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PREFACE 

This report is part of a continuing effort to develop mathematical 

models of fluid power components, which are particularly suitable for 

system simulation. Component models as developed by classical tech­

niques depend on design features to such an extent that it is difficult 

to establish a general method for their simplification. It was recog­

nized that an entirely new approach to component modeling was necessary 

for developing component models. Valves were selected as the class of 

components for consideration as previous modeling work indicated that 

they contributed largely to the complexity of system equations. The 

multi-port concept, referred to in this study, is not entirely new; 

however, its use has been largely restricted to linear systems, where 

transmission matrices can be formulated. With the development of multi­

input multi-output models for non-linear components, it is expected that 

th~ modeling of systems along similar lines will become practicable. 
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CHAPTER I 

INTRODUCTION 

Advances in computational techniques during the past few years have 

given great impetus to the development and usage of mathematical models 

of dynamic systems. In their application to fluid power systems, how­

ever, emphasis has been more on the computational aspects and less on 

the non-mathematical areas of modeling. The conceptualizing of an ideal 

model from a study of the physical system, the process of deciding the 

degree of 'lumping' (combining elements) to be used and the evaluation 

of the model itself are examples of non-mathematical decision-making 

which cannot be ignored by the system designer. 

Faced with the task of exercising judgment in these areas, the ten­

dency is to develop as elaborate a model as possible with the hope 

firstly that it will be accurate and secondly that it will be amenable 

to simplification. The accuracy of complex models is difficult to as­

certain if physical measurements pertain to only a few of the variables, 

and the process of simplification depends to a large extent on the model 

itself, especially for non-linear systems. An inspection of the model­

ing technique can, however, lead to the development of simple low order 

models more useful for a variety of purposes than more complex ones. 

Such low order models of components are particularly useful if they can 

be interfaced with other models for the synthesis of large systems. 
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Although there are a number of unifying concepts in systems anal­

ysis which form the basis for all dynamic modeling, there are a few 

problems which have stood in the way of the development of component 

models for fluid power systems. The first problem was that of 'lumping' 

since fluid power systems are inherently distributed-parameter in nature 

and the accuracy of the model dictates the degree of 'lumping' neces­

sary. The second was that of isolating a component from the rest of the 

system. Because of these difficulties, models were more likely to be 

developed for systems rather than components. 

The electro-hydraulic servo-mechanism was one of the first fluid 

power devices subjected to dynamic analysis (1) (2). Linear analysis 

was used as it offered the strong incentives of working in the frequency 

domain and using classical techniques for compensation, feedback, and 

stability analysis. The servo-valve, in particular was studied fairly 

exhaustively as it was the heart of the power-amplification stage (1) 

(2) (3). However, the analysis of such a component was carried out only 

after including a certain load and assuming certain upstream conditions. 

The results of analysis were not so much the response of the servo-valve 

as that of the system as a whole. While their usefulness cannot be 

questioned, to describe them as being characteristic of the servo-valve 

is somewhat misleading. 

The concept of a system as being made up of components is useful in 

all areas of systems analysis. The modeling of components permits the 

synthesizing of system models without having to formulate a complex set 

of equations for the whole system. Component models, if they are gen­

eral enough, can be interfaced with any other model and this gives the 

designer the advantage of checking alternative designs with minimum 



effort. As control elements, valves are used in almost every fluid 

power circuit and the usefulness of developing their models is obvious. 

The application of the classical modeling technique for writing 

component models requires the following steps: 

(1) Isolate the component from the rest of the system and 

decide which quantities are to be treated as inputs, 

outputs, and disturbances. 

(2) Idealize and lump all elements involved and applying 

the laws of mechanics and other sciences where necessary, 

formulate mathematical relationships between variables 

and parameters. 

(J) Impose the inputs to the model so that its behavior may 

be studied. 

Since all valves perform the necessary control function by varying 

the area of one or more control orifices, the analysis from a classical 

standpoint involves the following tasks: 

( 1) Identifying flow paths in the valve and writing flow and 

continuity equations. 

(2) Identifying forces on reaction elements and writing 

force balance equations. 

(3) Identifying constraints on displacements and velocities 

imposed by geometrical features in the valve. 

J 

Performing these tasks leads, generally, to a set of coupled 

algebraic-cum-differential equations in which some state-variables are 

subject to constraints. Either analog or digital methods may be used 

for solving the equations. As will be shown in Chapter II, this approach, 

referred to as the 11classical 11 method, has the following disadvantages: 



(1) A large number of parameters are involved, and detailed 

working drawings of the component are necessary for proper 

evaluation. The effect of changes in parameters is not 

always obvious. 

(2) Interfacing such a model with other component models is 

not straightforward. This is especially so, if the 

assumptions made in developing one model are incompatible 

with those for another. 

(3) Identification of parameters can take excessive computer 

time if digital simulation is being used. The presence 

of non-linearities in the model often leads to problems 

in convergence to the correct values. 

(4) Few of the state-variables in the model are amenable to 

measurement; each unknown state-variable contributes an 

unknown "parameter" in the form of an initial condition. 

The purpose of this thesis is to present a new approach to the 

modeling of fluid power components. This approach, referred to in the 

paper as the 11 gre.y-box11 approach, utilizes the multi-port concept of 

the development of general time domain models. Though the method of 

analysis is general, the development of models is illustrated for valves 

having a metering element under the action of a number of forces depen­

dent on upstream and downstream pressures and flow. This includes 

valves which are self-regulatory in nature, as distinct from directional 

control or switching valves. Examples of self-regulatory valves are 

pressure relief valves, pressure reducing valves, and flow control 

valves. The models are developed using the multi-port concept by iso­

lating the component and considering only the 1 through 1 and 'across' 
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variables that are amenable to measurement. The form of the models 

proposed is such that geometrical details of valves are unnecessary, 

though they could be used to improve the models. The parameters in­

volved are few in number and can be identified from static and dynamic 

tests. To the extent that the models are not relatable to design fea­

tures, fluid properties,and other parameters of a classical model, they 

are empirical. Furthermore, since they are presented as being suitable 

for an entire class of valves rather than a particular one, they are 

general models. 

The next chapter presents a survey of the classical modeling tech­

nique and an example model development has been included in Appendix A. 

Chapter III presents an equivalent orifice representation for valves to 

permit the utilization of the multi-port concept. It also includes the 

development of the new modeling approach and illustrates its applica­

bility by the formulation of relief valve models. The results of a 

comprehensive experimental effort are discussed in Chapter IV, while the 

general conclusions and recommendations are presented in Chapter V. 

Appendix B contains a discussion relative to the orifice-equation, and 

Appendix C describes the problems associated with flow measurements for 

dynamic tests. 



CHAPTER II 

A REVIEW OF THE CLASSICAL MODELING TECHNIQUE 

Though the modeling of fluid power systems is not new it is only 

recently that the process has been systematized to a degree that an 

analyst can use a standard procedure and be reasonably sure that no 

important physical phenomena have been overlooked. One such procedure 

is given in the Hydraulic Component Modeling Manual of the Basic Fluid 

Power Research Program (4). The modeling manual helps to describe the 

system in rigorous mathematical terminology. Once the model is des­

cribed, the next step involves simplifying the mathematical expressions 

to a form suitable for machine computation or, if necessary, hand compu­

tation. The final step is to determine the behavior of the model when 

it is subjected to the inputs under consideration. 

Some of the early work in the area of modeling of components was 

done prior to the general acceptance of time-domain analysis for the 

type of systems under consideration (1) (5) (6) (7). Emphasis was on 

linearization so that transfer functions could be written and frequency­

domain analysis techniques used. One of the first studies was by Foster 

(5) who analyzed a two-stage relief valve. System equations were writ­

ten in the usual manner but subsequently linearized about a steady-state 

operating condition. Analog simulation was accomplished using a step 

change in flow as the input. As many as 17 parameters were involved -

most of them geometrical in nature. A reduction to nine parameters using 
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linearization techniques was necessary before simulation could be per­

formed. Upstream pressure was the only variable recorded and compared 

against the model, which in the simplified version consisted of two 

coupled fourth-order differential equations. The model was so inade­

quate that it could not predict the occurrence of sustained oscillations 

under certain operating conditions. It was conjectured that the oscil­

lations were due to pump ripple which had been ignored in formulating 

the input. In the words of the authors, 11The study presented can only 

be qualitative because of the large amount of guessing in the estimation 

of coefficients and in the amount of deduction used in analyzing the 

experimental results" (5, p. 215). A similar analysis is presented by 

Wolf (6) and Mrazek (8) gives a fifth-order model but no details regard­

ing simulation or parameter identification. 

Ma (7) presents an analysis for a single-stage pressure reducing 

valve. In this, apart from making all hydraulic resistances linear, the 

supply pressure is considered constant - an assumption not always justi­

fiable. Transfer functions and block diagrams are presented to charac­

terize the valve model. The incremental outflow and the spring preload 

were used as inputs and the controlled pressure was the output. 

Although the model is satisfactory for small perturbations, its validity 

for large inputs id doubtful. No less than 12 parameters were involved 

although the valve had only one moving element. The linearized model 

included six parameters which needed identification from experimental 

data. 

It is, thus, seen that linear analysis while being a good beginning 

leaves much to be desired. Stability analysis using linearized equa­

tions in particular, is vulnerable to serious errors and the process of 



obtaining the static characteristics by setting all time derivatives to 

zero in such dynamic models may disguise the fact that the valve never 

reaches the steady state, due to the presence of non-linearities. 

Linear analysis also does not offer any special advantages for inter­

facing with other circuit components, e~cept for single-input, single­

output models. 

