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PREFACE

This thesis.is primarily a study of the depositional environment of
the Elgin Sandstone which crops out in the western part of northeastern
Oklahoma. It contains a description of the geometry and internal fea-
tures along with the stratigraphic framework for the sandstone. Pre-
sented are thickness maps, correlation sections, measured sections,
paleocurrent diagrams, permeability data, grain orientation analyses,
grain size parameters, petrographic features, and water quality analy-
ses.,

The writer expresses his appreciation to individuals who provided
assistance and information to him during the study. Dr. J. W. Shelton
suggested the investigation and provided. invaluable assistance, both in
the field and during the writing of the paper. Advisory committee mem-
bers, Dr. D. C. Kent, who helped in the permeability analysis, and Dr.
T. B. Thompson, who helped in the petrographic analysis, offered useful
sﬁggestions during the study. Mr. Fred V. Cluck with T. N. Berry and
Company and Mr. Mickey J. Overall with Cities Service 0il Company pro-
vided the electric well logs. Mr. R. H. Bingham, Mr, J. H. Irwin, and
Mr. M. V. Marcher, of the U. S. Geological Survey, arranged for the
chemical analysis of water samples. Appreciation is also extended to
Oklahoma State University Arts and Sciences Research for funds used in
preparation of illustrations. The writer also wishes to thank Mrs,

Frank Roberts, who typed the manuscript, his fiance Cheryl Maynard, who
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helped in its preparation, his parents, Mr. and Mrs. L. H. Terrell,

and fellow graduate students for their encouragement and suggestions.
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CHAPTER I

ABSTRACT

The Elgin Sandstone is a member of the Pennsylvanian Vamoosa Forma-
tion on outcrop in Oklahoma and a member of the Kanwaka Formation in
southern Kansas. Surface exposures in the eastern part of the study
area and electric well logs west of the outcrop belt permit a rather
accurate description of the geometry and internal features of the sand-
stone.

Major sandstone development within the Elgin interval is repre-
sented by lenticular sandstones, which are multilateral and multistoried
deltaic distributary and alluvial channel deposits. Thick sandstone
belts are 1l to 3 mi wide and contain 100 to 150 ft of sand. Genetic
units of lenticular sandstones which are characterized by sharp con-
tacts, are 20 to 30 £t thick and‘as much as 600 ft wide. Characteristic
sedimentary structures of this sandstone type include medium-scale
cross-bedding, high-angle initial dip, cut~outs, and parting lineation.
Local trends are quite variable; the average paleocurrent direction in
the study area is N 35°W. The alluvial sandstones are more extensively
developed laterally and are coarser grained than the narrow distributary
units, which are very fine to fine-grained. Both contain intraforma-
tional particles, wood fragments, and secondary concretions.

Thin-bedded sandstones are coastal and/or marine delta-fringe

units. They are generally quite thin, with gradational lower and



lateral contacts. The most common sedimentdry structures are small-
scale cross-bedding, ripple marks, low-angle initial dip, and inter-
stratification. The primary paleocurrent direction is N 50°W; a sec-
ondary trend is N 40°E. The sandstones are very fine-grained and well
sorted, and they contain carbonaceous matter, small wood fragments, and
muscovite flakes. Paleocurrent data, regional distribution of sand-
stone, and southerly increase in chert content suggest the Ouachita and
Arbuckle uplifts as principal source areas, with a possible contribution
in the north from the Ozark province.

Maximum horizontal permeability corresponds to the direction of
preferred grain orientation in the alluvial and distributary sandstones.
However, a correlation does not appear to exist between grain orienta-
tion and permeability in delta-fringe sandstones. Water analyses show
a rather wide variation in ion concentrations. Several of the samples
have chloride and/or TDS concentrations in excess of the established
limits for domestic use, The fresh~mineralized water boundary, which
appears to be related to sandstone thickness and distribution, varies
in depth from 150 to 600 ft. The Elgin Sandstone in the study area may

~contain as much as 3 x 1012 gal of fresh water.



CHAPTER II
INTRODUCTION

In Oklahoma, the Elgin Sandstone is a poorly defined member of the
Pennsylvanian Vamoosa Formation, which is present on outcrop north of
the Arbuckle uplift. The Vamoosa is a complex of sandstone and shale,
with some conglomerate in the south, that changes northward into more
typical units of Kansas megacyclothems.

The stratigraphic interval studied in this investigation is essen-
tially that defined by Jordan (1959) as the Elgin Sandstone Member. The
rectangular area of study (T14N to T25N, R9E to R6E), includes both a
narrow, north-trending outcrop belt in Creek, Pawnee, and Osage Counties
and an area of shallow subsurface control westward from the outcrop

(Fig. 1).
Objectives

The objective of this study is to determine the trend and genesis
of the Elgin Sandstone from a description of its geometry and internal
features. Because of the complex sandstone pattern in the Vamoosa For-
mation, a corollory objective, which necessarily must precede any mean-
ingful description, is the establishment of a correlation framework for
the Elgin. Another purpese of the study is to provide from the descrip-
tion and interpretation a basis for detailed ground-water studies of the

system of Elgin reservoirs.
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Methods

The geologic maps of Creek County (Oakes, 1959), Pawnee County
(Greig, 1959), the Hominy area of Osage County (Russell, 1955), and the
Pawhuska area of Osage County (Shaﬁnon, 1954), were used, with some
modifications, as the basis for correlation in surface investigations.
Electric logs were utilized in correlating between the various mapped
areas and between the surface and subsurface in order to maintain a con-
sistent stratigraphic interval for study.

Qutcrop data from about 50 sections were described on measured sec-
tion forms specifically prepared for sandstone and shale sequences by
Shelton (1963). Paleocurrent indicators were plotted on azimith dia-
grams, from which trends of sediment transport were determined.

Surface data from 24 key measured sections together with subsurface
data from approximately 300 electric logs were used in defining the
stratigraphic interval containing the Elgin Sandstone (Figs. 2 and 3),
thickness of net sandstone (Fig. 4), and thickness of the interval (Fig.

