.cb'3 
Ub::dlt'.d7 
ooSlL .. ~d 
bc/)Tl,,j9 
01::» Tl.t..'lO 
utJjllL9l 
t)l)J I l,~2 
Ob.:> T lL'7) 
1.HJ!>T 1L94 
C)t).)fl£g5 
oOSTl,Y6 
<>o!>Tl297 
obS TlZ98 
t>bSTl~99 
ot>STl,JO 
oeSTUOl 
ooSTD02 
ou,Tl.:,03 
ooS Tl304 
obSTl,05 
t)(l~ f 13'Jb 
onSTl307 
obST uoa 
iillSTB09 
ob5Tl::>10 
otiS T DU 
t>BST1312 

'tibHDD 
d8STU14 
obST1315 
dbST Bio 
B·b, Tl317 
1>BST1318 
bt>STBl9 
ass Tl32D 
dbS TUll 
obSTU22 
ob5Tl323 
o·cSTl324 
ou5T l325 
o6>Tl32o 
66 S Tl32 7 
,11,sTu2a 
oo5ll329 
obSTlHO 
ub!)Tl33l 
Ui,STl;a2 
obST t:,JJ 
Ob.) Tl 3~'t 
oo'.::iil:H5 
boo Tl 3Jo. 
.:>o:ill.:>37 
ilo5Tl.H8 
ob,Tl339 
dDS Tl340 
ob, T l:>41 
.>US 1 "'jlf,2 
ob .:d 1::,4,; 

CA Sc 2: 

STACK TOP=HACKI TOPI ; 
5TACKTPl•STACKITiJP+ll 
STACKTPZ•STACKlTUP+21 ; 
T.\l.( 5TACKTUPI ,TA,;I STACKTPll•'O~'h ; 
I* PUINTER!> ~UR R1~11T UR LEfT SYMMcT~Y *I 
IF STKFL~(TUPJ Tt1[~ 

DO ; 
Ll Pl\,T =AODR( RLI 
L2Pl',T=AuDKI LLI 

H.1U ; 
EL St 

DO i 
L lPNT=ADURI LLI 
L2 PNT =ADDK-( RL I 

CND ; 
IF STKFLGITOPI ~· iTKFLGITuP+ll THtN Gu TD CASEl 
I* CASE 1 RtSTRUCTURINC', *I 
If ST«f'LGITOP-11 TrlEI< RLISTACKlTUP-lll=STALKT~l 
i:LS E LL IS TAC" IT0~-111= HA~KT ~ 1 
LllSTACl<.TO~l=L21STACKTPll 
LZISTALKTPll=STACKTOP 
~ETURN ; 

I* CASE 2 RESTRUCTURING *I 
!f STKFL.;(TOP-11 THEN RLIS:rACKITuP-lll=,TAL"TP2 
ELSE LLI STACKlTUP-111 =STACKT P2 
I• llA(A:NCE .-TAG VAR!ATiCJNs *I 
IF L2(STACKTGPI ,= o· T11EN 

DU; 
TAGISTACKTP21='00'8; 
IF STKFLGITOP+il THEN 

uo i 
If STKFLGI TUPI THEN TAu( STACK TOPI=' 10'8 
ELSE TAGISTACKTPll='l0'8; 

'END ; 
ELSE 

DO; 
IF STKfli.;(TOPI TrlEN TAGISTACKTP11='01'6 
ELSE TAGIS TACK TOP I=' 01 '6 

!:NO ; 
ENil ; 

L.2 (STACKTPll=Ll ISTAC1<.TP2 I 
LllSTACKTP,l=Ll(STACKTOPI 
L l IS TACK TOP l=L 21 STACK TP 21 
L21STACKTP21=STACKTOP 
RETURN ; 

1:NU l!\ISEt<.T; 
B5Tl1.T:El"lllri.Y l TRE:E:I; 
IN IT !At: 

~tGIN; 
I* 
CD~oTkuCT AVAILABILITY LIST BY US[Nb KIG11T Lll',K 
FIELU, OF EA~H A~AILADL~ NODE POSITION. Ser uTME~ 
CUMPDl<ENTS TO NULL VALUES • 
•I 

