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DISCONJUGACY CRITERIA FOR SELF-ADJOINT
DIFFERENTIAL SYSTEMS

le Introduction. In 1948 Hille [5] established criteria for non-

oscillation of the differential equation
(1.1) "+ f(x)y =0, for 0< x< @,

with £ a non-negative real valued function on (0,00 ); his method of proof

utilized the non-linear (Riccati) integral equation

(1.2) v(x) = tf: .

00
(t)at +jx £(t)dt.
In a subsequent study, Sternberg [21] extended certain results of Hille

to matrix differential equations of the form
(1.3) T = 6(x)3, 2'= -F(x)Y,

where G and F were nxn real symmetric matrices with G non-negative
definite and of constant rank. However, Sternberg obtained a relation-
ship between (1le3) and an analogue of (1l.2) only in the case of G non-
singular. In Section 4 we use a generalization of the proof giveh_by
Hille to qbtain a éoi;i-esponding result without the assumption of non-
singularity of G. That result, and a corresponding duel, are used to
‘extend the necessary conditions for non-oscillation which were given by
Hille and Sternberg; also, there are obtained relationships between
boundary problems involving system (1l.3) and a corresponding system with

G and F interchanged. Improvements of Sternberg'!s sufficiency criteria
1
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are given in Section 5; finally, the results of Sections 4 and 5 are
applied to certain even order equations in Section 6.

Matrix notation is used throughoutj in particular, matrices of one
column are called vectors, all ﬁx n, n 2 1, identity matrices are denoted
by4 the common symbol E, and O is used indiscriminately for the zero
matrix of any dimensions. The conjugate transpose of a matrix H is de-
noted by H¥, and H is-called hermitian whenéver H* = H, If H and K are
nx n hermitian matrices, we write H 2 K, [H > K], to indicate that H - K
is a non-negative, [positive], definite matrix. The symbol X is used
throughout to denote a fixed subinterval’ (a.o,do ), e, 2 ~00, of the real
line. An n¥xn hermitisn matrix H = H(x) on X will be referred to as non-
decreasing, [increasing], whenever a_ < x; < x, <  implies H(iz)ZH(:rj_),
[H(x,) > H(xl.)].. IfX is a subinterval of X, we say that a matrix has a
property of boundedness, differentiability, contimuity, or integrability
on'X o if and only if all entries of the matrix have that property on XO;
the classes of all matrices which on arbitrary compact subintervals of XO
are Lebesgue integrable, a.c. (absolutely contimuous), and measurable and
essentially bounded, are respectively denoted by £(X ), QX )), and
£® (X¥,)+ It is to be noted that this usage of these symbols differs
from standard conventions. Notations such as L([a,m}j, LP([a;8]),
etc., are abridged to £L[a,w), £P[a,b], eté. If a is an accumlation
point of X, we say that a matrix H(x) on X has a limit K at a whenever
each éntry of H(x) has the corresponding entry of K as a limit at a.
Mlso, [, H(t)at is said to exist hemever éach enmtry of [, H(t)at bas

a finite limit at oo. A particular condition is said to hold for large x



3
if and only if there exists a point ¢ € X such that the condition holds

on [e,00).

2. Formulation of the problem. Consider a matrix differential system

(2;1) Ut = A(x)U + B(x)V, V! =C(x)U - Ax(x)V

mX:a <x<®, a 2 -0, where A(x), B(x), and C(x) are nx n complex
matrices in £(X). If U and V are nxi' matrices, r > 1, the symbol (U;V)
will denote the 2nxr partitioned matrix (U¥ V¥)¥, If U and V are nxr
complex matrices, then (TI;V) will be said to be a solution of (2.1) when-
ever U and V are in Q(X) and satisfy (2.1) a.e. (almost everywhere) on X.
- For a non-degenerate closed subinterval [a,b] of X, the system (2.1)
is said to be have azbnormality of order q on [a,b] if and only if the
linear ma.nifold of 2nx 1 solutions of (2.1) which are of the form (0jv(x))

on [a,b] has dimension q. We say that (2.1) is normsl on [a,b] whenever

(2.1) has abnormality of order O on [a,b]. For a non-degenerate subin-
terval X of X, the system (2.1) is said to be identically normal on X,
if and only if (2.1) is normal oh every non-degenerate subinterval of X .

Two distinct points x| and X, in X are said to be conjugate relative
to (2.1) whenever there exists a 2nx1 solution (ujv) of (2.1) such that
u(x)) =0 = u(x,) and u(x) is not identically O between x and x;. If X
is a non-degenerate subinterval of X, then (R.1) is said to be disconjugate
[23; pg. 368] on X_o whenever no two distinct points of Xo are conjugate
relative to (R.1).

If B(x) and C(x) are hermitian and (U 3¥,), (1 = 1,2), are solutions
¥, - V. ¥U_ is a constant on X since it

12 12
has zero derivative a.e. on X. Following Reid [15; pg. 576], a solution

of (2.1) on X, then the matrix U
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(U3V) of (2.1) is called a matrix of conjoined solutions whenever
U%¥V -~ V¥U = 0 on X.

If D is a fundamental matrix for
(2.2) D! = A(x)D
on X, then under the transformation
(2.3) U =Dy, V=D¥z,
the system (2:1) reduces to
(2.4) Yt = a(x)2, 2Z'=-F(x)Y,

where G and F are the matrices

(2.5) G = D_lBD*—l, F = -D¥CD.

Since (2.4) is a special case of the formally more general system
(2.1), any defimition made for (2.1) applies to (2.4).
For Xo a generic non-degenerate subinterval of X, the following

hypotheses are stated for 'fu’m;re féference:

H (X )): GF e X(Xo), and G* = G on X .

H(X): H (X ), and F*=F on X .
If G 2 0 onX in addition to hypothesis Ho.(Xo)’ [H(XO)], the combined
condition is denoted by the symbol HO(G > O.I Xo), [#(c > 0l Xo)]. The
condition that H(G > O] XO) holds and F > 0 on X is abbreviated by the
symbol H(G 2 05 F 2 01X ); if X =X, then the notation n X" is
deleted from these symbols.

If hypothesis H(X) holds, then the transformation (2.2), (2.3),

(2.5) between systems (2.1) and (2.4) preserves‘conjoined solutions and

pairs of conjugate points, and for each x € X the rank and index, that is,
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the number of positive proper values, of B(x) are the same as those of
G(x) defined by (R.5).

An nx n hermitian non-negative definite matrix K = K(x) in £(X) is
‘said to satisfy condition Nl(K) if and only if for each point X € X,
there exists an x, € (x,®) such that ijz K(x)dx is positive definite.
It is to be noted that a non-negative real valued function £ ¢ X(X) satis-
fievs condition Nl(f) if and only if f does not vanish a.e. for large x.
If X is a subinterval of X of the form [a,c), where 2 < ¢ < @, and K(x)
is an nXn hermitian non-negative definite matrix in £(X ), then K is
said to satisfy condition N2(K | a) whenever J: K(t)dt is —Poéitive
definite for each x € (a,c).

If [a,b] is a non-degenerate subinterval of X and (0jz(x)) is a
2nX 1 solution of (2.4) on [a,b], then z(x) is constant on [a,b], and
hence we have the following characterization of abnormality.