5).



CHAPTER III
STRATIGRAPHIC FRAMEWORK

The Elgin Sandstone, at the type locality in southeastern Kansas,

' is a member of the Kanwaka Formation of the Shawnee Group within the
Pennsylvanian Virgilian Series. The Kanwaka is underlain by the Oread
Formation and overlain by the Lecompton Formation (Fig. 6). In southern
Kansas, it is divided into three members: the Jackson Park Shale, Clay
Creek Limestone, and Stull Shale, in ascending order. The Elgin Sand-
stone is generally considered the equivalent of the Jackson Park Shale
(Greig, 1959).

In central and soeuthern Osage’County, Oklahoma, the Kanwaka Shale,
with the Elgin Sandstone, is recognized as part of the Vamoosa Formation
(Shannon, 1954; Russell, 1955). Although the Oread Limestone does not
extend southward beyond central Osage County, Greig (1959) distinguishes
the Kanwaka Shale Member of the Vamoosa Formation in Pawnee County.
Although sandstone units of the Vamoosa to the south in Creek County are
designated informally by Oakes (1959), the Elgin has been identified
there -in the shallow subsurface and correlated to the surface (Jordan,
1959). Regional subsurface studies have delineated a complex of sand-
stone, regarded as the Elgin Sandstone, or Hoover Sandstone in some
cases, in northern Oklahoma and southern Kansas (Lukert, 1949; Rascoe,
1962; Souter,.1966; Brown, 1967).

Elgin Sandstone is developed as far west as the easternmost part of
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the Oklahoma Panhandle, approximately 200 miles west of its eroded edge
(Rascoe, 1962). In southeastern Sumner and Crowley Counties, Kansas,
the sandstone thins abruptly by wedge-out to the northwest and thins
gradually by pinch-out to the northeast (Brown, 1967).

The stratigraphic interval of interest, herein regarded as a trans-
gressive-regressive couplet in the Vamoosa Fermation, is 100 to 150 ft
thick and consists of lenticular sandstones with shale (Fig. 7). The
upper transgressive marker lies approximately 130 ft below the base of
the Lecompton Limestone (Fig. 7).

On outcrop, 80 to 100 ft of the interval are exposed. The top of
the couplet is a well defined unit, characterized by a maroon, marine,
fossil-bearing shale,. 10 to 20 ft thick (Fig. 8). The base of this
shale, which is uniform in character and widely distributed, is used as
the upper marker for oeutcrop and subsurface correlations (Fig. 7).

Good exposures of the shale are in roadcuts aleng Oklahoma Highway 99
and Oklahoma Highway 16, north and south of Drumright, respectively.
The base of the couplet is represented by a series of interbedded sand-
stones and shales (Fig. 9). Although these beds commonly are poorly
exposed, a few measurements of them were made in the field (Appendix
Aj, In the subsurface, this marker is not so well defined as the upper

marker, but it is thought to be generally reliable.
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Fig. 8.-Upper marker on outcrop in Sec. 8, T18N, R7E,
The marker is a maroon colored, marine shale,
10 to 20 ft thick. Top of the Elgin is exposed
at edge of road.
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Fig. 9.-Lower marker on outcrop in Sec. 4, T2IN, R8E.
The marker is a series of interbedded sand-
stones and shales.
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CHAPTER IV

GEOMETRY

Trend and Geographic Position

Sandstone on outcrop extends beyond the study area both to the
north and the south. In the subsurface it extends 200 mi westward to
the easternmost part of the Oklahoma Panhandle, and the overall trend
is westerly (Rascoe, 1962). Although sandstone is present throughout
the study area, it is best developed in Creek County (T15N to TI9N) and
in Osage County (T24N to T25N). The latter area shows an overall west-
erly trend, whereas trends in Creek County are diverse in orientation,
with the most significant being northerly and northwesterly (Fig. 4).
The Elgin interval is fairly uniform in distribution throughout the
study area. Maximum thickness of approximately 140 to 170 ft in parts
of TI5N to T18N and T23N to T25N corresponds rather well to major sand-

stone development (Figs. 4 and 5).

Width and Thickness

On outcrop numerous sandstone bodies are as:little as 10 ft wide
and 5 ft thick., Genetic lenticular units are as much as 20 to 30 ft
thick and are less than 600 ft wide. Some coarse-grained lenticular
units, developed in the upper part of the interval, are thought from

limited data to be 10 times the width of genetic units. Very thin units

12
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commonly extend beyond the limits of a single surface exposure.
Major sandstone belts contain 100 to 150 ft of sandstone and range
in width from. 1 te 3 mi. They are thought to represent multilateral
@ multistoried units. Sandstone is best developed in Creek County
south of the Cimarron River and in the nerthernmost part of the study

area. It is less than 20 ft thick in 2 areas in Osage County (Fig. 4).
Boundaries

The upper boundary of the couplet is generally sharp, both on out-
crop and in subsurface, whereas the lower contact is not so abrupt or
so well defined (Figs. 2 and 3). The couplet is characterized at many
.localities by poorly developed sandstone, with interbedded shale, in
the lower part and well developed sandstone in the upper part. The
boundaries of the latter are sharp, whereas the former type of sand-
stone shows a gradational base. Genetic units of lenticular sandstones
are characterized by sharp upper and lower contacts and abrupt lateral
contacts, Where they are present as multistoried and multilateral
units, the sharpness of the boundaries is somewhat masked because the
contacts separate units of the same lithology. The laterally persistent
sandstones units are characterized by gradational lower and lateral
boundaries. The upper contact is sharp where lenticular bodies directly
overlie the thin units.
Ay N
' In subsurface the boundaries between major sandstone bodies are
well defined (Fig. 3). The lenticular sands have sharp bases, and

abrupt upper and lateral coentacts.; Thin-bedded sandstones exhibit gra-

dational contacts.



