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PREFACE 
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sta.tistical data and offering constructive suggestions in preparation 

of this ·thesis. 

A special indebtedness is acknowledged to the Agricultural Re

search Service of the U. S. Department of Agriculture for providing 

supplies, equipment and financial assistance, and to the Agronomy De

partment for its financi.al assist;<J.nce and facilities. 
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E. Guire, Department of Biochemistry; Dr. L. L. Gee, Department of Mic

robiology; and Mr. L. D. Corley, Department of Physiological Science. 

Special thanks are expressed to my parents, Jim and Deloris Kubicek 

for their assistance and encouragement throughout my college training. 
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CHAPTER I 

INTRODUCTION 

The cultivated peanut, Arachis hypogaea L., along with its wild 

relatives, Arachis ~·, belong to the tribe Hedysareae of the family 

Papilionaceae (1). Mature seeds of these leguminous plants are gener= 

ally considered to be ex-albuminous (i.e. w:i,.thout endosperm). In many 

plants, for example, members of the ~ramineae, Euphorbiaceae, and So

lanaceae, the endospei1n stores food substances which are utilized by the 

germinating seed. Generally, however, the endosperm is depleted in the 

Leguminosae by the growing embryo prior to seed maturation and the coty

ledons serve as the primary food storage tissues for the germinating 

seed. 

The endosperm, like the embryo, is dependent on fertilization and 

it is subject to similar genetic influences. Phenotypic differences be

tween plants of contrasting genotypes are often obvious, thus it is 

plausible that phenotypic differences in endosperm might be detectable 

in some stages of development in diverse peanut germ plasm. Because the 

endosperm is a nutritive tissue, the expected differences might be 

quantitative or qualitative in regard to the chemical components of the 

endosperm. Differences in these components could be controlled gener

ally and "genetic markers" might be present. 

Few investigations concerning the ontogeny of the endosperm of 

cultivated peanuts have been made (12, 32, 34, 40, 41). There are 

1 
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several reasons why such studies would be valuable to peanut breeders. 

Interspecific hybridizations with the wild species appear to be essen

tial for the acquisition of some important agronomic characters, in

cluding genetic resistance to variance diseases and pests, for improving 

cultivated peanuts (3). However, embryo abortion following certain in

terspecific hybridizations prevents peanut breeders from making progress 

by this method. It appears likely that these abortions are, in part, 

due to irregular endosperm behavior (8). Appropriate measures might be 

developed for utilizing these wild species in breeding programs if the 

mechanisms governing successful interspecific hybridizations were bet

ter understood. Therefore, any information concerning the composition 

and characteristics of the endosperm might prove to be useful. 

This study is divided into two sections. 

1. ENDOSPERM MORPHOLOGY 

The objective was to determine the nature and extent of the endo

sperm of peanuts as the ovules developed and to clarify some contra

dictions in the literature concerning the presence of endosperm in the 

mature seed (12, 32). The determination of the influence of endosperm 

in relation to the developing embryo in certain hybrid combinations 

(wild x cultivated) was also of serious concern. The methods used in 

this study involved microscopic examination of the developing embryos 

and endosperms from interspecific hybrids (made by reciprocal pollina

tions) and self-pollinated plants. This subject is discussed in Chap

ter II. 

2. ENDOSPERM COMPOSITION 

Several studies were initiated concerning the physical (amount, 

form or morphology) and chemical characteristics of some of the 
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important constituents of peanut endosperm. These studies were aimed at 

detecting possible "endosperm markers" or the determination of genetic 

differences that might be useful to the peanut breeder in identifying 

hybrids or for distinguishing between different genotypes. 

Histochemical tests and thin-layer chromatography were employed to 

identify some of the components of the endosperm in order to better 

understand the role that the endosperm plays in embryo development. This 

chemical approach might clarify some of the causes of embryo abortion. 

Fluorometric measurements of lipase activity in the endosperm and stud-

ies of starch granules using x-ray diffraction, size distribution data, 

and birefringence end-point temperatures (BEPT) were used in an attempt 

to detect differences in these components among several genotypes. The 

studies dealing with endosperm composition are described in Chapters 

III-VIII. The last chapter is based on a paper presented before the 

Oklahoma Academy of Science (29). 

General Materials and Methods 

Thirteen peanut genotypes representing diversity between species 

d b · a d · h d' an su species were use int ese stu ies. Their phenotypic descrip-

tions and other pertinent information are given in Table I. Mention is 

made in each chapter of the ovule sizes and genotypes used for the re-

spective studies. 

aSub-species as used here refers to any taxonomic category below 
species. 



TABLE I 

PHENOTYPIC DESCRIPTIONS:oF THE P~ANUT GENOTYPES ·usED IN THE ENDOSPERM. STUDIES 
.-,------ .~. - . . - b/ 

I;0:ta~i~a1--'=1 Seed Coai: Genotype- ~ame and/or Speci4:r 
~- I. :io. Ty;ee C~lor 

P-112 S~anhoma ~ s Flesh 

P-161 Tenn. Red ~ S (Val) "Red 

P-204 NC4x l!IPE..:. v Flesh 

P-326 Guanajuato-2 li.i:EE.!- v Purple 
P. I. 280688 

P-935 Hani Pintar J;I ~ v Red -and White 
P.I. 268837 Mot tied 

P-936 P. I. 262129 l!lPE.,. S (Val) Flesh with 
Purple Streaks 

P-1284 Aureus .!!=_ s Flesh 

·Ji-1286. Na:rrowleaflet ~ s Flesh 

P-1540 P. I. 262133 ? wild Flesh 

P-1562 P.I. 219823 ·duranensis* wild Flesh 

P-1563 P.I. 210553 ~ wild Flesh 

P-2341 TMV-1 l!lPE.,. v Flesh 

P-2395 Nambyquare ~ v Pµrple and 
White Mottled 

!.I P-numbers assigned by the Oklahoma Agricultural Experiment Station. 

'!2_/ ~ • hyposaea (cultivated peanut) 
? • un-named species 
* • According to Smartt (37) 

E../ S • Spanish, Val ""' Valencia; V • Virginia. 

d/ . - All plants had orange flowers and were tetrapl~id (2n•40) unless othen.."l.se indicated. 

~/ Pk • Agronomy Research Station, Perkins, Oklahoma. 
GH • Greenhouse, Stillwater, Oklahoma. 
GC • Growth Chamber. Sti,1.l~ater, OklahOlila.. 
FC • Cad4e Peanut Research Station, Fort Cobb, Oklahoma. 

Othe~/ Pian·~/ 
Characteristics 

Typical Spanish 

Ty-P.ical yal_encia 

Related to NC~· used 
by GQnagill (li) 

Purpie pigmentation 
in Stem, leaf, and · 
floWer 

Typical Bunch 
Virginia 

L•rge leaves, thick" 
stems with glandul.ar 
hairs on stip"ules 

G~lden color leaves 

Dwarf plant 'With vety 
narrow leaflets 

Yellow flowers, 2n•2o 
Yi.de interspecific 
crossabil1ty 

Wide interspecific 
crossability 

Produces fertilise 
hybrids with hypo. 

Used by _Prakash (32) 

Large seed. prostrate 
hab:ft 

Lo1:atiqn 

I'.k, c;JI, CC" 

Pk 

Pk 

Pk 

Pk 

Pk 

Pk 

Pk. 

Pk,GH,GC 

FC 

FC 

Pk 

_Pk. 

Seeds were planted in early June at the rate of 3-li seeds per foot (.Pk and FC) and one- seed per pot (GH and GC). 
Planes were harvested ir. late October, except for the studies in -Chapters III and IV where they we.re harv~-sted vhe.n 
needed throughout the growing season. ~ 



CHAPTER II 

ENDOSPERM DEVELOPMENT IN OVULES OF INTERSPECIFIC 

HYBRIDS AND HAND POLLINATED 'SELFS' IN 

THE GENUS ARACHIS 

Introduction 

Information concerning the ontogeny of peanut endosperm is. limited •. 

The earliest work, according to Praka.sh (32), was Guignard' s in 1882. 

Later Reed (34), in 1924, described the embryogeny of the peanut in a de

tailed study but his. work was documented by rather poor terminology and 

illustrations. More detailed and informative work was reported by Smith 

(41), Conagin (12), and Prakash (32)o 

Smith (41) undertook.a comprehensive study of the formation of the 

embryo sac an,d the early development of the embryo and endosperm (up to 

10 days after pollination). Conagin (12) and Prakash (32) studied the 

development of the endosperm of the peanut following fertilizatipn .but 

they disagreed as to its presence in the mature seed, Conagin indicated 

that endosperm disappears during seed maturation but Prakash reported .it 

was present as a tw:o celled layer, "go1;ged with fatty food reserves," in 

mature seeds. 