8 

The realization of the advantages of the classical time-domain 

analysis method and especially the adaptability of digital simulation to 

solving a set of coupled first-order differential equations laid the 

groundwork for non-linear analysis. The relative ease of setting up a 

dynamic model for systems and components is illustrated by Unruh (9). 

This formulation is one of the reasons for the widespread acceptance of 

system modeling (10) (11) (12) (13). 

In the context of the present work, all attempts at component mod­

eling (5) (8) (10) (7) have the following features: 

(1) The component under study is not isolated from the rest 

of the system; i.e., the dynamic response portrayed is 

that of a valve in a particular system. Certain upstream 

and downstream charadteristics (usually capacitances) are 

included as part of the model, sometimes explicitly, more 

often implicitly. 

(2) The model is not the most general form in that certain 

inputs are ignored; e.g., downstream pressures are assumed 

constant for relief valves and upstream pressures are held 

constant for pressure reducing valves. 

(J) A large number of parameters are involved (typically geo­

metrical dimensions of moving parts, orifices, clearances, 



and fluid properties) not all of which are amenable to 

direct measurement. The significance and relative 

importance of these parameters are not always obvious. 

(4) A large number of coupled differential equations are 

needed to describe the system. Each moving element 

requires two first-order equations to characterize its 

dynamics, and continuity equations are generally of the 

first order when compressibility effects are considered. 

Long transmission lines may require the use of distrib­

uted parameter models (14). 

9 

Though digital simulation using the classical technique has gained 

wide acceptance, its drawbacks have not been overlooked. Computation 

time and effort have sometimes been large enough to induce the system 

analyst to look for a means of simplifying the model. Because of the 

presence of non-linearities it is not possible to segregate the system 

into fast-response and slow-response components. The presence of high 

frequency oscillations in certain state-variables has necessitated the 

selection of step sizes even as small as ten micro-seconds so that 

numerical integration routines would not go unstable. Simplification of 

the model to one of lower order or the formulation of approximate alge­

braic models could not proceed without an initial 'exact' analysis for 

comparison (11). Thus, for each design of a valve one had to develop 

the classical model before attempting to simplify it to a form where it 

could be conveniently interfaced with other circuit components. 

Appendix A presents the digital simulation of a two-stage relief 

valve by the classical method. Both static and dynamic characteristics 

are included. The conclusions which can be drawn from this classical 



model are typical of any simulation using the same method, and can be 

summarized as follows: 

(1) The dynamic model is a set of coupled differential-cum­

algebraic equations and even if the only quantities of 

interest are the input and outputs, all the intermediate 

variables must be obtained. 

(2) The significance of various physical parameters is not 

apparent. Repeated solutions would have to be performed 

changing one parameter at a time to evaluate their 

affect on performance. 

(3) The static model is a set of non-linear equations, and 

neither pressure differential nor flow can be expressed 

explicitly in terms of the other. The solution of such 

equations requires iterative techniques. 

(4) Computational time is prohibitively large, especially 

for dynamic simulation. 

It must be emphasized, however, that classical models of varying 

degree of complexity can be developed by the exercise of suitable 

judgment on the part of the designer. In the context of this work, 

'classical' refers to lumped-parameter models which would be obtained 

by following the analysis procedure detailed in reference (4). 

10 



CHAPTER III 

DEVELOPMENT OF THE NEW MODELING APPROACH 

General Considerations 

The detracting features of the classical modeling technique sum­

marized at the end of Chapter II and the absence of any established pro­

cedure for simplifying the models are enough incentive to review the 

philosophy underlying the procedure. It is noted that no attempt has 

been made to differentiate component modeling from system modeling. It 

can be argued that every component can be considered as a system in 

itself and there is no need to establish a distinction. Nevertheless 

there are some features,which when recognized early enough in the model­

ing proces~ yield valuable insight into the nature of problems confront­

ing the development of component models. Some of these features are 

worthy of review. 

In simulating a system, the inputs are usually obvious. For 

electro-hydraulic and hydraulic systems, electrical and mechanical 

inputs are the most common. These inputs are usually of a low power 

level and the output impedance on the actuator is small so that inputs 

of a special kind (e.g., step, ramp, or sinusoidal) can be readily im­

posed. Although these inputs are particularly convenient for linear 

analysis, their amenability to mathematical description makes them use­

ful for more general analysis, using digital simulation. The choice of 

inputs, for components, is more complex. The process of isolating the 

11 
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components from the rest of the system leaves it with two or more energy 

ports, each of which introduces a through variable and an across vari­

able for analysis. One of the variables has to be considered an input 

and for some ports the selection cannot be established on a cause-effect 

relationship. Thus, for valves with an internal feedback path either 

the pressure differential or flow may be treated as the input. The 

mathematical relations used for analysis make no distinction in the 

selection as long as a one-to-one correspondence exists between the 

variables. 

The arbitrary selection of the input for an isolated model is also 

indicated by the fact that in experimental work the human or electrical 

input for dynamic testing is one imposed on the test system which, in 

turn, changes the through and across variables for the test component. 

The system characteristics (e.g., upstream capacitance, line resistance, 

etc.) influence the changes in flow and pressure so that it is difficult 

to impose arbitrary inputs on the component. 

Another consequence of isolating the component is that models have 

to be formulated as for multi-input systems. Thus, analyses in which 

constant upstream or downstream pressures are assumed lack generality 

and are of limited use. Even though a particular system may warrant 

such assumptions a general analysis should not ignore any inputs. 

Component models, if they are to be useful for system synthesis, 

must be such that the performance of the valve can be readily deduced 

from the model parameters. Comparison of alternative designs is easy if 

the same form of model is used for all designs. Using the classical 

technique for modeling gives a unique model for each design and 



13 

comparison of designs can be made only after simulation under identical 

circumstances. 

Any approach to the development of valve models can be considered 

promising if it includes the following considerations: 

(1) Models should be general for the type of valves under 

consideration. Thus, all valves which a system designer 

would consider interchangeable should have the same form 

of model irrespective of individual differences in design. 

(2) A minimum number of parameters must be involved. Hence, 

geometric parameters like spring rates, clearances, etc., 

which are design-dependent should be avoided. 

(3) All valves of the same class must have the same inputs. 

This greatly facilitates interfacing with other system 

components. 

(4) The models should permit refinement and the more accurate 

models should still use the parameters contained in ini­

tial forms of the model. 

The idealistic black-box approach to modeling does have some of the 

above features. The primary objective of such an approach is to formu­

late relationships between the inputs and the outputs based entirely on 

experimental data. Since the component is treated as a black-box, 

details of internal construction do not influence the formulation of the 

model, nor is it possible to incorporate any variables, internal to the 

component, in the model. Since any number of dynamic relationships can 

be made to yield almost identical responses to a given input, the model 

needs to be validated by imposing different inputs and comparing pre­

dicted and actual responses. The variety of inputs that can, thus, be 



imposed is theoretically infinite, and as a consequence, judgment has to 

be exercised in selecting the appropriate inputs for verification. 

Such black-box models, however, lack generality in that they have 

been developed with the objective of describing a specific valve. The 

grey-box approach proposed here, on the other hand, attempts to formu­

late general models for a given class of valves irrespective of design 

differences. Even though details of construction of the valves are not 

considered, the basic mechanicsm of action is used to develop the rela­

tionships between the inputs and the outputs. Thus, the incorporation 

of the fundamental mechanism insures the generality of the models. The 

parameters in the model have, in general, unknown functional relation­

ships to the geometrical constants, fluid properties, and other quanti­

ties which would be present in a classical model. The grey-box approach 

does not attempt to establish these relationships. It, however, does 

make parameters in the models meaningful to the system designer. 

Emphasis in this discussion has so far centered on dynamic per­

formance. Nevertheless, static characteristics are also useful to the 

system designer. For self-regulatory valves these characteristics are 

flow-pressure relationships. It is shown in Appendix A that it is not 

possible to develop simple explicit expressions for either flow or pres­

sure using the classical technique. However, the new approach leads to 

simple relationships which can be solved explicitly for any one of the 

variables. In fact it will be demonstrated that it is not necessary for 

the static model to be derived from the dynamic model. The basis for 

the grey-box approach is the relationship between the through and across 

variables of a multi-port element. In the case of a self-regulatory valve, 

this relationship can be described in terms of an equivalent orifice. 
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The Equivalent Orifice Representation 

Since all fluid power valves perform the necessary control func-

tion by varying the resistance of a flow path, it is convenient to treat 

all such control elements with one inlet and one outlet as variable area 

orifices. Appendix B contains a discussion relative to the orifice 

equation and its use in the development of fluid power system models. 

For the discussion that follows, any established functional relationship 

for an orifice, which can be described by the following equation, is 

valid. 

(3.1) 

where 

Q = Flow through the orifice 

p = Pressure differential across the orifice 

A = Cross-sectional area of orifice 
x 

p = Fluid density 

Cd :::: Coefficient of discharge 

and f 
1 

is the functional notation for the relation. 

An equation such as Equation (3.1) can be represented in three-

dimensional rectangular coordinate space with P, Q, and A along the 
x 

three axes. It is convenient, at this stage, to consider Cd as a con-

stant; in any case, it cannot be treated as an independent variable. 