CHAPTER V
INTERNAL FEATURES
Sedimentary Structures

Prominent sedimentary structures in lenticular sandstones, in order
of decreasing abundance, are: medium-scale cross-bedding, high-angle
initial dip, convolute beddiﬁg, massive bedding, parting lineation, cut-
outs, small-scale cross-bedding, and ripple marks. Thin-bedded sand-
stones are characterized by small-scale cross-bedding, ripple marks,
.low-angle initial dip, parting lineation, and medium-scale cross-
bedding. Other structures present are burrows, trails, and concretions.

Medium-scale cross-bedding, some of which is the festoon type (Fig.

-10), is well developed in the upper half of the lenticular sandstone
bodies, although development does occur throughout certain sandstone
bodies. Features of soft sediment deformation in the lower part may
have obliterated some of the cross-bedding.

Because cross-bedding and initial dip commonly have similar appear-
ances, some difficulty was encountered in distinguishing these struc-
tures at certain exposures. Although some designations may be incoxr-
rect, the writer is of the opinion that the majority were classified
correctly. Cross-bedding is distinguished by smaller size, higher angle
of dip, and presence in the upper part of the sandstones. In the study

area, high-angle initial dip is very common in the area south of the

14



Fig. 10.-Festoon cross-bedding in Sec. 15, T23N, R8E.
Hammer handle points in direction of dip.
View is to the southwest,
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Cimarron River in Creek County. The steepest dips, up to 35°, are pres-
ent along the edges of the lenticular sandstone bodies and are thought
to represent bank slope of channels, Initial dip in the thin-bedded
sandstones is generally less than 10° and is present in both the sand-
stone and shale.

Small-scale cross-bedding characterizes the thin-bedded sandstenes;
however, it is also present near the top of the lenticular sandstones
where the grain size is finest. Parting lineation is also commonly
present near the top of the lenticular sandstones.

Ripple marks in the thin-bedded sandstone units are best developed
where the sandstones are interbedded with shales (Fig. 11). Ripple
marks are uncommon in the lenticular units, but they are present in
some very fine-grained bodies. (Appendix A).

Cut-outs and irregularities, associated with channel fill, are
characteristic of the lenticular sandstone bodies (Fig. 12), and they
generally represent minor channel remnants or poorly developed channels.
Although deformed and convolute bedding is present in both types of
sandstones, it is particularly well-developed at some localities.in the
lenticular sandstone bodies near the top of the Elgin Sandstone (Appen-
dix A).

The thin-bedded units exhibit various organic structures, such as
mottled or bioturbated bedding, burrows, and trails (Appendix A). In
‘lenticular sandstones, on the other hand, these organic structures are
much less common. Secondary concretions are present in both sandstone

types and range in diameter from 4 to 400 mm (Fig. 13).



Fig.

11.-Ripple marks in thin-bedded sandstones in Sec.
18, T21N, R8E.
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Fig. 12.-Sandstone lens in channel fill approximately
ft thick in Sec. 15, T23N, R8E. The sand-
stone displays initial dip (i) and medium-
scale cross-bedding (m).

18



Fig. 13.-Secondary iron oxide concretions in Sec. 2,
T17N, R7E.

19
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Paleocurrents

Some 575 measurements of paleocurrent indicators were made of
medium-scale cross-bedding, small-scale cross-bedding, initial dip,
patting lineation, ripple marks, cut-outs, and grain otientation, At
each locality, paleocurrents for lenticular sandstones were analyzed
separately from the thin-bedded sandstones. For general analysis, data
were grouped geographically and according to sandstone type. Because
sandstone is not particularly well developed immediately north of the
Cimarron River, it is used toe divide the outcrop belt into two parts.
Four paleocurrent diagrams show the range of the various directional
features and give the average current directions north and south of the
Cimarron River for each genetic unit {Figs. 1l4,.15, 16, and 17). An
additional composite diagram for each sandstone type was prepared by
plotting the weighted average paleocurrent direction for each locality
(Figs. 18 and 19).

In the paleocurrent interpretation for the lenticular units, cut-
outs, medium-scale cross-bedding, parting lineation, grain orientatien,
and small-scale cross-bedding were considered the most reliable indi-
cators; small-scale cross-bedding, parting lineation, ripple marks, -and
grain orientation were the most reliable in the thin-bedded sandstones.
The average current direction for the lenticular sandstones south of
the Cimarron River is N 35°W (Fig. 1l4). The major paleocurrent direc-
tion for the thin-bedded type of sandstone south of the river is N 65°E;
a secondary trend is N 20°E (Fig. 15). The average direction of the
lenticular units north of the Cimarron River is N 60°W, compared to

N 20°W and N 80°E for the thin-bedded units (Figs. 16 and 17). The
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C ‘ : . 1D:82

Fig.. l4.-Paleocurrent diagram of lenticular sandstones south of the
Cimarron River, indicating a trend of N 35°W. ID=initial
dip, MX=medium-scale cross~bedding, SX=small-scale cross-
bedding, PT=parting lineation, RM=ripple mark, CO=cut-out
trend, GO=grain orientation (dashed lines), and R=total
number of readings. - A 30°-sliding average was used in
preparation of diagram.



R:59

Fig. 15.-Paleocurrent diagram of thin-bedded sandstones south of the
Cimarron River, showing a primary direction of N 65°W and
a secondary direction of N 20°E. Key in Fig. 14.
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ID:23

Fig. 16.-Paleocurrent diagram of lenticular sandstones north of the
Cimarron River. Average direction is N 60°W., Key in Fig.

14,



Fig.

R:7l

17 .,-Paleocurrent diagram of thin-bedded sandstones north of the
Cimarron River, with a primary average trend of N 20°W
and a secondary trend of N 80°E. Key in Fig. 1l4.