Previous authors referred to the early .developing endosperm as 

'free-nuclear' or 'nuclear endosperm. 1 In this study the term non

cellula.r will be used rather than the. former terms because the latter is 

more appropriate according to Rao (33), The endosperm of the peanut 
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develops, following fertilization, by rapidly dividing nuclei. At first, 

the nuclei are free (i.e. without cell walls). Later, however, wall 

formation occurs beginning at the micropylar end of the ovule and con

tinuing toward the chalazal region. 

Failure of the endosperm, resulting in failure of an otherwise nor

mal embryo, occurs frequently following interspecific hybridization be

tween plants with different chromosome numbers (5, 7, 14, 26). Boyes 

and Thompson (7), after attempting reciprocal inter specific hybrids be

tween Triticum and Secale, stated, "Whatever may be the primary cause of 

poor seeds and lack of success in crossing, it expresses itself through 

the endosperm." 

Apparently, endosperm plays a major role in the development and 

maintenance of a medium of growth substances for the young embryo (46). 

Consequently, the death of the embryo following interspecific hybridiza

tion may not necessarily be a function of the embryo itself but it may 

be caused by an abnormal development of the endosperm. 

Several suggestions have been made as to the cause of seed failure 

in interspecific hybrids (5, 8, 9, 13). These failures are probably due 

to chromosomal, genie, or cytoplasmic imbalances within the endosperm or 

incompatibility between the embryo and adjacent tissues (e.g. antipodals 

or nucellus). Johansen and Smith (26) reported seed failure following 

interspecific hybridization in peanuts. They made studies of aborting 

ovules by anatomical observations but could not ascribe the primary 

causes of failure to either the embryo or endosperm. 

Smartt and Gregory (38), in their Arachis species cross 



compatibility studies, discovered that a wild diploid annual species 

a 
(10038) would cross widely with other wild species and with!· .h:Y.E.£-

gaea. However, successful crosses with!· hypogaea and this wild spe-

cies were obtained only when the latter was used as the female parent. 

Although the hybrids were triploid and sterile their results are of 

interest because successful crosses, where plants of different ploidy 

7 

levels are involved, usually occur when the female parent possesses the 

higher chromosome number (44). 

The purpose of this investigation was to clarify the contradictions 

in the literature concerning the presence of endosperm in mature seeds; 

and to follow the development of the embryo and endosperm in hand pol-

linated 'selfs' and interspecific crosses between~· hypogaea and A • 

.§£.• (P-1540), which produce viable seeds only when the latter is the 

female parent. It was hoped that comparisons of endosperm behavior be-

tween normally developing seeds and aborting seeds would offer a better 

understanding of the nature of the endosperm's role as a medium for the 

growing embryo. 

Materials and Methods 

Two genotypes, P-112 (2n = 40) and P-1540 (2n = 20), were selected 

for the interspecific hybridization study. P-112 is~· hypogaea, a 

cultivated peanut. P-1540 is the wild un-named species. Six plants of 

P-112 and four plants of P-1540 were grown in eight inch and 14 inch 

plastic pots, respectively, containing a 1:1:1 mixture of peat, perlite 

and soil. Environmental conditions were controlled by growing the 

aThis species is the same as P-1540 that was used in this study. 
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plants in a growth chamber on a 12 hour day schedule with the day period 

beginning at 6:00 pm and ending at 6:00 am. The day and night tempera-. 

tures were 28 C and 22 C, respectively. Crosses were made reciprocally 

between these parents using each as egg and pollen sources. In addi-

tion, hand pollinated selfs were made,so that comparisons would be pos

sible. Emasculations were made between 7:30 and 9:30 am on flowers that 

would open during the day period. The anthers dehise and the pollen is 

shed at noon or later in flowers on plants grown under the growth cham-

ber conditions described. Pollinations were made immediately using 

pollen collected from plants grown in pots in the greenhouse. The flow-

ers were tagged, just prior to pollination, to indicate the pollination 

date and pollen source. The tags were wired to the developing pegs when 

they reached a length of 5 to 8 mm. Thus, the age and parents were 

known for each developing pod. 

The number of pollinations, pegs formed, and ovaries, pegs, or 

ovules collected for anatomical observations are recorded below (the 

female parent is listed first): 

Ovaries, Pegs, or Ovules 
Crosses Pollinations Pegs Formed Collected 

P-1540 x P-1540 114 85 80 
P-1540 x P-112 124 111 90 
P-112 x P-112 53 50 50 
P-112 x P-1540 130 112 100 

Ovaries, pegs, or ovules (depending on the stage of development) 

from the crosses and self pollinations were collected at the time of 

pollination and at two hour intervals from eight hours to 24 hours af-

ter pollination and 1, 2, 3, 4, 7, 21, 28, 42, and 60 days after polli-

nation. 

For the study on the extent, presence and amount of endosperm in 
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mature seeds of A. hypogaea, P-204 and P-2341 were used in addition to 

P-112. These genotypes were chosen because P-2341 (TMV-1) is.the same 

genotype that Prakash (32) used and P-204 (NC4x) is closely related to 

NC4, the genotype that Conagin (12) used in her study. Because the 

above investigators had disagreed as to the presence of endosperm in 

mature seeds, ovules from these genotypes were collected only when com

pletely mature as indicated by the dark endocarlhof the pod. The,.pods 

were collected from plants grown in the field (see'Table I). 

In all studies the ovaries, pegs, or ovules were fixed ill: 'Craf, 

dehydrated in tertiary butyl alcohol and embedded in paraffin (Para

plast). The. 42 day and older ovules were pretreated by soaking them in 

acetone for 24 hours prior to dehydration to remove the excess q!l so 

they could be properly infiltrated and emb~dded. The sections were cut 

serially on a rotary microtome at 10 or 20 J, depending on ~he size of 

the ovule, stained with Johansen's safranin and fast green (27), and 

mounted on slides with Canada balsam. Observations of the slides were 

made with a Zeiss GFL microscope and microphotographs were made of the 

significant sections on High Contrast Copy film. 

Results and Discussion 

Normal Endosperm Development 

Even though observations were made of sections prior to and im-

mediately following fertilizations, little reference will be made to 

them, since a more comprehensive study was undertaken by Sm;Lth (41) on 

ovules up to 10 days after po],.lination. Early obs"ervations made in this 

study were solely for the purpose of recognizing the developing endo

sperm so that its presence ·in the mature seed might be positi~~ly 
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identified. 

Observations of fertilization and early development of the embryo 

and endosperm were in agreement with those noted by Smith (40, 41). 

The endosperm is a rapidly dividing tissue of a non-cellular state, 

which is oriented along the periphery of the embryonic cavity and sur

rounds the developing embryo (Figure 1). Wall formation begins to oc

cur at the micropylar region in ovules of 3-4 mm in length at approxi

mately 21 days of age. In later stages of development the endosperm is 

entirely cellular and is continually reduced in thickness (Figure 2). 

The observed sections in which the cotyledons had filled the embryonic 

cavity showed several layers of cellular endosperm at various degrees 

of thickness. These observations suggested that the endosperm nourishes 

the developing embryo and is consumed by it. 

Throughout its development, the endosperm appeared to line the in

side of the two cotyledons (Figure 3). The endosperm also appeared to 

be present in a mature seed as a single layer of cells between the 

cotyledons and seed coat (Figure 4) and between the two cotyledons 

(similar to that shown in Figure 3). 

The presence and location of cellular endosperm in seeds collected 

at maturity of P-204 and P-2341 were similar to those shown in the pre

vious figures (i.e. a single layer of endosperm lining the embryo at 

maturity). 

Hybrid Endosperm Development 

Fertilization occurred normally in the hybrid ovules regardless of 

which species (wild or cultivated) was used as the female. However, 

when compared to the hand pollinated selfs, the development of the 



Figures 1-4. Various Stages of Endosperm Development. 

Figure 1. At 21 days, non-cellular endosperm (NE) covering 
the embryo (C) and becoming cellular along the 
periphery of the embryonic cavity (EC). 

Figure 2. At 42 days, three layers of cellular endosperm 
(CE) between the cotyledon and seed coat (SC). 

Figure 3. Cellular endosperm between both cotyledon halves 
at 42 days. 

Figure 4. Cellular endosperm present at maturity as a 
single layer of cells between the cotyledon and 
seed coat. 
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hybrid embryos and endosperms appeared to be retarded as indicated by 

their delayed growth. Seeds of the wild x cultivated hybrids grew to 

maturity while no success was achieved in obtaining mature seeds from 

the cultivated x wild crosses. The fruits (pods) developed normally 

but the seeds failed to develop in the latter crosses. 

13 

Hyperplastic activity of the maternal, integumentary tissues, par

ticularly the endothelial layer, was observed in aborting ovules (Fig

ure 5). The endosperm had ceased development and the few nuclei in the 

chalazal region were being encroached upon by the integumentary tis

sues. The embryo failed to differentiate into the "heart-shaped stage." 