UECLAKt I fi11tU 6INARY 131,0 I; 
AVAIL=! ; 
Cu 1=2 TC HDJUNU(~L,11 

KLI 1-11 =I 
El~O ; 

uc:. r .. .:. ..... 
.. >.: .. T: _:)") 
.luJ i -..;"l'U 

.l,:.:, T :.:ft."1 
a;_, ,;i T l.;.<t-:) 
.,,_., i l .;-.'7 

,'.)(;..> r 1,;,,:; 
,H;::,Ji;:>l 
:>=,:) I !..,;5..:, 
!:.IC::,fl3,3 
.>b:::.IL:,54 
ol:.~Tl.:,~, 
r..b.) T .i..,~c, 

OL!i.Jl,:.:,] 
Jt::i-1 l..;.:,1 
.a:,.:,l ,ljSc; 
.;.~ :> Tl;.LJO 
.:,c.~ T l.!::>l 
~:,:>f~3::>Z 
<>c.>T J..,jo.J. 
C::>.:J T i.;.1'1' 

.... ~~il.Jo; 

.:,=,.:, Ti~tJO 
oc.;; i !,,:c, I 
.;;,: . ..:> r!..:,:,d 
""'c..:iTL~cd 
OCJii.17.J 
oo.:,Ti~71 
.'.le.~ T l_,,7 t, 
:,~;Tl.J,7J 
oo::.Ti.l7 ... 
oo.5Tl~75 
oc..>Tl~7o 
~a,Tl:071 
.>c.5Tl~7o 
:,:.. ~ Tl i, 79 
..Jt:!:» i ljaO 
~us T lj:31 
obST1.;:s2 
~<>> T l;d.l 
.,..,5 Tl3oil't
u~.:, T },jdij 

o:;,::,ll:2,86 
<icS TlJ87 
cH:.:,fl~o8 
.;;u,::. T 1.,oq 
Ot.ST:.:h1C 
tJo~ l l..;., l 
ab=:.Ti3-J.2 
ocSli_..,., 
os=.:t l l .:)'14 
~e~ Tl J.t5 
~t.~11.;,~c, 
-:10:, T l..1":f7 
Oll;J Tl.:,9b 
ou.:, Tl .:)'J-i 
Di>~ T 14~~ 
ob S fl'+Ol 
OL.:iT l'r0.::: 
~v.::,.1 l'r~..> 

~ 



RLIHdGUNUIRL,1 I 1,hL(Cl=O 
LL=C; 
TAG=' 00' B 
CCLtH=C-; 

.RETUKN ; 
ENO IN[TUL; 

Ei'<J BSTSLR; 
END TrE_WHOLE_THl~G; 

GC TC REUSAdLI:; 
ER~Ol: PUT FILEIPRINTl SKIP EDIT 

l'---ERkJR - IN INPUT PARM AM ETl:K S--- 'I (AI ; 
Gl TC REU~ ABLE; 

Et\ROZ: PUT FILE(PRINTI SKIP EDIT 
1 1 ---ERROR - IN INPUT ENCODE SECTILl'<---•l{AJ; 

GC TC RE USABLE; 
Ei<K03: PUT flLEIPRINTJ SKIP EOIT 

l'-:..-1::RKUR - INPUT Pi<ODUCTIDN PART TCJO ~rtuRT---'1141; 
GO TO RE uSABLE; 

EKR04: PUT flLEIPRINTI SKIP EDIT 
. (•--,-ERROR - MISSING PROUUCTION PUM:.ruATliJN---•IIAI; 

GO TO REUSABLF; 
EkR05: PUT flll::IPRINTI SK IP EDIT 

!•---ERROR - INPUT PRODUCT ID~ ERROR, PROBABLY LHS NUT 
'CONTIGUOUS'll2 Al; 

GO TO REUSAtlL E; 
ERROb: PUT flLEIPRINTI SKIP EDIT 

( ,_.;_ERROR - . IN ilUdUG SEC nor..---'I I Al ; 
GC TC REUSABLI::; . 