24
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Fig. 18.-Composite palebcurrent diagram of lenticular sandstones
from local average directions. Overall current direc-
tion is N 35°W. Key in Fig. 14,

25
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D R: 22

Fig. 19.-Composite paleocurrent diagram of thin-bedded sandstones from
local average directions. Primary direction is N.50°W, and
a secondary trend of N 40°E-S 40°W is present. Key in Fig.
14,
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average trend for all lenticular sandstones is N 35°W (Fig. 18). The
composite diagram of thin-bedded sandstones exhibits a primary average

direction of N 50°W and a secondary trend of N 40°E (Fig. 19).
Texture

Lenticular sandstone yodies are commonly characterized by an over-
all upward decrease in grain size from fine- to medium-grained to very
fine-grained. The maximum average grain size is present in the Drum-
right area, the area south-southwest of Depew, and the area northwest of
Hominy, where the Elgin contains coarse-grained units. The thin-bedded
sandstones are dominantly very fine- to fine-grained throughout the
study area.

The visual accumulation tube (Subcommittee on Sedimentation, 1958)
was utilized in the grain size analysis of 23 outcrop samples, which
were easily disaggregated. Grain size distributions representing the
coarsest, average, and finest grain size of the samples from the Elgin
interval, show a change in the traction and saltation populations as the
average grain size becomes finer and the total sample becomes better
sorted (Fig. 20). The following parameters for each sample are pre-
sented in Table I: (1) maximum diameter (3 percentile) (Mx); (2) median
diameter (Md); (3) mean diameter (M), (Inman, 1952); (4) phi standard
deviation ¢ (Inman, 1952); and (5) Trask's sorting coefficient (So).
The lenticular sandstones have maximum diameters ranging from .170 mm
(2.564) to .405 mm (1.304), median diameters from .091 (3.464) to .240
mm (2.064), and mean diameters from ,101 mm (3.304) to .225 mm (2.15¢).
The phi standard deviation is .30 to .59, and the range in sorting co-

efficient is from.1.09 to 1.31. The average lenticular sandstone is
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Fig. 20.-Grain size distributions representing the coarsest, average,
and finest grain size.
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GRAIN SIZE PARAMETERS

TABIE I

29

SAMPLE SAND STONE Mx Md T4 So
NO. TYPEL mm 4 mm é mm é ~
18 L .405 1,30 .240 2,06 .225 2,15 .40 1.22
20-2 L .195  2.36 .091  3.46 .101  3.30 .30 1.09
31 L .215 2,22 .094  3.41 .108  3.20 .40 1.18
48-1 L .265 1,92 c130 2,9 .137  2.87 b2 1.20
81 L .280 1.84 .103  3.28 119 3.07 .59. 1,31
84 L .170 | 2.56 .130 2,94 .123 3,02 .33 1.15
89 L .225 2,15 L145 2,79 141 2.82 .37 1.18
119 L .255  1.97 140 2.84 .135  2.89 .46 1.12
154 L .220 2,18 L130 2,94 .128  2.97 W47 1.17
156 L .240  2.01 135 2.89 .122 3.03 48 1.26
AVERAGE .241 2,05 . 128 2.96 .128 2,96 42 1.19
10-1 B 230 2.12 .084 3,57 .095  3.39 .45 1.30
20-1 B .265 1.97 L1470 2,77 141 2.82 .60 1.31
73 B .250 2.00 .170  2.56 171 2.55 .76 1.43
74 B .167  2.58 J107  3.22 109 3.20 .27 1.13
82 B .220  2.18 .107  3.22 .108 3,21 46 1.24
83 B .280 1.84 .160 2,64 1537 2.72 .67 1.48
83-1 B .225  2.15 .100  3.32 L1100 3.19 47 1.22
83-2 B .213 2.23 L1115 3.12 125 3.00 .35 1.18
105 B .195 2,36 .091  3.46 102 3.30 .35 1.20
113 B L300 1.74 .100. 3.32 .123  3.02 .23 1.24
114 B .280 1.84 .118  3.08 .132 2.92 .52 1.27
203 B 215 2,22 .088  3.51 099 3.33 48 0 1.23
AVERAGE .23 2.10 113 3.15 .121 | 3.05 .47 1.27
GRAND
AVERAGE .236  2.08 .120  3.06 .129 2,95 .45 1.23

1L = Lenticular, B = Thin-bedded



{'fine_grained (.128 mm, 2.964), and is very well sorted (1.19).

Thin-bedded sandstones show less variation in size, Maximum di-
ameter is from ,167 mm (2.584) to .300 mm (1.744), median diameter from
.084 mm (3.57¢) to .170 mm (2.564), and the mean diameter is from .095
mm (BQSQd)Ato .171 mm (2.55¢). The range in phi standard deviation is
from .23 to .76, and the sorting coefficient is 1.13 to 1.48. These
sandstones are very fine-grained (.113 mm, 3.15¢), and are well sorted
(1.27).

The thin-bedded sandstones are finer grained and are more poorly
sorted than the lenticular sandstones. The sandstones together are very

fine grained (.120 mm, 3.064) and well sorted (1.23).
Grain Orientation

Grain orientation measurements for 17 outcrop samples were made
with Shell's dielectric and conductivity anisotropy instruments, which
are very reliable measuring devices (Nanz, 1960; Orr, 1964; Shelton and
Mack, 1970). Grain orientation measurements in lenticular sandstones
are quite variable (Table II), and they are thought to reflect the range
in local trend of the sandstone bodies, Measurements range in azimith
from 260° to 326° (or N 80°E-S 80°W to N 34°W-S 34°E) whereas the av-
erage paleocurrent direction of the lenticular sandstones is approxi-
mately N 35°W (Fig. 18). In the 3 samples of thin-bedded sandstones,
grain orientation varies from N 87°E to N 87°W. The primary paleo-
current direction for this type of sandstone in the study area is

N 50°W; secondary trend is N 40°E (Fig. 19).