Thus, even though it may not be possible to algebraically invert Equa-

tion (3.1) to the form 

(3.2) 

it is still possible to obtain the same result graphically. 
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Usually, there is only one moving element controlling the orifice 

area and considerations of the geometrical features of the valve will 

permit the writing of the equation 

(J.J) 

where 

x = displacement of the moving element 

and fJ is the functional notation describing the relation. It can be 

noted that as long as the orifice is effectively metering flow, the 

existence of the inverse relationship 

is established. The geometrical relation described above may be 

written as 

(J.4:) 

Consequently, the characteristic equation for the orifice can be repre-

sented uniquely in three-dimensional space with P, Q, and x as the axes 

(see Figure 1). The importance of this form of expression for the valve 

characteristics cannot be over-emphasized. It basically permits the 

description of the movement of the metering element in terms of the 

through and across variables for the valve. This, in turn, permits the 

development of the new approach to modeling, wherein attention is 

focused on the through and across variables rather than the dynamics 

of the internal parts of the valve. 
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The Grey-Box Modeling Approach 

The objective in formulating the grey-box modeling approach was to 

obtain low-order relationships to describe the dynamics of system com-

ponents. These relationships must reflect the inherent nonlinearities 

of fluid power components in order to be usable for the synthesis of 

realistic system models. In addition, the component models must possess 

forms which are particularly suited for interfacing with each other. 

In order to apply the grey-box modeling approach to any system 

component, it is necessary to have sufficient expressions relating the 

measurable through and across variables, to mathematically eliminate all 

intermediate state-variables which cannot be measured. 

In the case of a two-port self-regulating valve, the equivalent 

/1 
orifice representation must be one. of the basic expressions in the 

model. The other expressions needed for the model may be derived from 

force balance considerations. For any moving element the forces can be 

categorized as follows: 

(1) Pressure forces on the element - these are functions of 

upstream and downstream pressures. 

(2) Spring forces - these are functions of displacement and 

are generally taken to be linear. 

(J) Flow forces - these are dependent on pressure differentials 

1~(· 

and flow in addition to geometric features ~J the valve. 

The common assumption that steady-flow forces are equiv-

alent to a linear spring, and unsteady forces to a linear 

damping effect are valid only for constant pressure 

differentials. 
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(4) Drag forces - these are generally considered to be 

velocity dependent. 

Mathematical expressions for these operative forces ultimately 

need to be written in terms of measurable through and across variables. 

The elimination of the intermediate state-variables can be illustrated 

for the case of a viscous drag force in the following manner. 

The viscous drag force on a moving element is classically repre-

sented by the expression: 

Bx 

where 

f vd = drag force 

B = drag coefficient 

X = velocity of moving element. 

The elimination of state-variable x can be accomplished by using the 

equivalent orifice expression (Equation 3.4). The differentiation of 

Equation 3.4 yields: 

ox· ox· 
x :: oQ Q + oP P. 

, ox ox 
Now oQ and oQ are part"ial derivatives whose values can be obtained 

directly from the characteristic surface of the valve (Figure 1). Sub-

stituting this expression for x into Equation 3.5 yields~ 

ox ox . 
= B( oQ Q + oP p) • (3.6) 

From an idealistic standpoint, the values for the partial deriva-

tives in Equation 3.6 should be obtained from the characteristic surface 

of the component as illustrated in Figure 1. However, ,for self-regulatory 
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valves, the effect of feedback (interactions between the variables) is 

to cause the displacement to be dependent upon pressure and flow. Thus, 

this feedback precludes the development of the characteristic surface 

from measurement of through and across variables only. Consequently, it 

is necessary, for the case of self-regulatory valves, to utilize an 

auxiliary means of obtaining the values for the partial derivatives. 

This can be accomplished using the classical orifice equation in con-

junction with the geometrical relationship Equation 3.3. In particular 

the orifice equation for flow can be written as 

A 
x 

and a geometrical relationship for Equation 3.3 of the form 

where 

K is a constant. 

Equations (3.6), (3.7), and (3.8) can be combined to give 

r.· QP ] 1 
LQ/p - 2jp P2 .· 

(3.7) 

(3.9) 

The expression for the viscous drag force can now be written in terms of 

the through and across variables only, as 

BK r;:::-,;:: • 
f = v Pt 2 Q" QP J 1 • 
vd C Q/p - 2 J& ~-;_. 

d vP pt 

(3.10) 

Similar expressions can be derived for any other force relation-

ship. However, interest in component modeling, is not so much in eval-

uating velocities and drag forces, as in establishing relationships 
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between the through and across variables, P and Q and their derivatives. 

The next two sections of this chapter illustrate the development of such 

grey-box expressions for a relief valve and the last, an example devel­

opment of grey-box models for multi-port valves. 

Static Grey-Box Models for Relief Valves 

The static characteristics of relief valves are conveniently de~ 

picted by plots of pressure drop across the valve versus flow. For an 

ideal valve this would be a horizontal line at the set pressure (Figure 

2) but actual valves depart from this ideal - especially so at very low 

and very high flow rates. At low flow rates, the valve begins to crack 

and the corresponding pressure may be much lower than the set pressure. 

At extremely high flow rates, the valve may function as an orifice of 

fixed area, although some valves show a tendency to go into sustained 

oscillations. Between these two extremes of flow conditions, most 

valves show a positive gradient of pressure versus flow. 

In developing the static grey-box model for a relief valve the 

following assumptions will be made: 

(1) Changes in fluid properties are negligible. 

(2) All moving parts reach a state of equilibrium which is 

unique for the combination of flow rate and pressure 

differentials - this rules out limit cycling conditions. 

(J) Flow occurs from the pressure port to the tank port only. 

(4) Pressure forces on the moving element are directly pro­

portional to the pressure differential across the valve. 

(5) Flow forces are proportional to the flow rate and the 

square root of the pressure differential. This is, at 
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best, an approximation for steady flow forces. A more 

rigorous expression can be written if details of con-

struction of the valve are available. 

(6) A linear spring furnishes the balancing force. 

A force balance equation for the moving element can be written as: 

Pressure 
Force 

Flow 
Force 

::: 

Spring Spring 
Preload , Force 

where a1 , a2 , a3 and a4 are constants of proportionality. Using 

Equations 3.7 and 3.8 the above equation can be re-written as 

or 

( 3 .11) 

(3.12) 

where k 1 , k 2 , and k 3 are empirical constants that can be identified 

from experimental data. 

The results of a computer simulation of the static characteristics 

given by the algebraic model (Equation 3.12), using five sets of param-

eters, are presented in Figures 3 and 4. Table I summarizes the values 

of the parameters used. The quantity (-k3/k1 ) is referred to as the 

cracking pressure of the valve and p/k2 as the asymptotic pressure. 
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Figure Curve 

TABLE I 

PARAMETERS USED FOR SIMULATING STATIC 
CHARACTERISTICS FOR RELIEF VALVES 

k1 k2 

25 

kJ 

A 1.26 x 10-5 4.85 x 10-6 -3-57 x 10-3 

3 B 2.52 10-5 4.85 -6 
-3-57 10-3 x x 10 x 

c 5.04 10-5 4.85 -6 
-J.57 10-3 x x 10 x 

A 1.26 x 10-5 4.85 x 10-6 -3-57 x 10 -J 
8 

-4 -6 B 1. 26 x 10 4.85 x 10 -3-57 x 10-2 

It can be seen that smaller values of k not only lead to higher 
1 

cracking pressures but also to better regulation. For the same cracking 

pressure, numerically smaller values of k 1 and· k 3 also lead to better 

regulation. It may be noted that k 2 was left unaltered so that the 

asymptotic pressure for high flows would be the same in all cases. It 

is interesting to note that by varying parameters k , k , and k the 
1 2 J 

model can be made to fit a wide variety of characteristics. The models 

given by Equations 3.12 compare favorably ~ith actual characteristics 

for similar valves presented by Foster (-5), Smolina (15), and Ford-OSU 

( 11). 

Dynamic Grey-Box Models for Relief Valves 

Even though the usefulness of a static model is apparent, it can 

be asserted that a dynamic model gives the fullest possible description 
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of the performance of a valve. Dynamic effects in self-regulatory 

valves arise due to two main effects: firstly the dynamics of the 

moving parts and secondly the capacitance and inertance of the fluid in 

the system. Though it is fairly easy to treat the former as lumped 

elementsi the latter are more difficult to handle. Also, the interac-

tions between the fluid and the moving elements can often be subtle. 

Thus, exceedingly small movements of an element can appreciably change a 

control volume and affect its capacitance seriously, and flow changes 

can drastically affect the balance of moving elements, even to the 

extent of driving them unstable. 

In the development of empiric.al models in which only through and 

across variables are to be present, the problem is to hypothesize a 

functional relationship 

2 
p • ~ 1 2 m) Q, Q' Q "! Q ~ 0 

where 

P cc: pressure differential 

Q ·- flow 

and superscripts 1 through n and m denote time derivatives. Setting 

these derivatives to zero would yield a static model. 

0 Purely empirical black-box models can be derived by inspecting the 

observed characteristics and proposing models which may, for example, 

involve linear combinations of the measurable variables and their 

derivatives(11). Although they may give excellent correlation for the 

observed responses, they will carry more assurance of generality if con-

siderations of the mechanism of the valve have been made in their selec-

tion. This is the rationale for the grey-box approach. Dynamic models, 
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by their vary nature, have to include P and Q. Even though it may be 

possible to develop models with higher derivatives, difficulties in 

measuring these quantities experimentally, precludes their use. 

The approach taken in this investigation was to consider a single 

dynamic effect and translate it into a suitable relationship between 

measurable through and across variables. Since the effect was to be 

such that it related exclusively to the valve, considerations of up-

stream and downstream capacitances and their changes were ruled out. 

The dynamics of the moving element were considered most suitable for 

use as the basis of the desired relationship. 