ERR07: PUT flLEIPRINTI SKIP EDIT 
I' ---ERROR - IN LR IO I SE:C TION---' 11 A I ; 

GC ·TC REUSABLE;· 
ERROS: PUT flLEIPRINTI SKIP EDIT 

t•---ERROR - IN SLRI 1.1 SECT ION--- 1 11 A I; 
GC TC REUSAIILE; 

ERR09: PUT flLEIPRINTI SKIP EDIT 
1•~-ERROR - ·UNSOLVABLE INADEUUATE STATE---'IIAI; 

GO Tu RE USABLE; 
ERRlO: PUT fJLelPRlN!I SKIP EQIT 

(•---ERROR.- OVEl!fLOW Of REUUUluN .. QUEUE-.,:-'IIAI;. 
GU TO REUSABLE; 

ERRll: PUT FiLEIPRINTI SKIP EDIT 
(•---El<f<DR - CONFIGURATION SET OVEkfLO.---'IIAII 

GO TO li.EUSABLE; 
ERK12: PUT flLE(PKINTI SKIP EDIT 

(•---ERROR - BA~lS SET OVEkfLOw-'IIAI.; 
GU TO REUSAIILE; 

ERR13: PUT FILEIPRINTI So<IP EDIT 
I •---{kkLIR - NUMSEcR OF SETS EXCEEDED---• 1 IAI ;' 

GO TO REUSABLE; 
E t.D REUSA~LI:; 

ENDMAIN: 
END SLR l; 
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APPENDIX D 

LOGIC BLOCK DIAGRAM 



START 

INPUT 
PARAMETERS EXIT ON EOF 
FROM FILE 

PARMIN 

SET DEFAULT 
PARAMETERS 

IF NECESSARY 

BEGIN INPUT 
SECTION 

80BYTE 8 RECORD FROM EO ENDINPUT . 
FILE PRODIN 

SET BYTES 
#73-80 TO 

NON-BLANKS 

SPIN THROUGH 
CONSECUTIVE 

BLANKS 

END 
OF 

RECORD 

NAME
CONSECUTIVE 
NON-BLANKS 

INSERT (SEARCH) 
NAME IN SYMBOL TABLE 

FILL NEXT COLUMN OF 
PRESENT ROW OF PROD 
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COPY COL 1 OF THIS ROW TO 
COL 1 OF NEXT ROW; ENTER 
NEXT COLUMN OF THIS ROW; 
RESET COLUMN POINTER TO 1 
AND INCREMENT ROW POINTER 

RESET COLUMN POINTER TO 1; 
INCREMENT ROW POINTER AND ENTER 

SET THE MAPPING VECTORS: COUNT THE 
NON-TERMINAL; ENDEX (COUNT) -aow 

POINTER; MAPTO (SYMBOL TABLE 
POSITION)-COUNT; MAPFROM (COUNT) 

..__SYMBOL TABLE POSITION 

ENTER NEXT COLUMN. NOTE: 
COULD OPTIONALLY BRANCH TO 

READ NEXT RECORD IF IT IS 
KNOWN THAT, IF A RECORD 

CONTAINS A PERIOD, THEN IT 
IS THE LAST SYMBOL 

FIXUP LOOP TO SET MAPTO AND 
MAPFROM FOR TERMINAL SYMBOLS 

OUTPUT STATISTICS 
ON PRODUCTIONS 

BEGIN DEBUG 
SECTION 

FORM "WITHIN" RELATION, 
THEN TRANSITIVE CLOSURE 

ANY 10 1 IN 2nd ROW EXCEPT 
FOR FIRST '!WO COLUMNS MEANS 

CORRESPONDING SYMBOL NOT 
11WITHIN11 - OUTPUT DIAGNOSTIC 

IF ANY 



DECTECTION OF USELESS PRODUCTIONS 
C,F, REFERENCE - OUTPUT DIAGNOSTIC 

IF ANY 

DETECTION OF DUPLICATE 
RIGHT-HAND-SIDES - OUTPUT 

DIAGNOSTIC IF ANY 

BEGIN 
CONFIGURA.TION 

SET COMPUTATION 

INITIALIZE FIRST SET TO FIRST 
PRODUCTION WITH DOT TO THE 
RIGHT (FINAL STATE), SECOND 

SET TO FIRST PRODUCTION WITH 
DOT TO THE LEFT (INITIAL STATE) 

CLOSURE 

GET NEXT ITEM OF 
SET BEING CLOSED 

YES 

SYMBOL-
PROD (ITEM, 2) I-----""" 

NO 

SYMBOL-0 

SYMBOL -PROD 
(ITEM, DOT 
POSITION) 