Although actual chromosome counts were not made, it is assumed 

that the chromosome complements of the endosperm differed between the 

two types of hybrids made in this study, and that the chromosome num

bers were identical in the hybrid embryos (30 chromosomes). The chro

mosome numbers of the endosperms should have been 40 and 50 for the 

wild x cultivated and the cultivated x wild crosses, respectively. The 

embryos aborted in the former cross but they appeared normal in the 

latter one, suggesting that the difference in chromosome number may re

late to the cause of embryo abortion. However, insufficient evidence 

is reported in this study to determine the specific causes of embryo 

abortion and seed failure. It is suggested, based on this study, that 

seed failure is associated with retarded embryo and endosperm growth, 

failure of the embryo to differentiate and hyperplasia of the integu

ments and eventually the collapse of the endosperm and embryo. 

Summary 

Development of the embryo and endosperm was observed in ovules 



Figure 5. Hyperplast i c Activity of Maternal 
Tissue in an Aborting Ovule. (E = 
embryo, NE = non-cellular endosperm, 
M = encroaching maternal tissue), 

14 
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involving interspecific hybrids and hand pollinated selfs. The endo

sperm was found to be of the nuclear type, becoming cellular during 

later stages of its development. Contrary to reports by other investi

gators the endosperm appeared to be present as a single layer which 

covers the cotyledons in mature seeds. 

Mature seeds were obtained from crosses with~· hypogaea as the 

pollen parent and the wild diploid~·~·, P-1540, was the female (seed) 

parent. However, the growth of the embryo and endosperm was observed 

as being delayed or retarded when compared to the hand pollinated selfs. 

No success was obtained in crosses where the tetraploid cultivated 

species, P-112, was the seed parent. Indications of abortions oc

curred quite early, usually prior to 21 days after pollination. 

It was suggested that the differences in the chromosome comple

ments of the respective endosperms in the interspecific crosses may re

late to the cause of the embryo abortion. However, this study did not 

offer enough information to determine the significance of the chromo

some number differences between Arachis hypogaea and~·~· as the 

cause of embryo abortion. 



CHAPTER III 

HISTOCHEMICAL ANALYSES OF NON-CELLULAR 

PEANUT ENDOSPERM 

Introduction 

The objective of this study was to identify some of the constitu

ents of peanut endosperm using histochemical procedures. The non

cellular endosperm of the peanut is an ideal tissue for such studies 

because "smears" may be rapidly and easily obtained from this liquid 

material. 

Several histochemical methods were reviewed concerning their spe

cificity to particular chemical components (i.e. starch, protein, amino 

acids, etc.). Of the methods considered, four were used in this study. 

Materials and Methods 

Comparable size ovules were collected from ten genotypes: P-112, 

P-161, P-326, P-935, P-936, P-1284, P-1540, P-1562, P-1563, and P-2395. 

Ovules were placed on a clean microscope slide, cut in half and the en

tire volume of liquid endosperm allowed to flow onto it. The endosperm 

was spread evenly on the slide by using the cut ovule. Several slides 

were made for each genotype and size. One half of the slides of each 

were allowed to air dry and the remaining ones immediately killed and 

fixed with "Spray-cyte" (a water soluble cytological fixative). The 

smears were stored in a dust free container until they were stained. 

,~ 
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The following histochemical methods were used: 

(1) Iodine Potassium Iodide (IKI): specific for starch (25). 

( 2) Periodic acid-Schiff' s (PAS) reaction: specific for soluble 
carbohydrates (25). 

(3) Sakaguchi reaction: specific for proteins containing argi
nine (25). 

(4) Triple Stain: specific for deoxyribonucleic acid, polysac
charides, and proteins (22). This procedure involves the use 
of three separate staining methods (22); Feulgen reaction, 
PAS, and napthol yellow S. 

All histochemical reactions were performed on fixed and air dried smears 

of each genotype and size. 

Results and Discussion 

Histochemical methods 1 and 2 gave positive results for starch. 

However, the latter reaction was superior since the stain was more in-

tense and permanent. A preliminary test involving method 3 (Sakaguchi 

reaction) failed to produce positive results. However, perfection of 

this reaction should prove useful since differences between genotypes 

in regard to the presence of arginine were reported in the amino acid 

analyses (Chapter VII). 

The results using method 4 (Triple Stain) were similar in all 

slides from each genotype. The nuclei (DNA) stained blue-green; nu-

cleoli (RNA), yellow; protein, yellow-green; and polysaccharides, red. 

Figure 6 shows the staining reaction on a fixed endosperm smear of 

P-935. This staining procedure proved to be superior to all of the 

others because of the clear differentiation of several chemical com-

ponents. 



Figure 6. Non-cellular Endosperm of P-935 Showing 
Staining Reaction of Method 4 (Triple 
Stain). 

18 
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Summary 

No differences were detected between genotypes by use of the his

tochemical tests employed. It was evident that starch granules were a 

conspicuous component of the non-cellular endosperm of the peanut. Of 

the four histochemical methods used in this study, method 4 (Triple 

Stain) was superior to the others based on its specificity to several 

chemical components. 



CHAPTER IV 

X-RAY DIFFRACTION AS A METHOD FOR DIFFERENTIATING 

BETWEEN ENDOSPERM STARCHES OF DIFFERENT 

PEANUT GENOTYPES 

Differences in starch granule patterns obtained from x-ray has long 

been recognized as a method for differentiating between starches of dif-

ferent plant genera (4). Several types of x-ray diffraction patterns 

have been identified and used to classify starches. Cereal starches 

yield patterns which have been designated as type "A", potato or tuber 

starches type "B", and a group of intermediate starches not conforming 

to either of the two previous classes are designated type "C". It is 

not known what type is characteristic of starches from the endosperm or 

cotyledons of the peanut. 

Badenhuizen (2) reported that the crystalline structure of starch 

granules, as revealed by x-ray diffraction patterns, is under genetic 

control. Brown, Creech, and Johnson (10) also reported genetic control 

of starch granules and reported differences in x-ray diffraction pat-

terns between different genotypes in maize. 

A preliminary study, with a known starch type (maize), utilizing 

x-rays was made to verify procedures that should give positive results. 

A commercial corn starch (Argo brand) slurry was spread on a regular 

microscope slide and x-rayed with a General Electric RX D-6 x-ray dif-

0 
fractometer equipped with a copper target, nickel filter, and 1 beam 

20 
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collinator, HR Sellar slit, and 0.2° receiving slit. The results were 

plotted on a strip chart recorder using a time constant of one second 

and a full scale reading of 200 counts per second. Patterns were re-

0 0 
corded through the angular range 1 to 28 2 e, The results obtained 

were similar to those of Brown et al.(10) 

X-ray diffraction patterns were then attempted on peanut endosperm 

to detect differences between genotypes and to classify their starch 

granules as to type. Non-cellular endosperm extracted from ovules of 

P-112 (cultivated) and P-1540 (wild) were used. Two attempts were made 

using the entire endosperm (approximately 10 µi) from each ovule and 

the same number of attempts using endosperm from 10 ovules (approxi

mately 100 µi) of both wild and cultivated peanuts. However, all at-

tempts to obtain positive x-ray diffraction patterns with peanut starch 

failed. 

It was concluded that the quantities of peanut starch from the 

endosperm were insufficient to give x-ray diffraction patterns with the 

previously described x-ray equipment. The use of powder photographs, a 

more sensitive technique utilizing photographic film and longer x-ray 

exposure times, might be more effective for these studies (4). 



CHAPTER V 

FLUOROMETRIC MEASUREMENT OF LIPASE ACTIVITY IN 

THE NON-CELLULAR ENDOSPERM OF PEANUTS 

Introduction 

This study was aimed at detecting possible differences in the en

zymatic activity of lipid degradation to fatty acids in the endosperm 

of several genotypes. Lipids are considered to be the esters of fatty 

acids and related substances such as oil. Although it is well known 

that peanut cotyledons contain a considerable quantity of oil, (up to 

50% or more) (23), the presence of lipids in the endosperm is unknown. 

Since the endosperm is responsible for the nutrition of the developing 

embryo, it was suspected that lipids might be detected. 

Jacks and Kircher (24) described a rapid and sensitive method to 

assay lipolytic activity in various oleaginous seeds, including pea

nuts. They found that fatty acyl esters of 4-methylumbelliferone (7-

hydroxy-4 methylcourmarin) are some of the most intensily fluorescent 

substances known and thus highly sensitive for fluorometric measure

ment. Guibault, Sadar, and Arcenaux (21) evaluated various fluorometric 

substrates for lipase activity and suggested 4-methylumbelliferone bu

tyrate (4-MUB) as one of the better substrates for lipase activity. In 

fact; they found that lipase in concentrations as low as 0.004 mg/ml 

could be detected with the butyrl ester of 4-MUB. 

Pancholy (30) stated that the fluorometric method of lipase 
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determination was approximately one thousand times more sensitive than 

the standard fatty acid titration method. 

The principle of measuring lipase activity fluorometrically is 

based on the ability of the enzyme to convert nonfluorescent 4-MUB to 

highly fluorescent 4-MU. 