Moving elements in a valve contribute both inertia and damping 

tenns to a dynamic model. An expression for viscous drag was derived 

. E t· 3 6 . . th t" l d . t" ox d ox It in qua ion • requiring e par ia eriva 1ves oQ an of>" was 

also noted that for self-regulatory valves, with internal feedback, the 

displacement xis a function of P and Q, and the characteristic surface 

can be mapped only if there is provision to adjust the displacement of 

the moving element independent of P and Q. Since such adjustment is not 

permitted in grey-box identification, Equation 3.10 was used to give the 

drag force expression in terms of the measurable variables. It was also 

hypothesized that for slow changes in inputs the drag forces would be 

more dominant than inertia forces and the latter could therefore be 

omitted from consideration. 

The above considerations led to the development of the following 

model: 

Pressure 
Force 

Drag 
Force 

Spring 
Force 

+ = 0 ( 3 .13) 

Preload 
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where a.1 , a.2 , a.3 , and a,4: are constants of proportionality. Substituting 

. 
for x and x in terms of S, Q, P, and Q gives 

(3.14:) 

By setting the derivatives equal to zero, the following static model 

is obtained. 

The form of the model given by Equation 3.15 differs from the 

static model derived earlier (Equation 3.12) in not having a term to 

account for flow forces. As a first approximation it can be considered 

that these flow forces are equivalent to a linear spring and experi-

• mental identification would include them in as 'Equivalent spring~rate' 

parameter. 

Equation 3.14: can be solved for the pressure derivative by writing 

it as 

(3.16) 

This is a first order non-linear equation suitable for digital simula-

tion. Since for a component model 'inputs' and 'outputs' are not 

clearly defined, the Equation 3.14: can be re-written as 

(3.17) 

It may be noted that Equations 3.16 and 3.17 involve only the 

measurable through and across variables and their first derivatives. 
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It may also be seen that if absolute pressures are to be calcu-

lated, the downstream pressure is an input to the model, in addition 

to Q. 

Grey-Box Model for a Multi-Input Valve 

To demonstrate that the grey-box approach is not limited in appli-

cation to relief valves, or that force balance considerations necessar-

ily have to be used for eliminating the intermediate state-variables, a 

system shown in Figure 5 will be analyzed. An upstream volume is 

included and flow occurs not only through the metering orifice but also 

past the moving element. It is convenient to treat the inflow and port 

pressure P1 and P2 as inputs to the system. The following notations 

will be used: 

a1 , a2 , ~J' a4 , a5 Empirical Constants. 

~ Bulk Modulus of Fluid. 

f1' f2 Functional Relationships. 

p1 Primary Port Pressure. 

p2 Secondary Port Pressure. 

p 
s Upstream Pressure. 

Q. Inflow. 
1n 

Q 
pr 

Primary Port Flow. 

Q 
sec 

Secondary Port Flow. 

v 
up 

Upstream Volume. 

x Displacement of Moving Element. 

A continuity equation for the upstream volume can be written as 
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v 
P (~) = (Q. - Q - Q - ~ x) 

s S in pr sec 1 
(J.18) 

The last term on the right allows for the increase in the control volume 

due to the movement of the metering element. Flow equations can be 

written as 

Qpr = ~x/P s - P 1 (3.19) 

(3.20) 

Both equations 3.19 and 3.20 are orifice flow equations wherein the 

coefficients of discharge and the fluid density are included in the 

empirical constants~ and a3• If Q is a flow through a very small 
sec 

clearance, the laminar flow equation could have been used in formulat-

ing Equation 3.20. 

It may be noted that Q is independent of movement of the 
sec 

metering element. 

Equation 3.19 can be inverted subject to the assumption that the 

orifice effectively controls flow at all times. After inversion and 

differentiation it gives 

1 [ • • • J 1 x = - 2Q (P -P ) - Q (P -P ) 
2~ . pr s 1 pr s 1 (P -P ·) 3/2 

s 1 

(J. 21) 

Substitution of expressions for Q and x from Equations 3.20 and 3.21 
sec 

into 3.18 gives 

• V up 0:1 [ • • • ""'j 
p ( =Q. -Q - O Jp -P - 2 rt_(P -P )3/2 2Q (P -P )-Q (P -P) 

s ~ in pr 3 s 2 -~ s 1 pr s 1 pr s 1 

(J. 22) 



Rearranging terms in Equation 3.22 gives 

where 

1 pr 1,,,,,_..,,,,_ a Q. ) 
I , = Q, - Q - a P -P 

2 (P -P )3 2 in pr 3 s 2 
~ s 1 

ai(2Q (P -Pi) - Q i>1 ) pr s pr 

2a (P -P ) 3/ 2 
2 s i 

Solving for rate of change of the supply pressure gives 

where 

°s . . 
Q. -Q ·-aJ/p -P2- (P p p/2(2Q (P -Pi) +PiQ ) in pr s - pr s pr 

s i 
p 

s 

a 
1 

e..,. - -,) - 2~ • 

(P -P )3/2 
s 1 
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(3.23) 

(3.24) 

Equation 3.24 gives a relationship between the supply pressure rise 

rate P and the following quantities~ 
s 

Q. Inflow 
in 

Pi Primary port pressure 

P 2 Secondary port pressure. 

Derivatives of the first two quantities are also required for purposes 

of simulation. It may be noted that °5 is the upstream capacitance and 

not a part of the valve. Thus, the valve.contributes only two param-

eters a3 and a,,.,· It is thus demonstrated that the writing of a force 

balance equation is not necessary to establish the dynamic relationship 

between the through and across variables for the system. 
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The analysis also demonstrates that for any self-regulatory valve, 

it is possible to write dyn(:Ullic equations relating the through and 

across variables for the energy ports. This grey-box approach can be 

extended to all valves having variable area orifices. It is not nec­

essary that flow and pressure have to be the through and across vari­

ables, as has been the case for the valves in the development given 

above. 



CHAPTER IV 

EXPERIMENTAL VERIFICATION 

The main purpose of the verificat~~n program was not so much to fit 

a model to a particular valve, as to confirm the validity of the form of 

the model. The black-box approach to modeling does not take into con­

siderations any features of internal construction, with the result that 

there is no assurance that the empirical model developed for a valve 

will fit any other design. On the other hand, the grey-box models pro­

posed here, are based on selected relationships used in cla~sical model­

ing, and therefore, carry a higher assurance of generality. 

Experimental Considerations 

In order to put experimental verification in the proper perspec­

tive it is useful to consider some features influencing such work, not 

only for the models proposed but also for classical models. 

Knowledge of Working Mechanism of the Valve 

Classical models, being design-dependent, cannot be formulated 

without the help of working drawings indicating various geometrical 

parameters involved. A black-box approach, on the other hand, com­

pletely ignores such information. Grey-box models, as reported here, 

strike a compromise in that a qualitative description of the mode of 

operation is used as the basis for establishing the form of the model. 



The grey-box model is capable of being refined by the inclusion of 

various design features, but is not dependent upon them. 
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Knowledge of the geometric relationship between the metering ori­

fice area and the displacement of the moving element, is probably the 

most useful information in formulating the grey-box model. This is the 

basis for the development of the characteristic surface for a valve 

(Figure 1). Although it may be possible to establish such a relation­

ship from geometrical considerations, it may be found useful to build 

a prototype valve for experimentally establishing the characteristic 

surface. It should be recognized that this does not mean that the pro­

totype needs to behave like a regular design in the dynamic sense. In 

the absence of any information about the characteristic surface, a 

linear metering area-displacement relation is the most convenient to 

use. It is valid for poppet valves having small displacements, as well 

as for spool valves in the mid-range of their travel. This linear rela­

tionship has been used for the verification work. 

Effect of Discontinuities in the Model 

Classical models usually have constraints 'on state-variables in 

addition to discontinuities in algebraic relations. Thus, moving ele­

ments may have an idle travel before opening an orifice, springs may be 

in compression over only part of the travel, and most important of all, 

moving elements will have bounds for travel. Since all state variables 

are evaluated in the course of numerical integration, it is a compara­

tively easy matter to include constraints in the mathematical model for 

digital simulation. For grey-box models, the situation is more diffi­

cult in that no 1 hard 1 constraints can be imposed on the variables 
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(pressures and flow) present in the model except that neither can be 

negative. One way of ensuring that such negative quantities are not 

introduced in the simulation phase is to restrain all state-variables 

to a state-space region where a single model with no discontinuities 

exists. In effect this limits the magnitude of inputs which can be 

used for verification. The selection of inputs for this investigation 

was dictated by these considerations. 

Tractability of Equations 

The identification of parameters for classical models requires the 

solution of' two types of equations: ( 1) complex algebraic equations in 

the case of static characteristics and (2) algebraic-cum-differential 

equations in the case of dynamic characteristics. Complex static models 

usually require iterative solution techniques or the use of algebraic 

minimization programs. Parameter identification from dynamic tests 

requires,, in addition, the integration of all system differential equa­

tions. In contrast, static models developed by the grey-box approach 

lend themselves to conversion, to explicit relations for the parameters, 

in terms of the measured quantities. Also, the dynamic equations can be 

written as a set of algebraic equations with the parameters as unknown 

quantities. These can be solved to give a first approximation of the 

values of the parameters and, consequently, the time and effort used in 

dynamic simulation is reduced. 

Instrumentation Limitations 

Instrumentation for dynamic testing has received scant attention in 

the literature on valve modeling. Even where models of high order have 
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been developed by the classical technique, verification has used only a 

few of the state-variables. The state-variables encountered in valve 

models are 

( a) pressure 

(b) flow , 

(c) displacement 

( d) velocity. 

Time derivatives of all four variables may be present in a dynamic 

model. It is, therefore, useful to consider the problems faced in 

measuring these quantities in fluid power systems. 