IEMMA 2.1. If hypothesis H (G 2 O [a,b]) holds, then the following
conditions are equivalent:

(1) The system (2.4) has abnormality of order a on [a,bl.

~ (ii) The linear manifold of constant n-vectors m such that G(x)n=0

aece on [a,b] has dimension q.

o]
(iii) The rank gf_fa G(x)dx is n ~ q.

ansequently, if Xo is a non~degenerate subinterval of X which is
open on the right and such that hypothesis HO(G > 0] xo) holds, then (2.4)
is identically normal on X  if and only if condition N2(G| s) holds for
every s € Xo.

For Xo an arbitrary subinterval of X, and for nX n hermitian

matrices W(x) in QX ), let K, (W), (i = 1,2), be the Riccati matrix



differential operators defined by

Kl[W] =Wl + WGW + F,
Kz[w] = W! + G + WFW,

It is to be noted that an nx n hermitian nonsingular matrix W in CL(XO)
satisfies K;[W] = 0 on X_ if and only if W = - satisfies K[W ] = 0
on Xo'

For a non~degenerate closed subintervel [a,b] of X, let & ,la,b]
denote the class of n-dimensional vector functions 7 in Qla,b] with
n(a) =0, and for which there exists a vector ¢ € L% [a,b] such that
N' = &(x)¢ a.e. on [a,bl. Let ob'oo[a,b] be the class of functions M in
¥ .la,b] such that n(b) = 0. The symbol Poo[a,b] denotes the condition
that the functional |

I[n:a,b] = J:[c*ez; - q*Fq]dx
is positive definite on & [a,bl; that is, I[n:a,b] 2 0 for n e & [a,bl,
with equality holding only if 7(x) =0 on [a,b]. Correspondingly,
Po*[a,'b] denotes the condition that I[q:a,b] is positive definite on
jtfo*[a,b].

The fundamental theorem concerning disconjugacy on [a,b] is the fol~
lowing result (see, forlexample, Reid [18; pg. 415], and the remarks in
(143 ppe 740-741])

THEOREM 2.1. Lf hypothesis H([e,b]) holds, then P_ [a,b] holds if

and only if G > O holds on [a,b], together with one of the following:
(1) (2+4) is disconjugate on [a,bl;

[(ii) there exists a 2nxn matrix of conioined solutions (Y(x);Z(x))

of (R.4) with Y(x) nonsingular on [a,b];

(iii) there exists an nxn a.c. hermitian matrix W(x) on [a,b]
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which satisfies Kl[W] = 0 a.e. on La,b].
Let the proper values of an nxn hermitian matrix H be ordered
A(H) = Al(H) < eee £ An(H) = n(H). For future reference we state the
following well-known properties of hermitian matrices.
(1°) [16; pg. 99]. If H =H(x) is an nxn hermitisn non-decreasing

matrix on X, then A(H(x)) = ® as x = o if and only if for every non-

trivial constant n-vector m, we have w¥H(x)m => o0 as x —=> ®.

(2°) If H = H(x) is an nxn hermitian matrix on X and k is a real

number, then the followlng conditions are equivalent:
(1) Hz) > ¥ asx-> o,
(i1) A(H(x)) = ¥ and p(H(x)) > k a8 x > o,

(iii) w*H(x)m —> kw*n as x => o, for every comstant vector .

(3°) [3; pg. 115]s If H and K are hermitian matrices with H > X,

[H > K], then ;xj(H) > Aj(K); [Aj(H) > AJ.(K)], (3= Lyeeasn)s

(4°) [20; pp. 265-268]. If H is a non-negative definite hermitian

matrix, then H has a unidue non-negative definite hermitian square root

/2 na W% permites with sny matrix that permites with H. Also if

-11/2,

H
H >0, then BY? > 0 and (837 = (&
(5°) [2; pg. 634). If H and K are nXn hermitian matrices such

that H > K > 0, then K~ > KT > 0,

3. Ereliminary disconjugacy criteris. For fixed s & X: a <x< m,
let (¥(x,s)3Z(x,s)) and (Yo(x,s);Zo(x,s)) denote the respective solutions
of (2.4) which satisfy (Y¥(s,s);4(s,s)) = (0;E) and (‘Io(s,s)gzo(s,s)) =
(E;0). It is to be observed that if hypothesis H(X) holds and s € X then
each of the matrices (¥(x,s8)3;2(x,s)) and (Yo(x,s);Zo(x,s)) is a matrix of

conjoined solutions of (2.4). If hypothesis H(G > 0) holds, and there
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exists a point a in X such that N2(G| a) holds, then Lemma 2.1 implies
that (2.4) is normsl on [a,b], for every point b > a, and the points of
(ay00) which are conjugate to & are characterized by the values of x for
which Y(x,a) is singular. These facts, together with Theorem 2.1, give
the following theorem.

THEOREM 3.1.. Let [a,c) be a subinterval of X witha <c { w. IE
hypotheses H(G > O] [a,c)) and N2(G| a) hold, then (2.4) is disconjugate
on [a,c) if and only if ¥(x,a) is nonsingular on (a,c).

THEOREM 3.2. Suppose that hypothesis H(G > 0;F > 0) holds, a € X,

while ¢ is such that a < ¢ £ o and Z(x,a) is nonsingular on (a,c). Then
X .
rank [Y(x,a)] > rank [J'a G(t)at], for x € (a,c).

If, in addition, N2(G| a) holds, then Y(x,2) is nonsingular on (a,c).

4Lg Lil

Indeed, if W(x) = Y(x,a)Z_l(x5a) on [a,c), then W is hermitian,

satisfies K,[-W] =0 on [a,c), and
' X x x
Wix) = J'a G(t)at + J'a W(E)F(L)W(t)at > Ja G(t)dt > 0,
for x € [a,c). Therefore, the relations
rank [Y(x,a)] = rank [W(x)] > rank [fZG(t)dt]

are satisfied on [a,c).

The following theorem gives conditions under which nonsingularity
of ¥(x,a) on (a,00) implies nonsingularity of Z(x,a). This result was
essentially obtained by Reid [16; Corollary 1, pg. 100] for identically
normal systems (2.4) with G(x) of constant rank. In a recent paper of
Reid tl‘); Section 5], conditions (i) and (v) have been related to the
least proper value of an associated boundary value problem without the

assumption that G is of constant rank.
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THEOREM 3.3. Suppose that hypotheses H(G > OsF > 0) and Nl(F) hold.

x
Suppose also that there exists & point a € X such that A(J'a G(t)dt) = oo

i ————— ————— ——e

as x = o, and hypothesis Nz(GI a) holds. Then the following conditions
are equivalent: ‘

(1) (244) is disconjugate on [a,m);

(ii) Y(x,a) is nonsingular on (a,)3

(ii1) Z(x,a) is ponsingular on (a,).
If, in addition, (R.4) is identically normal on [a,o), each of conditions

(1), (ii), (iii) is equivalent to each of the following:

(iv) for each point b in (a,®), the matrix Yo(x,b) is nonsingular

on [a,bl;

(v) for each point b in (a,®), condition P.,[a,b] holds.

