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,. ,~ .. ·-CHAPTER I 

·,. · ···"INTRODUCTION 

Extensive l.ltili~ation·of groundwater systems>which- have low annual 

recharge rates has the same'·effecf·as ·the mining··of--an· unreplenishable 

re~;ource. T.he problems associated·-with ·the mining· of .groundwater are 

refl ec~ed in the social.,·;economtc·,--a,nd··tegal · framework of the area 

involved. ln order to·make:the best·use of groundwater systems, com­

puter management mocle1s·.have· been ·deve·loped. · 

Any proposed method of management·of· a groundwater-·syste~ must have 

as one of its components an aceurate·'description"'of· the hydrogeologic 

properties -.of the aquifer invohed .. and their hydraulic relatiom;hips. 

The movemen.ts of groundwater· and· the ·responses ·of water 1e~els to the 

development of an .aquifer· have· be;en·described by· numerous empirical 

equation$. The properties· .use~· tn··eval~ating ·the· responses of an aquifer 

are-its coeffi-cients· of· permeabi:lity; transmissibiHty·; and storage, and 

its specific yi.eld~ and bounqary ·conditi·ons· with ·respect to leakage and 

recharge. The ~real extent; saturated--thickness·,-·and··any- anomil ies .must 

also _be considered. Making· .predicti'.ons··o·r estimates of· the responses 

of. an aqui·fe,r are di ff.icult bectJuse ·the ·cause and· effect· re la ti ons of 

its properties are complex. ·: .Often .. there ·is not· enough·· d~ta i led i nforma­

ti on con.cerning the properties:·and ·their· relations .. t1;r give a precise -

definition of the aquifer.· This ·has 'led .. to the· use of· investigative 

, 



computer models based.on·appli-cations of hydrogeologic principles with 

interpretation and extrapol atio11 of the ·existing data. 

Once the hy<;irogecl'l ogi.c properties of an aquifer a re determined, 

they are programmed into a computer model descr.ibing the responses of 

2 

the aquifer tQ withdrawal of,water from the syst~m. This model is then 

used to reproduce P9.St. res.pons es of the aquifer and to predict future 

responses. The ability of 'the· model ·to reproduce. ·the past responses is 

used.as ·a meast,Jre of .. themodel·1 s ·validity. In most cases·there is not 

enough data concern; ng the hi.story, of .an aq11i fer to prove unquestionably· 

the validity of the model. Therefore, methods for determination of an 

aquifer's properties .must con ti nuovsly. be refi neq .. The relationships of · 

these. properties must also be· redefined i'n order,, ·to more logically. 

represent the aquifer being modeled. 

The Ogc;l ll ala Formation .is an example of an extensively over­

developed aquifer with a low annual recharge. Current water lev~ls in 

some areas are lowered to SL,!ch a degree as to make the aquifer unusaple. 

Beca.use .the economy of·tne area depends upon. water from the aquifer for 

irrigation, research into cQmputer m.odels predicti.ng future water levels 

in the areas effected has been $M·mulated. Most investigators have 

considered the Ogallala as.an homogenious unit, i~e., no variation in 

thepropertie~ of the aquife~ with depth or areal extent. However, it 

has been shown by Frye (1970), Keys and Brown (1,970), and Peral (1970) 

that the aquifer is .discontinuously layerec(. Thus the question of the 

validity of an homogeneou$ approach in the modeling of the Ogallala has 

. b~en proposed by research at Oklahoma State University .. 

The need to consider 1 ayE:Jri ng in a c<:>mputer modeling of ttie Oga 11 al a 

has been emphasized by recent studies. A mathematical management model 



for a portiqn of the Ogallala For:mation in ~he Texas panhandle was 

developed at Texas Tech.·Uni!versHy. This model, refined and described 

by Sechrist, Clayborn, Rayner and, Wells (1970), considered the Ogallala 

to be vertically a~d horizontally homogeneous .. Lamirand (1970) tested 

the Texas Tech, model with respec;t to its ,sensitivity to variation in 

pump rates, storage c;oeffi ci ent and permeability. -He found the program 

to be ins~ns i ti ve .to cha.nges- in· permeability but -sensitive to changes 

in the storage coefficient. The researchers at Texas Tech. had assumed 

3 

an average storage coefficient for the aquifer which they obtained by 

averaging.the coefficients of all layers involved~ Because the model was 

sensitive to changes in the coefficient of storage, a study was under­

taken to determine the effects of changing this parameter with depth in 

the model. DeVries and Kent -(1972) refined the Texas ·model and intro­

duced vertiqal variation of specific yield and permeability. Weighted 

average-values for these.two parameters were assumed to ·be.representative 

for eact:1 layer. The results of, this study showed a significant difference 

in the residual water levels obtained with .the ml)lti-layered approach 

when compare<;! with those. from the homogeneous approach .. However, a need 

for.empirical proof of the- values used in the weighted average approach 

was .evident. 

Model studies make the observation of ground· wa·ter phenomena a 

labqratory function, and a~ such- they_ are very useful when ·direct.field 

investigations are not possible. Four general types of physical models 

have been previously:used to verify assumptions made about a ground water 

flow.- These are sand, visc:;ous flui:d, electrical and membrane type models. 

An e~ample.of the fluid analog model is described by Steinberg and Scott 



{1964). Thi.s Hele·Shaw rnodel was used by QeWiest· ·(1966) in investiga­

tions into t~e nature of·multi•aquifer systerns. ·Some sand models have 

been desc.ribed by Todd (1960)· and· Lehr (1963). ; A sand model is an 

accurate representation of aq~ifer conditions because· in both cases the 

liquid flow takes place through· a· porous ·media. Th-is type model is 

often . used in the study'· of· flow into . and around· we 11 s and we 11 sys terns. 