The measurement of pressure, even under dynamic conditions, offers 

little difficulty. Transducers with diaphragm sensors are available 

with a frequency response that is flat to 10kHz and beyond, while piezo­

electric transducers go far beyond this value. Dynamic testing often 

requires the measurement of fairly low pressure differentials (below 

25 psi) and transducers which have been chosen to measure pressures of 

the order of 1000 psi are not too accurate for such low values. The 

measurement of pressures in small enclosed volumes such as those present 

in two'":stag.e valv~s~ requires the analysis of the change in the system 

parameters introduced by the instrumentation. None of the experimenters 

presenting simulation for two-stage valves considered the verification 

of state-variables other than outputs (5) (jO) (11). The models proposed 

here avoid the issue by not considering such pressures or related flows, 

as they are internal to the valve, and do not appear in the relation­

ships for the through and across variables, for:the valve as a whole. 

The occurrence of high frequency components superimposed on slower 

variations in the state variables is characteristic of most valves (5) 
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(11). The grey-box models developed here, aim to portray only the 

slower variations, and, thus, actual measurement can be restricted to 

frequencies below 1000 Hz. An important source of high frequency com­

ponents is pump ripple. These fluctuations can be significant when 

pressure rates are being measured. Since the models are designed to 

ignore high frequency components, any rate measurements required for 

verification should remove these disturbances, otherwise they would con~ 

tribute a large amount of background noise. Since pressure rate trans­

ducers normally do not have pre-filtering capacity, they are not useful 

for verification work. 

Flow measurement is of crucial importance for the verification of 

the types of models under study, and the details of this aspect are con­

tained in Appendix B. It will only be noted here that a target flow-, 

meter was found most suitable for all dynamic tests. Numerical 

differentiation was used for obtaining the rate of change of flow. 

The measurement of displacement and velocity is unnecessary for 

grey-box models of self-regulating valves, as they do not appear among 

the through or across variables at any port. Usually none of the active 

metering elements in such valves is accessible for instrumentation and 

the small size of the moving parts involved requires special care to 

ensure that the dynamics are not affected by the sensors. Such measure­

ment, however, would be useful not only for refining grey-box models, 

but also for parameter identification in classical models. 

All experimental activity for verification was directed towards 

the measurement of pressure and flow. Two main series of tests were 

conducted and the results are presented in the next two sections. 
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Static Tests 

A schematic of the test set-up is shown in Figure 6 and a circuit 

diagram for the performance test-stand in Figure 7. Static tests were 

performed to obtain pressure differential-flow curves for a given pres-

sure setting, as shown in Figure 2. Tests were conducted after the 

system achieved a steady-state operating temperature. Samples of fluid 

were frequently checked for cleanliness and a gravimetric level of 10 

mg/liter and below was consistently maintained. The variable restric-

tion E1 (Figure 6) and the pump displacement were adjusted to effect 

changes in flow rate through the test valve. Low flows (below 2 

liters/minute) were measured by collecting fluid in a graduated cylinder 

over a known time interval. Care was taken to ensure that flow changes 

were made in one direction only; i.e., either increasing or decreasing, 

so that valve hysteresis would not invalidate the observations. 

Since the proposed model, Equation (3-11) had the form 

( 4.1) 

it was found that a least-squares fit of the experimental data gave 

unbiased values for the parameters k 1 , k, k. With n observations of 
2 3 

flow and the corresponding pressure, a matrix [A] and vectors~ and K 

were set up as follows: 

A = 

1 

1 

............ " ..... 
p 

n 
p Q 

n n 1 
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The IBM subroutine LLSQ (16) was used to identify the parameters. 

For Valve #RV-22 a much better fit was obtained by solving three 

simultaneous equations using three sets of data from experimental 

results. Table II and Figures 8 to 10 present the results of static 

tests. The cracking pressure, P defined as the lowest pressure at 
c 

which the valve allows flow, is given by 

whereas the maximum pressure P is given by 
m 

p 
m 

-6 
= 6.36 x 10 /k2. 

The model is valid only for pressures between these two values. 

It is instructive to compare the test results for Valve #RV-21 

with the simulation results presented in Table I and Figures 3 and 4. 

Values of parameters for curves labelled 1A 1 in the latter are the same 

as for Valve #RV-21. 

Apart from exhibiting a very low cracking pressure, Valve #RV-9 

also showed limit cycling at flow rates beyond 25 liters/minute. Valve 

#RV-22 indicated substantial hysteresis in that the cracking pressure 

was much less for decreasing flows than for increasing flows. Within 

the operating range of 10% to 100% of the rated flow, a maximum error 

of 10% (discrepancy in pressure, expressed as a fraction of actual pres-

sure) is exhibited by the models. Such accuracy is within the limits of 

experimental error for measurements in the range of values handled. It 

should be noted that the static models do not consider any flow path 
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TABIE II 

SUMMARY OF STATIC MODEL PARAMETERS 

Valve Flow k k2 kJ p * p ** 1· c m 

#RV-9 Increasing 4.24 x 10-7 3.21 x 10 -6 0 0 2000 

Decreasing · 4.82 x 10-7 2.93 x 10-6 0 0 1870 

#RV-21 Increasing 1.26 x 10-5 4.85 x 10-6 -3.57 x 10-3 283.3 1310 

Decreasing 1.26 x 10-5 4.59 x 10-6 -4.53 x 10-3 360 1385 

#RV-22 Increasing 9.09 x 10-6 '*· 36 x 10-6 -1.25 x 10-2 1370 1460 

Decreasing 4. 04 x 10 -6 
3.43 x 10 -6 

-5.05 x 10'""3 1250 1850 

*P = Cracking pressure= -k3/k1 c 

**P = Maximum p~essure = .006.36/k2 m 



other than the metering orifice. Also, a linear metering orifice­

displacement relationship is assumed in the analysis~ It is difficult, 

in the absence of detail drawings, to estimate the errors introduced by 

these assumptions. 

Valve #RV-9 was a poppet valve, #RV-21 a spool valve, and #RV-22 a 

compound relief valve. The good correlation between the experimental 

results and the models, thus, confirms the validity of the form of the 

model for all commonly used designs of' relief valves. It is possible to 

improve the models, by considering individual design features while 

developing the pertinent equations. It will be shown in the next sec­

tion that it is possible and desirable to include parameters identified 

from static models in dynamic models. 

Dynamic Tests 

Apart from the instl;'Umentation needed for the continuous recording of 

pressures and flows, the test-stand had to be arranged to permit the 

application of fast and slow inputs. Directional control valves (both 

solenoid and manually operated) were included in a bypass line as shown 

in Figure 11. An accumulator was introduced upstream in order to dampen 

pump ripple. Since only through and across variables for the test valve 

are present in the model it was not necessary to either measure or ad­

just upstream and downstream capacitances or resistances. This may be 

compared with the classical modeling technique in which upstream and 

downstream capacitances are usually part of the model and are estimated 

for simulation purposes. 

As explained in Chapter III it is not possible to impose inputs of 

any arbitrary desir-e-d shape. The speed of operation of the solenoid 
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operated valve could not be adjusted and inputs were changed by changing 

the resistance of the parallel bleed-off. Apart from restrictions due 

to its dynamic response, the flow-meter could not be considered accurate 

for low flows (be~ow 10 lit/min). Both flow and pressure were recorded 

continuously using a recording oscillograph. No attempt was made to 

process these signals to directly obtain their time derivatives. 

Preliminary investigations showed that the magnitude of pressure 

changes during the transient phase was small as compared to flow changes, 

Thus, it was decided to treat flow and flow rate as the inputs to the 

dynamic model and pressure differential as the output. This reduced 

chances of numerical integration going unstable due to smai1 errors in 

read-off from recordings. The target flow-meter behaves basically as an 

underdamped second-order system. The natural frequency of the one used 

was 200 Hz. Hence, a step size of 0.01 secs was considered to be the 

smallest which could be used for numerical differentiation. As the 

models to be verified were non-linear, there was no convenient yard-

stick like a 'natural frequency' to select step sizes for integration. 

Inputs were chosen such that a steady state was reached in 0.20-0.30 
,l 

secs. Rise time for 90% of steady-state value had to be kept above 

.04 secs as otherwise flow-meter readings were inaccurate. The results 

of the dynamic verification tests are.presented for each valve below. 

Valve #RV-10 

The dynamic model given by Equation (J.14) can be re-written as 

. 
. kt - k 2 ~ (Q .jp - QP/2 .Jp)/P + kJ = Q/./P ( '*· 3) 



where 

P = Pressure differential across valve 

Q = Flow through valve 

~=Fluid density 

and k 1 , k 2 , and k 3 are empirical constants. 

Assuming that downstream pressures are low and stationary, P can be 

considered as the upstream pressure. Using the recorded values of up-

stream pressures and flows, P and Q were obtained for the duration of 

the transient by applying a numerical differentiation program (DGTJ) 

given in the SSP manual (16). · The program DGTJ uses parabolic inter-

polation to evaluate derivatives. Subsequently k 1 , k 2 , and kJ were 

identified using a least squares fit as was done for static character-

istics. It was found that the selection of a number of points after 
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the steady state had been reached tended to reduce the rank of the 'A'-

matrix and the sub-routine would give erroneous results. Values of k 1 , 

k 2 , and kJ thus identified were used as initial guesses for fitting to 

the dynamic model presented in Chapter III 

(4.4) 

Subroutine OPTIM of the digital simulation package DYSIMP (17j was used 

to identify the parameters to a higher degree of accuracy. An integral 

squared error performance index of the following form was used: 

P. I. = 
tf 

I (P 

t 
0 

meas 
2 

- p d 1) dt mo e 
( 1*. 5) 



where 

P.I. = Performance Index 

P = experimental value of upstream pressure meas 

P d 1 = upstream pressure, as predicted by model mo e 

t = initial time 
0 

tf final time. 