Materials and Methods 

-3 Fresh stock solution (lx 10 M) of 4-MUB was prepared in ethylene 

glycol monoethyl ether. One hundred microliters of the stock MUB 

-3 (1 x 10 M) was added to one liter of buffered water solution with a pH 

of 7.41 to obtain the working solution (1 x l0-7M MUB). 

To measure the lipase activity, a Turner III Fluorometer equipped 

with a 7-60 primary filter and 2A and 47B secondary filters was used. 

The attenuation dial was set at one and the measurements were recorded 

continuously at room temperature for 1, 2, and 3 minutes. 

Four milliliters of the working solution (1 x l0-7M 4-MUB buffer) 

were added to each tube and the fluorometer zeroed before the endosperm 

(enzyme system) was added. The entire endbsperm from one ovule was then 

added to the buffer in 2 to 10 i£ volumes depending on the size ovule to 

be examined (Table II). The endosperm was added to the buffer by cut-

ting one ovule in half and the liquid, non-cellular, endosperm allowed 

to flow down the inside of the tube. The starting time was recorded 

and the endosperm mixed 1-2 seconds with a vortex mixer and immediately 

placed in the fluorometer. 

Endosperm from ovules at three stages of development for seven 

genotypes were examined for lipolytic activity (Table II). Two samples 

were run for each size and genotype. The readings (fluorescent units) 
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were recorded from the instrument dial at 1, 2, and 3 minute intervals. 

The readings were also recorded graphically by the plotter attachment. 

Results and Discussion 

The results of this experiment are reported in Table II. Readings 

followed by an asterisk are considered invalid. Most cases of invalid

ity were caused by accidently contaminating the sample with portions of 

peanut cotyledons. Based on the results, some lipolytic activity was 

detected and differences in activity may offer a means of differentia

ting between peanut genotypes. However, it appears that insufficient 

amounts of enzyme were present in the endosperm from single ovules to 

accurately detect such differences. Further preliminary studies should 

be made by utilizing endosperm from more than one ovule to validate the 

results. 

The specific location of enzymatic activity might also be observed 

by preparing fresh endosperm smears on microscope slides, treating them 

with 4-MUB and observing the activity with fluorescent microscopy. 

Thus, differences between genotypes might be detected by the location 

of enzymatic activity. 
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TABLE II 

FLUOROMETERIC MEASUREMENTS OF LIPOLYTIC ACTIVITY 

Ovule size Approx. amount Fluorescent Readings~/ 
Genotype (cm) Endosperm ( µ£) 1 min. 2 min. 3 min. 

P-112 .3 x .15 2 0.5 1. 5 2.5 

• 6 x • 3 6 4.0 4.5 5.5 

.8 x .4 10 2.0 4.0 5.5 
15.0 15.0 16.0* 

P-161 • 4 x • 2 5 3.0 3.5 5.0 
5.0 5.0 6.5* 

• 6 x • 3 6 7.0 7.0 7. 5* 
10.0 12. 0 15.0 

• 8 x • 4 10 7.5 8.0 11.0 
8.5 9.0 11. 5 

P-935 • 4 x • 2 5 8.5 11. 5 15.0 
6.5 7.0 6.0* 

.6 x .3 7 23.5 30.5 37.0 
16.0 15.5 21. 5* 

1.0 x .5 8 43.5 47. 5 48.5 
7.5 7.0 7. 0-1( 

P-936 .4 x .2 5 4.5 5.0 6.0 
7.0 7.5 8.5 

.8 x .3 10 7.5 8.5 10.0 
7.5 9.0 11.0 

1.3 x .5 8 7.5 11.0 14.0 
28.0 41.0 52.0* 

P-1284 • 4 x • 2 5 5.5 6.5 10.0 
11.0 10.0 17.0* 

.6 x .3 7 11. 5 8.5 14.0-I( 
18.0 20.0 29.0 
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Table II Continued 

Ovule size Approx. amount Fluorescent Readings!/ 
Genotype (cm) Endosperm (µR.) 1 min. 2 min. 3 min. 

1.0 x .4 8 12. 5 25.0 34.5 
15.0 11.0 20.5* 

P-1286 .3 x .2 2 5.5 6.5 8.0 
8.5 10.0 8.0* 

• 4 x • 3 5 10.5 13.5 15.0 
17.5 21.0 24.0 

• 7 x • 5 7 8.5 10. 5 12.0 
5.0 7.0 7.5 

P-2395 .3 x .15 2 7.5 7.0 9. 5* 
5.0 4.5 8.0* 

• 9 x • 3 10 8.0 7.0 8.0·k 
38.0 37.0 54. o·k 

1.2 x .6 8 30.5 27.0 41.0," 
22.0 24.0 38.0 

!I = no sample 

*=invalid reading ( see text) 



CHAPTER VI 

DETERMINATION OF STARCH GRANULE SIZE DISTRIBUTION 

PATTERNS FROM NON-CELLULAR 

PEANUT ENDOSPERM 

Introduction 

Studies of starch granule size distribution patterns are useful in 

identifying starches from different plant genera. For example, corn 

and potato starches are easily identified and can be differentiated 

from each other by their size distribution patterns (36). However, in

sufficient information is available concerning differences in starch 

granule size distribution patterns at the species and sub-species level 

of most plant genera. 

Preliminary observations of peanut endosperm revealed that the 

starch granules are abundant constituents and are variable in size, 

ranging from less than 1 µ to about 8 or 9 µ. The only other conspic

uous particles in the endosperm, disregarding the cytoplasmic strands, 

were the nuclei which were 10 µ to about 20 µ in size. 

The question arose as to whether or not differences in peanut 

genotypes could be detected by measuring the sizes of the starch gran

ules both at the species and sub-species level. Endosperm from six 

cultivated genotypes, collected at three stages of development (approx

imately 14, 21 and 28 days old) and one wild species collected at two 

stages of development (approximately 14 and 28 days old), were examined 
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for the frequencies of sizes of their starch granules. 

One method of cell or particle counting is by microscopic observa-

tion using a haemocytometer, a special slide often used for counting 

blood cells. This slide allows estimates to be made of cell numbers 

but it does not differentiate according to sizes. Use of a haemocyto-

meter is both time consuming and subject to substantial error (10% or 

more). 

Materials and Methods 

For this study 'a Model B Coulter Counter was used rather than a 

haemocytometer because it is faster and subject to less error. The 

particle size determinations obtained with the Coulter Counter are based 

on the volume of the particles regardless of their shape. The instru-

ment is able to count up to 100,000 particles per sample(\ ml) in 13 

seconds. 

The Coulter Counter was calibrated with latex particles 3.49 µ in 

diameter using a 100 µ aperture. The procedure for calibration and in-

strumentation was in accordance with the manufacturer (15). For the 

peanut starch granule studies the following instrument settings were 

used: 

Gain •••••••••••••••••• 50 
Amplification ••••••••• 1/8 
Aperture current •••••• 1/4 
Vernier ••.•••••••••.•. 100 
Lower threshold ••••••• 17.1 
Mode switch ••••••••• separate 

The instrument was manually adjusted by setting the threshold dials to 

achieve the desired classes of particle sizes (0.94, 1.80, 3.10, 3.90, 

5.20, 6.00, 6.90, and 8.20 µ). 

Two plants of each genotype were harvested and used in this study. 
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The ovules were removed from the pods of the plants and the basal ovules 

grouped in appropriate classes according to three stages of development: 

Age 1 (young), Age 2 (intermediate), Age 3 (old). These ages correspond 

closely to 14, 21, and 28 day old ovules. 

The endosperm was extracted from the ovules by using a "Zeptrol" 

pipette which proved to be superior to other pipettes and syringes that 

were tried. Fifty microliters of endosperm were removed from several 

fresh ovules (five to twenty depending upon size) from each of the three 

age groups. The endosperms were mixed with equal volumes of absolute 

ethanol to inhibit organism growth that might affect the starch proper

ties. However, use of the ethanol may not have been necessary owing to 

the fact that counts were made within 12 hours after the endosperm was 

prepared. 

Immediately prior to making the counts, the 100 µt of endosperm 

solution (endosperm+ ethanol) from each genotype and age group were 

mixed with 20 ml of an electrolyte (NaCl) and placed in a clear plastic 

vial. The vial was placed on the counter stand and the aperture tube 

immersed in it. The instrument automatically used a\ ml aliquot of 

the total solution (endosperm+ ethanol+ electrolyte) for each count. 

Two counts for each threshold setting were made for each genotype and 

age. 

Results and Discussion 

The results are graphically reported in Figures 7, 8, 9, and 10 

for Age 1 (young), Age 2 (intermediate) Age 3 (old), and total counts, 

respectively. 

Figure 7 shows the results obtained for the Age 1 ovules of the 
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From Endosperm of Seven Genotypes at Age 1. 
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seven genotypes. The general pattern of starch granule size frequencies 

of most genotypes are similar with differences shown only in the number 

of starch granules. The only striking differences in this respect ap

pears in the P-326, where no starch granules were present in the 3-4 µ 

range. The low count in the other genotypes occurred in the 4-5µ class. 