TABLE II

GRAIN ORIENTATION

31

Sample Sandstone Number Grain Quality of
Number Typel Plugs Orientation Results?
10-1 B 4 N 87°W E
13-1 B 4 N 89°W E
13-2 B 4 N 87°E E
10-2 L 4 N 75°W E
18-1 L 4 N 34°W E
20-1 L 4 N 82°E G
20-2 L 4 N 85°E E
54~1 L 4 N 51°W F
54-2 L 4 N 80°W E
67-1 L 4 N 65°W E
70 L 6 N 38°W E
70-1 L 4 N 36°W G
81 L 4 N 34°W E
82 L 4 N 70°W E
84 L 4 N 90°W E
89 L 4 N 80°E E
115 L 4 N 50°W E

1

1l

Lenticular, B = Thin-bedded

Excellent, G = Good, F = Fair (Shelton and Mack, 1970)
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Permeability

Permeability was measured in 8 outcrop samples in order to deter-
mine reservoir characteristics, perﬁeability anisotropy, and directional
permeability. Méasureﬁents were of vertical permeability and horizontal
permeability in 3 directions; namely, parallel, perpendteular, and 45°
to preferred grain orientation. Permeabilities were measured with a gas
parmeameter ét pressures between 1 and 2 atmospheres. The correction
for the Klinkenberg effect was not made because extrapolation of the

. measurements from the small range.in'pressure is conjectural. Further-
more, it is thought reservoir anisotropy is reflected quite accurately
by the relative, or uncorrected, values.

In 5 of 7 samples, the average horizontal permeability is greater
than the vertical permeability (Table III). The ratio of vertical per-
: ,

meability to average horizontal permeability varies from 0.31 to 1.42
in lenticular sandstones and from .48 to 3.19 in the thih—bedded sand-
stones. Absolute variation in horizontal permeability is small, with a
maximum of about 175 millidarcies and a minimum of 16 millidafciés.
Maximum horizontal permeability parallels grain orientatibn in 5 of the
8 samples. All lenticular sandstones samplés show maximum horizontal
permeability parallel to the grain orientation; the ratio of minimum to
maximum horizontal permeability ranges from .64 to .92. Maximum hori-
zontal permeability parallels graiﬁ orientation in only one of the thin-
bedded samples, and the ratio of minimum to maximum horizontal permea-
bility varies from .44 to .8l1. The average horizontal permeability for
all samples is 372 millidarcies; the average vertical permeability is

305 millidarcies. Permeability in the subsurface would, of course, be



TABLE ITI
1

PERMEABILITY DATA

SAMPLE SANDSTONE VERTICAL HORIZONTAL PERMEABILITY (P;I) PV i min
NO. TYPE2 PERMEABILITY (P ) AVE. (P;) PARALLEL TO G.0.  45° TO G.O. 90° TO G.O. Py Py max
81 L 555 390 507 344 324 1.42 .64

84 L 180 570 612 533 562 .31 .87 .
89 L 185 285 290 274 290 .65 .95
115 L 200 328 341 _— 315 .61 .92
AVERAGE 280 399 . 438 383 372 .75 .84
10-1 B 270 85 111 62 80 3.19 .56
13-1 B 645 861 860 875 848 74 .97
13-2 B - 156 " 125 188 - — .66
82 B 105 215 140 315 150 N A
AVERAGE 340 341 309 360 372 1.47 .66
GRAND .
AVERAGE 305 372 373 370 372 1.05 .75

1Permeability in millidarcies at 5 psi applied pressure

?I = Lenticular, B = Thin-bedded

1589
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lower than the surfacegyaluesu

Results obtained in this study suggest that derived properties,
such as permeability, are dependent on the dominant direction of grain
orientation. Thin-bedded sandstones which fail to exhibit this rela-
tionship are thought to reflect the effects of grain size and the ab-
sence of a major unidirectional depositional agent. Mast and Potter
(1963) in analysis of low-permeable sandstones also noted poor correla-

tion between grain orientation and maximum horizontal permeability.
Constituents

Petrographic study of 4 outcfop samples indicates that the Elgin
is quartz rich. Both samples of lenticular sandstones, one from the
area between Depew and Drumright and one from the Cleveland area, are
quartzarenites, with approximately 1 percent feldspar and 4 percent
rock fragments (Figs. 21 and 22). The highest chert content of 7 per-
cent is present in the sample from the southern. location. The samples
are fine-grained and well sorted; most individual grains are subangular;
and contacts are generally line, although some are wedge (Fig. 22).

Many grains contain a thin film of iron-bearing material, which may be
an.iron rich clay mineral or a hydrous iron oxide; in addition, some
pores contain clay stained with iron oxide.

The two samples of thin-bedded sandstones are very fine-grained and
well sorted. The sample from the Oilton area is a quartz-rich subarkose
with 6 percent feldspar and 4 percent rock fragments. The sample from
the Hominy area, classified as a quartz-rich sublitharenite, contains
4 percent feldspar and 5 percent rock fragments. Grain shape and con-

tacts are similar to those of the lenticular sandstones. Interstitial



1 mm

Fig.

21.-Photomicrograph of sandstone in Osage County
(Sec. 4, T2IN, RS8E) Ihe quartzarenite is
composed primarily of subangular, well sorted,
fine-grained quartz {(q), with some chert (c),
and feldspar (f) Crossed nicols,
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Fig. 22.-Photomicrograph of sandstone in Creek County

(Sec. 18, T16N, R8E). The quartzarenite is
composed primarily of subangular quartz (q),

with line (1) and some wedge (w) contacts.

Crossed nicols.

36
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clay with iron oxide staining is also present in this type of sandstone.
Overall the sandstones contain 90.5 percent quartz, quartzite, and -
chert, 3 percent feldspar, 4.5 percent rock fragments, and 2 percent
accessories which include muscovite, tourmaline, and zircen.