A typical result of the simulation process is summarized in Table III. 

TABLE III 

RESULTS OF PARAMETER IDENTIFICATION USING OPTIM 

Lower Limit Upper Limit Optimum 
Parameter for Search for Search Value 
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k1 5.2. x 10-6 5.3 10 
-6 

5.22 10 -6 
x x 

k 2.13 x 10-5 
2 

2.2 x 10-5 2.18 x 10-5 

kJ -4.1 x 10-3 -J.9 x 10-J -4.095 x 10-3 

Fractional reduction in uncertainty 10% 

Number of iterations 38 

Computation time 24 secs 

Real time for transient response .21 secs 

Figure 12 shows the actual and predicted responses for the •best• 

set of parameters. A residual maximum error of JOO psi (20%) is noted. 

It was found more effective to use a simplified version of DYSIMP 
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without the optimization routine which gave a maximum error of 11% for 

the largest input. It may be noted that Equation (4.4) i~ different 

from the dynamic model proposed earlier (Equation (3.15)) in that k 2 is 

divided by P. The difference is, however, not significant as can be 

seen from Table IV. Figures 13 to 15 give the nature of inputs and 

outputs for three of the test runs presented in Table IV. 

Run 

/1: 
2 

3 

4 

TABLE IV 

SIMULATION RESULTS FOR VALVE #RV-10 

Model r 1 Model II2 

Integration Performance3 Maximum Performance 
Time Index Error Index 

.28 4.84 x 103 12.5% 1.95 x 103 

.4:o 7.95 x 103 14.2% 4.34 x 103 

.20 .. 2.84 x 103 7.5% 1.04 x 103 

.20 3.3 

. _ :Yr~· . (!L - Pk 1. +k3) ..1... J 
P - Q 4ff + ;;,,;- /p72 k 

vP p 2 2 
-5 -3 = 1.57 x 10 , and k 3 -4.245 x 10 • 

~odel I has the form 

~odel II has the form 

Maximum 
Error 

11% 

13.8% 

7.5% 

7.5% 

3Performance Index is the integral squared error given by Equation 
( 4. 5) • 

4Run 1 was used to identify the parameters for both models. 
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It may be noted that the major discrepancy occurs at the beginning 

of the transient phase. Two reasons are advanced for this deviation. 

Firstly, the static model i.s itself subject to some error and the effect 

of imposing initial conditions different from that given by the model 

is to cause the dynamic model to reach a pseudo-steady-state at the 

predicted value before following the input. Secondly, the downstream 

·· pressure changes appreciably during this phase even though it may drop 

to a low value during steady-state operation. This condition has been 

confirmed by tests on Valve #RV-22. 

Valve #RV-22 

In view of the results obtained with #RV-10, both upstream and 

do~stream pressures were recorded continuously for tests on this valve. 

Even though this was a compound relief valve, it was decided to use 

the dynamic equation, derived in Chapter III, for valves with one moving 

elem_ent Equation (.3.15). It was also decided to use the results of a 

static test to identify parameters k 1 and k.3 in the equation 

(4.6) 

It is seen from Figure 16 that when the static characteristic given by 

the model is made to agree with experimental results at zero flow and 

rated flow (100 lit/min) a maximum error of only .3% remains. Solving 

for k 1 and k.3 is particularly easy in this case as 

and (4.8) 
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giving 

and -1 kJ ~ -1.02 x 10 • 
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Thus, the only parameter left to be identified from dynamic tests 

is k 2• The effort involved in this identification is much less than for 

the first valve. DYSIMP was again used and a few iterations were enough 

to establish a value for k 2 which gave an error of only 10% for the 

largest input (Figures 17. to 20). However, the error was larger for 

faster changes in input as shown in Figure 21. 

The presence of valve hysteresis usually necessitates the develop-

ment and use of two models - one for increasing flows and one for 

decreasing flows. With valve #Rv:....22, the hysteresis was found to be 

negligible and the model developed for increasing flow was found to be 

extremely good for decreasing flows (Figures 22 and 2J). 

In reviewing the experimental work for the dynamic tests, it must 

-be kept in mind that the objective was not to find the best empirical 

models for the valves tested. The goal was rather, to develop forms of 

models which would: 

(1) Be general enough to fit most general purpose valves of 

the class tested .... in this case relief valves. 

(2) Yield parameters which could guide a system designer in 

selecting valves to interface with other circuit components. 

(J) Permit refinements if more accurate models for specific 

valves were required. 

The experimental work illustrates the difficulties in imposing 

inputs of anr desired shape. Since the models are nonlinear, the 
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'rABLE V 

SUMMARY OF RESULTS OF DYNAMIC SIMULATION ON VALVE #RV-?2 

Input I Average 
(Flow in Lit/Min) Rate Integra-

of tion Final 
Initial Final Change Time Max Value 

Test Value Value Diff. LIT/MIN/SEC (secs) P.I.* Error Error 

1** 9.3 89 79.7 568 .28 1000 9.3% 0% 

5 7.0 100.J 92.7 1900 .26 1021 22% -4.9% 

3 77 91,i, 16.9 106 .28 19 4% -0.7% 

4 65.8 88.6 22.8 163 .23 100 6% -2.1% 

2 85.6 107.8 22.2 158.5 .23 500 6% -2.9% 

6 99.7 78 23.7 297 .20 12.8 1.95% .7% 

7 107.8 81,i,.4 23.4 167 • 2J 45 2.52% 2.1% 

*Performance Index as given by Equation (4.5). 

**This run was used to identify parameter k2 of the dynamic model. 



advantages of special inputs, e.g., step or ramp, would have been margi-

nal. However, the inputs used are representative of those observed in 

actual physical systems. 

The importance of considering static and dynamic characteristics 

together is illustrated by the analysis of Valve #RV-22. Considerable 

effort was saved by using the results of static tests to identify param-

eters in the dynamic model. 

Since #RV-22 was a compound relief valve and 1 thus, had more than 

one metering element, the accuracy of fit obtained for dynamic responses 

shows that the model, developed for a valve with one metering element, 

is still reasonably accurate. A classical model, as given in Appendix 

A, would have been of a much higher order. 

It is, thus, demonstrated that grey-box models give accurate re-

sults for a wide variety of inputs, at the same time reducing the order 

of the model to the bare minimum. Such models are, therefore, eminently 

suitable for synthesizing system models without introducing either a 

large number of parameters for identification, or raising the order of 

the dynamic model to an excessive degree. 

: It mus'.t be emphasized, however, that grey-box models need to be 

,:used.w'uh caution if the system conditions under which the valve is used 

, differ,w'ide'~y'from that on the test stand used to identify the parameters. 
• • ' , I • 

:;rdentification of parameters under actual working conditions would yield 

;the'.bes:t model. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The synthesis of system models using component models as building­

blocks, should be considered a breakthrough in the field of fluid power. 

This requires the development of self-contained component models. 

Classical modeling techniques, however, have failed to develop such 

models, as they have not differentiated between system models and com­

ponent mod.~ls. Consequently, the same methods of analysis have been 

used for both types of models. Thus, classical modeling techniques have 

resulted in the development of component models which: (1) are not 

isolated from the rest of the system; (2) cannot be easily interfaced 

with other component models; and (J) often lack generality due to the 

assumptions made in their derivation. 

The development of models for components is more complex than for 

systems because components are basically multi-port elements. Hence, 

only multi-input and multi-output models of components are general 

enough to be useful for pursuing the module concept for system syn­

thesis. Classical modeling techniques applied in the development of 

single-input models (as are normally required for system models) re­

quires the inclusion of certain upstream and downstream characteristics. 

Consequently, these techniques defeated the very purpose of developing 

component models. Classical models, in the case of valves, are also of 
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high order and involve a large number of parameters - many of which need 

experimental identification. 

This investigation was prompted by the necessity of developing com­

ponent models which would be particularly suitable for interfacing. It 

addressed itself to the formulation of an approach to developing simple 

dynamic models for a class of fluid power valves. This class, referred 

to as self-regulatory valves, is characterized by the presence of two 

energy ports and a single metering element controlling the resistance of 

the flow path. By suitable feedback, the dynamics of this moving member 

are made dependent on upstream and downstream pressures and flow. Using 

the force balance on the moving member as the foundation, it has been 

shown that it is possible to derive dynamic equations relating the 

through and across variables for any self-regulatory valve. The rela­

tionships can be made to give static characteristics by setting the time 

derivatives to zero. The approach is semi-empirical in that the param­

eters involved have to be experimentally identified. However, since no 

geometric parameters are involved, the models are not design-dependent. 

Also, the number of parameters in the models are significantly lower 

than in classical models. Such models are, therefore, especially advan­

tageous to the system designer in assessing the performance of alternate 

designs as part of a system and the influence of parameters on final 

system performance. 

The experimental verification had as its objective the validation 

of the grey-box approach rather than the fitting and refinement of 

individual models. Static tests were conducted on relief valves of 

different types and the models exhibited excellent correlation. The 

verification of dynamic models posed serious problems especially in the 
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areas of flow measurement and choice of inputs. However, the results 

of the simulation showed extraordinarily good agreement with experi­

mental data. Specifically, a maximum transient error of 15% and a 

maximum steady-state error of 5% were exhibited for all valves in the 

study. Much more significant was the reduction in simulation time by a 

factor of 500 due to the use of low-order models. The simulation of 

large complex systems is impracticable unless such low-order models 

are available for all components used. 