DeVries and Kent (1972) de<rided· a sand model wquld· be the best approach 

for an investigation into the·rnultilayered aquife~ conditio.n . 

. lt is the purpose of this paper;to describe the development and 

testing .of a laboratory sand model simulating the layering conditions 

present in a portion of the Ogallala Formation. It was:the objective. 

4 

of this study to obtain better estimates of the hydrogeologic properties. 

of .the formation in lieu of field pump test data which has not been 

available, and ~o define the permeability coefficient and storage 

fraction for each individual layer. 



CHAPTER II 

MATERIALS··AND ·METHODS 

Materials 

Models . 

There were two models' constructed using the same basic design (see 

Figure 1} anci materials. ·The· model consisted of two plastic drumlike 

tanks placed one inside of the other. This created an annular space as 

shown in FigureJ. The inner tank's wall was perforated b,y numerous, 

randomly spaced 1/4 inch. diameter holes for its .entire length and 

circumference~ The sands were· placed in the tank in four layers (A, B, 

C, D), graded finest to coarsest from top to bottom. Strips of insulation 

type fibre.glass were used·to· prevent the sand from leaking out the holes 

in the inner tank wall. The annuli;lr spac~ was used to regulate the 

level of water in the model.· · In· order to accomplish: thi"s, ·there were 

five 1/4 inch diameter openin9s· in the outer tank wall. These openings 

were positioned opposite th~ interface between· layers, and one at the 

top and bottom as $hown in Figure 1. The pump well was· placed in the 

center of the inner tank of both models, In model number one there was 

one 09servatton well placed at lS.24 .cm from the pump well. In .the 

second ·model there were four observation wells pl aced syrrunetri cally on 

a, diameter .extended through the pump well. 



a and 
lay era 

1Not to scale; 

annular 
apace 

Figure· 1. Basic Plan1 

The pump well in both models consisted of four sections of Johnson 

well screen threaded together (see Figure 2). ·The sections were each 

29.21 cm in length, and 3.165.cm in outer diameter.· The effective 

opening of each section was' chosen· such that it would be appropriate 

for the layer it penetrated,. ·The sections opposite A, B, C, and D 

6 

were numbers 19, 20, 21~ and· 23~ respectively. The: numbers are the 

effective slot openings o~ the sectton·iTI microns. The water was pumped 

from the model through a 1/4 inch· o.d~ copper tube placed inside the 

screen. 

The observation wells were· of two types (see Figure 2). One 

observation well was constructed from a length of 1.4 cm o.d. pipe 

attached to a section of No. 21 Johnson well screen with a sand point on 
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its end. See Fi gL1re, 2 .for· ;dtmensi.ons .• , Ther.e_wer.er. three· observation . 

wells made from lengths of 2'.54 cm· plastic pipe .. ' This· pipe was perfor­

ated by .closely spaced 1/4 inch" holes drilled at random for its entire 

length. Th~~pipe was then wrapped· in gauze in~orde~·to retard infiltra­

tion of sand particles· into the wel1. 

Model number one· had ~he pump· well and the: metal· (i)bservation well. 

·The general configuration· of. the· model is shown· in· Figure 3 and the 

di mens ions of its parts in Figure 4. The sand· 1 ayers· we·r~ p 1 aced in the 

model surrounding the wells·. The outer tank had a plug closing .an 

opening in the center of its· bottom. This created a 2.54 cm conical 

raised area on which .the pump· wen was placed, The water levels in the 

observation well and the annular space.were monitored using the manometer 

principle~ The outl~t at the· bottom of the outer tank·was connected to 

a length of G mm glass; tubing by· rubber tubing~ A length ·of rubber 

tubing was inserted into the· observation well for its entire length. 

This tubing was .then connected to· another length· of glass tubing. The 

glass tubes; were placed with the~r·.ends even with the bottom of the 

model (see Figure 3). ·When the manometers formed by the··tubing wer-e 

filled with water, the levels·.of-the water in the annulus and the obse.r­

vation well were shown by.the levels of the water in the glass tubes. 
""' 

Model number two was a refinement of the firs·~· model. Three 

observation wells .were added· to the model. All the wells, including 

the pump well, were· attached to· the manometers·.by 1/4 inch o.d. copper 

tu~ing inserted in the bottom· of each well, The copper tubes were run 

to the bottom of the manometers· as· shown in Figure· 5. •The plug which 

ca1.1seo the rais~d portion in the"first model was· removed.· The bottom 
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Figure 3. Diagram of Model Number One 
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Figure 5. Diagram of Model Number Two 
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layer ofsand-_wa,s then· made 5· cm--deeper-than the· three.upper layers. 

Thi-s space WC/;S. used· to -run ·the· ·copper tul;>i ng- for· the manometers., to the 

exterior of the model.· ·The di-mens.i-ons of the second· model are .sho~m 

in Figure 6 •. 

Both models were filled by··p1acing and -tamping- t,lie· dry sand intQ 

ln the second· ·model, each 1 ayer was· 1wet-ted ·as it was 

13 

the . inner tank_, 

being compacted. In· bot_h ·models··-tne l~yer-tops.and· b<:>·ttoms were lev.eled, 

and the wells were set.perpendicularly in the tank. -In the first model 

the pump wel 1 wa,s pl aced- in· the tank and the 1 ayers· packed around it. 