Prominent constituents of the thin-bedded sandstones are finely di-

' small wood fragments, and

vided plant material, or "coffee grounds,'
very fine-grained muscovite on upper bedding surfaces. Pelecypods,
brachiopods, and crinoid stems are preserved as casts in the lower por-
tions of a few lenticular sandstones;,vertical.burrows were observed on
the top surface of one sandstone; and casts of small logs are present at
several leocalities. A common constituent near the base of several len-
ticular channels is locally derived clay pebbles and shale and siltstone
fragments (Fig. 23). In the Drumright area and the area south-southwest
of Depew, where the Elgin is coarse-grained, chert is recognized on out-
crop as a significant constituent. Small iron oxide concretions, which
are minor in the upper part of a few narrow, lenticular sandstones in
Creek County, are thought to have been sideritic at the time of forma-
tion. Large iron oxide concretions, Secondary in origin are present at

one locality near Drumright (Fig. 13).
Water Quality

Water samples from:9 wells that produce water from the Elgin Sand-
stone were analysed by the Water Resources Division of the U. S. Geo-
logical Survey (Appendix B). Standards.established by the U. S. Depart-
ment of Health, Education, and Welfare specify the following upper lim-
its for ion concentrations in drinking water;( chloride (Cl) - 250 ppm,

sulfate (504) - 250 ppm, and total dissolved solids (TDS) - 500 ppm.



e b .’ |
Fig. 23.-Channel fill with shale and siltstone frag-
ments in Sec. 15, T23N, R8E.
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The Elgin samples exhibit a rather wide variation in concentrations of
ions (Table IV). In two samples the Cl concentration and TDS exceed

the standards for drinking water., Two additional samples contain TDS in
excess of the upper limit. The remaining samples exhibit no unusual
high concentrations.

The fresh-mineralized water boundary in the Elgin Sandstone inter-
val was determined from analysis of electric logs. The geographic con-
tact between sandstones with fresh water and those with mineralized
water is shown in Fig. 4. The boundary varies in depth from 150 ft to
600 ft. It is common at shallow depths (or relative updip positions) in
the northern portion of the study area, where the sandstone units are
poorly developed. The boundary is deepest (or at relative downdip po-
sitions). in the southern half of the study area, where the sandstone is
thickest and latterly continuous.

The volume of fresh-water reservoir rock in the study area is ap-
proximately 30 million acre-ft. The total amount of fresh water in
place for an average porosity of 30 percent is 9 million acre-ft (2.9 x
1012 gal), 7.5 million acre-ft (2.4 x 1012 gal) for 25 percent porosity,

and 6 million acre-ft (1.9 x 1012 gal) for 20 percent porosity,



TABLE IV

WATER QUALITY IN ELGIN SANDSTONE

Na HCO3 504 Cl NO3 DS A Hardness SAR pH
4,9-250 24~-388 7-120  7-620 .8-26  60~1400 20-410 .3-5.4 6.9-8.2
ppm ppm ppm ppm ppm ppm ppm meq /L




CHAPTER VI

DEPOSITIONAL ENVIRONMENT AND PALEOGEOGRAPHY

Major sandstone development within the Elgin interval is repre-
sented by the lenticular sandstones, which are multilateral and multi-
storied deltaic distributary and alluvial channel deposits. The maximum
thickness for a genetic distributary unit is 20 ft and 30 ft for an
alluvial sandstone. The stream width of Elgin distributaries was proba-
bly about 200 ft and 300 ft for Elgin rivers. The most diagnostic fea-
tures of the distributary and alluvial sandstones are: , (1) medium-scale
cross-bedding, cut-outs, high-angle initial dip, parting lineation,
parallelism of paleocurrent direction and ‘local sandstone trend; (2)
upward decrease in average grain size and very good sorting; (3) sharp,
erosional lower and lateral contacts and sharp upper contacts for single
genetic uﬁits; (4) rare occurrence of fossilsa The distributary sand-
stones, commonly represented by narrow bodies, are generally very fine-
grained, and they are characterized by small-scale cross-bedding, ini-
tial dip, cut-outs, and deformed bedding. The alluvial sandstones are
coarser grained and more extensively developed laterally. They charac-
teristically contain medium~-scale cross-bedding, cut-outs, and initial
dip.

The thin-bedded sandstones are coastal and/or marine delta-fringe
units, deposited in front of or marginal to the distributaries. Delta-

fringe units were eroded in part by the seaward-advancing streams.
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Characteristic features of the delta-fringe beds are: (1) small-scale
cross-bedding, ripple marks, low-angle initial dip, interstratification
and variable local paleocurrent trends; (2) very fine-grained and good
sorting; and (3) occurrence of some fossils.,

Most of the sandstone thickness reflects deposition within or on
the bank of channels. Sand deposition by deltaic marine or coastal
processes was relatively minor. Holocene deltas with minor delta-fringe
sand deposits and low sand percentages generally reflect high riverine
input, whereas high sand percentages and major delta-fringe deposits re-

t al.,. 1969). Because

flect strong wave and tidal processes (Fisher,
sandstone percentages are greater than 50 percent in approximately 2/3
of the study area, the Elgin, to a large extent, represents a sand-rich
deltaic sequence. Nevertheless, the riverine input is considered to
have been dominant.

The Elgin Sandstone interval in the area of study represents a
transgressive-regressive couplet within the regressive Vamoosa wedge.
The Elgin Sandstone and equivalent units were deposited in the area
north of the Ouachita, Arbuckle, and Amarillo-Wichita-Criner elements
(Fig. 24). Sandstone forms a narrow fringe along the southern flank of
the Anadarko basin but extends as a prominent westward bulge into north-
west Oklahoma. The Elgin is recognized as far west as the easternmost
part of the Oklahoma Panhandle, or some 200 miles west of the outcrop
belt in the area of study (Rascoe, 1962; Souter, 1966; Brown, 1967).
Deltaic sedimentation is thoughf to be represented by most of the Elgin
interval to the west and north of the study area (Souter, 1966; Brown,
1967). In Kansas, the Elgin, which thins northward and northwestward

primarily by pinch-out, is thought by Brown (1967) to be a large deltaic



ur’“':o\
) |
Yo A 78
A : % jo;
KANSAS L i 5t
OKLAHOMA 7 BEEE Ozark
s B j Uplift
TEXAS & !
7
"I
J;'
FALTA Ouachita
System

Fig. 24.-Paleogeographic map of Elgin Sandstone during maximum regression.
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complex, deposited in a shallow-marine to marginal-marine environment.