The contributions to the fluid power engineering field resulting 

from this study are as f~llows: 

(1) The need for differentiating component models from system 

models has been established. 

(2) The recognition of component models as being basically 

multi-input and multi-output has been highlighted. System 

synthesis from component models is extremely difficult 

unless this concept is utilized in developing general 

models. 

(3) A new approach to the modeling of self-regulatory valves 

has been developed. This semi-empirical method, referred 

to as the grey-box approach, permits the analysis of an 

entire class of valves without necessitating the detailed 

study of each individual design. Models thus developed, 

nevertheless, have provision for refinement as more design 

information becomes available. 

Although this study limited itself to the development of low order, 

multi-port time-domain models for valves, the grey-box approach is 
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considered general enough to be applied to almost all dynamic components 

in fluid power systems. 

Recommendations for Further Study 

There are three main areas of investigation which were brought to 

light during this investigation. 

(1) All modeling of fluid power valves uses the turbulent 

orifice-flow equation. Sufficient investigation has not 

been conducted to warrant its uninhibited use under all 

conditions of flow. Investigations need to be carried out 

to confirm its validity for unsteady flow or to formulate 

more accurate flow-pressure relationships. 

(2) A major assumption made in the development of the grey-box 

models was the linearity of the metering area - displacement 

relationship. Such an assumption can be avoided if the 

characteristic surface of the valve can be developed, as 

indicated in Chapter Ill. This would necessitate the 

building of a prototype valve in which the displacement 

of the moving member could be adjusted and measured. 

Since the characteristic surface can be developed by 

static tests, no elaborate instrumentation is required. 

The results would definitely lead to improved models. 

(3) The actual synthesis of a system using the building-block 

approach needs to be undertaken to verify the extent of 

simplification offered by grey-box modeling. As a pre­

requisite, it is necessary to develop suitable multi­

input, multi-output models for all circuit components. 
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An area of study which, though not central to the theme of this 

thesis, nevertheless is extremely important to its development, is that 

of measurement of fluid flow. The development of suitable instrumenta­

tion for measuring unsteady flows and rate-of-change of flow could make 

the difference between success and failure of the grey-box approach. 
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APPENDIX A 

ANALYSIS OF A COMPOUND RELIEF VALVE 

BY THE CLASSICAL METHOD 

The objective in presenting this analysis is to illustrate the 

salient features of the classical analysis technique, as applied to 

component modeling. The two-stage relief valve is particularly suited 

for this purpose as it is typical of fast-response components having 

small moving parts. Such components are characterized by static models 

given by implicit functions, and dynamic models having a number of 

coupled differential-cum-algebraic equations. For the purposes of 

classical analysis, it is also common to include certain upstream and 

downstream characteristics in the "system" analyzed. With this arrange­

ment it is possible to have just one input for the valve. 

Figure 24 shows the schematic arrangement of the valve analyzed. 

Although individual designs differ in details of manufacture, the com­

plexity of the system equations is representative for all relief valves 

using two moving elements. The following assumptions, which are conven­

tionally made for developing classical models, were made for this 

analysis (8) (;10) ( 11): 

(1) Downstream capacitance is infinite, so that downstream 

pressure is constant. 

(2) Fluid capacitance and inertance are treated as lumped 

elements. 

71 



A Inlet 
c Chamber ( Yeh> 
T Tonk Connection 
D Coplllory 
p Pilot ·valve 
511'1 Main Spool Spring 
Sp Pilot Spool Spring 
R Olltlet For Remote 

Adjustment 

r----, 
I 
I 

Figure 24. Schematic View of a Two-Stage 
Relief Valve 
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(3) Linear damping provides the drag force on both moving 

elements. 

(4) The turbulent flow orifice equation is valid for all 

types of flow. Coefficients of discharge are constant. 

(5) Fluid properties, such as viscosity and bulk modulus are 

constant. 

An additional assumption made in this analysis is that the areas of 

flow of the metering orifices are proportional to the displacement of 

the relevant metering element. 

The Hydraulic Component Modeling Manual (4) was used to develop the 

system equations and the terminology used therein is retained. 

Notation 

A = p 

A = s1 

A 
15z ., = 

A = sp 

A = x 

A = y 

~ = 
B = 
B ::: 

p 

c = 

cdm = 

cdp = 

Area of Pilot Valve on Which Differential 

Pressure Acts. 

Area of Main Spool on Which Pressure p1 Acts. 

Area of Main Spool on Which Pressure p2 Acts. 

Peripheral Area of Main Spool. 

Area of Flow Through Main Valve. 

Area of Flow Through Pilot Valve Opening. 

Effective Bulk Modulus of Upstream Volume. 

Damping Factor for Main Spool 

Damping on Pilot Valve. 

Peripheral Spool Clearance. 

Coefficient of Discharge for Main Vaive. 

Numerical Value 
Used 

1.436 in 2 

1.436 in 2 

20 x 10-5 lbs/in 

.oo4 ins 

.8 

Coefficient of Discharge of Pilot Valve Opening. • 75 

2 



Notation (Continued) 

D1 ••• D6 = Diameters - See Figure 24. 

K 
m 

K 
p 

l 
c 

11, 

13' 

m 

m 
p 

e m 

12 

l 4: 

= Stiffness of Main Spool Spring. 

= Stiffness of Pilot Valve Spring 

= Length of Capillary in Main Spool. 

= Damping Lengths for Main Valve. 

= Damping Lengths for Pilot Valve. 

= Mass of Main Spool. 

= Pilot Valve Mass. 

= Semi-apical Angle of Main Valve. 

= Semi-apical Angle of Pilot Valve. 

= Upstream Pressure. 

= Chamber Pressure (see Figure 24:). 
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Numerical Value 
Used 

D1=.5,D2:.65,DJ=1-5 

D4:=.01,D5:.65,D6=.2 

100 lbs/in 

100 lbs/in 

• 4:5 ins 

1,0.15 ins. 

0.1,0.1 ins. 

.5 lbs 

.1 lbs 

= Outlet/Tank Pressure (Assumed to be O psig). 

Q cap 

Q. 
in 

Q . 
main 

Q supply 

u 

v 

vch 

w 

x 
0 

yo 

= Flow Through Capillary in Main Spool. 

= Flow Through Relief Valve. 

Flow Through Main Valve (of Relief Valve). 

~ Flow Through Pilot V~lve. 

= Flow Put Out by Upstream Components (Input to Valve) 
250 cu. ins/sec 

= Viscosity of Fluid. 10 est. 

= Upstream Volume. 250 cu.ins 

= Chamber Volume (see Figure 24:)' 1 cu. in 

= Specific Weight of Fluid. 60 lbs/ cu. ft. 

= Initial Compression of Main Spool Spring. 1.0 ins 

== Initial Compression of Pilot Valve Spring. 0.2 ins 



Notation (Continued) 

x = Displacement of Main Valve. 

y = Di sp l acemen t of Pilot Valve. 

x = Maximum Displacement of Main Valve. max 

Ymax = Maximum Displacement of Pilot Valve. 

Steady-State Analysis 
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Numerical Value 
Used 

.25 ins 

.12 ins 

All equations have been categorized as below for convenience. 

I. Continuity Equations. 

II. 

A. Q = Q. supply in 

B. Q. = Q . + Q ·1 t in main pi o 

c. Q · 1 t = Q pi o cap 

Area Equations. 

A. A = rrD 1:,c Sin em x 

B. A = rrD6y Sin 8 y p 

Flow Equations. ~ 
2(P -P ) 

A. Q . = CdmA 1 o 
main ·x, w 

B. 

D~ 

Q - ---1L c-L) 
cap - 128µ l 

c 

c. . ~ 2(P -P ) 
Q. =CA 2o 
pilot dp y w 

IV. Force Balance. 

A. Main Valve. 



(P -P) 
. 1 0 

Ip .,;,p I 
1 0 

The left hand side gives tpe hydrostatic force; the first 

tenn on the right is the spring force, and the second is 

the steady flow force. 

B. Pilot Valve. 

P A = K ( y+y ) + (P -P ) C D (. :in ( 2 Sp) 
2 p p o 2 o dpTT 6y 2 

4: Cd y Sin2 9 ) p p 
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Although it is possible to combine some of the equations 

written above, there is little to be gained by this as an 

explicit relation between the flow Q 1 and the pressure 
supp y 

P 1 cannot be developed. For purposes of simulation, a trial 

value of ywas used to initiate a process of iteration, to 

calculate the flow corresponding to a given value of upstream 

pressure. Results of the simulation are shown in Figure 25. 

Dynamic Analysis 

All equations have been categorized as below for convenience. 

I. Continuity Equations. 

A. Q l = Q. supp y in 
v 

+ p -
q ~ 

B. Q. = Q . + Q ·1 t in main pi o 

c. Qpilot = Q 
cap 
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Figure 25. Static Characteristics of a Two-Stage Relief Valve, as Given by the 
Classical Model 
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II. Area Equations. 

III •. 

B. A = riD6Y Sin 9 y p 

Flow Equations. ~ 
2(P -P) 

A. Q . = c A ... A . 1 0 
main ~u x w 

B. 

c. 
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IV. Force Balance on Main Valve. The following forces are considered. 

A. Hydrostatic Force. 

B. Steady Flow Force. 

c. 

+ xP /2J 2 (P1-P >} 1 w O ~ 

D'~ Spring Force • 

. f = K (x + x ·) 
· sl m o 

e ) lll · 

{ 
2(P -P ) 

. 1 0 

w 
. 
x 



E. Viscous Drag 

f = µ Asp 
vd c 

Force. 

. 
x 

F. Inertia Force • 

f 
a 

. . 
= m x 

Force balance equation is 
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V. Force Balance on Pilot Valve. The following forces are considered. 