Because of Theorems 3.1 and 3.2, conditions (i), (ii), and (iii) are
equivalent if (ii) implies (iii), and we shall proceed to establish this
result.

Suppose that Y(x,a) is nonsingular on (a,0) and let W(x) =
Z(x,a)Y-l(x,a) on (a,®). Then W(x) is hermitian, satisfies Kl[W] =0 on

(ay00), and if a < x; < x, < @, then
(3.1) W(xl) - W(xz) = J'sz F(t)at + fx? W(t)a(t)w(t)at > 0.

Hence, W(x) is non-increasing, and condition Nl(F) implies that for each
point x, in (ay00), there exists an X, in (x.l,oo) such that W(X'.L) > W(xz).
Since all proper values of W(x) are non-increasing, and, by property (3°)
above, no proper value of W(x) can be constant on any interval of the
form (byoo), it follows that there exists a real number ¢ in (a,m) such

that all proper values of W(x) are non-zero on (c,m). Let Wo(x) = W-l(x),
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for x & (c,@). Then W (x) is hermitian, satisfies Kz[—wo] =0 on (e,mw),

and if ¢ < x, < x

1 5 < w, then we have

: X X
(3.2) W (x,) - W (x) = J'Xlz c(v)at + J;lz W_(£)F(6)W_(t)dt > O

Therefore, W is non-decreasing on (c,m) and W (x)1 = @ as x > o,
for every non~trivial constant vector w. From property (1°) we have that
A(Wo(x)) —> © as x => ©, and there exists a real mumber d in (c,m)
such that Wo(x) is positive definite on (d,® ). The matrix W(x) is also
positive definite on (d,00), and consequently W(x) is positive definite
on (ay0) since W(x) is non-increasing on (a,0). Hence Z(x,a) is non-
singular on (a,00). |

The equivalence of (i), (iv), and (v) will be shown by proving the
following sequence of statements: (a) (i) = (iv); (b) (iv) => (v)3
(e) () = (1)

Suppose that (i) holds and there exist points b and ¢ such that
a<{e<b< o and Yo(c,b) is singular. Then there exists a non~trivial
constant vector m such that Yo(c,b)ﬂ = 0. The solution (y(x)j;z(x)) =
(T Gxeyb)m32 (x,b)m) has (y(b)32(b)) = (w30) and (y(c)ja(e)) = (052 (e,b)m).
Due to the uniqueness of solutions of (2.4) which pass through

(O;Zo(c,b)n) at ¢, the vector Zo(c,b)n is nontrivial and the relation
(343) (y(x)32(x)) = (¥(x,c)z_(c,b)m3Z(x,¢)2 (c,b)m)

holds on [e,b]; consequently Z(byc) is singular. However, (2.4) is dis-
conjugate on [c,00), and from the comment following Lemma 2.1, it follows
that condition NZ(G' ¢) holds; moreover, Z(x,c) is nonsingular on (c,m)
from condition (iii) of Theorem 3.3. Therefore statement (a) mmst hold.

Statement (b) follows from relations (5.2), (5.3) of Reid [17;
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PPe 6’78-6’79],' in - turn, the relation b’oo[a,b] C b’o*[a,b] and Theorem 2.1
yield (e).
The following generalization of Theorem 5.1 of Hunt [9; pg. 958] is
of the nature of the separation theorems of classical Sturm theory [see,
for exaﬁple, Morse [12]]. For convenience in wording, we say that an nXn

matrix H has a singularity of order k, 0{k<n, whenever H has rank n-k.

— =

THEOREM 3.4. Suppose that (a,c) is a subinterval of X with ¢ £ o

such that hypothesis H(G > O3F > 0] (a,c)) holds, and condition N.?.(F, s)

holds for each s € (a,c). If (¥(x);2(x)) is & 2nx n patrix of conjoined
solutions of (2.4) on (a,c) such that Y(x) is nonsingular on (a,c), then

there are at most n singularities of the matrix Z(x) on (a,c), where

singularities of order k are counted k times.

If W(x) = Z(x)Y-l(x) on (a,c), then W(x) is hermitian and satisfies
(3.1), for a < x <x, <c. Hence W(x) is decreasing on (a,c), and due
to property (3°) each proper value of W(x) can have at most one zero on
(ay¢)s Theorem 3.4 follows immediately upon noting that W(x) has rank
n-k, k > Oy whenever k of its proper values are zero at x. An improve-
ment of the above mentioned result of Hunt is given by choosing
(¥(x)32(x)) = (¥(xya)32(xya)). The following result may be obtained by an
analogous proof; however, with the aid of the discussion which will be
given after Theorem 4.6, it follows that this result may be deduced as a
corollary to the above Theorem 3.4.

COROLLARY. Suppose that (a,c) is a subinterval of X with ¢ £

such that hypothesis H(G > O3F > 0| (a,c)) holds and (2.4) is identically

e

normal on (a,c). If (¥(x);2(x))

of (2.4) on (a,¢) such that Z(x) is nonsingular on (a,c), then there are

is a 2nX n matrix of conjoined solutions
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at most n singularities of the matrix Y(x) on (a,c), uhere singulerities

of order k are counted k times.

The above pair of results also extend Theorem l.3 of Etgen [43pg.292].

4. Tests for disconjugacy for large x. The following theorem is an
extension of results of Hille [5; pg. 243] and Stermberg [21; pg. 316].
THEOREM 4.l. Suppose that hypotheses H(G > O3F > 0) and Nl(F) hold.

Suppose also that there exists a point a € X such that (2.4) is identically

e vm—— S———  S————— -

X
normal on [a,m), and A(f, G(t)dt) = ® as x > . Then (2.4) is dis-

conjugate for large x if and only if the improper matrix integral

®
Ja F(t)dt exists, and for large x there exists a contimious nxn

hermitisn matrix W = W(x) such that for large x the integral

cf:) W(t)G(t)W(t)dt exists and

@ . oy '
(441) W(x) = J"x F(t)dt +J'x W(£)G(t)W(t)dt

In particular, if (2.4) is disconjugate on [a,), and identical normality
on [a,00) is relaxed to condition NZ(G | a), then W(x) = Z(x,a)Y-l(x,a) has

the above properties on (a,) and satisfies the inequalities
@ x -1
(4e2) 0< J'x F(t)at < W(x) < [J'a G(t)dt] =, for x & (a,m).

It is to be remarked that existence of J:F(t)dt as a necessary con-
dition for disconjugacy of (2.4) for large x under the hypotheses of
Theorem 4.1 has been shown earlier; indeed, as a consequence of Theorem 3.3
of Reid [16], it follows that this condition is necessary 'without the
assumption Nl(F).

Suppose that a is such that hypothesis NZ(G | 2) holds,

A(I;G(t)dt) — ® as x = 0, and (2.4) is disconjugate on [a,m). In
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this case Z(x,a) is nonsingular on [a,00) by condition (iii) of Theorem
3.3, and if W (x) = Y(x,a)Z-l(x,a) on [a,00), then W (a) =0, and W _(x)
is hermitian and satisfies Kz[-woj =0 on[a,m).