Another obviou·s difference occurred in the 7-8 µ size class where P-1540 

had considerably more starch granules than the other genotypes studied. 

The other genotypes showed similar trends with only slight differences 

in the number of starch granules at each class. 

Figure 8 shows the results of the Age 2 (intermediate) ovules. The 

wild species, P-1540, was omitted from this study because no intermediate 

size ovules were collected. The same general patterns occurred here as 

in the previous study. Note, however, that P-326 did not differ from 

the other genotypes at the 3-4µ size class as it did in the previous 

figure. However, P-161 was different from the other genotypes at the 

3-4µsize class. Comparisons can be made regarding the numbers of gran

ules present at each size range for each genotype. The greatest con

trast between genotypes appeared in the granule size range of 6-7µ and 

7-8µ, Note that in the former range P-326 had more than 10 times the 

number of starch granules than P-936; but in the latter range a reverse 

trend occurred. Similar trends can be detected for P-112 and P-1286 at 

the same two previously mentioned size ranges. 

Figure 9 shows the results for the Age 3 ovules. All genotypes 

again show the same general trends. However, it appears that there are 

slightly greater differences between the genotypes in this age group 

than in the younger ovules. Again, all genotypes followed the same 

trend until the 5-6, 6-7, and 7-8µ.size classes, where the greatest 
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contrasts occurred. Note that certain genotypes showed increases in 

starch granule numbers at these classes whereas others showed decreases. 

Figure 10 shows the total number of starch granules for each geno

type according to age. This figure summarizes the previous three graphs 

with respect to age and genotype. It omits, however, the differences 

(previously observed) in particle size. Again, numerous comparisons can 

be made; for example, compare the total starch granules at Age 1 for 

each genotype and note that P-1540 had the greatest number and P-326 had 

the least. Similar comparisons can be made for each age and genotype. 

Note the trends in the number of granules with respect to age within a 

particular genotype. For example, in P-112 and P-936 as the ovules ma

tured, the total number of granules increased and then decreased. The 

total number of starch granules decreased as P-161 ovules became older 

but the opposite was true for P-326, P-935, and P-1286. 

If the total number of starch granules reported in Figure 10 is 

converted to numbers per milliliter, taking the dilution factor into 

consideration, they would range from 3. 7 million to 12. 2 million. Thus, 

the abundance of these food reserves is apparent. Figure 10 may offer 

some significant information regarding the production of starch gran

ules. The differences shown here by genotypes may have a bearing on 

the ability of the endosperm of a particular genotype to nourish its 

embryo. It is known that crosses petween some parents fail more often 

than do crosses between other parents (both intraspecifically and inter

specifically). The significance of the low granule numbers in the 4-5 µ 

range in all ages that were observed (except P-326 at Age 1) is not 

known. It appears that production or growth of the starch granules may 

be cyclic in nature. 
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It is not known what factors caused the differences that were ob

served within the particular age group in regard to particle size, or 

in total starch granules. However, from these data, it appears that 

some differences do occur between genotypes in regard to starch granule 

sizes in their endosperms. These dffferences may be controlled genetic

ally. 

The exact ages of the ovules examined were unknown because the 

flowers were not tagged at the time of pollination. Therefore, the 

ovules from the various genotypes may have differed, somewhat, in phy

siological maturity. These differences in age could account for some 

of the results that were obtained. 



CHAPTER VII 

BIOCHEMICAL DIFFERENCES IN ENDOSPERMS FROM SEVERAL 

PEANUT GENOTYPES 

Introduction 

It is known that chemical differences between genotypes exist be

cause gene expression in phenotypes occur by way of biochemical path

ways in organisms (35). Biochemical differences have been reported at 

the species level (19, 35, 43), but few references have been made to 

varietal differences (35). 

Fredriksson (19) recorded biochemical differences between species 

of Festuca based on the phenolic compounds that he separated with cell

ulose thin-layer chromatography. Towers and Maass (43) found differ

ences in phenolic acids of Lycopodiales at both the species and sub

species level. Differences in flavonoid compounds from peas and beans 

have been reported by Rowlands and Corner (35). A biochemical approach, 

employing. thin-layer chromatography to separate and detect differences 

in fluorescent compounds in Avena, was characterized by Grant and Whet

ter (20). Bell (6) reported chemical differences in Lathryus after 

examining 49 species for ninhydrin reacting compounds. Duvick (17) ex

amined four varieties of maize for free amino acids at various ages of 

development to detect differences in these nitrogenous compounds at the 

sub-species level. 

For this study, several experiments were employed in order to 
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detect chemical differences in the endosperm of peanuts at both the 

species and sub-species level. 

Experiment 1 

38 

Preliminary thin-layer chromatograms for carboxylic acid, amino 

acids, reducing sugars, estrogens, steroids, and phenolics were prepared 

on the endosperms of two cultivated (P-112 and P-161) and one wild (P-

1540) genotypes to determine if chemical differences could be detected. 

Materials and Methods 

Pods were harvested in August from plants grown in pots in a green

house, with a temperature variation of 21 to 29 C. Ovules were removed 

from the pods, washed and grouped into two sizes (0.6 x 0.3 cm and 0.3 

x 0.2 cm). Ovules of the two groups from each genotype were cut in 

half in 400 µ£, of 95% ethanol in a watch glass. The fluid was quickly 

pipetted into\ dram vials. Additional 95% ethanol was added to the 

vials to bring the total liquid volume up to 1.0 ml, and the vials were 

placed in a freezer at 10 C until used. 

Within 24 hours, 75µ£, of each endosperm extract was spotted on 

precoated silica gel 20 x 20 cm glass plates (Brinkman Silplate-22), 

dried, and put in chromatography tanks containing solvents for the spe

cific tests (39). Three plates with endosperm from each genotype and 

size were prepared in one dimension for each test. 

Results and Discussion 

Results of the preliminary chromatograms are reported in Table III. 

Carboxylic acid, estrogens, steroids and phenolics were not detected in 



TABLE Ill 

RESULTS OF PRELIMINARY THIN-LAYER CHRO:t1ATOGRAMS FOR DETECTION OF CHEMICAL DIFFERENCES 

IN PEANUT ENDOSPERM 

Ovule Size Approx. Amount Carboxylic Amino Reducing 
Genotype (cm) Endosperm (µ.Q,) Acid Acids Sugars Estrogens Steroids 

P-112 0.6 x 0.3 25 (-) (+) (+) (-) (-) 

0.3 x 0.2 10 (-) (+) (+) (-) (-) 
--

P-161 0.6 x 0.3 25 (-) (+) (+) (-) (-) 

0.3 x 0.2 10 (-) (+) (+) (-) (-) 

P-1540 0.6 x 0.3 5 (-) (+) (-) (-) (-) 

0.3 x 0.2 5 (-) (+) (-) (-) (-) 

(+)=detected 

(-}=not detected 

Phenolics 

(-) 

(-) 

(-) 

(-) 

(-) 

(-) 

w 

'° 
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any of the genotypes that were examined. Reducing sugars were faintly 

detectable in both cultivated genotypes. However, even though not indi

cated in the table, reducing sugars may have been present in P-1540 but 

the concentrations may have been too small to detect. All the genotypes 

examined showed intense color reactions for amino acids; but no attempt 

was made to identify them. 

Because free amino acids were detected, further analyses, including 

use of an amino acid analyzer (AAA) and thin-layer chromatography (TLC) 

were made. (Experiments 2, and 3-4, respectively). 

Experiment 2 

Materials and Methods 

Two cultivated genotypes (P-112 and P-326) and one wild genotype 

(P-1540) were analyzed for free amino acids by using a Beckman Model 

120C Amino Acid Analyzer. Ovules of P-112 and P-326 were cut in half 

and 30 µQ, of non-cellular endosperm extracted with a 11Zeptrol 11 pipette 

and mixed with 2.0 ml of 70% ethanol in a centrifuge tube. The solu

tions were centrifuged for three minutes and the supernate pipetted in

to 10.0 ml beakers and vacuum dried (10 inches of mercury) at room 

temperature. The same procedure was followed for P-1540, except that 

only half as much endosperm and ethanol was used owing to the small 

quantity of P-1540 ovules. 

The dried P-112 and P-326 samples were then mixed with 2.0 ml of 

lithium citrate buffer (pH 2.1) and 1.0 ml of this mixture was analyzed 

for free amino acids. Only 1.3 ml of the lithium citrate buffer was 

added to the dried P-1540 sample. However, the same quantity as above 

(1.0 ml) was used for the analysis. Thus, since the endosperm samples 
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of the wild and cultivated peanuts were of the same dilutions and the 

same quantity was analyzed, their results would be directly comparable. 