The .observation well in .thi's· model··was -:hydraulicaHy· jetted into posi.,. 

tion. All the wells ;in -the: second model were held· in-position by a frame· 

wh i-1 e the 1 ayers -.wer-e compacte<;I·. ·, -In . both model~· the wells were completed 

by surge .pumping to remove any fine particles that· had··infi'ltrated 

through the, screens -or· the· ga1,1ze mesh.-

The pump used-in test-ing··the··model was-_.a ~obins &·Myers, type.(GDQ)-, 

driven by a 1/6 horsepow~r, 115 volt a.~. motor. ·The pump was fitted 

with a reci,rculation line and ·two·--va1ves. The va1ves· 1,were -used to 

reduce and regulate the -flow; from th~ pump. -

ln order to make the models-.-as .representative as .possible .of the 

lay~ring in the Ogallala,- sand- samples from the· formation were used in 

the CQnstruction of the- models.· Four types ,.of san<;I were collec~ed fr.om 

an e.utcroppi ng of th~ forrnati on·. The.sampling s·i te was 'located west of 

Guymon, Oklahoma, (NE 1/4,· SW- l/4, Sec 2, T2N, R4E-,-- C.M.) i·n Texas 

Gounty. These sands were considered to be-repres~ntativeof the total 
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interval of the aquifer.· Laboratory analyses were performed to classify 

and determine the permeabilities of the sands. 

Classification of the sands was based on analysis of data from a 

visual accumulation tube·,· The procedures used were those recommended 

in the Operator's Manual· on the· V·isual Accumulat·ion Tube (1958). First 

a sample of each sand was· dried in· an oven. Then the samples were 

weighed and wet-sieved through a n~mber 230 mesh sieve. This was done 

to remove clay and silt particles~ The material collected in the catch 

pan was then dried and weighed· in order to determine the percentage of 

this type material present. ·The remainder of each sample was introduced 

into the visual accumulation· tube. As the sample particles accumulated 

in the bottom of the tube, a recording of the depth was made. These 

recordings in the form of· per cent of difference in grain sizes were 

used to plot the cumulative curves shown in Figures 7, 8, 9 and 10. The 

sands were then classified on the· basis of their medium grain size (50% 

passing). The sands were lettered· A, B~ C, and D and were classified as 

medium, coc;trse and very coC1.rse sands, respectively. 

Permeability studies wen~· conducted on a Soil test Model K-670 high 

pressure permeameter for comparison with results from the sand model 

pump tests. Samples of the sands were taken as the second model was 

being constructed. This wc;ts done to make the samples representative of 

the distt,Arbed sands being placed fo the model. The· samples were col­

lected from eight l ocati ans in each layer as it was· being· pl aced in the 

model as shown in Figure· 11.· Each sample was given a coded number that 

identified its position in the model. In all, thirty-two· samples were 

collected and tested on the permeameter. Both constant head and falling 
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head· methods were used for the analysis of each· samp·le. The coefficient 

of permeability values was calculated l.lSing the following equations: 

Constant Head K ;: ~ 

where: K;: coefficient of permeab-ility, cm/sec 

Q = rate of discharge, cm~/sec 

L = length of sample, cm 

A = area of sample, cm2 

H = pressure head, cm. 

Falling Head K = 2~ 3aL log Ho AT ·· 10 H 

where: K =coefficient of permeability, cm/sec 

a = cross sectional area of pipette, cm2 

L = length of sample, cm 

A = area of sample, cm 

T = time of test, sec 

Ho = pressure head at beginning of test, cm 

H = pressure head at· end of test, cm. 

Results of the tests are tabulated in Table I. 

Methods of Te~ting the Model 

(2.1) 

(2.2) 

The procedures used ~n this st1,1dy were formulated· to obtain data 

for use in calculating· the· hydrogeologic coefficients· of the model. 

This was acc;omplished by dewatering layers of the model· by two different 

techniques. P1.1mping tests were· peyiformed as.the first part· of the study. 

The model was then t~H~te(i py allowing each 1 ayer to drain by the action 

of gravity. 



Sample 

laaber 

AU1 
AU2 
AUJ 
AU4 
AL1 
AL2 
AL3 
.al4 

BU1 
BU2 
~·~r3 ,, ... 
.BU4 
BM 
BL2 
BL3 
Bl4 

ct:·1 
CU2 
ce3 
CU4 
CL·1 
CL2 
C!.3 
CI4 

;)lj1 

DU2 
DU) 
D04 
DL'l 
DL2 
DL3 
DL/.;. 

TABLE I 

SAMPLE TEST K VALUES 

Coastant Head. Falliq Hea( 

.ca/sec gal/d.a7/tt 2 ca/aec p.l/da7/tt 

------- ~ 

0.0016 38 0.0020 4-2 
0.0011 23 0.0015 32 
0.0012 25 0.0018 J8 
0 .. 0003 ' 0.0002 4 
0;0008 17 0.0008 17 
0.0015 32 000012 25 
0.0005 11 0.0009 19 ___ .., __ 
0.0005 11 0.0014 30 
0.0005 11 0.0012 25 
0.0016 34- 0.0019 40 
0.0024 51 0.0025 53 
0.0001 15 0.0011 23 
0.0014 30 0.0015 32 
Oe0012 25 0.0031 66 
o .. 0004 8 0.0015 32 
0.0033 70 0.0031 66 
0.0044 93 o.0048 102 
0.0032 67 0.0034- 72 
o.OO't-9 104 o.006lt- ·136 
0 .. 0057 121 000061 129 
0$0055 11'! 0.0061 129 
0.0038 81 o.0042 89 
0.0006 12 0.0012 25 
0.0058 123 0.0071 151 
o.0040 85 0.0033 70 
0.0070 148 0.0076 161 
0.0064 136 0.0069 14' 
o.0044 93 0.0032 68 
0.0016 J4. 0.0019 40 
0.0057 121 0.00'4 136 