From relation (3.2), it follows that
(4e3) oW (%) 2 J:G(t)dt >0, forxe (a,m),
and, therefore, A[Wo(x)] > @ as x> o. If Wx) = Wo'l(x), for
x € (a,0), then W(x) is positive definite on (a,m) and we have that

W(x) = 0 as x = o, by property (2°). For a < x) < %, we have

W(xp) 2 W(x) -ulxy) = J:l{z F(t)at + J'sz W(t)a(t)wW(t)at.

As a function of X, each of the integrals is bounded above and non-
decreasing, and hence, equation (4e1) follows upon letting X, —> ®. The
converse statement follows immediately from Theorem 2.1 upon differentia-

tion of each member of (4.1)s Since (4¢3) is equivalent to the condition
x -1
0 < W(x) [Ja G(t)dt] ~, for x € (a,0), _
and from (4.1) and condition Nl(F) we have the inequalities
@
W(x) > J'X F(t)dt > 0, for x € (a,m),

it follows that relation (4e2) holds on (a,m).
One may note that under the hypotheses of Theorem 3.3, inequalities

(4e2) imply that the conditions
(s3] X
(4et) I, TR ([ 60an] <1, (1= 1,000,

are necessary for disconjugacy of (2.4) on [a,0). However, the useful-
ness of criteria (4.4) as tests for disconjugacy for large x is limited

by the fact that failure of (2.4) to be disconjugate on [a,m) does not



preclude disconjugacy for large x.

The following discourse deals with the derivation of tests for dis-
conjugacy for large x which are extensions of criteria of Hille [5; pe.243]"
and Sternberg [21; pp. 316-318] to systems (2.4) in which G is not assumed
to be of rank n.

If & is a point of X, an ordered pair (9,8) of real valued func~

tions on (a,00). will be called an acceptable pair on (a,0) if ¢(x) and

o(x) are positive, contimious, non-decreasing on (a,0), 9(x) = o as
o) -

x —> 00, 6(x)/p(x) = 0 as x = ®, and jx o(t)d ~(o(t)) 1] exists for

large x. For an acceptable pair (¢,6) on (a,m), let
@® -1y -1
p(x39,6) = [fx e(t)al=(p(+)) )1, for xe (a,m).
LEMMA. Suppose that hypotheses H(G > O3F > 0) and Nl(F) hold, and
for large x 1the system (2.4) is disconjugate and identically normal. Sup-

s e E————— ey

(p40) on (a,00), such that for each b € (a,® ) there exists a point

X
¢ e [byo) with A(J‘b G(t)dt) > o(x), for x € (cyo0). Then for large x the

0
integral crx 8(t)F(t)at exists, and
®

(445) p(xsp,0){ S(BF(t)at < E.

Suppose that (2.4) is disconjugate and identically normal on [by0).
Then we may assume that b > a, and consequently, there exists a point ¢ in

x e

[b,0) such that A(Jb G(t)dt) > ¢(x) on (cy). From Theorem 4.1, the
hermitian matrix W(x) = Z(x,b)Y-l(x,b) satisfies the inequalities
0 < W(x) € (cp(x))—lE on (c,0). Now Kl[W(x)] =0 a.e. on (c,0), and

hence for ¢ < x; < x, we have
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o jsz B(x)F()ax < -, ;{2 B! (x) dx
X,
< el i) + fxlz H(x)a(8(x))

< [6(=)) /o(xy) + f};cz(cp(x))'ld(e(x)}]E.

e

Upon integration by parts, this latter quantity is seen to be equal to
*2 -1
[6(x,)/0(x,) +J’X1 o) dl=(p(x) ),

and the conclusions of the Lemma follow upon letting X > o®.
THEOREM 4.2. Suppose that hypotheses H(G > OsF > 0) and Nl(F) hold,

and for large x the system (2.4) is disconjugate and identically normal.

pair (9,0) on (a,®), such that for each point b € (a,w), there are

points ¢,, (i = 1,...), in [by) with
nX
(4.6) A, 6(B)an) > dp()/(1+1), forx e (o) o).
@
Then J'x 6(t)F(t)dt exists for large x, and

(4a7) , limitg p[p(x;cp,e)J:’ o(t)F(t)at] < 1.

For each positive integer j, application of the above Lemma with the
acceptable pair (jo/(j+1),6) implies that the left member of (4.7) is no
larger than (j+1)/j. It is to be observed that if hypotheses HO(G > 0)
and N,(G| a) hold, and A(J;G(t)dt) > ® as x > ®, then (A(J;‘ G(t)dt),1)
constitutes an acceptable pair on (a.,oo) of the type considered in iheorem

X X
4o2 with plad(f, G(t)as),1) = A a(t)at), for x & (a,m).

To see that relation (4.7) reduces to a critef:ion of the type given

by Hille and Sternberg.in the speclal cases considered by those authors,
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suppose that there exists a real mumber q. > -1 such that G(x) > x 9 for
large x. Lf r is any real number such that 0 { r <1 * g, and
(p(x),6(x)) = (== (1+ a),x") for x & (0,00), then (9,6) constitutes an
acceptable pair on (0, ). For each sufficiently large b € X, we have the
inequality |

A(jb a(t)at) 2 (a + 1T - (70T,

and consequently, there exist points ¢, € (by@ ), (i = 1,00e), such that

relation (4.6) holds. Inequality (4.7) becomes

(4e8) lim sup p[xl+q—r J’Xm t'F(t)at] < (1 + q)z/(l +q-r1),
X —>®

vhich in the case r = 0, ¢ = -p yields the inequality involving limit
superior given in relation (5.1) of Stermberg [21; pg. 318]. For the case
n=1, r=0 =q, relation (4.8) reduces to a criterion of Hille [5; pg. 243].

It should be pointed out that the proof given for Theorem 4.l is a
generalization of that used by Hille in the scalar case. Although Hille
[53 PP. 2/1-2/3] uses the condition N (F), the generalization due to
Sternberg [21, pp. 316-318] does not require that condition. However, by
placing our hypotheses on J\ G(t)dt we may allow G to be singular, whereas
Sternberg demands nonsingularity of G in his Theorems 4.4 and 5.1. A
specific example in which G is singular, and Theorems 4.l and 4.2 are
applicable, will be considered in Section 6

The next two theorems are duals of Theorems 4.l and 4.2

THEOREM 4.3. Suppose that hypotheses H(G 2 O;F 2 0) and N,(G) hold,

X
and there exists a point a € X such that M:fa F(t)dt) > o as x > .

@
Then (2,_4) is disconjuga‘be for large x if and only if J' G(t)dt exists,

and for large x there exists a continuous nX n hermitian nons:.ng_u;
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09
matrix W = W(x) such that for large x the integral fx W(t)F(L)W(t)dt
exists and

a a
(4e9) - W(x) = jx W(t)F(L)W(t)at + J’x G(t)dt.