Results and Discussion 

Quantitative and qualitative results from the amino acids analyzer 

are reported in Table IV and Figure 11. P-112 and P-326 were fairly 

similar in regard to the kinds of amino acids present in their endo

sperms. However, some slight differences occurred in the amounts(µ~ 

moles) of amino acids present in these two genotypes. For instance, 

P-112 contained about three times as much asparagine and about ten times 

as much isoleucine as P-326. P-1540 showed some striking differences 

from the cultivated genotypes in amino acids both quantitatively and 

qualitatively (Figure 11). Compare P-1540 with P-112 and P-326. Note 

that valine, methionine, and arginine have large peaks in the two latter 

genotypes, but these amino acids are absent in the former one. P-1540 

crosses successfully when it is used as a female parent in interspecific 

crosses with!· hypogaea. However, when P-1540 is used as the pollen 

parent it will not hybridize with!• hypogaea (See Chapter I). Perhaps 

the absence of valine, methionine, and arginine in the endosperm of 

P-1540 is related to its ability to cross as a female with!· hypogaea. 

Further investigations in this area are warranted. The reason other 

amino acids were not detected in P-1540 may be due to inadequate sample 

size. 

Several unknown amino acids were detected in all genotypes. Al

though the identities of these amino acids are uncertain, it is known 

(because of the standards that were used in calibrating the instrument) 

that these peaks are not: citrulline, half cystine, a-aminoadipic 
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TABLE IV 

QUANTITATIVEa AND QUALITATIVE RESULTS OF FREE AMINO ACIDS 

IN NON-CELLULAR PEANUT ENDOSPERM AS DETECTED BY AN 

AMINO ACID ANALYZER 

Genotypes 
Amino acid P-112 P-326 P-1540 

Asp 0.0210 0.0201 (~':) 

Thr 0.07 30 0.0747 (*) 

Ser 0 .1306 0.0747 0.0050 

Asn 1. 5130 0.5701 0.3570 

Glu (*) (~':) (*) 

Gln 0. 7210 0. 7183 0.0167 

Pro o. 2146 0.1826 (~':) 

Gly 0. 0348 0.0319 (-I:) 

Ala 0.3089 o. 47 42 0.0361 

a-H 2N But 0 .0020 (-) (-) 

Val 0.1413 0 .1146 (-) 

Met 0.0335 0.1117 (-) 

Ile 0.3415 0.0350 0.0059 

Leu 0.0144 0.0188 ("l:) 

Phe 0.0266 0.0081 (*) 

His 0.0136 0.0113 (-) 

Arg 0.0558 0.0845 (-) 

a reported in µmoles 

(-)=amino acid absent 

(-I:) = amino acid present in smal 1 amount or not measurable 
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acid, a-amino-normal-butyric acid, phosphoserine, hydroxyproline, or

nithine, cystathionine, or y-aminobutyric acid. 
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From these results it appears that biochemical differences in free 

amino acids in peanut endosperm occur at the species level. Differences 

may also occur at the sub-species level although these are not quite as 

apparent. 

It is interesting to compare the free amino acids detected in pea

nut endosperm in this experiment with the amino acids that were detected 

in maize endosperm and peanut cotyledons by Duvick (17) and Young (45), re

spectively. Free amino acids detected in the endosperms of peanuts and 

maize and the cotyledons of peanuts were: glutamic acid, aspartic acid, 

alanine, leucine, isoleucine, serine, valine, praline, glycine, aspara

gine, glutamine, histidine, and arginine. Threonine was reported in 

both maize and peanut endosperm but not in peanut cotyledons. Methio

nine, phenylalanine and ammonia were detected in peanut endosperm and 

cotyledons but not in maize endosperm. Lysine, cystine, methylene 

glutamic acid, and methylene glutamine were detected only in peanut 

cotyledons. 

Thus, it appears that the endosperms in some plant species from 

different genera are quite similar in free amino acid composition. 

More differences were apparent in amino acid content between peanut en

dosperm and peanut cotyledons than between the endosperms of maize and 

peanuts. As mentioned above, several amino acids were reported in pea

nut cotyledons by Young (45} that were not detected in peanut endosperm 

in the present study. These differences may be due to the function of 

the two tissues. The cotyledons are constantly building and storing 

proteins while they are utilizing the amino acids in the endosperm. 



45 

Experiment 3 

Further determinations of free amino acids were conducted using 

thin-layer chromatography while looking specifically for the absence of 

valine, methionine, and arginine in some additional genotypes at both 

the species and sub-species level. 

Materials and Methods 

The analyses made on endosperm extracts from the wild and culti

vated genotypes are presented in Table V. Ovules were removed from the 

pods of plants from each genotype and grouped according to size, Endo

sperm was extracted by a microliter syringe which was inserted into the 

chalazal region of the ovules. (No attempt was made to collect the 

same amount of endosperm from each genotype because the thin-layer 

chromatogram is highly sensitive quanitative measure), The extracted 

liquid, non-cellular endosperms were placed in~ dram vials, mixed with 

1.0 ml of 70% ethanol and kept in a freezer at 10 C until they were 

used. 

The procedure used in this experiment was developed by Bujard and 

Mauron (11). The ethanol-endosperm extract (50 µt) was spotted on pre

coated 20 x 20 cm cellulose glass plates (Brinkman Celplate 22), 2.0 µQ. 

at a time using a "Zeptrol" pipette. Valine, methionine, and arginine 

were used as control amino acids prepared in the following manner: 0.003 

grams of each amino acid was dissolved in 3.0 ml of 70% ethanol. Twenty 

five microliters of each amino acid were spotted on a control cellulose 

plate in the same manner as described for the endosperm extracts. 

After the plates were spotted, they were placed in chromatography 

tanks previously saturated with the solvent vapors. The solvent systems 
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TABLE V 

DIVERSE GENOTYPES USED FOR TLC DETECTION OF FREE AMINO ACIDS 

Genotype Ovule Size (cm) Approx. Amount Endosperm (µR,) 

P-112 0.6 x 0.3 50 

P-161 0.6 x o. 3 35 

P-326 0.7 x 0.3 45 

P-935 0.6 x 0.3 100 

P-936 0.8 x 0.3 35 

P-1284 0.6 x 0.3 35 

P-1286 0.4 x 0.3 35 

P-2395 0.7 x 0.3 25 

P-1562 0.7 x 0.2 30 

P-1563 0.5 x 0.2 30 

P-1540 0.7 x 0.3 30 
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used were: 

FIRST DIMENSION---Methanol-Chloroform-17% Ammonium hydroxide (2:2:1) 

SECOND DIMENSION--Methanol-Water-Pyridine (20:5:1) 

The plates were removed after the solvent had reached a height of 15-~7 

cm (approximately 240 minutes) and allowed to air dry at room tempera

ture. The plates were placed in the second dimensional solvent until 

the solvent had reached the edge of the plates (approximately 100 min

utes). The plates were then removed from the tanks and allowed to air 

dry at room temperature. After they had dried, they were sprayed with 

0.1% ninhydrin and heated in an oven at 100 C for 15 minutes to develop 

the amino acid spots. Many of the amino acids produced specific colors 

which permitted easy identification. The amino acids were identified 

according to the procedure of Bujard et al. (11). The spots were out

lined in ink for easier differentiation of the amino acids. 

Results and Discussion 

The amino acids that were detected in the peanut endosperms of the 

various genotypes examined are reported in Table VI. Figures 12a and 

12b are photographs of the chromatograms showing the amino acid separa

tions for the eleven divergent genotypes. The results of the chroma

tograms confirmed that valine, methionine, and arginine were absent in 

the endosperm of P-1540 as had been indicated by the AAA. P-1540 was 

the only genotype which showed a spot thought to be homoarginine. Homo

arginine is a naturally occurring guanidino amino acid which is present 

in the seeds of many legumes (6). The AAA did not analyze for this non

protein amino acid because the samples were inadvertently removed from 

the analyzer before this material was due to be detected. Additional 



TABLE VI 

FREE AMINO ACIDS FROM NON-CELLULAR PEANUT ENDOSPERM AS DETECTED BY TLC 

Genot:y:12es 
Cultivated Wild 

A . "da m1no ac1 P-112 P-161 · · P-326 P-935 P-936 P-1284 P-1286 P-2395 P-1540 P-1562 P-1563 

Arginine (+) (+) (+) (+) (+) (+) (+) (+) (-) (+) (+) 

Methionine (+) (+) (+) (+) (+) (+) (+) (+) (-) (+) (+) 

Valine (+) (+) (+) (+) (+) (+) (+) (+) (-) (+) (+) 

1 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

2 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

3 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

4 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

5 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

6 (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 

7 (+) (+) (+) (+) (+) (+) (+) (+) {+) (+) (-) 

a· (+) (-) (-) (-) (-) (-) (-) (-) (+) (-) (-) 

9 (-) (-) (-) (-) (-) (-) (-) (-) (+) (-) {-) 

a 1 = histidine 6 = tryptophan 
2 = serine, glycine, and glutamine 7 = proline 
3 = aspartic acid 8 = leucine and isoleucine 
4 = glutamic acid 9 = homoarginine 
5 = alanine and threonine 

+'" ao 
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samples should be tested to positively establish the absence or pres

ence of homoarginine in various peanut endosperms. 
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Based on the results of the thin-layer chromatograms, P-112 was the 

only genotype with endosperm containing leucine and isoleucine. How

ever, the results from the AAA showed the presence of these two amino 

acids in P-326. Of the two methods used (TLC and AAA) the amino acid 

analyzer is probably more reliable because of its greater sensitivity 

to amino acids (concentration below 0.002 µmoles). Therefore, it is 

suggested that leucine and isoleucine may be present in the other geno

types. 