As a result of a minor marine transgression which advanced south-
ward and southeastward into the study area, shallow marine and delta-
fringe units associated with the lower marker were deposited. Regres-
sive conditions rapidly returned as the Elgin Sandstone was deposited:
Delta building progressed northward and northwestward; distributaries
advanced over delta-fringe deposits; and in the study area during maxi-
mum regression an alluvial plain, built on deltaic deposits, formed
south of the deltaic environments (Fig. 24). The average paleocurrent
direction suggests that the overall Elgin deltaic progradation was
N 35°W. ’Local orientation of distributaries and rivers was diverse, and
coastal-marine currents near the distributaries were likewise quite
variable in direction.

Based on paleocurrents, regional distribution of sandstone, and
significant chert content, the dominant source areas for the seuthern
part of the area were probably the Ouachita and Arbuckle uplifts, The
westward shift in paleocurrents in the area north of the Cimarron River
suggests sediment contribution from the east, possibly the low-lying
Ozark province (Hicks, 1962) or the eastern extension of the OQuachita
uplift.

Deposition of the Elgin Sandstone was terminated by another minor
transgression which only temporarily interrupted the Vamoosa regression.,
The transgression is represented by marine units associated with the

upper marker.



CHAPTER VII

SUMMARY

The principal conclusions of this study are as follows:

-1, Elgin Sandstone in the study area represents regressive de-
posits formed primarily by delta building. In the south, an alluvial
plain was constructed on deltaic deposits. Paleocurrent data, regional
distribution of sandstone, and southerly increase in chert content sug-
gest the Quachita and Arbuckle uplifts as principal source areas, with a
possible contribution in the north from the Ozark province.

2. Individual lenticular sandstone bodies in the Elgin interval
range upward from 10 ft in width and 5 ft in thickness to 600 ft in
width and 20 to 30 ft thick. Major sandstone belts, which are generally
1 to 3 mi wide, contain 100 to 150 ft of sand. They are best developed
south of the Cimarron River.

3. Lenticular sandstones are distributary and alluvial deposits,
genetic units of which have sharp contacts. These sandstones are pres-
ent as multistoried and multilateral units., The alluvial sandstones are
laterally more extensive than the distributary sandstones.

4, ~Characteristic sedimentary structures of the channel sandstones
include medium-scale cross-bedding, high-angle initial dip, and cut-
outs, Diverse local paleocurrent direction reflects variation. in indi-
vidual sandstone trends. The paleocurrent direction changes from nerth-

west to a more westerly direction north of the Cimarron River.
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5. The distributary sandstones are finer grained than the alluvial
sandstones., Both show an upward decrease in grain size. The lenticular
sandstones are quartzarenites; some have a significant chert content.

6. Thin-bedded sandstones are coastal and/or marine delta-fringe
units. They are laterally more persistent than the lenticular bodies
and contain gradational lower and lateral contacts.

7. The most common sedimentary structures of the thin-bedded sand-
stones are small-scale cross-bedding, ripple marks, low-angle initial
dip, and interstratification. The average primary paleocurrent direc-
tion is N 50°W, with a secondary trend of N 40°E. The delta-fringe
sandstones are very fine-grained and well sorted. Representative units
range from quartz-rich subarkoses to quartz-rich sublitharenites.

8. Maximum horizontal permeability corresponds to the direction of
preferred grain orientation.in 5 of 8 samples, All lenticular sand-
stones exhibit this correlation, whereas delta-fringe samples show con-
siderable variation.

9. Water analyses indicate a rather wide variation in ion concen-
trations. Several of the samples have chloride and/or TDS concentra-
tions in excess of the established limits for domestic use. The fresh-
mineralized water boundary appears.to be related to thickness and lateral
extent of sandstone., The boundary varies in depth from 150 ft in north-
ern Osage County to 600 ft in western Creek County. Volume of fresh
water in the Elgin within the study area may be as much as 9 million

acre-ft.
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APPENDIX B

WATER ANALYSIS
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TABLE V

© CHEMICAL ANALYSIS OF WATER IN THE ELGIN SANDSTONE

= Hardness
Spl. Na HCO3 SO4 Cl NO3 DS Nom- SAR S.C. pH T°C
No. ppm ppm ppm ppm ppm ppm CaCo3 Carbonate meq /& amhos/cm
2 40 388 . 120 28 12 560 400 87 .9 862 8 27
3 8 24 7 7 i 60 20 1 .8 84 6.9 16.5
4 72 376 28 31 7 408 230 0 2.1 708 8.1 19
5 102 50 58 360 20 998 390 350 2.2 1360 6.9 33
6 32 72 91 90 4,2 382 210 -150 1 591 7.3 26.5
8 .81 44 66 220 26 676 280 240 2.1 1030 7 18
13 250 30 19 620 6.6 1400 410 386 5.4 2030 7.2 15
14 4.9 46 11 90 -8 77 50 12 .3 110 7.4 18
15 26 306 24 16 2.2 324 260 5 o7 536 8.2 25

1

Well descriptions are given on the following page.

Gl
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Sample No. 2. Location: West of Wynona, SW SW Sec. 33, T24N, RS8E,
Osage Co. Depth: 20'-30'. Remarks: Hand dug. Member at Surface:
IPvke.

Sample No. 3, Location: Northwest of Hominy, Okla., West of Mt,
Pleasant School, SW Sec. 2, T23N, R8E, Osage Co. Member at Surface:
Pe.