If a is such that the set of points of (a,m) which are conjugate to &

is either empty or bounded above, then there exists & real number b in

iy ————  Se—— s S ————  S————— . ——

[a,00) guch that Y(x,a) is nonsingg__ﬂ._. ar on (b,0), system (2.4) is dis-
conjugate on (b, ), there exists a real pumber c in (b,oﬁ) together with
a constant hermitian matrix M such that %(x,a) is nonsingular on ‘[c,oo),
and if W(x) = —Y(x,a)Z—l(x,a.) for x € [c,00), then on this interval W(x)

is hermitian, positive definite, satisfies (4.9), and
X — e8]
: -1 -1
(420) - E<u+ [ F(t)ar SV x) < [f, a(v)ael™.

Relation (4e10) is a generalization of a result obtained by Barrett
[1; Corollary 3.1.1, pg. 557].

If W(x) is a nonsingular hermitian element of A(by0) which satis-
fies (449) on (byo0), then W satisfies the relations KZ[W] = 0, Kl[—W_1]=O
a.60 on (b,00), and by Theorem 2.1 equation (2.4) is disconjugate on (b,co).

Suppose that a is a point of X such that there exists a point
b € [2400) with no point of (b,0) conjugate to a, and cf:c‘r(t)d‘b is
positive definite on (by0). Then Y(x,a) is nonsingular on (b,®), and
Theorem 2,1 implies that (2.4) is disconjugate on (b,oo). Suppose that
W (x) = -Z(x,a)Y-l(x,a), for x on (b,). Then W, is hermitian and satis-

1
fies K._L[-Wl] = 0 on this interval. If d is a point in (b, ), then

Wl(x) = T(x) + H(x), for x e (bym),
_ X ' d X o
where 2(x) = W (8) + Jy W (G0 (t)as - [, F(0)at, and 0x) = F(o)as

on (by0). Since T(x) is non-decreasing, we have W, (x) > T(d) + H(x) on
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[dy0). Choose ¢ such that ¢ > d and H(x) > E - T(d) on [c,00). For
every non-trivial constant vector m we have that n*Wl(x)n —> o as
x = o0, and since Wl(x) is non-decreasing, property (1°)-implies that
My (x)) > © as x = . Then W(x) = Wl"l(x), for x € (c,0), satisfies
the equation Kz[W] = 0 on [ey00), W(x) >0 on [ecym), and W(x) —=> 0 as

x => o by property (2°). If ¢ <x, < x,, then ve have

o) = G + 0% WP+ L2 o(e)as

X, X,
> | R w)F(a)w(s)at 2 G(t)dt.
fxl YF(4)W(%) +J"x1

As a function of X5 each of the integrals is bounded above and non-
decreasing, and hence, ;qu.;ztion (4e9) follows upon letting X, —> 0.
Relation (4.10) follows with the choice M = T(d).

THEOREM 4.4. Suppose that hypotheses H(G 2 O3F 2 0) and N (G) hold,
and (2.4) is disconjugate for large x. Suppose _a_;_lj__q that there exists a

point a € X, together with an acceptable pair (p,8) on (a,®), such that

for each b € (a,m), there are points Css (i = 1yeee)y in [by0) with

(411) M F(9)a) 2 196/ ¥ D), forx € (og,m)

0 0]
Then j'x o(t)a(t)dt exists for large x, and

a
(4o12) lin syp plo(xsg0 ], o(t)a(t)at] < 1.

In view of the device used in estabﬁéhing Theorem 4e2, it will
suffice to establish that relation (4.12) holds under the stronger hypoth-
esis. that for each b € [a,) thex;e is a point ¢ € (b, ) with
A(J:F(t)dt) >o(x) for x € (c;,oq). Suppose thg.t a; is a point of (a,m)
such that (2.4) is disconjugate on [al,oo). By Theorem 4;3 there exists

a real mumber b, in (a.l,m ), together with a constant hermitian matrix M,
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such that Y(x,al) and Z(x,al) are nonsingular on-[bo,oo) and W(x) =
-Y(x,al)Z—l(x,al), for x € [b ,0), satisfies E < M + H(x) < W) on
[byy0), vhere H(x) = J‘aj F(t)dat. Let N(x) = cp'l(x)M +E on[b,0),
and let ¢ be such that o > b, and A(H(x)) > ¢(x) on (c,m). Since
N(x) - E as x = o, property (2°) implies that there exist points dys

(1 = 1,e..), in (c,m) such that N(x) > iE/(i+ 1) holds on (di,oo). Since
P(x)N(x) = M + p(x)E < M + H(x) < W(x)
holds on (c,00), then due to (5°) we have

0< w(x) < (1 + 1)E/(i9(x)), for xe (d;,0).

Hence O(x)W(x) > 0 as x => o0, and by an argument similar to that used

in the proof of Theorem 4.1, it follows that if d; < x < x, then

jx;cz 8(x)G(x)ax < [ (5 +1)/51000x,)p " (x,) + fgz,o(x)d(-q»‘l(x))]E-

Consequently, the left member of (4.12) does not exceed (j+ 1)/j for
J =1,2,s40y and therefore (4.12) holds.

~ THEOREM 4.5. Suppose that hypotheses H(G > O3F > 0) and Nl(G) hold,
and (2.4) is disconjugate for large x. Suppose also that there exists a
continuous real w function ¥ on X such j;_h_a;g F(x) > ¢(i)E > 0 a.e, for

®
large x, and there exists a point a € X such that J‘a P(x)d&x = @. IL 6

is any real valued function on (a,c0) such that (p(x),8(x)) =

x
<¢fa P(t)dt,0(x)) constitutes an acceptable pair on (a,c0), then the in-

m .
tegral Jx 6(t)G(+)at exists for large x, and for every constant unit

vector w, we have
(413) Lin sup [p(x30,8)m*( jx e(t)G(t)at)n] < 1,
. X ->® . , _

and
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Q
(4914) Lim fnf [o)mx({ a(t)at)n] < 1/4.

Théorem ol assﬁres that J‘;O(t)(}(t)dt exists for large x and in-
equality (4.13) holds. From Theorem 4.3 it follows that there exists a
point b € [a,m), together with hermitian matrices W(x) > O and M such
that relations (4.9) and (4.10) hold on [b,c0), and consequently there

' ' . X
exists a point ¢ € [b,) such that ¢(x)E J‘a F(t)dt and
Wl/z(x)Mwl/z(x) + p(x)W(x) < E, for x¢& [c,m),
where Wl/ 2(x) is as in (4°). Let w be a fixed constant unit vector. Then

k = lim inf o(x)mW(x)n < 1,
X =>®

and from the Schwarz inequality we have
2 2
Cr¥FWn > P T 2 Y(r¥im) S on [ey00).
If 0 <k <k, then there exists a point x_in [c,m) such that
@ ®
ml(x)m 2 k2 [ (67 (8))at + wx([_G(s)at)m
holds on (xo‘,oo), ‘and since @' = Y we have the inequalities

lim inf [cp(x)n*(ffe(t)dt)n] <k =X < 14
X —>®

It is to be noted that in the case of 8(t) = 1, Theorem 4.5 has a
dual which may be obtained by interchanging the roles of G and F without
the assumption Nl(F) . That result, which‘ is a generalization of Theorem 5
of Hille [5; PEe 243], may be estgblished by employing Theoi'em Leby &
criterion of Reid [14; Pg. 747], and the method of prdof used by Ste.rnberg
[21; pp. 316-319]. | |

THEOREM 4.6. Suppose that hypotheses H(G \_'>_ 03F > 0) and Nl(-F) hold.