Experiment 4 

The previous thin-layer chromatograms were obtained by spotting an 

aliquot of endosperm from several ovules (four to twelve depending on 

size) of each genotype. A more useful method would be to use endosperm 

from single ovules for each chromatogram so that the production of 

various amino acids could be followed in sequence throughout the de

velopment of the endosperm. This experiment was conducted to determine 

if a single ovule might be used to obtain chromatograms of the amino 

acids present in peanut endosperm. 

Materials and Methods 

The endosperm contents (7 µSI:) from one ovule (0.6 x 0.3 cm) of 

P-112, that had been mixed with 21 µ£ of 70% ethanol, was spotted on a 

cellulose plate and processed as previously described. Prior to spray

ing with ninhydrin, the plate was examined in a UV "Chromato-Vue" 

(fluorescent chamber) to detect fluorescent spots. 
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Results and Discussion 

The chromatogram (Figure 13) shows the presence of all amino acids 

that had been previously identified by TLC methods for P-112. In fact, 

the plate was slightly overloaded (i.e. excess amounts of amino acids 

resulted in the spots running together). The wavy circles shown in 

Figure 13 indicate fluorescent spots which were noted when the plate 

was exposed to UV light prior to spraying with ninhydrin. The identity 

of these spots is not known and no attempts were made to identify them 

for this study. However, these spots may offer another approach to de

tecting biochemical differences. From this test it appears that single 

ovules do produce sufficient amounts of amino acids in their endosperms 

to be detected by TLC. Employment of this technique may be invaluable 

for determining the importance of certain amino acids in the nutritional 

aspects of embryo development. 

Summary 

Preliminary TLC studies produced evidence that free amino acids are 

abundant in the non-cellular endosperm of peanuts. Experiments involv

ing identification of the amino acids with an amino acid analyzer re

vealed the absence of valine, methionine, and arginine in the endosperm 

of one wild species (P-1540). Single ovules were found to contain suf

ficient endosperm to allow for amino acid separation and identification 

on thin-layer cellulose plates. 
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CHAPTER VIII 

A COMPARATIVE STUDY OF THE BIREFRINGENCE END-POINT 

TEMPERATURES OF THE NON-CELLULAR ENDOSPERM FROM 

SEVERAL GENOTYPES OF PEANUTS 

(ARACHIS HYPOGAEA L.) 

Introduction 

It was reported in Chapter III that starch granules are conspicuous 

constituents of peanut endosperm. Subsequently, x-ray diffraction, 

Chapter IV, and starch distribution studies, Chapter VI, and the follow

ing experiment were initiated to determine whether or not genetically 

diverse peanut genotypes might possess different kinds of starch gran

ules. 

Badenhuizen (2) reported that in plant taxa, the shape, average 

size, strength, and crystalline patterns of starch granules are in

fluenced by different genes. Other investigators have also reported 

genetic control of starch properties in plants (10, 28, 31). Brown, 

Creech, and Johnson (10), after examining some mutants of maize, pre

sented evidence based on x-ray diffraction and birefringence end-point 

temperature (BEPT) data, that showed that the physical structure of the 

starch granules in the developing endosperms was under genetic control. 

Several methods have been described for ascertaining BEPTs (16, 18, 

36). All of these, however, rely on the same principle; when a sus

pension of starch granules is heated, the granules swell, burst, and 
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lose their anisotropy or birefringence (called the gelatinization 

point by some authors). This phenomenon is easily detected by examin

ing the starch granules microscopically under polarized light as they 

are heated and observing the disappearance of the "Nichols cross" (10). 

The technique used in this study was similar to that described by Schoch 

and Maywald (36). 

Materials and Methods 

Eight genotypes of peanuts, chosen because of their distinctive 

plant, fruit, and seed phenotypes, were used in this study. They were: 

P-112, P-161, P-326, P-935, P-936, P-1284, P-1286, and P-2395. Several 

pods from two plants of each genotype, collected at various stages of ma

turity,were taken to the laboratory and washed in tap water. The basal 

ovules were removed from the pods and grouped by size into three clas

ses, (1) young (0.3 x 0.15 cm), (2) intermediate (0.6 x 0.3 cm), and 

(3) old (0.8 x 0.4 cm). These sizes correspond fairly closely, accord

ing to other studies, to 14, 21, and 28 day old ovules (after pollina

tion). Endosperm starch from each ovule was obtained by cutting the 

fresh ovule in half with a razor blade on a clean microscope slide and 

allowing the liquid endosperm to flow onto the surface. The approximate 

amounts of endosperm used were 2, 6, and lOµt for the young, inter

mediate, and old ages, respectively. The starch granules were not iso

lated from the endosperm, but were used in their natural fluids (except 

for the salt treatment below)~ A salt treatment was applied to one 

group of the age 3 ovules by adding one drop (approximately 30 µt) of 1 

M Ca(N03) 2 to the endosperm on the slide. This salt treatment was used 

because Pfahler et al. (31) had shown that the starches from some maize 
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genotypes could be further differentiated by this procedure. The endo

spenn on the slide was ringed with a high viscosity mineral oil and a 

cover glass was placed on it such that the starch suspension was com

pletely surrounded by the oil without the presence of air bubbles. The 

slide was immediately (except in the case of the salt treatment where 

observations were delayed for five minutes) placed on a microscope 

equipped with a Kofler hot stage and polarizing filters. The rate of 

temperature increase of the hot staJ~e was about 2 C per minute (trans

fonner set at 23 volts). Each of the microscopic fields (x312) con

tained several hundred starch granules. The temperature was recorded 

when the first three to four granules lost their birefringence (initial 

BEPT). The final BEPT was recorded when all but two or three granules 

showed this character. Two samples--each sample consisting of one 

ovule--were examined for two plants of each genotype for each age and 

treatment (salt vs. no salt). 

Results and Discussion 

The results are presented graphically in Figures 14 and 15. Fig

ure 14 shows the initial BEPT of the starches from the various peanut 

genotypes by age and treatment. At age 1, P-161 had the lowest BEPT and 

P-1286 had the highest. Note that the BEPT of all genotypes was lower 

for age 2 than for age 1 except for P-161 and P-1286 where the .reverse 

was true or P-935 where essentially no change occurred. At age 3, P~ · 

112 alone, showed a distinct increase in. BEPT while the other genotypes 

either decreased or remained essentially the same. P-326 showed a de

crease in BEPT as the endosperm matured but P-935 showed about the same 

BEPT at all ages. 
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Figure 15 shows the final BEPTs. P-112, P-326, P-935, and P-2395 

showed a decrease in BEPT from the young to the intermediate age. The 

other genotypes showed increases in BEPT at these ages. P-326 and P-

1286 showed significantly higher final BEPTs for all ages (without salt) 

than did the other genotypes. The latter had final BEPTs below 75 C. 

Note the contrast of P-161 with P-112 BEPTs as their endosperms of dif

ferent ages were tested. The former showed an increasing then decreas

ing BEPT with age, while in the latter the reverse trend was apparent. 

P-935 and P-2395 reacted similarily to P-112 but at slightly lower tem

peratures. 

The salt treatment depressed both initial and final BEPTs of all 

genotypes except for P-936 where little effect was noted in the initial 

BEPT. 

Two methods, Duncan's Multiple Range Test and the Neuman-Keul Test 

(42) were employed to determine whether or not the results obtained 

were statistically significant from each other. The latter test is 

easier and faster to compute than the former and it tends to be more 

conservative. Tables VII, VIII, and IX show the results of the sta

tistical analyses for initial, final, and the final minus initial 

BEPTs, respectively. Many comparisons are possible with these data, 

however, some significant conclusions are as follows: 

1. The starch granules of P-326 and P-1286, although they are not 

distinct from each other (except for initial BEPT at age 2, based on 

Duncan's Test), are obviously different from several of the other geno

types examined with respect to both their initial and final BEPTs at 

ages 1 and 2. It is interesting that these two are the most distinct 

genotypes used in this study in regard to their overall plant 
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TABLE VII 

MEAN INITIAL BIREFRINGENCE END-POINT TEMPERATURES (BEPT) OF 

PEANUT ENDOSPERM STARCH FROM EIGHT GENOTYPES AT THREE 

AGES AND ONE SALT TREATMENT 

Initial BEPTa 

Endos12erm 
b 

and 
c 

age treatment 
Genotype 1 2 3 4 

QR RSTUV RSTU YZ 
P-112 64. 7 5 pqrs 62.63 pqrstu 63. 25 pqrstu 57.88 stu 

UVWXYZ RSTUV UVWXYZ z 
P-161 60.38 Stu 62.50 pqrstu 59.88 stu 57.63 u 

PQ QRS RSTUVWX XYZ 
P-326 67.63 pqr 64.63 pqrst 61. 50 rstu 58.38 stu. 