21 
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Puinp Tests 

Model number one was used· for the pumping tests·. Each layer was 

te~ ted separate 1 y by the two methods. First the pump we 11 was operated 

while maintaining a static·wate~ level in the annular· space at the top 

of a layer~ The pump rate· and· the· level ·of wate~ in th~ observation 

we 11 were the parameters mon i to·red. The data obtained· was used in a 

non ... equilibrium and· equiHbrivm formula for the· calculation of trans­

missibility and storage coefficients. In the second portion of the test­

the water level in the annulus· was allowed to fall as the pump well was 

operated. This data was used· in calculating a storage coefficient for 

each layer, to compare wtth the value calculated from the first portion_ 

of the test. A description· of the· procedure used in· the pumping tests 

follows. 

Noneguilibrium and Egui1ibrium Portion of Test: 
; ; ' ; ., 

(1) - Fill the annular space to capacity desired and keep full to 

allow saturation of the sand la~er(s). 

(2) Turn on pump~annulusrecharge 1 and start timer, - Monitor 

pump rate annulus Water level· and· drawdown in observation well with 

respect to time. 

(3) When drawdown stabilizes, hold there for 10 minutes. 

(4) Turn off pump and continue to monitor annular level and 

drawdown in observation well. 

(5) When drawdown· Mas returned to original· position, turn off 

recharge and timer. 

1The desired level of· water··was maintained- in the annulus by 
allowing the excess water· from- the· rec:harge line to leave the model 
through the opening 1n the outer tank at the bottom of' the layer being 
tested. 



Storage Portion of Test: 
· , f_ H, - .; 

(1) F'i 11 the annular space to capacity desired and keep full to 

allow saturation of the sand layer(s). 

(2) Turn on pump and start timer. Monitor pump rate, annular 

water level and drawdown in observation well with respect to time. 

(3) When annular level reaches below next· layer~ turn off pump 

and timer. 

(4) Repeat Nonequilibrium and Equilibrium Portion of.Test and 

Storage Portion of Test for each la,yer. 

Gravity Drainage Tests 
I I · c 
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The gravity drainage test was conducted with model number two. The 

data from this test were used in ~etermining the specific yield of each 

layer. The procedure for this test is as follows: 

Si nsl e La.}!er Te.st: 

(1) Fill the (lnnular space to capacity and keep it full to allow 

saturation of all fo1Jr layers. 

(2) Drain water fro~ annulus through opening in outer tank at the 

interface between layer being tested and next lower layer. Measure 

volume water drained and note time .and date. 

(3) Monitor water levels in all manometers. When level reaches 

above interface again, drain and measure water colleGted noting time and 

date. 

(4) Repeat (3) until the water .level stabilizes at interface 

level in a11 manometers for 24 hours~ 

(5) Continue (2), (3), and (4) with ne~t layer. 



CHAPTgR I I I ·. 

RESULTS 

The data obtained fro!IJ the methods prevtously outlined were used 

in determining the hydrogeologfc coeffic;ients of the models. These 

coefficients are defined as follows; 

(1) Transmi ss i bil i ty (l) is defined as the rate of fl ow of water 

in volume per time through a unit vertical strip of ·the aquifer extending 

the fu.11 saturated thickness of the aquifer under a hydraulic gradient 
I 

of 100 per cent (unit per unit) at the prevailing temperature of the 

water, 

(2) Permeability (K) is a measure of the ease of movement of water 

through aquifers. The coefficient of permeability is defined as the 

rate of flow of water in volume per length of time through a unit cross 

SeGtional area of the aquifer under a hydraulic gradient of one unit per 

unit at the prevailing temperature of the water. ·The permeability is. 

related to transmissibiHty by· the aquifer thickness and is expressed 

as T::; Km, where mis the aq1.1ifer's thickness. 

(3) Coefficient o~ Storage (S) has been defined as the volume of 

water released or taken into storage per unit surface area of the 

aquifer per unit decline or rise of head. 

(4) Specific Yield (Sy) is a measure of the water yielding capacity 

of ·the aquifer material and is expressed quantitatively as the percentage 

of the total voh1me of aquifer material occ::upied by the ultimate volume 

?IL 



of w~ter released from or added to· storage, in an aquifer per unit 

(horizontal) area of aquifer· and per unit decline or rise of the water 

table. · The coefficient of s~orage and specific yield have been con­

sidered to be equivalQnts·in the water table case. Specific yield in 

this cqse is broken int.0· two components, that amount of water released 

instantly from storage, and. that released with time· due ·to gravity 

drainage. 

Figures 12, 13, 14, and 15 show plots of the wa·ter levels in the 

qbservation well. the annuhr space, and the pump rpte versus time for 

the pumpin~ tests of each· combination of layers. Table II gives a 

25 

1 i sting of the grawdown with time. for the nonequil i bri um portion of the 

test for each layer. The equilibrium values for each test are also 

stiown in Table U. Table III shows the qata from the gravity drainage 

tests. 