Suppose also that (2.4) is identically normal and G =F, F, =G onX.
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x
If there exists a point a € X guch that A(lfa G(t)dt) > o as x > o,
then (2.4) is disconjugate for large x if and only if

1 = = -
(4015) It =G3%, Z'=-F1

is disconjugate for large =x.

It is to:be observed that to assume the hypotheses of Theorem 4.6 is
equivalent to reqﬁiring that (4.15) satisfies hypotheses H(Gl 2 05F; 2 0),
Nl(GI), Nz(Fll 8) holds for every s € X, and that there exists a point aeX
such that A(,S‘:Fl('b)dt) - ® as x = ©. A4 matrix (Y3Z) is a solution of
(2.4) if and only if (-Z3Y) is a solution of (4.15). For fixed s € X, let
(¥, (x,8) 52, (x,8)) = (<Z(x,8) §I(x,s)) and (Yz(x?s);Zz(x,s)) =
(-Zo(x,s);Yo(ic,s)).

If (R44) is disconjugate oﬁ [by0), then Theorem 3.3 implies that
Z(x,b) = -Yl(x,b) is nonsingular on [b,0) and (4.15) is disconjugate on
[byo0) by Theorem 2.1, since (Yl(x,'b) ;‘Zl'(x,b)) constitutes a 210X n matrix
of conjoined solutions of (4e15) with Yl(x,b) nonsingular on [bym).

If (L.15) is disconjugate on [b,m), then by Theorem 4.3 there exists
a point ¢ & (b,00) such that Z,(x,b) =Y (x,b) is nonsingular on [cy0) and
therefore (2.4) is disconjugate on [c,m). "

By interchanging the roles of (2.4) and (4e15) in Theorem 4.6, we
havé the following corollarye.

'COROLLARY, Suppose that hypotheses H(G > O5F > 0) and N, () hold.
Suppose gl_gg that G, = F, Fo= |
N,(F| ) holds. If there exists & point a € X such that A(J;F(t)dt) NS

e e S————— S

G on X, and for each s € X, condition

as x —> ©, then (2.4) is disconjugate for large x if and only if (4.15)

is disconjugate for large x.
We say that a € X has b, a < b, [a > b], as a right, [left], focal
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point with respect to (2.4) if there exists a non-trivial 2nX1 solution
(732) of (2.4) such that z(a‘) =0= v(b). As a consequence of Theorem 4.6
and its Corollary, together ﬁth conditions (iii) and (iv) of Theorem 3.3,
we have the following relationship betweeﬁ focal point and conjugate
point problems..

THEOREM 4.7. Suppose that hypothesis H(G > O3F > 0) holds, and
thers exists an a € X such Lh_ggvcr:(}(t)dt and J:F(t)dt are increasing

: ~ x
matrix functions of x on [a,®). Suppose also that A(Ia G(t)at) —> oo,

X
[A(], F(t)at) > ©], 88 x> @, and 6 =F, P, G onX. IThen the

following conditions are equivalent:
(1) (24) is disconjugate for large x;
(11) (4.15) is disconjugate for large x;
(iii) there exists a point b & X such that relative o system (2.4),

[system (4.15)], no point of (bye0) has b as a left focal point;
(iv) there exists & point b € X such that relative to system (2.4),

[system (4.15)], no point of (b,c0) has & left focal point in [byw).

Since a is a left focal point of b relative to system (2¢4) when-
ever b is a right focal point of a relative to system (4e15), conditions
(1ii) and (iv) may be stated in terms of right focal points by inter—
changing the roles of systems (2.4) and (4.15).

THEOREM 4o8. Under the hypotheses of Theorem 4.7, the following

conditions are necessary for each of conditions (i), (ii), (iii), (iv)
of Theorem 4.7, with the alternatives respective of the al'bernatiwfes in

the hypotheses of Theorem 4.7:

- (1) j: F(t)dt,[jawe(:c)dt], exists;

(ii) there exists a point b € [a,0) such that:
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j: P(t)dt < (,f:c;(t)dt),"l, [J:G(t)dt < (J':F(t)dt)'ll, for x £ (b,0);
(s12) sach of $he mroduots A, ({7 e(t)atlr_,, ([TF(0)ab),
o, (f5 2(0)at)r_ 1 (J 6(+)at)], (4 = 1,u00yn), 1s bounded on [a,00);
() 11m sup O (el (04 < 1,

X e o)
[l;m_;ug a(§, F(ratp(f, a(t)at)) <1l

x _
Suppose that A(Ja G(t)dt) > o0 as x —> w, and b ¢ [a,0) is such
that (2.4) is disconjugate on [byo0). Then conclusions (i) and (ii)

follow from Theorem 4.1l. Moreover,
X b b4
A, a(hae) = a(f, a(v)at + f a(e)at)
b X :
<2, c(w)ans + § a(was),
for x > by (i = 1,4eeyn), and this latter quantity is equal to
b X
p({, e(t)as) + A, (f, 6(t)dt). Conclusion (iii) is a result of the
inequality
b4 ® b J.oo
Ai(Ja G(t)dtmn-iﬂ(trx F(t)dt) < p.(Ja G(t)dt)}tn_i+1( b F(t)at) + 1,
vwhich follows from the above remarks and the discussion following the
proof of Theorem 4.l. Theorem 4.2 with
x x
plxsa(J, a()at),1) = a(f] a(t)at)
X
yields (iv). In the case A(J'a F(t)dt) = o as x = o, we have

A(f : Gl(t)dt) —> o as x => ®©, and due to the equivalence of conditions
(1) and (ii) in Theorsm 4.7, application of the above results to system
(4+15) gives the alternate statements. It is to be observed that the
duality between the alternatives in condition (ii) of Theorem 4.8 is more

complete than that between relations (4e2) and (4.10) of Theorems 4.l
and .3, respectively.
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5. Sufficient conditions for disconjugacy. Whereas in Section 4 we
considered only systems (2.4) in which both G and F were non-negative
definite, the follow:ing theorem gives sufficient conditions for discon-

jugacy without requiring that F is non-negative definite.