A. Hydrostatic Force. 

f = P A 
p 2 p 

B. Steady Flow Force. 

C. Unsteady Flow Force •. 

= y 3 p 2 
-· (wl. D6 Sin 9 P ~ 

2J2:2 

D. Spring Force. 

f l = K (y + Y. ) 
s p ~o · 

E. Viscous Drag. 

f d + B y v p 

F. Inertia Force. 

f·:cm "y 
a P 

(:~ . ) 2P · P 
2 • 2 

Sin 8p 7 y + y r;;p 

2 _g 
w 



Once again the ·force·balanGe equation is 

VI. Constraints. The simulation program included the following 

constraints in the set of first-order equations. 

:,A. 

B. 

c. 

D. 

E. 

F. 

P1 and P2 cannot go below zero. 

Main Valve Displacement cannot go below zero. 

Pilot Valve Displacement cannot go below zero. 

Main Valve Displacement cannot exceed x • 
. max 

Pilot Valve Displacement cannot exceed y • 
max 

\vb.en the pilot valve is closed, rate of rise of pressure in 

the chamb.er is same as in the main line and upstream volume. 

Computer simulation runs were performed on the dynamic model 

using DYS IMP (';L?) by imposing a step change in flow as input. It is 

Bo 

known that the selection of a proper step size for numerical integration 

is no easy task. A rule of thumb is to use a step size between 1/20th 

and 1/100th the time period of the highest 'natural frequency' of the 

system. The introduction of small enclosed fluid volumes and the con-

sideration of their compressibility raises this frequency to a value 

much higher than that of any mechanical springs in the system. Conside-

ration of the enclosed volume 1 V h, as a liquid spring gave a step size 
c . 

-6 J x 10 secs. During simulation runs, however, it was found that a 

step size of 5 x 10-6 gave correct results for the first 5 x 10-J secs, 

but beyond this, the pilot valve motion was not accurately portrayed. 

-6 A value of 10 secs was finally selected. 

The results obtained are fairly typical for the type of component 

analyzed. Thus, the OSU-.Ford Report (11) mentions that a step size of 
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-5 -6 10 secs had to be used while Ebbesen ('.'.18) gives a range of 10 

secs for a dual stage relief valve. The pressure oscillation with a fre-

quency of 130 Hz observed in Figur~ _26 is comparable with the 180 Hz 

reported in the OSU-Ford Report. 

It is instructive to note that the time required for simulating .04 

secs of real time on the computer was 3 minutes and 32 secs., although 

the system was only of the sixth order. Any parameter identification 

requiring repeated solutions of the trajectory, for a real time of 0.1 

to 0.5 secs would thus be prohibitively expensive. Not only is this 

kind of simulation lengthy and laborious, but it also does not give in-

sight into the physical phenomena predicted - it is not possible after 

a cursory survey to guess which parameters may be the most effective in 

improving the performance in a given direction. It should be particq~ 

larly noted that the manner in which upstream and downstream character-

istics (in th~s case, capacitances) are introduced in the model make it 

difficult to assess their ef.fect on the dynamic response. 
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APPENDIX B 

THE ORIFICE FLOW EQUATION 

The investigation of flow through passages is the realm of fluid 

mechanics and the fluid power system designer is interested only to the 

extent the results can be applied for analyzing system or component 

models. A number of fluid power systems use a constant displacement 

pump and the only way of modulating power is by relieving excess flow 

through a relief valve or the tank port of an open-center valve. The 

variable area orifice is thus an indispensable part of most systems. A 

system designer should, therefore, be thoroughly familiar with the im-

plications of using any relationship for orifices. 

The turbulent flow orifice is usually described by the equation: 

2P 

[1 -

where 

Q = flow through orifice 

p = pressure differential across orifice 

Cd = coefficient of discharge 

d1 = pipe diameter 

d2 = orifice diameter 

·A = area of orifice 

p = fluid density. 
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'!his equation is derived by applying Bernoulli's equation to a sudden 

contraction in a pipe with adequate straight lengths upstream and 

downstream. 

'!he fluid power analyst usually simplifies this equation to 

where K is an empirical constant comparable to the admittance in an 

electrical network. 
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Fairly extensive investigations have been conducted to ascertain 

Cd for various orifices and flow regimes (19~ A change in Cd from 0.1 

in the laminar flow reg,ion to o.6 for turbulent flow is not unusual for 

both sharp-edged and finite length orifices. It is reported that for 

a sharp-edged orifice this coefficient also varies with upstream con­

figurations, from o.6 to 1 (2). Thus, even for sharp-edged orifice of 

fixed area, there can be appreciable changes in Cd, and any analysis 

that ignores this can lead to erroneous·results. 

If the establishing of a pressure-flow relationship for a fixed restric­

tion is considered complicated, that for a control orifice in a fluid 

power valve i$ even more so. Firstly, the geometry is rarely as simple 

as that used for experimental set-ups reported by various investigators. 

Secondly, self-regulatory valves are characterized by the presence of 

a control orifice which varies in shape and size from instant to in­

stant, and thirdly, flow through such control valves is rarely steady. 

It is difficult to establish bounds on the error in formulating system 

equations, introduced by these factors. 

The investigation of unsteady flow in ~losed conduits has been 

focused in two directions: firstly, the effect of accelerated and 



decelerated flow on line and orifice resistence has been studied, and 

secondly, the effects of pulsating flow on orifice characteristics has 

been investigated (20) (21) (22). In both cases it has been found 

difficult to isolate the orifice proper from upstream and downstream 

characteristics. It is reported that there is a time-lag between the 

imposition of a pressure differential and the establishment of the 

corresponding flow, but no convenient dynamic models have been pre- · 

sented, to the best of the authors knowledge (2). Steady fluid flow 

through an orifice is characterized by convective acceleration of the 

fluid to maintain continuitY, but unsteady flow requires the addition 

of local acceleration. If the flow changes slowly, the local accele-

rations can be neglected, and the steady-flow equations used, but 

otherwise they can be expected to change the orifice-flow character; 

istics appreciably. 

An additional complication which can also affect orifice perfor~ 

mance is cavitation. This is ignored in most analysis, although its 

effect on orifice coefficients could be significant (23). Zielke (14) 

reports the development of an algorithm for modeling cavitation in 

return lines of airplane hydraulic systems. 

Differentiating the turbulent flow orifice equation yields 

Q = KL 
/p 

which implies that for low pressures Q can be extremely large. Since 

at low pressure differentials, the flow is no longer turbulent, the use 

of this equation (as is done in the calculation of unsteady flow forces) 

could lead to serious errors. Any modifications in the flow equation to 

account for changes in the flow regimes (from laminar to transistion to 



turbulent) will introduce additional parameters in the flow equation 

which will, consequently, cause it to lose simplicity. 

Thus, it is seen that it is only for lack of a better model that 

the steady-flow orifice equation is used for modeling valves. It is 

but proper that the system designer be familiar with the divergence 

between the conditions under which the equation is derived and those 

under which it is used in dynamic analysis. 
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APPENDIX C 

MEASUREMENT OF FLOW FOR DYNAMIC TESTS 

Flow measurement is both an art and a science, and great. ingenuity 

has been exercised in developing measuring instruments to meet the wide 

variety of conditions in industry. Fluid power systems usually handle 

flow rates varying from 1 milliliter per minute or less, in the case of 

leak.age through sea.ls,,·to as"high as 600 liters per minute for large 

systems. Unlike pressure, however, flow is not usually monitored con­

tinuously on commercial systems. 

Experimental work in fluid power systems, commonly utilizes the 

variable-area constant pressure-drop meter (rotameter) and the turbine 

flow-meter for flow measurements. The former are not only contaminant 

insensitive, but can also be made direct reading and insensitive to vis­

cosity changes (24). The turbine type is approximately linear if flow 

is turbulent, but it is sensitive to viscosity changes (24) (25). The 

usual way of sensing the speed of the turbine rotor is with a magnetic 

pick-up and is eminently suitable for digital read-out. 

Dynamic tests require the continuous monitoring of flow, which may 

vary from zero to the output of the pump in the system; Transient flows 

may reach even higher values. Most commercially available flow-meters, 

of any type whatsoever, have a range of ten to one, thus imposing a 

limitation on the type of flow inputs or outputs for dynamic tests. The 

presence of moving parts of appreciable size makes the dynamic response 
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of the rota~eter slow, while the digital nature of the output from the 

turbine flow-meter effectively leads to the same result. Hence, neither 

could be used for dynamic tests. 

A target flow-meter was selected for such tests as it had a range 

most suitable for the valves tested, it gave an analog output, and its 

natural frequency was higher than that of all other alternatives. The 

target flow-meter measures the drag force on a body suspended in the 

flowing stream and an approximate exPression for the output (which is 

usually a vol tag;e) is 

where 

v = voltage output 

Q = flow rate 

k = a constant. 

2 
v = kQ 

The dynamic response of the flow-meter depends on the stiffness of the 

mechanical member supporting the sensor and is basically second-order 

and under-damped in nature (24). The natural frequency of the meter 

used was 200 Hz, and this imposed a ceiling on the dynamic inputs during 

testing. 

The measurement of rate-of-change of flow has received little or no 

attention in the literature. Yet, in the modeling of fluid power sys­

tems, this quantity is as important as the rate-of-change of pressure. 

In the absence of suitable measuring instruments, the only alternative, 

for this investigation was to differentiate the flow. Since the target 

flow-meter was nonlinear and the signal contained high frequency noise 

analog differentiation was considered infeasible. Consequently, 

numerical differentiation was used to obtain the rate-of-change of flow. 
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