The values for T and s were c;alculated using adaptations of the 

formulas and techniques deve 1 oped by Thi es ( 1935) and Thi em · (1906). The 

equations of Thier;> were applied· to· the nonequilibrium section of the 

first porti9n pf th~ pump tests. ·An adaptation of Thiem's equation as 

explained by Marlette (1962.) was· used with the equil·ibrium section of 

the first portion of th~ pump tests. The second ~ortion ·of the pump 

tests were~$! ~o calculate an empiric~l value for s, for comparison 

·with ~h~t obtaine~ from Thie$ 1 S and Thiem 1 s equations. 

The Thies equations were used· to calculate T and S first. These 

equations for·unsteady.c;onditions are expr!;!ssed as: 

$ !;; 114+6, g 

and u ~ l.~r r 2s 

W(u) ( 3' 1 ) 

(3.2) 
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TABLE II 

DRAWDOWN AND TIME VALUES-NONEQUILIBRIUM 

la7er• A,B,C,J> la7_.• B,C,D la1•r• c,D la7er J> 
t • t • t • t • t • 

0 o.o 210 10 .. 6 0 o.o 0 o.o 0 o.o 
20 0;9 215 10.a 5 ..... o 5 ).71 10 8.4 
25 1.J 240 11.lf. 10 9.7 10 9.82 15 11 .• 3 
JO 1~7 2?0 11.8 15 1).J 15 14.4) 20 12~8 
35 2.0 JOO 12.5 20 15.4- 20 18.24 25 13.2 
40 2.2 ''° 12.a 25 16.? 25 21.3 '° 13.4 
4-5 2.7 "° 13.1 30 11.s 30 24.35 )5 13.9 
50 ,.1 390 13.4 35 18.5 }5 25.32 40 14.o 
55 3.5 420 13.7 ~ 19.0 40 26.79 '° 14.1 
60 3.8 450 13.a 45 19.4 45 2?.86 80 14.J 
65 4-.2 4ao 14.o 50 19..65 50 28.75 100 14.4 
70 4.5 510 14.1 55 19.ao 55 29.5 120 15.5• 
'75 4.9 540 14 .• 25 '° 20.00 6o 30.Y/ 140 15.5 
80 5.J 570 14.35 65 20.1 65 30.74 
85 5.5 600 14;45 70 20.2 70 31.21 
90 5;9 630 14.5 75 20.3 75 31.38 
95 6~15 66o 14.6 80 20.4 80 31,.55• 

100 '·"" 690 14.7 85 20.4 85 31,.50 
105 6.? 720 14.75 90 20.6 120 31.so 
110 6.9 750 14.8 95 20.6 
115 ?.1 780 14.95 100 20 .. 9 
120 7.'+ 810 15.05 110 21.05 
125 ?.? 840 15.1 115 21~5 
1)0 7 .. 9 870 15.2 120 20.2 
135 s.2 900 15.J 210 20.7 
140 s .. 4 930 15.4• 2'+0 20.5 
145 a .• 6 96o 15.4 270 20.6 
150 a.a 990 15.5 JOO 20.1· 
155 9 .. 0 1000 15.4 330 20.7 
160 9.3 360 20.7 
165 '·"' 390 20.7 
170 ,.5 
1?5 '·' 180 9 ... 8 
185 10 .. 0 
190 10.2 
195 10.3 
205 10.5 

t •ti• ia aecoM.• 
• • d.rawdowa ia ceateaet•r• 
• • -.Uli'bri .. poiat 
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where: s = drawdown, ft 

v = di$tance from pumped well to observation point, ft 

Q = discharge, gpm 

t =·time after pumping started, days 

S = coefficient of storage, fraction 

W(u) = "well function", exponential integral 

u =.lower limit of integration. 
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Because mathematical difficulties in calculating values for W(u) and u 

are encountered, investigators have developed graphical solutions for 

use in estimating the desired answ~rs. A plot -0n logarithmic paper of 

values of W{u) versus u for a wide range of u values is prepared as a 

"type curve". Plots of drawdown versus time are made on the same size 

logarithmic paper for the data from the well bei~g tested while under 

unsteady conditions. The observed data curve is superimposed on ·the 

type curve, keeping the co-ordinate axes of the two curves parallel, and 

adjusted until a position is found by trial whereby most of the plotted 

, points of the data fcill on a segment of the type curve. An arbitrary 

point is selected·on the coincident segment and the co·ordinates of this 

matching point are recorded. The values of W(u), w, s, and t thus 

determined are used in Equations (3.1) and {3.2) to calculate T ands. 

Thies's nonequilibrium equations are usually assocfated with a 

nonleaky infinite and hotropic artesian-aquifer of constant thickness 

with f1,11ly penetrating we1 ls and constant discharge, during the period 

of unsteady conditions. However, this equation has'been applied to the 

first portion of well pumping tests of water tafrle aquife.rs by Walton 

(1970). Walton also includ~s a method for accounting for the increase 

in storage due to delayed gravity drainage. The pump tests of the model 
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are of such a short.duration that delayed drainage is not a problem in 

the nonequilibrium portion of the pumping test. This was demonstrated 

by the gravity drainage test, in which the effects of drainage in each 

layer were slow 1n appearing. 

The curves used in determining W(u) and u are shown in Figure 16. 

The values for T and S calculated by this method are listed in Tabl.e IV 

at the end of thts chapter. 

Va 1 ues for the permeability K were calculated from the J abora tory 

st~dies of the sands (previous chapter) and from Thiem's equation: 

where: K ·~ permeability, cm/sec 

Q = <lischarge, ml/sec 

s;;: drawdown at equilibrium in obs. well, cm 

m = .saturated thickness, cm 

r1 = dis ta nee to obs. we 11 , 'crrf~ 

r2 = distance to recbarge boundary, cm. 