THEOREM 5.1. Suppose that X is a subinterval of X: a, <x< o,

either of the form [a,d] with a < d < @, or of the form [a,c) with

a<cg o. If hypothesis H(G > 0} Xo) holds, and there exists a real

St Se——————  —— —

valued function a of class C' on X with a(x) non-zerc and o'(x) positive
on X , together with a constant hermitian matrix H such ‘that for M(x) =

H - Saxa(t)F(t)dt on X either
M(z) > 0 and a*(x)G(x) > G(x)M(x)G(x) a.e. m X ,

M(x) > 0 and a*(x)G(x) > G(x)M(x)G(x) a.e. on X ,

then (R.4) is disconjugate on X .
It is to be observed that under the change of independent variable

T = a(x) the system (2.4) on X becomes

(5.1) | aY, /& = G, (v)2,, d2,/dv = —Fl('c)Yi, for T & X; = a(X ),

wbere (¥,(%)32, (7)) = (X(a™(5))32(a™(2)), &, (%) = [a!(a™(0)) TG (a~ )
and F. () = [a'(a™ (@) T7F(e™ @) onXp. Now M(a™ () =

T
H - SG(S) sFl(s)ds and

[6,(5) = Gy (@)M(a™(%))6, (0) [t (a~2)) TP
= ot (a"21))a(a™ (1)) = Gla 1)) M (T))ala (7)),

fort € X,, and X. is an interval of the type considered in Theorem 5.1

1? 1
which does not contain zero. Consequently, it will suffice to establish

Theoren 5.1 for a(x) = x on X , although the theorem may be proved
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directly by the same general type of argument. .
Suppose that b is a point of Xo which is distinet from a, and
N € b’oo[a,b]. Since
(t"]n*Mn)t = *’0-211*1”171 + —b—lq*lng - N¥Fn + -(-,_lq*Mnl’

b _ .
and Ja (t ]‘q*Mq)'d’c = 0, we have

b
I[n:a,b] = Ja [C*GE - t oyt - t-l\'}*Mn’ + t"zn*Mn]dt

i

J’b -1 -1
o [C¥(G = GMB)E + (¥t = £ p¥)M(nt - 77 Jat,

for any ¢ € £®[a,b] such that y' = G¢ on [a,b]. Hence condition
Poo[a,b] holds for every b > a inX _, and (2.4) is disconjugate on X
by Theorem 2+1.

COROLLARY 1. Suppose that hypothesis H(G > 0) holds, and there

exists a point a € X together with a real valued function o of classg C!

on [a,00) with a(x) non-zero, a'(x) positive on [a,m), such that

® _
J\a a(x)F(x)dx exists and G/a' is essentially bounded on [a,m). If Fo(x)

is any ni n hermitisn matrix on X such that each entry of Fo(x) is of the

n

form 2 ¢, .F, .(x), where the c..'s are complex constants, then the
e = RRE X I i3 = T

system —
(542) vt =62, 2'=F7Y

is disconjugate for large x.
® o
Since existence of J'a a(x)F(x)dx implies existence of Ja a(x)Fo(x) dx,
it will suffice to establish Corollary 1 for Fo = Fe. OSuppose that h is a
positive constant such that G/a' < h-lE asCe ON [a,cn ). Because
® .
J.. a(t)P(t)dt > 0 as x = @, it follows from property (2°) that there

exists a point b € [a,0) such that
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@ :
-(h/2)E < jx a(t)F(t)dt < (b/2)E, for x € [b,0).
® x
IfH= J'b a(t)F(t)dt + (b/2)E and M(x) = H - J'b a(t)F(t)dt, then M satis-
fies 0 < M(x) < hE on [b,0). Since G > 0, the relation
GMG 1G> < atG

holds on [by), and (2.4) is disconjugate on [b,) by Theorem 5.l.

Under the choice F0 = pF where p is a real mumber, Corollary 1l gives
a sufficient condition for what in the scalar case has been called (see,
for example, [13; pg. 429]), "strong non-oscillation of (2+4)."

The symbol 6" will be used to denote the general reciprocal of G in
the sense of E. H. Moore, (see, for example, Reid [18; Section VI]). The
relation G = GG’ G, and the choice of the matrix H in Theorem 5.1 as

. ,

K+ J a(t)P(t)at, yield the following result.
COROLLARY 2., Suppose that hypothesis H(G 2 0) holds, and there

exist a point a € X and a real valued function a of class C' on [a,m)

with a(x) non-zero and a'(x) > O on [a,®) such that Ia. a(t)F(t)dt exists.

If there exisis a constant hermitiaspn matrix K such that either

< a’(x)G#(x), 8.€c ON [Qa.,ooli),

—

0<K+ J':u(t)l«“(t)at'

®
0K K+ trx a(t)F(t)dat < cc'(x)G#(x), a.e. on [a,00),

then (2.4) is disconjugate on [a,0).
b
The choice of H = K + J'a a(t)F(t)dt gives a result for an interval
[a,b] which corresponds to the result of Corollary 2.

COROLLARY 3. Suppose that £ and g are positive continuous real

valued functions on Xo’ a subinterval of X as in Theorem 5.1. Suppose

also that there exists a positive, [non-negative], function w on X such

e ——————a—y e ————— -
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that w and w'/f have continuous derivatives on XO with w!(x) non-vanishing
and (w!'/f)' + gu non-positive, [negg.tive], on X_. Then the scalar equa-
tion (y'/g)' + £y = 0 is disconjugate on X . -
Corollary 3 follows readily from Theorem 5.1 by choosing a = -Q'/f

and H = w(a).

THEOREM 5,2. Suppose that there exists a point a € X, together with
a positive ;@;a_i valued function o on [a,0) which has a continuous posi-
tive derivative on (a,00) such that the following hypotheses are satisfied:
(1) H(G 2 05F 2 0] [a,00))3
(ii) G/a' is essentially bounded for large x;
(111) J, F(t)at exists;
(iv) there exists an nXn hermitian non-negative definite matrix

H=H(x) in Xl2,®) such that Jama(t)H(t)d'b exists, and

@ @
J'x F(t)at < Jx H(t)dt for large x.

™
Then J'a a(t)F(t)dt exists and the conclusion of Corollary 1 to Theorem 5.1

holds.
X X
since J_ H(t)at < (1/a(a))d, a(t)E(t)as, for x 2 a, it follows that

© : ® ®
{TH(t)at exists. If e (a,00) is such that { F(t)at < . H(t)aw

holds on [byc0), then for x > b we have the relations
J;c a(t)F(p)dt + a(x)J:OF(t)dt = a(b)fbmF(s)ds + jbxa!(f)[fth(s)ds]dt
< a®), Bs)as + J. ot (0], B(s)aslat.
Since a(x)],, F(1)at > 0, and
a(b)f\B(s)as + [y ot ()L, H(s)aslas = a(x)jxmﬁ(t)dt +j:a(t)H(t)dt

< j;oa(t)ﬂ(t)‘dt,
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we have 5: a(£)F(t)at < 5:) a(t)H(t)dt. Consequently, mea(t)F(t)dt
exists and Corollary 1 to Theorem 5.1 applies,

Suppose that B is a non-negative ‘real valued function in &£ [a,m)
such that J:B(t)dt exists, and « € Cfla,) is such that both a(x) and
af(x) are positive on [a,00). Then one particular choice of the matrix
H in Theorem 542 is (B/a)E. With this form of H, if o and § are defined
by a{x) = x¥, p(x) = k(¥ + a)x_l-s, for k,‘\’ , € positive constants, then
we obtain the following extension of the sufficient condition given in
Theorem 5.5 of Stermberg [21; pg. 321].

COROLLARY. Suppose that hypothesis H(G > O3F > 0) holds, and

,j:oF(t)dt exists for large x. If there exist positive real constants v
and € such that for large x the matrices xl_vG(x) and ;Z"*sj': F(t)at

are essentially bounded, then the conclusion of Corollary 1 o Theorem

5.1 holds.