ITEM IS A REDUCTION ENTRY, 
ENTER THIS ITEM IN REDUCE 

(SET NUMBER) IF EMPTY -
ELSE SET TO NUMBER OF ENTRIES 

AND PUT ITEM IN QUEUE 

SET MARKER (ITEM 
NUMBER) TO 1 

AT PRODCLOSED 
BRANCH TO CLOSE 
IF ALL ITEMS NOT 
PROCESSED ELSE 
BRANCH TO EXPAND 



YES 

ENTER ALL PRODUCTIONS WITH SYMBOL 
AS A LHS IN THIS SET WITH DOT TO 

LEFT PROVIDING DUPLICATION OF 
PREVIOUS SET ENTRIES AVOIDED 

SET SLIM (SET NUMBER) TO 
LATEST ENTERED ITEM'S POSITION 

EXPANSION 

GET SET NUMBER CONTAINING AN 
ITEM WHOSE MARKER IS NOT SET TO 1 

BUFFER UP THIS ITEM AND ALL OTHER 
ENTRIES OF THIS SET THAT HAVE A 
COMMON SYMBOL TO RIGHT OF DOT, 

SET MARKE.R FOR EACH 

FOR ALL BASIS SETS WITH THE SAME 
NUMBER OF ENTRIES, CHECK BUFFER 
AGAINST SUCH SETS TO DETERMINE 
DUPLICATION (BOTH ITEMS AND DOT 

POSITIONS MATCHED) 

YES 

TABLE (SET, SYMBOL)= FOUND 
DUPLICATE SET NUMBER 

ENTER BUFFERED ITEMS AS THE 
BASIS SET OF A NEW SET,· 

ENTER DOT POSITIONS+ 1 
INTO DOT POSITION ARRAY 

TABLE (SET, SYMBOL) 
= NEW SET NUMBER 

OUTPUT 
CONFIGURATION 

SETS 

1 

SLR(1) TABLE 
GENERATION 
(TRANSITION 
ENTRIES HAVE 
BEEN MADE) 



COMPUTE 11 INVERSE11 REFLEXIVE 
TRANSITIVE CLOSURE OF TAIL 

SYMBOL MATRIX FOR 
NON-TERMINALS 

COMPUTE FOLLOW MATRIX PER 
ALGORITHM IN THESIS 

FILL IN 
REDUCTION 
ENTRIES 

THE FOLLOWING LOGIC IS 
APPLIED TO EACH ROW OF i.----.---, 

THE TABLE 

> 

FOR ALL TERMINAL SYMBOL COLUMNS 
CORRESPONDING TO SYMBOLS IN 
FOLLOW OF THE LHS OF THE 

INDICATED REDUCTION, ENTER 
-REDUCE(I) IN THOSE COLUMNS 

PROVIDING A PREVIOUS ENTRY H(I.S 
NOT BEEN MADE IN THAT TABLE 
POSITION - IF SO THEN STATE 

IS UNSOLVABLY INADEQUATE - SET 
MASTER ERROR SWITCH 

REDUCE(I) HOLDS NUMBER OF 
ELEMENTS IN QUEUE TO PROCESS __ .... 
AS REDUCTIONS, DISCARD EACH 

AFTER PROCESSING 

AFTER EVERY ROW PROCESSED, 
DO THE FOLLOWING 

COUNT AND LIST INADEQUATE 
STATES BY DETECTING TWO 

DIFFERENT TRANSITIONS OR A 
REDUCTION AND A TRANSITION 

IN THE SAME STATE - ROWS OF 
TABLE ARE PROCESSED LEFT 

TO RIGHT AND FIRST INADEQUATE 
CONDITION ENDS PROCESSING OF 

THAT STATE 

OUTPUT SLR(1) 
TABLE AND 

OTHER DATA 

END 



VITA 

Joseph Lee Gray 

Candidate for the Degree of 

Master of Science 

Thesis: IMPLEMENTATION OF A SLR(l) PARSING ALGORITHM 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Poplar Bluff, Missouri, April 24, 1944, 
the son of Mr. and Mrs. Howard Gray. 

Education:. Graduated from Poplar Bluff High School, Poplar 
Bluff, Missouri, in May, 1962; received Bachelor of Arts 
degree from California State University at Long Beach, 
Long Beach, California, in January, 1971, with a major 
in Mathematics; completed requirements for the Master of 
Science degree at Oklahoma State University in May, 1973. 

Professional Experience: Graduate assistant, Oklahoma State 
University, Computing and Information Sciences Department, 
Stillwater, Oklahoma, August, 1971, to December, 1972; 
computer repairman and instructor, United States Army, 
May, 1966, to May, 1969. 