(3.3) 

Secause·the well is 1ocated.in the center of the tank, the drawdown at 

the well face may be calc\Jlated by using a different form of the same 

equation: 

(3.4) 

where: r0 =:radius of .pump well, cm 

r2 = distance to recharge boundary, cm. 

Equation (3.3) was used with the equilibrium data to calculate valu~s of 

K for each layer combination.- Values of I< calculated from the laboratory 
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data were us~d for comparison with the values from Thiem's formula. 

Equation (3.4) was used to predict the drawdown in the pump well. These 

values were plotted along with the observed equilibrium values as shown 

in Figure 18 of the next chapter~ The values are listed in Table IV. 

The storage portions of the pump tests were used to calculate 

empirical storage coefficients for layer combinations. For each layer 

dewatered, the amount of water removed from storage in the aquifer is 

given by: 

V = Volume of Q t • (A + W ) w v v 

where: Vw = Volume of water removed from a layer, ml 

Q = pump rate, cm3/sec 

t = duration of test, sec 

Av ;:: amount of water from (!.nnu1ar space, cm3 

WV :;; amount of wa~er from pump well and obs. well, cm3 

(3.5) 

The tests for each layer were not continuous with respect to time. 

Therefore, Vw values for layer· combinations must be calculated and summed 

in reverse sequence, i.e. , D, C, 13, and A. The amount of water removed 

prior to equilibrium must be s~btracted from the lower layer(s) in each 

sequence to allow for the lack of;initial drawdown. Using this method, 

S value$ can be ca,lcu1ated for 1ayer combinations M .fo11ows: 

V + l'; (V .. v) 
S - w w - v - w. 

m s 
(3.6) 

where: S = storage coefficient, dimensionless 

Vw = volume of water removed from a layer, cm3 

v = vo 1 urne of water removed prior to equilibrium, cm3 



Vm ~ volume of layers in· combination, cm3 

Ws ::: volume of spaQes occupied by wells, cm3. 

The storage coefficients for each· layer are listed in Table IV. 

The values for specific .Yield were calculated from the gravity 

drainage study. The calculations· were made based on the formula: 

vw 
Sy::: V"' 

m 

where: Sy::: the dimensionless Speciftc Yield value; c!ue to gravity 
drainage 

Vw = volume of water drained from a layer, cm3 

V ::: volume of the material in the layer, cm3. m 
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(3,7) 

The amount of water contained in the annulus.and wells of the model 

was subtracted from the volume of water drained from a layer as it was 

not actuc~lly stored in the aquifer material. Also, the volume occupied 

by the wells had to be subtracted from the volume of the aquifer 

material. Also, the volume occupied by the wells had to be subtracted 

from the volume of the aquifer material, given by: 

Vw .. (Av + WV) 
Sy ..,. 'V ·,. W ... · 

m s 

where: Av.::: volume of water from annular s~ace~ cm3 

Wv = volume of wat,r· from all wells, cm3 

W5 = volume occupied· by wells in the model, cm3• 

(3.8) 

The amounts. of water removed for each time period were tabulated and 

total~d (see Table UI). Because all the layers of model number two were 

of the same thickness, the same general formula was used t(o calculate 

the specific yi~ld of each layer. The calculated values are listed in 

Table IV~ A plot of the specific yield versus time appears in Figure 17. 
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layers or K= gal/ day/ft2 

layer samples Thi.em Thies 

' 
A,B,C,D 310 330 320 

B,C,D 290 300 120 

C,D 260 190 150 

D 160 80 160 . 
A 24 

B 32 

c 100 

TABLE IV 

· CALCULATED VALUES 

-r= gal/day/ft S = dimensionless 

samples Thiem Thies pump test 

279 80 0.28 0.004 

252 100 0.05 0.11 

220 90 0.02 0.17 

120 60 0.01 0.06 

2·7 

30 

100 

Sv = dimensionless 

gravity drainag 

0.266 

0.025 

0.081 

0.130 

w 
CX> 



· CHAPTER IV 

CONCLUSIONS 

The methods described in the· previous chapter were used to derive 

the values of the hydraµlic properties of the sand layers and their 

combinations in the model. These· were all expressed in gallons, days, 

a,nd feet so they would be relevant to field studies or computer model 

studies. Table IV, in the preceding chapter, shows a listing of all 

the values determined. 

The sample test permeabilities and the gravity drainage specific 

yield values were the only parameters not determined from pump test 

data. With the exception of the pump test values for layer D, they were 

also the only properties not determined from tests of layer combinations. 

The transmissibi1ities and storage· fractions were calculated from the 

pump test da,ta of layer combinations, In order to make comparisons of 

the single layer prope:rtie$ with· the characteristics of the layers in 

combination, the perme~bility of each layer was !Jsed to predict the 

transmissibilit.y of tha~ layer in the model. An analysis of these 

predicted values and the values derived from the pump test data was made. 

From this it is con~luded that the transmissibilities of layers in com­

binations are approximated by ·a summation of the layer transmissibilities. 