6. Applications to self-adjoint scalar quasi-differential equations

of even order. Suppose that ¢ is a constant n-vector, n 2> 1, with real

components ¢, ,e.s,C , vhile r(x),pl(x),,..,pn(x) ‘are real valued functions
in L(X) with r(x) positive on X: a, <x< ®. Let the nxn matrices A(x),

B(x), and C(x) in (2,1) have A i+l(x) =1, (1 = Lyeesyn-1), Bnn(x)=r(x),

_cii(x) = -c P_i+1(*)y (1 = 1,000,n), with all other entries identi-

n=-i+l

cally zero. Then the system (2.1) becomes

1> T = ui+l, (i = l,co',n-l),
u 1 = v ]

(6.1) n o

! = .
V1 CnPpty

. = =C . . u' - . $ =
i n-1+1Pn-3+1% ~ Vi-19 (1 = 2y0009n).
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A 2nx1 vector (ujv) is a solution of (6.1) on X if and only if there

(n-1)

exists a scalar function W € C(n_l)(X) with w £ Q(X), together with

scalar functions vy € 0(X), (j = Lyese,sn), which satisfy

u, = W(J—l), (] = 1ye004n),
(642) W(n) = T
o2 (n=3
f = - n—J).. i = -
Vamg1 = "C4P5V Vi) (] =1yeeeyn-1),

1 = .
vy C PWe
. <k>
For the above functions TyPpseeesPy and constant vector c, let Dc ’

(k = n,...,2n) be the following operators, (see Reid [163 pg. 102])
geeey ) 3 ’

'D§n> = (1/r)D"
(643) pIH = R 4 () e p D™, (1= 1,000,0-1),
<2n> _ n<2n-1> n-1 )
_ D5 = DDc“ * (-1)" e p D7,

where D is the usual derivative operator.

The system (6.2) is equivalent to the quasi-differential equation
(644) - Py =,
Two distinet points, X and %) of X are said to be conjugate relative to

equation (6.4) if and only if there exists a solution w of equation (6.4)

such that we have
(6.5) W) =0, (121,25 5= 1,000,

with w(x) # O between x; and x,, and equation (6.4) is said to be discon-
jugate on a subinterval Xo of X whenever XO contains no pairs of conjugate
points.

One particular fundamental matrix D of D! = AD has Dij(x) =

W t/(j-1)1 for i < j and Dij(x) = 0 for 1 > j, so that the inverse.
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matrix D~ is given by Dij (x) = (=1)" ‘%x7/(§-1)! for i < j and
-1 - . .
Dij (x) =0 fori>ij.

If w is a constant n-vector and {(xjm) = D(x)w, then

n . .
g (x5m) = 3 (=7 /(5-1)1), (3= 1,...5m),
J=i J
and
2 2
wF(x)n = 3 [e P . (0IE (5m)7.

i=1
The following theorem includes Theorem A of Kaufman and Sternberg

[10; pg. 527] under the choice of a(x) = x on X.

THEOREM 6.1. If there exists a point a € X together with a real

valued function o of class O' on [a,®) with a(x) > 0 and a'(x) > 0, for

x £ (a,0), such that r(x)xzn-z/a‘(x) is essentially bounded on (a+1,00)

. ® 252
and each of the integrals J‘a o.(x)pj (x)x

dx, (j = 1,...,n), converges,

then for every constant n-vector c¢ with real components, edquation (644) is

disconjugate for large x.

Since Abel's theorem for improper integrals assures that each of the
integrals J‘:O a(x)pj(x)xidx, (1 = 0ye4ey2j=R), oxists, and because the
entries of G(x)/r(x) are polynomials of degree not exceeding 2n- 2,
Theoren 6.1 follows from Corollary 1 to Theorem 5el.

The results of Section 4 will now be applied to equation (6.4) in

the special case n = 2, ¢, = ¢, = 1j that is,

(646) ((wht/x)? + plw')' - pow = 0.

THEOREM 6.2. Suppose that Py and b, are non-negative real valued
functions in &£(X) and condition Nl(Pz) holds. Suppose also that (6.6)
is disconjugate for large x, and there exists a real number & < 1 such

that r(x) > 0 holds a.e. for large x. If ¥ is any real pumber such
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(e8] .
that 0 < v < 1-3, then [£7"%p, (%) + ’p, (t)]at exists for laree x,

and we have

®
(6.7) lim;up [coxl"ﬁ-v J'x (tY+2p2(t) + t")pl(t))d‘c] <1,
X > o

where ¢ = (1 - 5)"2(2,- a)'2(1 -5 ~7).

Results of this type have been obtained by various authors, ([22;
pg. 416], [113 pp. 349-351], [7; pg. 306], [165 pg. 105], [2; pg. 633],.
[9; pge 9611, [63 pg. 136]), although none of those results explicitly
contains Theorem 6.2. .
Suppose that a is a positive point of X such that r(x) > x-a on

[ay0). If b is a point of [a,w), then
AMJL a(t)at) 2 AEG)) - p(E()),

where Hij(x) = (-1)¥(5 -1 -3 - 5)—13:5"1_3-6, (i,j = 1,2). Conse~-
quently, there exists a real valued function k(x) on [a,) such that
k(x) > 1 as x = o and A(H(x)) = k(x)p(x) on [bym), where ¢(x) =

) -2x1"6

(1 - 8)"Yz -5 on [byc). Hence M, 6(1)at) 2 h(x)g(x) on (byo),

where

n(x) = k(x) - [p(E(D)) 1/ (9(x).

Since h(x) = 1 as x = o, there exist points e s (1 =1,.s4), in (b,m)
such that h(x) > i/(i+ 1) on (ci,oo). Because condition Nl(F) follows
from condition Nl(pz), the conclusions of Theorem 6.2 follow by applying
Theorem 4e2 with 6(x) = x¥ and the above choice of @(x).

A dual of Theorem 6.2, which may be obtained by changing the hypoth-
esis r(x) > %0 to py(x) 2 x-b, replacing F by G and changing the inte-
grands to 'b2+vr(t), follows readily from Theorem 4.4 by the type of proof

used for Theorem 6.2, after noting that F(x) does not increase if pl(x)
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is reduced to zero, and the matrix which corresponds to the above H(x) has
the same characteristic equation as H(x). These theorems may also be
stated in terms of functions 6(x) such that (x'70,0(x)) constitutes an
acceptable pair. It is perhaps of more interest to note the following
"Hille type"™ criterion.

THEOREM 6.3. 1If (6.6) is disconjugate for large x and there
exists & real velued function k(x) in X(X) such that p;(x) 2 K(x) > 0,
(i = 1,2), holds a.e. for large x, and j‘: t"‘zk(t)dt = o for large X,

@D
then J‘x t%r(t)dt exists for large %, and for every positive poinmt

X, € X,
1im sup : 1
x-écn} X J.m 2

(648) l}’;m_;nfo [(SXO tk(t)at)] tTr(t)at] < {1/4.

Since it follows readily that there exist points c,, (L= Lyeee),
in X such that A(F(x)) > ix_zlc(x)/(i+l) on (ci,oo), relation (6.8) fol-
lows by application of Theorem 4.5 with $(x) = ix'zk(x)/(i+ 1) and letting
i => o. It should be noted, however, that the dual éf Theorem 4¢5 is not

applicable to equation (6.6).
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