-Sample No. 4. Location: North of Keystone Lake, NE Sec. 33, T22N,
RBE, Osage Co. Owner: Alex Mitchell, Route 1, Hominy, Okla. Date
Drilled: .1920. Depth: .100'. Remarks: Water stands 20°. Member at
Surface: 1IPe.

Sample No. 5. Location: SE NE NE Sec. 29, T2IN, R8E, Pawnee Co.
Depth: 607-70'., Member at Surface: IPve-3,

Sample No. 6., Location: SE NW Sec. 20, T21N, R8E, Pawnee Co. Owner:
:H. C, Walker, Route 2, Cleveland, Okla. Date Drilled: 1966. Depth:

. 85", Use: Domestic. Remarks: Well 1/2 miles south of house. Member
at Surface: IPve-3.

Sample No. 8. Location: SE SW SE Sec. 9, T20N, R8E, Pawnee Co.
Owner: Lana Wilkins, Route 1, Terlton, Okla. Date Drilled: Prior to
1942, Depth: 20°' to sandstone. Use: Domestic. Member at Surface:
IPve-2.

Sample No. 13, Location: East of Shamrock, SW SW NW Sec. 31, TL17N,
R8E, Creek Co. Source: Seep (concrete). Member at Surface: IPvm-2d.

Sample No. 14. Location: Northwest of Depew, Okla., SW NE Sec. 21,
T16N, R8E, Creek Co, Owner: Alvin Cobble, Route 1, Box 45, Depew,
Okla, Date Drilled: .1967. Depth: 117°'. Member at Surface: IPvm-4.

Sample §§c 15. Location: NE SE SE Sec. 33, Tlé6N, RBE, Creek Co. Date
Drilled:  1968. Depth: 98'-100°'. Member at Surface: IPvm-4.



APPENDIX C

LOCATION OF ELECTRIC LOGS USED IN PREPARATION

OF CORRELATION SECTIONS
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Well : .
Number Operator Lease Location
1. Orville H. Parker Lafoon 1 NE NE SW Sec. 26~14N-6E
2, Harvey McElreath Turnbull 1 NW NW SE Sec, 32-15N-6E
3. Big Bend Pet. Co. Cook 1 SW SW NE Sec. 3-16N-6E
4. F. A. Gillespie & Son Newson 2 NW NW SE Sec. 26~17N-6E
5. T. N. Berry & Co. Davenport 1 SE SW NE Sec: 34-18N-6E
6. Falcon-Seaboard Martin 1 NE NE SW Sec. 14-19N-6E
7. W. 0. Allen Perry 1 SW SW SW Sec. 12~20N-6E
8.  Western Oil & Gas Co. Walker 1 NW SW NE Sec. 12-21IN-6E
9. G. Gillespie & Son Hugh Ross 1 SE SE NW Sec., 29-22N-7E
10. Producers Pipe & Supply . Thompson 1 SW Sec. 8-23N—7E‘
11. Kewanee 011 Co. “ Gross 1 NW NW NE Sec., 1-24N-7E
12. Texaco Inc. Oliphant 9 SE SE SE Sec. 19-25Nj8E‘
13. T. N. Berry & Co. Long 1 NW.NE SE Sec. 31-15N-6E
14, Big Bend Pet. Co. Smith 1 NE NE SW Sec. 34-15N-6E.
15, T. N. Berry & Co, Gerhardt . - - NE NE NE Sec. 35-15N-6E
16. Graybol Contracting Corp. McVaey 1 NW NW SE Sec. 30-15N-7E
17. Davon 0il Co. Movey C-2 NE SW NE Sec. 29-15N-7E
18. rBlackwell 0il & Gas Co. Gecbhar 1 SW SW SW Sec. 30-17N-6E
19. T. 0. Lilly Mize 1 NE NW SE Sec. 29-17N-6E
20. Foster Drilling Co. Sadie 1 NW NW SE Sec. 28-17N-6E
21. . Big Bend Pet. €o. Cook 2 ~ NE NE SW Sec. 27-17N-6E
22. Mid-Continent Pet. Co. Sawyer 14 SW SW NE Sec, 27-17N-7E
23. T. N. Berry & Co. Long 1 SW NW NW Sec. 18-19N-6E
24, Creekmoore-Rooney Douglas 1 SW SE SE Sec. 17-19N-6E
25.  J. Simmons Anthis W SE SE

Sec. 7-19N-7E



Well
Number Operator Lease Location
26. Cobett 0il Co. Oller 1 NW NE NE Sec. 10-19N-7E
27. Mid-Continent Pet. Co. Holler 1 NW NW SE Sec. 6-21IN-6E
28,  J. R. Porter School Land 1 NW NW NW Sec. 16-21N-6E
29. Western 0il & Gas Co. Meadors 1 SE SW SW Sec. 10-2IN-6E
30. Texkan 0il Co. Bejeck 1 NW SE SE Sec. 20-2IN-7E
31. Harris & Suppes Speed 1 SE SE SW Sec. 22-2IN-7E
32, White Star 0il Co. McKinley 1 SE SE SE Sec. 6-23N-6E
33. K. S. Adams, Jr. C. C. Bledsoe 1 NE NE SW Sec. 1-23N-6E
34, Gulf 01l Corp.- Emma 3 SE NE NE Sec. 16-23N-7E
35. Toomely O0il Co. Russell 1 NE NE NE Sec. 24-23N-7E
36. A, G. Oliphant S§. Dillaplain 2 SE SW SW Sec. 7-25N-6E
37. Sinclair 0il & Gas Co. Fairfax Unit D-7 NE SE SE Sec. 15-25N-6E
38. Gross Drilling Co. Osage C-1 SE SE SE Sec. 13-25N-6E
39. Gross Production Co. Osage A-j NW NW NE Sec. 18-25N-7E
40, W. P. Ballard, Jr. Allred 1 NE NE>NE Sec. 27-25N-7E°
41. Oceanil 0il Co. Faulkner 2 . SW SW SW Sec. 7-25N-8E
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