Table V shows a comparison of the· values from the pump tests and the 

summations of the predicted values from each layer. 
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The trarismi ssi bi 1i ti es· :from· the nonequi l i bri um data were dependent 

upon utilizi.ng the best fit of the· data to a trpe curve· .. The results of 

this method would be suspect in an evaluation of reliabilH.y. However, 

the .transmissibilities :calcµht~d· from the Thies· equations (3. land 3,2) 

and this data were of the same magnitude as those· predicted QY the .sum .. 

mations of the layer tran.smissibilittes. The values from the Thiem 

equation (3,3) were also in the· range of those from the other two 

methods (see Table V). This indicates that the value for each layer 

as used in.the Texas Tech computer model would not give the .best results 

when used tQ make. an estimate of· the average permeability for the homo-. 

genc;?ous approach. A va 1 ue .0f 80 gpd/ft2 was ca 1 cul ated when the Thi em . 

equation was used with data from the author's study. From.this and the 

transmissi bil i t,y predict.ions for the model, it is· concluded that a 

better representati.on of the formation might be to hold the permeabi.lity, 

of each layer.constant· and allow.the transmisstbility to change as the. 

formation is ctewatered. Aho. the use of the 1 ower values for the. 

permeabilitie$ of the 1a,Yers as·$hown in Table V should be used. 

The storage frac~ions shown-. for the pump tests· in Tab1,e IV were 

not c::onsistent enough to make. any·.valid recommendation as to the magni-: 

t1,1de ,of th~ va1ue that·shqu1<;1 be·!,lsed. The tests run on· the model were 

not of $.l.lff-icient dur~t;on to· obtain good data for making.this estimate 

and th.e storage, portiQl'I :of the· pumpin~ tests was.,poorl.y designated. The. 

value,s ·from the. nonequilibrium part of the pump .tests were again depen .. 

dent upon the· fit of., th~ type curve, to the data·.·· Under water .table 

conditiQns,.a portion of the water released from· the stora.ge is due to 

the aetiqn Qf gri!lvity~ In .the ,tests run on th~ first model, the pump 

rate was toQ great t(,!) all ow time for this rel ease .to· app~:a•r. This is 
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evident in the specific yi.eld vers~s time graph in Figure 17, Chapter 

III; During this on.e hour peri"od·.only slightly.,more water than that 

c;ontained in the we~lls and annular space could .b~ accounted for. The 

time ·required, Wi·th respect· to ,the: volume of water obtained; wa·s ,longer 

than ·the. time r~quired· to· pump· t~st each layer combination. This 

indicates that insufficient time was given for accurate results. 
' ·' I . ' • 

Also$ there is.a·question· as to w~ich ,layers were contributing water 

to the pump test~ Inasmuch as the,drawdown at the well face was'.so 

great as to penetrate more than· one 1a.yer during pump test of·each .layer 

combination,. and because the lower layers of the model had a greater 

transrnissibility, they might· have been expected to allow a.greater volume 

of water to pass through during the dewatertng of the ·upper level· 

1 ayers~ thus creati.ng a short .. ci rcui ting effect wherein the lower 

1 ay~rs were over responding to the head graclient created during the 

initial stage of pumping, 

The Thiem equat1on.(S.4)·wQuld predict a drawdown similar to that 

shown in Figure 18 for the beginning of each test •. This condition was. 

de,monstrated during unrecorded pump te$ts of the .second model .. From 

these tests it wu logical to assume that thi.s was occurring during the 

tests .of the first ·model.· Thi's ·caused some diffic41ty in de~ermining 

empirical val.ues :f0r the $ter~ge· frac;:t1on from the _dewa~ering portions. 

of-the pump t~sts-. These -te~.ts· were nQt co"'ti n1;4ous with .time;, maki.ng 

t~e use of summations. of in<;tividual tests necess~ry. Determining which· 

part of ·eac;h ·test wu to be usedwas .. purely specu1ation. The values 

cal cu lated by th.is tach·tiiqucr are shown . in Table lV in th.e previous · 

ch~pter. · As <;an b~ s~Em, they. are not consistent or real is tic and as · 

such wer.e -d1sregg,rdecJ. 
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The average.of the.· specific yield values from the gravity drainage 

test was 0.13. The Texas computer model used an average of 0.16. This 

value was derived fr(!)m actual pump tests data and was.used as in a 

homogeneous case. In using a layered approach to computer modeling of 

the formation, OeVries and-Kent· (1972) used a weigh~ed averaging tech .. 

nique to calculate S valt,ie~ for each layer. Using this technique, they. 

estimated the S value~ to be 0~07~ 0.11 i 0~17, 0~25 for layers A, B, C, 

and D. The author 1 s study"would suggest values of 0,03, 0.08, 0.13, 

and 0.27 be used as empirically· derived values.rather than intuitively 

calculated valuE;!s. 



GHAPTER V 

RECOMMENDATIONS FOR FUTURE TESTS 

Further studies should be .made using the second model in order to 

refine the values for· each parameter. This mode.l · should give better . 

results as the addition of the three observation wells would allow a 

better clefinition of·the·water l~vels during the pumping periods. If 

further studies are made,· a pump; with a .lower discharge rate should be 

used. This would make ea~h test longer and thus allow· a· more reliable 

estimqte of the storage fraction. A continuous pump test of the entire· 

model over an extended period of time would also make an empirical 

estimate of the storage fraction easier (lnd more accurate. Tracer 

~tudies might a1so be made to determine the origin of water withdrawn 

during the pump1ng. 
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TABLE VI 

STORAGE PUMP TEST, LAYERS A, B, C, D 

I 
I 
I 

t s-o s-a Q 
o.o o.o o.o oo.oo 
0.5 18.0 0.6 46.41 
1.5 20.9 1.5 
2.0 21. 8 2.2 58.29 
2.5 23.7 2.8 
3.0 24.3 4.6 
3.5 25.1 4.9 
4.0 25.8 5.6 58.75 
4.5 26.6 6.0 
5.0 27.1 6.6 
5.5 27.7 7.4 
6.0 28.6 8.1 59.07 
6.5 29.4 9.8 
7.0 30.1 10.3 
7.5 31. 0 10.4 
8.0 31. 7 11.0 57.55 
8.5 32.5 11. 8 
9.0 33.3 12.4 
9.5 34.1 13.3 