TUVWXYZ UVWXYZ UVWXYZ z 
P-935 60. 7 5 rstu 60.63 stu 60.13 stu 57.50 u 

TUVWXY VWXYZ WXYZ VWXYZ 
P-936 61.25 rstu 59.38 stu 58. 7 5 stu 59.25 stu 

STUVWX UVWXYZ VWXYZ z 
P-1284 61.38 rstu 60.13 stu 59. 7 5 stu 57.75 tu 

p p RST XYZ 
P-1286 68. 50 pq 69. 25 p 64.13 pqrstu 58.50 stu 

RSTUVW TUVWXYZ TUVWXYZ z 
P-2395 62. 00 qrstu 60.88 rstu 60.88 rstu 57.63 u 

ain centigrade. Means not followed by a connnon letter are significantly 
different at .05 according to the Duncan Multiple Range Test (capital 
letters) and the Neuman-Keul Test (small letters). 

b 
1 = young, 2 = intermediate, 3 = old (approximately 14, 21, and 28 
days after pollination, respectively). 

c 4 = age 3 + 1 M Ca(N0 3) 2• 
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TABLE VIII 

MEAN FINAL BIREFRINGENCE END-POINT TEMPERATURES (BEPT) OF 

PEANUT ENDOSPERM STARCH FROM EIGHT GENOTYPES AT THREE 

AGES AND ONE SALT TREATMENT 

Final BEPTa 

Endoseerm 
b 

and 
c 

age treatment 

Genotype 1 2 3 4 

QR STU STUVW RSTUV vw 
P-112 74. 50 pqrstu 70.38 pqrstu n.oo pqrstu 66.00 stu 

uvw RSTUV TUVW vw 
P-161 67.63 stu 72.00 pqrstu 69. 50 pqrst 65.38 tu 

PQ PQRS PQRST vw 
P-326 80.75 pqr 77. 38 pqrst 76.50 pqrst 64.88 tu 

STUVW uvw STUVW w 
P-935 70.38 pqrstu 69.00 qrstu 70.88 pqrstu 64.00 u 

RSTUV RSTUV TUVW /vw 
P-936 71.50 pqrstu 72.00 pqrstu 69.63 p qrstu 66.63 stu 

RSTUV RSTUV RSTUV vw 
P-1284 71.88 pqrstu 72.25 pqrstu 71.88 p qrstu 65.00 tu 

PQR p p TUVW 
P-1286 78.50 pqrs 82.63 p 82.13 pq 69.50 pqr 

stu 

TUVW uvw RSTUV w 
P-2395 69.13 qrstu 68.13 rstu 71. 7 5 p qr st u 64.00 u 

ain centigrade •. Means not followed by a connnon letter are significantly 
different at .05 according to the Duncan Multiple Range Test (capital 
letters) and the Neuman-Keul Test (small letters). 

b 1 = young, 2 = intermediate, 3 = old (approximately 14, 21, and 28 
days after pollination, respectively). 
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TABLE IX 

MEAN FINAL MINUS INITIAL BIREFRINGENCE END-POINT TEMPERATURES 

(BEPT) OF PEANUT ENDOSPERM STARCH FROM EIGHT GENOTYPES 

AT THREE AGES AND ONE SALT TREATMENT 

Final minu.s Initial BEPTa 
b c 

Endosperm age and treatment 

Genotype 1 2 3 4 

P-112 

P-161 

P-326 

P-935 

P-936 

P-1284 

P-1286 

P-2395 

QRS 
9. 7 5 pq 

RS 
7. 25 pq 

PQR 
13.13 pq 

QRS 
9. 63 pq 

QRS 
10. 25 pq 

QRS 
10. 50 pq 

QRS 
10.00 p 

RS 
7.13 pq 

RS 
7. 7 5 pq 

QRS 
9. 50 pq 

PQRS 
12. 75 pq 

RS 
8.38 pq 

PQRS 
12.63pq 

PQRS 
12.13 pq 

PQR 
13.38 pq 

RS 
7.25 q 

QRS 
8. 75 pq 

QRS 
9. 63 p q 

PQ 
15.00 pq 

QRS 
10.75pq 

QRS 
10. 88 p q 

PQRS 
11.13 pq 

Q 
18.00 pq 

QRS 
10.88 pq 

RS 
8.13 pq 

RS 
7. 7 5 pq 

s 
6. 50 pq 

s 
6. 50 pq 

RS 
7.38. pq 

RS 
7. 25 p q 

QRS 
11.00 pq 

s 
6. 38 pq 

ain centigrade. Means not followed by a common letter are significantly 
different at .05 according to the Duncan Multiple Range Test (capital 
letters) and the Neuman-Keul Test (small letters). 

b 1 = young, 2 = intermediate, 3 = old (approximately 14, 21, and 28 
days after pollination, respectively). 

c 4 = age 3 + 1 M Ca(N0 3) 2• 
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phenotypes. (See Table I). 

2. The greatest differentiation of genotypes by initial and final 

BEPTs occurred at ages 1 and 2, according to both statistical tests. 

3. Final minus initial BEPTs were ineffective in distinguishing 

between genotypes within ages. 

Brown et al. ( 10) found the greatest differentiation of maize geno-

types by starch granule BEPTs occurred at the older ages (24 days after 

pollination). However, in the tests reported here differences were 

found in peanuts at the earlier ages. These variances may be due to the 

differences in the physiological changes that take place in the starch 

granules of these two diverse taxa. Starch in maize endospenn is ac-

cumulated as a food material to be used later by the germinating and 

developing seedling; whereas in peanuts, the endosperm is of short du-

ration and is essentially absent in the mature seed. Hence, a more 

logical comparison might be starch from maize endospenn versus starch 

from peanut cotyledons. 

The significance that starch granule structure may have on biolog-

ical behavior or adaptation in various plant species is unknown. How-

ever, it does appear that some peanut genotypes differ with ~espect to 

their starch granule structure and these differences are probably under 

genetic control. 
j 

A study of hybrids made between some of the genotypes 

tested might help elucidate the genetics involved. 

Summary 

Initial and final birefringence end-point temperatures (BEPTs) 

were determined for the starch granules of the non-cellular endosperm 

from ovules at three stages of development from diverse peanut 



63 

genotypes. The results indicated that P-326 and P-1286 possess starch 

granules that are different from the other genotypes studied. The 

greatest differentiation was noted at ages 1 and 2 (approximately 14 

and 21 days after pollination) for both initial and final BEPTs. The 

differences that were detected are assumed to be genetically con

trolled. 



CHAPTER IX 

SUMMARY 

A better understanding of the factors controlling normal endosperm 

development and the possible detection of genetically controlled differ

ences between endosperms of several diverse peanut genotypes were the 

main objectives of this study. Two sections were devoted to these ob

jectives: 

Section 1 Endosperm Morphology 

Anatomical observations were made on ovaries, pegs, and ovules of 

interspecific hybrids (made reciprocally) and hand pollinated selfs in 

an effort to study embryo and endosperm development. The endosperm 

was found to be present as a single layer of cells between the seed 

coat and cotyledons of mature peanut seeds. These findings contradict 

previous reports (12, 32). Hybrid endosperms and embryos of crosses 

between!· hypogaea (P-112) and!·~· (P-1540) were found to be re

tarded when compared to the endosperms and embryos from developing 

selfs. Hyperplastic activity of the endothelium was observed in abort

ing ovules of the cultivated x wild crosses where the former was the 

female parent. The exact causes of embryo abortion and resultant seed 

failure were not detected from these studies. 

Section 2 Endosperm Composition 

Several studies were conducted in an effort to identify various 

n4 
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components of the peanut endosperm and possibly to detect genetically 

controlled differences between endosperm of several divergent geno-

types. Starch was found to be a conspicuous component of the endo-

sperm. P-326 and P-1286, as revealed by BEPT, appeared to have starch 

granules which differed greatly from the other genotypes examined. 

Variations in starch granule size by genotype were observed in a size 

distribution study of endosperm starches at several stages of develop-

ment. The x-ray diffraction studies of endosperm starch and the fluo-

rometric measurements of lipolytic activity in the endosperm were un-

successful techniques for detecting differences between endosperms of 

several peanut genotypes. Biochemical differences between two species 

of Arachis were detected by amino acid analyses. Non-cellular endo-

sperm of P-1540 was found to be devoid of valine, methionine, and ar-

ginine. These results suggest that differences in the chemical compo-

sition of developing endosperms may be of considerable importance in 

the reproductive behavior of various peanut taxa. 
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