10.0 34.8 14.1 58.24 
10.5 35.8 14.6 
11.0 35.8 15.6 
11.5 37.4 16.3 
12.0 38.2 17.1 58.51 
12.5 39.0 17.7 
13. 0 39. 8 18.4 
13.5 40.6 19.2 
14.0 41.3 20.0 59. 22 
14.5 42.2 20.1 
15.0 43.5 . 21.6 
15.5 43.7 22.3 
16.0 44.6 23.1 59. 03 
16.5 45.4 23.9 
17.0 46.3 24.6 
17.5 46.9 25.2 
18.0 47.7 26.0 59.42 
18.5 48. 6 26.8 
19.0 49.1 27.6 
19.5 49.9 28.3 

t = time,minutes 
s-o = drawdown in obs. well, cm 
s-a = drawdown in annulus, cm 

Q = pump rate, ml/sec 
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TABLE VII 

STORAGE PUMP TEST, LAYERS B, C, D 

t s-o s-a Q 

o.o o.o o.o oo.oo 
0.5 18.9 0.4 48.89 
1.0 21.1 1.1 
1. 5 22.1 1.9 
2.0 23.0 2.6 57.09 
2.5 23.8 3.4 
3.0 24.7 4.1 
3.5 25.5 4.9 
4.0 26.4 5.7 56. 96 
4.5 27.1 6.6 
5.0 28.1 7.2 
5.5 28.7 8.0 
6.0 29.5 8.6 56.41 
6.5 30.4 9.4 
7.0 31. 0 10.1 
7.5 32.0 u.o 
8.0 33.7 11. 6 57.26 

I 8.5 33.5 12.3 
. 9. 0 34.5 13.1 

9.5 35.2 13.8 
10.0 36.1 14.7 57.00 
10.5 37.1 15.3 
11. 0 38.1 16.1 
11.5 3<J.1 16.7 
12.0 40.1 17.1 56.01 
12.5 41.9 18.1 
13.0 42.1 18.9 
13.5 43.2 19.7 
14.0 44.5 20.3 56.02 
14.5 45.9 . 21.1 
15.0 47.0 21.7 
15.5 48.2 22.4 
16.0 49.3 23.1 56.29 
16.5 50.7 23.8 
17.0 52.0 24.5 
17.5 53.3 25.2 
18.0 54.8 25~8 56.65 
19.0 58.0 27.3 
20.0 60.0 28.7 52.34 
21.0 60~·9 29.9 

t = time, minutes 
s-o = drawdown in obs. well, cm 

s-a = drawdown in annulus, cm 

Q =pump rate, ml/sec 



TABLE VIII 

STORAGE PUMP TEST, LAYERS C, D 

t s-o s-a Q 
o.o o.o o.o oo.oo 
1.0 30.2 1.0 50.86 
2.0 33.1 2. 2~ 48.78 
3.0 33.8 3.5 
4.0 34.7 4. 7 43.61 
5.0 35.3 5.7 
6.0 35.7 6.7 38. 61 
7.0 36.2 7.6 
8.0 36.6 8.5 36.87 
9.0 37.0 9.3 

10.0 37.3 10.1 34.75 
11.0 37.6 10. 9 
12.0 38.0 11.6 33.13 
13. 0 38.4 12.3 
14.0 38.7 12.9 30.81 
15.0 39.0 13.6 
16.0 39.3 14.2 29.36 
17.0 39.5 14.8 
18.0 39.8 15.4 27.84 
19.0 40.0 15.9 
20.0 40.3 16.5 26.18 
21.0 40.5 17.0 
22.0 40.7 17. 6 25.03 
23.0 40.9 18.0 
24.0 41.2 18.5 24.13 
25.0 41.5 19.2 
26.0 41.6 19.4 23.01 
27.0 41.8 19.9 
28.0 42.0 20.3 21.97 

t = time, minutes 
s-o = drawdon in obs. well, cm 
s-a = drawdown in annulus, cm 

Q =pump rate, ml/sec 

t s-o 

29.0 42.3 
30.0 42.4 
31.0 42.6 
32.0 42.7 
33.0 42.9 
34.0 43.0 
35.0 43.2 
36.0 43.3 
37.0 43.5 
38.0 43.7 

·39.0 43.8 
40.0 43.9 
41.0 44.0 
42.0 44.2 
43.0 44.3 
1+4. 0 44.5 
45.0 44.7 
46.0 44.8 
47.0 44.9 
48.0 45.1 
49.0 45.2 
50.0 45.3 
51.0 45.4 
52.0 45.6 
53.0 45.7 
54.0 45.8 

. 55.0 46.0 
56.0 46.1 
57.0 46-. 2 

56 

s-a Q 

20.6 
21.1 21.08 
21. 6 
21.9 20.37 
22.3 
22.6 
23.1 19.09 
23.4 
23.8 
24.1 18.16 
24.4 
24.7 
25.1 17.05 
25.4 
25.7 
26.0 15.95 
26.3 
26.5 
26.9 15.08 
27.1 
27.4 
27.6 14.15 
27.9 
28.1 
28.5 13.18 
28.7 t 

29.0 
29.2 12.47 
29.6 
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